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Abstract

Many statistical models for networks overlook the fact that most real-world networks are formed through a 
growth process. To address this, we introduce the Preferential Attachment Plus Erdős–Rényi model, where 
we let a random network G be the union of a preferential attachment (PA) tree T and additional Erdős– 
Rényi (ER) random edges. The PA tree captures the underlying growth process of a network where 
vertices/edges are added sequentially, while the ER component can be regarded as noise. Given only one 
snapshot of the final network G, we study the problem of constructing confidence sets for the root node of 
the unobserved growth process; the root node can be patient zero in an infection network or the source of 
fake news in a social network. We propose inference algorithms based on Gibbs sampling that scales to 
networks with millions of nodes and provide theoretical analysis showing that the size of the confidence 
set is small if the noise level of the ER edges is not too large. We also propose variations of the model in 
which multiple growth processes occur simultaneously, reflecting the growth of multiple communities; we 
use these models to provide a new approach to community detection.
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1 Introduction

Network data is ubiquitous. To analyse networks, there are a variety of statistical models such as 
Erdős–Rényi, stochastic block model (SBM) (Abbe, 2017; Amini et al., 2013; Karrer & Newman, 
2011; Xu et al., 2018), graphon (Diaconis & Janson, 2007; Gao et al., 2015), random dot product 
graphs (Athreya et al., 2017; Xie & Xu, 2019), latent space models (Hoff et al., 2002), con7guration 
graphs (Aiello et al., 2000), and more. These models usually operate by specifying some structure, such 
as community structure in the case of SBM, and then adding independent random edges in a way that 
re8ects the structure. The order in which the edges are added is of no importance to these models.

In contrast, real-world networks are often formed from growth processes where vertices and 
edges are added sequentially. This motivates the development of Markovian preferential attach
ment (PA) models for networks (Barabási, 2016; Barabási & Albert, 1999) which produce a se
quence of networks G1, G2, . . . , Gn where G1 starts as a single node which we call the root 
node and, at each iteration, we add a new node and new edges. PA models naturally produce net
works with sparse edges, heavy-tailed degree distributions, and strands of chains as well as pend
ants (several degree 1 vertices linked to a single vertex), which are important features of real-world 
networks that are dif7cult to reproduce under a non-Markovian model, as observed by 
Bloem-Reddy and Orbanz (2018).

Although Markovian models are often more realistic, they have not been as widely used in net
work data analysis as, say SBM, because, whereas SBM is useful for recovering the community 
structure of a network, it is not obvious what structural information Markovian models could 
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extract from a network. Recently, however, seminal work from a series of applied probability papers 
(e.g. Bubeck, Devroye et al., 2017; Bubeck et al., 2015) demonstrate that Markovian models can in
deed recover useful structure: these papers show that, surprisingly, when Gn is a random PA tree, one 
can infer the early history of Gn, such as the root node, even as the size of the tree tends to in7nity. 
Although these results are elegant, they are theoretical; their con7dence set construction involves large 
constants that render the result too conservative. Moreover, most algorithms apply only to tree-shaped 
networks, which prohibitively limits their application since trees are rarely encountered in practice.

To overcome these problems, we propose a Markovian model for networks which we call 
Preferential Attachment Plus Erdős–Rényi, or PAPER for short. We say that Gn has the PAPER 
distribution if it is generated by adding independent random edges to a preferential attachment 
tree T. The latent PA tree captures the growth process of the network whereas the ER random 
edges can be interpreted as additional noise. Given only a single snapshot of the 7nal graph Gn, 
we study how to infer the early history of the latent tree T, focussing on the concrete problem 
of constructing con7dence sets for the root node that can attain the nominal coverage. We give 
a visual illustration of the PAPER model and the inference problem in Figure 1.

Because we do not know which edges of Gn correspond to the tree and which are noise, most 
existing methods are not directly applicable. We therefore propose a new approach in which we 
7rst give the nodes new random labels which induce, for a given observation of the network 
Gn, a posterior distribution of both the latent tree and the latent arrival ordering of the nodes. 
Then, we sample from the posterior distribution to construct a credible set for the inferential 
target, e.g. the root node. Bayesian inference statements usually do not have frequentist validity 
but we prove in our setting that that the level 1 − ϵ credible set for the root node has frequentist 
coverage at exactly the same level.

In order to ef7ciently sample from the posterior distribution of the latent ordering and the latent 
tree, we present a scalable Gibbs sampler that alternatingly samples the ordering and the tree. The 
algorithm to generate the latent ordering is based on our previous work (Crane & Xu, 2021) 
which studies inference in the tree setting. The algorithm to generate the latent tree operates by 
updating the parent of each of the nodes iteratively. The overall runtime complexity of one iter
ation of the outer loop is generally O(m + n log n) (where m is the number of edges) and the algo
rithm can scale to networks of up to a million nodes.

Since a trivial con7dence set for the root node is the set of all the nodes, it is important to be able 
to bound the size of a con7dence set. In particular, the presence of noisy Erdős–Rényi edges in the 
PAPER model motivates an interesting question: how does the size of the con7dence set increase 
with the noise level? In this paper, we give an initial answer to this question under two speci7c 
settings of the preferential attachment mechanism: linear preferential attachment (LPA) and 

Figure 1. Left: Illustration of PAPER model; nodes have latent time ordering (only first 10 orderings shown); the dark 

red edges form the latent tree while light grey edges are Erdős–Rényi. Right: 80% confidence set for the root node 

(node number 1) constructed from the unlabelled graph.
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uniform attachment (UA). For LPA, we prove that the size of our proposed con7dence set does 
not increase with the number of nodes n so long as the noisy edge probability is less than n−1/2 

and for UA, we prove that the size is bounded by nγ for some γ < 1 so long as the noisy edge prob
ability is less than log (n)/n. Our analysis shows that the phenomenon discovered by Bubeck, 
Devroye et al. (2017), that there exists con7dence sets for the root node of O(1) size, is robust 
to the presence of noise.

Many real-world networks often have community structures. In such cases, it would be unreal
istic to assume that the network originates from a single root node. We therefore propose varia
tions of the PAPER model in which K growth processes occur simultaneously from K root 
nodes. Each of K root nodes can be interpreted as being locally central with respect to a community 
subgraph. In the multiple roots model, there is no longer a latent tree but rather a latent forest 
(union of disjoint trees), where the components of the forest can naturally be interpreted as the 
different communities of the network. We provide model formulation that allows K to be either 
be 7xed or random. To analyse networks with multiple roots, we use essentially the same inferen
tial approach and Gibbs sampling algorithm that that we develop for the single root setting, with 
minimal modi7cations.

By looking at the posterior probability that a node is in a particular tree–community, we can 
estimate the community membership of each of the nodes. Compared with say the stochastic block 
model, the PAPER model approach to community recovery has the advantage that the inference 
quality improves with sparsity, that we can handle heavy-tailed degree distribution without a high- 
dimensional degree correction parameter vector, and that the posterior root probabilities also 
identify the important nodes in the community. Empirically, we show that our approach has com
petitive performance on two benchmark datasets and we 7nd that our community membership 
estimate is more accurate for nodes with high posterior root probability than for the more periph
eral nodes. We also use the PAPER model to conduct an extensive analysis of a statistician co- 
authorship network curated by Ji and Jin (2016) where we recover a large number of communities 
that accurately re8ect actual research communities in statistics.

We have implemented our inference algorithm in a Python package called paper-network, 
which can be installed via command pip install paper-network. The code, example scripts, 
and documentation are all publicly available at https://github.com/nineisprime/PAPER.

1.1 Outline for the paper

In Section 2, we de7ne the PAPER model in both the single root and multiple roots setting. We also 
formalise the problem of root inference and review related work. In Section 3, we describe our 
approach to the root inference problem, which is to randomise the node labels and analyse the 
resulting posterior distribution. We also show that the Bayesian inferential statements have fre
quentist validity. In Section 4, we give a sampling algorithm for computing the posterior probabil
ities. In Section 5, we provide theoretical bounds on the size of our proposed con7dence sets and in 
Section 6, we provide empirical study on both simulated and large scale real-world networks.

We use the following notation throughout the paper: 

• We take all graphs to be undirected. Given two labelled graphs g and g′ de7ned on the same set 
of nodes, we write g + g′ as the resulting graph if we take the union of the edges in g and g′ and 
collapse any multi-edges. We also write g ⊂ g′ if g is a subgraph of g′.

• For a labelled graph g, we write Dg(u) as the degree of node u in graph g and Ng(u) as the set of 

neighbours of u (all nodes directly connected to u) with respect to g; we write V(g) and E(g) as 
the set of vertices and edges of g, respectively.

• For an integer n, we write [n] := {1, 2, . . . , n}. For a countable set A, we write |A| as the 
cardinality of A. For two sets A, B of the same cardinality, we write Bi(A, B) as the set of 
bijections between them. For a vector π, we let π1:K be the sub-vector (π1, π2, . . . , πK).

• Given a 7nite set V′ of the same cardinality of V(g) and given a bijection ρ ∈ Bi(V(g), V′), we 
write ρg to denote a relabelled graph where a pair (u′, v′) ∈ V′ × V′ is an edge in ρg if and only 
if (u, v) ∈ V(g) × V(g) is an edge in g.

• Throughout the paper, we use capital font (e.g. G) to denote random objects and lower case 
font to denote 7xed objects. Graphs are represented via bold font.
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2 Model and problem

We 7rst describe the model and inference problem in the single root setting and then extend the 
de7nition to the setting of having 7xed K roots and having random K roots.

2.1 PAPER model

De�nition 1 The af7ne preferential attachment tree model, which we denote by APA(α, β) 
for parameters α, β ∈ R, generates an increasing sequence T1 ⊂ T2 ⊂ · · · ⊂ 

Tn of random trees where Tt is a tree with t nodes and where nodes are la
belled by their arrival time so that V(Tt) = [t]. The 7rst tree T1 = {1} is a 
singleton node, which we refer to as the root node, and for t > 2, we de7ne 
the transition kernel P(Tt |Tt−1) in the following way: given Tt−1, we add 
a node labelled t and a random edge (t, wt) to obtain Tt, where the existing 
node wt ∈ [t − 1] is chosen with probability

βDTt−1
(wt) + α

β2(t − 2) + α(t − 1)
. (1) 

To ensure that equation (1) is always non-negative, we require either α, β ≥ 0 or, if β < 0, then 
α = −cβ for some integer c > 0. We may verify that (1) describes a valid probability distribution by 
noting that Tt−1 always has t − 2 edges and t − 1 nodes. Before continuing onto the PAPER model, 
we consider some speci7c examples of APA trees: 

1. Setting α = 1, β = 0 means that we select wt uniformly at random from V(Tt−1). This yields the 
UA random tree. The resulting degree distribution has exponential tail and the maximum de
gree is of order log n (Addario-Berry & Eslava, 2018; Na & Rapoport, 1970).

2. Setting α = 0, β = 1 means that we select wt with probability proportional to the degree 
DTk−1

(wt). This yields the LPA random tree. Linear preferential attachment has heavy-tailed 

degree distribution and a maximum degree is of order 
��
n
√

(Bollobás et al., 2001; Peköz et al., 
2014).

3. We may also set β as −1 and α as some positive integer so that the maximum degree of any 
node is α. This may be interpreted as a UA tree growing on top of a background in7nite 
α-regular tree (Khim & Loh, 2017).

We may generalise De7nition 1 by de7ning a nonparametric function ϕ : N→ [0, ∞) and choose 
wt with probability proportional to ϕ(DTt−1

(wt)). In this paper however, we focus only on the case 
where ϕ is an af7ne function.

De�nition 2 To model a general network, we de7ne the PAPER(α, β, θ) (PAPER) model 
parametrised by α, β ∈ R and θ ∈ [0, 1]. We say that a random graph Gn dis
tributed according to the PAPER(α, β, θ) model if

Gn = Tn + Rn, 

where Tn ∼ APA(α, β) and Rn ∼ Erdős–Rényi(θ) are independent random 
graphs de7ned on the same set of vertices [n].

Since we collapse any multi-edges that occur when we add Rn to Tn, we may view Rn equiva
lently as an ER random graph de7ned on potential edges excluding those already in the tree Tn. 
The PAPER model can produce networks with either light-tailed or heavy-tailed degree distri
bution depending on the choice of the parameters α and β. It produces features that are com
monly seen in real-world networks but absent from non-sequential models like SBM, such as 
pendants (a node with several degree-1 node attached to it) and chains of nodes; see 
Figure 2. It also assigns a non-zero probability to any connected graph, in contrast to the gen
eral preferential attachment graph model where a 7xed m > 1 edges are added at every iteration 
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(Barabási & Albert, 1999). In computer science terminology, Gn is a planted tree model where 
the signal Tn is planted in an ER random graph Rn in the same sense that SBM is often referred to 
as the planted partition model.

An alternative way to de7ne the PAPER model is to specify the total number of edges m in the 
7nal graph and generate Rn as a uniformly random graph with m − (n − 1) edges (since a tree with 
n nodes always has n − 1 edges). This is equivalent to the PAPER(α, β, θ) model where we condi
tion on the event that the 7nal graph Gn has m edges. To simplify exposition, we use PAPER to 
refer to this conditional model as well.

Remark 1 We may view the PAPER(α, β, θ) model as a Markovian process over a se
quence of networks G1, G2, . . . , Gn. We de7ne the transition kernel 
P(Gt |Gt−1) for t ≥ 3 by 7rst adding a new node labelled t, then adding a 
new tree edge (t, wt) where wt is chosen with probability (1), and then, for 
each existing node j ∈ [t − 1] not equal to wt, we independently add a noise 
edge (t, j) with probability θ.

Interestingly, when α = 1 and β = 0, we see that the PAPER model is the con
ditional distribution of an Erdős–Rényi graph G conditional on the event that, 
for some 7xed ordering ρ of the nodes, the sequence of induced subgraphs G ∩ 

{ρ1, . . . , ρt} for t ∈ [n] are all connected. In Section 2.3, we extend the PAPER 
model so that the noise edge probability is allowed to depend on the time t and 
the state of the tree at time t.

Remark 2 Under APA(α, β) model, the probability of generating a given tree has a closed 

form expression: P(Tn = tn) =

∏

v∈[n]

∏Dtn (v)−1

j=1
(βj+α)

∏n

t=3
2(t−2)β+(t−1)α

. The important consequence 

is that the likelihood depends on the tree tn only through its degree distribution 
Dtn (·). Hence, any two trees with the same degree distribution has the same 
likelihood; Crane and Xu (2021) refer to this property as shape- 
exchangeability. We give the likelihood expression for the multiple roots mod
els and the PAPER model in Section S1.1 of the online supplementary material.

Remark 3 It is known that the degree distribution of an APA(α, β) tree has an asymptotic 
limit. For example, if β = 1 and α > 0, then we have by Van Der Hofstad (2016, 

Theorem 8.2) that 1n
∑n

t=1 1{DTn (t) = k}→ 2+α
3+2α

∏k−1
j=1

j+α
j+3+2α as n→∞ uniform

ly over all k. The limiting distribution is approximately a power law where the 

Figure 2. Left : PAPER graph with α = 1, β = 1;Right: co-authorship graph from Ji and Jin (2016) (reprinted with 

permission from the Insitute of Mathematical Statistics).
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number of nodes with degree k is proportional to k−(3+α) (see Van Der Hofstad, 
2016, Section 8.4). Since the ER graph Rn only adds an expected additional de
gree of at most nθ to every node, we see that, when θ is small, the PAPER graph 
can have heavy-tailed degree distribution without any additional degree cor
rection parameters.

2.1.1 Single root inference problem

Let Gn ∼ PAPER(α, β, θ) be a random graph. As the nodes of Gn are labelled by their arrival time, 
our observation is the unlabelled shape sh(Gn), that is, the network Gn with the labels removed. 
Our goal is to construct a subset of nodes that is guaranteed to contain the true root node (node 
with arrival time 1) with probability at least 1 − ϵ. Since we need to refer to speci7c nodes of 
sh(Gn), we give the nodes of sh(Gn) names from an arbitrary alphabet Un of n elements to form 
a labelled graph G∗n such that V(G∗n) = Un. We take G∗n as our observation from this point on.

We note that there exists an unobserved label bijection ρ ∈ Bi([n], Un) such that ρGn = G∗n. This un
observed ρ captures precisely the arrival time of the nodes in that for any time t ∈ [n], the node with 
label ρt in G∗n is exactly node with arrival time t in Gn. In particular, node ρ1 of the observed graph 
G∗n is the true root node. To illustrate the setting clearly, we provide a concrete example in Figure 3.

De�nition 3 For ϵ ∈ (0, 1), we say that a set Cϵ(G
∗
n) ⊂ Un is a level 1 − ϵ con7dence set for 

the root node if

P ρ1 ∈ Cϵ(G
∗
n)

( )

≥ 1 − ϵ. (2) 

One may construct a trivial con7dence set for the root nodes by taking the set of all the no
des. We aim therefore to make the con7dence set Cϵ(·) as small as possible. Although we focus 
on the problem of root inference, the approach that we develop is applicable to more general 
problems such as inferring the 7rst two or three nodes or inferring the arrival time of a particu
lar node.

Remark 4 It is important to note that G∗n may have multiple nodes that are indistinguish
able once the node labels are removed, which may lead to the paradoxical scen
ario that which node of G∗n correspond to the true root node depends on the 
choice of the label bijection ρ. Luckily, this is a technical issue that does not 
pose a problem so long as we restrict ourselves to con7dence sets Cϵ(·) that 
are labelling equivariant in that they do not depend on the speci7c node label
ling. Labelling equivariance is a very weak condition that only rules out con7
dence sets that can access side information about the nodes somehow.

Formally, we note that there may exist ρ, ρ′ ∈ Bi([n], Un) where ρ1 ≠ ρ′1 but 
both satisfy G∗n = ρGn = ρ′Gn; in other words, root node can only be well- 
de7ned up to an automorphism. We illustrate a concrete example in 
Figure 4. We de7ne Cϵ(·) to be labelling equivariant if, for all τ ∈ Bi(Un, Un), 

Figure 3. Our observation is the unlabelled shape or alphabetically labelled G
∗
n 

instead of time labelled Gn. There 

exists an unobserved ordering ρ ∈ Bi([n], Un) such that G∗
n

= ρGn.
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we have τCϵ(G
∗
n) = Cϵ(τG∗n); if the con7dence set algorithm contains random

isation (to break ties for example), then we say it is labelling equivariant if 

τCϵ(G
∗
n) =

d
Cϵ(τG∗n) for all τ ∈ Bi(Un, Un). If a con7dence set Cϵ(·) is labelling 

equivariant, then for any ρ, ρ′ ∈ Bi([n], Un) such that G∗n = ρGn = ρ′Gn, we 

have that (ρ′ ◦ ρ−1)G∗n = G∗n and hence,

ρ1 ∈ Cϵ(G
∗
n)⇔ (ρ′ ◦ ρ−1)ρ1 ∈ (ρ′ ◦ ρ−1)Cϵ(G

∗
n)⇔ ρ′1 ∈ Cϵ((ρ′ ◦ ρ−1)G∗n)⇔

ρ′1 ∈ Cϵ(G
∗
n).

Therefore, the coverage probability (2) does not depend on the choice of ρ.

2.2 Multiple roots models

Many real-world networks have multiple communities that grow simultaneously form multiple 
sources. The APA model allows for only one root node in the graph but we can augment the model 
to describe networks that grow from multiple roots. When there are K roots, we start the growth 
process with an initial network of K singleton nodes and attach each new node to an existing node 
wt with probability proportional to β · (degree of wt) + α as before.

However, one complication is that when α = 0, the probability of attaching to a singleton node is 
0. Thus, for convenience, we give each root node an unobserved imaginary self-loop edge for the 
purpose of computing the attachment probabilities.

De�nition 4 We 7rst de7ne the APA(α, β, K) model for a random forest of K disjoint com
ponent trees: let K ∈ N and for t ∈ S := {1, 2, . . . , K} (the set S is the set of root 
nodes), let Ft be the set of singleton nodes 1, 2, . . . , t. For t > K, we de7ne the 
transition kernel P(Ft |Ft−1) in the following way: given Ft−1, we add a new 
node t and a new random edge (t, wt) where the existing node wt ∈ [t − 1] 
is chosen with probability

βDFt−1
(wt) + 2β1{wt ∈ S} + α
(2β + α)(t − 1)

. (3) 

We then say that a random graph Gn ∼ PAPER(α, β, K, θ) if Gn = Fn + Rn 

where Fn ∼ APA(α, β, K) and Rn ∼ ERθ is an Erdős–Rényi random graph in
dependent of Fn de7ned on the same set of nodes [n]. We refer to this setting as 
the %xed K setting. In contrast, we refer to the PAPER(α, β, θ) model in Section 
2.1 as the single root setting.

We can verify the normalisation term (3) by noting that each root node starts with one imagin
ary self-loop and that we add one node and one edge at every iteration. The theory of Polya’s urn 
immediately implies that the number of nodes in each of the K component trees, divided by n, has 
the asymptotic distribution of Dirichlet( 1

K , . . . , 1
K ).

To deal with networks in which the number of roots K is unknown, we propose a variation of 
the PAPER model with random K number of roots. We can express the model as a sequential 

Figure 4. Both ρ and ρ′ are distinct bijections in Bi([n], Un) but they both satisfy G∗
n

= ρGn = ρ′Gn. The root node is D 

according to ρ but A according to ρ′. Note that nodes A and D are indistinguishable if the labels are removed.
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growth process where every newly arrived node has some probability of becoming a new root. 
Similar to the 7xed K setting, we give each new root node an imaginary self-loop edge for the pur
pose of determining the attachment probabilities.

De�nition 5 We 7rst de7ne the APA(α, β, α0) model for a random forest graph: let F1 be a 
singleton node and let S = {1}. For k > 1, we de7ne the transition kernel 
P(Ft |Ft−1) in the following way: given Ft−1, we add a new node t. With prob
ability

α0

(2β + α)(t − 1) + α0
, 

we let t be a new root node to form Ft and add t to set S. Or, we add a new 
edge (t, wt) to Ft−1 to obtain Ft where the existing node wt ∈ [t − 1] is chosen 
with probability

βDFt−1
(wt) + α + 2β1{wt ∈ S}

(2β + α)(t − 1) + α0
.

Note that the resulting set of root nodes S ⊂ [n] of Fn is a random set.
We then say that a random graph Gn has the PAPER(α, β, α0, θ) distribu

tion if Gn = Fn + Rn where Fn ∼ APA(α, β, α0) and Rn ∼ ER(θ) is an Erdős– 
Rényi random graph independent of Fn de7ned on the same set of nodes [n]. 
We refer to this setting as the random K setting.

In the random K setting, each node has some probability of becoming a new root node and 
creating a new component tree in the same way as the Dirichlet process mixture model, which 
is often called the Chinese restaurant process. Therefore, the expected number of component trees 
is (1 + o(1)) α0

(2β+α) log n (Crane, 2016, Section 2.2).

2.2.1 Multiple roots inference problem

We observe G∗n = ρGn for an unknown label bijection ρ ∈ Bi([n], Un). In both the APA(α, β, K) and 
the APA(α, β, α0) models, the root nodes is a set S which is 7xed to be [K] in the 7rst model and 
random in the second model. Intuitively, we interpret S as a set of local roots, where each root 
is central with respect to a speci7c community or sub-network represented by a component tree 
in the forest Fn in De7nition 4 or 5. The root inference problem is then, for a given ϵ ∈ (0, 1), 
to construct a con7dence set Cϵ(G

∗
n) such that

P ρS ⊆ Cϵ(G
∗
n)

( )

≥ 1 − ϵ.

We illustrate this notion of local roots in a synthetic example in Figure 5.

