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Abstract

Many statistical models for networks overlook the fact that most real-world networks are formed through a
growth process. To address this, we introduce the Preferential Attachment Plus Erdés—Rényi model, where
we let a random network G be the union of a preferential attachment (PA) tree T and additional Erdés—
Rényi (ER) random edges. The PA tree captures the underlying growth process of a network where
vertices/edges are added sequentially, while the ER component can be regarded as noise. Given only one
snapshot of the final network G, we study the problem of constructing confidence sets for the root node of
the unobserved growth process; the root node can be patient zero in an infection network or the source of
fake news in a social network. We propose inference algorithms based on Gibbs sampling that scales to
networks with millions of nodes and provide theoretical analysis showing that the size of the confidence
set is small if the noise level of the ER edges is not too large. We also propose variations of the model in
which multiple growth processes occur simultaneously, reflecting the growth of multiple communities; we
use these models to provide a new approach to community detection.

Keywords: community detection, Gibbs sampling, network data analysis, preferential attachment model, root inference

1 Introduction

Network data is ubiquitous. To analyse networks, there are a variety of statistical models such as
Erd6s—Rényi, stochastic block model (SBM) (Abbe, 2017; Amini et al., 2013; Karrer & Newman,
2011; Xu et al., 2018), graphon (Diaconis & Janson, 2007; Gao et al., 2015), random dot product
graphs (Athreya et al., 2017; Xie & Xu, 2019), latent space models (Hoff et al., 2002), configuration
graphs (Aiello et al., 2000), and more. These models usually operate by specifying some structure, such
as community structure in the case of SBM, and then adding independent random edges in a way that
reflects the structure. The order in which the edges are added is of no importance to these models.

In contrast, real-world networks are often formed from growth processes where vertices and
edges are added sequentially. This motivates the development of Markovian preferential attach-
ment (PA) models for networks (Barabdsi, 2016; Barabasi & Albert, 1999) which produce a se-
quence of networks Gq, G, ..., G, where G starts as a single node which we call the root
node and, at each iteration, we add a new node and new edges. PA models naturally produce net-
works with sparse edges, heavy-tailed degree distributions, and strands of chains as well as pend-
ants (several degree 1 vertices linked to a single vertex), which are important features of real-world
networks that are difficult to reproduce under a non-Markovian model, as observed by
Bloem-Reddy and Orbanz (2018).

Although Markovian models are often more realistic, they have not been as widely used in net-
work data analysis as, say SBM, because, whereas SBM is useful for recovering the community
structure of a network, it is not obvious what structural information Markovian models could
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extract from a network. Recently, however, seminal work from a series of applied probability papers
(e.g. Bubeck, Devroye et al., 2017; Bubeck et al., 2015) demonstrate that Markovian models can in-
deed recover useful structure: these papers show that, surprisingly, when G,, is a random PA tree, one
can infer the early history of G, such as the root node, even as the size of the tree tends to infinity.
Although these results are elegant, they are theoretical; their confidence set construction involves large
constants that render the result too conservative. Moreover, most algorithms apply only to tree-shaped
networks, which prohibitively limits their application since trees are rarely encountered in practice.

To overcome these problems, we propose a Markovian model for networks which we call
Preferential Attachment Plus Erdés—Rényi, or PAPER for short. We say that G,, has the PAPER
distribution if it is generated by adding independent random edges to a preferential attachment
tree T. The latent PA tree captures the growth process of the network whereas the ER random
edges can be interpreted as additional noise. Given only a single snapshot of the final graph G,,,
we study how to infer the early history of the latent tree T, focussing on the concrete problem
of constructing confidence sets for the root node that can attain the nominal coverage. We give
a visual illustration of the PAPER model and the inference problem in Figure 1.

Because we do not know which edges of G,, correspond to the tree and which are noise, most
existing methods are not directly applicable. We therefore propose a new approach in which we
first give the nodes new random labels which induce, for a given observation of the network
G,, a posterior distribution of both the latent tree and the latent arrival ordering of the nodes.
Then, we sample from the posterior distribution to construct a credible set for the inferential
target, e.g. the root node. Bayesian inference statements usually do not have frequentist validity
but we prove in our setting that that the level 1 — € credible set for the root node has frequentist
coverage at exactly the same level.

In order to efficiently sample from the posterior distribution of the latent ordering and the latent
tree, we present a scalable Gibbs sampler that alternatingly samples the ordering and the tree. The
algorithm to generate the latent ordering is based on our previous work (Crane & Xu, 2021)
which studies inference in the tree setting. The algorithm to generate the latent tree operates by
updating the parent of each of the nodes iteratively. The overall runtime complexity of one iter-
ation of the outer loop is generally O(m + nlogn) (where m is the number of edges) and the algo-
rithm can scale to networks of up to a million nodes.

Since a trivial confidence set for the root node is the set of all the nodes, it is important to be able
to bound the size of a confidence set. In particular, the presence of noisy Erdés—Rényi edges in the
PAPER model motivates an interesting question: how does the size of the confidence set increase
with the noise level? In this paper, we give an initial answer to this question under two specific
settings of the preferential attachment mechanism: linear preferential attachment (LPA) and
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Figure 1. Left: lllustration of PAPER model; nodes have latent time ordering (only first 10 orderings shown); the dark
red edges form the latent tree while light grey edges are Erdés—Rényi. Right: 80% confidence set for the root node
(node number 1) constructed from the unlabelled graph.
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uniform attachment (UA). For LPA, we prove that the size of our proposed confidence set does
not increase with the number of nodes 7 so long as the noisy edge probability is less than 7~1/?
and for UA, we prove that the size is bounded by #” for some y < 1 so long as the noisy edge prob-
ability is less than log (72)/n. Our analysis shows that the phenomenon discovered by Bubeck,
Devroye et al. (2017), that there exists confidence sets for the root node of O(1) size, is robust
to the presence of noise.

Many real-world networks often have community structures. In such cases, it would be unreal-
istic to assume that the network originates from a single root node. We therefore propose varia-
tions of the PAPER model in which K growth processes occur simultaneously from K root
nodes. Each of K root nodes can be interpreted as being locally central with respect to a community
subgraph. In the multiple roots model, there is no longer a latent tree but rather a latent forest
(union of disjoint trees), where the components of the forest can naturally be interpreted as the
different communities of the network. We provide model formulation that allows K to be either
be fixed or random. To analyse networks with multiple roots, we use essentially the same inferen-
tial approach and Gibbs sampling algorithm that that we develop for the single root setting, with
minimal modifications.

By looking at the posterior probability that a node is in a particular tree~community, we can
estimate the community membership of each of the nodes. Compared with say the stochastic block
model, the PAPER model approach to community recovery has the advantage that the inference
quality improves with sparsity, that we can handle heavy-tailed degree distribution without a high-
dimensional degree correction parameter vector, and that the posterior root probabilities also
identify the important nodes in the community. Empirically, we show that our approach has com-
petitive performance on two benchmark datasets and we find that our community membership
estimate is more accurate for nodes with high posterior root probability than for the more periph-
eral nodes. We also use the PAPER model to conduct an extensive analysis of a statistician co-
authorship network curated by Ji and Jin (2016) where we recover a large number of communities
that accurately reflect actual research communities in statistics.

We have implemented our inference algorithm in a Python package called paper-network,
which can be installed via command pip install paper-network. The code, example scripts,
and documentation are all publicly available at https:/github.com/nineisprime/PAPER.

1.1 QOutline for the paper

In Section 2, we define the PAPER model in both the single root and multiple roots setting. We also
formalise the problem of root inference and review related work. In Section 3, we describe our
approach to the root inference problem, which is to randomise the node labels and analyse the
resulting posterior distribution. We also show that the Bayesian inferential statements have fre-
quentist validity. In Section 4, we give a sampling algorithm for computing the posterior probabil-
ities. In Section 5, we provide theoretical bounds on the size of our proposed confidence sets and in
Section 6, we provide empirical study on both simulated and large scale real-world networks.
We use the following notation throughout the paper:

e We take all graphs to be undirected. Given two labelled graphs g and g’ defined on the same set
of nodes, we write g + g’ as the resulting graph if we take the union of the edges in g and g’ and
collapse any multi-edges. We also write g C g’ if g is a subgraph of g'.

* Foralabelled graph g, we write Dg(u) as the degree of node u in graph g and N, () as the set of
neighbours of # (all nodes directly connected to u) with respect to g; we write V(g) and E(g) as
the set of vertices and edges of g, respectively.

e For an integer n, we write [n]:={1, 2, ..., n}. For a countable set A, we write |A| as the
cardinality of A. For two sets A, B of the same cardinality, we write Bi(A, B) as the set of
bijections between them. For a vector x, we let 1.5 be the sub-vector (x1, m2, ..., k).

¢ Given a finite set V’ of the same cardinality of V(g) and given a bijection p € Bi(V(g), V'), we
write pg to denote a relabelled graph where a pair (¢, /) € V' X V' is an edge in pg if and only
if (u, v) € V(g) x V(g) is an edge in g.

¢ Throughout the paper, we use capital font (e.g. G) to denote random objects and lower case
font to denote fixed objects. Graphs are represented via bold font.
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2 Model and problem

We first describe the model and inference problem in the single root setting and then extend the
definition to the setting of having fixed K roots and having random K roots.

2.1 PAPER model

Definition 1  The affine preferential attachment tree model, which we denote by APA(a, B)
for parameters a, f € R, generates an increasing sequence Ty C T, C --- C
T, of random trees where T, is a tree with ¢ nodes and where nodes are la-
belled by their arrival time so that V(T;) =[¢]. The first tree Ty ={1} is a
singleton node, which we refer to as the root node, and for ¢ > 2, we define
the transition kernel P(T;|T;_1) in the following way: given T,_1, we add
a node labelled ¢ and a random edge (¢, w;) to obtain T}, where the existing
node w; € [t — 1] is chosen with probability

ﬁDT,,1 (wf) +a
B—2)talt—1)

(1)

To ensure that equation (1) is always non-negative, we require either a, 8 > 0 or, if # < 0, then
a = —cpf for some integer ¢ > 0. We may verify that (1) describes a valid probability distribution by
noting that T;_; always has ¢ — 2 edges and ¢ — 1 nodes. Before continuing onto the PAPER model,
we consider some specific examples of APA trees:

1. Setting a = 1, # = 0 means that we select w; uniformly at random from V(T;_q). This yields the
UA random tree. The resulting degree distribution has exponential tail and the maximum de-
gree is of order logn (Addario-Berry & Eslava, 2018; Na & Rapoport, 1970).

2. Setting o =0, =1 means that we select w; with probability proportional to the degree
Dr,_, (w;). This yields the LPA random tree. Linear preferential attachment has heavy-tailed
degree distribution and a maximum degree is of order /7 (Bollobds et al., 2001; Pekoz et al.,
2014).

3. We may also set  as —1 and a as some positive integer so that the maximum degree of any
node is a. This may be interpreted as a UA tree growing on top of a background infinite
a-regular tree (Khim & Loh, 2017).

We may generalise Definition 1 by defining a nonparametric function ¢: N — [0, co) and choose
w, with probability proportional to ¢(Dr,_, (1;)). In this paper however, we focus only on the case
where ¢ is an affine function.

Definition 2 To model a general network, we define the PAPER(a, 8, ) (PAPER) model
parametrised by a, # € Rand 6 € [0, 1]. We say that a random graph G,, dis-
tributed according to the PAPER(a, f, 6) model if

G,=T,+R,,

where T, ~ APA(a, B) and R, ~ Erdés—Rényi(0) are independent random
graphs defined on the same set of vertices [#].

Since we collapse any multi-edges that occur when we add R, to T,,, we may view R,, equiva-
lently as an ER random graph defined on potential edges excluding those already in the tree T,.
The PAPER model can produce networks with either light-tailed or heavy-tailed degree distri-
bution depending on the choice of the parameters a and f. It produces features that are com-
monly seen in real-world networks but absent from non-sequential models like SBM, such as
pendants (a node with several degree-1 node attached to it) and chains of nodes; see
Figure 2. It also assigns a non-zero probability to any connected graph, in contrast to the gen-
eral preferential attachment graph model where a fixed 7 > 1 edges are added at every iteration
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Figure 2. Left: PAPER graph with a = 1, # = 1; Right: co-authorship graph from Ji and Jin (2016) (reprinted with
permission from the Insitute of Mathematical Statistics).

(Barabasi & Albert, 1999). In computer science terminology, G, is a planted tree model where
the signal T, is planted in an ER random graph R, in the same sense that SBM is often referred to
as the planted partition model.

An alternative way to define the PAPER model is to specify the total number of edges #1 in the
final graph and generate R, as a uniformly random graph with 7 — (n — 1) edges (since a tree with
n nodes always has n — 1 edges). This is equivalent to the PAPER (a, 8, 8) model where we condi-
tion on the event that the final graph G,, has m edges. To simplify exposition, we use PAPER to
refer to this conditional model as well.

Remark 1

Remark 2

Remark 3

We may view the PAPER(a, B, 6) model as a Markovian process over a se-
quence of networks Gy, Gy, ..., G,. We define the transition kernel
P(G;| Gs-1) for ¢t > 3 by first adding a new node labelled #, then adding a
new tree edge (¢, w;) where w, is chosen with probability (1), and then, for
each existing node j € [t — 1] not equal to w;, we independently add a noise
edge (¢, j) with probability 6.

Interestingly, when a = 1 and = 0, we see that the PAPER model is the con-
ditional distribution of an Erdés—Rényi graph G conditional on the event that,
for some fixed ordering p of the nodes, the sequence of induced subgraphs G n
{p15 ..., p,} for t € [n] are all connected. In Section 2.3, we extend the PAPER
model so that the noise edge probability is allowed to depend on the time ¢ and
the state of the tree at time ¢.

Under APA(a, ) model, the probability of generating a given tree has a closed

Dgy 0)-1 .
form expression: P(T, =#,) = %
is that the likelihood depends on the tree #, only through its degree distribution
Dy, (-). Hence, any two trees with the same degree distribution has the same
likelihood; Crane and Xu (2021) refer to this property as shape-
exchangeability. We give the likelihood expression for the multiple roots mod-
els and the PAPER model in Section S1.1 of the online supplementary material.

The important consequence

It is known that the degree distribution of an APA(a, f8) tree has an asymptotic
limit. For example, if $ = 1 and & > 0, then we have by Van Der Hofstad (2016,

1 _ 2 k=1 j+ :
Theorem 8.2) that 5. >\, 1{Dr, (1) = k) — 7% -1 ].+’3+"2a as n — co uniform-

ly over all k. The limiting distribution is approximately a power law where the
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number of nodes with degree k is proportional to k~3*% (see Van Der Hofstad,
2016, Section 8.4). Since the ER graph R,, only adds an expected additional de-
gree of at most 70 to every node, we see that, when 6 is small, the PAPER graph
can have heavy-tailed degree distribution without any additional degree cor-
rection parameters.

2.1.1 Single root inference problem
Let G,, ~ PAPER(a, B, 6) be a random graph. As the nodes of G,, are labelled by their arrival time,
our observation is the unlabelled shape sh(G,,), that is, the network G,, with the labels removed.
Our goal is to construct a subset of nodes that is guaranteed to contain the true root node (node
with arrival time 1) with probability at least 1 — ¢. Since we need to refer to specific nodes of
sh(G,,), we give the nodes of sh(G,) names from an arbitrary alphabet i, of 7 elements to form
a labelled graph G}, such that V(G}) =U,,. We take G}, as our observation from this point on.
We note that there exists an unobserved label bijection p € Bi([#], U,,) such that pG,, = G,. This un-
observed p captures precisely the arrival time of the nodes in that for any time ¢ € [#], the node with
label p, in G}, is exactly node with arrival time ¢ in G,,. In particular, node p; of the observed graph
G, is the true root node. To illustrate the setting clearly, we provide a concrete example in Figure 3.

Definition3  For ¢ € (0, 1), we say that a set C(G};) C U, is a level 1 — € confidence set for
the root node if

P(p; € C(G))) 21 -c. (2)

One may construct a trivial confidence set for the root nodes by taking the set of all the no-
des. We aim therefore to make the confidence set C.(-) as small as possible. Although we focus
on the problem of root inference, the approach that we develop is applicable to more general
problems such as inferring the first two or three nodes or inferring the arrival time of a particu-
lar node.

Remark 4 It is important to note that G, may have multiple nodes that are indistinguish-
able once the node labels are removed, which may lead to the paradoxical scen-
ario that which node of G;, correspond to the true root node depends on the
choice of the label bijection p. Luckily, this is a technical issue that does not
pose a problem so long as we restrict ourselves to confidence sets C(-) that
are labelling equivariant in that they do not depend on the specific node label-
ling. Labelling equivariance is a very weak condition that only rules out confi-
dence sets that can access side information about the nodes somehow.

Formally, we note that there may exist p, p’ € Bi([#], U,,) where p; # p} but
both satisfy G}, =pG, =p'G,; in other words, root node can only be well-
defined up to an automorphism. We illustrate a concrete example in
Figure 4. We define C.(-) to be labelling equivariant if, for all = € Bi(U,,, U,,),

unlabeled shape

time labeled G,

equivalently, we observe an arbitrarily
alphabetically labeled G
pil=2B2+A3CA4~ D5~ E6—F

We have G, = pG,. The root node of G}, is py = B.

Figure 3. Our observation is the unlabelled shape or alphabetically labelled G}, instead of time labelled G,,. There
exists an unobserved ordering p € Bi(lnl, U,) such that G}, = pG,.
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p:12A23B3—-C 4D

o 1-+D2—+B3—C4— A

Figure 4. Both p and p’ are distinct bijections in Bi([n], &) but they both satisfy G}, = pG,, = p' G,,. The root node is D
according to p but A according to p’. Note that nodes A and D are indistinguishable if the labels are removed.

we have C.(G}) = C.(zG}); if the confidence set algorithm contains random-
isation (to break ties for example), then we say it is labelling equivariant if

C(G}) 4 C.(zG;,) for all = € Bi(U,,, U,). If a confidence set C,(-) is labelling
equivariant, then for any p, p’ € Bi([n], U,) such that G}, =pG, =p'G,, we
have that (o’ 0 p™!)G* = G and hence,

p1 € CAGy) & (p'op™)py € (p 0p™)CUG)) & p € Cllp' 0p7")Gy) &
p) € C(G).

Therefore, the coverage probability (2) does not depend on the choice of p.

2.2 Multiple roots models

Many real-world networks have multiple communities that grow simultaneously form multiple
sources. The APA model allows for only one root node in the graph but we can augment the model
to describe networks that grow from multiple roots. When there are K roots, we start the growth
process with an initial network of K singleton nodes and attach each new node to an existing node
w, with probability proportional to - (degree of ;) + a as before.

However, one complication is that when a = 0, the probability of attaching to a singleton node is
0. Thus, for convenience, we give each root node an unobserved imaginary self-loop edge for the
purpose of computing the attachment probabilities.

Definition 4  We first define the APA(a, B, K) model for a random forest of K disjoint com-
ponenttrees: let K € Nandforz € S:={1, 2, ..., K} (thesetSis the set of root
nodes), let F; be the set of singleton nodes 1, 2, ..., t. For t > K, we define the
transition kernel P(F; | F,_1) in the following way: given F,_;, we add a new
node ¢ and a new random edge (, w;) where the existing node w; € [ — 1]
is chosen with probability

BDrF,  (wy) + 21w, € S} + @

2B+ a)(t—-1) 3)

We then say that a random graph G, ~ PAPER(a, 8, K, 0) if G, =F,, + R,
where F,, ~ APA(a, B, K) and R,, ~ ERy is an Erd6s—Rényi random graph in-
dependent of F,, defined on the same set of nodes [#2]. We refer to this setting as
the fixed K setting. In contrast, we refer to the PAPER (a, B, 6) model in Section
2.1 as the single root setting.

We can verify the normalisation term (3) by noting that each root node starts with one imagin-
ary self-loop and that we add one node and one edge at every iteration. The theory of Polya’s urn
immediately implies that the number of nodes in each of the K component trees, divided by #, has
the asymptotic distribution of Dirichlet(%, ..., %).

To deal with networks in which the number of roots K is unknown, we propose a variation of
the PAPER model with random K number of roots. We can express the model as a sequential
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growth process where every newly arrived node has some probability of becoming a new root.
Similar to the fixed K setting, we give each new root node an imaginary self-loop edge for the pur-
pose of determining the attachment probabilities.

Definition 5 We first define the APA(a, B, ap) model for a random forest graph: let F; be a
singleton node and let S={1}. For k> 1, we define the transition kernel
P(F, | F,_1) in the following way: given F,_;, we add a new node ¢. With prob-
ability

ao
2B+a)t—1)+a’

we let t be a new root node to form F, and add £ to set S. Or, we add a new
edge (¢, w;) to F,_1 to obtain F, where the existing node w; € [¢ — 1] is chosen
with probability

BDF,  (wy) + o+ 2p1{w, € S}
2+ a)(t=1)+ a0

Note that the resulting set of root nodes S C [#] of F,, is a random set.

We then say that a random graph G,, has the PAPER(a, B, a, 0) distribu-
tion if G, = F,, + R,, where F,, ~ APA(a, 8, ap) and R,, ~ ER(6) is an Erdés—
Rényi random graph independent of F,, defined on the same set of nodes [#].
We refer to this setting as the random K setting.

In the random K setting, each node has some probability of becoming a new root node and
creating a new component tree in the same way as the Dirichlet process mixture model, which
is often called the Chinese restaurant process. Therefore, the expected number of component trees

is (1 + 0(1))(2;‘—ia)logn (Crane, 2016, Section 2.2).

2.2.1 Multiple roots inference problem

We observe G, = pG,, for an unknown label bijection p € Bi([#], U,,). In both the APA(a, 8, K) and
the APA(a, B, ap) models, the root nodes is a set S which is fixed to be [K] in the first model and
random in the second model. Intuitively, we interpret S as a set of local roots, where each root
is central with respect to a specific community or sub-network represented by a component tree
in the forest F,, in Definition 4 or 5. The root inference problem is then, for a given ¢ € (0, 1),
to construct a confidence set C(G),) such that

P(pSC CAG})) >1-e

We illustrate this notion of local roots in a synthetic example in Figure 5.

