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Abstract

Several methods have been developed to computationally predict cell-types for single cell RNA sequencing (scRNAseq) data. As methods
are developed, a common problem for investigators has been identifying the best method they should apply to their specific use-case. To
address this challenge, we present CHAI (consensus Clustering tHrough similArlty matrix integratlon for single cell-type identification),
a wisdom of crowds approach for scRNAseq clustering. CHAI presents two competing methods which aggregate the clustering results
from seven state-of-the-art clustering methods: CHAI-AvgSim and CHAI-SNF. CHAI-AvgSim and CHAI-SNF demonstrate superior
performance across several benchmarking datasets. Furthermore, both CHAI methods outperform the most recent consensus clustering
method, SAME-clustering. We demonstrate CHAI's practical use case by identifying a leader tumor cell cluster enriched with CDH3. CHAI
provides a platform for multiomic integration, and we demonstrate CHAI-SNF to have improved performance when including spatial
transcriptomics data. CHAI overcomes previous limitations by incorporating the most recent and top performing scRNAseq clustering
algorithms into the aggregation framework. It is also an intuitive and easily customizable R package where users may add their own
clustering methods to the pipeline, or down-select just the ones they want to use for the clustering aggregation. This ensures that as
more advanced clustering algorithms are developed, CHAI will remain useful to the community as a generalized framework. CHAI is

available as an open source R package on GitHub: https://github.com/lodimk2/chai.
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Introduction

The advent of single cell RNA sequencing (scRNAseq) has allowed
researchers to investigate transcriptional mechanisms at the
single cell resolution. Notably, scRNAseq has contributed to the
identification of rare cell types, assessing cell heterogeneity,
and quantifying cell-cell variation [1]. A common methodology
for identifying subpopulations from single cells has been
unsupervised clustering [2]. However, the nature of scRNAseq
data presents unique challenges in identifying accurate clusters.
For example, scRNAseq data is sparse, with frequent gene and
cell dropouts. Additionally, scRNAseq data is high dimensional,
which leads to data points being similar and therefore unreliable
for downstream clustering tasks. Due to these factors, a diverse
array of scRNAseq clustering methods have emerged recently [2].

While several clustering methods for scRNAseq data have been
published, comprehensive benchmarking studies, such as the one
from Yu et al., have indicated that there is no clear 'best method’
across all scenarios [3]. Due to the high amount of variability in
scRNAseq data, even the most commonly used clustering algo-
rithms have distinct strengths and weaknesses. Take for exam-
ple Seurat, perhaps the most commonly used scRNAseq cluster-
ing platform: while results from Seurat often demonstrate high

concordance with ground-truth cell type populations, it also tends
to overestimate the number of distinct cell types in a dataset [3, 4].
Seurat, along with other popular scRNAseq clustering workflows
such as Spectrum and SC3, use community detection algorithms
such as Leiden and Louvain as the primary mechanism for their
clustering. Preprocessing steps, such as highly variable gene selec-
tion, or dimensionality reduction through Principal Component
Analysis (PCA), have also become common place before perform-
ing the final clustering [3-6]. Additionally, common unsupervised
clustering algorithms, such as k means or hierarchical clustering,
are used to create initial clusters before reclustering, such as in
CIDR [7]. More recently developed algorithms such as scSHC and
CHOIR use a statistical significance testing to determine final
cluster assignments and also serve as an evaluation framework
outside of the commonly used metrics such as Adjusted Rand
Index (ARI) and Normalized Mutual Information (NMI) [8-12].
With the various scRNAseq clustering methodologies currently
available, a common question for investigators becomes: Which
method should I use? As there is no definite answer for this, an
intuitive approach is to integrate the results from the different
clustering algorithms, into a 'clustering ensemble’ or 'consensus
clustering’ [13]. This idea extends from the wisdom of crowds
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approach, which states that knowledge from the collective of a
group is greater than that of an individual [14-16].

The idea of consensus clustering was introduced by Strehl
and Ghosh, who pioneered hypergraph partitioning algorithms
for integrating results from individual clustering results [17]. The
framework of consensus clustering has been introduced to single
cell biology in a variety of ways. A frequently used method,
SC3, uses consensus clustering based on Clustering Similarity
Partitioning Algorithm (CSPA) by running KMeans clustering sev-
eral times on a single cell count matrix, taking average simi-
larity across the binary matrix representations, and then per-
forming hierarchical clustering on the average consensus matrix
[5]. Another method, scCCESS, performs consensus clustering by
combining random low dimensional representations of a single
cell count matrix through SIMLR, a clustering kernel specially
optimized for single cell clustering. The authors of scCCESS noted
that their autoencoder-based ensemble method is highly effective
in isolating specific cell types [18]. These methods helped to
highlight the effectiveness of wisdom of crowds approach for
clustering in single cell biology. However, these consensus clus-
tering methods are self contained, which means that they run the
same method several times, and perform consensus clustering on
an aggregated matrix. Another method of consensus clustering
is to incorporate results from several different methods into
one composite result. This approach has also been successfully
accomplished and benchmarked for single cell clustering.