Remark 5 (Interpretation of community under the PAPER model). The disjoint compo
nent trees of Fn induce a community structure on the graph Gn. This way of 
modelling community by adding Erdős–Rényi noise to disjoint subgraphs 
follows the same spirit as SBM: an SBM with K communities, p as the within- 
community edge probability, and q < p as the between-community edge prob
ability can be similarly de7ned as 7rst generating K disjoint ER( p−q

1−q ) graphs on 

each of the communities and then taking the union of that with ER(q) noisy 
edges on all the nodes, collapsing multi-edges.

The PAPER notion of community is however different from that described 
by SBM. The PAPER notion of community is based on Markovian growth 
process and intuitively characterised by the imbalance of spanning trees on 
a network, that is, we believe a network to contain multiple communities if 
the spanning trees of the network tend to be highly imbalanced (see 
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Figure 6), which would suggest that the network is very unlikely to have been 
formed from a single homogeneous growth process.

The PAPER model also produces more within-community edges than 
between-community edges because each community has a spanning tree. 
However, since a tree on n nodes only has n − 1 edges, the difference in the 
within-community edge density and the between-community edge density is di
minishingly small when the noise level θ is of an order larger than ω( 1

n ). In this 
case, the peripheral leaf nodes of a community-tree become impossible to clus
ter but it is still possible to recover the root node of each of the community- 
trees, as our experimental results show. One disadvantage of the PAPER no
tion of community is that it is not able to capture non-assortative clusters 
where nodes in the same clusters are unlikely to form edges.

The PAPER notion of community is appropriate in many application. For 
example, for a co-authorship network where there exists an underlying growth 
process, our empirical analysis in Section 6.5 shows that the PAPER model cap
tures clusters that accurately re8ect salient research communities. We can also 
combine both notions by a PAPER–SBM mixture model, where we generate a 

Figure 6. The karate club network (left) has two true communities. Most spanning trees of the whole karate club 

network would be imbalanced (such as the tree on the right), showing that the karate club network is very unlikely to 

have been formed from a single homogeneous growth process and hence very likely to contain multiple 

communities.

Figure 5. Left: Illustration of PAPER model with K = 2 underlying trees; nodes have latent time ordering (only first 10 

orderings shown); the dark red edges form the latent tree, while light grey edges are Erdö s–Rényi. Right: 80% 

confidence set for the set of root nodes (node number 1 for tree 1 and node number 2 for tree 2) constructed from 

the unlabelled graph.
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preferential attachment forest Fn via the mechanism described in De7nition 4
or 5, then, for every pair of nodes u and v, we add a noisy edge (u, v) with prob
ability θ1 if u and v belong to the same tree in Fn and with a different probabil
ity θ2 if u and v belong to different trees. The inference method and algorithm 
that we develop in this manuscript can extend to such a PAPER–SBM mixture 
model, but the computational run-time would be substantially slower. We rele
gate a detailed study of a PAPER–SBM mixture model to a future work.

2.3 Sequential noise models

As suggested in Remark 1, PAPER model is a special case of a general Markovian process over a 
sequence of networks G1, G2, . . . , Gn based on a latent sequence of trees T1, T2, . . . , Tn. In the 
general framework, we specify the transition kernel P(Gt |Gt−1) by specifying two stages: 

1. (tree stage) P(Tt |Tt−1, Gt−1) which adds one node t and one tree edge and
2. (noise stage) P(Gt |Tt, Gt−1) which adds more random edges to obtain Gt.

We can of course de7ne P(Gt |Gt−1) without having an underlying tree but the key insight of our 
approach is that augmenting the model with the latent tree Tn greatly facilitates the design of tract
able models and inference algorithms because calculations on trees are easy and fast. In addition, 
the latent tree has a real-world interpretation as the recruitment history—a tree edge between no
des (u, v) implies that node u recruited node v into the network.

In the noise stage, if we independently adds noise edges between the new node t and the existing 
nodes with the same probability θ, then we get back the single root PAPER model. More generally, 
we can let the noise edge probability depend on the time t and the state of the graph at time t. We 
de7ne the following extension which we refer to as the seq-PAPER model with parameters 
(α, β, θ, α̃, β̃):

De�nition 6 We start with a singleton root node T1 = G1 = {1}. At time t = 2, we add node 
2 and attach it to node 1. At time t ≥ 3 : 

1. (tree stage) We add new node t; we select node an existing node wt ∈ [t − 1] 

with probability 
βDTt−1

(wt)+α
2(t−2)β+(t−1)α and add edge (t, wt) to Tt−1 to form Tt;

2. (noise stage) for each existing node j ∈ [t − 1], we add edge (t, j) inde
pendently with probability

qj := θ
β̃DTt−1

(j) + α̃
2(t − 2)β̃ + (t − 1)α̃

∧ 1. (4) 

It is possible that we add the tree edge (j, wt) in the noise stage in which 
case we collapse the multi-edge.

In general, we may take ̃β = β and α̃ = α but we allow them to be distinct in the model de7nition 
for greater 8exibility. We discuss parameter estimation in Section S3.5.4 of the online 
supplementary material.

When t is large, the independent Bernoulli generative process approximates a Poisson growth 
model (see, e.g. Sheridan et al., 2008) where we 7rst generate M ∼ Poisson(θ), and then repeat 
M times the procedure where we draw an existing node j ∈ [t − 1] with probability qj (also 
with replacement) and then add the edge (t, j) to the random network, collapsing multi-edges if 
any are formed. We thus add an average of approximately θ noise edges at each time step. In con
trast, under the PAPER model where the noise edge probability is θ, we add on average (t − 2) · θ 
noise edges at time t.

The approximation error between the Bernoulli mechanism and the Poisson mechanism, in each 
iteration t, converges to 0 in total variation distance as t increases; see rigorous statement and 
proof in Proposition S4 of Section S1.2 in the online supplementary material. However, it is im
portant to note that the two mechanisms could still produce 7nal random graphs whose overall 
distributions have total variation distance bounded away from 0. For example, UA or LPA trees 
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are known to be sensitive to initialisation so that different initial seeds could lead to very different 
distributions over the 7nal observed graph, see, e.g. Bubeck et al. (2015) and Curien et al. (2015). 
In this work, we prefer the Bernoulli generative process in order to simplify the inference algo
rithm. Even with the Bernoulli approximation however, inference under the sequential setting is 
much more computationally intensive than the vanilla PAPER model.

A more realistic extension of the seq-PAPER model is to replace the tree degree DTt−1
(j) with the 

graph degree DGt−1
(j) in the noise probability 4. This small change unfortunately leads to addition

al signi7cant slowdown in the resulting inference algorithm; see Remark 9 for more detail. We note 
that an even more sophisticated model of sequential noise is one where the additional noise edges 
are generated by a random-walk mechanism (Bloem-Reddy & Orbanz, 2018); Bloem-Reddy and 
Orbanz (2018) propose a sequential Monte Carlo inference method which may not scale well to 
large networks.

We have so far considered additive noise where new edges are added to the network. We can also 
model deletion noise where each tree edge is removed from the observed network independently 
with some probability η > 0. Having deletion noise under the vanilla PAPER model can adversely 
increase the size of the con7dence set for the root node. However, the seq-PAPER model is much 
more resilient to deletion noise, especially when β̃ = β and α̃ = α since the noise edges also contain 
sequential information. To be precisely, we de7ne the seq-PAPER∗(α, β, θ, α̃, β̃, η) as the model 
where we 7rst generate Gn according to the seq-PAPER(α, β, θ, α̃, β̃) model with latent spanning 
tree Tn; we then remove each edge of Tn from the 7nal graph Gn independently with probability η.

2.4 Related work

Many researchers in statistics (Kolaczyk, 2009), computer science (Bollobás et al., 2001), engin
eering, and physics (Callaway et al., 2000) have been interested in the probabilistic properties of 
various random growth processes of networks, including the preferential attachment model 
(Barabási & Albert, 1999). Recently, however, the speci7c problem of root inference on trees 
has received increased attention.

These efforts began with the ground-breaking work of Bubeck, Devroye et al. (2017), Bubeck 
et al. (2015), and Bubeck, Eldan et al. (2017), which shows that, given an observation of an 
LPA or UA tree of size n, for any ϵ ∈ (0, 1], one can construct asymptotically valid con7dence 
sets for the root node with size KLPA(ϵ) and KUA(ϵ) for LPA or UA trees respectively. 
Importantly and surprisingly, KLPA(ϵ) and KUA(ϵ) do not depend on n so that the con7dence set 
have size that is O(1). To construct the con7dence sets, Bubeck, Devroye et al. (2017) compute 
a centrality value for every node, which can for instance be based on inverse of the size of the max
imum subtree of a node (a concepted sometimes called Jordan centrality on trees, different from 
the notion of a Jordan centre, which is the node with the minimum farthest distance to the other 
nodes); they then sort the nodes by centrality and take the top K(ϵ) nodes where the size K(ϵ) is 
determined by probabilistic bounds.

Khim and Loh (2017) further extend these results to the setting of UA over an in7nite regular 
tree. Banerjee and Bhamidi (2020) improve the analysis of Jordan centrality on trees and derives 
tight upper and lower bounds on the con7dence set size. Devroye and Reddad (2018) and Lugosi 
and Pereira (2019) study the more general problem of seed-tree inference instead of root node in
ference. The aforementioned results apply only to tree shaped networks but very recently, Banerjee 
and Huang (2021) study con7dence sets constructed from the degrees of the nodes which applies 
to preferential attachment models in which a 7xed m edges are added at every iteration. After the 
completion of this paper, Briend et al. (2022) propose con7dence sets for the root node on a class 
of UA-based general Markovian graphs by detecting anchors of double-cycle subgraphs within the 
network; they show the con7dence set sizes to be O(1) and give explicit bounds in terms of con
7dence level ϵ.

A line of work in the physics literature also explores the problem of full or partial recovery of a 
tree network history (Cantwell et al., 2019; Sreedharan et al., 2019; Young et al., 2019). In com
puter science and engineering, researchers have studied the related problem of estimating the 
source of an infection spreading over a background network Shah and Zaman (2011), Fioriti 
et al. (2014), and Shelke and Attar (2019), with approaches that range from using Jordan centres, 
eigenvector centrality, and belief propagation (see survey in Jiang et al., 2016).
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3 Methodology

Our approach to root inference and related problems is to randomise the node labels, which indu
ces a posterior distribution over the latent ordering.

3.1 Label randomisation

Suppose Gn is a time labelled graph distributed according to a PAPER model and G∗n is the alpha
betically labelled observation where G∗n = ρGn for some label bijection ρ ∈ Bi([n], Un). We may in
dependently generate a random bijection Λ ∈ Bi(Un, Un) and apply it to G∗n to obtain a randomly 
labelled graph

G̃n := ΛG∗n = (Λ ◦ ρ)
︸��︷︷��︸

Π

Gn.

By de7ning Π = Λ ◦ ρ, we see that G̃n = ΠGn where Π is a random bijection drawn uniformly in 
Bi([n], Un) independently of Gn (see Figure 7). We de7ne the randomly labelled latent forest 

F̃n = ΠFn. We may view label randomisation as an augmentation of the probability space. An out
come of a PAPER model is a time labelled graph gn whereas an outcome after label randomisation 
is a pair (g̃n, π) where g̃n is an alphabetically labelled graph and π is an ordering of the nodes. See 
Table 1 for a summary of the notation. We now make two simple but important observations re
garding label randomisation.

Our 7rst key observation is that, with respect to G̃n, the random labelling Π describes the arrival 
time of the nodes in the sense that if Πt = u, then the node with alphabetical label u in G̃n has the 
true arrival time t. Therefore, in the single root setting, we may infer the root node if we can infer 
Π1; in the multiple roots setting, we may infer the set of root nodes if we can infer ΠS.

Our second key observation is that label randomisation allows us to de7ne the posterior distri
bution

P(Π = π |G̃n = g̃n) =
P(G̃n = g̃n |Π = π)

∑

π′∈Bi([n],Un) P(G̃n = g̃n |Π = π′)
(5) 

which follows because P(Π = π) = 1
n!. This posterior distribution is supported on the subset of bi

jection π such that π−1g̃n has non-zero probability under the PAPER model. In the case of the single 
root PAPER or seq-PAPER model, the support of equation (5) has a simple characterisation: for 
every time point t ∈ [n], de7ne π1:t ∩ g̃n as the subgraph of g̃n restricted to nodes in π1:t. Then, 

P(Π = π | G̃n = g̃n) > 0 if and only if π1:t ∩ g̃n is connected for all t ∈ [n].

Figure 7. Label randomisation induces a random latent arrival ordering Π.
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From a Bayesian perspective, label randomisation adds a uniform prior distribution on the ar
rival ordering of the nodes in the observed alphabetically labelled graph G∗n; this is sometimes used 
in Bayesian parameter inference on network models (Bloem-Reddy et al., 2018; Sheridan et al., 
2012). This prior however is not subjective. Indeed, we will see in Theorem 7 that Bayesian infer
ence statements in our setting directly have frequentist validity as well and, from online 
supplementary Section S2.1, that the posterior root probability of a node is equal to the likelihood 
of that node being the root node up to normalisation.

We describe how to compute equation (5) tractably in Section 4. For computation, we will also 
be interested in the posterior probability over both the ordering Π as well as the latent forest F̃n:

P(Π = π, F̃ = f̃ n |G̃n = g̃n). (6) 

In the single root setting, f̃ n is actually a tree, which we may write as t̃n. It is then clear that equa

tion (6) is non-zero only if t̃n is a spanning tree of g̃n, i.e. t̃n is a connected subtree of g̃n that con
tains all the vertices.

3.2 Confidence set for the single root

To make the idea clear, we 7rst consider the single root model. Since the root node is the node la
belled Π1 after label randomisation, a natural approach is to 7rst construct a level 1 − ϵ Bayesian 
credible set for the node Π1 by using its posterior distribution, which we call the posterior root 
distribution.

More concretely, let g̃n be an alphabetically labelled graph. For each node u ∈ Un of g̃n, 
we de7ne the posterior root probability as P(Π1 = u | G̃n = g̃n). We sort the nodes u1, . . . , un 

so that

P(Π1 = u1 |G̃n = g̃n) ≥ P(Π1 = u2 |G̃n = g̃n) · · · ≥ P(Π1 = un |G̃n = g̃n), 

and de7ne

Lϵ(g̃n) = min k ∈ [n] :
∑k

i=1

P(Π1 = ui |G̃n = g̃n) ≥ 1 − ϵ

{ }

. (7) 

We then de7ne the ϵ-credible set as

Bϵ(g̃n) = u1, u2, . . . , uLϵ(g̃n)

{ }

, (breaking ties at random). (8) 

By de7nition, Bϵ(g̃) is the smallest set of nodes with Bayesian coverage at level 1 − ϵ in that 

P(Π1 ∈ Bϵ(g̃n) | G̃n = g̃n) ≥ 1 − ϵ. In general, credible sets do not have valid frequentist con7
dence coverage. However, our next theorem shows that in our setting, the credible set Bϵ is 
in fact an honest con7dence set in that P{root node ∈ Bϵ(G

∗
n)} ≥ 1 − ϵ.

Theorem 7 Let Gn ∼ PAPER(α, β, θ) or seq-PAPER(α, β, θ, α̃, β̃) and let G∗n be the alpha
betically labelled observation. Let ρ ∈ Bi([n], Un) be any label bijection such 

Table 1. Quick reference of important notation and definitions

Gn Time labelled graph (unobserved) Fn Latent time labelled forest

G∗n Observed alphabetically labelled graph F∗n Latent alphabetically labelled forest

G̃n Randomly alphabetically labelled graph F̃n Latent randomly alphabetically labelled forest

ρ Fixed unobserved ordering; G∗n = ρGn Π Latent random ordering; G̃n = ΠGn

S Time labelled root nodes of Gn S̃ Latent alphabetically labelled root nodes; S̃ = ΠS
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that ρGn = G∗n. We have that, for any ϵ ∈ (0, 1),

P ρ1 ∈ Bϵ(G
∗
n)

{ }

≥ 1 − ϵ.

The proof is very similar to that of Crane & Xu (2021, Theorem 1). Since the proof is short, we 
provide it here for readers’ convenience.

Proof. We 7rst claim that Bϵ(·) is labelling equivariant (cf. Remark 4) in the sense that for 
any τ ∈ Bi(Un, Un) and any alphabetically labelled graph g̃n, we have that 

τBϵ(g̃n) =
d

Bϵ(τg̃n) (note that Bϵ(·) uses randomisation to break ties). Indeed, since 

(Π, G̃n) =
d

(τ−1 ◦ Π, τ−1G̃n), we have that, for any u ∈ Un,

P(Π1 = u |G̃n = g̃n) = P(Π1 = τ(u) | G̃n = τg̃n).

Therefore, for any u, v ∈ Un, we have that P(Π1 = u | G̃n = g̃n) ≥ P(Π1 = v | G̃n = g̃n) 

if and only if P(Π1 = τ(u) | G̃n = τg̃n) ≥ P(Π1 = τ(v) | G̃n = τg̃n). Since Bϵ(G
∗
n) is con

structed by taking the top elements of Un that maximise the cumulative posterior 
root probability, the claim follows.

Now, let ρ ∈ Bi([n], Un) be such that ρGn = G∗n and let Λ be a random bijection 
drawn uniformly in Bi(Un, Un) and let Π = Λ ◦ ρ. Then,

P(ρ1 ∈ Bϵ(G
∗
n)) = P(ρ1 ∈ Bϵ(ρGn))

= P (Λ ◦ ρ)1 ∈ Bϵ((Λ ◦ ρ)Gn) |Λ = Id
{ }

= P (Λ ◦ ρ)1 ∈ Bϵ((Λ ◦ ρ)Gn)
{ }

= P(Π1 ∈ Bϵ(G̃n)) ≥ 1 − ϵ, 

where the penultimate equality follows from the labelling equivariance of Bϵ and 

where the last inequality follows because P(Π1 ∈ Bϵ(G̃n) | G̃n = g̃n) ≥ 1 − ϵ for any 
labelled tree g̃n (with labels in Un) by the de7nition of Bϵ.                               □

Remark 6 We show in Theorem S5 of the online supplementary material that the poster
ior root probability P(Π1 = u | G̃n = g̃n) is equal to the likelihood of node u 
being the root node on observing the unlabelled shape of g̃n. Therefore, the 
set Bϵ(g̃n) is in fact the maximum likelihood con7dence set. Because the likeli
hood in this setting is complicated to even write down, we leave all the details 
to Section S2.1 of the online supplementary material.

Remark 7 One may see from the proof that Theorem 7 applies more broadly then just 
PAPER models. It in fact applies to any random graph Gn whose nodes are la
belled by {1, 2, . . . , n}. For the PAPER model, the integer labels encode arrival 
time and thus contain information about the graph. In a model where the in
teger labels are uninformative of the graph connectivity structure, Theorem 
7 is still valid although the posterior probability P(Π1 = · | G̃n = g̃n) would 
be uniform. A reviewer of this paper also pointed out that Theorem 7 is related 
to the classical literature on invariant/equivariant estimation where credible 
sets constructed from uniform (Haar) priors may also be valid con7dence 
sets; see, e.g. Schervish (1995, Theorem 6.78).

3.3 Confidence set for multiple roots

First consider the 7xed K setting where Gn ∼ PAPER(α, β, θ, K); let Π be a uniformly random or
dering in Bi([n], Un) and let G̃n = ΠGn. The latent set of root nodes of G̃n in this case is 
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S̃ := ΠS = {Π1, . . . , ΠK}. We then de7ne the posterior root probability for any node u ∈ Un as

P(u ∈ S̃ |G̃n = g̃n), 

that is, the probability that node u is an element of the latent root set S̃.
To form the credible set Bϵ(g̃n) ⊆ Un, we sort the nodes by the posterior root probabilities

P(u1 ∈ S̃ |G̃n = g̃n) ≥ P(u2 ∈ S̃ |G̃n = g̃n) ≥ · · · ≥ P(un ∈ S̃ |G̃n = g̃n). (9) 

We may then take Bϵ(g̃n) to be the smallest set of nodes such that P(S̃Bϵ(g̃n) | G̃n = g̃n) ≤ ϵ. More 
precisely, de7ne the integer

Lϵ(g̃n) = min k ∈ [n] :
∑n

i=k+1

P(ui ∈ S̃ |G̃n = g̃n) ≤ ϵ

{ }

(10) 

and then de7ne the credible set as

Bϵ(g̃n) = u1, u2, . . . , uLϵ(g̃n)

{ }

(breaking ties at random). (11) 

In the PAPER(α, β, α0, θ) model where the number of roots K is random, the set of root nodes is 

S̃ = ΠS which comprises, according to the ordering Π, of the node that is 7rst to arrive in each of the 

component trees of F̃n. We may then sort the nodes as in equation (9), compute Lϵ(g̃n) as in equa
tion (10), and Bϵ(g̃n) as in equation (11).

Similar to Theorem 7, we may show that Bϵ(·) in fact also has frequentist coverage at the same 
level 1 − ϵ.

Theorem 8 Let Gn ∼ PAPER(α, β, K, θ) or PAPER(α, β, α0, θ) and let G∗n be the alphabet
ically labelled observation. Let ρ ∈ Bi([n], Un) be any label bijection such that 
ρGn = G∗n and let S ⊂ [n] be the time labels of the root nodes (see De7nitions 4
and 5). We have that, for any ϵ ∈ (0, 1),

P ρS ⊆ Bϵ(G
∗
n)

{ }

≥ 1 − ϵ.

Proof. The proof is very similar to that of Theorem 7. First, since the random set S̃ is a 
function of the random ordering Π in the 7xed K setting and a function of both 
the random ordering Π and the random forest F̃n, we write S̃(Π) or S̃(Π, F̃n) to 
be precise.

We then observe that S̃(Π) in the 7xed K setting or S̃(Π, F̃n) in the random K set

ting, are labelling equivariant in that for any τ ∈ Bi(Un, Un), we have that S̃(τ−1Π) = 

τ−1S̃(Π) or, in the random K setting, S̃(τ−1Π, τ−1F̃n) = τ−1S̃(Π, F̃n). Therefore, since 

(Π, G̃n) =
d

(τ−1Π, τ−1G̃n) for any τ ∈ Bi(Un, Un), we have S̃(Π, F̃n) =
d τ−1S̃(Π, F̃n) and 

thus, for any u ∈ Un,

P(u ∈ S̃ |G̃n = g̃n) = P(τ(u) ∈ S̃ |G̃n = τg̃n).

The rest the proof proceeds in an identical manner to that of Theorem 7.  □

When there are multiple roots, an alternative way of inferring the root set is to construct the con
7dence set Bϵ(·) as a set of subsets of the nodes and then require that S̃ ∈ Bϵ with probability at least 
1 − ϵ. We can take the same approach to construct such con7dence set over sets but it becomes 
much more computationally intensive to compute them in practice.
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3.4 Combinatorial interpretation

Before we describe the Gibbs sampling algorithm for computing the posterior root probabilities 
P(Π1 = u | G̃n = g̃n), we provide an intuitive combinatorial interpretation of the posterior root 
probability in the single root PAPER model (De7nition 2). The de7nitions and calculations here 
are also important for deriving the algorithm in Section 4.

3.4.1 The noiseless case

We 7rst consider the simpler setting in which we can observe the tree T̃n (with a single root) dis
tributed according to the APA model. In this case, we have

P(Π1 = · | T̃n = t̃n) =
∑

π:π1=u

P(Π = π | T̃n = t̃n).