Remark 5 (Interpretation of community under the PAPER model). The disjoint compo-
nent trees of F, induce a community structure on the graph G,.. This way of
modelling community by adding Erdés—Rényi noise to disjoint subgraphs
follows the same spirit as SBM: an SBM with K communities, p as the within-
community edge probability, and g < p as the between-community edge prob-
ability can be similarly defined as first generating K disjoint ER( f%;’ ) graphs on
each of the communities and then taking the union of that with ER(g) noisy
edges on all the nodes, collapsing multi-edges.

The PAPER notion of community is however different from that described
by SBM. The PAPER notion of community is based on Markovian growth
process and intuitively characterised by the imbalance of spanning trees on
a network, that is, we believe a network to contain multiple communities if
the spanning trees of the network tend to be highly imbalanced (see
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Figure 5. Left: lllustration of PAPER model with K= 2 underlying trees; nodes have latent time ordering (only first 10
orderings shown); the dark red edges form the latent tree, while light grey edges are Erdoé s—Rényi. Right: 80%
confidence set for the set of root nodes (node number 1 for tree 1 and node number 2 for tree 2) constructed from
the unlabelled graph.
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Figure 6. The karate club network (left) has two true communities. Most spanning trees of the whole karate club
network would be imbalanced (such as the tree on the right), showing that the karate club network is very unlikely to
have been formed from a single homogeneous growth process and hence very likely to contain multiple
communities.

Figure 6), which would suggest that the network is very unlikely to have been
formed from a single homogeneous growth process.

The PAPER model also produces more within-community edges than
between-community edges because each community has a spanning tree.
However, since a tree on 7z nodes only has 7 — 1 edges, the difference in the
within-community edge density and the between-community edge density is di-
minishingly small when the noise level 6 is of an order larger than w(1). In this
case, the peripheral leaf nodes of a community-tree become impossible to clus-
ter but it is still possible to recover the root node of each of the community-
trees, as our experimental results show. One disadvantage of the PAPER no-
tion of community is that it is not able to capture non-assortative clusters
where nodes in the same clusters are unlikely to form edges.

The PAPER notion of community is appropriate in many application. For
example, for a co-authorship network where there exists an underlying growth
process, our empirical analysis in Section 6.5 shows that the PAPER model cap-
tures clusters that accurately reflect salient research communities. We can also
combine both notions by a PAPER-SBM mixture model, where we generate a
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preferential attachment forest F,, via the mechanism described in Definition 4
or 5, then, for every pair of nodes # and v, we add a noisy edge (u, v) with prob-
ability 6, if # and v belong to the same tree in F,, and with a different probabil-
ity 6, if u and v belong to different trees. The inference method and algorithm
that we develop in this manuscript can extend to such a PAPER-SBM mixture
model, but the computational run-time would be substantially slower. We rele-
gate a detailed study of a PAPER-SBM mixture model to a future work.

2.3 Sequential noise models

As suggested in Remark 1, PAPER model is a special case of a general Markovian process over a
sequence of networks G1, G, ..., G, based on a latent sequence of trees Ty, T, ..., T,. In the
general framework, we specify the transition kernel P(G, | G,_1) by specifying two stages:

1. (tree stage) P(T,| Ts—1, G;—1) which adds one node ¢ and one tree edge and
2. (noise stage) P(G; | T;, G;—1) which adds more random edges to obtain G;.

We can of course define P(G; | G;—1) without having an underlying tree but the key insight of our
approach is that augmenting the model with the latent tree T, greatly facilitates the design of tract-
able models and inference algorithms because calculations on trees are easy and fast. In addition,
the latent tree has a real-world interpretation as the recruitment history—a tree edge between no-
des (#, v) implies that node u recruited node v into the network.

In the noise stage, if we independently adds noise edges between the new node ¢ and the existing
nodes with the same probability 6, then we get back the single root PAPER model. More generally,
we can let the noise edge probability depend on the time ¢ and the state of the graph at time ¢. We
define the following extension which we refer to as the seq-PAPER model with parameters

(0, B, 0,3, ):

Definition6  We start with a singleton root node Ty = G = {1}. Attime t = 2, we add node
2 and attach it to node 1. At time t > 3:

1. (tree stage) We add new node #; we select node an existing node w; € [t — 1]

with probability % and add edge (¢, w;) to T,y to form Ty
2. (noise stage) for each existing node j € [# — 1], we add edge (¢, j) inde-

pendently with probability

_,_ PDr_ () +a
B S )f+ (- Da

(4)

It is possible that we add the tree edge (j, w;) in the noise stage in which
case we collapse the multi-edge.

In general, we may takef = f and & = & but we allow them to be distinct in the model definition
for greater flexibility. We discuss parameter estimation in Section S3.5.4 of the online
supplementary material.

When ¢ is large, the independent Bernoulli generative process approximates a Poisson growth
model (see, e.g. Sheridan et al., 2008) where we first generate M ~ Poisson(#), and then repeat
M times the procedure where we draw an existing node j € [t — 1] with probability g; (also
with replacement) and then add the edge (2, /) to the random network, collapsing multi-edges if
any are formed. We thus add an average of approximately 6 noise edges at each time step. In con-
trast, under the PAPER model where the noise edge probability is 6, we add on average (t —2) - 0
noise edges at time .

The approximation error between the Bernoulli mechanism and the Poisson mechanism, in each
iteration #, converges to 0 in total variation distance as ¢ increases; see rigorous statement and
proof in Proposition S4 of Section S1.2 in the online supplementary material. However, it is im-
portant to note that the two mechanisms could still produce final random graphs whose overall
distributions have total variation distance bounded away from 0. For example, UA or LPA trees
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are known to be sensitive to initialisation so that different initial seeds could lead to very different
distributions over the final observed graph, see, e.g. Bubeck et al. (2015) and Curien et al. (2015).
In this work, we prefer the Bernoulli generative process in order to simplify the inference algo-
rithm. Even with the Bernoulli approximation however, inference under the sequential setting is
much more computationally intensive than the vanilla PAPER model.

A more realistic extension of the seq-PAPER model is to replace the tree degree D, , (j) with the
graph degree Dg,_, (j) in the noise probability 4. This small change unfortunately leads to addition-
al significant slowdown in the resulting inference algorithm; see Remark 9 for more detail. We note
that an even more sophisticated model of sequential noise is one where the additional noise edges
are generated by a random-walk mechanism (Bloem-Reddy & Orbanz, 2018); Bloem-Reddy and
Orbanz (2018) propose a sequential Monte Carlo inference method which may not scale well to
large networks.

We have so far considered additive noise where new edges are added to the network. We can also
model deletion noise where each tree edge is removed from the observed network independently
with some probability # > 0. Having deletion noise under the vanilla PAPER model can adversely
increase the size of the confidence set for the root node. However, the seq-PAPER model is much
more resilient to deletion noise, especially when = and @ = a since the noise edges also contain
sequential information. To be precisely, we define the seq-PAPER*(a, S, 6, &, B, 1) as the model
where we first generate G,, according to the seq-PAPER (a, S, 0, &, B) model with latent spanning
tree T,,; we then remove each edge of T, from the final graph G, independently with probability #.

2.4 Related work

Many researchers in statistics (Kolaczyk, 2009), computer science (Bollobds et al., 2001), engin-
eering, and physics (Callaway et al., 2000) have been interested in the probabilistic properties of
various random growth processes of networks, including the preferential attachment model
(Barabdsi & Albert, 1999). Recently, however, the specific problem of root inference on trees
has received increased attention.

These efforts began with the ground-breaking work of Bubeck, Devroye et al. (2017), Bubeck
et al. (2015), and Bubeck, Eldan et al. (2017), which shows that, given an observation of an
LPA or UA tree of size n, for any € € (0, 1], one can construct asymptotically valid confidence
sets for the root node with size Kppa(¢) and Kya(e) for LPA or UA trees respectively.
Importantly and surprisingly, Ky pa(€) and Kya(¢) do not depend on 7 so that the confidence set
have size that is O(1). To construct the confidence sets, Bubeck, Devroye et al. (2017) compute
a centrality value for every node, which can for instance be based on inverse of the size of the max-
imum subtree of a node (a concepted sometimes called Jordan centrality on trees, different from
the notion of a Jordan centre, which is the node with the minimum farthest distance to the other
nodes); they then sort the nodes by centrality and take the top K(¢) nodes where the size K(¢) is
determined by probabilistic bounds.

Khim and Loh (2017) further extend these results to the setting of UA over an infinite regular
tree. Banerjee and Bhamidi (2020) improve the analysis of Jordan centrality on trees and derives
tight upper and lower bounds on the confidence set size. Devroye and Reddad (2018) and Lugosi
and Pereira (2019) study the more general problem of seed-tree inference instead of root node in-
ference. The aforementioned results apply only to tree shaped networks but very recently, Banerjee
and Huang (2021) study confidence sets constructed from the degrees of the nodes which applies
to preferential attachment models in which a fixed 7 edges are added at every iteration. After the
completion of this paper, Briend et al. (2022) propose confidence sets for the root node on a class
of UA-based general Markovian graphs by detecting anchors of double-cycle subgraphs within the
network; they show the confidence set sizes to be O(1) and give explicit bounds in terms of con-
fidence level e.

A line of work in the physics literature also explores the problem of full or partial recovery of a
tree network history (Cantwell et al., 2019; Sreedharan et al., 2019; Young et al., 2019). In com-
puter science and engineering, researchers have studied the related problem of estimating the
source of an infection spreading over a background network Shah and Zaman (2011), Fioriti
etal. (2014), and Shelke and Attar (2019), with approaches that range from using Jordan centres,
eigenvector centrality, and belief propagation (see survey in Jiang et al., 2016).
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3 Methodology

Our approach to root inference and related problems is to randomise the node labels, which indu-
ces a posterior distribution over the latent ordering.

3.1 Label randomisation

Suppose G, is a time labelled graph distributed according to a PAPER model and G, is the alpha-
betically labelled observation where G, = pG,, for some label bijection p € Bi([#], U,). We may in-
dependently generate a random bijection A € Bi(U,,, U,) and apply it to G}, to obtain a randomly
labelled graph

G,:=AG,=(Aop)G,.
i

By defining IT= A o p, we see that G, = I1G,, where IT is a random bijection drawn uniformly in
Bi([n], U,) independently of G, (see Figure 7). We define the randomly labelled latent forest
F, =TIF,,. We may view label randomisation as an augmentation of the probability space. An out-
come of a PAPER model is a time labelled graph g, whereas an outcome after label randomisation
is a pair (g, #) where g, is an alphabetically labelled graph and = is an ordering of the nodes. See
Table 1 for a summary of the notation. We now make two simple but important observations re-
garding label randomisation. N

Our first key observation is that, with respect to G,, the random labelling IT describes the arrival
time of the nodes in the sense that if IT; = «, then the node with alphabetical label # in G,, has the
true arrival time . Therefore, in the single root setting, we may infer the root node if we can infer
I1;; in the multiple roots setting, we may infer the set of root nodes if we can infer IIS.

Our second key observation is that label randomisation allows us to define the posterior distri-
bution

PM=x|G,=g,) = PG, =8, [M=x)
> weninu,) PG =8, Tl=7)

(5)

which follows because P(IT =) = 1. This posterior distribution is supported on the subset of bi-

jection z such that 771, has non-zero probability under the PAPER model. In the case of the single
root PAPER or seq-PAPER model, the support of equation (5) has a simple characterisation: for
every time point ¢ € [n], define 71, N g, as the subgraph of g, restricted to nodes in ;. Then,

P(=x|G, =g,) > 0 if and only if 71, N g, is connected for all ¢ € [x].

J Label

randomization

Figure 7. Label randomisation induces a random latent arrival ordering II.
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Table 1. Quick reference of important notation and definitions

G, Time labelled graph (unobserved) F, Latent time labelled forest

G, Observed alphabetically labelled graph F; Latent alphabetically labelled forest

G, Randomly alphabetically labelled graph F, Latent randomly alphabetically labelled forest
p Fixed unobserved ordering; G =pG, I Latent random ordering; G, = IG,,

S Time labelled root nodes of G, S Latent alphabetically labelled root nodes; § = I1S

From a Bayesian perspective, label randomisation adds a uniform prior distribution on the ar-
rival ordering of the nodes in the observed alphabetically labelled graph G7; this is sometimes used
in Bayesian parameter inference on network models (Bloem-Reddy et al., 2018; Sheridan et al.,
2012). This prior however is not subjective. Indeed, we will see in Theorem 7 that Bayesian infer-
ence statements in our setting directly have frequentist validity as well and, from online
supplementary Section S2.1, that the posterior root probability of a node is equal to the likelihood
of that node being the root node up to normalisation.

We describe how to compute equation () tractably in Section 4. For computation, we will also
be interested in the posterior probability over both the ordering IT as well as the latent forest F,:

PM=rF=f,G,=g,). (6)

In the single root setting, f,, is actually a tree, which we may write as #,. It is then clear that equa-
tion (6) is non-zero only if %, is a spanning tree of g, i.e. E, is a connected subtree of g, that con-
tains all the vertices.

3.2 Confidence set for the single root

To make the idea clear, we first consider the single root model. Since the root node is the node la-
belled IT; after label randomisation, a natural approach is to first construct a level 1 — ¢ Bayesian
credible set for the node Iy by using its posterior distribution, which we call the posterior root
distribution.

More concretely, let g, be an alphabetically labelled graph. For each node u € U, of g,,
we define the posterior root probability as P(II; =u |G, =g,). We sort the nodes u1, ..., u,
so that

Pl =u |G, =8,) 2Pl =u,1G,=§,)--- > P(Il; =u, |G, = §&,),

and define
k ~
Li(g,)=minjk€[n]: Y Pl =u;|G,=g,) > 1—c(. (7)
i=1
We then define the e-credible set as
Bo(g,) ={u1, u2, ..., ur,5)} (breaking ties at random). (8)

By definition, B.(g) is the smallest set of nodes with Bayesian coverage at level 1 — € in that
P(I1; € B.(g,) | G, =g,) > 1—e. In general, credible sets do not have valid frequentist confi-
dence coverage. However, our next theorem shows that in our setting, the credible set B, is
in fact an honest confidence set in that P{root node € B.(G})} > 1 —e.

Theorem 7 Let G, ~ PAPER(a, f, 0) or seq-PAPER(a, B, 0, &, f) and let G}, be the alpha-
betically labelled observation. Let p € Bi([n], U,) be any label bijection such
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that pG,, = G},. We have that, for any € € (0, 1),

P{p; € B(G))} =1 -

The proof is very similar to that of Crane & Xu (2021, Theorem 1). Since the proof is short, we
provide it here for readers’ convenience.

Proof.

We first claim that B(-) is labelling equivariant (cf. Remark 4) in the sense that for
any t € Bi(ld,,U,) and any alphabetically labelled graph g,, we have that

B.(g,) 4 B.(zg,) (note that B.(-) uses randomisation to break ties). Indeed, since

(11, G,,) 4 (v oI, 'G,), we have that, for any u € U,,,

P =u|G, =g,) =Pl =(u) |G, =18,).

Therefore, for any u, v € U,,, we have that P(IT; =« | G,, = g,) =PIl =v| G, = g,
if and only if P(ITy = z(u) | G, = §,,) > P(I1; =7(v) | G, = §,,). Since B.(G) is con-
structed by taking the top elements of U/, that maximise the cumulative posterior
root probability, the claim follows.

Now, let p € Bi([n], U,) be such that pG, = G}, and let A be a random bijection
drawn uniformly in Bi(U,,, U,,) and let TI= A o p. Then,

P(pl € B((GZ)) = |]j)(pl € B{(/)Gn))

where the penultimate equality follows from the labelling equivariance of B, and

where the last inequality follows because P(I1; € B.(G,) |G, = g,) > 1—¢forany
labelled tree g, (with labels in ¢,,) by the definition of B,. O

Remark 6 We show in Theorem S5 of the online supplementary material that the poster-

ior root probability P(IT; =« |G, =&,) is equal to the likelihood of node
being the root node on observing the unlabelled shape of g,. Therefore, the
set B.(g,) is in fact the maximum likelihood confidence set. Because the likeli-
hood in this setting is complicated to even write down, we leave all the details
to Section S2.1 of the online supplementary material.

Remark 7 One may see from the proof that Theorem 7 applies more broadly then just

PAPER models. It in fact applies to any random graph G,, whose nodes are la-
belled by {1, 2, ..., n}. For the PAPER model, the integer labels encode arrival
time and thus contain information about the graph. In a model where the in-
teger labels are uninformative of the graph connectivity structure, Theorem
7 is still valid although the posterior probability P(II; =- |G, = g,) would
be uniform. A reviewer of this paper also pointed out that Theorem 7 is related
to the classical literature on invariant/equivariant estimation where credible
sets constructed from uniform (Haar) priors may also be valid confidence
sets; see, e.g. Schervish (1995, Theorem 6.78).

3.3 Confidence set for multiple roots

First consider the fixed K setting where G,, ~ PAPER(a, f, 0, K); let IT be a uniformly random or-
dering in Bi([n],U,) and let G, =TIG,. The latent set of root nodes of G, in this case is
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S:=TIS ={I1y, ..., Ix}. We then define the posterior root probability for any node u € U,, as
PueS|G,=g,),

that is, the probability that node # is an element of the latent root set S.
To form the credible set B.(g,) C U,, we sort the nodes by the posterior root probabilities

P €51G,=§,) > P(u; €31G,=g,) > > P(u, € §1G, =g,). 9)

We may then take B.(g,,) to be the smallest set of nodes such that P(SBf(gn) |G, = g,) < c. More
precisely, define the integer

L(g,)=minlke[n]: Y Pwuel|G,=g,)<ec (10)
i=k+1

and then define the credible set as
B(g,)={u1,u2, ..., ur,z,)} (breaking ties at random). (11)

In the PAPER (e, B, a9, ) model where the number of roots K is random, the set of root nodes is
S =TI1S which comprises, according to the ordering IT, of the node that s first to arrive in each of the
component trees of F,,. We may then sort the nodes as in equation (9), compute L.(g,) as in equa-
tion (10), and B.(g,,) as in equation (11).

Similar to Theorem 7, we may show that B.(-) in fact also has frequentist coverage at the same
level 1 —e.

Theorem8 Let G, ~ PAPER(a, B, K, 6) or PAPER(a, 8, a9, 0) and let G, be the alphabet-
ically labelled observation. Let p € Bi([n], U,,) be any label bijection such that
pG, =G and let S C [#] be the time labels of the root nodes (see Definitions 4
and 5). We have that, for any ¢ € (0, 1),

P{pSCBAG})} >1-e.

Proof. The proof is very similar to that of Theorem 7. First, since the random set S is a
function of the random ordering IT in the fixed K setting and a function of both
the random ordering Il and the random forest F,,, we write S(IT) or S(II, F,,) to
be precise. y :

We then observe that S(IT) in the fixed K setting or S(I1, F,,) in the random K set-
ting, are labelling equivariant in that for any r € Bi(4,,, U,), we have that S(z~'1I) =
t18(I1) or, in the random K setting, S(r'T1, z~'E,,) = "' 8(I1, F,,). Therefore, since

(1, G,) 4 (=1, ' G,) for any 7 € Bi(U,,, U,), we have S(I1, E,) 4 -13(11, F,) and
thus, for any u € U,

Puel|G,=g,) =P((u) €S|G,=18,).

The rest the proof proceeds in an identical manner to that of Theorem 7. O

When there are multiple roots, an alternative way of inferring the root set is to construct the con-
fidence set B.(-) as a set of subsets of the nodes and then require that S € B, with probability at least
1 — €. We can take the same approach to construct such confidence set over sets but it becomes
much more computationally intensive to compute them in practice.

G202 1990100 0€ U0 15aNB Aq 690ESZL/ST8/P/98/810IME/qsSSI/W0o"dNo-dlWapeo.//:SdjY WOy papeojumod



840 Crane and Xu

3.4 Combinatorial interpretation

Before we describe the Gibbs sampling algorithm for computing the posterior root probabilities
Pl =u| G, =g,), we provide an intuitive combinatorial interpretation of the posterior root
probability in the single root PAPER model (Definition 2). The definitions and calculations here
are also important for deriving the algorithm in Section 4.

3.4.1 The noiseless case

We first consider the simpler setting in which we can observe the tree T, (with a single root) dis-
tributed according to the APA model. In this case, we have

Pl =-|T,=t)= Y Pl=x|T,=%).