A method known as SAFE-Clustering implemented all three of
Strehl and Ghosh’s algorithms in an application to scRNAseq clus-
tering, which included the clustering methodologies Seurat, SC3,
CIDER, t-SNE, and k-means in 2018 [19]. SAFE-Clustering demon-
strated robust performance across 12 benchmarking datasets,
establishing the premise that consensus clustering is applicable
to scRNAseq data. Another ensemble clustering method, SAME-
Clustering, uses a Mixture model Ensemble to aggregate results
from different scRNAseq clustering methodologies [20]. However,
since these methods were created in 2020 and prior, there have
been further advancements made to the existing algorithms in
their pipeline such as Seurat and SC3, and the other algorithms,
such as CIDER and SIMLR, are not as widely used [3]. Addition-
ally, these ensemble clustering approaches are not immediately
extendable to multi-omic data integration, which can provide
even more insights toward distinct cell types and state. A consen-
sus aggregation approach is only as accurate as the performance
of the individual information, and so we identified a need for
an updated consensus clustering framework that can also seam-
lessly allow for multiomic data integration.

Here, we present CHAI (consensus Clustering tHrough sim-
ilArlty matrlces), a consensus clustering methodology built
upon binary similarity matrices. CHAI contains two clustering
ensemble approaches, named CHAI-AvgSim and CHAI-SNF. CHAI-
AvgSim is performed by aggregating all clustering assignments
with an average similarity matrix, and performing Spectral
Clustering on the final average matrix. CHAI-SNF extends Sim-
ilarity Network Fusion (i.e. SNF), which is a network integration
algorithm originally designed for multiomic data integration for
patient subtyping and classification [21].

Both CHAI methods have demonstrated improved performance
across several benchmarking datasets and conditions, showcas-
ing limited variability across runs, and low impact from poor
performing algorithms. Additionally, we present a technique
to integrate other data modalities into the CHAI framework,
such as spatial transcriptomic data or ATAC-Seq data. CHAI
contains seven state-of-the-art scRNAseq clustering algorithms

(Seurat-Louvain, Seurat-SLC, CHOIR, RACEID, SC3, Spectrum,
and scSHC) and is available as an R package [4-6, 8, 9, 22].
We seek to make CHAI a collaborative tool for the community
by providing a way for scientists and developers to integrate
their own clustering algorithms into the pipeline as well, which
may potentially strengthen results as more advanced scRNAseq
clustering algorithms emerge in the future.

Overall, CHAI reinforces the importance of the wisdom of
crowds approach for scRNAseq clustering. Specifically, this study
makes the following contributions: to our knowledge, CHAI is the
first method to incorporate average similarity on binary similarity
matrices for consensus clustering across various methods on
scRNAseq data. Additionally, CHAI is the first method to extend
SNF for the purpose of ensemble clustering. This has a wide
variety of applications in several fields that require clustering, not
just single cell biology. Finally, CHAI is the first method to use SNF
for multi-omic integration in single cell biology and highlights the
power of simple similarity matrix representation of 'omic’ data.

Materials and Methods

The CHAI workflow may be summarized as three majors steps:

(i) Run individual clustering algorithms and compute binary
similarity matrix for each.
(ii) Calculate Average Similarity matrix and/or SNF matrix.
(iii) Run Spectral Clustering on either integrated matrix to deter-
mine final cell identities.

The package is written in R and is available for installation on
GitHub at https://github.com/lodimk2/chai.

Individual clustering algorithms

CHALI incorporates seven algorithms by default when using the
package, which are described below. Users may also integrate
information from other clustering methods.