Recall that T̃n = ΠTn where Tn is a random time labelled tree with APA(α, β) distribution and Π is 
an independent uniformly random ordering in Bi([n], Un). The distribution P(Π = π | T̃n = t̃n) is sup

ported on a subset of the the bijections Bi([n], Un) because π−1T̃n must be a valid time labelled tree 

(also called recursive tree in discrete mathematics). To be precise, we de7ne the histories of t̃n as

hist(t̃n) := π ∈ Bi([n], Un) : P(Tn = π−1 t̃n) > 0
{ }

, and

h(t̃n) := |hist(t̃n)|

as the number of distinct histories. Since the APA tree distribution assigns a non-zero probability to 

any valid time labelled trees, we see that hist(t̃n) contains the elements π of Bi([n], Un) such that for 

all t ∈ [n], the subtree restricted only to nodes in π1:t, i.e. t̃n ∩ π1:t, is connected. Thus, hist(t̃n) is the 

set of bijections π which represent a valid arrival ordering for the nodes of the given tree ̃tn. Similarly, 
we de7ne, for any node u ∈ Un,

hist(u, t̃n) := π ∈ hist(t̃n) : π1 = u
{ }

h(u, t̃n) := |hist(u, t̃n)|, 

as histories of t̃n that start at node u. We illustrate an example of the set of histories for a simple tree 
in Figure 8.

By de7nition, P(Π = · | T̃n = t̃n) is supported on hist(t̃n). For most values of α and β, the posterior 
distribution is in fact uniform over hist(t̃n):

Proposition 9 (Crane & Xu, 2021, Theorem 4 and Proposition 3). Let α, β be two real 
numbers such that either (1) β ≥ 0 and α ≥ −β or (2) β < 0 and α = −Dβ 
for some integer D ≥ 2. Suppose Tn ∼ APA(α, β). Let Π be a uniformly ran
dom ordering taking value in Bi([n], Un) and let T̃n = ΠTn. Then,

P(Π = π | T̃n = t̃n) =
1

h(t̃n)
1{π ∈ hist(t̃n)}. (12) 

The full proof of Proposition 9 is in Crane and Xu (2021) but we give a short justi7cation here: 

the posterior is uniform because P(Π = π | T̃n = t̃n) =
P(T̃n=t̃n |Π=π)1

n!

P(T̃n=t̃n)
=

P(Tn=π−1 t̃n)1
n!

P(T̃n=t̃n)
. Moreover, the 

Figure 8. All histories of a tree with 4 nodes.
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probability P(Tn = π−1 t̃n) is actually the same for any π ∈ hist(t̃n) by online supplementary 
Proposition S1.

By Proposition 9, we have that

P(Π1 = u | T̃n = t̃n) =
h(u, t̃n)

h(t̃n)
.

Therefore, we need only count the histories h(u, t̃n) for every node u ∈ Un. We give a well-known 

characterisation of h(u, t̃n) that leads to a linear time algorithm for counting the size of the histor

ies: de7ne, for any node u, v ∈ Un, the tree t̃
(u)
v as the subtree of node v where we view the whole 

tree as being rooted (hanging from) node u; ̃t
(u)
u is thus the entire tree rooted at u. See Figure 9 for an 

example. We then have that, by Knuth (1997) or Shah and Zaman (2011),

h(u, t̃n) = n!
∏

v∈Un

1

|t̃(u)
v |

. (13) 

Therefore, we can compute h(u, t̃n) by viewing ̃tn as being rooted at u and taking the product of the 

inverse of the sizes of all the subtrees. By using the fact that h(u, t̃n) can be directly computed from 

h(u′, t̃n) for any neighbour u′ of u, Shah and Zaman (2011) derive an O(n) algorithm for comput

ing the size of the histories over all roots {h(u, t̃n)}u∈Un
, which we give in Section S2 of the online 

supplementary material for readers’ convenience.

3.4.2 The general case

Now suppose we have the label randomised graph G̃n from the PAPER model. We then have 
that

P(Π1 = u |G̃n = g̃n) =
∑

t̃n⊆g̃n

∑

π∈hist(u,t̃n)

P(Π = π, T̃n = t̃n |G̃n = g̃n)

∝
∑

t̃n⊆g̃n

∑

π∈hist(u,t̃n)

P(Π = π, T̃n = t̃n) P(G̃n = g̃n | T̃n = t̃n, Π = π)
︸����������������︷︷����������������︸

n(n−1)/2−(n−1)
m−(n−1)

( )−1

.

∝
∑

t̃n⊆g̃n

∑

π∈hist(u,t̃n)

P(T̃n = t̃n |Π = π) =
∑

t̃⊆g̃n

∑

π∈hist(u,t̃)

P(Tn = π−1 t̃n),

(14) 

where, in the outer summation, we require ̃tn to be a subtree of g̃n with n nodes, that is, we require 

t̃n to be a spanning tree of g̃n (see equation (16)). If Tn has the uniform attachment distribution 

(α = 1, β = 0), then we have that P(Tn = π−1 t̃n) = 1
(n−1)! by online supplementary Proposition S1

Figure 9. Same tree t̃n in three rooted orientations. Left: t̃
(E)

n 
rooted at E; the subtree of A (denoted as t̃

(E)

A
) contains 

nodes A, F , G; node A is the parent of F , G. Centre: t̃
(B)

n 
rooted at B; the subtree of A (denoted as t̃

(B)

A
) contains nodes 

A, F , G; node A is the parent of F , G. Right: t̃
(G)

n 
rooted at G; the subtree of A (denoted as t̃

(G)

A
) contains nodes 

A, B, E, C, D; node A is the parent of B.
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and hence,

P(Π1 = u |G̃n = g̃n) ∝
∑

t̃n⊆g̃n

h(u, t̃n).

Thus, the posterior root probability of u is simply proportional to the number of all possible real
isations of growth process that start from node u and end up with graph g̃n; see Figure 10. When 

Tn has the LPA distribution (α = 0, β = 1), then P(Tn = π−1 t̃n) depends on the degree sequence of 

the tree t̃n so that the posterior root probability is proportional to a weighted count of all possible 
growth realisations.

4 Algorithm

The inference approach that we described in Sections 3.2 and 3.3 requires computing posterior 
probabilities such as the posterior root probability P(Π1 = u | G̃n = g̃n) for a 7xed alphabetically 
labelled graph g̃n. In this section, we derive a Gibbs sampling algorithm to generate an ordering π ∈ 

Bi([n], Un) and a forest f̃ n according to the posterior probability

P(Π = π, F̃n = f̃ n |G̃n = g̃n). (15) 

As discussed towards the end of Section 3.1, in the single root setting, the posterior probability 

(15) over Π, F̃n is non-zero only if f̃ n is a spanning tree of the graph g̃n. We formally de7ne the 
set of spanning trees of a connected graph g̃n as

T (g̃n) := f̃ n : f̃ n is connected subtree of g̃n and V(f̃ n) = V(g̃n)
{ }

. (16) 

We note that T (g̃n) is non-empty if and only if g̃n is connected. For the multiple roots setting, we 
de7ne the spanning forest of g̃n with K components as

FK(g̃n) := f̃ n : f̃ n is sub-forest of g̃n with K disjoint component trees and V(f̃ n) = V(g̃n)
{ }

so that F1(g̃n) = T (g̃n). Then, for the 7xed K roots model, the posterior probability (15) is non- 

zero only if f̃ n ∈ FK(g̃n) and for the random K roots model, probability (15) is non-zero only if 

f̃ n ∈ F (g̃n) := ∪n
K=1 FK(g̃n).

The value of the posterior probability (15) depends on the parameters of the model, e.g. α, β, θ in 
the single root setting. We provide an estimation procedure for these parameters in online 
supplementary Section S3.1 but for now, to keep the presentation simple, we assume that all pa
rameters are known.

Figure 10. One possible growth realisation starting from node B.
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Our Gibbs sampler alternates between two stages: 

(a) We 7x the forest f̃ n and generate an ordering π with probability P(Π = π | G̃n = g̃n, F̃n = f̃ n).

(b) We 7x the ordering π and generate a new forest f̃ n by iteratively sampling a new parent for 
each of the nodes.

We give the details for stage A in the next section and for stage B in Section 4.2.

Remark 8 In online supplementary Section S3.3, we give an alternative collapsed Gibbs 
sampling algorithm in which we collapse stage (A) so that we only sample the 
roots instead of the whole history π. The collapsed Gibbs sampler requires 
fewer iterations to converge but each iteration is more computationally in
tensive. Practically, the sampling algorithm that we present in Sections 4.1
and 4.2 appears to be faster except for the random K roots model on some 
data sets.

4.1 Sampling the ordering

In this section, we provide an algorithm for the 7rst stage of the Gibbs sampler where we sample an 
ordering. We 7x a spanning forest f̃ n of the observed graph g̃n, let K be the number of component 
trees of f̃ n, and let m = |E(g̃n)| be the number of edges of gn. We have that

P(Π = π |G̃n = g̃n, F̃n = f̃ n) ∝ P(Π = π |F̃n = f̃ n)P(G̃n = g̃n |F̃n = f̃ n, Π = π). (17) 

Under the non-sequential noise PAPER models, since the non-forest edges of G̃n are independent 

Erdős–Rényi random edges, we have P(G̃n = g̃n | F̃n = f̃ n, Π = π) =
n
2( )−(n−K)
m−(n−K)

( )−1 

and may thus ignore 

the non-forest edges and consider only on the posterior probability P(Π = π | F̃n = f̃ n) when sampling 

π. In the sequential noise seq-PAPER model, the P(G̃n = g̃n | F̃n = f̃ n, Π = π) term must be taken into 
account but can be computed ef7ciently. We give the detailed algorithms for each of the settings.

4.1.1 Single root setting

In the single root setting, f̃ n is connected and hence a tree; we thus change to the notation t̃n := f̃ n 
to be consistent with the notation used in De7nition 1.

Hence, by our discussion in Section 3.4, sampling π according to P(Π = · | T̃n = t̃n) is equivalent 
to sampling π uniformly from hist(t̃n). Crane and Xu (2021) and also Cantwell et al. (2021) derive 
a procedure to sample uniformly from hist(t̃n) and we provide a concise description of the proced
ure here for the readers’ convenience.

To generate π uniformly from hist(t̃n), we generate the 7rst node π1 by taking the set of all nodes 
and drawing a node u with probability

P(Π1 = u | T̃n = t̃n) =
h(u, t̃n)

h(t̃n)
. (18) 

The entire collection {h(u, t̃n)}u∈Un 
can be computed in O(n) time (c.f. Section 3.4 and online 

supplementary Section S2) and thus we require at most O(n) time to generate the 7rst node π1.
To generate the subsequent ordering π2:n, we view the tree ̃tn as being rooted at π1 and use the no

tation t̃
(π1)
n make the root explicit. For each node v ∈ Un, we de7ne t̃

(π1)
v as the subtree of the node v, 

viewing the whole tree as being rooted at node π1. We give an example of these de7nitions in Figure 9.
Then, by Crane and Xu (2021, Proposition 9), for every t ∈ [n − 1],

P(Πt+1 = v | T̃n = t̃n, Π1:t = π1:t) =
|t̃(π1)

v |
n−t+1 if v is a neighbour of π1:t in t̃n

0 else

{

(19) 
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One may verify this by showing that the probability of generating a particular ordering is 
1
n!

∏

v∈Un
|t̃(u)

n | = 1
h(u, t̃n) 

by equation (13).

Thus, we may generate π2 by considering all neighbours of π1 in t̃n and drawing a node v 

with probability proportional to the size of its subtree |t̃(u1)
v | and similar for π3, π4, etc. The 

entire sampling process can be ef7ciently done by generating a permutation uniformly at ran

dom and modifying it in place so that it obeys the hist(f̃ n) constraint. We summarise this in 
Algorithm 1 with K = 1 and also give a visual illustration in Figure 11. The runtime of the 

sampling algorithm is upper bounded by O(ndiam(t̃n)) (Crane & Xu, 2021, Proposition 
10). Trees generated by the APA(α, β) model have diameter Op( log n) (see, e.g. Drmota, 

2009, Theorem 6.32, and Bhamidi, 2007, Theorem 18) and the overall runtime is therefore 
O(n log n). The computational complexity is the same under the 7xed K setting and the ran
dom K setting.

4.1.2 Fixed K roots setting

For the PAPER(α, β, K, θ) model, we may generate from P(Π = · | F̃n = f̃ n) in a similar way. In this 
case, f̃ n is a forest that contains K disjoint component trees, which we denote by t̃

1
, . . . , t̃

K
. 

We 7rst generate a root for each component tree. For each k ∈ [K], we draw uk ∈ V(t̃
k
) with 

Algorithm 1 Generating π ∈ hist(f̃ n) according to P(Π = π | F̃ n = f̃ n) in ER noise settings.

Input: Labelled forest f̃ n with K trees, denoted t̃
1
, . . . , t̃

K
.

Output: π ∈ hist(f̃ n).

1: for k = 1, 2, . . . , K do:

2: Choose node uk ∈ V(t̃
(k)

) with probability (18) with PAPER(α, β, θ) model and with probability (20) 

under PAPER(α, β, K, θ) or PAPER(α, β, α0, θ).

3: end for

4: Let s̃ = {u1, u2, . . . , uK} be the set of roots, and 

• under PAPER(α, β, θ), let π1 = u1 and let t0 = 2,

• under PAPER(α, β, K, θ), let π1:K = s̃ in a random ordering and let t0 = K + 1.

• under PAPER(α, β, α0, θ), choose uk ∈ s̃ with probability |t̃k|/n, let π1 = uk, let t0 = 2.

5: Generate πt0 :n as a uniformly random permutation of Un\π1:(t0−1).

6: for t = t0, t0 + 1, . . . , n do:

7: Let v1 = πt, v2 = pa(v1), . . . , vk = pa(vk−1) where k is the largest integer such that v1, v2, . . . , vk ∉ π1:(t−1).                                                                            

⊳ pa(v) denotes the parent of v with respect to f̃ n rooted at s̃.

8: Set πt = vk, tk = π−1(vk), and πtk
= v1.

9: end for

Figure 11. Example of sampling an ordering. In both cases, suppose π1:3 = {B, C, D}, then draw π4 from the 

neighbours {F , A, E, G} with probability proportional to the size of their subtrees.
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probability

h(uk, t̃
k
)(βD

t̃
k (uk) + β + α)(βD

t̃
k (uk) + α)

∑

v∈V(t̃
k
)
h(v, t̃

k
)(βD

t̃
k (v) + β + α)(βD

t̃
k (v) + α)

. (20) 

We note that equation (20) is different from the corresponding probability in the single tree setting 
(18) because we give each root node an imaginary self-loop edge. We leave the detailed derivation 
of equation (20) to Section S3.2 of the online supplementary material.

We let s̃ = {u1, . . . , uk} denote the set of roots that we have generated. By the de7nition of the 
PAPER(α, β, K, θ) model (De7nition 4), the root nodes s̃ occupy the 7rst K positions of the order
ing π and we thus let π1:K be the elements of s̃ placed in a random ordering.

Next, we view each component tree t̃
k 

as being rooted at uk and, for every node v ∈ V(f̃ n), we 

denote the subtree of node v by t̃
(s̃)
v . We then generate π(K+1):n according to probability (19) where 

we use the size of the subtree |t̃(s̃)
v |. This is equivalent to generating a full history (excluding the root 

node) for every tree and then interleaving them at random. We again summarise the whole proced
ure in Algorithm 1.

4.1.3 Random K roots setting

Now consider the random K roots setting with the PAPER(α, β, α0, θ) model and suppose f̃ n com
prises of K disjoint trees ̃t

1
, . . . , t̃

K
. We again generate the set of roots ̃s = {u1, . . . , uK} by drawing 

uk from t̃
k 

with probability (20). In contrast with the 7xed K roots setting, the root nodes 
u1, . . . , uK need not occupy the 7rst K positions of the ordering π.

To generate the ordering π, we 7rst choose uk ∈ s̃ with probability |t̃k| and set π1 = uk. We then 
draw π2:n iteratively using the conditional distribution

P(Πt+1 = v |F̃n = f̃ , Π1:t = π1:t) =
|t̃(s̃)

v |
n−t+1 if v is a neighbour of π1:t in f̃ n or if v ∈ s̃

0 else

{

(21) 

We note that for a root node uk ∈ s̃, the subtree t̃
(s̃)
uk is precisely the whole tree t̃

k
. We summarise 

this procedure in Algorithm 1.

4.1.4 Sequential noise setting

Under the seq-PAPER model described in Section 2.3, we no longer have a direct sampling algo
rithm to draw from P(Π = · | G̃n = g̃n, T̃n = t̃n) because we have to take into account the P(G̃n = 

g̃n | T̃n = t̃n, Π = π) term in equation (17). For seq-PAPER models, we propose instead a 
Metropolis–Hastings algorithm to update π by sampling new transpositions.

Let π be the current sample of arrival ordering. To generate a new proposal π∗, we randomly 
choose a pair j, k ∈ {2, . . . , n} and construct π∗ by swapping the j-th and the k-th entries of π, 
that is, π∗j = πk and π∗k = πj and all other entries are equal. If π∗ ∉ hist(t̃n), then we reject the pro
posal; otherwise, we accept it with probability

1 ∧
P(G̃n = g̃n |Π = π∗, T̃n = t̃n)

P(G̃n = g̃n |Π = π, T̃n = t̃n)
, (22) 

which follows because P(Π = π | T̃n = t̃n) = P(Π = π∗ | T̃n = t̃n). The ratio in equation (22) has a 
complicated expression but can be computed in time proportional to only the degrees, with respect 
to g̃n, of πj, πk, and the parent nodes pa(πj), pa(πk), where the notion of parent node is de7ned in 

equation (23). We give a detailed description of how to ef7ciently compute (22) and determine 

whether π∗ ∈ hist(t̃n) in Section S3.5 of the online supplementary material; in particular, see 
online supplementary Section S3.5.2 which uses results from online supplementary Section S3. 
5.1. Even with our ef7cient implementation however, updating π by sampling transpositions is 
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considerably slower than sampling π directly via equation (19).
The transposition sampler does not change the root node since j, k are not allowed to take on the 

value 1. To sample a new root node, we 7x k0 ∈ N and generate a new proposal π∗ by shuf8ing the 
7rst k0 entries of π. We then accept π∗ if it is a valid history and with probability (22). Finally, we 
note that under the seq-PAPER∗model with tree edge removal, our method for sampling π is exact
ly the same. Since we condition on T̃n, it makes no difference whether we have deletion noise or 
not.

Remark 9 Sheridan et al. (2012) and Bloem-Reddy et al. (2018) use the idea of swap
ping adjacent elements of an ordering π for a Poisson growth attachment 
models and a sequential edge-growth model referred to as Beta Neutral- 
to-the-Left, respectively. In contrast, under the seq-PAPER model, we can 
compute non-adjacent swap proposal probabilities ef7ciently and hence, 
we can explore the permutation space of π faster. This is because the 
seq-PAPER is a simpler model and also because we restrict ourselves to a 
spanning tree, which simpli7es many parts of the calculations. We note 
that sampling π through non-adjacent pair swaps can also be used for the 
model Gn = Tn + Rn where Tn is not shape-exchangeable, for instance 
when the attachment probability is ϕ(DTt−1

(wt)) for some non-af7ne function 
ϕ(·) instead of the af7ne expression given in equation (1). Finally, We empha
sise that inference for the vanilla PAPER model is signi7cantly faster than 
any form of swapping-based Metropolis samplers since it directly samples 
the entire ordering.

4.2 Sampling the forest

In this section, we describe stage B of the Gibbs sampling algorithm. For a 7xed ordering π and a 
spanning forest f̃ n, we may obtain a set of roots s̃ for each of the component trees of f̃ n by taking 
the earliest node (according to π) of each tree. Viewing f̃ n as being rooted at s̃ induces parent–child 
relationships between all the nodes.

To de7ne the parent–child relationship formally, let f̃ n be a forest with disjoint component trees 
t̃
1
, . . . , t̃

K 
and let ̃s = {u1, u2, . . . , uK} be a set of root nodes such that uk ∈ V(t̃

k
). Let u be any node 

not in ̃s and suppose u ∈ V(t̃
k
). There exists a unique node v ∈ V(t̃

k
) such that v is a neighbour of u 

in f̃ n and that the unique path from u to the root uk contains v. We say v the parent node of u and 
write

pa(u) ≡ pa
f̃

(s̃)
n

(u) = parent of u with respect to f̃
(s̃)
. (23) 

For a root node u ∈ s̃, we let pa(u) := ∅ for convenience. Since every edge in f̃ n is between a node 

and its parent, the set of parents {pa(u)}u∈Un 
speci7es the n − K edges in f̃ n and hence uniquely spe

ci7es the forest f̃ n and the root nodes s̃.
Our Gibbs sampler updates the forest f̃ n by iteratively updating the parent of each of the nodes, 

which adds and removes a single edge from f̃ n (it is possible to add and remove the same edge so 
that the forest does not change) or, in the random K setting, we may remove a single edge and add a 
new root node or remove a root node and add a single edge.

To be precise, the latent tree F̃n and root set S̃ induces a latent parent of each node which we 
denote pa

F̃
(S̃)

n

(·). For every node u, we generate a new parent u′ according to the conditional distri
bution

Qu(u′) := P pa
F̃

(S̃)

n

(u) = u′
( ∣

∣
∣
∣
Π = π,G̃n = g̃n, pa

F̃
(S̃)

n

(v) = pa
f̃

(s̃)
n

(v)

{ }

v≠u

)

, (24) 
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and then replace the old edge (u, pa(u)) with (u, u′). Since we condition on the arrival ordering Π, 

probability (24) is non-zero only when u′ arrives prior to u, i.e. π−1u′ < π−1u, and (u, u′) ∈ E(g̃n). In 

other words, if π−1u = t, then Qu(·) is supported on the set of nodes π1:(t−1) ∩ Ng̃n
(u). In the random 

K setting, u′ is allowed to be empty in which case Qu(·) is supported on {∅} ∪ (π1:(t−1) ∩ Ng̃n
(u)) 

where Ng̃(u) is the set of neighbours of u on the graph g̃n. Our sampling procedure then generate 

the parents for π1, π2, π3, . . . sequentially. In Figure 12, we illustrate how we may generate a 
new parent for π5 (node C) by choosing one of the edges that connects π5 with one of the earlier 
nodes π1:4.

At iteration t, to compute Qπt (·) with respect to πt, for each node v in the support of Qπt (·), we let 

f̃
(v,πt)

n denote the forest formed by removing the old edge ( pa(πt), πt) and adding the new edge 

(v, πt). We note that v is allowed to be the old parent so that we may have f̃ n = f̃
(v,πt)

n . Then, for 
any wt in the support of Qπt (·), we have

Qπt (wt) =
P(F̃n = f̃

(wt ,πt)

n |Π = π,G̃n = g̃n)
∑

v P(F̃n = f̃
(v,πt)

n |Π = π,G̃n = g̃n)
. (25) 

In the PAPER models with Erdős–Rényi edges, We can compute the conditional distribution 

P(F̃n = · |Π = π, G̃n = g̃n) by using the fact that once when we condition on F̃n = f̃ n, the 

remaining edges of G̃n are uniformly random and the fact that Π and Fn are independent. 
Thus,

P(F̃n = f̃ n |Π = π,G̃n = g̃n)

∝ P(G̃n = g̃n |F̃n = f̃ n, Π = π)P(F̃n = f̃ n |Π = π)

=

n
2

( )

− (n − K(f̃ n))

m − (n − K(f̃ n))

( )−1

P(Fn = π−1 f̃ n)1{f̃ n ∈ F (g̃n)}

∝
∏
K(f̃ n)

k=1

n(n − 1)/2 − n + k)

m − n + k

⎧

⎨

⎩

⎫

⎬

⎭
P(Fn = π−1 f̃ n)1{f̃ n ∈ F (g̃n)}.

(26) 

We now discuss the sampling procedure in detail in all the settings.