T =u

Recall that T,, = ITT,, where T, is a random time labelled tree with APA(a, p) distribution and IT is
an independent uniformly random ordering in Bi([#], U,). The distribution P(IT = | T, = #,) is sup-
ported on a subset of the the bijections Bi([#], U,,) because 7~ T,, must be a valid time labelled tree
(also called recursive tree in discrete mathematics). To be precise, we define the histories of #, as

hist(#,) := {z € Bi([n], U,) : P(T,, =2~ '%,) > 0}, and
h(t,) := |hist(Z,)|

as the number of distinct histories. Since the APA tree distribution assigns a non-zero probability to
any valid time labelled trees, we see that hist(Z,) contains the elements z of Bi([#], U,,) such that for
all ¢ € [n], the subtree restricted only to nodes in 7y, i.e. £, N 711, is connected. Thus, hist(Z,) is the
set of bijections 7 which represent a valid arrival ordering for the nodes of the given tree #,,. Similarly,
we define, for any node u € U,

hist(u, %,) := {x € hist(Z,) : 71 = u}
h(u, t,) := |hist(u, £,)],

as histories of #, that start at node #. We illustrate an example of the set of histories for a simple tree
in Figure 8. _

By definition, P(IT= - | T,, = #,) is supported on hist(,). For most values of « and f, the posterior
distribution is in fact uniform over hist(%,):

Proposition 9 (Crane & Xu, 2021, Theorem 4 and Proposition 3). Let a, B be two real
numbers such that either (1) #> 0 and a > —f or (2) <0 and a=-Dp
for some integer D > 2. Suppose T,, ~ APA(a, f3). Let IT be a uniformly ran-
dom ordering taking value in Bi([#], U,,) and let T,, =I1T,,. Then,

%me hist(Z,)). (12)

P(H=”|Tn=;n)=
The full proof of Proposition 9 is in Crane and Xu (2021) but we give a short justification here:

P(Ty=t | M=)k _ P(T,=n"'E,)L M
= il = ol T r, th
P(T,=t) P(T,=t) oreover, the

the posterior is uniform because P(I=z|T, =%,

hist(E,) : hist(A,E,) hist(8,E,) hist(C.E,)  hist(D, Ey)

B ABCD BACD CBAD DBAC
= ABDC BADC CBDA DBCA

) BCDA

BCAD

BDAGC

BDCA

Figure 8. All histories of a tree with 4 nodes.
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® (8)

C ©
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Figure 9. Same tree t, in three rooted orientations. Left: i“f) rooted at £; the subtree of A (denoted as i‘(AE') contains
nodes A, F, G;node Ais the parent of F, G. Centre: t, ' rooted at B; the subtree of A (denoted as t, ) contains nodes
A, F, G; node A is the parent of F, G. Right: i‘(nG) rooted at G; the subtree of A (denoted as if)) contains nodes

A, B, E, C, D; node A is the parent of B.

probability P(T,, =x"'%,) is actually the same for any x € hist(,) by online supplementary
Proposition S1.
By Proposition 9, we have that

hu, t,)

P =u|T,=1,)= ]

Therefore, we need only count the histories h(u, %,) for every node u# € U,,. We give a well-known

characterisation of h(u, #,) that leads to a linear time algorithm for counting the size of the histor-
(n
v

tree as being rooted (hanging from) node u; f(uu) is thus the entire tree rooted at u. See Figure 9 for an

example. We then have that, by Knuth (1997) or Shah and Zaman (2011),

ies: define, for any node u, v € U,,, the tree £ ) as the subtree of node v where we view the whole

1

b(u, t,) = n! 1_[ —

zu), "
veU, |t,/u |

(13)

Therefore, we can compute h(u, £,) by viewing , as being rooted at # and taking the product of the
inverse of the sizes of all the subtrees. By using the fact that h(u, #,,) can be directly computed from
h(u', t,) for any neighbour #’ of u, Shah and Zaman (2011) derive an O() algorithm for comput-
ing the size of the histories over all roots {h(u, ,)},.,, , which we give in Section S2 of the online
supplementary material for readers’ convenience.

3.4.2 The general case

Now suppose we have the label randomised graph G,, from the PAPER model. We then have
that

P =ulG,=g,)=Y Y Pl=zT,=%|G,=g,
1,Cg, nchist(u,},)
‘XZ Z P(H=7TsTn=zn)P(Gn=gn|Tn=;naH=”)~

1,Cg, n€hist(u,t,) (1-1)2—(1—1) 1
n(n— —(n—
( m—(n—1) )

<Y Y P(T,=i|l=n=) P(T,=x"'%,),

1,Cg, nchist(u,},) 1Cg, nchist(u,})

(14)

where, in the outer summation, we require #, to be a subtree of g, with # nodes, that is, we require
%, to be a spanning tree of g, (see equation (16)). If T,, has the uniform attachment distribution

(a=1, f=0), then we have that P(T, =z"'%,) = (n_l—l), by online supplementary Proposition S1
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Figure 10. One possible growth realisation starting from node B.

and hence,
[FD(H] =u |(~;" zgn) & Z h(”& in)
£.C8,

Thus, the posterior root probability of # is simply proportional to the number of all possible real-
isations of growth process that start from node # and end up with graph g,; see Figure 10. When
T, has the LPA distribution (a =0, #=1), then P(T,, = z~'%,) depends on the degree sequence of
the tree #, so that the posterior root probability is proportional to a weighted count of all possible
growth realisations.

4 Algorithm

The inference approach that we described in Sections 3.2 and 3.3 requires computing posterior
probabilities such as the posterior root probability P(Ily =u | G,, = g,,) for a fixed alphabetically
labelled graph g,. In this section, we derive a Gibbs sampling algorithm to generate an ordering z €
Bi([#], U,) and a forest f, according to the posterior probability

P(l=nF,=f,|G,=3,). (15)

As discussed towards the end of Section 3.1, in the single root setting, the posterior probability

(15) over 11, F,, is non-zero only if ;"n is a spanning tree of the graph g,. We formally define the
set of spanning trees of a connected graph g, as

T(g,) := V” : fn is connected subtree of g,and V(fn) = V(gn)}. (16)

We note that 7(g,) is non-empty if and only if g, is connected. For the multiple roots setting, we
define the spanning forest of g, with K components as

Fk(g,):= {fn : f, is sub-forest of g, with K disjoint component trees and V(f,) = V(gn)]

so that F1(g,) =T (g,). Then, for the fixed K roots model, the posterior probability (15) is non-
zero only if fn € Fx(g,) and for the random K roots model, probability (15) is non-zero only if
fn € F(&,) =V Fk(&,)-

The value of the posterior probability (15) depends on the parameters of the model, e.g. a, 8, 8in
the single root setting. We provide an estimation procedure for these parameters in online
supplementary Section S3.1 but for now, to keep the presentation simple, we assume that all pa-
rameters are known.
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Our Gibbs sampler alternates between two stages:

(a) We fix the forest f'n and generate an ordering 7 with probability P(Il=z| G, = §,, F, = fn)
(b) We fix the ordering 7 and generate a new forest f,, by iteratively sampling a new parent for
each of the nodes.

We give the details for stage A in the next section and for stage B in Section 4.2.

Remark 8 Inonline supplementary Section S3.3, we give an alternative collapsed Gibbs
sampling algorithm in which we collapse stage (A) so that we only sample the
roots instead of the whole history z. The collapsed Gibbs sampler requires
fewer iterations to converge but each iteration is more computationally in-
tensive. Practically, the sampling algorithm that we present in Sections 4.1
and 4.2 appears to be faster except for the random K roots model on some
data sets.

4.1 Sampling the ordering

In this section, we prov1de an algorithm for the first stage of the Gibbs sampler where we sample an
ordering, We ﬁx a spanning forest f,, of the observed graph g,, let K be the number of component
trees of f,,, and let m = |E(g,)| be the number of edges of g,. We have that

PM=x|G,=g,E,=f,) xP(M=x|F,=f,)PG,=§,|E,=f,, N=n). (17)

Under the non-sequential noise PAPER models, since the non-forest edges of G, are independent
. . . ’ -1
Erdés-Rényi random edges, we have P(G, =g, | F, =f,, [I=n) = ((;1)__((:__[5)) and may thus ignore

the non-forest edges and consider only on the posterior probability P(IT = | F,, = f ,,) when sampling

7. In the sequential noise seq-PAPER model, the P(G,, = g, F,= fn, I1 = x) term must be taken into
account but can be computed efficiently. We give the detailed algorithms for each of the settings.

4.1.1 Single root setting
In the single root setting, fn is connected and hence a tree; we thus change to the notation #, := fn
to be consistent with the notation used in Definition 1. :

Hence, by our discussion in Section 3.4, sampling 7 according to P(I1 = - | T,, = #,) is equivalent
to sampling z uniformly from hist(Z,). Crane and Xu (2021) and also Cantwell et al. (2021) derive
a procedure to sample uniformly from hist(#,) and we provide a concise description of the proced-
ure here for the readers’ convenience.

To generate  uniformly from hist(#,), we generate the first node 7; by taking the set of all nodes
and drawing a node # with probability

e h(u, tn)

Pl =u|T,=%,) = (18)

The entire collection {h(u, #,)},, can be computed in O(n) time (c.f. Section 3.4 and online

supplementary Section S2) and thus we require at most O(n) time to generate the first node ;.
To generate the subsequent ordering >.,,, we view the tree , as bem§ rooted at 71 and use the no-

tation t; " make the root explicit. For each node v € U,,, we define t as the subtree of the node v,

viewing the whole tree as being rooted at node 7. We give an example of these definitions in Figure 9.
Then, by Crane and Xu (2021, Proposition 9), for every ¢ € [n — 1],

- . Erp. . . Lo~
P =0 Ty =, Ty =my) = { e Vs ancighbourofmaindy - (19)
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Algorithm 1 Generatingz € hist(f,) according to P(IT=x| F, = f,) in ER noise settings.

Input: Labelled forest fn with K trees, denoted 7, ..., i,

Output: 7 € hist(fn).
l:fork=1,2, ..., K do:

2:  Choose node u* € V(i*') with probability (18) with PAPER (a, £, 6) model and with probability (20)
under PAPER(a, B, K, 6) or PAPER(a, A3, ag, 6).

3: end for
4: Let3={u', u?, ..., uX} be the set of roots, and
o under PAPER(q, B, 6), let 7y = u' and let £y =2,
e under PAPER(q, 3, K, 0), let w1.x =5 in a random ordering and let o = K + 1.
e under PAPER(a, £, ag, 6), choose u* € § with probability |t |/n, let 1 = uk, let tg = 2.

5: Generate 7., as a unlformly random permutation of Uy, \71.(ty—1)-

6:fort=ty,to+1, ...,ndo:

7 Letvy =m,vy = pa(v1), ..., x = pa(vp_) where k is the largest integer such that vy, va, ..., v & T1p-1)-
> pa(v) denotes the parent of v with respect to f,, rooted at 3.

8: Set m; = vy, ty = L(vy), and 7, =vy.

9: end for

@ 05 G (3
g & te

S$={C, B}

Figure 11. Example of sampling an ordering. In both cases, suppose =1.3 ={B, C, D}, then draw =, from the
neighbours {F, A, E, G} with probability proportional to the size of their subtrees.

One may Verify this by showing that the probability of generating a particular ordering is

i e, |t = (13).
Thus we may generate 7, by considering all neighbours of 7 in #, and drawing a node v
(u1)

with probability proportional to the size of its subtree |£,"'| and similar for 73, 74, etc. The
entire sampling process can be efficiently done by generating a permutation uniformly at ran-
dom and modifying it in place so that it obeys the hist(fn) constraint. We summarise this in
Algorithm 1 with K=1 and also give a visual illustration in Figure 11. The runtime of the
sampling algorithm is upper bounded by O(ndiam(#,)) (Crane & Xu, 2021, Proposition

0). Trees generated by the APA(a, f) model have diameter O,(log#n) (see, e.g. Drmota,
2009, Theorem 6.32, and Bhamidi, 2007, Theorem 18) and the overall runtime is therefore
O(nlogn). The computational complexity is the same under the fixed K setting and the ran-
dom K setting.

4.1.2 Fixed K roots setting

For the PAPER(a, $, K, 6) model, we may generate from P(I1 = A FE, = f in a similar way. In this
case, f is a forest that contains K disjoint component trees, which we denote by i, ..
We ﬁrst generate a root for each component tree. For each /e € [K], we draw u* € V( k) with
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probability

h(u*, fk)([)’D;k(uk) + B+ a)(BDu () + )

. (20)
S vt P0s F)BD () + B+ @) BDp(v) + )

We note that equation (20) is different from the corresponding probability in the single tree setting
(18) because we give each root node an imaginary self-loop edge. We leave the detailed derivation
of equation (20) to Section S3.2 of the online supplementary material.

We let 5= {u!, ..., #*} denote the set of roots that we have generated. By the definition of the
PAPER(a, B, K, ) model (Definition 4), the root nodes 3 occupy the first K positions of the order-
ing = and we thus let 7y x be the elements of 3 placed in a random ordering.

Next, we view each component tree # as being rooted at u;, and, for every node v € V(f ), we

denote the subtree of node v by 7 tU . We then generate k1), according to probability (19) where

we use the size of the subtree ﬁ‘f}s) |. This is equivalent to generating a full history (excluding the root
node) for every tree and then interleaving them at random. We again summarise the whole proced-
ure in Algorithm 1.

4.1.3 Random K roots setting
Now consider the random K roots setting with the PAPER (a, 8, a9, ) model and suppose f, com-

prlses of K dls]omt treest', ..., F\. We again generate the set of roots § = {u!, ..., X} by drawing
uk from # with probablhty (20) In contrast with the fixed K roots setting, the root nodes
u', ..., uX need not occupy the first K posmons of the ordering 7.

To generate the ordering 7, we first choose #* € 3 with probability |t | and set 7; = uk. We then
draw m,., iteratively using the conditional distribution

~(§) . . . . r: . ~
P(yyt =v B, =F, My =m14) = n'_t;!l if v is a neighbour of , in f, orif v €3 (21)
' ’ 0 else

We note that for a root node u#* € 3, the subtree Z‘fj,} is precisely the whole tree #*. We summarise
this procedure in Algorithm 1.

4.1.4 Sequential noise setting

Under the seq-PAPER model described in Section 2.3, we no longer have a direct sampling algo-
rithm to draw from P(IT= - | G,= 2. T, =1%,) because we have to take into account the P(G,, =
g,|T,=%,,1=n) term in equation (17). For seq-PAPER models, we propose instead a
Metropolis—Hastings algorithm to update = by sampling new transpositions.

Let 7 be the current sample of arrival ordering. To generate a new proposal z*, we randomly
choose a pair j, k € {2, ..., n} and construct z* by swapping the j-th and the k-th entries of z,
that is, 7 = 7, and 7}, = 7; and all other entries are equal. If z* & hist(,), then we reject the pro-
posal; otherwise, we accept it with probability

PG, =g, |[I=n"

> 22
PG, =g, | N=n (22)

Hl ~]1
II
S
3
-

which follows because P(I=x|T, =#,) = P(Il =z*| T, = #,). The ratio in equation (22) has a
complicated expression but can be computed in time proportional to only the degrees, with respect
to g, of mj, m;,, and the parent nodes pa(z;), pa(m), where the notion of parent node is defined in
equation (23). We give a detailed description of how to efficiently compute (22) and determine
whether 7z* € hist(#,) in Section S3.5 of the online supplementary material; in particular, see
online supplementary Section S3.5.2 which uses results from online supplementary Section S3.
5.1. Even with our efficient implementation however, updating 7 by sampling transpositions is
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considerably slower than sampling z directly via equation (19).

The transposition sampler does not change the root node since j, k are not allowed to take on the
value 1. To sample a new root node, we fix kg € N and generate a new proposal 7* by shuffling the
first kg entries of 7. We then accept #* if it is a valid history and with probability (22). Finally, we
note that under the seq-PAPER" model with tree edge removal, our method for sampling 7 is exact-
ly the same. Since we condition on T, it makes no difference whether we have deletion noise or
not.

Remark 9  Sheridan et al. (2012) and Bloem-Reddy et al. (2018) use the idea of swap-
ping adjacent elements of an ordering = for a Poisson growth attachment
models and a sequential edge-growth model referred to as Beta Neutral-
to-the-Left, respectively. In contrast, under the seq-PAPER model, we can
compute non-adjacent swap proposal probabilities efficiently and hence,
we can explore the permutation space of = faster. This is because the
seq-PAPER is a simpler model and also because we restrict ourselves to a
spanning tree, which simplifies many parts of the calculations. We note
that sampling z through non-adjacent pair swaps can also be used for the
model G,=T,+R, where T, is not shape-exchangeable, for instance
when the attachment probability is ¢(Dr,_, (w;)) for some non-affine function
#(-) instead of the affine expression given in equation (1). Finally, We empha-
sise that inference for the vanilla PAPER model is significantly faster than
any form of swapping-based Metropolis samplers since it directly samples
the entire ordering.

4.2 Sampling the forest

In this section, we describe stage B of the Gibbs sampling algorithm. For a fixed ordering 7 and a
spanning forest f,, we may obtain a set of roots 3 for each of the component trees of f,, by taking
the earliest node (according to ) of each tree. Viewing f,, as being rooted at § induces parent—child
relationships between all the nodes.

To deﬁne the parent—child relatlonshlp formally, letf be a forest Wlth dls]omt component trees
t, t andlets = {u!, u? #X} be a set of root nodes such that u* € V(¥ ) Let u be any node
no'g in§ and supposeu € V(¥ ). There exists a unique node v € V(£ k) such that v is a neighbour of u
in f, and that the unique path from u to the root #* contains v. We say v the parent node of u and
write

pa(u) = Pd);m(u) = parent of u# with respect to f(s). (23)

For a root node u € 3, we let pa(u) := @ for convenience. Since every edge in fn is between a node
and its parent, the set of parents {pa(u)},,, specifies the » — K edges in f,, and hence uniquely spe-

cifies the forest f, and the root nodes 3.

Our Gibbs sampler updates the forest f by 1terat1vely updating the parent of each of the nodes,
which adds and removes a single edge from f,, (it is possible to add and remove the same edge so
that the forest does not change) or, in the random K setting, we may remove a single edge and add a
new root node or remove a root node and add a single edge.

To be precise, the latent tree F,, and root set S induces a latent parent of each node which we
denote pas (-). For every node u, we generate a new parent #’ according to the conditional distri-
bution

Ou(u):= P(Pﬂﬁ@»(u) =u

n

H=7Taéﬂ=gn’ [paﬁiﬁ(u) =Pa~<§)(7/)} )a (24)
n " v#u
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M1 ™2 m3 T4 Tx

Figure 12. Sampling a parent for zs (node C).

and then replace the old edge (, pa(u)) with (u, #’). Since we condition on the arrival ordering I,
probability (24) is non-zero only when ' arrives prior to u, i.e. 7'’ < 7 'u, and (u, ') € E(g,). In
other words, if 7~ 'u = t, then Q,(-) is supported on the set of nodes z1.;—1) N Nz (). In the random
K setting, # is allowed to be empty in which case Q,(-) is supported on {#} U (z1,;—1) N Ng, (1))
where Ni(u) is the set of neighbours of # on the graph g,,. Our sampling procedure then generate
the parents for ny, mp, 73, ... sequentially. In Figure 12, we illustrate how we may generate a
new parent for 75 (node C) by choosing one of the edges that connects 75 with one of the earlier
nodes 71.4.

At iteration t, to compute Q, (-) with respect to ;, for each node v in the support of O, (-), we let

f(v’m denote the forest formed by removing the old edge ( pa(x;), 7;) and adding the new edge

(v, m;). We note that v is allowed to be the old parent so that we may have fn = fny . Then, for
any w; in the support of Q,(-), we have

~wr,mt)

Ontig = L=t _IM=mGi=8,)

(v,7;) ~ -
Y, PE,=f, |N=1,G,=§,)

(25)

In the PAPER models with Erdés—Rényi edges, We can compute the conditional dlstrlbutlon
P(E,=- =z, G, gn) by using the fact that once when we condition on F, f

remaining edges of G, are uniformly random and the fact that IT and F, are 1ndependent.
Thus,

PE,=f,IM=7,G,=§,)

PG, =8, F,=f, I=nPF,=f, =1
(@) — (= KFD\ T
= : P(F, = 'f)Uf, € F(g, 26
(m W 1if, € F(,) (26)
K(f,) _ _ o
o | T] = V2=t Rl p _m17 07, € Fig,)

We now discuss the sampling procedure in detail in all the settings.

4.2.1 Single root setting

In the single root setting, we again use the notation #, = f,, to be consistent with Definition 1.
The first term of equation (26) is a constant since K(#,) = 1 and may thus be ignored. Using the
likelihood of APA trees (see Remark 2 as well as Proposition S1 from the online supplementary
material) and using the fact that P(T, = 7~'%,) > 0 when # € hist(#,), we have that, for any
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Algorithm 2 Generating spanning forest f, of g, under either PAPER(a, 8, 6) or
PAPER(a, g, K, 6)

Input: Graph g,,, ordering = € Bi([n], U,), and a spanning forest fn with K component trees.
Effect: Modifies fn in place.

l:fort=K+1, ...,ndo:

2:  Remove old edge (r;, pa(r;)) from fn to obtain f:’nt).

3:  Choose a node w; € my.;-1) N N () with probability proportional to

BD ) +a under PAPER (, 8, )
'BDF = (w) + 2w € m.x} + @ under PAPER (a, B, K, 6)

4:  Add new edge (7, w;) to f,.
5: end for

wy € mye-1) N N (m1),

BDyin (wr) + @
>
ZVE”l:(zq)ﬂNg" () /BD;L’»M (V) +a

Qn’t(wt) =

where i‘;’”’) is the disconnected graph obtained by removing the old edge ( pa(r;), 7;) from %,,. We
summarise the resulting procedure in Algorithm 2. Since we visit every node once and, for a
single node u, it takes time O(Dj (u)) to generate a new parent, the overall runtime of the se-
cond stage of the algorithm is O(m). The computational complexity is the same under the fixed
K setting and the random K setting.

4.2.2 Fixed K > 1 setting
Since the number of trees K is fixed, the first term of equation (26) is again a constant. Using like-
lihood of APA trees again (see Proposition S2 from the online supplementary material), we have
that for any w; € my.¢-1) N Ngn (ﬂ't),

ﬂD?(‘,ntb(Wt) + Zﬂﬂ {w; € mx} +a
Zvem:ufnﬂNgn(ﬂt) ﬂDit.,m (Z/) + 2,31] {U (S 77.'1:1(} +a’

Qm(wt) =

where, as with the single root setting, f (n 7 is the forest obtained by removing the old edge (pa(x;), ;)

from f .- The only difference from the single root setting is that we have a higher probability to attach
to a root node because of the imaginary self-loop edge. We summarise the procedure in Algorithm 2.