4.2.1 Single root setting

In the single root setting, we again use the notation t̃n = f̃ n to be consistent with De7nition 1. 
The 7rst term of equation (26) is a constant since K(t̃n) = 1 and may thus be ignored. Using the 
likelihood of APA trees (see Remark 2 as well as Proposition S1 from the online supplementary 
material) and using the fact that P(Tn = π−1 t̃n) > 0 when π ∈ hist(t̃n), we have that, for any 

Figure 12. Sampling a parent for π5 (node C).
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wt ∈ π1:(t−1) ∩ Ng̃n
(πt),

Qπt (wt) =
βD

t̃
(·,πt )
n

(wt) + α
∑

v∈π1:(t−1)∩Ng̃n (πt)
βD

t̃
(·,πt )
n

(v) + α
, 

where ̃t
(·,πt)
n is the disconnected graph obtained by removing the old edge ( pa(πt), πt) from ̃tn. We 

summarise the resulting procedure in Algorithm 2. Since we visit every node once and, for a 
single node u, it takes time O(Dg̃n

(u)) to generate a new parent, the overall runtime of the se

cond stage of the algorithm is O(m). The computational complexity is the same under the 7xed 
K setting and the random K setting.

4.2.2 Fixed K > 1 setting

Since the number of trees K is 7xed, the 7rst term of equation (26) is again a constant. Using like
lihood of APA trees again (see Proposition S2 from the online supplementary material), we have 
that for any wt ∈ π1:(t−1) ∩ Ng̃n

(πt),

Qπt (wt) =

βD
f̃

(·,πt )

n
(wt) + 2β1{wt ∈ π1:K} + α

∑

v∈π1:(t−1)∩Ng̃n (πt)
βD

f̃
(·,πt )

n
(v) + 2β1{v ∈ π1:K} + α

, 

where, as with the single root setting, f̃
(·,πt)

n is the forest obtained by removing the old edge (pa(πt), πt) 

from f̃ n. The only difference from the single root setting is that we have a higher probability to attach 
to a root node because of the imaginary self-loop edge. We summarise the procedure in Algorithm 2.

4.2.3 Random K roots setting

Under the PAPER(α, β, α0, θ) model, a node may become a new root in the sampling process and 
thus we must take into account the 7rst term of equation (26). Moreover, in this setting, Qπt (·) for 
node πt is supported on {∅} ∪ (π1:(t−1) ∩ Ng̃n

(πt)) since we may turn the node πt into a new root 

node, in which case we set its parent to ∅ by convention. De7ne α̃0 := α0
m−n+K+1{πt∉s̃}

n(n−1)/2−n+K+1{πt∉s̃}; we 

then have that, by online supplementary Proposition S3, for any wt ∈ {∅} ∪ (π1:(t−1) ∩ Ng̃n
(πt)),

Qπt (wt) =
α̃0

α̃0 +
∑

v∈π1:(t−1)∩Ng̃n (πt)
βD

f̃
(·,πt )

n
(v) + 2β1{v ∈ s̃} + α

if wt = ∅

and Qπt (wt) =

βD
f̃

(·,πt )

n
(wt) + 2β1{wt ∈ S} + α

α̃0 +
∑

v∈π1:(t−1)∩Ng̃n (πt)
βD

f̃
(·,πt )

n
(v) + 2β1{v ∈ s̃} + α

if wt ≠ ∅, 

Algorithm 2 Generating spanning forest f̃ n of g̃n under either PAPER(α, β, θ) or 

PAPER(α, β, K , θ)

Input: Graph g̃n, ordering π ∈ Bi([n], Un), and a spanning forest f̃ n with K component trees.

Effect: Modi7es f̃ n in place.

1: for t = K + 1, . . . , n do:

2:  Remove old edge (πt, pa(πt)) from f̃ n to obtain f̃
(·,πt)

n .

3:  Choose a node wt ∈ π1:(t−1) ∩ Ng̃n
(πt) with probability proportional to

βD
f̃

(·,πt )

n
(wt) + α under PAPER (α, β, θ)

βD
f̃

(·,πt )

n
(w) + 2β1{w ∈ π1:K} + α under PAPER (α, β, K, θ)

{

4:  Add new edge (πt, wt) to f̃ n.

5: end for
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where, if πt is not a root node, f̃
(·,πt)

n is the forest obtained by removing the old edge (πt, pa(πt)) and 

if πt is a root node, then f̃
(·,πt)

n = f̃ n. We summarise the resulting procedure in Algorithm 3.

4.2.4 Sequential noise setting

Under the seq-PAPER setting, we use the same sampling procedure but the sampling probabilities 
become more complicated. From equation (25), we see that, for w ∈ Ng̃n

∩ π1:(t−1),

Qπt (w) ∝ P(T̃n = t̃
(w,πt)
n |Π = π,G̃n = g̃n)

∝ P(G̃n = g̃n | T̃n = t̃
(w,πt)
n , Π = π)

︸������������������︷︷������������������︸

noise term

P(T̃n = t̃
(w,πt)
n |Π = π).

Under the seq-PAPER model, the noise term also depends on w since choosing a new parent for πt 

would change the tree degrees of some of the nodes. Naively computing Qπt (w) takes time O(n), 
but in Section S3.5.3 of the online supplementary material (using results from online 
supplementary Section S3.5.1), we give a detailed algorithm to compute Qπt (w) in time 
O(Dg̃n

(w)) so that overall, we can sample a new parent for πt in time proportional to the number 

of neighbours of neighbours of πt.
When we have deletion noise, as the case of the seq-PAPER∗ model, the latent tree T̃n need not 

be a subgraph of G̃n and hence, when sampling a new parent for πt, we must consider all of π1:(t−1) 

and not just graph neighbours of πt. Thus, we draw w ∈ π1:(t−1) with probability Qπt (w) and set 
pa(πt) = w. We give the detailed algorithm for computing Qπt (w) in Section S3.5.3 of the online 
supplementary material.

4.3 Other aspects of the algorithm

4.3.1 Parameter estimation

To estimate α and β, we derive an EM algorithm in Section S3.1 of the online supplementary 

material. The noise level θ is easy to estimate via θ̂ =
m−(n−1)

n(n−1)/2−(n−1) in the single root setting. The in

ference algorithm in fact does not require knowledge of θ since it conditions on the number of 
edges m of the observed graph. We discuss some ways to select the number of trees K in the 7xed 
K root setting and ways to estimate α0 in the random K roots setting in Section S3.4 of the online 
supplementary material.

4.3.2 Inference from posterior samples

The Gibbs sampler described in Sections 4.1 and 4.2 generates a Monte Carlo sequence 
{(π(j), f̃

(j)

n )}
J
j=1 where J is the number of Monte Carlo samples. A straightforward way to 

Algorithm 3 Generating spanning forest f̃ n of g̃n under PAPER(α, β, α0, θ)

Input: Graph g̃n, ordering π ∈ Bi([n], Un), and a spanning forest f̃ n.

Effect: Modi7es f̃ n in place.

1: Let s̃ be the set of root nodes.

2: for t = 2, 3, . . . , n do:

3: If πt ∉ s̃, remove edge (πt, pa(πt)) from f̃ n to get f̃
(·,πt)

n . Else, let s̃ = s̃\{wt} and let f̃
(·,πt)

n = f̃ n.

4: Choose a node wt ∈ {∅} ∪ (π1:(t−1) ∩ Ng̃n
(πt)) with probability proportional to

α0 for wt = ∅
βD

f̃
(·,πt )

n
(wt) + 2β1{wt ∈ s} + α for wt ≠ ∅

{

5: If wt ≠ ∅, let f̃ n = f̃
(·,πt)

n ∪ (πt, wt). Otherwise, let s̃ = s̃ ∪ {πt} and f̃ n = f̃
(·,πt)

n .

6: end for
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approximate the posterior root probability is to use the empirical distribution based on all the 
π(j)’s. However, we can construct a much more accurate approximation by taking advantage of 
the fact that the posterior root probability is easy to compute on a tree.

Consider the single root setting for simplicity where the posterior root probability is P(Π1 = 

u | G̃n = g̃n) for any node u. In this case, we may compute distributions Q(1), Q(2), . . . , Q(J) over 
the nodes by

Q(j)
= P(Π1 = u | T̃n = t̃

(j)
n ,G̃n = g̃n) = P(Π1 = u | T̃n = t̃

(j)
n ) =

h(u, t̃
(j)
n )

h(t̃
(j)
n )

.

Then, we output 1J
∑J

j=1 Q(j) as our approximation of the posterior root distribution. In the mul

tiple roots setting, we use the same procedure except that we compute u 7! P(u ∈ S̃ | F̃n = f̃
(j)
n ) and 

then average across j ∈ {1, 2, . . . , J}.
In the multiple roots setting, each Monte Carlo sample of the forest f̃

(j)

n contain either K disjoint 
trees in the 7xed K setting or a random number of disjoint trees in the random K setting. These 
disjoint trees provide a posterior sample of the communities on the network and using them, 
we may estimate the community structure of the network. We provide details on one way of using 
posterior samples for community recovery in Sections 6.3 and 6.4.

The Gibbs sampling algorithm scales to large networks. We are able to run it on networks of 
up to a million nodes (c.f. Section 6.2.2) on a single 2020 MacBook Pro laptop. To give a rough 
sense of the runtime, it takes about 1 second to perform one outer loop of the Gibbs sampler on 
a graph of 10,000 nodes and 20,000 edges. In Section S3.4 of the online supplementary 
material, we provide more details on practical usage of the Gibbs sampler such as convergence 
criterion.

4.3.3 Initialisation

In the single root setting, to initialise the Gibbs sampling algorithm, we recommend generating the 
initial tree t̃n uniformly at random from the set of spanning trees T (g̃n) of the observed graph, 
which can be ef7ciently done via elegant random-walk-based algorithms such as the Aldous– 
Broder algorithm (Aldous, 1990; Broder, 1989) or Wilson’s algorithm (Wilson, 1996). We then 
initialise π by drawing an ordering uniformly from the history of the initial tree. This initialisation 
distribution is guaranteed to be overdispersed and works very well in practice. The same initialisa
tion works for the random K setting. For the 7xed K setting, we can form the initial forest by con
structing uniformly random spanning tree ̃tn and uniformly random ordering π as usual, taking the 
7rst K nodes of the π as the root nodes, and removing all tree edges between them to obtain an 
initial f̃ n. We use Wilson’s algorithm in our implementation.

5 Theoretical analysis

We provide theoretical support for our approach by deriving bounds on the size of our proposed 
con7dence sets when the observed graph has the PAPER distribution. In particular, we aim to 
quantify how the quality of inference deterioriates with the noise level θ, that is, how the size of 
the con7dence set increases with θ. For simplicity, for consider only the single root setting and 
we do not take into account approximation errors introduced by the Gibbs sampler, that is, we 
analyse the con7dence set constructed from the exact posterior root probabilities.

We begin with a type of optimality statement which shows that the size of the con7dence set 
Bϵ(·), as de7ned in equation (8), is of no larger order than any other asymptotically valid con7
dence set. Intuitively, this is because Bϵ(·) can be interpreted as a ‘Bayes estimator’ for the root 
node.

Lemma 10 Let ϵ be in (0, 1), let Gn ∼ PAPER(α, β, θ), and let G∗n = ρGn be the observed 
alphabetically labelled graph for some ρ ∈ Bi([n], Un). Let Bϵ(G

∗
n) be de7ned 

as in equations (7) and (8). Fix any δ ∈ (0, 1) and let Cδϵ(G
∗
n) be any con7dence 

set for the root node that is labelling equivariant and has asymptotic coverage 
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level 1 − δϵ, that is, lim supn→∞ P(ρ1 ∉ Cδϵ(G
∗
n)) ≤ δϵ. Then, we have that

lim sup
n→∞

P |Bϵ(G
∗
n)| ≥ |Cδϵ(G

∗
n)|

( )

≤ δ.

We provide the proof of Lemma 10 in Section S4 of the online supplementary material.
Ideally, we would compare the size of Bϵ(·) with Cϵ(·) at the same level. It is however much easier 

to compare with the more conservative Cδϵ(·). In many cases, the size of a con7dence set |Cϵ(·)| has 
bounds of the form f (n)g(ϵ−1) for some functions f and g (see, e.g. Banerjee & Bhamidi, 2020) so 
that comparing with Cδϵ(·) adds only a multiplicative constant to the bound.

Lemma 10 is useful because it is dif7cult to directly bound the con7dence set Bϵ(·) as a func
tion of n and the parameters; Lemma 10 shows that we can indirectly upper bound it by ana
lysing a simpler asymptotically valid con7dence set. Our strategy then is to construct 
con7dence sets based on the degree of the nodes whose size is much easier to bound through 
well-understood probabilistic properties of preferential attachment trees. This leads to our 
next result which provides explicit bounds on the size of the con7dence set Bϵ(·) when the under
lying tree is LPA.

Theorem 11 Let Gn ∼ PAPER(α, β, θ) for β = 1, α = 0, and θ ∈ [0, 1]. For t ∈ [n], let 
DGn (t) be the degree of node with arrival time t and for k ∈ [n], let 
k-max(DGn ) be the k-th largest degree of Gn. Let δ > 0 be arbitrary and sup
pose θ ≤ n−1

2−δ. Then, for any ϵ > 0, there exists Lϵ ∈ N (dependent on δ but 
not on n) such that

lim sup
n→∞

P DGn (1) ≤ Lϵ − max (DGn )
{ }

≤ ϵ. (27) 

As a direct consequence, if θ = O(n−1
2−δ) for any δ > 0, then, for any 

ϵ ∈ (0, 1),

|Bϵ(G
∗
n)| = Op(1).

We relegate the proof of Theorem 11 in Section S4.1 of the online supplementary material and 
provide a short sketch here: we use results from Peköz et al. (2014) which show that the degree 
sequence of an LPA tree, when normalised by 1��

n
√ , converges to a limiting distribution in the ℓq se

quential metric sense, which shows that equation (27) holds for the tree degree DTn (·), that is, the 
degree of the root node is one of the highest among all the nodes. Since DGn = DTn + DRn , we show 
that if the noise level θ is less than n−1/2−δ for some δ > 0, then the degree of the noisy edges DRn has 
a second-order effect and equation (27) remains valid.

We know from existing results (such as Bubeck, Devroye et al., 2017, Theorem 6; see also Crane 
& Xu, 2021, Corollary 7) that |Bϵ(T

∗
n)| is Op(1) in the θ = 0 case where we observe the LPA tree T∗n. 

Theorem 11 shows that this phenomenon is quite robust to noise. Indeed, when θ = n−1/2−δ, the 
observed graph would have approximately n3/2−δ noisy edges and only n − 1 tree edges.

The situation is different when the underlying latent tree has the UA distribution, where α = 1 
and β = 0. In this case, we have the following result:

Theorem 12 Let Gn ∼ PAPER(α, β, θ) for α = 1, β = 0, and θ ∈ [0, 1]. For t ∈ [n], let 
DGn (t) be the degree of node with arrival time t and for k ∈ [n], let 

k- max (DGn ) be the k-th largest degree of Gn. Suppose θ = o( log n
n ) and 

let ϵ ∈ (0, 1) be arbitrary. For any η ∈ (0, 1), de7ne Lη,n,ϵ := nη + 

ϵ−1n1−(2−η)h( η
2−η) where h(x) = (1 + x) log (1 + x) − x for x ≥ 0. Then, we 

have that

lim sup
n→∞

P DGn (1) ≤ Lη,n,ϵ- max (DGn )
{ }

≤ ϵ. (28) 
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As a direct consequence, if θ = o( log n
n ), then, for some γ ≤ 0.8, we have that

n−γϵ−1|Bϵ(G
∗
n)| = Op(1) for any ϵ ∈ (0, 1).

We relegate the proof of Theorem 12 to Section S4.2 of the online supplementary material. The 
proof technique is similar to that of Theorem 11 except that we use concentration inequalities to 
derive equation (28).

Comparing Theorem 12 with Theorem 11, we see two important differences. First, even if the 
noise level is small, we can no longer guarantee that |Bϵ(G

∗
n)| is bounded even as n increases. 

Instead, we have the much weaker bound that |Bϵ(G
∗
n)| is less than O(nγ) for some γ < 0.8. We be

lieve this bound is not tight; we observe from simulations in Section 6.1 (see Figure 13) that the size 
of the con7dence set Bϵ(·) is indeed Op(1) even when the noise level is of order log n

n . The bound is 
sub-optimal because the degree of the nodes is not informative of their latent ordering when the la
tent tree has the UA distribution; hence, Bϵ(·) could be much smaller than con7dence sets constructed 
solely from degree information. Intuitively, this is because largest degree nodes do not persist in UA 
as opposed to linear preferential attachment (Dereich & Mörters, 2009; Galashin, 2013).

The second difference is that the noise tolerance is much smaller. We require θ to be smaller than 
log n

n rather than n−1/2. We conjecture that these rates are tight in the following sense:

Conjecture 13 Let Gn ∼ PAPER(α, β, θ) for α = 1, β = 0, and θ ∈ [0, 1]. 

1. Suppose α = 0 and β = 1 (LPA). If θ = o(n−1/2), then |Bϵ(G
∗
n)| = Op(1) 

and if θ = ω(n−1/2), then every asymptotically valid con7dence set has 
size that diverges with n.

2. Suppose α = 1 and β = 0 (UA). If θ = o( log n
n ), then |Bϵ(G

∗
n)| = Op(1) and 

if θ = ω( log n
n ), then every asymptotically valid con7dence set has size 

that diverges with n.

We provide empirical support for this conjecture in Section 6.1, particularly Figure 13. In those 
experiments, we see that, when the latent tree has the LPA distribution and when θ = cn−1/2 where 
c > 0 is small, the size of Bϵ does not increase with n; however, when c (and hence θ) is large, Bϵ is 
larger when the size of the graph n is larger. The same phenomenon holds when the latent tree has 
the UA distribution when θ = c log n

n .

6 Empirical studies

We have implemented the inference approach in Section 3 and the sampling algorithm in Section 4
in a Python package named paper-network, which can be installed via command line pip 
install paper-network on the terminal and then imported in Python via import PAPER. 
The source code of the package, along with examples and documentation, are available at the web
site https://github.com/nineisprime/PAPER. All the code used in this Section are also available 

Figure 13. Size of the confidence set vs. the number of edges.
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there under the directory paperexp. We also give detailed sampler diagnostics information in 
Section S5.4 of the online supplementary material.

6.1 Simulation

6.1.1 Frequentist coverage in the single root setting

In our 7rst simulation study, we empirically verify Theorem 7 by showing that a level 1 − ϵ credible 
set for the root node constructed from the posterior root probabilities has frequentist coverage at 
exactly the same level 1 − ϵ. We consider three different settings of parameters: α = 0, β = 1 (LPA), 
α = 1, β = 0 (UA), and α = 8, β = 1. We generate G∗n according to the PAPER(α, β, θ) model with 
n = 3,000 nodes and m = 7,500 edges. We then estimate α and β using the method given in 
online supplementary Section S3.1, compute the level ϵ ∈ {0.2, 0.05, 0.01} credible sets, and re
cord whether they cover the true root node. We repeat the experiment over 300 independent trials 
and report the results in Table 2. We observe that the credible sets attain the nominal coverage and 
that the size of the credile sets are small compared to the number of nodes n.

6.1.2 Size of the con&dence set

In our second simulation study, we study the effect of the sample size n and the magnitude of the 
noisy edge probability θ on the size of the con7dence set. We let G∗n be the observed graph with n 
nodes and m edges according to the PAPER(α, β, θ) model where we consider (α, β) = (0, 1) (LPA) 
or (1, 0) (UA). Since a tree with n nodes always contains n − 1 edges, n2

2 θ + n is approximately 
equal to the number of edges m in the observed graph G∗n.

We empirically show that the con7dence set size does not depend on n so long as θ is much small
er than n−1/2 for LPA and much smaller than log n

n for UA. To that end, we set m = cn
��

n
√

for c ∈ 

{0.1, 0.2, 0.4, 0.6, 0.8, 1} for LPA and m = cn log n for c ∈ {0.15, 0.2, 0.4, 0.6, 0.8} for UA. We 
then plot the average size of the con7dence set with respect to c for n ∈ {5,000, 10,000}. We 
plot the curve for n = 5,000 and for n = 10,000 on the same 7gure and observe that, when c is 
small, the two curves overlap completely but when c is large, the n = 10,000 curve lies above 
the n = 5,000 curve. This provides empirical support to Theorems 11 and 12. In fact, this experi
ment shows that the bound of nγ on the size of the con7dence set in Theorem 12 is loose; the actual 
size does not increase with n. The fact that the con7dence set size seems to diverge with n when c is 
larger supports Conjecture 13 and suggests that the problem of root inference exhibits a phase 
transition when θ ≈ 1��

n
√ under the LPA model and θ ≈

log n
n under the UA model.

Table 2. Empirical coverage of our confidence set for the root node

(α, β) (0, 1) (1, 0) (8, 1) (0, 1) (1, 0) (8, 1) (0, 1) (1, 0)

Theoretical coverage 0.8 0.8 0.8 0.95 0.95 0.95 0.99 0.99

Empirical coverage 0.8 0.823 0.82 0.937 0.943 0.94 0.983 0.993

Ave. conf. set size 7 12 9 42 42 31 183 115

Note. We report the average over 300 trials. Graph has n = 3,000 nodes and m = 7,500 edges in all cases.

Table 3. Empirical coverage of our confidence set for the seq-PAPER(α, β, θ, α̃, β̃) model without deletion noise, with 

θ = 1.5 and α̃ = α and β̃ = β

(α, β) (with α̃ = α, β̃ = β) (0, 1) (1, 0) (0, 1) (1, 0) (0, 1) (1, 0)

Theoretical coverage 0.8 0.8 0.95 0.95 0.99 0.99

Empirical coverage 0.795 0.895 0.935 0.965 0.970 0.995

Ave. conf. set size 7 7 25 16 56 28

Note. We report the average over 200 trials. Graph has n = 600 nodes and around m ≈ 1,500 edges in all cases.
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6.1.3 Frequentist coverage under sequential noise models

In our third simulation study, we verify Theorem 7 for the seq-PAPER model with sequential noise 
described in Section 2.3. We generate G∗n according to both the seq-PAPER(α, β, θ, α̃, β̃) model and 
the seq-PAPER∗(α, β, θ, α̃, β̃, η) model with deletion noise. We then construct the credible sets for 
the root node from posterior root probabilities computed via the algorithm given in Section 4. We 
repeat the experiment over 200 independent trials and report the results in Tables 3 and 4. We ob
serve that the credible sets attain the nominal coverage. We also note that Table 4 shows that the 
seq-PAPER∗ model can tolerate tree deletion probability up to η = 0.08 without signi7cant in
crease in the con7dence set sizes.

6.1.4 Frequentist coverage for multiple roots

Our next simulation study is similar to the 7rst except that we generate graphs from the 
PAPER(α, β, K, θ) model with K = 2. We construct our credible sets as described in Section 3.3
and verify Theorem 8 by showing that the credible set at level 1 − ϵ also has frequentist coverage 
at exactly the same level. We consider two different settings of parameters: α = 0, β = 1 (LPA) and 
α = 1, β = 0 (UA). We generate G∗n according to the PAPER(α, β, K, θ) model with n = 700 nodes, 
m = 1,000 edges, and K = 2. We then estimate α and β using the method given in online 
supplementary Section S3.1, compute the level ϵ ∈ {0.2, 0.05, 0.01} credible sets, and record 
whether they contain the true set of root nodes. We repeat the experiment over 200 independent 
trials and report the results in Table 5. We observe that the credible sets attain the nominal cover
age. In the LPA setting, the size of the credible sets are small but in the UA setting, the sizes of the 
credible sets become much larger. We relegate an in-depth analysis of this phenomenon to future 
work.