4.2.3 Random K roots setting

Under the PAPER (a, B, ag, ) model, a node may become a new root in the sampling process and
thus we must take into account the first term of equation (26). Moreover, in this setting, Oy, (-) for
node 7 is supported on {#}} U (z1,;—1) N Ng (m)) since we may turn the node 7 into a new root

node, in which case we set its parent to ) by convention. Define &g := ag #ﬁm,

then have that, by online supplementary Proposition S3, for any w; € {#} U (w1.4-1) N N, (7)),

we

ao + Zvenl:(mnNgn(m)ﬁDf“*”f’(U) +2p{v €5} +a
ﬁD?(-,n,)(Wt) + 2,6’1] {Wt S S} +a

60 + Xy oy (m) BP0 (V) + 2810 €8] +a

lfwz=(7)

Qm(wt)

and Qm(u/t) = lfwt ?& @,
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Algorithm 3 Generating spanning forest f, of g, under PAPER(a, 8, ao, 6)

Input: Graph g,,, ordering = € Bi([n], U,), and a spanning forest f'n.
Effect: Modifies f,, in place.
1: Let § be the set of root nodes.
2:fort=2,3, ...,ndo:
3:  Ifm &5, remove edge (m;, pa(m;)) from fn to get f:’m. Else, let § =3\ {w;} and let ]:'(n-’m) = fn.
4: Choose a node w; € {#} U (m1,;—1) N N, (m;)) with probability proportional to

o for w,=0
ﬁDf(-,n,v(wt) + 2w € s} +a forw, #0

Hesmt)

S: Ifw, £0,let f,, = ’;L-,n,) U (m, wy). Otherwise, let § =5 U {r,} and fn =f,
6: end for

)

where, if 7; is not a root node, f(n is the forest obtained by removing the old edge (x;, pa(r;)) and

. . 2oom) . . . .
if 7; is a root node, then f,”" = f,. We summarise the resulting procedure in Algorithm 3.

4.2.4 Sequential noise setting

Under the seq-PAPER setting, we use the same sampling procedure but the sampling probabilities
become more complicated. From equation (25), we see that, for w € Nz N my,4-1),

O (w) x P(T, =1 |T1=17,G,=3,)

«PG,=3,|T, =t = P(T,=1“" =)

noise term

Under the seq-PAPER model, the noise term also depends on w since choosing a new parent for r,
would change the tree degrees of some of the nodes. Naively computing O, (w) takes time O(n),
but in Section S3.5.3 of the online supplementary material (using results from online
supplementary Section S3.5.1), we give a detailed algorithm to compute Qg (w) in time
O(Dy, (w)) so that overall, we can sample a new parent for z; in time proportional to the number
of neighbours of neighbours of z;. ~

When we have deletion noise, as the case of the seq-PAPER" model, the latent tree T, need not
be a subgraph of G,, and hence, when sampling a new parent for z;, we must consider all of 7y.(;—1)
and not just graph neighbours of z;. Thus, we draw w € 71.;—1) with probability O, (w) and set
pa(m) = w. We give the detailed algorithm for computing Q, () in Section S3.5.3 of the online
supplementary material.

4.3 Other aspects of the algorithm

4.3.1 Parameter estimation
To estimate o and B, we derive an EM algorithm in Section S3.1 of the online supplementary

material. The noise level 8 is easy to estimate via § = % in the single root setting. The in-
ference algorithm in fact does not require knowledge of € since it conditions on the number of
edges m of the observed graph. We discuss some ways to select the number of trees K in the fixed
K root setting and ways to estimate o in the random K roots setting in Section S3.4 of the online

supplementary material.

4.3.2 Inference from posterior samples

The ~(ik)bs sampler described in Sections 4.1 and 4.2 generates a Monte Carlo sequence
{(n(f),fn] )}]/=1 where ]| is the number of Monte Carlo samples. A straightforward way to
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approximate the posterior root probability is to use the empirical distribution based on all the
7’’s. However, we can construct a much more accurate approximation by taking advantage of
the fact that the posterior root probability is easy to compute on a tree.

Consider the single root setting for simplicity where the posterior root probability is P(IT; =
u|G,=g,) for any node u. In this case, we may compute distributions OV, O, ..., QU) over
the nodes by

O =Py =u|T,=1),G,=g,) =P =u| T, =) ="

Then, we output %leﬁl Q" as our approximation of the posterior root distribution. In the mul-

tiple roots setting, we use the same procedure except that we compute # — P(u € S|F,= ffj)) and
then average acrossj € {1, 2, ..., J}. )

In the multiple roots setting, each Monte Carlo sample of the forest f,f contain either K disjoint
trees in the fixed K setting or a random number of disjoint trees in the random K setting. These
disjoint trees provide a posterior sample of the communities on the network and using them,
we may estimate the community structure of the network. We provide details on one way of using
posterior samples for community recovery in Sections 6.3 and 6.4.

The Gibbs sampling algorithm scales to large networks. We are able to run it on networks of
up to a million nodes (c.f. Section 6.2.2) on a single 2020 MacBook Pro laptop. To give a rough
sense of the runtime, it takes about 1 second to perform one outer loop of the Gibbs sampler on
a graph of 10,000 nodes and 20,000 edges. In Section S3.4 of the online supplementary
material, we provide more details on practical usage of the Gibbs sampler such as convergence
criterion.

4.3.3 Initialisation

In the single root setting, to initialise the Gibbs sampling algorithm, we recommend generating the
initial tree #, uniformly at random from the set of spanning trees 7 (g,) of the observed graph,
which can be efficiently done via elegant random-walk-based algorithms such as the Aldous—
Broder algorithm (Aldous, 1990; Broder, 1989) or Wilson’s algorithm (Wilson, 1996). We then
initialise = by drawing an ordering uniformly from the history of the initial tree. This initialisation
distribution is guaranteed to be overdispersed and works very well in practice. The same initialisa-
tion works for the random K setting. For the fixed K setting, we can form the initial forest by con-
structing uniformly random spanning tree #, and uniformly random ordering 7 as usual, taking the
first K nodes of the 7 as the root nodes, and removing all tree edges between them to obtain an
initial f,. We use Wilson’s algorithm in our implementation.

5 Theoretical analysis

We provide theoretical support for our approach by deriving bounds on the size of our proposed
confidence sets when the observed graph has the PAPER distribution. In particular, we aim to
quantify how the quality of inference deterioriates with the noise level 6, that is, how the size of
the confidence set increases with . For simplicity, for consider only the single root setting and
we do not take into account approximation errors introduced by the Gibbs sampler, that is, we
analyse the confidence set constructed from the exact posterior root probabilities.

We begin with a type of optimality statement which shows that the size of the confidence set
B.(-), as defined in equation (8), is of no larger order than any other asymptotically valid confi-
dence set. Intuitively, this is because B.(-) can be interpreted as a ‘Bayes estimator’ for the root
node.

Lemma 10 Let ¢ be in (0, 1), let G, ~ PAPER(a, 8, 0), and let G}, = pG,, be the observed
alphabetically labelled graph for some p € Bi([n], U,,). Let B,(G};) be defined
as in equations (7) and (8). Fix any é € (0, 1) and let C5(G},) be any confidence
set for the root node that is labelling equivariant and has asymptotic coverage
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level 1 — e, that is, limsup,,_, ., P(py & Csc(G};)) < de. Then, we have that

lim sup P(IBAG})| > |Cs(G})]) <.

n— o0

We provide the proof of Lemma 10 in Section S4 of the online supplementary material.

Ideally, we would compare the size of B.(-) with C,(-) at the same level. It is however much easier
to compare with the more conservative Cs(-). In many cases, the size of a confidence set |C,(-)| has
bounds of the form f(7)g(¢~") for some functions f and g (see, e.g. Banerjee & Bhamidi, 2020) so
that comparing with Cs(-) adds only a multiplicative constant to the bound.

Lemma 10 is useful because it is difficult to directly bound the confidence set B.(-) as a func-
tion of # and the parameters; Lemma 10 shows that we can indirectly upper bound it by ana-
lysing a simpler asymptotically valid confidence set. Our strategy then is to construct
confidence sets based on the degree of the nodes whose size is much easier to bound through
well-understood probabilistic properties of preferential attachment trees. This leads to our
next result which provides explicit bounds on the size of the confidence set B.(-) when the under-
lying tree is LPA.

Theorem 11 Let G, ~ PAPER(a, 8, 6) for =1, a=0, and 6 € [0, 1]. For ¢ € [n], let
Dg,(¢) be the degree of node with arrival time ¢ and for k € [n], let
k-max(Dg,) be the k-th largest degree of G,,.. Let § > 0 be arbitrary and sup-
pose 6 < 7727, Then, for any ¢ > 0, there exists L. € N (dependent on 6 but

not on 7) such that

limsup P{Dg, (1) < L, - max (Dg,)} <. (27)

n— oo

As a direct consequence, if 8= O(n~°%) for any 0> 0, then, for any
€€ (0,1),

IBe(G,)l = Op(1).

We relegate the proof of Theorem 11 in Section S4.1 of the online supplementary material and
provide a short sketch here: we use results from Pekoz et al. (2014) which show that the degree
sequence of an LPA tree, when normalised by in, converges to a limiting distribution in the £ se-
quential metric sense, which shows that equation (27) holds for the tree degree D, (-), that is, the
degree of the root node is one of the highest among all the nodes. Since D¢, = Dr, + Dg,, we show
that if the noise level 8 is less than #71/27% for some ¢ > 0, then the degree of the noisy edges Dg, has
a second-order effect and equation (27) remains valid.

We know from existing results (such as Bubeck, Devroye et al., 2017, Theorem 6; see also Crane
& Xu, 2021, Corollary 7) that |[B(T},)| is O,(1) in the 6 = 0 case where we observe the LPA tree T,.
Theorem 11 shows that this phenomenon is quite robust to noise. Indeed, when 6 =#7"1/279_ the
observed graph would have approximately #3/>~° noisy edges and only 7 — 1 tree edges.

The situation is different when the underlying latent tree has the UA distribution, where a =1
and B =0. In this case, we have the following result:

Theorem 12 Let G, ~ PAPER(a, B, 0) for a=1, =0, and 6 € [0, 1]. For t € [n], let
Dg,(t) be the degree of node with arrival time ¢ and for k € [n], let
k-max (Dg,) be the k-th largest degree of G,. Suppose 6’=o(1°%) and
let ¢€(0,1) be arbitrary. For any #5€(0,1), define L,, :=n"+
' "2 where h(x)=(1+x)log(1l+x)—x for x> 0. Then, we
have that

limsup P{Dg, (1) < L .- max (Dg,)} < . (28)

n—oo
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Figure 13. Size of the confidence set vs. the number of edges.

logn

52), then, for some y < 0.8, we have that

As a direct consequence, if 6 = o(

w7 B(GE) = Opy(1) for any c € (0, 1).

We relegate the proof of Theorem 12 to Section $4.2 of the online supplementary material. The
proof technique is similar to that of Theorem 11 except that we use concentration inequalities to
derive equation (28).

Comparing Theorem 12 with Theorem 11, we see two important differences. First, even if the
noise level is small, we can no longer guarantee that |B.(G})| is bounded even as » increases.
Instead, we have the much weaker bound that |B.(G;)| is less than O(#”) for some y < 0.8. We be-
lieve this bound is not tight; we observe from simulations in Section 6.1 (see Figure 13) that the size
of the confidence set B.(-) is indeed O, (1) even when the noise level is of order l(’%. The bound is
sub-optimal because the degree of the nodes is not informative of their latent ordering when the la-
tent tree has the UA distribution; hence, B, (-) could be much smaller than confidence sets constructed
solely from degree information. Intuitively, this is because largest degree nodes do not persist in UA
as opposed to linear preferential attachment (Dereich & Morters, 2009; Galashin, 2013).

The second difference is that the noise tolerance is much smaller. We require 6 to be smaller than

105" rather than 7#~ /2, We conjecture that these rates are tight in the following sense:

Conjecture 13 Let G,, ~ PAPER(q, B, 0) fora=1, =0, and 6 € [0, 1].

1. Suppose a =0 and f=1 (LPA). If 0 = o(n~'/?), then |B.(G})| = O,(1)
and if @ = w(n~1/?), then every asymptotically valid confidence set has
size that diverges with 7.

2. Supposea=1and =0 (UA). If 0 = o(1%8"), then IB(G;,)| = Op(1) and

n

if 0= lofl" ), then every asymptotically valid confidence set has size

that diverges with 7.

We provide empirical support for this conjecture in Section 6.1, particularly Figure 13. In those
experiments, we see that, when the latent tree has the LPA distribution and when 6 = cn~'/? where
¢ > 0 is small, the size of B, does not increase with 7; however, when ¢ (and hence 0) is large, B is
larger when the size of the graph # is larger. The same phenomenon holds when the latent tree has
the UA distribution when 6 = ¢ 28"

n *

6 Empirical studies

We have implemented the inference approach in Section 3 and the sampling algorithm in Section 4
in a Python package named paper-network, which can be installed via command line pip
install paper-network on the terminal and then imported in Python via import PAPER.
The source code of the package, along with examples and documentation, are available at the web-
site https:/github.com/nineisprime/PAPER. All the code used in this Section are also available

G202 1990100 0€ U0 15aNB Aq 690ESZL/ST8/P/98/810IME/qsSSI/W0o"dNo-dlWapeo.//:SdjY WOy papeojumod


http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkad102#supplementary-data
https://github.com/nineisprime/PAPER

J R Stat Soc Series B: Statistical Methodology, 2024, Vol. 86, No. 4 853

there under the directory paperexp. We also give detailed sampler diagnostics information in
Section S5.4 of the online supplementary material.

6.1 Simulation

6.1.1 Frequentist coverage in the single root setting

In our first simulation study, we empirically verify Theorem 7 by showing that a level 1 — ¢ credible
set for the root node constructed from the posterior root probabilities has frequentist coverage at
exactly the same level 1 — €. We consider three different settings of parameters: o = 0, =1 (LPA),
a=1,$=0(UA), and a =8, =1. We generate G,, according to the PAPER(a, f, ) model with
n= 3,000 nodes and m = 7,500 edges. We then estimate @ and B using the method given in
online supplementary Section S3.1, compute the level € € {0.2, 0.05, 0.01} credible sets, and re-
cord whether they cover the true root node. We repeat the experiment over 300 independent trials
and report the results in Table 2. We observe that the credible sets attain the nominal coverage and
that the size of the credile sets are small compared to the number of nodes .

6.1.2 Size of the confidence set

In our second simulation study, we study the effect of the sample size 7z and the magnitude of the
noisy edge probability 8 on the size of the confidence set. We let G}, be the observed graph with 7
nodes and 7 edges according to the PAPER(a, 8, #) model where we consider (a, ) = (0, 1) (LPA)
or (1, 0) (UA). Since a tree with # nodes always contains 7 — 1 edges, ”729 + 7 is approximately
equal to the number of edges 7 in the observed graph G,.

We empirically show that the confidence set size does not depend on 7 so long as 8 is much small-
er than 72~ 1/2 for LPA and much smaller than k’% for UA. To that end, we set m = cn\/n for c €
{0.1,0.2, 0.4, 0.6, 0.8, 1} for LPA and m = cnlogn for c € {0.15, 0.2, 0.4, 0.6, 0.8} for UA. We
then plot the average size of the confidence set with respect to ¢ for n € {5,000, 10,000}. We
plot the curve for n = 5,000 and for n = 10,000 on the same figure and observe that, when c is
small, the two curves overlap completely but when ¢ is large, the = 10,000 curve lies above
the 7 = 5,000 curve. This provides empirical support to Theorems 11 and 12. In fact, this experi-
ment shows that the bound of #” on the size of the confidence set in Theorem 12 is loose; the actual
size does not increase with 7. The fact that the confidence set size seems to diverge with 7 when c is
larger supports Conjecture 13 and suggests that the plroblem of root inference exhibits a phase

ogn

transition when 0 ~ \/iz under the LPA model and 8 ~ 2% under the UA model.

n

Table 2. Empirical coverage of our confidence set for the root node

(a, ) 0,1) (1,0) (8,1) (0,1) (1,0 (8,1) 0,1) (1,0)
Theoretical coverage 0.8 0.8 0.8 0.95 0.95 0.95 0.99 0.99
Empirical coverage 0.8 0.823 0.82 0.937 0.943 0.94 0.983 0.993
Ave. conf. set size 7 12 9 42 42 31 183 115

Note. We report the average over 300 trials. Graph has 7 = 3,000 nodes and 7 = 7,500 edges in all cases.

Table 3. Empirical coverage of our confidence set for the seg-PAPER(a, f, 6, &, [3) model without deletion noise, with
f=15anda=aand f=4

(@, B) (with & =a, B=p) (0,1) (1,0) (0, 1) (1,0) 0, 1) (1,0)
Theoretical coverage 0.8 0.8 0.95 0.95 0.99 0.99
Empirical coverage 0.795 0.895 0.935 0.965 0.970 0.995
Ave. conf. set size 7 7 25 16 56 28

Note. We report the average over 200 trials. Graph has 7 = 600 nodes and around m =~ 1,500 edges in all cases.
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Table 4. Empirical coverage of our confidence set for the seq-PAPER*(a, B, 6, &, B, n) model with deletion noise, with
a=0,8=1,a=8,4=1,0=15Iinall cases

n (tree edge deletion probability) 0 0 0.04 0.04 0.08 0.08
Theoretical coverage 0.8 0.95 0.8 0.95 0.8 0.95
Empirical coverage 0.825 0.96 0.84 0.95 0.85 0.98
Ave. conf. set size 5.9 14.1 6.3 15.0 6.7 15.9

Note. We report the average over 200 trials. Graph has 7 = 300 nodes and around m ~ 750 edges in all cases.

Table 5. Empirical coverage of our confidence set for the set of K =2 root nodes

(a, B) (0, 1) (1,0) (0, 1) (1,0) (0, 1) (1,0)
Theoretical coverage 0.8 0.8 0.95 0.95 0.99 0.99
Empirical coverage 0.826 0.826 0.933 0.964 0.974 0.985
Ave. conf. set size 5 57 12 155 31 295

Note. We report the average over 200 trials. Graph has 7z = 700 nodes and » = 1,000 edges in all cases.

6.1.3 Frequentist coverage under sequential noise models
In our third simulation study, we verify Theorem 7 for the seq-PAPER model with sequential noise

described in Section 2.3. We generate G according to both the seq-PAPER (a, 4, 6, &, ) model and
the seq-PAPER*(a, 8, 0, &, B, ) model with deletion noise. We then construct the credible sets for
the root node from posterior root probabilities computed via the algorithm given in Section 4. We
repeat the experiment over 200 independent trials and report the results in Tables 3 and 4. We ob-
serve that the credible sets attain the nominal coverage. We also note that Table 4 shows that the
seq-PAPER" model can tolerate tree deletion probability up to # = 0.08 without significant in-

crease in the confidence set sizes.

6.1.4 Frequentist coverage for multiple roots

Our next simulation study is similar to the first except that we generate graphs from the
PAPER(a, B, K, 6) model with K =2. We construct our credible sets as described in Section 3.3
and verify Theorem 8 by showing that the credible set at level 1 — € also has frequentist coverage
at exactly the same level. We consider two different settings of parameters: a =0, # =1 (LPA) and
a=1, =0 (UA). We generate G, according to the PAPER(a, $, K, 8) model with 7 = 700 nodes,
m=1,000 edges, and K=2. We then estimate o and B using the method given in online
supplementary Section S3.1, compute the level € € {0.2, 0.05, 0.01} credible sets, and record
whether they contain the true set of root nodes. We repeat the experiment over 200 independent
trials and report the results in Table 5. We observe that the credible sets attain the nominal cover-
age. In the LPA setting, the size of the credible sets are small but in the UA setting, the sizes of the
credible sets become much larger. We relegate an in-depth analysis of this phenomenon to future
work.

6.1.5 Posterior on K in the random K roots setting

In our last simulation experiment, we generate PAPER graphs with K = 2 roots but perform pos-
terior inference using the PAPER (a, B, g, ) model and study resulting posterior distribution over
the number of roots K. We consider two different settings of parameters: a =0, #=1 (LPA) and
a=1, =0 (UA). We generate G}, according to the PAPER(a, 8, K, ) model with # = 700 nodes,
m = 1,000 edges, and K=2. We report the posterior distribution over K, averaged over 20
independent trials, in Figure 14. We observe that, in both cases, the mode of the posterior distri-
bution over K is 2, which is the true number of roots. However, the distributions exhibits high
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Figure 14. Posterior distribution over Kaveraged across 20 independent trials. Left: Networks have two latent UA
trees. Right: Networks have two latent LPA trees.
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Figure 15. Left: Contact network among 32 students in a flu outbreak. Centre and right: Two examples of the latent
tree generated by the Gibbs sampler.

variance, which could be due to the fact that the two true latent trees may have significantly dif-
ferent sizes.

6.2 Single root analysis on real data
We now apply the single root PAPER model on real-world networks. In a few cases (Section 6.2.1),
we can ascertain from domain knowledge that the network originated from a single root node but

more often, we use the single root model to identify important nodes and subgraphs (Section
6.2.2).

6.2.1 Flu transmission network

We analyse a person-to-person contact network among 32 students in a London classroom during
a flu outbreak (Hens et al., 2012). We extract the data from Figure 3 in Hens et al. (2012) and il-
lustrate the network in the left sub-figure of Figure 15. Public health investigation revealed that the
outbreak originated from a single student, which is the true patient zero and shown as the orange
node in Figure 15. We apply the PAPER model with a single root to this network. We estimate that
B =1 and a=53.06 using the method described in online supplementary Section S3.1 and com-
pute the 60%, 80%, 95%, and 99% confidence sets. All the confidence sets contain the true patient
zero and their sizes are as follows:

60%:6 nodes 80%:10 nodes 95%:19 nodes 99%:27 nodes.

We provide the approximate posterior root probabilities of the top 7 nodes in Figure 15. The true
patient zero has a posterior root probability of 0.11 is the node with the 3rd highest posterior root
probability. In the centre and right sub-figure of Figure 15, we also show two of the latent trees T,
that were generated by the Gibbs sampler.
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Figure 16. Subgraph of the 200 nodes with highest posterior root probabilities. (a) MathSciNet subgraph and (b)
Notre Dame subgraph.