6.1.5 Posterior on K in the random K roots setting

In our last simulation experiment, we generate PAPER graphs with K = 2 roots but perform pos
terior inference using the PAPER(α, β, α0, θ) model and study resulting posterior distribution over 
the number of roots K. We consider two different settings of parameters: α = 0, β = 1 (LPA) and 
α = 1, β = 0 (UA). We generate G∗n according to the PAPER(α, β, K, θ) model with n = 700 nodes, 
m = 1,000 edges, and K = 2. We report the posterior distribution over K, averaged over 20 
independent trials, in Figure 14. We observe that, in both cases, the mode of the posterior distri
bution over K is 2, which is the true number of roots. However, the distributions exhibits high 

Table 4. Empirical coverage of our confidence set for the seq-PAPER∗(α, β, θ, α̃, β̃, η) model with deletion noise, with 

α = 0, β = 1, α̃ = 8, β̃ = 1, θ = 1.5 in all cases

η (tree edge deletion probability) 0 0 0.04 0.04 0.08 0.08

Theoretical coverage 0.8 0.95 0.8 0.95 0.8 0.95

Empirical coverage 0.825 0.96 0.84 0.95 0.85 0.98

Ave. conf. set size 5.9 14.1 6.3 15.0 6.7 15.9

Note. We report the average over 200 trials. Graph has n = 300 nodes and around m ≈ 750 edges in all cases.

Table 5. Empirical coverage of our confidence set for the set of K = 2 root nodes

(α, β) (0, 1) (1, 0) (0, 1) (1, 0) (0, 1) (1, 0)

Theoretical coverage 0.8 0.8 0.95 0.95 0.99 0.99

Empirical coverage 0.826 0.826 0.933 0.964 0.974 0.985

Ave. conf. set size 5 57 12 155 31 295

Note. We report the average over 200 trials. Graph has n = 700 nodes and m = 1,000 edges in all cases.
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variance, which could be due to the fact that the two true latent trees may have signi7cantly dif
ferent sizes.

6.2 Single root analysis on real data

We now apply the single root PAPER model on real-world networks. In a few cases (Section 6.2.1), 
we can ascertain from domain knowledge that the network originated from a single root node but 
more often, we use the single root model to identify important nodes and subgraphs (Section 
6.2.2).

6.2.1 Flu transmission network

We analyse a person-to-person contact network among 32 students in a London classroom during 
a 8u outbreak (Hens et al., 2012). We extract the data from Figure 3 in Hens et al. (2012) and il
lustrate the network in the left sub-7gure of Figure 15. Public health investigation revealed that the 
outbreak originated from a single student, which is the true patient zero and shown as the orange 
node in Figure 15. We apply the PAPER model with a single root to this network. We estimate that 
β = 1 and α = 53.06 using the method described in online supplementary Section S3.1 and com
pute the 60%, 80%, 95%, and 99% con7dence sets. All the con7dence sets contain the true patient 
zero and their sizes are as follows:

60% : 6 nodes 80% : 10 nodes 95% : 19 nodes 99% : 27 nodes.

We provide the approximate posterior root probabilities of the top 7 nodes in Figure 15. The true 
patient zero has a posterior root probability of 0.11 is the node with the 3rd highest posterior root 

probability. In the centre and right sub-7gure of Figure 15, we also show two of the latent trees T̃n 

that were generated by the Gibbs sampler.

Figure 14. Posterior distribution over K averaged across 20 independent trials. Left: Networks have two latent UA 

trees. Right: Networks have two latent LPA trees.

Figure 15. Left: Contact network among 32 students in a flu outbreak. Centre and right: Two examples of the latent 

tree generated by the Gibbs sampler.
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6.2.2 Visualising central subgraphs

Large-scale real graphs are dif7cult to visualise but one can often learn salient structural prop
erties of a graph by visualising a smaller subgraph that contains the most important nodes. In this 
section, we apply the single root PAPER model on four large networks and, for each graph, dis
play the subgraph that comprises the 200 nodes with the highest posterior root probability. We 
see that the result reveals striking differences between the different graphs. Unfortunately, we do 
not have the node labels on any of these four graphs and can only make qualitative interpreta
tions of the results.

MathSciNet collaboration network. We 7rst consider a collaboration network of research pub
lications from MathSciNet, which is publicly available in the Network Repository (Rossi & 
Ahmed, 2015) at the link http://networkrepository.com/ca-MathSciNet.php. This network has 
n = 332, 689 nodes and m = 820, 644 edges, with a maximum degree of 496. Using the method 
described in online supplementary Section S3.1, we estimate β = 1 and α = 0. The sizes of con7
dence sets are:

60% : 3 nodes 80% : 6 nodes 95% : 21 nodes 99% : 112 nodes.

We display the subgraph containing the 200 nodes with the highest posterior root probability in 
Figure 16a. We observe that the subgraph reveals a cluster structure that may represent the differ
ent academic disciplines.

University of Notre Dame website network. We study a network of hyperlinks between web
pages of University of Notre Dame (Albert et al., 1999), which is publicly available at the web
site https://snap.stanford.edu/data/web-NotreDame.html. This network has n = 325,729 
nodes and m = 1,090,108 edges, with a maximum degree of 10,721. Using the method de
scribed in online supplementary Section S3.1, we estimate β = 1 and α = 0. The sizes of con7
dence sets are:

60% : 2 nodes 80% : 21 nodes 95% : 524 nodes 99% : 3498 nodes.

We observe that the central subgraph (shown in Figure 16b) reveals two hub nodes with many 
sparsely connected ‘spokes’.

(a) (b)

Figure 16. Subgraph of the 200 nodes with highest posterior root probabilities. (a) MathSciNet subgraph and (b) 

Notre Dame subgraph.
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6.3 Community recovery with the fixed K model

In this section, we show that we can use the PAPER model with multiple roots for community re
covery on real-world networks. To estimate the community membership from the posterior sam
ples, we use a greedy matching procedure. To be precise, our Gibbs sampler outputs a sequence of 

forests f̃
(1)

n , . . . , f̃
(J)
n where J is the number of Monte Carlo samples. Each forest f̃

(j)
n contains K com

ponent trees which we denote t̃
(1,j)

, t̃
(2,j)

, . . . , t̃
(K,j)

. We write Q(j)
k (·) := P(Π1 = · | T̃ = t̃

(k,j)
) as the 

posterior root distribution of the k-th tree of the j-th Monte Carlo sample. Since the tree labels 
may switch from sample to sample, we use the following matching procedure: we maintain K dis

tributions Q1(·), Q2(·), . . . , QK(·) and initially set Qk = Q(1)
k for all k ∈ [K]. Then, for 

j = 2, 3, . . . , J, we use the Hungarian algorithm to compute a one-to-one matching σ : [K]→
[K] that minimises the overall total variation distance

∑K

k=1

TV(Q(j)
k , Qσ(k)).

Once we compute the matching, we then update Qσ(k) ← j−1
j Qσ(k) + 1

j Q(j)
k .

In this way, we interpret Q1, . . . , QK as the average posterior root distributions for the K trees 
across all the Monte Carlo samples and using the matching, we may also compute the posterior 
probability P(u in tree k | G̃n = g̃n), which allows us to perform community detection – we put 
node u in cluster k if P(u in tree k | G̃n = g̃n) ≥ P(u in tree k′ | G̃n = g̃n) for all k′ ≠ k. We use the 
greedy matching procedure for computational ef7ciency—slower but more principles approaches 
are studied by, e.g. Wade and Ghahramani (2018).

6.3.1 Karate club network

We apply the PAPER model to Zachary’s karate club network Zachary (1977), which is publicly 
available at http://www-personal.umich.edu/mejn/netdata/. The karate club network has n = 34 
nodes and m = 76 edges, where two individuals share an edge if they socialise with each other. 
The network has two ground truth communities, one led by the instructor and one led by the ad
ministrator (shown as rectangular nodes in Figure 17. These two communities later split into two 
separate clubs. In this case, we apply the PAPER model with K = 2 roots. For every node u, we 
consider the community membership probability P(u in tree 1 | G̃n) and assign u to community 
1 if and only if this value is greater than 0.5. We show the result in in Figure 17, where each 
node has a colour that re8ects its community membership probability.

We correctly cluster all but one node, which matches the performance of degree-corrected SBM 
Karrer and Newman (2011) and Amini et al. (2013) (DCSBM)—the current state-of-the-art model 
for community detection. The node that we misclassify has a posterior probability 
P(u in tree 1 | G̃n) = 0.47, indicating that the model is indeed unsure of whether it belong in com
munity 1 or 2. We note that the PAPER model requires only 3 parameters whereas the DCSBM for 

Figure 17. Left: Karate club network where node colour reflects community membership probability. Centre and 

right: Two examples of the latent forest generated by the Gibbs sampler.
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this network requires 38 parameters because each node has a degree correction parameter. SBM 
without degree correction performs badly Karrer and Newman (2011).

6.3.2 Political blogs network

Next, we analyse a political blogs network (Adamic & Glance, 2005) that is frequently used as a 
benchmark for network clustering algorithms; the full network is publicly available at the website 
http://www-personal.umich.edu/mejn/netdata/. This network contains m = 16,714 edges between 
n = 1,222 blogs, where two blogs are connected if one contains a link to the other. For simplicity, 
we treat the network as undirected.

The network again has two ground truth communities, one that comprise of left-leaning blogs 
and one that comprises of right-leaning blogs. We again apply the PAPER model with K = 2 roots 
and for every node u, we compute the community membership probability P(u in tree 1 | G̃n) and 
assign u to community 1 if and only if this value is greater than 0.5. We show the result in in 
Figure 18, where each node has a colour that re8ects its community membership probability.

Our overall misclustering error rate is 9.1%, which is high compared to current state-of-the-art 
approaches; for example, the SCORE method (Jin, 2015) attains an error rate of about 5%. 
However, we compute the misclustering error rate with respect to only the top 400 nodes with 
the highest posterior root probabilities, which can be interpreted as the most important nodes 
in the graph, our misclustering error rate drops to 3.5%. This con7rms our intuition that the 
PAPER model, when used for clustering, is more reliable for central nodes than for peripheral 
nodes.

6.4 Community discovery with the random K model

For networks with an unknown number of small and possibly overlapping communities, the ran
dom K model PAPER(α, β, α0, θ) can be useful for discovering complex community structures. To 
extract community information from the posterior samples, we again use a greedy matching pro
cedure. To be precise, in the random K setting, our proposed Gibbs sampler outputs a sequence of 

forests f̃
(1)

n , . . . , f̃
(J)

n where J is the number of Monte Carlo samples. We write each forest f̃
(j)

n , for 

j ∈ [J], as a collection of trees {t̃
(1,j)

, . . . , t̃
(Kj,j)} where Kj is the number of trees in f̃

(j)
n . For j ∈ [J] and 

k ∈ [Kj], we write Q(j)
k (·) = P(Π1 = · | T̃ = t̃

(k,j)
) as the posterior root distribution of the k-th tree in 

the j-th Monte Carlo sample. To summarise the output in an interpretable way, we do the 
following: 

Figure 18. Left: Political blog network where node colour reflects community membership probability. Right: One 

example of a forest generated by the Gibbs sampler. The 5 nodes with the larger marker comprise the 95%

confidence set for the roots.
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1. We initialise Kall = max j∈[J] Kj and Qk = Q(1)
k for k = 1, 2, . . . , K1. For k = K1 + 1, . . . , Kall, 

we initialise Qk(·) = 0.

2. For j = 2, 3, . . . , J, we match {Q1, . . . , QKall
} with {Q(j)

1 , . . . , Q(j)
Kj

} by computing a one-to-one 

matching σ : [Kj]→ [Kall] that minimises

∑
Kj

k=1

TV(Q(j)
k , Qσ(k)).

For every k ∈ [Kj], if the total variation distance between the k-th pair of the matching is too 

large, that is TV(Q(j)
k , Qσ(k)) > 0.75, then we create a new set Kall ← Kall + 1 and set 

QKall+1 ← Q(j)
k ; otherwise, we perform the update Qσ(k) ← j−1

j Qσ(k) + 1
j Q(j)

k .

3. We output {Q1, . . . , QKall
} as the discovered clusters, represented as posterior root probabil

ity distributions.

For all of our experiments, we only include trees that contain at least 1% of the total number of 
nodes. For each discovered cluster Qℓ for ℓ ∈ [Kall], we also compute ρQℓ

as the number of 
Monte Carlo iteration j ∈ [J] where we match Qℓ with Q(j)

k , i.e. σ(k) = ℓ, and update Qℓ. We 
then compute 

ρQℓ

J as the posterior frequency of cluster Qℓ.
In order to check that the random K model is reasonable, we 7rst apply it to the karate club and 

the political blog networks, which we know contain two underlying clusters, and analyse the re
sulting posterior distribution over the number of cluster-trees K. We provide the results for the ka
rate club network in the left part of Figure 19, in which we see that the posterior mode is at K = 2. 
For the political blog network, the Gibbs sampler tends to produce a few large clusters and many 
tiny clusters of fewer than 10 nodes. Therefore, to compute the posterior over K, we count only 
clusters that have at least 12 nodes (1% of the total number of nodes) and give the results in 
the right part of Figure 19. The posterior mode in this case is K = 3, which is reasonably close 
to the ground truth.

We also analyse an air route network (Guimera et al., 2005) of n = 3,618 airports and m = 

14,142 edges where two airports share an edge if there is a regularly scheduled 8ight between 
them. We remove the direction of the edges and treat the network as undirected. The dataset is 
publicly available at http://seeslab.info/downloads/air-transportation-networks/. Using the ran
dom K model, we discover a large central cluster containing major airports around the world 
and various small clusters that correspond to more remote regions such as airports on Paci7c 
and Polynesian islands, airports in Alaska, and airports in the Canadian Northwest Territories. 
For sake of brevity, we defer the detailed results to Section S5.2 of the online supplementary 
material.

6.5 Analysis of statistician co-authorship network

We now apply PAPER models to perform an extensive analysis of a statistician co-authorship net
work constructed by Ji and Jin (2016). In this network, each node corresponds to a statistician 
and two nodes u and v have an edge between them if they have co-authored 1 or more papers 
in either Journal of Royal Statistical Society: Series B, Journal of the American Statistical 

Figure 19. Posterior over K using the random K roots model on the karate club network (left) and the political blog 

network (right).
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Association, Annals of Statistics, or Biometrika from 2002 to 2013. We consider only the largest 
connected component which has n = 2,263 nodes and m = 4,388 edges. Ji and Jin (2016) in their 
manuscript (Section 4.3) refer to this network as ‘Coauthorship Network (B)’. We emphasise that 
since the data re8ect only co-authorship in four journals in the period 2002–2013, the results that 

Figure 20. Subgraph of the co-authorship graph comprising the 200 nodes with the highest posterior root 

probabilities. We label the 12 nodes with the highest root probabilities.

Figure 21. Nine of the clusters that most frequently appear in the posterior samples. Word sizes are proportional to 

the posterior root probability with respect to the cluster. (a) Central super-cluster. (b) Bayesian. (c) Bayesian. (d) 

Theory. (e) Multivariate analysis. (f) Biostat. (g) Computation/UK. (h) Biostat. (i) Graphical models.
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we produce cannot be used to compare researchers—we use this network only to illustrate 
PAPER models in a setting where we can more easily assess whether the output is meaningful 
or not.

6.5.1 Single root analysis

We 7rst use the single root PAPER(α, β, θ) model where we estimate α = 0, β = 1 using the EM al
gorithm described in online supplementary Section S3.1. We 7nd that the following 4 nodes have 
the highest posterior root probabilities: (1) Raymond Carroll with root probability 0.32, (2) Peter 
Hall with root probability 0.26, (3) Jianqing Fan with root probability 0.086, and (4) James 
Robins with root probability 0.048. The root probability ranking align closely with betweenness 
centrality ranking, in which Raymond Carroll, Peter Hall, and Jianqing Fan are also the top 3 most 
central nodes; see Table 2 of Ji and Jin (2016). Both the root probability ranking and the betwe
enness ranking differ signi7cantly from degree ranking. We also display the subgraph of the 200 
nodes with the highest posterior root probabilities in Figure 20 where we labelled the top 12 nodes 
with the highest root probabilities.

6.5.2 Community detection with random K roots model

Using our inference algorithm and the greedy matching procedure in Section 6.4, we compute clus
ters {Q1, . . . , QKall

} where we 7nd about Kall ≈ 40 signi7cant clusters. We order the clusters by 
their posterior frequencies and display the top 9 clusters in Figure 21, along with labels that we 

(a)

(b)

Figure 22. Two additional clusters along with the subgraphs that correspond to the clusters. In the subgraph, we 

label the 8 nodes with the highest posterior root probability with respect to that cluster. We observe that the 

subgraphs are tree-like. (a) Experimental design community. (b) High-dimensional statistics community.
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curated; we display the nodes in the cluster as word clouds in which the word size is proportional 
to the posterior root probabilities. We display 18 additional clusters in Section S5.3 of the online 
supplementary material. We note that the clusters can overlap since they are constructed from a 
sequence of posterior samples by matching; see the 7rst paragraph of Section 6.4.

Ji and Jin (2016) on the same network uses scree plot to conclude that there are K = 3 clusters, 
which are shown in Figures 9–11 in their paper. They refer to the three clusters as a ‘high- 
dimensional’ super-cluster, a ‘biostatistics’ cluster, and a ‘Bayes’ cluster. We 7nd a giant super- 
cluster, but we also 7nd a large number of smaller clusters which accurately re8ect actual research 
communities in statistics. For example, we 7nd the same ‘Bayes’ cluster in Ji and Jin (2016) (see 
Figure 21a), but we also discover other Bayesian clusters such as ones shown in Figure 21b. 
Similarly, we 7nd the ‘biostat’ community in Ji and Jin (2016) (see Figure 21f) but we 7nd other 
biostat clusters as well such as the one shown in Figure 21h and the one centred on Jason Fine and 
Michael Korsorok in Figure 27 in the online supplementary material. In addition, we 7nd many 
other meaningful communities, such as the experimental design community or the high- 
dimensional statistics community shown in Figure 22, or the survey and theory community in 
Figure 27 in the online supplementary material. We believe that PAPER model gives highly coher
ent clusters for this network because the network itself is locally tree-like, as shown in two cluster 
subgraphs that we display in Figure 22.

7 Discussion

In this paper, we present the PAPER model for networks with underlying formation processes and 
formalise the problem of root inference. We extend the PAPER model to the setting of multiple 
roots to re8ect the growth of multiple communities. There are a number of important open ques
tions from modelling, theoretical, and algorithmic perspectives.

From a modelling perspective, an interesting direction is to suppose that the graph start not as 
singleton nodes but as a small subgraph. The goal then is to infer the seed-graph instead of the root 
node (c.f. Devroye & Reddad, 2018). Model extensions such as the PAPER–SBM mixture de
scribed in Remark 5 are also interesting; in these models, a subtle question is to what extend 
we have to estimate the parameters of the noise model well in order to recover the root nodes 
of the latent forest.

There are many open theoretical questions related to PAPER model and root inference. For in
stance, in Conjecture 13, we hypothesise that the size of the optimal con7dence set for the root 
node is of a constant order if so long as the noise level is below a certain threshold. If the noise level 
is above the threshold, then every con7dence set has size that diverges with n. The lower bound of 
this conjecture seems especially dif7cult and may require new techniques. Another interesting the
oretical question is the analysis of community recovery using the PAPER model with multiple 
roots. Intuitively, we expect be able to correctly cluster the early nodes since they tend to have 
more central positions in the 7nal graph. The late arriving nodes on the other hand would be 
more peripheral and dif7cult to cluster.

Algorithmically, we observe that the Gibbs sampler that we derived in Section 4 converges very 
quickly in practice (see online supplementary Section S5.4). It would be interesting to study its 
mixing time, especially how the mixing time depends on the noise level.
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Data availability

The 8u transmission network is extracted from Figure 3 in Hens et al. (2012). The MathSciNet 
network is available at http://networkrepository.com/ca-MathSciNet.php.

The University of Notre Dame website network is available at https://snap.stanford.edu/data/ 
web-NotreDame.html. The karate club network is available at http://www-personal.umich.edu/ 
mejn/netdata/. The political blog network is available at http://www-personal.umich.edu/mejn/ 
netdata/.

The airport network is available at http://seeslab.info/downloads/air-transportation-networks/. 
The statistician co-authorship network is available at http://zke.fas.harvard.edu/MADStat.html.
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Supplementary material is available online at Journal of the Royal Statistical Society: Series B.
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We commend the authors on an illuminating article which signi�cantly extends the state of 
the art in network archaeology. Notably, whereas most other literature in the area has pro
vided methods for root inference which are theoretically grounded only in the case of ran
dom trees, the techniques in this paper have been designed to model nontree-structured 
networks, as well. This has important practical implications, as many real-world networks 
contain one or more cycles. The main challenge faced by the probability and statistics 
community—for the better part of the last decade—was that it was dif�cult to concoct a 
model that was simple enough to analyse rigorously, yet complex enough to comprise a suf
�ciently interesting family of random graph structures. By introducing their PAPER model, 
Crane and Xu have proposed a model achieving an ideal balance, accompanied by a variety 
of attractively useful and strikingly intuitive theoretical results. The simulation results are 
also very impressive, in that the algorithms can be ef�ciently run on a single laptop even 
for networks with millions of nodes.

The fact that the PAPER model achieves such versatility with only three parameters is a major 
strength of the work. This makes parameter estimation plausible (the authors suggest several 
methods for parameter estimation in the appendices, based on EM and Bayesian methods). 
From our reading, we wondered how one might decide in practice to use a more complicated mod
el for a given network, e.g. sequential PAPER vs. nonsequential PAPER, or �xed-K vs. random K, 
as the more complicated networks would of course lead to more complicated inference proce
dures. For instance, is anything known about degree pro�les of random-K networks, and are 
they qualitatively different from the degree pro�les of �xed-K networks? (Which would be 
more reasonable for speci�c problems such as the coauthor networks studied in this paper?) We 
are also curious to understand better, in practice, what the con�dence sets look like for K > 1 
(does the algorithm output K connected components?). How might the algorithm be modi�ed if 
the goal is to output a set of K-tuples such that the K-tuple containing the K root nodes is contained 
in this set, with a certain high probability?

Section 5 of the paper presents theoretical results concerning con�dence sets for the root node 
(or root nodes, when K > 1) of a random network. Along the lines of some of our previous work 
(Jog & Loh, 2018), we wondered how much the theory could extend to the case of constructing a 
con�dence set for the �rst M > 1 nodes (say, for simplicity, in the case when K = 1). Also, can rea
sonable conditions be imposed under which con�dence sets are proven to ‘persist’ when the num
ber of nodes n tends to in�nity? Finally, if the random network were initialized with a ‘seed graph’ 
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(Lugosi & Pereira, 2019), could con�dence sets for the seed graph be constructed by an extension 
of the techniques in this paper, with corresponding theoretical results?

Although several variants of the PAPER model are introduced in Section 2 of the paper, the core the
oretical results seem to only cover the vanilla and �xed-K cases. Thus, we wondered whether results 
such as the fact that credible sets have the correct frequentist coverage (Theorems 7 and 8) also holds 
for sequential and random-K models. Does the minimality property of con�dence sets based on poster
ior root probabilities (Remark 6/Theorem S5) also hold for K > 1? If any of the answers are negative, 
can the authors comment on the technical dif�culties involved in extending their results to these cases?

Lastly, we found the results of the paper to be rather thought-provoking in terms of their poten
tial for opening new avenues for studying more complicated random growth models. Some exam
ples include sequential models with a ‘vertex retirement’ feature, e.g. motivated by the study of 
coauthorship networks. Another idea is to model in deletion noise which is time-dependent, in 
contrast to the versions of PAPER presented in the paper, which assume that once connections 
are formed in the sequential model, they remain �xed forever. Other worthwhile models to study 
in conjunction with PAPER might be the sublinear preferential attachment model, which also ex
hibits persistence properties analogous to the linear preferential attachment model (Jog & Loh, 
2016), and the ‘superstar model’, which purportedly provides a better �t to empirical data in social 
networks than the standard preferential attachment model (Bhamidi et al., 2015).