6.2.2 Visualising central subgraphs

Large-scale real graphs are difficult to visualise but one can often learn salient structural prop-
erties of a graph by visualising a smaller subgraph that contains the most important nodes. In this
section, we apply the single root PAPER model on four large networks and, for each graph, dis-
play the subgraph that comprises the 200 nodes with the highest posterior root probability. We
see that the result reveals striking differences between the different graphs. Unfortunately, we do
not have the node labels on any of these four graphs and can only make qualitative interpreta-
tions of the results.

MathSciNet collaboration network. We first consider a collaboration network of research pub-
lications from MathSciNet, which is publicly available in the Network Repository (Rossi &
Ahmed, 2015) at the link http:/networkrepository.com/ca-MathSciNet.php. This network has
n =332, 689 nodes and m = 820, 644 edges, with a maximum degree of 496. Using the method
described in online supplementary Section S3.1, we estimate =1 and a = 0. The sizes of confi-
dence sets are:

60%:3 nodes 80%:6 nodes 95%:21 nodes 99%:112 nodes.

We display the subgraph containing the 200 nodes with the highest posterior root probability in
Figure 16a. We observe that the subgraph reveals a cluster structure that may represent the differ-
ent academic disciplines.

University of Notre Dame website network. We study a network of hyperlinks between web-
pages of University of Notre Dame (Albert et al., 1999), which is publicly available at the web-
site https:/snap.stanford.edu/data/web-NotreDame.html. This network has 7n=325,729
nodes and m =1,090,108 edges, with a maximum degree of 10,721. Using the method de-
scribed in online supplementary Section S3.1, we estimate # =1 and a = 0. The sizes of confi-
dence sets are:

60%:2 nodes 80%:21 nodes 95%:524 nodes 99%:3498 nodes.

We observe that the central subgraph (shown in Figure 16b) reveals two hub nodes with many
sparsely connected ‘spokes’.
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6.3 Community recovery with the fixed K model

In this section, we show that we can use the PAPER model with multiple roots for community re-
covery on real-world networks. To estimate the community membership from the posterior sam-
ples, we use a greedy matching procedure. To be precise, our Gibbs sampler outputs a sequence of

~(1) =) . =() .
forestsf,’, ..., fn] where ] is the number of Monte Carlo samples. Each forest f,z contains K com-
ponent trees which we denote B g ) We write QZ)(-) =P =-|T= i(k’”) as the

posterior root distribution of the k-th tree of the j-th Monte Carlo sample. Since the tree labels
may switch from sample to sample, we use the following matching procedure: we maintain K dis-

tributions Q1(-), Oa(-), ..., Ok(-) and initially set kaQS) for all ke€[K]. Then, for

j=2,3, ...,], we use the Hungarian algorithm to compute a one-to-one matching o : [K] —
[K] that minimises the overall total variation distance

K o
> TV(OY, Qutey)-
k=1

Once we compute the matching, we then update Q) < i;—.lQ,,(k) + % QZ).

In this way, we interpret Q1, ..., Qg as the average posterior root distributions for the K trees
across all the Monte Carlo samples and using the matching, we may also compute the posterior
probability P(uintreek |G, =g,), which allows us to perform community detection — we put
node u in cluster k if P(u intreek |G, =g,) > P(uintree k' |G, =g,) forall k' # k. We use the
greedy matching procedure for computational efficiency—slower but more principles approaches
are studied by, e.g. Wade and Ghahramani (2018).

6.3.1 Karate club network

We apply the PAPER model to Zachary’s karate club network Zachary (1977), which is publicly
available at http:/www-personal.umich.edu/mejn/netdata/. The karate club network has n = 34
nodes and m = 76 edges, where two individuals share an edge if they socialise with each other.
The network has two ground truth communities, one led by the instructor and one led by the ad-
ministrator (shown as rectangular nodes in Figure 17. These two communities later split into two
separate clubs. In this case, we apply the PAPER model with K =2 roots. For every node u, we
consider the community membership probability P(#intree 1|G,) and assign # to community
1 if and only if this value is greater than 0.5. We show the result in in Figure 17, where each
node has a colour that reflects its community membership probability.

We correctly cluster all but one node, which matches the performance of degree-corrected SBM
Karrer and Newman (2011) and Amini et al. (2013) (DCSBM)—the current state-of-the-art model
for community detection. The node that we misclassify has a posterior probability
P(u intree 1| G,) = 0.47, indicating that the model is indeed unsure of whether it belong in com-
munity 1 or 2. We note that the PAPER model requires only 3 parameters whereas the DCSBM for

Figure 17. Left: Karate club network where node colour reflects community membership probability. Centre and
right: Two examples of the latent forest generated by the Gibbs sampler.
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Figure 18. Left: Political blog network where node colour reflects community membership probability. Right: One
example of a forest generated by the Gibbs sampler. The 5 nodes with the larger marker comprise the 95%
confidence set for the roots.

this network requires 38 parameters because each node has a degree correction parameter. SBM
without degree correction performs badly Karrer and Newman (2011).

6.3.2 Political blogs network

Next, we analyse a political blogs network (Adamic & Glance, 2005) that is frequently used as a
benchmark for network clustering algorithms; the full network is publicly available at the website
http:/www-personal.umich.edu/mejn/netdata/. This network contains m = 16,714 edges between
n=1,222 blogs, where two blogs are connected if one contains a link to the other. For simplicity,
we treat the network as undirected.

The network again has two ground truth communities, one that comprise of left-leaning blogs
and one that comprises of right-leaning blogs. We again apply the PAPER model with K = 2 roots
and for every node u#, we compute the community membership probability P(#intree 1|G,) and
assign # to community 1 if and only if this value is greater than 0.5. We show the result in in
Figure 18, where each node has a colour that reflects its community membership probability.

Our overall misclustering error rate is 9.1%, which is high compared to current state-of-the-art
approaches; for example, the SCORE method (Jin, 2015) attains an error rate of about 5%.
However, we compute the misclustering error rate with respect to only the top 400 nodes with
the highest posterior root probabilities, which can be interpreted as the most important nodes
in the graph, our misclustering error rate drops to 3.5%. This confirms our intuition that the
PAPER model, when used for clustering, is more reliable for central nodes than for peripheral
nodes.

6.4 Community discovery with the random K model

For networks with an unknown number of small and possibly overlapping communities, the ran-
dom K model PAPER (a, 8, o, 8) can be useful for discovering complex community structures. To
extract community information from the posterior samples, we again use a greedy matching pro-
cedure. To be precise, in the random K setting, our proposed Gibbs sampler outputs a sequence of

(1) =) . . =(7)
forests f,, ', ..., fg where [ is the number of Monte Carlo samples. We write each forest f,f , for

(1,) 2(K)
0

j € [J1, as a collection of trees {# where K; is the number of trees in fi:) Forj € [J] and

k € [K;], we write QZ)(~) =P(IL=-|T= i‘(k’i)) as the posterior root distribution of the k-th tree in
the j-th Monte Carlo sample. To summarise the output in an interpretable way, we do the
following:
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Figure 19. Posterior over K using the random K roots model on the karate club network (left) and the political blog
network (right).

1. We initialise K, = max;ep Kj and Qp = O} for k=1,2, ..., Ki. For k=K; + 1, ..., Ky,
we initialise Qg (-) = 0.

2. Forj=2,3, ..., J,wematch{Qyj, ..., Ok} with {Q({), o Qﬁg} by computing a one-to-one
matching o : [K;] — [K,] that minimises

K; _
> TV(OY, Qo)
k=1

For every k € [Kj], if the total variation distance between the k-th pair of the matching is too
large, that is TV(QZ), Ouy) > 0.75, then we create a new set Ky < Ky +1 and set
Ok 41 < Q(k’) ; otherwise, we perform the update Q) < ’%1 Ouik) + % QZ).

3. We output {Q1, ..., Ok, } as the discovered clusters, represented as posterior root probabil-
ity distributions.

For all of our experiments, we only include trees that contain at least 1% of the total number of
nodes. For each discovered cluster Q; for ¢ € [Ky], we also compute pg, as the number of
Monte Carlo iteration j € [J]] where we match Q, with Q(k’), i.e. o(k) =¢, and update Q,. We
then compute “ as the posterior frequency of cluster Q.

In order to check that the random K model is reasonable, we first apply it to the karate club and
the political blog networks, which we know contain two underlying clusters, and analyse the re-
sulting posterior distribution over the number of cluster-trees K. We provide the results for the ka-
rate club network in the left part of Figure 19, in which we see that the posterior mode is at K = 2.
For the political blog network, the Gibbs sampler tends to produce a few large clusters and many
tiny clusters of fewer than 10 nodes. Therefore, to compute the posterior over K, we count only
clusters that have at least 12 nodes (1% of the total number of nodes) and give the results in
the right part of Figure 19. The posterior mode in this case is K = 3, which is reasonably close
to the ground truth.

We also analyse an air route network (Guimera et al., 2005) of n» = 3,618 airports and m =
14,142 edges where two airports share an edge if there is a regularly scheduled flight between
them. We remove the direction of the edges and treat the network as undirected. The dataset is
publicly available at http:/seeslab.info/downloads/air-transportation-networks/. Using the ran-
dom K model, we discover a large central cluster containing major airports around the world
and various small clusters that correspond to more remote regions such as airports on Pacific
and Polynesian islands, airports in Alaska, and airports in the Canadian Northwest Territories.
For sake of brevity, we defer the detailed results to Section S5.2 of the online supplementary
material.

6.5 Analysis of statistician co-authorship network

We now apply PAPER models to perform an extensive analysis of a statistician co-authorship net-
work constructed by Ji and Jin (2016). In this network, each node corresponds to a statistician
and two nodes # and v have an edge between them if they have co-authored 1 or more papers
in either Journal of Royal Statistical Society: Series B, Journal of the American Statistical
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Figure 20. Subgraph of the co-authorship graph comprising the 200 nodes with the highest posterior root
probabilities. We label the 12 nodes with the highest root probabilities.
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Figure 21. Nine of the clusters that most frequently appear in the posterior samples. Word sizes are proportional to
the posterior root probability with respect to the cluster. (a) Central super-cluster. (b) Bayesian. (c) Bayesian. (d)
Theory. (e) Multivariate analysis. (f) Biostat. (g) Computation/UK. (h) Biostat. (i) Graphical models.

Association, Annals of Statistics, or Biometrika from 2002 to 2013. We consider only the largest
connected component which has 7 =2,263 nodes and 7 = 4,388 edges. Ji and Jin (2016) in their
manuscript (Section 4.3) refer to this network as ‘Coauthorship Network (B)’. We emphasise that
since the data reflect only co-authorship in four journals in the period 2002-2013, the results that
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Figure 22. Two additional clusters along with the subgraphs that correspond to the clusters. In the subgraph, we
label the 8 nodes with the highest posterior root probability with respect to that cluster. We observe that the
subgraphs are tree-like. (a) Experimental design community. (b) High-dimensional statistics community.

we produce cannot be used to compare researchers—we use this network only to illustrate
PAPER models in a setting where we can more easily assess whether the output is meaningful
or not.

6.5.1 Single root analysis

We first use the single root PAPER(a, 8, §) model where we estimate a = 0, f = 1 using the EM al-
gorithm described in online supplementary Section S3.1. We find that the following 4 nodes have
the highest posterior root probabilities: (1) Raymond Carroll with root probability 0.32, (2) Peter
Hall with root probability 0.26, (3) Jianqing Fan with root probability 0.086, and (4) James
Robins with root probability 0.048. The root probability ranking align closely with betweenness
centrality ranking, in which Raymond Carroll, Peter Hall, and Jianqing Fan are also the top 3 most
central nodes; see Table 2 of Ji and Jin (2016). Both the root probability ranking and the betwe-
enness ranking differ significantly from degree ranking. We also display the subgraph of the 200
nodes with the highest posterior root probabilities in Figure 20 where we labelled the top 12 nodes
with the highest root probabilities.

6.5.2 Community detection with random K roots model

Using our inference algorithm and the greedy matching procedure in Section 6.4, we compute clus-
ters {O1, ..., Ok, } where we find about K, = 40 significant clusters. We order the clusters by
their posterior frequencies and display the top 9 clusters in Figure 21, along with labels that we
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curated; we display the nodes in the cluster as word clouds in which the word size is proportional
to the posterior root probabilities. We display 18 additional clusters in Section S5.3 of the online
supplementary material. We note that the clusters can overlap since they are constructed from a
sequence of posterior samples by matching; see the first paragraph of Section 6.4.

Ji and Jin (2016) on the same network uses scree plot to conclude that there are K = 3 clusters,
which are shown in Figures 9-11 in their paper. They refer to the three clusters as a ‘high-
dimensional’ super-cluster, a ‘biostatistics’ cluster, and a ‘Bayes’ cluster. We find a giant super-
cluster, but we also find a large number of smaller clusters which accurately reflect actual research
communities in statistics. For example, we find the same ‘Bayes’ cluster in Ji and Jin (2016) (see
Figure 21a), but we also discover other Bayesian clusters such as ones shown in Figure 21b.
Similarly, we find the ‘biostat’ community in Ji and Jin (2016) (see Figure 21f) but we find other
biostat clusters as well such as the one shown in Figure 21h and the one centred on Jason Fine and
Michael Korsorok in Figure 27 in the online supplementary material. In addition, we find many
other meaningful communities, such as the experimental design community or the high-
dimensional statistics community shown in Figure 22, or the survey and theory community in
Figure 27 in the online supplementary material. We believe that PAPER model gives highly coher-
ent clusters for this network because the network itself is locally tree-like, as shown in two cluster
subgraphs that we display in Figure 22.

7 Discussion

In this paper, we present the PAPER model for networks with underlying formation processes and
formalise the problem of root inference. We extend the PAPER model to the setting of multiple
roots to reflect the growth of multiple communities. There are a number of important open ques-
tions from modelling, theoretical, and algorithmic perspectives.

From a modelling perspective, an interesting direction is to suppose that the graph start not as
singleton nodes but as a small subgraph. The goal then is to infer the seed-graph instead of the root
node (c.f. Devroye & Reddad, 2018). Model extensions such as the PAPER-SBM mixture de-
scribed in Remark 5 are also interesting; in these models, a subtle question is to what extend
we have to estimate the parameters of the noise model well in order to recover the root nodes
of the latent forest.

There are many open theoretical questions related to PAPER model and root inference. For in-
stance, in Conjecture 13, we hypothesise that the size of the optimal confidence set for the root
node is of a constant order if so long as the noise level is below a certain threshold. If the noise level
is above the threshold, then every confidence set has size that diverges with 7. The lower bound of
this conjecture seems especially difficult and may require new techniques. Another interesting the-
oretical question is the analysis of community recovery using the PAPER model with multiple
roots. Intuitively, we expect be able to correctly cluster the early nodes since they tend to have
more central positions in the final graph. The late arriving nodes on the other hand would be
more peripheral and difficult to cluster.

Algorithmically, we observe that the Gibbs sampler that we derived in Section 4 converges very
quickly in practice (see online supplementary Section S5.4). It would be interesting to study its
mixing time, especially how the mixing time depends on the noise level.
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Data availability

The flu transmission network is extracted from Figure 3 in Hens et al. (2012). The MathSciNet
network is available at http:/networkrepository.com/ca-MathSciNet.php.

The University of Notre Dame website network is available at https:/snap.stanford.edu/data/
web-NotreDame.html. The karate club network is available at http:/www-personal.umich.edu/
mejn/netdata/. The political blog network is available at http:/www-personal.umich.edu/mejn/
netdata/.

The airport network is available at http:/seeslab.info/downloads/air-transportation-networks/.
The statistician co-authorship network is available at http:/zke.fas.harvard.edu/MADStat.html.
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Supplementary material is available online at Journal of the Royal Statistical Society: Series B.
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We commend the authors on an illuminating article which significantly extends the state of
the art in network archaeology. Notably, whereas most other literature in the area has pro-
vided methods for root inference which are theoretically grounded only in the case of ran-
dom trees, the techniques in this paper have been designed to model nontree-structured
networks, as well. This has important practical implications, as many real-world networks
contain one or more cycles. The main challenge faced by the probability and statistics
community—for the better part of the last decade—was that it was difficult to concoct a
model that was simple enough to analyse rigorously, yet complex enough to comprise a suf-
ficiently interesting family of random graph structures. By introducing their PAPER model,
Crane and Xu have proposed a model achieving an ideal balance, accompanied by a variety
of attractively useful and strikingly intuitive theoretical results. The simulation results are
also very impressive, in that the algorithms can be efficiently run on a single laptop even
for networks with millions of nodes.

The fact that the PAPER model achieves such versatility with only three parameters is a major
strength of the work. This makes parameter estimation plausible (the authors suggest several
methods for parameter estimation in the appendices, based on EM and Bayesian methods).
From our reading, we wondered how one might decide in practice to use a more complicated mod-
el for a given network, e.g. sequential PAPER vs. nonsequential PAPER, or fixed-K vs. random K,
as the more complicated networks would of course lead to more complicated inference proce-
dures. For instance, is anything known about degree profiles of random-K networks, and are
they qualitatively different from the degree profiles of fixed-K networks? (Which would be
more reasonable for specific problems such as the coauthor networks studied in this paper?) We
are also curious to understand better, in practice, what the confidence sets look like for K> 1
(does the algorithm output K connected components?). How might the algorithm be modified if
the goal is to output a set of K-tuples such that the K-tuple containing the K root nodes is contained
in this set, with a certain high probability?

Section 5 of the paper presents theoretical results concerning confidence sets for the root node
(or root nodes, when K > 1) of a random network. Along the lines of some of our previous work
(Jog & Loh, 2018), we wondered how much the theory could extend to the case of constructing a
confidence set for the first M > 1 nodes (say, for simplicity, in the case when K = 1). Also, can rea-
sonable conditions be imposed under which confidence sets are proven to ‘persist’ when the num-
ber of nodes 7 tends to infinity? Finally, if the random network were initialized with a ‘seed graph’
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(Lugosi & Pereira, 2019), could confidence sets for the seed graph be constructed by an extension
of the techniques in this paper, with corresponding theoretical results?

Although several variants of the PAPER model are introduced in Section 2 of the paper, the core the-
oretical results seem to only cover the vanilla and fixed-K cases. Thus, we wondered whether results
such as the fact that credible sets have the correct frequentist coverage (Theorems 7 and 8) also holds
for sequential and random-K models. Does the minimality property of confidence sets based on poster-
ior root probabilities (Remark 6/Theorem S5) also hold for K > 1?2 If any of the answers are negative,
can the authors comment on the technical difficulties involved in extending their results to these cases?

Lastly, we found the results of the paper to be rather thought-provoking in terms of their poten-
tial for opening new avenues for studying more complicated random growth models. Some exam-
ples include sequential models with a ‘vertex retirement’ feature, e.g. motivated by the study of
coauthorship networks. Another idea is to model in deletion noise which is time-dependent, in
contrast to the versions of PAPER presented in the paper, which assume that once connections
are formed in the sequential model, they remain fixed forever. Other worthwhile models to study
in conjunction with PAPER might be the sublinear preferential attachment model, which also ex-
hibits persistence properties analogous to the linear preferential attachment model (Jog & Loh,
2016), and the ‘superstar model’, which purportedly provides a better fit to empirical data in social
networks than the standard preferential attachment model (Bhamidi et al., 2015).
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This paper and general line of work present a fascinating array of new ideas for network inference.
The central contribution is a radically new model for community structure in graphs, which
has several interesting features. To pick one which is perhaps significant given the recent obvious
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practical success of Al systems: It is good to see more theory challenging ideas such as the ‘curse of
dimensionality’ or, in this instance, the ‘curse of sparsity’ for community detection, reminding us
that these pessimistic predictions often depend on models for data that may be unrealistic.

At the meeting, I raised several points of discussion, including reproducing high triangle
counts (Seshadhri et al., 2020), modelling heterophilic connectivity (Rubin-Delanchy et al.,
2022), incorporating continuous latent structure (Athreya et al., 2017, 2021; Hoff et al., 2002;
Rubin-Delanchy, 2020), and randomization. But my most important concern at the time was
that in the applications cited—finding patient zero in a disease network, or the source of fake
news in a social media network—there would almost always be timing information on the edges.
It would seem highly irresponsible to ignore this in practice. In a conversation after the meeting,
Prof. Xu made the compelling counterargument that existing approaches were often overreliant
on time. Still, I think there could be some appropriate use of this information.

Since the meeting, I have remained unsure about the role of randomization in this work. The
authors write: ‘Our approach to root inference and related problems is to randomize the node la-
bels, which induces a posterior distribution over the latent ordering.’ I initially read this literally,
thinking that we would be working exclusively on a computer-generated, uniformly random re-
labelling of the graph. However, pushing G* up the equations at the bottom of page 14, it becomes
clear that we are conditioning on the event (shuffled graph) G = G* (observed graph). In other
words, for the computation of the confidence set B(G*), we are imagining that a computer shuffled
our graph, and that it spat out G*. In my view that is not so different and requires just as much
‘double-think’ as assuming the original labels of G* were chosen uniformly at random, which I
presume is what the authors were trying to avoid. In any case, at a mathematical level, random-
ization seems an inefficient way of stripping label information away from the problem. Below, I
present a different treatment which

1. makes away with any sort of randomization, conceptual or otherwise, and associated
Bayesian/frequentist explanations;

2. provides a stronger, conditional rather than marginal coverage guarantee;

3. shows that results such as Theorem 7 hold more generally, to any sort of data (e.g. time series,
documents, complex networks) which are observed relabelled or disordered.

I would like to thank my colleague Dr Charles Cox (University of Bristol) for his help with group
theory and several calculations.

Problem. G =(V, £) is an undirected random graph on the vertex set V=[n]={1, ..., n},
with vertex 1 described as the ‘root’. G has a fully specified distribution, with probability
mass function f. We will use n =4, G ~ PAPER(0, 1, 0) (linear preferential attachment) for illus-
tration purposes, in which case for example f(1—2—3—4)=P(G = 1—2—3—4)=1/2x
1/4 =1/8 (3 chooses 2 with probability 1/2, 4 chooses 3 with probability 1/4). Given a permuta-
tion 7= of [#] (a bijection from [n] to [n]), we write mi=n(i), #S={mi:i € S} and
nG = ([n], {(zi, mj) : (1, j) € £}).

Instead of G, we observe G* = pG, where p is a random permutation of [#], whose conditional
distribution given G is unknown. (Unlike the authors I do not find it helpful to introduce a
different, alphabetical, set of vertex labels for G*.) Given some coverage probability 1 — ¢, the prob-
lem is to find a set B(G*) such that P{p(1) € B(G*)} > 1 — ¢, that is, a confidence set for the root.

Solution. Given an arbitrary, fixed graph G on the vertex set [#], define Aut(G) = {x € S,, : zG = G},
the automorphism group of G, where S,, is the group of all permutations of [#]. The vertex set of G
admits a unique partition into orbits, o1, ..., or, where each 0; = {ni: = € Aut(G)} for some i € [n].
It is a standard fact of group theory that {zi: 7 € Aut(G)} and {xj: = € Aut(G)} are either equal or
disjoint. Let Gy, ..., Gu denote the distinct graphs which can be obtained from G by relabelling,
where M = n!/|Aut(G)|, thatis, {G1, ..., Gu} ={nG:7 € S,}.

To illustrate the constructions so far, if G=1—2—3—4 then Aut(G) contains only two
elements, the reverse permutation zi =35 —i and the identity, the orbits are {1,4} and
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{2, 3}, and there are 4!/2 =12 distinct graphs Gy, ..., G2, one of which is G, another is
3—1—2—4, etc.

Lemmal Letm be a permutation satisfying G, = 7,G; and o!") an orbit of G;. Then ;0
is an orbit of G,. Let m; be a permutation such that G; =m1G,. Then
mmott) = o),

Proof. Itis clear that 70 is an orbit: if we relabel a graph, we relabel its orbits. For the
second part, note that Gy = mym Gy so that mym; is an element of Aut(G,), and so
(r1m2) " Aut(G1) = Aut(Gy) (any element b of a group H satisfies hH = h~'H = H).
Pick some j € oY) such that o) = {zj:7 € Aut(Gy)} = {mj: 7 € (m172) ' Aut(Gy)}.
Then zym0Y = {mymymj: 7w € (mym2) Aut(Gy)) = {mj:m € Aut(Gy)} = o'V, O

We can ‘track’ orbits across different relabelling of G in a way that we can’t do with individual
vertices. In general, it is not the case that for 7y, 7, as above, 7177 = i for every i € [n], unless G has
no non-trivial symmetries.

Now, condition on the event G*, G € {G1, ..., Gu} and fix an orbit o of G. By the above, this
corresponds to a well-defined orbit 0oV of Gy, 0?) of G5, and so on. There is a random x for which
G* =G, and an associated random orbit o).

Theorem 1

2 mec[(Gm)
ey F(Gm)”

where C=m : 1m)C=m:1 € om)C={m:1 € o).

p(o):=Plp(1) € o™ | G*, G € (G, ..., Gu}] =

Suppose that G = 1—2—3—4 and o ={1, 4}. In plain English, we could describe the event
p(1) € 0™ as: ‘one of the tail nodes of G* is the root node of G’. Under the PAPER(0, 1, 0) model,
the conditional probability above evaluates to 1/4. It’s three times more likely (3/4) that the root is
one of the middle nodes.

Suppose the orbits o; of G are ordered by decreasing density, p(0;)/|0|, and pick the smallest #
such thata) 3., p(0)) 2 1 — € and b) p(o¢) > p(oe+1), ignoring the latter condition if the former
requires £ = L. Let B(G) = Uje¢0;.

Let o}”” denote the corresponding orbits in G,,,. Then we can verify that B(G,,) = U,Emo}m). Thus,

Plp(1) € B(G*) | G*, G € {G1, ..., Gul] = Plp(1) € Ueperof” | G*, G € (G, ..., Gu)]
>1-—e¢ (conditional coverage)
= Plp(1) € B(G")]>1 - (marginal coverage)

We could make B(-) smaller by randomly selecting between low-density orbits, and smaller still by
randomly pruning those orbits. Personally I think this is over-obsessing about the target 1 — ¢, and
it would be better in practice to list the critical orbits with probability p,, reporting the proportion
of nodes that could be removed from each.

Why hasn’t this been done before?. I understand that for some probabilists this is a fairly stand-
ard way of doing things, and it is also worth noting that on simpler problems statisticians often
implicitly do this too. We might, for example, observe a word sequence (or time series) X =
(X1, ..., X,,) in disorder, X* =pX. Here, the set of relabellings of X* is sometimes called a
‘bag’, and here the ‘orbits’ of X* are the sets of indices corresponding to unique values (e.g. words).
Given a distribution for X, the reasoning above would give us a confidence set for the first word of
the sequence. It’s just that deploying a full-blown group-theoretic argument here is a bit
heavy-handed.

Conflict of interest: None declared.
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Paper presented by Harry Crane and Min Xu develops a rather novel area of network archaeology,
which builds on findings of network science, probability theory and (in Crane and Xu’s article)
Bayesian statistics. My comments are directed to possible extensions for future work in this prom-
ising area of research.

Firstly, in terms of network stochastic processes (authors use a combination of preferential at-
tachment and Erd6s—Rényi models) paper does little to explain comparisons with possible alter-
natives. Briend et al. (2023) discuss network archaeology in a random recursive dags and
Cooper-Frieze random networks contexts, and Brandenberger et al. (2022) in the more general
context of Bienaymé-Galton—Watson trees. I wonder if topology of the studied network could
be incorporated in more detail, for example in today often studied weak-topology context (for ex-
ample in Gromov-weak or just general Skorokhod topologies). This would need different metric
spaces and distance metrics where results for different types of random graphs and trees are wide
and could be useful for the development of the area as well for its extensions of studying the
asymptotic behaviour and estimation. Combination with graphon perspectives which authors
mention in the introduction would also be interesting to explore, as well as addressing the
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possibilities noted by Brandenberger et al. of extensions to k-ary, Cayley, Motzkin and planted
plane trees as well as branching stochastic processes in general.

Secondly, it seems to go unexplained why the authors are using Bayesian approach. The
Bayesian component in the article seems underexplored and many possibilities could be useful
for future developments of the used priors as well as Gibbs sampling procedure (authors them-
selves mention mixing properties of the sampler). Extensions of the Bayesian part could go in
the direction of intractable likelihood perspectives, computational improvements (say, using inte-
grated nested Laplace approximation) or in the selection of priors (parametric, semiparametric, or
nonparametric perspectives or even to empirical Bayes possibilities). Study of the Bayesian asymp-
totic properties here would be very interesting.

Finally, I miss more explicit and broad connection to the study of temporal networks and net-
work in general. Not only root vertex and communities could be discovered, but connection to
cliques, islands, and homophily as well as many possible types of networks based on characteris-
tics of their ties, such as affiliation, weighted, multi-relational, or multi-layer networks.
Possibilities for future research in this area of network science could loom large.
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We congratulate the authors for their timely and insightful contribution, which introduces a novel
Bayesian approach to inferring the latent structure (early history and community detection) given
a current observation of a network with # nodes. The Bayesian component of the model is sum-
marized through a uniform prior on the random relabelling associated to the observed network.
The methodological innovation is remarkably complemented by strong theoretical (frequentist)
guarantees concerning uncertainty quantification.
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The sequential formulation of the preferential attachment component of the model exhibits
many interesting connections with the Bayesian nonparametric literature. Indeed, the mechanism
for sampling new edges is reminiscent of Pdlya urns: the colours of the balls in the urn are the nodes
labelled by the community they belong to. Moreover, in the random K roots model, the authors
consider the case where K increases with 7 and the probability of creating a new root is the
same of sampling a new value from a Dirichlet process (Ferguson, 1973) with concentration
parameter ag /(28 + a); each tree corresponds to a different cluster of nodes.

Within the Dirichlet process framework, the probability of generating a new tree depends only
on the number of nodes in the forest, whereas the number of existing trees does not have any im-
pact. This generative scheme might be restrictive in many settings and it is often desirable for the
probability of creating a new tree to explicitly depend on the number of existing trees. In Bayesian
nonparametrics, the latter requirement corresponds to prediction rules arising from the class of
Gibbs-type priors (De Blasi et al., 2015): the most popular instances are the Pitman-Yor
(Pitman & Yor, 1997) and the normalized generalized gamma (Lijoi et al., 2007) processes, which
both generalize the Dirichlet process and lead to an asymptotic growth of the number of trees of
order #°, with ¢ € (0, 1). What would the impact of different predictive structures on the model
properties be? Even more flexible behaviours can be obtained through hierarchical compositions
(Camerlenghi et al., 2019, 2018), which do not lead to Gibbs-type priors. For instance, Dirichlet
process hierarchies lead to iterated logarithmic behaviours, with the number of iterations equal to
the number of hierarchies. This growth rate, which can be made as slow as desired but still leads to
an infinite number of trees, might have noteworthy implications.

Finally, the paper addresses the case of a single network. However, in many situations one may face
distinct networks with no common nodes but likely similar features: for example different academic
fields may share similar co-authorship structures. Therefore being able to borrow information across
different networks would often be beneficial leveraging some suitable form of probabilistic symmetry.
There have been some recent proposals of partially exchangeable models for stochastic block models
(see, e.g. Durante et al., 2023) that allow for prediction of the clustering of future nodes through a
probabilistically coeherent sequential procedure in a spirit similar to the one proposed by the authors.
However, to the best of our knowledge, nothing of the sort is available for multiple Markovian pref-
erential attachment structures. This would be an interesting direction to explore.
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I congratulate the authors on their elegant and computationally tractable approach to inference
problems in network archaeology. This is one of the few papers which rigorously analyses inference
for noisy temporal networks. The key idea is to compute the distribution of the possible arrival or-
ders of vertices given an unlabelled network realization (online detection) and construct the confi-
dence set for the root by sorting vertices according to their probability of arriving first given the
observed unlabelled network. A Gibbs-type algorithm is provided to compute the above distribution
in O(m + nlogn) time (m, n are, respectively, the number of edges and vertices). Finally, some the-
oretical guarantees are provided for the size of the confidence set provided the noise is not too large. I
have the following comments.

(1) Community structure for dynamic networks: The community structure conceived in the paper
by looking at a K-forest and then adding noise is rather restrictive as the individual trees in the forest
are ‘decoupled’: they can be generated by running independent continuous-time branching processes
from K ancestors till the total population size hits 7. A more realistic model should comprise indi-
vidual vertices exerting community-specific influences, in addition to their degrees, in the growth of
the network. One such model has been recently explored in Antunes et al. (2023) under the name of
attribute network models. In addition to obtaining local weak limits and other asymptotics, some
network sampling and ranking algorithms have been explored in these papers. It would be interest-
ing to extend the current approach to community detection problems for these networks.

(i) Comparison with other root finding algorithms: The authors mention several other works
where root detection algorithms are presented. They are said to be more conservative as the guar-
antees are asymptotic as the network size grows, and there are some non-explicit constants involved
in the associated bounds. However, no direct comparison is provided for these algorithms on the
PAPER model for fixed large 7. It would be instructive to compare these methods computationally.
To my knowledge, some of the asymptotic guarantees for these other algorithms can be made quan-
titative and it would be interesting to compare them to the theoretical results in this paper.

(i1i) Non-local centrality measures: In Theorem 12 of the paper, it is shown, by ‘upper bound-
ing’ the confidence set with that obtained via a degree-based criterion, that the size of the con-
fidence set is O(#”) for some y < 0.8 if the noise level 8 = o(logn/n). Moreover, a conjecture is
made that the actual size of the confidence set should be O(1) in this case. I believe that to prove
this conjecture, one needs to analyse ‘non-local’ centrality measures that look beyond one-step
neighbourhoods of vertices (like Jordan centrality Bubeck et al., 2017). This is because, as
shown in Banerjee and Bhamidi (2021), the degree centrality lacks persistence, that is, the iden-
tities of the highest degree vertices keep changing infinitely often as the network grows, unlike
the APA model (see also Dereich & Morters, 2009). However, Jordan centrality exhibits persist-
ence (Banerjee & Bhamidi, 2022). This could be interesting future work.
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We congratulate the authors for their methodological and theoretical contribution to the statistic-
al literature on networks.

A natural extension of the proposed PAPER model is included, with K communities growing
simultaneously and where new nodes are either assigned to an existing community or elected as
a new root. The employed assignment rule is of Pdlya-urn type, which leads to a logarithmic
growth of the number of communities (Korwar & Hollander, 1973) and is known to coincide
with the predictive scheme of exchangeable sequences associated with the Dirichlet process.
The probability of creating a new community is then independent of the number of past ones,
which is a distinctive feature of the Dirichlet process within the class of Gibbs-type priors (De
Blasi et al., 2015). An interesting direction would be to allow for more flexible predictive schemes
that ensure alternative asymptotics, ranging from power-law behaviours (via the Pitman-Yor pro-
cess Pitman, 2006) or normalized generalized gamma completely random measures (Lijoi et al.,
2007)) to slower than logarithmic growth (via the single-group hierarchical Dirichlet process
(Camerlenghi et al., 2018).

An important theoretical aspect is the number of communities. While the authors provide an
empirical investigation, future research could tackle the question of posterior consistency for
the number of communities, along the lines of the existing results for stochastic block models
(Geng et al., 2019) and in the growing literature in Bayesian nonparametric mixture models
(Ascolani et al., 2023; Miller & Harrison, 2013; Nobile, 1994).

Turning to applications, the proposed model lends itself to some natural generalizations sug-
gested by popular epidemiological models, like SIR dynamics, where at each instant the infectious
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nodes can transmit the disease to their susceptible neighbours with some probability, resulting in
multiple new infectious individuals at the next time. Equating new infections in SIR dynamics to
added nodes in the PAPER model, a useful extension would be obtained by allowing the addition
of multiple nodes at each step: for instance, if computationally feasible, a fraction of the existing
nodes at that time, representing an average contact rate, or also a random number, e.g. driven by a
nonhomogeneous Poisson process. The SIR analogy further suggests extensions where nodes are
active (i.e. accepting newly introduced nodes as neighbours) only for a limited time, representing
the period during which an infectious agent can spread the disease.

Once more, we commend the authors for an outstanding paper.
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We congratulate Drs. Crane and Xu for their fascinating piece of work. In the multiple roots
PAPER model, one assumption is that different trees share the same affine preferential attachment
(APA) growth parameters (a, ). In practice, the multiple trees in a network may have varying
growth mechanisms, and it may be of interest to model each tree to have its own growth param-
eters. We consider such a heterogeneous affine preferential attachment (HAPA) model.

Definition 1

For a random forest of K heterogeneous disjoint component trees,
denote its growth parameters by (a, f) = (o, ﬂk)le. We define its growth
process by the HAPA(a, f, K) model: For ke S=[K]={1,..., K}, let
node & be the root of the kth component tree. For any K <t < n, k € [K],
denote the kth component tree at time ¢ by T} ;, and the time labelled forest
attime ¢ by F,= UK_| T ,. Atz =K, T}, is the set of the singleton node k. For
t=K+1,...,n, given F,_1, we add a new node ¢ and a new random edge
(t, wy) where the existing node w; € T,y is chosen with probability

BiDr,_ (wy) + 2 Vw,esy + o
St (2Bi + ) Xp o

where Dy, (w;) is the degree of w; in F,_q, and X}, = [T} | is the number of
nodes in tree T, We then say that a random graph G, ~
HPAPER (a, §, K, 0) if G, = F, + R, where F, ~ HAPA(a, §, K) and R,, ~
ER(6) is an Erdés—Rényi random graph independent of F,, defined on the
same set of nodes [#].

Definition 1 resembles the K roots model in Crane Xu (2023), with two major differences: (i)
instead of homogeneous (a, f) parameters, the new model has K pairs of growth parameters,
one for each tree and (ii) the likelihood of the HAPA forest

Dg, -1

e : j 281 ve
L(a’ﬂ;fn)zl_[kﬂ Moee, [T, {Br -7+ o + 280 pes} )

[Tk [Zf:l (2B, + ak)xk,t—l}

depends on not only the degree sequence but also the tree growth history.

Algorithm 1 EM algorithm of estimation of (&, #) = (o, ,Bk),f:1 under the HPAPER model

Input : Graph g,; number of component trees K

Output: Parameter estimates (&, ﬂ) = (0, [}k)le

1 Initialization: estirpate (@, ﬁ, 0) from PQPER moSiel, sample one forest f(o) from
PAPER(a, B, K, 0), and initialize (ay, ;) = (&, B), Yk € [K].

2 Generate M Monte-Carlo samples of forest and ordering (f(m), a"MM_ from the HPAPER

model P(f, #|g,, &, B, K) with Algorithm 2 described below.

3 Update the parameter estimates by

M
(6> B)E | = argmax M~ Zl(“’ 5 f(””’ 2.
(a,)

m=1

where l(a, B; f, 7) is the logarithm of the likelihood in (1).

0)  =(M) . .
4 Letf '=f . Repeat steps 2 and 3 until the parameter estimates have converged.
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Algorithm 2 Gibbs sampling of ordering and forests from the HPAPER model

Input : Graph g,; an initial forest i with K component trees; parameters (a, f8)
Output: Monte Carlo samples of forest and ordering (EW), n(m))anzl

1 form=1to M do

2 | Sample ordering 7™ given forest i,

3 Sample the tree size sequence: Let x;,, =1 for t = K and k € [K]. For ¢ from K + 1 to n, given

. e (2B +ap ) Xp 1 _ _
i1y ey XK1}y P e =Xps S =X
{ox1,-1 XK1}, choose a k € [K] with probability — Letxp, =xp, 1+ 1,andxj, =x;; 1
forallj#k PIREAL ’ ’

4 For each k € [K], sample the ordering inside the kth component tree f;m_l) with steps 5-8 of Algorithm 1 in
Crane and Xu (2023).

5 Combine the ordering of all component trees: Denote by 7" the #th node in ordering 7). For t = k < K, let
7" be the root of EZ'H). For t> K, if xp, = xp,-1 + 1, let 7™ be the first node from the ordering inside

f;am_l) that has not appeared in 71'(1"?()[_1).

Sample forest i given ordering z":

[}

<~ m—1 ~ .
7 Letf, = f(m ), 7= For t from K + 1 to n, update the parent of 7 in f, to be w € 71, ;-1) N N, (7) Nt
with probability proportional to

ﬁkD?(n,m (w) + Zﬁkﬂ(wgm x) T O

P(pay, () = 0|7, &, (0G5, (0)) i)

2w,m)

T Ak 2B + a)xp e (B, 7))

Fw,m)

f

where N; (m), £,

R f(,,-’m), D?f;,m(w) are defined the same as in Crane Xu (2023), and xk,,(fiw’m)) is the

. zw,m) . wm) =
number of nodes in the kth component tree of fnw ™ at time 7. Then output f (e

To conduct inference for the model in Definition 1, we need to address two primary tasks: esti-
mating the (o, B )le parameters, and sampling from the distribution of time labelled forests. Both
tasks bring new challenges compared with the K roots model in Crane and Xu (2023). First, the
growth parameters can be estimated in the PAPER model without knowing the class assignments
of the nodes, while in the HPAPER model, one must have some knowledge or estimation of the clus-
tering as they are necessary even for defining the growth parameters. Second, some of the smart
sampling techniques for the APA model are built upon the property that the forest likelihood de-
pends only on the degree sequences of its nodes, which is no longer the case for the HAPA likelihood
(1). Following the notation in Crane and Xu (2023), we write f,, = zf,, where f,, denotes the random-
ly alphabetically labelled forest and 7 denotes the ordering of the nodes. We describe an
Expectation-Maximization (EM) algorithm framework to estimate the parameters (e, ) and a
Gibbs sampling framework to sample forest f,, and ordering z in Algorithms 1 and 2, respectively.

We plan to give a full treatment to the proposed models and algorithms in a follow-up work. In
the future, it is also of interest to establish an ‘HPAPER-SBM’ model, in which the Erdés—Rényi
parameter is allowed to be different within and between different communities, and further ex-
plore suitable sampling and estimation procedures under that model. Another interesting direction
is to incorporate nodal or edge covariates to the model (Huang et al., 2023; Weng & Feng, 2022).
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We congratulate the authors on an excellent paper! Crane and Xu (2021) proposed novel methods
for finding ‘root nodes’ from a single snapshot of a dynamic network process, with several inter-
esting real-data examples. We now consider a new application for finding ‘root papers’ in a cit-
ation network. The MADStat dataset (Ji et al., 2022; Ke et al., 2023) consists of the bibtex and
citation information of over 83 K papers, which we use to construct paper citation networks.
Given a keyword (e.g. ‘Lasso’), let Vj be the set of papers whose titles contain this keyword,
and let V be the set of papers that are either citers or citees of papers in V (we only count the
citations recorded in MADStat). We then build a symmetric network on V, with an edge between
two papers 7 and j if either 7 cites j or j cites 7; if the network is disconnected, we restrict it to its giant
component. The networks for two keywords, Lasso and Bayesian, are shown in Figure 1. We ap-
ply the method in Crane and Xu (2021) to each network to obtain the posterior probability of each
node being a root node. The top 6 papers with the highest posterior root probability are in Table 1.
In the Lasso network, Tibshirani (1996) is ranked top 1. In the Bayesian network, Gelfand and
Smith (1990) is ranked top 1. The results are meaningful and motivate a new application of the
proposed method.

We also suggest some extensions of Crane and Xu (2021). First, the PAPER model is built on the
Erdos-Renyi model and does not model degree heterogeneity among nodes. The Erdos—Renyi
model can be generalized to accommodate degree heterogeneity [such as a DCBM model with
K =1; see Jin et al. (2022)]. It will be interesting to see if the PAPER model can be generalized
similarly. Second, in the case of multiple roots, we may run community detection first and then
apply the algorithm to each community separately. There are fast community detection algorithms
[e.g. Jin et al. (2022); Jiang and Ke (2023)] equipped with data-driven choices of the number
of communities (Jin et al., 2023). Combining them with the current algorithm will help reduce
computational costs and avoid randomness caused by forest partition. We hope these ideas are
beneficial. Congratulations to the authors again on their remarkable work!
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Figure 1. The Lasso network (left graph) and the Bayesian network (right graph); only the 30 highest-degree nodes
are shown. The table on the right provides the summary statistics, where dnax, dmin, and d are the maximum,

minimum, and average degrees, respectively.