Con�ict of interest: None declared.
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This paper and general line of work present a fascinating array of new ideas for network inference. 
The central contribution is a radically new model for community structure in graphs, which 
has several interesting features. To pick one which is perhaps signi�cant given the recent obvious 
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practical success of AI systems: It is good to see more theory challenging ideas such as the ‘curse of 
dimensionality’ or, in this instance, the ‘curse of sparsity’ for community detection, reminding us 
that these pessimistic predictions often depend on models for data that may be unrealistic.

At the meeting, I raised several points of discussion, including reproducing high triangle 
counts (Seshadhri et al., 2020), modelling heterophilic connectivity (Rubin-Delanchy et al., 
2022), incorporating continuous latent structure (Athreya et al., 2017, 2021; Hoff et al., 2002; 
Rubin-Delanchy, 2020), and randomization. But my most important concern at the time was 
that in the applications cited—�nding patient zero in a disease network, or the source of fake 
news in a social media network—there would almost always be timing information on the edges. 
It would seem highly irresponsible to ignore this in practice. In a conversation after the meeting, 
Prof. Xu made the compelling counterargument that existing approaches were often overreliant 
on time. Still, I think there could be some appropriate use of this information.

Since the meeting, I have remained unsure about the role of randomization in this work. The 
authors write: ‘Our approach to root inference and related problems is to randomize the node la
bels, which induces a posterior distribution over the latent ordering.’ I initially read this literally, 
thinking that we would be working exclusively on a computer-generated, uniformly random re
labelling of the graph. However, pushing G∗ up the equations at the bottom of page 14, it becomes 
clear that we are conditioning on the event (shufMed graph) G̃ = G∗ (observed graph). In other 
words, for the computation of the con�dence set B(G∗), we are imagining that a computer shufMed 
our graph, and that it spat out G∗. In my view that is not so different and requires just as much 
‘double-think’ as assuming the original labels of G∗ were chosen uniformly at random, which I 
presume is what the authors were trying to avoid. In any case, at a mathematical level, random
ization seems an inef�cient way of stripping label information away from the problem. Below, I 
present a different treatment which 

1. makes away with any sort of randomization, conceptual or otherwise, and associated 
Bayesian/frequentist explanations;

2. provides a stronger, conditional rather than marginal coverage guarantee;
3. shows that results such as Theorem 7 hold more generally, to any sort of data (e.g. time series, 

documents, complex networks) which are observed relabelled or disordered.

I would like to thank my colleague Dr Charles Cox (University of Bristol) for his help with group 
theory and several calculations.

Problem. G = (V, E) is an undirected random graph on the vertex set V = [n] = {1, . . . , n}, 
with vertex 1 described as the ‘root’. G has a fully speci�ed distribution, with probability 
mass function f. We will use n = 4, G ∼ PAPER(0, 1, 0) (linear preferential attachment) for illus
tration purposes, in which case for example f (1—2—3—4) = P(G = 1—2—3—4) = 1/2 × 

1/4 = 1/8 (3 chooses 2 with probability 1/2, 4 chooses 3 with probability 1/4). Given a permuta
tion π of [n] (a bijection from [n] to [n]), we write πi = π(i), πS = {πi : i ∈ S} and 
πG = ([n], {(πi, πj) : (i, j) ∈ E}).

Instead of G, we observe G∗ = ρG, where ρ is a random permutation of [n], whose conditional 
distribution given G is unknown. (Unlike the authors I do not �nd it helpful to introduce a 
different, alphabetical, set of vertex labels for G∗.) Given some coverage probability 1 − ϵ, the prob
lem is to �nd a set B(G∗) such that P{ρ(1) ∈ B(G∗)} ≥ 1 − ϵ, that is, a con�dence set for the root.

Solution. Given an arbitrary, �xed graph G on the vertex set [n], de�ne Aut(G) = {π ∈ Sn : πG = G}, 
the automorphism group of G, where Sn is the group of all permutations of [n]. The vertex set of G
admits a unique partition into orbits, o1, . . . , oL, where each ol = {πi : π ∈ Aut(G)} for some i ∈ [n]. 
It is a standard fact of group theory that {πi : π ∈ Aut(G)} and {πj : π ∈ Aut(G)} are either equal or 
disjoint. Let G1, . . . , GM denote the distinct graphs which can be obtained from G by relabelling, 
where M = n!/|Aut(G)|, that is, {G1, . . . , GM} = {πG : π ∈ Sn}.

To illustrate the constructions so far, if G = 1—2—3—4 then Aut(G) contains only two 
elements, the reverse permutation πi = 5 − i and the identity, the orbits are {1, 4} and 
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{2, 3}, and there are 4!/2 = 12 distinct graphs G1, . . . , G12, one of which is G, another is 
3—1—2—4, etc.

Lemma 1 Let π2 be a permutation satisfying G2 = π2G1 and o(1) an orbit of G1. Then π2o(1) 

is an orbit of G2. Let π1 be a permutation such that G1 = π1G2. Then 
π1π2o(1) = o(1).

Proof. It is clear that π2o is an orbit: if we relabel a graph, we relabel its orbits. For the 
second part, note that G1 = π1π2G1 so that π1π2 is an element of Aut(G1), and so 
(π1π2)−1Aut(G1) = Aut(G1) (any element h of a group H satis�es hH = h−1H = H). 
Pick some j ∈ o(1) such that o(1) = {πj : π ∈ Aut(G1)} = {πj : π ∈ (π1π2)−1Aut(G1)}. 
Then π1π2o(1) = {π1π2πj : π ∈ (π1π2)−1Aut(G1)} = {πj : π ∈ Aut(G1)} = o(1). □

We can ‘track’ orbits across different relabelling of G in a way that we can’t do with individual 
vertices. In general, it is not the case that for π1, π2 as above, π1π2i = i for every i ∈ [n], unless G has 
no non-trivial symmetries.

Now, condition on the event G∗, G ∈ {G1, . . . , GM} and �x an orbit o of G. By the above, this 
corresponds to a well-de�ned orbit o(1) of G1, o(2) of G2, and so on. There is a random μ for which 
G∗ = Gμ, and an associated random orbit o(μ).

Theorem 1

p(o) := P[ρ(1) ∈ o(μ) ∣ G∗, G ∈ {G1, . . . , GM}] =

∑
m∈C f (Gm)∑

m∈[M] f (Gm)
, 

where C = m : 1(m)C = m : 1 ∈ o(m)C = {m : 1 ∈ o(m)}.

Suppose that G = 1—2—3—4 and o = {1, 4}. In plain English, we could describe the event 
ρ(1) ∈ o(μ) as: ‘one of the tail nodes of G∗ is the root node of G’. Under the PAPER(0, 1, 0) model, 
the conditional probability above evaluates to 1/4. It’s three times more likely (3/4) that the root is 
one of the middle nodes.

Suppose the orbits ol of G are ordered by decreasing density, p(ol)/|ol|, and pick the smallest ℓ 

such that a) 
∑

l∈[ℓ] p(ol) ≥ 1 − ϵ and b) p(oℓ) > p(oℓ+1), ignoring the latter condition if the former 

requires ℓ = L. Let B(G) = ∪l∈[ℓ]ol.
Let o(m)

l 
denote the corresponding orbits in Gm. Then we can verify that B(Gm) = ∪l∈[ℓ]o

(m)
l

. Thus,

P[ρ(1) ∈ B(G∗) ∣ G∗, G ∈ {G1, . . . , GM}] = P[ρ(1) ∈ ∪l∈[ℓ]o
(μ)
l

∣ G∗, G ∈ {G1, . . . , GM}]

≥ 1 − ϵ, (conditional coverage)

⇒ P[ρ(1) ∈ B(G∗)] ≥ 1 − ϵ. (marginal coverage) 

We could make B(·) smaller by randomly selecting between low-density orbits, and smaller still by 
randomly pruning those orbits. Personally I think this is over-obsessing about the target 1 − ϵ, and 
it would be better in practice to list the critical orbits with probability pℓ, reporting the proportion 
of nodes that could be removed from each.

Why hasn’t this been done before?. I understand that for some probabilists this is a fairly stand
ard way of doing things, and it is also worth noting that on simpler problems statisticians often 
implicitly do this too. We might, for example, observe a word sequence (or time series) X = 

(X1, . . . , Xn) in disorder, X∗ = ρX. Here, the set of relabellings of X∗ is sometimes called a 
‘bag’, and here the ‘orbits’ of X∗ are the sets of indices corresponding to unique values (e.g. words). 
Given a distribution for X, the reasoning above would give us a con�dence set for the �rst word of 
the sequence. It’s just that deploying a full-blown group-theoretic argument here is a bit 
heavy-handed.

Con�ict of interest: None declared.

Discussion Paper Contribution                                                                                                                 869



References

Athreya A., Fishkind D. E., Tang M., Priebe C. E., Park Y., Vogelstein J. T., Levin K., Lyzinski V., & Qin Y.

(2017). Statistical inference on random dot product graphs: A survey. Journal of Machine Learning 

Research, 18(1), 8393–8484.

Athreya A., Tang M., Park Y., & Priebe C. E. (2021). On estimation and inference in latent structure random 

graphs. Statistical Science, 36(1), 68–88. https://doi.org/10.1214/20-STS787

Hoff P. D., Raftery A. E., & Handcock M. S. (2002). Latent space approaches to social network analysis. Journal 

of the American Statistical Association, 97(460), 1090–1098. https://doi.org/10.1198/016214502388618906

Rubin-Delanchy P. (2020). Manifold structure in graph embeddings. In H. Larochelle, M. Ranzato, R. Hadsell, 

M. F. Balcan, & H. Lin (Eds.), Advances in Neural Information Processing Systems (Vol. 33, pp. 11687–11699). 

Curran Associates, Inc.

Rubin-Delanchy P., Cape J., Tang M., & Priebe C. E. (2022). A statistical interpretation of spectral embedding: 

The generalised random dot product graph. Journal of the Royal Statistical Society Series B: Statistical 

Methodology, 84(4), 1446–1473. https://doi.org/10.1111/rssb.12509

Seshadhri C., Sharma A., Stolman A., & Goel A. (2020). The impossibility of low-rank representations for 

triangle-rich complex networks. Proceedings of the National Academy of Sciences, 117(11), 5631–5637. 

https://doi.org/10.1073/pnas.1911030117

The vote of thanks was passed by acclamation.

https://doi.org/10.1093/jrsssb/qkae053 

Advance access publication 27 June 2024  

Andrej Srakar’s contribution to the 

Discussion of ‘Root and community inference 

on the latent growth process of a network’ 

by Crane and Xu
Andrej Srakar 

Institute for Economic Research, Ljubljana, Slovenia

Address for correspondence: Andrej Srakar, Institute for Economic Research, Ljubljana, Slovenia. Email: srakara@ier.si

Paper presented by Harry Crane and Min Xu develops a rather novel area of network archaeology, 
which builds on �ndings of network science, probability theory and (in Crane and Xu’s article) 
Bayesian statistics. My comments are directed to possible extensions for future work in this prom
ising area of research.

Firstly, in terms of network stochastic processes (authors use a combination of preferential at
tachment and Erdős–Rényi models) paper does little to explain comparisons with possible alter
natives. Briend et al. (2023) discuss network archaeology in a random recursive dags and 
Cooper–Frieze random networks contexts, and Brandenberger et al. (2022) in the more general 
context of Bienaymé–Galton–Watson trees. I wonder if topology of the studied network could 
be incorporated in more detail, for example in today often studied weak-topology context (for ex
ample in Gromov-weak or just general Skorokhod topologies). This would need different metric 
spaces and distance metrics where results for different types of random graphs and trees are wide 
and could be useful for the development of the area as well for its extensions of studying the 
asymptotic behaviour and estimation. Combination with graphon perspectives which authors 
mention in the introduction would also be interesting to explore, as well as addressing the 
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possibilities noted by Brandenberger et al. of extensions to k-ary, Cayley, Motzkin and planted 
plane trees as well as branching stochastic processes in general.

Secondly, it seems to go unexplained why the authors are using Bayesian approach. The 
Bayesian component in the article seems underexplored and many possibilities could be useful 
for future developments of the used priors as well as Gibbs sampling procedure (authors them
selves mention mixing properties of the sampler). Extensions of the Bayesian part could go in 
the direction of intractable likelihood perspectives, computational improvements (say, using inte
grated nested Laplace approximation) or in the selection of priors (parametric, semiparametric, or 
nonparametric perspectives or even to empirical Bayes possibilities). Study of the Bayesian asymp
totic properties here would be very interesting.

Finally, I miss more explicit and broad connection to the study of temporal networks and net
work in general. Not only root vertex and communities could be discovered, but connection to 
cliques, islands, and homophily as well as many possible types of networks based on characteris
tics of their ties, such as af�liation, weighted, multi-relational, or multi-layer networks. 
Possibilities for future research in this area of network science could loom large.
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We congratulate the authors for their timely and insightful contribution, which introduces a novel 
Bayesian approach to inferring the latent structure (early history and community detection) given 
a current observation of a network with n nodes. The Bayesian component of the model is sum
marized through a uniform prior on the random relabelling associated to the observed network. 
The methodological innovation is remarkably complemented by strong theoretical (frequentist) 
guarantees concerning uncertainty quanti�cation.
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The sequential formulation of the preferential attachment component of the model exhibits 
many interesting connections with the Bayesian nonparametric literature. Indeed, the mechanism 
for sampling new edges is reminiscent of Pólya urns: the colours of the balls in the urn are the nodes 
labelled by the community they belong to. Moreover, in the random K roots model, the authors 
consider the case where K increases with n and the probability of creating a new root is the 
same of sampling a new value from a Dirichlet process (Ferguson, 1973) with concentration 
parameter α0/(2β + α); each tree corresponds to a different cluster of nodes.

Within the Dirichlet process framework, the probability of generating a new tree depends only 
on the number of nodes in the forest, whereas the number of existing trees does not have any im
pact. This generative scheme might be restrictive in many settings and it is often desirable for the 
probability of creating a new tree to explicitly depend on the number of existing trees. In Bayesian 
nonparametrics, the latter requirement corresponds to prediction rules arising from the class of 
Gibbs-type priors (De Blasi et al., 2015): the most popular instances are the Pitman–Yor 
(Pitman & Yor, 1997) and the normalized generalized gamma (Lijoi et al., 2007) processes, which 
both generalize the Dirichlet process and lead to an asymptotic growth of the number of trees of 
order nσ, with σ ∈ (0, 1). What would the impact of different predictive structures on the model 
properties be? Even more Mexible behaviours can be obtained through hierarchical compositions 
(Camerlenghi et al., 2019, 2018), which do not lead to Gibbs-type priors. For instance, Dirichlet 
process hierarchies lead to iterated logarithmic behaviours, with the number of iterations equal to 
the number of hierarchies. This growth rate, which can be made as slow as desired but still leads to 
an in�nite number of trees, might have noteworthy implications.

Finally, the paper addresses the case of a single network. However, in many situations one may face 
distinct networks with no common nodes but likely similar features: for example different academic 
�elds may share similar co-authorship structures. Therefore being able to borrow information across 
different networks would often be bene�cial leveraging some suitable form of probabilistic symmetry. 
There have been some recent proposals of partially exchangeable models for stochastic block models 
(see, e.g. Durante et al., 2023) that allow for prediction of the clustering of future nodes through a 
probabilistically coeherent sequential procedure in a spirit similar to the one proposed by the authors. 
However, to the best of our knowledge, nothing of the sort is available for multiple Markovian pref
erential attachment structures. This would be an interesting direction to explore.
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I congratulate the authors on their elegant and computationally tractable approach to inference 
problems in network archaeology. This is one of the few papers which rigorously analyses inference 
for noisy temporal networks. The key idea is to compute the distribution of the possible arrival or
ders of vertices given an unlabelled network realization (online detection) and construct the con�
dence set for the root by sorting vertices according to their probability of arriving �rst given the 
observed unlabelled network. A Gibbs-type algorithm is provided to compute the above distribution 
in O(m + n log n) time (m, n are, respectively, the number of edges and vertices). Finally, some the
oretical guarantees are provided for the size of the con�dence set provided the noise is not too large. I 
have the following comments.

(i) Community structure for dynamic networks: The community structure conceived in the paper 
by looking at a K-forest and then adding noise is rather restrictive as the individual trees in the forest 
are ‘decoupled’: they can be generated by running independent continuous-time branching processes 
from K ancestors till the total population size hits n. A more realistic model should comprise indi
vidual vertices exerting community-speci�c inMuences, in addition to their degrees, in the growth of 
the network. One such model has been recently explored in Antunes et al. (2023) under the name of 
attribute network models. In addition to obtaining local weak limits and other asymptotics, some 
network sampling and ranking algorithms have been explored in these papers. It would be interest
ing to extend the current approach to community detection problems for these networks.

(ii) Comparison with other root 'nding algorithms: The authors mention several other works 
where root detection algorithms are presented. They are said to be more conservative as the guar
antees are asymptotic as the network size grows, and there are some non-explicit constants involved 
in the associated bounds. However, no direct comparison is provided for these algorithms on the 
PAPER model for �xed large n. It would be instructive to compare these methods computationally. 
To my knowledge, some of the asymptotic guarantees for these other algorithms can be made quan
titative and it would be interesting to compare them to the theoretical results in this paper.

(iii) Non-local centrality measures: In Theorem 12 of the paper, it is shown, by ‘upper bound
ing’ the con�dence set with that obtained via a degree-based criterion, that the size of the con
�dence set is O(nγ) for some γ ≤ 0.8 if the noise level θ = o( log n/n). Moreover, a conjecture is 
made that the actual size of the con�dence set should be O(1) in this case. I believe that to prove 
this conjecture, one needs to analyse ‘non-local’ centrality measures that look beyond one-step 
neighbourhoods of vertices (like Jordan centrality Bubeck et al., 2017). This is because, as 
shown in Banerjee and Bhamidi (2021), the degree centrality lacks persistence, that is, the iden
tities of the highest degree vertices keep changing in�nitely often as the network grows, unlike 
the APA model (see also Dereich & Mörters, 2009). However, Jordan centrality exhibits persist
ence (Banerjee & Bhamidi, 2022). This could be interesting future work.
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We congratulate the authors for their methodological and theoretical contribution to the statistic
al literature on networks.

A natural extension of the proposed PAPER model is included, with K communities growing 
simultaneously and where new nodes are either assigned to an existing community or elected as 
a new root. The employed assignment rule is of Pólya-urn type, which leads to a logarithmic 
growth of the number of communities (Korwar & Hollander, 1973) and is known to coincide 
with the predictive scheme of exchangeable sequences associated with the Dirichlet process. 
The probability of creating a new community is then independent of the number of past ones, 
which is a distinctive feature of the Dirichlet process within the class of Gibbs-type priors (De 
Blasi et al., 2015). An interesting direction would be to allow for more Mexible predictive schemes 
that ensure alternative asymptotics, ranging from power-law behaviours (via the Pitman-Yor pro
cess Pitman, 2006) or normalized generalized gamma completely random measures (Lijoi et al., 
2007)) to slower than logarithmic growth (via the single-group hierarchical Dirichlet process 
(Camerlenghi et al., 2018).

An important theoretical aspect is the number of communities. While the authors provide an 
empirical investigation, future research could tackle the question of posterior consistency for 
the number of communities, along the lines of the existing results for stochastic block models 
(Geng et al., 2019) and in the growing literature in Bayesian nonparametric mixture models 
(Ascolani et al., 2023; Miller & Harrison, 2013; Nobile, 1994).

Turning to applications, the proposed model lends itself to some natural generalizations sug
gested by popular epidemiological models, like SIR dynamics, where at each instant the infectious 
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nodes can transmit the disease to their susceptible neighbours with some probability, resulting in 
multiple new infectious individuals at the next time. Equating new infections in SIR dynamics to 
added nodes in the PAPER model, a useful extension would be obtained by allowing the addition 
of multiple nodes at each step: for instance, if computationally feasible, a fraction of the existing 
nodes at that time, representing an average contact rate, or also a random number, e.g. driven by a 
nonhomogeneous Poisson process. The SIR analogy further suggests extensions where nodes are 
active (i.e. accepting newly introduced nodes as neighbours) only for a limited time, representing 
the period during which an infectious agent can spread the disease.

Once more, we commend the authors for an outstanding paper.
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We congratulate Drs. Crane and Xu for their fascinating piece of work. In the multiple roots 
PAPER model, one assumption is that different trees share the same af�ne preferential attachment 
(APA) growth parameters (α, β). In practice, the multiple trees in a network may have varying 
growth mechanisms, and it may be of interest to model each tree to have its own growth param
eters. We consider such a heterogeneous af�ne preferential attachment (HAPA) model.

De'nition 1 For a random forest of K heterogeneous disjoint component trees, 
denote its growth parameters by (α, β) ≡ (αk, βk)K

k=1. We de�ne its growth 
process by the HAPA(α, β, K) model: For k ∈ S = [K] ≡ {1, . . . , K}, let 
node k be the root of the kth component tree. For any K ≤ t ≤ n, k ∈ [K], 
denote the kth component tree at time t by Tk,t, and the time labelled forest 
at time t by Ft= ∪K

k=1 Tk,t. At t = K, Tk,t is the set of the singleton node k. For 
t = K + 1, . . . , n, given Ft−1, we add a new node t and a new random edge 
(t, wt) where the existing node wt ∈ Tk,t−1 is chosen with probability

βkDFt−1
(wt) + 2βk1{wt∈S} + αk∑K

k=1 (2βk + αk)Xk,t−1 

where DFt−1
(wt) is the degree of wt in Ft−1, and Xk,t = |Tk,t| is the number of 

nodes in tree Tk,t.We then say that a random graph Gn ∼ 

HPAPER(α, β, K, θ) if Gn = Fn + Rn where Fn ∼ HAPA(α, β, K) and Rn ∼ 

ER(θ) is an Erdős–Rényi random graph independent of Fn de�ned on the 
same set of nodes [n].

De�nition 1 resembles the K roots model in Crane Xu (2023), with two major differences: (i) 
instead of homogeneous (α, β) parameters, the new model has K pairs of growth parameters, 
one for each tree and (ii) the likelihood of the HAPA forest

L(α, β; fn) =

∏K
k=1

∏
v∈tk

∏Dfn (v)−1

j=1 βk · j + αk + 2βk1{v∈S}

{ }

∏n
t=K+1

∑K
k=1 (2βk + αk)xk,t−1

{ } (1) 

depends on not only the degree sequence but also the tree growth history.

Algorithm 1 EM algorithm of estimation of (α, β) = (αk , βk )K
k=1 under the HPAPER model

Input : Graph g̃n; number of component trees K

Output: Parameter estimates (α̂, β̂) = (α̂k, β̂k)K
k=1

1 Initialization: estimate (α̂, β̂, θ̂) from PAPER model, sample one forest f̃
(0) 

from   

PAPER(α̂, β̂, K, θ̂), and initialize (α̂k, β̂k) = (α̂, β̂), ∀k ∈ [K].

2 Generate M Monte-Carlo samples of forest and ordering (f̃
(m)

, π(m))M
m=1 from the HPAPER   

model P(f̃, π|g̃n, α̂, β̂, K) with Algorithm 2 described below.

3 Update the parameter estimates by

(α̂k, β̂k)K
k=1 = arg max

(α,β)

M−1
∑M

m=1

l(α, β; f̃
(m)

, π(m)), 

where l(α, β; f̃, π) is the logarithm of the likelihood in (1).