Table 1. The top 6 papers with the highest posterior root probability in the Lasso network (top) and the Bayesian

network (bottom), respectively

Title Author(s) & Year Journal #Citation Root
Prob.

Regression Shrinkage and Selection via the Lasso Tibshirani (1996) JRSSB 55448  0.50

High-dimensional Graphs and Variable Selection Meinshausen and AoS 4328 0.05
with the Lasso Bithlmann (2006)

The Adaptive Lasso and its Oracle Properties Zou (2006) JASA 8245 0.03

Simultaneous Analysis of Lasso and Dantzig Selector Bickel et al. (2009) AoS 2800 0.01

The Bayesian Lasso Park and Casella (2008) JASA 3453 0.01

Sparsity and Smoothness via the Fused Lasso Tibshirani et al. (2005) JRSSB 3212 0.01

Sampling-based Approaches to Calculating Marginal Gelfand and Smith (1990)  JASA 9818 0.13
Densities

Bayesian Statistics in Medicine: A 25 Year Review  Ashby (2006) SMed 295 0.11

Bayesian Computation via the Gibbs Sampler Smith and Roberts (1993)  JRSSB 2536 0.08

And Related Markov-chain Monte—Carlo Methods

Bayesian Experimental Design: A Review Chaloner and Verdinelli StSci 2354 0.06

(1995)
Bayesian Computation and Stochastic-systems Besag et al. (1995) StSci 1548 0.05
Bayesian Measures of Model Complexity and Fit Spiegelhalter et al. (2002)  JRSSB 14395  0.05
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I want to congratulate Prof. Crane and Prof. Xu for their impressive work. The paper introduces
two novel components: the PAPER model and the inference framework for the tree. Both of them
bring many insights into handling complex network data and open the doors to new problems.
I will discuss extension problems from both aspects.

The PAPER model assumes preferential attachment trees with additional the Erdés-Rényi
(ER) edges. One nice property of the model lies in its ability to generate pendants that can often
be observed in many real-world networks. The model can be interpreted as a signal (tree) + noise
(ER) structure for edges. The recent core-periphery models of Elliott et al. (2020) and Miao and
Li (2023) can be seen as examples of such a structure at the node level. It would be interesting to
see what could be achieved by combining the two signal+noise structures. Meanwhile, the topo-
logical properties of PAPER are also worth a thorough study. For example, as both tree structures
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and the ER model lack transitivity, we may conjecture that the PAPER also has the same limitation.
How to generalize the model to incorporate such additional properties would be an important dir-
ection for future research. One potential obstacle to such generalization might be the root inference
computation. The paper’s inference nicely hinges on the uniform noise edges in the ER mechanism,
and it is unclear if the computation can be efficiently done without it.

A related setting for root inference is the diffusion scenario, which was initially studied in Shah and
Zaman (2011) with many follow-up studies (Dawkins et al., 2021; Kazemitabar & Amini, 2020;
Khim & Loh, 2016): a fixed network (not necessarily a tree) is given and a random diffusion process
is initiated within the network. This diffusion scenario differs from the tree-growing setting, but when
the network in the former is a tree and the ER part is removed from PAPER (Crane & Xu, 2021), the
two settings coincide. The setup of the current paper is not directly compatible with the diffusion set-
ting. Still, the available optimality in the tree-growing scenario raises a natural question about
whether we can build an optimal inference procedure in the diffusion setting. Defining a similar in-
ference method seems plausible, but the computation is again a bottleneck. Explorations in this dir-
ection may help with broader applications in epidemiology and cyber security.
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First, we congratulate Dr. Crane and Dr. Xu for this important contribution to statistical network
analysis. To address an overlooked fact that most real networks are formed through a growth pro-
cess, the authors introduce a useful PAPER model and its variations and skilfully construct com-
putationally feasible confidence sets for the root node(s). In the data analysis, the authors also use
their models as a new approach to community detection.

On this note, our interest lies in the multiple roots setting, as real social networks typically en-
compass more than one community. Take the well-known political blogs network (Adamic &
Glance, 20035) as an example. It has K = 2 ground truth communities—the liberal and conserva-
tive communities. At time ¢, the PAPER model attaches the new node # to an existing node
w; € {1, ..., t— 1} with probability

PDx,_, (w;) + 2pl{w; € S} + a
2B+ a)(t—1) ’

S={1, ..., K},

which is somehow proportional to the degree of node w;. In reality, in addition to the node de-
grees which reflect the popularity, homophily (McPherson et al., 2001) is a well-documented
phenomenon that warrants attention. Individuals often exhibit a preference for connecting
with others who have similar characteristics. Furthermore, due to either hostility or lack of inter-
est, individuals in the liberal group may even decline connections with specific individuals from
the other group. Consequently, an important question arises regarding how to incorporate this

type of information into the PAPER model. A nonrigorous intuition in the fixed K roots setting

. . - Dr,_, (10,) + 28){10,€S .
suggests attaching node ¢ to w; with a probability p,,, ’ }"1:ZHL+&)£EM; )e Ha, where p,, € (0, 1)is set

to be higher when nodes ¢ and w; share similar characteristics; conversely, reducing the magni-
tude. Meanwhile, a selection mechanism can be employed to determine whether to retain the
current edge choice or not, driven by binary options of ‘Yes’ or ‘No’ when deciding whether
to follow an individual on the Internet.

Another question pertains to inferring the true number of roots K. The authors propose meth-
odologies to obtain the posterior root distributions, then can these probabilities be utilized to con-
struct test statistics for testing Hy : K = Ko, i.e. whether the model follows PAPER(a, 8, Ky, 6) or
not? A related query concerns simulation studies that demonstrate promising community recovery
performance, particularly with the fixed K model; therefore is it feasible to provide theoretical
guarantees?

Lastly, we would like to make two suggestions regarding further dissemination. (i) to expand the
readerships of this work, the authors might consider writing an R markdown file that only includes
the most essential components of the model and one simple example. (ii) We feel that the proposed
models and algorithms have potentials to make some real insights in empirical studies beyond
what other community detection algorithms can already claim.
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We congratulate Prof. Crane and Dr Xu for introducing a very interesting and appealing stat-
istical model for Markovian network growth. The PAPER model enjoys several qualities. In
particular, (i) it strikes a rare balance between analytic elegance and tractability, and expres-
sive powers; (ii) it allows for practicable algorithms for statistical inference that scale to net-
works of very large size, and (iii) it is very flexible and can be readily generalized to model a
variety of phenomena and features commonly observed in modern networks. As pointed out
by the authors, there are many extensions and open problems related to the model that are
worth considering.

In this note, we suggest possible extensions to change point analysis (CPA) for networks. CPA is
a well-studied topic concerned with modelling and detecting abrupt changes in the data-generating
distribution in time series data. Developing models, theories and methods for CPA in dynamic and
large networks is a relatively new and exciting area of research (e.g. Wang et al., 2021; Yu et al.,
2023). We believe the PAPER model provides an excellent reference framework for building
powerful and realistic Markovian network models.

To provide some details, in the PAPER model, at time point ¢ € [n], the newly added
node with label # is connected to an existing node w; € [t—1], with probability
{fD1,_,(w) + o} /{f2(t — 2) + a(t — 1)}. The parameters (a, f) are fixed across the whole time
course. It would be interesting to consider the scenario where the parameters are instead allowed
to change in a piecewise manner at unknown CPs. In the simplest instantiation of the PAPER CP
model, there might exist an unknown CP ¢* such that the values of the parameters o and  change
after #*. A possible application could be, in a social network, at the booming stage of a key opinion
leader, B, the parameter characterizing the ‘rich gets richer’ phenomenon, is positive and large. As
the craze cools down, f should decrease to reflect the fading of fame. In extreme cases, f may even
change the sign. To estimate the change time #*, one could consider a likelihood-based
£o-penalization (e.g. Wang et al., 2023), with the likelihood stemming from the PAPER model.
A second, more sophisticated extension is to consider an APA model with multiple root nodes;
at the CP(s), the number of root nodes, along, possibly, with the model parameter, change, thus
accounting for the creation, elimination or even merging of tree components. Finally, the CPA
tasks just outlined can be analysed in the offline settings, in which the fully grown network at a
given time, say 7, is observed and then analysed.

Lastly, we congratulate Prof. Crane and Dr Xu again for their excellent paper. We anticipate
that the ideas and methods of the paper will provide the impetus for further research developments
of the PAPER model for years to come!
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We congratulate the authors on a thought provoking paper introducing innovative ideas for the
statistical modelling of networks. The emphasis on identifying highly probable root nodes is
both original and intriguing. In particular, using the root node credible set methods for node clus-
tering within the PAPER(a, B, ag, 8) random K model (Section 6.3) is an interesting perspective.
We wonder how these approaches might connect with latent space model-based node clustering
methods in the literature (Handcock et al., 2007) and those quantifying uncertainty in the number
of clusters (D’Angelo et al., 2023; Ryan et al., 2017). Another research avenue could explore the
feasibility of a model-free approach to construct confidence sets for root nodes, such as utilizing a
generalized Bayesian approach with loss functions (Bissiri et al., 2016).

Regarding parameter estimation, the authors propose an approximate EM algorithm for estimation
of a in a PAPER(q, 8, ) model. The algorithm detailed in S3.1 of the appendix is useful for applica-
tions, as it appears it can be run efficiently for large 7. Computing the objective function relies on two
approximations for a tractable approximate E-step. The first involves breaking dependence between
node degrees, the second relies on the limiting distribution approximation (van der Hofstad, 2016),
facilitating reasonable computation time. It may be interesting to investigate the impact of these ap-
proximations on networks of tens or hundreds of nodes, considering the potential substitution of
one or both with Gibbs sampling. Although the approximate EM algorithm provides point estimates
of a, we are intrigued about the authors’ insights into quantifying uncertainty in an estimate @. Such
measures could be valuable in evaluating evidence for different attachment behaviours in networks.

The key aspect of the PAPER model generative structure is the notion of root node, one or mul-
tiple in the case of clustering. In some settings, such as networks evolving over time, this concept is
natural and of high relevance; in others, we believe the notion of root node may not align with the
application context. For example, in many social science applications involving data collected
through questionnaires or observational studies, even including the Zachary karate club and
the co-authorship network examples in the paper, relations and communities cannot be reconciled
with a single or multiple originating root nodes, but rather with homophily or popularity of
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certain actors in the network (D’Angelo et al., 2023; Sengupta & Chen, 2017). We are curious
about the authors’ thoughts on the rationale behind using the PAPER model in these contexts,
in particular in relation to the goals of root node identification and their interpretation.

Conflicts of interest: None declared.
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We sincerely thank all the discussants for their careful thoughts and insightful contributions. We
also appreciate the diversity of topics in the discussions, ranging from applied probability and al-
gorithms to social science and Bayesian modelling—it appropriately reflects the broad thinking ne-
cessary to make advancements in network data analysis. In this article, we respond to model
related issues in Section 1 and theory related issues in Section 2. In the final section, we respond
to various specific points raised by each of the discussants.

1 Model

Many discussants highlighted ways in which the Preferential Attachment Plus Erdos—Rényi (PAPER)
model may be unrealistic and suggested potential extensions. We acknowledge that such suggestions
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could be appropriate in the right context, but emphasize that the context dictates which features are
the most salient to model. Except in stylized contexts, none of which exist in networks applications to
our knowledge, no model can fully account for all observed properties of the data. And one might
argue that no model should even try. Instead, the model ought to be specified to adequately explain
the most salient properties of the data for the purpose of a given scientific question. Beyond that,
the principle of parsimony suggests that the simplest model that can address the question of interest
is often the best. This is the principle we applied in suggesting the PAPER model, as a framework
on which more specific and sophisticated models can be tailored to a wide range of applications.

For example, the PAPER model may be appropriate if the scientific question is to understand
node centrality in a given network. The PAPER model gives a simple way to quantify uncertainty
when measuring node centrality; it enables questions like ‘is one node significantly more central
than another?” The multiple roots model also allows one to study ‘community-specific” node cen-
trality instead of global node centrality.

In the paper, we discussed the seq-PAPER model and the deletion noise model to illustrate how
one could extend the PAPER model and what would be the corresponding modifications needed
for the inference algorithm. As Prof. Li noted, inference becomes more computationally involved
once we leave the comfort of the PAPER model, but very often it is still tractable on networks with
hundreds or thousands of nodes.

1.1 Community structure and homophily

Yang and Tong, Srakar, and Wyse, Ng, White, and Fop all pointed out that the PAPER notion of
community does not seem to take into account the phenomenon of homophily, where nodes with
similar characteristics tend to connect with each other, e.g. a person tends to become friends with
others of similar cultural backgrounds.

Homophily has been the main consideration behind the design of statistical network models for the
past two decades. It is a primary motivation for stochastic block models and various latent space mod-
els. Homophily is certainly important, but one of the theses of our work is that other features of net-
work data are also important and have been overlooked. Specifically, we believe that the underlying
Markovian growth process plays an equally crucial role in forming the topology of a network. Indeed,
because the PAPER model is able to obtain good community detection results on real world networks,
there is good reason to believe that when estimating communities in a network, one should account
for not just homophily but also by the underlying growth processes of the communities.

We did not explicitly incorporate homophily in the PAPER model in order to keep the model
simple. Just as it is good practice to control as many extraneous variables as possible in a scientific
experiment, we believed we can illustrate our ideas most clearly by having the model focus on the
growth process and omitting extraneous features. However, we agree that it would be appropriate
to incorporate homophily into the PAPER model in many applications. One example is the
PAPER-SBM model which we briefly discussed in the paper. We discuss a few other examples here.

If we know the characteristics of the nodes that induce homophily, then the extension proposed
by Yang and Tong is very sensible and in fact similar to a proposal by Kim and Altmann (2017),
who studied the effect of accounting for homophily in the preferential attachment model. To adapt
their proposal to the PAPER model, we could, when generating the tree T, have a new node # con-
nect to an existing node v with probability

{BD(v) + o} Ay
> BD(w) + a} Ay

where A, is the affinity between node # and node v; for example, we may have A, = 1 ifu, varein
the same community and A,, < 1 otherwise. The sampling algorithm becomes more difficult be-
cause we cannot sample an ordering uniformly at random from the spanning tree. However, we
could adapt the swapping algorithm that we proposed for inference on the seq-PAPER model.
When we do not know the characteristics of the nodes, we could try to estimate them, as Jiang
and Ke suggested. We could also incorporate latent variables into the model in a way that com-
bines latent space models with Markovian network models, as Wyse, Ng, White, and Fop sug-
gested. For instance, we may consider a model where for each node u, we generate latent
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representation Z, € R%. Then, to generate the tree T, we connect a new node # to an existing node
v with probability
ZlZ,
= o5
Zw Zu ZW

It is unclear how one can estimate the latent representations. There may not even be enough infor-
mation in the network to do so. Spectral methods that are typically used in latent space models
seem unlikely to succeed here.

1.2 Triangles and transitivity

Both Li and Rubin-Delanchy pointed out that the PAPER model may produce too few triangle
subgraphs, that is, three nodes that are all connected to each other. Real world networks tend
to have many triangles, reflecting the fact that two people who are friends with the same person
tend to be friends with each other as well. In network data analysis, this is referred to as transitiv-
ity. One measure of transitivity is the global clustering coefficient defined as

number of triangles

lobal clusteri f= .
global clustering coet = imber of connected triplets

Another common measure is the average local clustering coefficient:

C - number of triangles in the neighbourhood of «
" 3Deg(u) - (Deg(u) - 1) ’

1
local clusteri f==>» C,.
average local clustering coef = Zu:

We expect a PAPER graph to produce more triangles than an Erdés—Rényi graph with the same
number of nodes and edges. This is because a preferential attachment tree T, tends to have
hubs and any two ‘spoke’ nodes in the neighbourhood of the hub centre can form a triangle by
forming an edge between each other. We perform simulation experiments which confirm that
PAPER graphs produce more triangles than Erdos—Rényi (ER) graphs. The simulation results
are shown in Tables 1 and 2. In these simulations, we generate a PAPER graph with # nodes
and fix the number of edges to be m; that is, we generate Erd6s—Rényi noise by selecting [m — (1 —
1)] edges from n(n — 1)/2 — (n — 1) potential pairs at random. We then compare the global clus-
tering coefficient and the average local clustering coefficient against an Erdds—Rényi graph with
the same number of nodes and edges. We repeat the experiment 100 times to generate the results.

We observe that a PAPER graph with linear preferential attachment (LPA) tree (& =0, = 1) has
higher transitivity measure than an ER graph as expected. The transitivity measures do decrease as

Table 1. n=100 nodes and m =300 edges

a=0,p=1 a=1,=0 ER
Global clustering coefficient 0.065 0.058 0.059
Average local clustering coef 0.077 0.058 0.058

Table 2. n=1, 000 nodes and m =3, 000 edges

a=0,=1 a=1,=0 ER

Global clustering coefficient 0.0068 0.0059 0.0057
Average local clustering coef 0.0087 0.0060 0.0055
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the size of the graph increases, which is undesirable but also a feature of the stochastic block mod-
el. One way to increase transitivity in a Markovian network model would be to use a random-walk
mechanism to generate the noise edges, as proposed in Bloem-Reddy and Orbanz (2018).

There is the question of just how important it is to match the number of triangles in a network
model with that of the data. Is it worth adding extra complexity to the model? We believe one must
consider the end goal of the analysis, that is, the model choice should depend on whether we are
trying to estimate communities, predict links, infer root nodes, or extract other information. To
help practitioners answer this question in a principled way, we believe more research is needed
on goal-specific model selection methods for network data. Promising work in this direction in-
clude network resampling methods such as ones proposed by Li et al. (2020), but these require
assumptions that may not hold for Markovian networks. For stochastic block model (SBM),
this is related to estimating the number of communities, for which there are good methods (Jin
et al., 2023). We continue our discussion on model selection more in Section 1.4.

1.3 Number of communities
Ascolani, Lijoi, and Priinster and Catalano, Fasano, Giordano, and Rebaudo raised the point that
our treatment of multiple root nodes assumes that the number of communities grows according to
the dynamics of a one-parameter Ewens process, also known as the Chinese restaurant process.
Those authors went on to highlight the potential benefit of considering alternative models for
the number of clusters, such as the two-parameter extension of the Ewens process (De Blasi
etal.,2013). We agree that this seems a sensible suggestion that adds flexibility to the class of mod-
els presented here. As highlighted at the outset of our response, our specific choice of the one-
parameter family here is intended as a starting point for introducing a framework for modelling
network data that arises from a growth process, rather than as a be-all, end-all. Extensions and
modifications, such as the one above regarding the distribution of the number of clusters, are often
necessary when attempting to apply this model—or any model for that matter—in a practical
setting.

One interesting observation is that if we apply the Pitman—Yor process prior with a particular
parameter setting, we obtain a particularly simple model:

1. Generate G° ~ PAPER(a, §, 0) with K=1 and #> 0.

2. Remove node 1 and all edges incident on node 1 from G° to obtain G. Output G without
labelling.

Once we ‘retire’ the original root node, each direct child of the original root node becomes a new
root of a community-tree. Note that in this model, we give each root a base degree of 1 instead of a
base degree of 2. This model is a specific example of ‘vertex retirement’ described by Jog and Loh.

The sampling procedure for this model is also simple. We can sample z from distribution
P(Il=-|E, G) by sampling an ordering from the history of F uniformly at random, equivalent
to the cases described in the paper. To sample a forest f from distribution P(F = - |1, G), we fol-
low Algorithm 3 in our paper except we choose a new parent w; € {#}} U (z1,-1) U N (m;) for m;
with probability proportional to

(BK + a)/0 for w; =0
BDyean (wr) + o for wy # 1,

where K is the current number of trees in f. We have implemented this prior and it works as ex-
pected in simulation studies. We will study the specification of prior in the random K model more
extensively in a future work.

1.4 Model misspecification and model selection

The points made by the discussants piqued our own curiosity on a question: how do we interpret
frequentist inference results when we know for a fact that our model is misspecified? This question
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pertains to all of statistics but it is particularly tricky for network data for two reasons. First is that
networks edges have strong dependence so we cannot assume we have IID observations; the se-
cond related reason is that we typically do not have universality phenomenon such as central limit
theorem. How then do we interpret confidence set for the root node? Wyse, Ng, White, and Fop
raised a concern very similar to this.

We give several answers to this question although we acknowledge that none of them are perfect-
ly satisfactory. First, our confidence set for the root node has a Bayesian interpretation: conditioned
on the event that the observed network is the result of the PAPER generating mechanism, we can
find the plausible root nodes. Second, our procedure has a combinatorial interpretation where it is
computing a combinatorial centrality measure, which can be viewed as a generalization of rumour
centrality (Shah & Zaman, 2011); see Section 3.4 of our paper. Third, because the posterior root
probability P(ITy = # | G,;) of node u is proportional to the likelihood of node # being the root node,
we can interpret nodes with highest posterior root probability as being the root of the Kullback—
Leibler projection of the actual network generative model to the PAPER model.

Finally, the issue of model misspecification can be somewhat alleviated by allowing a Markovian
network to start from a seed graph instead of a single root node or several root nodes, as Jog and Loh
suggested. There are several significant works in this direction (Devroye & Reddad, 2019;
Lugosi & Pereira, 2019) but a number of major challenges remain. One difficulty is
computation—the number of potential seed graphs in a network increases exponentially with
the size of the seed graph. Another is model selection—models with a larger seed graph contain
models with small seed graph. An interesting question then is how to select or estimate the size
of the seed graph. Traditional model selection criteria such as AIC do not seem directly applicable
in this setting.