4 Let f̃
(0)

= f̃
(M)

. Repeat steps 2 and 3 until the parameter estimates have converged.
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To conduct inference for the model in De�nition 1, we need to address two primary tasks: esti
mating the (αk, βk)K

k=1 parameters, and sampling from the distribution of time labelled forests. Both 
tasks bring new challenges compared with the K roots model in Crane and Xu (2023). First, the 
growth parameters can be estimated in the PAPER model without knowing the class assignments 
of the nodes, while in the HPAPER model, one must have some knowledge or estimation of the clus
tering as they are necessary even for de�ning the growth parameters. Second, some of the smart 
sampling techniques for the APA model are built upon the property that the forest likelihood de
pends only on the degree sequences of its nodes, which is no longer the case for the HAPA likelihood 
(1). Following the notation in Crane and Xu (2023), we write ̃fn = πfn where ̃fn denotes the random
ly alphabetically labelled forest and π denotes the ordering of the nodes. We describe an 
Expectation–Maximization (EM) algorithm framework to estimate the parameters (α, β) and a 
Gibbs sampling framework to sample forest f̃n and ordering π in Algorithms 1 and 2, respectively.

We plan to give a full treatment to the proposed models and algorithms in a follow-up work. In 
the future, it is also of interest to establish an ‘HPAPER-SBM’ model, in which the Erdős–Rényi 
parameter is allowed to be different within and between different communities, and further ex
plore suitable sampling and estimation procedures under that model. Another interesting direction 
is to incorporate nodal or edge covariates to the model (Huang et al., 2023; Weng & Feng, 2022).

Con�ict of interest: None declared.
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Algorithm 2 Gibbs sampling of ordering and forests from the HPAPER model

Input : Graph g̃n; an initial forest f̃
(0) 

with K component trees; parameters (α, β)

Output: Monte Carlo samples of forest and ordering (f̃
(m)

, π(m))M
m=1

1 for m = 1 to M do

2 Sample ordering π(m) given forest f̃
(m−1)

:

3  Sample the tree size sequence: Let xk,t = 1 for t = K and k ∈ [K]. For t from K + 1 to n, given 

{x1,t−1, . . . , xK,t−1}, choose a k ∈ [K] with probability 
(2βk+αk)xk,t−1∑K

k=1
(2βk+αk)xk,t−1

. Let xk,t = xk,t−1 + 1, and x j,t = x j,t−1 

for all j ≠ k.

4  For each k ∈ [K], sample the ordering inside the kth component tree ̃t
(m−1)
k with steps 5-8 of Algorithm 1 in 

Crane and Xu (2023).

5  Combine the ordering of all component trees: Denote by π(m)
t the tth node in ordering π(m). For t = k ≤ K, let 

π(m)
t be the root of t̃

(m−1)
k . For t > K, if xk,t = xk,t−1 + 1, let π(m)

t be the �rst node from the ordering inside 

t̃
(m−1)
k that has not appeared in π(m)

1 : (t−1).

6 Sample forest f̃
(m) 

given ordering π(m):

7  Let f̃n = f̃
(m−1)

, π = π(m). For t from K + 1 to n, update the parent of πt in f̃n to be w ∈ π1 : (t−1) ∩ Ng̃n
(πt) ∩ t̃k 

with probability proportional to

P paf̃n
(πt) = w π, g̃n, {paf̃n

(v)}v≠πt

∣∣∣
( )

∝
βkD

f̃
(·,πt )

n

(w) + 2βk1{w∈π1 : K} + αk

∏n
τ=t {

∑K
k=1 (2βk + αk)xk,τ−1(f̃

(w,πt)

n )} 

where Ng̃n
(πt), f̃

(w,πt)

n , f̃
(·,πt )

n , D
f̃
(·,πt )

n

(w) are de�ned the same as in Crane Xu (2023), and xk,τ(f̃
(w,πt)

n ) is the 

number of nodes in the kth component tree of f̃
(w,πt)

n at time τ. Then output f̃
(m)
= f̃n.
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We congratulate the authors on an excellent paper! Crane and Xu (2021) proposed novel methods 
for �nding ‘root nodes’ from a single snapshot of a dynamic network process, with several inter
esting real-data examples. We now consider a new application for �nding ‘root papers’ in a cit
ation network. The MADStat dataset (Ji et al., 2022; Ke et al., 2023) consists of the bibtex and 
citation information of over 83 K papers, which we use to construct paper citation networks. 
Given a keyword (e.g. ‘Lasso’), let V0 be the set of papers whose titles contain this keyword, 
and let V be the set of papers that are either citers or citees of papers in V0 (we only count the 
citations recorded in MADStat). We then build a symmetric network on V, with an edge between 
two papers i and j if either i cites j or j cites i; if the network is disconnected, we restrict it to its giant 
component. The networks for two keywords, Lasso and Bayesian, are shown in Figure 1. We ap
ply the method in Crane and Xu (2021) to each network to obtain the posterior probability of each 
node being a root node. The top 6 papers with the highest posterior root probability are in Table 1. 
In the Lasso network, Tibshirani (1996) is ranked top 1. In the Bayesian network, Gelfand and 
Smith (1990) is ranked top 1. The results are meaningful and motivate a new application of the 
proposed method.

We also suggest some extensions of Crane and Xu (2021). First, the PAPER model is built on the 
Erdos–Renyi model and does not model degree heterogeneity among nodes. The Erdos–Renyi 
model can be generalized to accommodate degree heterogeneity [such as a DCBM model with 
K = 1; see Jin et al. (2022)]. It will be interesting to see if the PAPER model can be generalized 
similarly. Second, in the case of multiple roots, we may run community detection �rst and then 
apply the algorithm to each community separately. There are fast community detection algorithms 
[e.g. Jin et al. (2022); Jiang and Ke (2023)] equipped with data-driven choices of the number 
of communities (Jin et al., 2023). Combining them with the current algorithm will help reduce 
computational costs and avoid randomness caused by forest partition. We hope these ideas are 
bene�cial. Congratulations to the authors again on their remarkable work!

Con�ict of interest: None declared.
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Figure 1. The Lasso network (left graph) and the Bayesian network (right graph); only the 30 highest-degree nodes 

are shown. The table on the right provides the summary statistics, where dmax, dmin, and d̄  are the maximum, 

minimum, and average degrees, respectively.

Table 1. The top 6 papers with the highest posterior root probability in the Lasso network (top) and the Bayesian 

network (bottom), respectively

Title Author(s) & Year Journal #Citation Root  

Prob.

Regression Shrinkage and Selection via the Lasso Tibshirani (1996) JRSSB 55448 0.50

High-dimensional Graphs and Variable Selection 

with the Lasso

Meinshausen and 

Bühlmann (2006)

AoS 4328 0.05

The Adaptive Lasso and its Oracle Properties Zou (2006) JASA 8245 0.03

Simultaneous Analysis of Lasso and Dantzig Selector Bickel et al. (2009) AoS 2800 0.01

The Bayesian Lasso Park and Casella (2008) JASA 3453 0.01

Sparsity and Smoothness via the Fused Lasso Tibshirani et al. (2005) JRSSB 3212 0.01

Sampling-based Approaches to Calculating Marginal 

Densities

Gelfand and Smith (1990) JASA 9818 0.13

Bayesian Statistics in Medicine: A 25 Year Review Ashby (2006) SMed 295 0.11

Bayesian Computation via the Gibbs Sampler Smith and Roberts (1993) JRSSB 2536 0.08

And Related Markov-chain Monte–Carlo Methods

Bayesian Experimental Design: A Review Chaloner and Verdinelli 

(1995)

StSci 2354 0.06

Bayesian Computation and Stochastic-systems Besag et al. (1995) StSci 1548 0.05

Bayesian Measures of Model Complexity and Fit Spiegelhalter et al. (2002) JRSSB 14395 0.05
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I want to congratulate Prof. Crane and Prof. Xu for their impressive work. The paper introduces 
two novel components: the PAPER model and the inference framework for the tree. Both of them 
bring many insights into handling complex network data and open the doors to new problems. 
I will discuss extension problems from both aspects.

The PAPER model assumes preferential attachment trees with additional the Erdős-Rényi 
(ER) edges. One nice property of the model lies in its ability to generate pendants that can often 
be observed in many real-world networks. The model can be interpreted as a signal (tree) + noise 
(ER) structure for edges. The recent core-periphery models of Elliott et al. (2020) and Miao and 
Li (2023) can be seen as examples of such a structure at the node level. It would be interesting to 
see what could be achieved by combining the two signal+noise structures. Meanwhile, the topo
logical properties of PAPER are also worth a thorough study. For example, as both tree structures 
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and the ER model lack transitivity, we may conjecture that the PAPER also has the same limitation. 
How to generalize the model to incorporate such additional properties would be an important dir
ection for future research. One potential obstacle to such generalization might be the root inference 
computation. The paper’s inference nicely hinges on the uniform noise edges in the ER mechanism, 
and it is unclear if the computation can be ef�ciently done without it.

A related setting for root inference is the diffusion scenario, which was initially studied in Shah and 
Zaman (2011) with many follow-up studies (Dawkins et al., 2021; Kazemitabar & Amini, 2020; 
Khim & Loh, 2016): a �xed network (not necessarily a tree) is given and a random diffusion process 
is initiated within the network. This diffusion scenario differs from the tree-growing setting, but when 
the network in the former is a tree and the ER part is removed from PAPER (Crane & Xu, 2021), the 
two settings coincide. The setup of the current paper is not directly compatible with the diffusion set
ting. Still, the available optimality in the tree-growing scenario raises a natural question about 
whether we can build an optimal inference procedure in the diffusion setting. De�ning a similar in
ference method seems plausible, but the computation is again a bottleneck. Explorations in this dir
ection may help with broader applications in epidemiology and cyber security.
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First, we congratulate Dr. Crane and Dr. Xu for this important contribution to statistical network 
analysis. To address an overlooked fact that most real networks are formed through a growth pro
cess, the authors introduce a useful PAPER model and its variations and skilfully construct com
putationally feasible con�dence sets for the root node(s). In the data analysis, the authors also use 
their models as a new approach to community detection.

On this note, our interest lies in the multiple roots setting, as real social networks typically en
compass more than one community. Take the well-known political blogs network (Adamic & 
Glance, 2005) as an example. It has K = 2 ground truth communities—the liberal and conserva
tive communities. At time t, the PAPER model attaches the new node t to an existing node 
wt ∈ {1, . . . , t − 1} with probability

βDFt−1
(wt) + 2βI{wt ∈ S} + α
(2β + α)(t − 1)

, S = {1, . . . , K}, 

which is somehow proportional to the degree of node wt. In reality, in addition to the node de
grees which reMect the popularity, homophily (McPherson et al., 2001) is a well-documented 
phenomenon that warrants attention. Individuals often exhibit a preference for connecting 
with others who have similar characteristics. Furthermore, due to either hostility or lack of inter
est, individuals in the liberal group may even decline connections with speci�c individuals from 
the other group. Consequently, an important question arises regarding how to incorporate this 
type of information into the PAPER model. A nonrigorous intuition in the �xed K roots setting 

suggests attaching node t to wt with a probability ρwt

βDFt−1
(wt) + 2βI{wt∈S} + α
(2β + α)(t − 1) , where ρwt

∈ (0, 1) is set 

to be higher when nodes t and wt share similar characteristics; conversely, reducing the magni
tude. Meanwhile, a selection mechanism can be employed to determine whether to retain the 
current edge choice or not, driven by binary options of ‘Yes’ or ‘No’ when deciding whether 
to follow an individual on the Internet.

Another question pertains to inferring the true number of roots K. The authors propose meth
odologies to obtain the posterior root distributions, then can these probabilities be utilized to con
struct test statistics for testing H0 : K = K0, i.e. whether the model follows PAPER(α, β, K0, θ) or 
not? A related query concerns simulation studies that demonstrate promising community recovery 
performance, particularly with the �xed K model; therefore is it feasible to provide theoretical 
guarantees?

Lastly, we would like to make two suggestions regarding further dissemination. (i) to expand the 
readerships of this work, the authors might consider writing an R markdown �le that only includes 
the most essential components of the model and one simple example. (ii) We feel that the proposed 
models and algorithms have potentials to make some real insights in empirical studies beyond 
what other community detection algorithms can already claim.
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We congratulate Prof. Crane and Dr Xu for introducing a very interesting and appealing stat
istical model for Markovian network growth. The PAPER model enjoys several qualities. In 
particular, (i) it strikes a rare balance between analytic elegance and tractability, and expres
sive power; (ii) it allows for practicable algorithms for statistical inference that scale to net
works of very large size, and (iii) it is very Mexible and can be readily generalized to model a 
variety of phenomena and features commonly observed in modern networks. As pointed out 
by the authors, there are many extensions and open problems related to the model that are 
worth considering.

In this note, we suggest possible extensions to change point analysis (CPA) for networks. CPA is 
a well-studied topic concerned with modelling and detecting abrupt changes in the data-generating 
distribution in time series data. Developing models, theories and methods for CPA in dynamic and 
large networks is a relatively new and exciting area of research (e.g. Wang et al., 2021; Yu et al., 
2023). We believe the PAPER model provides an excellent reference framework for building 
powerful and realistic Markovian network  models.

To provide some details, in the PAPER model, at time point t ∈ [n], the newly added 
node with label t is connected to an existing node wt ∈ [t − 1], with probability 
{βDTt−1

(wt) + α}/{β2(t − 2) + α(t − 1)}. The parameters (α, β) are �xed across the whole time 
course. It would be interesting to consider the scenario where the parameters are instead allowed 
to change in a piecewise manner at unknown CPs. In the simplest instantiation of the PAPER CP 
model, there might exist an unknown CP t∗ such that the values of the parameters α and β change 
after t∗. A possible application could be, in a social network, at the booming stage of a key opinion 
leader, β, the parameter characterizing the ‘rich gets richer’ phenomenon, is positive and large. As 
the craze cools down, β should decrease to reMect the fading of fame. In extreme cases, β may even 
change the sign. To estimate the change time t∗, one could consider a likelihood-based 
ℓ0-penalization (e.g. Wang et al., 2023), with the likelihood stemming from the PAPER model. 
A second, more sophisticated extension is to consider an APA model with multiple root nodes; 
at the CP(s), the number of root nodes, along, possibly, with the model parameter, change, thus 
accounting for the creation, elimination or even merging of tree components. Finally, the CPA 
tasks just outlined can be analysed in the ofMine settings, in which the fully grown network at a 
given time, say n, is observed and then analysed.

Lastly, we congratulate Prof. Crane and Dr Xu again for their excellent paper. We anticipate 
that the ideas and methods of the paper will provide the impetus for further research developments 
of the PAPER model for years to come!

Con�ict of interests: None declared.
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We congratulate the authors on a thought provoking paper introducing innovative ideas for the 
statistical modelling of networks. The emphasis on identifying highly probable root nodes is 
both original and intriguing. In particular, using the root node credible set methods for node clus
tering within the PAPER(α, β, α0, θ) random K model (Section 6.3) is an interesting perspective. 
We wonder how these approaches might connect with latent space model-based node clustering 
methods in the literature (Handcock et al., 2007) and those quantifying uncertainty in the number 
of clusters (D’Angelo et al., 2023; Ryan et al., 2017). Another research avenue could explore the 
feasibility of a model-free approach to construct con�dence sets for root nodes, such as utilizing a 
generalized Bayesian approach with loss functions (Bissiri et al., 2016).

Regarding parameter estimation, the authors propose an approximate EM algorithm for estimation 
of α in a PAPER(α, β, θ) model. The algorithm detailed in S3.1 of the appendix is useful for applica
tions, as it appears it can be run ef�ciently for large n. Computing the objective function relies on two 
approximations for a tractable approximate E-step. The �rst involves breaking dependence between 
node degrees, the second relies on the limiting distribution approximation (van der Hofstad, 2016), 
facilitating reasonable computation time. It may be interesting to investigate the impact of these ap
proximations on networks of tens or hundreds of nodes, considering the potential substitution of 
one or both with Gibbs sampling. Although the approximate EM algorithm provides point estimates 
of α, we are intrigued about the authors’ insights into quantifying uncertainty in an estimate ̂α. Such 
measures could be valuable in evaluating evidence for different attachment behaviours in networks.

The key aspect of the PAPER model generative structure is the notion of root node, one or mul
tiple in the case of clustering. In some settings, such as networks evolving over time, this concept is 
natural and of high relevance; in others, we believe the notion of root node may not align with the 
application context. For example, in many social science applications involving data collected 
through questionnaires or observational studies, even including the Zachary karate club and 
the co-authorship network examples in the paper, relations and communities cannot be reconciled 
with a single or multiple originating root nodes, but rather with homophily or popularity of 
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certain actors in the network (D’Angelo et al., 2023; Sengupta & Chen, 2017). We are curious 
about the authors’ thoughts on the rationale behind using the PAPER model in these contexts, 
in particular in relation to the goals of root node identi�cation and their interpretation.

Con�icts of interest: None declared.
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We sincerely thank all the discussants for their careful thoughts and insightful contributions. We 
also appreciate the diversity of topics in the discussions, ranging from applied probability and al
gorithms to social science and Bayesian modelling—it appropriately reMects the broad thinking ne
cessary to make advancements in network data analysis. In this article, we respond to model 
related issues in Section 1 and theory related issues in Section 2. In the �nal section, we respond 
to various speci�c points raised by each of the discussants.

1 Model

Many discussants highlighted ways in which the Preferential Attachment Plus Erdös–Rényi (PAPER) 
model may be unrealistic and suggested potential extensions. We acknowledge that such suggestions 
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could be appropriate in the right context, but emphasize that the context dictates which features are 
the most salient to model. Except in stylized contexts, none of which exist in networks applications to 
our knowledge, no model can fully account for all observed properties of the data. And one might 
argue that no model should even try. Instead, the model ought to be speci�ed to adequately explain 
the most salient properties of the data for the purpose of a given scienti�c question. Beyond that, 
the principle of parsimony suggests that the simplest model that can address the question of interest 
is often the best. This is the principle we applied in suggesting the PAPER model, as a framework 
on which more speci�c and sophisticated models can be tailored to a wide range of applications.

For example, the PAPER model may be appropriate if the scienti�c question is to understand 
node centrality in a given network. The PAPER model gives a simple way to quantify uncertainty 
when measuring node centrality; it enables questions like ‘is one node signi�cantly more central 
than another?’ The multiple roots model also allows one to study ‘community-speci�c” node cen
trality instead of global node centrality.

In the paper, we discussed the seq-PAPER model and the deletion noise model to illustrate how 
one could extend the PAPER model and what would be the corresponding modi�cations needed 
for the inference algorithm. As Prof. Li noted, inference becomes more computationally involved 
once we leave the comfort of the PAPER model, but very often it is still tractable on networks with 
hundreds or thousands of nodes.

1.1 Community structure and homophily

Yang and Tong, Srakar, and Wyse, Ng, White, and Fop all pointed out that the PAPER notion of 
community does not seem to take into account the phenomenon of homophily, where nodes with 
similar characteristics tend to connect with each other, e.g. a person tends to become friends with 
others of similar cultural backgrounds.

Homophily has been the main consideration behind the design of statistical network models for the 
past two decades. It is a primary motivation for stochastic block models and various latent space mod
els. Homophily is certainly important, but one of the theses of our work is that other features of net
work data are also important and have been overlooked. Speci�cally, we believe that the underlying 
Markovian growth process plays an equally crucial role in forming the topology of a network. Indeed, 
because the PAPER model is able to obtain good community detection results on real world networks, 
there is good reason to believe that when estimating communities in a network, one should account 
for not just homophily but also by the underlying growth processes of the communities.

We did not explicitly incorporate homophily in the PAPER model in order to keep the model 
simple. Just as it is good practice to control as many extraneous variables as possible in a scienti�c 
experiment, we believed we can illustrate our ideas most clearly by having the model focus on the 
growth process and omitting extraneous features. However, we agree that it would be appropriate 
to incorporate homophily into the PAPER model in many applications. One example is the 
PAPER-SBM model which we brieMy discussed in the paper. We discuss a few other examples here.

If we know the characteristics of the nodes that induce homophily, then the extension proposed 
by Yang and Tong is very sensible and in fact similar to a proposal by Kim and Altmann (2017), 
who studied the effect of accounting for homophily in the preferential attachment model. To adapt 
their proposal to the PAPER model, we could, when generating the tree T, have a new node u con
nect to an existing node v with probability

{βD(v) + α}Λuv∑
w {βD(w) + α}Λuw

, 

where Λuv is the af�nity between node u and node v; for example, we may have Λuv = 1 if u, v are in 
the same community and Λuv < 1 otherwise. The sampling algorithm becomes more dif�cult be
cause we cannot sample an ordering uniformly at random from the spanning tree. However, we 
could adapt the swapping algorithm that we proposed for inference on the seq-PAPER model.

When we do not know the characteristics of the nodes, we could try to estimate them, as Jiang 
and Ke suggested. We could also incorporate latent variables into the model in a way that com
bines latent space models with Markovian network models, as Wyse, Ng, White, and Fop sug
gested. For instance, we may consider a model where for each node u, we generate latent 
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representation Zu ∈ R
d. Then, to generate the tree T, we connect a new node u to an existing node 

v with probability

Z⊤
u Zv∑

w Z⊤
u Zw

.

It is unclear how one can estimate the latent representations. There may not even be enough infor
mation in the network to do so. Spectral methods that are typically used in latent space models 
seem unlikely to succeed here.

1.2 Triangles and transitivity

Both Li and Rubin-Delanchy pointed out that the PAPER model may produce too few triangle 
subgraphs, that is, three nodes that are all connected to each other. Real world networks tend 
to have many triangles, reMecting the fact that two people who are friends with the same person 
tend to be friends with each other as well. In network data analysis, this is referred to as transitiv
ity. One measure of transitivity is the global clustering coef�cient de�ned as

global clustering coef =
number of triangles

number of connected triplets
.

Another common measure is the average local clustering coef�cient:

Cu =
number of triangles in the neighbourhood of u

1
2 Deg(u) · (Deg(u) − 1)

,

average local clustering coef =
1

n

∑

u

Cu.

We expect a PAPER graph to produce more triangles than an Erdős–Rényi graph with the same 
number of nodes and edges. This is because a preferential attachment tree Tn tends to have 
hubs and any two ‘spoke’ nodes in the neighbourhood of the hub centre can form a triangle by 
forming an edge between each other. We perform simulation experiments which con�rm that 
PAPER graphs produce more triangles than Erdös–Rényi (ER) graphs. The simulation results 
are shown in Tables 1 and 2. In these simulations, we generate a PAPER graph with n nodes 
and �x the number of edges to be m; that is, we generate Erdős–Rényi noise by selecting [m − (n − 

1)] edges from n(n − 1)/2 − (n − 1) potential pairs at random. We then compare the global clus
tering coef�cient and the average local clustering coef�cient against an Erdős–Rényi graph with 
the same number of nodes and edges. We repeat the experiment 100 times to generate the results.

We observe that a PAPER graph with linear preferential attachment (LPA) tree (α = 0, β = 1) has 
higher transitivity measure than an ER graph as expected. The transitivity measures do decrease as 

Table 2. n = 1, 000 nodes and m = 3, 000 edges

α = 0, β = 1 α = 1, β = 0 ER

Global clustering coef�cient 0.0068 0.0059 0.0057

Average local clustering coef 0.0087 0.0060 0.0055

Table 1. n = 100 nodes and m = 300 edges

α = 0, β = 1 α = 1, β = 0 ER

Global clustering coef�cient 0.065 0.058 0.059

Average local clustering coef 0.077 0.058 0.058
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the size of the graph increases, which is undesirable but also a feature of the stochastic block mod
el. One way to increase transitivity in a Markovian network model would be to use a random-walk 
mechanism to generate the noise edges, as proposed in Bloem-Reddy and Orbanz (2018).

There is the question of just how important it is to match the number of triangles in a network 
model with that of the data. Is it worth adding extra complexity to the model? We believe one must 
consider the end goal of the analysis, that is, the model choice should depend on whether we are 
trying to estimate communities, predict links, infer root nodes, or extract other information. To 
help practitioners answer this question in a principled way, we believe more research is needed 
on goal-speci�c model selection methods for network data. Promising work in this direction in
clude network resampling methods such as ones proposed by Li et al. (2020), but these require 
assumptions that may not hold for Markovian networks. For stochastic block model (SBM), 
this is related to estimating the number of communities, for which there are good methods (Jin 
et al., 2023). We continue our discussion on model selection more in Section 1.4.

1.3 Number of communities

Ascolani, Lijoi, and Prünster and Catalano, Fasano, Giordano, and Rebaudo raised the point that 
our treatment of multiple root nodes assumes that the number of communities grows according to 
the dynamics of a one-parameter Ewens process, also known as the Chinese restaurant process. 
Those authors went on to highlight the potential bene�t of considering alternative models for 
the number of clusters, such as the two-parameter extension of the Ewens process (De Blasi 
et al., 2013). We agree that this seems a sensible suggestion that adds Mexibility to the class of mod
els presented here. As highlighted at the outset of our response, our speci�c choice of the one- 
parameter family here is intended as a starting point for introducing a framework for modelling 
network data that arises from a growth process, rather than as a be-all, end-all. Extensions and 
modi�cations, such as the one above regarding the distribution of the number of clusters, are often 
necessary when attempting to apply this model—or any model for that matter—in a practical 
setting.

One interesting observation is that if we apply the Pitman–Yor process prior with a particular 
parameter setting, we obtain a particularly simple model: 

1. Generate G0
∼ PAPER(α, β, θ) with K = 1 and β > 0.

2. Remove node 1 and all edges incident on node 1 from G0 to obtain G. Output G without 
labelling.

Once we ‘retire’ the original root node, each direct child of the original root node becomes a new 
root of a community-tree. Note that in this model, we give each root a base degree of 1 instead of a 
base degree of 2. This model is a speci�c example of ‘vertex retirement’ described by Jog and Loh.

The sampling procedure for this model is also simple. We can sample π from distribution 

P(Π = · | F̃, G̃) by sampling an ordering from the history of F̃ uniformly at random, equivalent 

to the cases described in the paper. To sample a forest f̃ from distribution P(F̃ = · |Π, G̃), we fol
low Algorithm 3 in our paper except we choose a new parent wt ∈ {∅} ∪ (π1 : (t−1) ∪ Ng̃n

(πt) for πt 

with probability proportional to

(βK + α)/θ̂ for wt = ∅

βD
f (·,πt )

n
(wt) + α for wt ≠ ∅,

{

where K is the current number of trees in f . We have implemented this prior and it works as ex
pected in simulation studies. We will study the speci�cation of prior in the random K model more 
extensively in a future work.

1.4 Model misspecification and model selection

The points made by the discussants piqued our own curiosity on a question: how do we interpret 
frequentist inference results when we know for a fact that our model is misspeci�ed? This question 

888                                                                                                                  Discussion Paper Contribution



pertains to all of statistics but it is particularly tricky for network data for two reasons. First is that 
networks edges have strong dependence so we cannot assume we have IID observations; the se
cond related reason is that we typically do not have universality phenomenon such as central limit 
theorem. How then do we interpret con�dence set for the root node? Wyse, Ng, White, and Fop 
raised a concern very similar to this.

We give several answers to this question although we acknowledge that none of them are perfect
ly satisfactory. First, our con�dence set for the root node has a Bayesian interpretation: conditioned 
on the event that the observed network is the result of the PAPER generating mechanism, we can 
�nd the plausible root nodes. Second, our procedure has a combinatorial interpretation where it is 
computing a combinatorial centrality measure, which can be viewed as a generalization of rumour 
centrality (Shah & Zaman, 2011); see Section 3.4 of our paper. Third, because the posterior root 
probability P(Π1 = u | G̃n) of node u is proportional to the likelihood of node u being the root node, 
we can interpret nodes with highest posterior root probability as being the root of the Kullback– 
Leibler projection of the actual network generative model to the PAPER model.

Finally, the issue of model misspeci�cation can be somewhat alleviated by allowing a Markovian 
network to start from a seed graph instead of a single root node or several root nodes, as Jog and Loh 
suggested. There are several signi�cant works in this direction (Devroye & Reddad, 2019; 
Lugosi & Pereira, 2019) but a number of major challenges remain. One dif�culty is 
computation—the number of potential seed graphs in a network increases exponentially with 
the size of the seed graph. Another is model selection—models with a larger seed graph contain 
models with small seed graph. An interesting question then is how to select or estimate the size 
of the seed graph. Traditional model selection criteria such as AIC do not seem directly applicable 
in this setting.

As we mentioned before in the discussion on transitivity, more research is needed on model se
lection methods for networks. Jog and Loh echoed this sentiment when they asked how one would 
choose between the different variations of the PAPER model: �xed K versus random K, sequential 
versus nonsequential. This question can be extended to include the change-point extension pro
posed by Wang, Yu, and Rinaldo and the heterogeneous af�ne preferential attachment extension 
proposed by Feng and Sun. How should we choose among these models? One idea is to conduct 
goodness-of-�t test and compare the p-value of each of the potential models, but this simply leads 
to the question of how to choose a statistically and computationally ef�cient test statistic. One po
tential approach is be to construct the test statistic based on the degree distribution or higher order 
subgraph counts and generate Monte Carlo p-value by simulation.

2 Theory

2.1 Root inference formulation

In this section, we respond to Prof. Rubin-Delanchy’s stimulating comments regarding how to best 
formulate the root inference problem. We thank him for bringing group theory to the fore, which 
has helped us clarify a lot of our own thoughts.

Root inference is a problem that is intuitively easy to understand but dif�cult to formalize. This 
is in part because the observed data is in actuality an unlabelled graph. It is not well-de�ned to refer 
to a speci�c node in an unlabelled graph. For example, in a chain graph with four nodes, we cannot 
distinguish between the two end-point nodes or the two interior nodes.

There are many different ways to formalize the root inference problem, as Prof. Rubin-Delanchy’s 
discussion demonstrates. What is remarkable (and also comforting) is that these formulations are all 
equivalent in that the sense that they give the same notion of conditional root probability. In the manu
script, our goal was to give a formulation that is both rigorous and also ef�cient in the sense that the 
reader can go from the problem de�nition to the methodology/algorithm without needing to digest 
new concepts. This is the main reason we introduced the random labelling device: it leads naturally 
to the inference algorithm. It is not just a way to strip away the node label information. In what fol
lows, we lay out all the formulations clearly and formally establish their equivalence. We leave the 
readers to choose the formulation that makes the most sense to them.

Let G be a random graph with n nodes whose nodes are labelled using [n] := {1, 2, . . . , n}. We 
think of G as a Markovian model whose nodes are labelled by their arrival time, although the 
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technical results apply to any random graph models. We observe G∗ = ρG where ρ ∈ Sn is an un
known permutation. In the manuscript, we supposed that the node labels of G∗ take value in some 
alphabet to make it clear that the node labels of G∗ do not correspond to the arrival time.

Random relabelling formulation:
This is the formulation we gave in the paper. Let Π be a random permutation distributed uni

formly over Sn. For a node v ∈ G∗, we de�ne its conditional root probability as

p1(v) := P{Π1 = v |ΠG = G∗}. (1) 

We note that in the paper, we wrote G̃ = ΠG to denote the randomly relabelled graph. As Prof. 
Rubin-Delanchy pointed out, we do not need to actually apply randomization—we simply view 
the observed graph G∗ as being randomly labelled.

Group-theoretic formulation:
This is the formulation that Prof. Rubin-Delanchy gave. Suppose that the unobserved permuta

tion ρ is uniformly random. De�ne Aut(G∗) = {π ∈ Sn : πG∗ = G∗} as the automorphism group and 
de�ne MG∗ := n!

|Aut(G∗)|
as the number of distinct labelled graphs of the same shape as G∗; we put G∗

in the subscript but we note that MG∗ depends only on the unlabelled shape of G∗. We enumerate 
these distinct labelled graphs as G1, . . . , GMG∗

.
For a node v ∈ G∗, we de�ne its orbit o(v, G∗) = {πv : π ∈ Aut(G∗)}, which is the set of nodes of 

G∗ indistinguishable from v once the node labels are removed. We then de�ne the conditional root 
probability of v as

p2(v) := P{ρ(1) ∈ o(v, G∗) |G∗, G ∈ {G1, . . . , GMG∗
}}. (2) 

Unlabelled shape formulation:
This is a formulation that we described in a previous work (Crane & Xu, 2021). The idea is that 

we do not even need to de�ne an unobserved permutation ρ in order to formalize the root inference 
problem. It is well-de�ned to write the following conditional probability: 

Indeed, the APA tree model with α = 1 and β = 0 produces the four node chain graph on the right 
if it produces 1→ 2→ 3→ 4 or 2← 1→ 3→ 4 or 3← 1→ 2→ 4 or 4← 1→ 2→ 4, with 
total probability 23. It produces the rooted chain graph on left if it produces 2← 1→ 3→ 4 or 
3← 1→ 2→ 4 or 4← 1→ 2→ 3, with total probability of 12 so that the conditional probabil
ity evaluates to 34.

More generally, for a labelled graph G, de�ne its shape (unlabelled graph) as the equivalence 
class

sh(G) := {G′ : G′ = πG, ∃π ∈ Sn}.

The cardinality of sh(G) is exactly MG as de�ned in the group-theoretic formulation section. We 
note that sh(G) is the quotient set Sn/Aut(G) (it is not a quotient group since Aut(G) may not be a 
normal subgroup of Sn).

Similarly, we de�ne the notion of a rooted shape. Let v be a node in G, then de�ne

sh0(G, v) := {(G′, v′) : G′ = πG, v′ = πv, ∃π ∈ Sn}.

If we de�ne the subgroup Sn(v) = {π ∈ Sn : π1 = v} and Aut(G, v) := {π ∈ Sn : πG = G, πv = v}, then 
sh0(G, v) is the quotient group Sn(v)/Aut(G, v).

For a node v ∈ G∗, we de�ne the conditional root probability as

p3(v) := P{(G, 1) ∈ sh0(G∗, v) |G ∈ sh(G∗)}. (3) 
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In our previous work (Crane & Xu, 2021), we de�ne Eq(v, G) = {u ∈ V(G) : πu = v, πG = 

G, ∃π ∈ Sn} as the set of nodes of G that are equivalent to v. This set is exactly the orbit 
o(v, G). We note that o(v, G) is the quotient set Aut(G)/Aut(G, v). We thus have that

|o(v, G)| =
|Aut(G)|

|Aut(G, v)|
= n
|sh0(G, v)|

|sh(G)|
.

Equivalence:
The following theorem equates all three notions of conditional root probability. In the theorem 

below, we need to divide p2(v) and p3(v) by |o(v, G∗)| because these are probability of a entire set— 
the orbit of v. In contrast, p1(v) is the probability of a single node. One consequence of the theorem 
is that p1(·) is a constant for all nodes in the same orbit.

Theorem 1 Let v be any node in G∗ and let p1(v), p2(v), p3(v) be de�ned as in (1), (2), (3), 
respectively. Then, we have that

p1(v) =
p2(v)

|o(v, G∗)|
=

p3(v)

|o(v, G∗)|
.

Proof. Given a node v of G∗, de�ne

L(v, G∗) =
1

|o(v, G∗)|

∑

g

P(G = g)1{(g, 1) ∈ sh0(G∗, v)}, 

where the summation is taken over all graphs whose nodes are labelled with 
{1, 2, 3, . . . , n}. It follows from Theorem S5 of our paper [see also Theorem 8 in 
Crane and Xu (2021)] that

p1(v) =
L(v, G∗)∑

u∈[n] L(u, G∗)
. (4) 

Intuitively, (4) holds because sh(G∗, v) = Sn(v)/Aut(G∗, v) and o(v, G∗) = 

Aut(G∗)/Aut(G∗, v) so that

p1(v) ∝
∑

π∈Sn : π1=v

P(G = π−1G∗) =
∑

(g,1)∈sh0(G∗ ,v)

∑

π∈Aut(G∗,v)

P(G = π−1g)

=
∑

(g,1)∈sh0(G∗,v)

|Aut(G∗, v)|P(G = g) ∝
1

o(v, G∗)

∑

(g,1)∈sh0(G∗,v)

P(G = g).

Then, we have that

p3(v) =
P{(G, 1) ∈ sh0(G∗, v)}

P{G ∈ sh(G∗)}

=

∑
g P(G = g)1{(g, 1) ∈ sh0(G∗, v)}

∑
u∈[n]

∑
g P(G = g)1{(g, 1) ∈ sh0(G∗, u)}

= p1(v)|o(v, G∗)|.

Finally, we also have that

p2(v) =

∑
(g,1)∈sh0(G∗,v)

P(G = g)
∑

g∈sh(G∗)
P(G = g)

= p3(v).

The desired conclusion follows.                                                                                          □

Discussion Paper Contribution                                                                                                                 891



2.2 Theoretical guarantees

Various discussants raise a number of questions related to bounds on the size of the con�dence set 
which we discuss here.

Banerjee pointed out that to optimally bound the size of the con�dence set when α = 1 and β = 0, 
one needs a nonlocal centrality measure beyond the degree. We agree that an alternative centrality 
measure is needed but what that alternative should be remains an elusive question. We unsuccess
fully attempted to use anchors of double cycles, which is a clever idea proposed by Briend et al. 
(2023) to study Cooper–Frieze networks and other related models. Cooper–Frieze network is es
sentially the seq-PAPER model with α = 1, β = 0 and where the noise edge probability is θt = θ0

1
t; it 

differs from the PAPER model in that early nodes tend to be more tightly connected amongst each 
other. Because of this difference, we could not obtain satisfactory results using the ‘anchor of 
double-cycle’ idea. We also do not see how to extend Jordan centrality (Bubeck et al., 2017) to 
the nontree setting. For now, the problem remains open.

For the multiple root setting, Yang and Tong asked what could be proved about community 
detection while Jog and Loh asked about bounds on the size of the con�dence set. We conjecture 
that exact community recovery is impossible under the PAPER model, because it does not seem 
likely that we can perfectly estimate the community membership of the peripheral leaf nodes of 
a community-tree. We do believe, however, that, in the �xed K setting, the early nodes of each 
of the K communities can be consistently clustered. To be more precise, it may be possible to ob
tain consistency if we use a weighted misclustering measure where we weigh each node by the in
verse of its arrival time. A potential approach may be to �rst show that the con�dence set of the K 
root nodes are likely to comprise K disjoint subgraphs each of which correspond to a community.

Qing and Tong asked whether the posterior root distributions can be used to construct test sta
tistics for testing the number of communities in the network. This is an interesting question. We 
have not studied how the posterior root distribution behaves when the speci�ed K is either smaller 
or larger than the true K0.

Jog and Loh asked about frequentist guarantee for the credible set in the sequential noise setting. 
This is indeed true as Theorem 7 in our paper applies to the sequential noise setting. They then ask 
about the what guarantees can be provided under the random K model. There are two layers to this 
question. First, if we assume that the Dirichlet process prior is well speci�ed, then it follows from 
the conditional coverage that we would also have marginal coverage in that the credible set con
tains all the K root nodes with at least 1 − ϵ probability. However, if we suppose that the graph is 
actually generated according to the PAPER model with �xed K roots but where K is unknown, 
then we do not expect our credible set to have frequentist guarantees.

Jog and Loh also asked about constructing con�dence set for the K root nodes as a set of 
K-tuples. This is easy to do with our methodology. The reason we did not investigate this approach 
in the paper is that the resulting set of K-tuples may be too large, especially when K is large.

3 Miscellaneous points

Response to miscellaneous points in the discussion by Banerjee:
Banerjee suggested empirical comparison between the size of our con�dence set with those con

structed by probability analysis. We have conducted these comparisons in our previous paper on 
the tree setting (Crane & Xu, 2021) and found that the latter con�dence sets are overly 
conservative.

Response to miscellaneous points in the discussion by Qing and Tong:
We are grateful for the suggestion of creating a markdown �le to illustrate the model and the 

methodology in the simplest setting possible. We plan to implement our algorithm in R and pro
vide such an illustrative markdown �le. We are also grateful for the suggestion of using the PAPER 
model for tasks beyond minimizing misclustering error. We believe two promising examples in
clude graph summarization and hierarchical clustering.

Response to miscellaneous points in the discussion by Wang, Yu, and Rinaldo:
We thank Wang, Yu, and Rinaldo for their interesting formulation of a change-point problem 

on the PAPER model. This formulation is similar to the change-point model analyzed in Banerjee 
et al. (2023). Banerjee et al. (2023) consider the generalized preferential attachment tree model and 
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study two single-change settings: one is where the change-point occurs at time γn and the other is 
where the change-point occurs early at time nγ for some γ ∈ (0, 1). They propose consistent esti
mators based on the empirical degree distribution. Their work, along with the question raised by 
Wang, Yu, and Rinaldo, show that change-point estimation in Markovian networks has unique 
properties which need to be better understood. The likelihood based estimation approach pro
posed by Wang, Yu, Rinaldo is a promising direction.

Response to miscellaneous points in the discussion by Ascolani, Lijoi, and Prünster:
Ascolani, Lijoi, and Prünster raised the point of considering multiple networks instead of just 

one, citing an example regarding co-authorship structures among different academic communi
ties. Interestingly, we illustrated our approach on the statisticians’ co-authorship network, for 
which there are numerous overlapping subcommunities. In that application, we showed that 
the joint dynamics of the communities helps in allowing us to infer structure about the network. 
There are a number of interesting problems we may consider if we observe multiple networks. 
When two network have the same set of nodes, we may consider the setting where they share parts 
of the latent growth history, that they co-evolved in some sense.

Response to miscellaneous points in the discussion by Wyse, Ng, White, and Fop:
Wyse, Ng, White, and Fop made an insightful comment regarding the EM estimation algorithm 

for the α, β parameters in the PAPER model. In the paper, we made two approximations in the EM 
algorithm. First, we approximated the conditional distribution of the tree degree given the graph 
Pα{j < DT̃n

(v)|G̃n} by Pα{j < DT̃n
(v)|DG̃n

(v)}, which ignores the dependence between the graph de
gree of all the nodes. Second, when computing Pα{j < DT̃n

(v)|DG̃n
(v)}, we approximated the mar

ginal distribution of DT̃n
(v) by its asymptotic limit.

We do not have theoretical analysis on how signi�cantly these approximations would affect es
timation accuracy of the resulting EM procedure. We conjecture that the second approximation 
has only a small effect because there is uniform convergence of the �nite n distribution of the de
gree DT̃n

(v) to its asymptotic limiting distribution (see (Van Der Hofstad, 2016, Theorem 8.2). The 
�rst approximation may be inaccurate if the observed graph G does not resemble a PAPER graph 
at all. For example, we can show that the approximation is poor if G is a cycle graph.

It would be interesting to compare the approximate EM algorithm with either Monte Carlo EM 
or Bayesian inference where we put a prior on the α, β parameters.

Response to miscellaneous points in the discussion by Catalano, Fasano, Giordano, and Rebaudo:
The susceptible-infectious-recovered (SIR)-inspired model proposed by Catalano, Fasano, 

Giordano, and Rebaudo is interesting. If we view the PAPER model as an infection process, 
then we are not making assumptions about the infection time; the arrival ordering of the nodes 
would reMect the order of infection. One could consider a model where in each infection ‘wave’, 
each existing (infected) node recruits (infects) some number of new nodes. Our intuition is that 
a network generated by such a model would provide more information about the root node—it 
may even enable consistent estimation of the root node. We also note that SIR is used to motivate 
infection process that occurs over a �xed background graph, which Li discussed.

Response to miscellaneous points in the discussion by Feng and Sun:
We thank Feng and Sun for their interesting discussion on the heterogeneous af�ne preferential 

attachment (HAPA) model. This proposal allows the different trees in the K > 1 setting to have 
potentially different growth dynamics, i.e. potentially different α, β parameters. To estimate the 
K different (αk, βk) parameter pairs, Feng and Sun propose a Monte Carlo EM algorithm; this 
could be effective even in the PAPER setting. They also suggest a way to adapt the Gibbs sampling 
procedure to the HAPA setting. One novel aspect is, before sampling the ordering π given a forest 
f , to �rst samples a sequence of tree assignment history {(x1,t, . . . , xK,t)}

n
t=K+1 where xk,t is the num

ber of nodes in tree k at time t. Sampling the tree assignment history conditional on the �nal forest 
f is challenging. The proposed approach may not ensure consistency of the sampled history with 
the forest f . Sequential Monte Carlo methods may be appropriate here.

Response to miscellaneous points in the discussion by Srakar:
Srakar stated that it seems unexplained why we are using a Bayesian approach. The reasons are 

that (1) the Bayesian credible set for the root node has frequentist guarantee, (2) the Gibbs sampler 
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is scalable, and (3) the resulting con�dence set has size of an optimal order—we discuss each of 
these in the paper. Srakar mentioned connections to temporal networks which we agree merit add
itional research.

Response to miscellaneous points in the discussion by Jog and Loh:
Jog and Loh suggested a number of extensions to the PAPER model. The notion of ‘vertex re

tirement’ is particularly interesting, from both practical and theoretical perspectives. Interestingly, 
if we ‘retire’ the root node in a single root PAPER model, we obtain a random K PAPER model 
where formation of new trees is governed by a Pitman–Yor process. See discussion in Section 1.3.

Response to miscellaneous points in the discussion by Rubin-Delanchy:
In addition to raising a subtle technical question which we addressed in Section 2.1, 

Rubin-Delanchy stated that his ‘most important concern at the time was that in the applications 
cited [· · ·] there would almost always be timing information on the edges. It would seem highly 
irresponsible to ignore this in practice.’ We comment here that our proposed model and subse
quent methodological developments are framed speci�cally in the setting in which there is no add
itional information other than the contact pattern (i.e. ‘shape’). In particular, we explicitly assume 
that time information is unavailable for the network. At no point do we suggest that one should 
ignore such information if it were to exist.

If exact time information is known, then the root inference problem becomes trivial of course. In 
most situations; however, the time information is noisy or unreliable so that it could be very help
ful to also incorporate the network structure information. For example, in a disease infection net
work, we may only have rough guesses on the actual times of infection of all the individuals.

Response to miscellaneous points in the discussion by Li:
Li raised a connection of the PAPER model to a diffusion process over a �xed background 

graph. In that setting, there is a set of infected nodes that start as a single root and, at every iter
ation, infects an additional neighbouring node chosen at random.

If we assume that the root node is chosen uniformly at random, then we can also de�ne the pos
terior root distribution. However, the credible set formed from the posterior root distribution will 
not have frequentist coverage in general. Frequentist coverage does hold when the background 
graph exhibits symmetry. For instance, if the background graph is an in�nite regular tree or an 
in�nite grid graph.

Response to miscellaneous points in the discussion by Jiang and Ke:
We thank the Jiang and Ke for showcasing the PAPER model on a citation network. In this case, 

because the directions of the edges are removed, we expect the posterior root distribution to assign 
higher probabilities to survey papers that cite many inMuential papers. This seems to be the case in 
the result that Jiang and Ke obtained.

Jiang and Ke stated that the PAPER model fails to account for degree homogeneity due to its use 
of the Erdős–Rényi model. We point out that the PAPER model does, in fact, model degree homo
geneity as a result of its preferential attachment dynamics. Importantly, the preferential attach
ment component of PAPER is the dominant structural component, whereas Erdős–Rényi serves 
as a secondary noise distribution on top of the main structural layer. Furthermore, we point 
out that PAPER addresses degree homogeneity with only three parameters, whereas the suggested 
degree-corrected stochastic blockmodel requires a separate parameter for every node of the graph, 
so that the number of parameters depends on sample size.
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