As we mentioned before in the discussion on transitivity, more research is needed on model se-
lection methods for networks. Jog and Loh echoed this sentiment when they asked how one would
choose between the different variations of the PAPER model: fixed K versus random K, sequential
versus nonsequential. This question can be extended to include the change-point extension pro-
posed by Wang, Yu, and Rinaldo and the heterogeneous affine preferential attachment extension
proposed by Feng and Sun. How should we choose among these models? One idea is to conduct
goodness-of-fit test and compare the p-value of each of the potential models, but this simply leads
to the question of how to choose a statistically and computationally efficient test statistic. One po-
tential approach is be to construct the test statistic based on the degree distribution or higher order
subgraph counts and generate Monte Carlo p-value by simulation.

2 Theory

2.1 Root inference formulation

In this section, we respond to Prof. Rubin-Delanchy’s stimulating comments regarding how to best
formulate the root inference problem. We thank him for bringing group theory to the fore, which
has helped us clarify a lot of our own thoughts.

Root inference is a problem that is intuitively easy to understand but difficult to formalize. This
is in part because the observed data is in actuality an unlabelled graph. It is not well-defined to refer
to a specific node in an unlabelled graph. For example, in a chain graph with four nodes, we cannot
distinguish between the two end-point nodes or the two interior nodes.

There are many different ways to formalize the root inference problem, as Prof. Rubin-Delanchy’s
discussion demonstrates. What is remarkable (and also comforting) is that these formulations are all
equivalent in that the sense that they give the same notion of conditional root probability. In the manu-
script, our goal was to give a formulation that is both rigorous and also efficient in the sense that the
reader can go from the problem definition to the methodology/algorithm without needing to digest
new concepts. This is the main reason we introduced the random labelling device: it leads naturally
to the inference algorithm. It is not just a way to strip away the node label information. In what fol-
lows, we lay out all the formulations clearly and formally establish their equivalence. We leave the
readers to choose the formulation that makes the most sense to them.

Let G be a random graph with # nodes whose nodes are labelled using [] := {1, 2, ..., n}. We
think of G as a Markovian model whose nodes are labelled by their arrival time, although the
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technical results apply to any random graph models. We observe G* = pG where p € S, is an un-
known permutation. In the manuscript, we supposed that the node labels of G* take value in some
alphabet to make it clear that the node labels of G* do not correspond to the arrival time.

Random relabelling formulation:
This is the formulation we gave in the paper. Let IT be a random permutation distributed uni-
formly over S,,. For a node v € G*, we define its conditional root probability as

pi(v):=P{Il; =v|TIG = G™}. (1)

We note that in the paper, we wrote G = I1G to denote the randomly relabelled graph. As Prof.
Rubin-Delanchy pointed out, we do not need to actually apply randomization—we simply view
the observed graph G* as being randomly labelled.

Group-theoretic formulation:

This is the formulation that Prof. Rubin-Delanchy gave. Suppose that the unobserved permuta-
tion p is uniformly random. Define Aut(G*) = {x € S,, : 1G* = G*} as the automorphism group and
define Mg := 22— as the number of distinct labelled graphs of the same shape as G*; we put G*
in the subscript but We note that Mg depends only on the unlabelled shape of G*. We enumerate
these distinct labelled graphs as Gy, ..., Gug..

For a node v € G*, we define its orbit o(v, G*) = {zv : # € Aut(G")}, which is the set of nodes of
G* indistinguishable from v once the node labels are removed. We then define the conditional root

probability of v as

pl(y) = P{P(l) € O(Ua G*) | G*a G € {Gla ey GM(;*}}- (2)

Unlabelled shape formulation:

This is a formulation that we described in a previous work (Crane & Xu, 2021). The idea is that
we do not even need to define an unobserved permutation p in order to formalize the root inference
problem. It is well-defined to write the following conditional probability:

P( & 1 $y)

Indeed, the APA tree model with @ = 1 and # = 0 produces the four node chain graph on the right
ifit produces1 -2 —>3 —>4or2<«1—-3—>40or3«1—>2—>40r4 < 1—2— 4, with
total probability 2. It produces the rooted chain graph on left if it produces 2 <~ 1 — 3 — 4 or
3<1—>2->4o0r4 < 1— 2— 3,with total probability of J so that the conditional probabil-
ity evaluates to 3.

More generally, for a labelled graph G, define its shape (unlabelled graph) as the equivalence
class

sh(G):={G':G' =2G, Ir € S,)}.
The cardinality of sh(G) is exactly M¢ as defined in the group-theoretic formulation section. We
note that sh(G) is the quotient set S,,/Aut(G) (it is not a quotient group since Aut(G) may not be a

normal subgroup of S,,).
Similarly, we define the notion of a rooted shape. Let v be a node in G, then define

sho(G, v):={(G,V): G =G,V =nv, In € S,}.
If we define the subgroup S,,(v) ={x € S,,: 71 =v} and Aut(G, v):={r € S,,: G = G, nv = v}, then
sho(G, v) is the quotient group S,(v)/Aut(G, v).

For a node v € G*, we define the conditional root probability as

p3(v):=P{(G, 1) € sho(G", v) | G € sh(G")}. 3)
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In our previous work (Crane & Xu, 2021), we define Eq(v, G)={u € V(G):au=v, nG =
G, 3z € S,} as the set of nodes of G that are equivalent to v. This set is exactly the orbit
o(v, G). We note that o(v, G) is the quotient set Aut(G)/Aut(G, v). We thus have that

ol G = ARG Isho(G, v
» T TAu(G o)l T Tsh(G)]

Equivalence:

The following theorem equates all three notions of conditional root probability. In the theorem
below, we need to divide p, (v) and p3(v) by |o(v, G*)| because these are probability of a entire set—
the orbit of v. In contrast, p1(v) is the probability of a single node. One consequence of the theorem
is that p1(-) is a constant for all nodes in the same orbit.

Theorem 1  Let v be any node in G* and let py(v), p2(v), p3(v) be defined as in (1), (2), (3),
respectively. Then, we have that

__ D) _ p3v)
lo(v, G)|  lo(v, G|

p1(v)

Proof. Given a node v of G*, define

*\ 1 _ k
L, G )-m; P(G =g)1{(g, 1) € shy(G", v)},

where the summation is taken over all graphs whose nodes are labelled with
{1, 2, 3, ..., n}. It follows from Theorem S5 of our paper [see also Theorem 8 in
Crane and Xu (2021)] that

L(v, G*)

- Zue[n] E(M’ G*) ’ (4)

p1(v)

Intuitively, (4) holds because sh(G*,v)=S,(v)/Aut(G*,v) and o(v, G*)=
Aut(G*)/Aut(G", v) so that

e Y PG=x'Gl= Y Y. PG=xly
€Sy :m=v (g,1)eshy(G* v) reAut(G* v)
Z P(G=g).

= ). |Auw(G,PG=g) o«
(g.1)eshy(G*,v) (g.1)eshy(G*,v)

1
(v, G*)
Then, we have that

P{(G, 1) € sho(G", v)}
P =—5G e sh(GT)
Y, P(G=g)lf(g, 1) € sho(G", )}
T Y e 2 P(G=2)1{(g, 1) € sho(G*, u))

=p1(v)lo(v, G*)I.

Finally, we also have that

x ) PIG=8)
paly) = Zhehi@ = 3lo).
desh(c*) P(G :g)

The desired conclusion follows. O
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2.2 Theoretical guarantees

Various discussants raise a number of questions related to bounds on the size of the confidence set
which we discuss here.

Banerjee pointed out that to optimally bound the size of the confidence set whena=1and =0,
one needs a nonlocal centrality measure beyond the degree. We agree that an alternative centrality
measure is needed but what that alternative should be remains an elusive question. We unsuccess-
fully attempted to use anchors of double cycles, which is a clever idea proposed by Briend et al.
(2023) to study Cooper—Frieze networks and other related models. Cooper—Frieze network is es-
sentially the seq-PAPER model with o = 1, #= 0 and where the noise edge probability is 6, = 6 %; it
differs from the PAPER model in that early nodes tend to be more tightly connected amongst each
other. Because of this difference, we could not obtain satisfactory results using the ‘anchor of
double-cycle’ idea. We also do not see how to extend Jordan centrality (Bubeck et al., 2017) to
the nontree setting. For now, the problem remains open.

For the multiple root setting, Yang and Tong asked what could be proved about community
detection while Jog and Loh asked about bounds on the size of the confidence set. We conjecture
that exact community recovery is impossible under the PAPER model, because it does not seem
likely that we can perfectly estimate the community membership of the peripheral leaf nodes of
a community-tree. We do believe, however, that, in the fixed K setting, the early nodes of each
of the K communities can be consistently clustered. To be more precise, it may be possible to ob-
tain consistency if we use a weighted misclustering measure where we weigh each node by the in-
verse of its arrival time. A potential approach may be to first show that the confidence set of the K
root nodes are likely to comprise K disjoint subgraphs each of which correspond to a community.

Qing and Tong asked whether the posterior root distributions can be used to construct test sta-
tistics for testing the number of communities in the network. This is an interesting question. We
have not studied how the posterior root distribution behaves when the specified K is either smaller
or larger than the true K.

Jog and Loh asked about frequentist guarantee for the credible set in the sequential noise setting.
This is indeed true as Theorem 7 in our paper applies to the sequential noise setting. They then ask
about the what guarantees can be provided under the random K model. There are two layers to this
question. First, if we assume that the Dirichlet process prior is well specified, then it follows from
the conditional coverage that we would also have marginal coverage in that the credible set con-
tains all the K root nodes with at least 1 — ¢ probability. However, if we suppose that the graph is
actually generated according to the PAPER model with fixed K roots but where K is unknown,
then we do not expect our credible set to have frequentist guarantees.

Jog and Loh also asked about constructing confidence set for the K root nodes as a set of
K-tuples. This is easy to do with our methodology. The reason we did not investigate this approach
in the paper is that the resulting set of K-tuples may be too large, especially when K is large.

3 Miscellaneous points

Response to miscellaneous points in the discussion by Banerjee:

Banerjee suggested empirical comparison between the size of our confidence set with those con-
structed by probability analysis. We have conducted these comparisons in our previous paper on
the tree setting (Crane & Xu, 2021) and found that the latter confidence sets are overly
conservative.

Response to miscellaneous points in the discussion by Qing and Tong:

We are grateful for the suggestion of creating a markdown file to illustrate the model and the
methodology in the simplest setting possible. We plan to implement our algorithm in R and pro-
vide such an illustrative markdown file. We are also grateful for the suggestion of using the PAPER
model for tasks beyond minimizing misclustering error. We believe two promising examples in-
clude graph summarization and hierarchical clustering.

Response to miscellaneous points in the discussion by Wang, Yu, and Rinaldo:

We thank Wang, Yu, and Rinaldo for their interesting formulation of a change-point problem
on the PAPER model. This formulation is similar to the change-point model analyzed in Banerjee
etal. (2023). Banerjee et al. (2023) consider the generalized preferential attachment tree model and
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study two single-change settings: one is where the change-point occurs at time y7z and the other is
where the change-point occurs early at time 7’ for some y € (0, 1). They propose consistent esti-
mators based on the empirical degree distribution. Their work, along with the question raised by
Wang, Yu, and Rinaldo, show that change-point estimation in Markovian networks has unique
properties which need to be better understood. The likelihood based estimation approach pro-
posed by Wang, Yu, Rinaldo is a promising direction.

Response to miscellaneous points in the discussion by Ascolani, Lijoi, and Priinster:

Ascolani, Lijoi, and Prinster raised the point of considering multiple networks instead of just
one, citing an example regarding co-authorship structures among different academic communi-
ties. Interestingly, we illustrated our approach on the statisticians’ co-authorship network, for
which there are numerous overlapping subcommunities. In that application, we showed that
the joint dynamics of the communities helps in allowing us to infer structure about the network.
There are a number of interesting problems we may consider if we observe multiple networks.
When two network have the same set of nodes, we may consider the setting where they share parts
of the latent growth history, that they co-evolved in some sense.

Response to miscellaneous points in the discussion by Wyse, Ng, White, and Fop:

Wyse, Ng, White, and Fop made an insightful comment regarding the EM estimation algorithm
for the a, f parameters in the PAPER model. In the paper, we made two approximations in the EM
algorithm. First, we approximated the conditional distribution of the tree degree given the graph
P.{j < Dj (v)|Gy,} by Pu{j < D (v)|D¢, (v)}, which ignores the dependence between the graph de-
gree of all the nodes. Second, when computing P,{j < D5 (v)|D¢, (v)}, we approximated the mar-
ginal distribution of Dy (v) by its asymptotic limit.

We do not have theoretical analysis on how significantly these approximations would affect es-
timation accuracy of the resulting EM procedure. We conjecture that the second approximation
has only a small effect because there is uniform convergence of the finite 7 distribution of the de-
gree D (v) to its asymptotic limiting distribution (see (Van Der Hofstad, 2016, Theorem 8.2). The
first approximation may be inaccurate if the observed graph G does not resemble a PAPER graph
at all. For example, we can show that the approximation is poor if G is a cycle graph.

It would be interesting to compare the approximate EM algorithm with either Monte Carlo EM
or Bayesian inference where we put a prior on the a, f parameters.

Response to miscellaneous points in the discussion by Catalano, Fasano, Giordano, and Rebaudo:

The susceptible-infectious-recovered (SIR)-inspired model proposed by Catalano, Fasano,
Giordano, and Rebaudo is interesting. If we view the PAPER model as an infection process,
then we are not making assumptions about the infection time; the arrival ordering of the nodes
would reflect the order of infection. One could consider a model where in each infection ‘wave’,
each existing (infected) node recruits (infects) some number of new nodes. Our intuition is that
a network generated by such a model would provide more information about the root node—it
may even enable consistent estimation of the root node. We also note that SIR is used to motivate
infection process that occurs over a fixed background graph, which Li discussed.

Response to miscellaneous points in the discussion by Feng and Sun:

We thank Feng and Sun for their interesting discussion on the heterogeneous affine preferential
attachment (HAPA) model. This proposal allows the different trees in the K > 1 setting to have
potentially different growth dynamics, i.e. potentially different a, f parameters. To estimate the
K different (ay, f,) parameter pairs, Feng and Sun propose a Monte Carlo EM algorithm; this
could be effective even in the PAPER setting. They also suggest a way to adapt the Gibbs sampling
procedure to the HAPA setting. One novel aspect is, before sampling the ordering = given a forest
f,to first samples a sequence of tree assignment history {(x1;, ..., xk;)}/_x,, where x;, is the num-
ber of nodes in tree k at time ¢. Sampling the tree assignment history conditional on the final forest
f is challenging. The proposed approach may not ensure consistency of the sampled history with
the forest f. Sequential Monte Carlo methods may be appropriate here.

Response to miscellaneous points in the discussion by Srakar:
Srakar stated that it seems unexplained why we are using a Bayesian approach. The reasons are
that (1) the Bayesian credible set for the root node has frequentist guarantee, (2) the Gibbs sampler
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is scalable, and (3) the resulting confidence set has size of an optimal order—we discuss each of
these in the paper. Srakar mentioned connections to temporal networks which we agree merit add-
itional research.

Response to miscellaneous points in the discussion by Jog and Loh:

Jog and Loh suggested a number of extensions to the PAPER model. The notion of ‘vertex re-
tirement’ is particularly interesting, from both practical and theoretical perspectives. Interestingly,
if we ‘retire’ the root node in a single root PAPER model, we obtain a random K PAPER model
where formation of new trees is governed by a Pitman—Yor process. See discussion in Section 1.3.

Response to miscellaneous points in the discussion by Rubin-Delanchy:

In addition to raising a subtle technical question which we addressed in Section 2.1,
Rubin-Delanchy stated that his ‘most important concern at the time was that in the applications
cited [- - -] there would almost always be timing information on the edges. It would seem highly
irresponsible to ignore this in practice.” We comment here that our proposed model and subse-
quent methodological developments are framed specifically in the setting in which there is no add-
itional information other than the contact pattern (i.e. ‘shape’). In particular, we explicitly assume
that time information is unavailable for the network. At no point do we suggest that one should
ignore such information if it were to exist.

If exact time information is known, then the root inference problem becomes trivial of course. In
most situations; however, the time information is noisy or unreliable so that it could be very help-
ful to also incorporate the network structure information. For example, in a disease infection net-
work, we may only have rough guesses on the actual times of infection of all the individuals.

Response to miscellaneous points in the discussion by Li:

Li raised a connection of the PAPER model to a diffusion process over a fixed background
graph. In that setting, there is a set of infected nodes that start as a single root and, at every iter-
ation, infects an additional neighbouring node chosen at random.

If we assume that the root node is chosen uniformly at random, then we can also define the pos-
terior root distribution. However, the credible set formed from the posterior root distribution will
not have frequentist coverage in general. Frequentist coverage does hold when the background
graph exhibits symmetry. For instance, if the background graph is an infinite regular tree or an
infinite grid graph.

Response to miscellaneous points in the discussion by Jiang and Ke:

We thank the Jiang and Ke for showcasing the PAPER model on a citation network. In this case,
because the directions of the edges are removed, we expect the posterior root distribution to assign
higher probabilities to survey papers that cite many influential papers. This seems to be the case in
the result that Jiang and Ke obtained.

Jiang and Ke stated that the PAPER model fails to account for degree homogeneity due to its use
of the Erd6s—Rényi model. We point out that the PAPER model does, in fact, model degree homo-
geneity as a result of its preferential attachment dynamics. Importantly, the preferential attach-
ment component of PAPER is the dominant structural component, whereas Erd6s—Rényi serves
as a secondary noise distribution on top of the main structural layer. Furthermore, we point
out that PAPER addresses degree homogeneity with only three parameters, whereas the suggested
degree-corrected stochastic blockmodel requires a separate parameter for every node of the graph,
so that the number of parameters depends on sample size.

Acknowledgments
M. Xu is supported by National Science Foundation Grants DMS-2113671 and DMS-2311299.

Conflict of interest: None declared.

References

Banerjee S., Bhamidi S., & Carmichael I. (2023). Fluctuation bounds for continuous time branching processes and
evolution of growing trees with a change point. The Annals of Applied Probability, 33(4),2919-2980. https:/
doi.org/10.1214/22-AAP1881

G202 1990100 0€ U0 15aNB Aq 690ESZL/ST8/P/98/810IME/qsSSI/W0o"dNo-dlWapeo.//:SdjY WOy papeojumod


https://doi.org/10.1214/22-AAP1881
https://doi.org/10.1214/22-AAP1881

Discussion Paper Contribution 895

Bloem-Reddy B., & Orbanz P. (2018). Random-walk models of network formation and sequential monte carlo
methods for graphs. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 80(35),
871-898. https://doi.org/10.1111/rssb.12289

Briend S., Calvillo F., & Lugosi G. (2023). Archaeology of random recursive dags and cooper-frieze random net-
works. Combinatorics, Probability and Computing, 32(6), 859-873. https:/doi.org/10.1017/S09635483
23000184

Bubeck S., Devroye L., & Lugosi G. (2017). Finding Adam in random growing trees. Random Structures &
Algorithms, 50(2), 158-172. https:/doi.org/10.1002/rsa.v50.2

Crane H., & Xu M. (2021). Inference on the history of a randomly growing tree. Journal of the Royal Statistical
Society Series B: Statistical Methodology, 83(4), 639-668. https:/doi.org/10.1111/rssb.12428

De Blasi P., Favaro S., Lijoi A., Mena R. H., Priinster L., & Ruggiero M. (2013). Are Gibbs-type priors the most
natural generalization of the Dirichlet process? IEEE Transactions on Pattern Analysis and Machine
Intelligence, 37(2), 212-229. https:/doi.org/10.1109/TPAMIL.2013.217

Devroye, L., & Reddad, T. (2019). On the Discovery of Seed in Uniform Attachment Tree. Internet Mathematics,
1(1). https://doi.org//10.48550/arXiv.1810.00969

Jin].,Ke Z. T., Luo S., & Wang M. (2023). Optimal estimation of the number of network communities. Journal
of the American Statistical Association, 118(543), 2101-2116. https:/doi.org/10.1080/01621459.2022.
2035736

Kim K., & Altmann J. (2017). Effect of homophily on network formation. Communications in Nonlinear Science
and Numerical Simulation, 44, 482-494. https://doi.org/10.1016/j.cnsns.2016.08.011

Li T., Levina E., & Zhu J. (2020). Network cross-validation by edge sampling. Biometrika, 107(2), 257-276.
https:/doi.org/10.1093/biomet/asaa006

Lugosi G., & Pereira A. S. (2019). Finding the seed of uniform attachment trees. Electronic Journal of Probability,
24, 1-15. https:/doi.org/10.1214/19-EJP268

Shah D., & Zaman T. (2011). Rumors in a network: Who’s the culprit? IEEE Transactions on Information
Theory, 57(8), 5163-5181. https:/doi.org/10.1109/TIT.2011.2158885

Van Der Hofstad R. (2016). Random graphs and complex networks. (Vol. 1). Cambridge University Press.

https://doi.org/10.1093/jrsssh/qkae052
Advance access publication 7 June 2024

G202 1990100 0€ U0 15aNB Aq 690ESZL/ST8/P/98/810IME/qsSSI/W0o"dNo-dlWapeo.//:SdjY WOy papeojumod


https://doi.org/10.1111/rssb.12289
https://doi.org/10.1017/S0963548323000184
https://doi.org/10.1017/S0963548323000184
https://doi.org/10.1002/rsa.v50.2
https://doi.org/10.1111/rssb.12428
https://doi.org/10.1109/TPAMI.2013.217
https://doi.org//10.48550/arXiv.1810.00969
https://doi.org/10.1080/01621459.2022.2035736
https://doi.org/10.1080/01621459.2022.2035736
https://doi.org/10.1016/j.cnsns.2016.08.011
https://doi.org/10.1093/biomet/asaa006
https://doi.org/10.1214/19-EJP268
https://doi.org/10.1109/TIT.2011.2158885
https://doi.org/10.1093/jrsssb/qkae052

	Root and community inference on the latent growth process of a network
	Acknowledgments
	Conflict of interest
	References