Seurat

Seurat begins with dimensionality reduction methods such
as PCA, Uniform Manifold Approximation and Projection, and
t-distributed stochastic neighbor embedding (tSNE). It then iden-
tifies variably expressed genes, then a K nearest neighbor (KNN)
graph is computed based upon these. From here, community
detection algorithms are used to identify the final clusters.
Both Louvain and smart local moving (SLM) rely on the local
moving heuristic for modularity optimization. The premise is
to continually move individual nodes from one community
to another so that each node movement elicits a modularity
increase. This is done in a random order. For each node, it is
checked whether it is possible to increase the modularity by
moving it to a different community. If this is possible, then the
node is moved to the community that results in the highest
modularity gain. This repeats until it is no longer possible to
increase modularity through individual node movements. In
CHAI, we used Louvain and SLM. There are two versions of
Louvain that are used in the paper: Louvain and Louvain with
Multilevel Refinement. Both algorithms follow the same steps,
with the difference being that the local moving heuristic is run
again at the end of the program to fine-tune the final community
structure and to also guarantee that the final community
structure can not be further optimized. First, an adjacency
matrix of a network and the initial assignments of nodes to
communities is inputted. The local moving heuristic is run. If the
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number of communities is less than the number of nodes, then
a reduced network is created. A recursive call is then performed
to identify the community structure of the reduced network.
The communities are then merged based off this community
structure. Finally, based off which version of Louvain is run, the
local moving heuristic can be performed. SLM applies the local
moving heuristic differently than Louvain. First, the local moving
heuristic is run. Then, if the number of communities is less
than the number of nodes, a subnetwork for each community is
created and the local moving heuristicis run for each subnetwork.
A reduced network is then formed based on the community
structure of the subnetworks. A recursive call is performed to
identify the community structure of the reduced network, and
the communities are merged based on those findings.

CHOIR

CHOIR constructs a hierarchical clustering tree. Using all cells, it
identifies a set of features that have variable levels of expression.
Then, dimensionality reduction is applied using either PCA, latent
semanticindexing (LSI), or iterative LSI, with PCA being the default
method. A nearest neighbor adjacency matrix is computed, and
to generate the layers of the clustering tree, Louvain and Leiden
clustering is used. MRtree is used to reshape the clustering trees
into a hierarchical tree [8].

RacelD

RacelD uses K-means clustering. First, a similarity matrix is con-
structed, which contains Pearson’s correlation coefficients for all
pairs of cells. K-means clustering is then applied to it, and the
number of clusters used for k-means clustering is decided on by
the difference of the average within cluster dispersion in the data.
It also computes Jaccard’s similarity to check if fewer clusters
should have been produced [22].

SC3

SC3 uses a gene filter to remove any genes or transcripts that
are in less than X% of cells (X being commonly set to 6). After
calculating the distance between the cells, using Euclidean, Pear-
son, and Spearman metrics, all distance matrices are then trans-
formed. K-means clusteringis then applied. A consensus matrix is
computed using CSPA (Cluster-based Similarity Partitioning). For
each individual cluster result, a binary similarity matrix is made.
If two cells belong to one cluster, their similarity is 1; otherwise,
itis 0. The consensus matrix is created by averaging all similarity
matrices of the individual clustering. [5].

Spectrum

Spectrum uses an adaptive density-aware kernel (based on the
Zelnik-Manor self-tuning kernel and the Zhang density-aware
kernel) to construct the similarity matrices. These matrices are
combined using tensor product graph (TPG) diffusion. Then,
the spectral clustering method is applied to the similarity
matrix [6].

scSHC

scSHC used hierarchical clustering as a part of their algorithm.
The first step is to compute the distance between each cell, but
since scRNA-seq data have small counts and high dimensionality,
finding the Euclidean distance is unreliable. Therefore, Euclidean
distance on the latent variables is computed instead. To identify
the clusters, a desired family-wise error rate is decided upon
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(0.05 in simulated data and 0.25 on real data applications). The
method goes down the tree to decide which splits should be kept.
This decision is made using hypothesis testing: a test statistic
is formed using the average silhouette, which is then compared
to the desired family-wise error rate. If it is greater or equal to
the desired family-wise error rate, then it failed to reject the null
hypothesis, and all data should belong to one cluster. Otherwise,
the data is split into the two proposed clusters and the method
continues down the tree [9].

CHAI-AvgSim

Once the individual clustering assignment algorithms are run,
they will each be represented as a table containing the Cell ID in
one column, and the Clustering Assignment as the other column.
From here, we convert this table to a binary similarity matrix.
We represent a cell to clustering assignment vector as a binary
similarity matrix using the following rules:

(i) If two cells have the same clustering assignment, assign a
value of 1 to a binary similarity matrix corresponding to the
two cells.

(ii) If two cells do not have the same clustering assignment,
assign a value of 0 to the binary similarity matrix corre-
sponding to the two cells.

Through this method, each clustering assignment is converted
into a binary similarity matrix. Each binary similarity matrix per
algorithm is then aggregated into an Average Similarity matrix,
which simply put is a cell to cell correlation matrix containing
the per element average rank across all individual clustering
algorithm matrices.

Consider a dataset with m cells. Therefore, each binary similar-
ity matrix per algorithm will be of dimension m x m. To construct
an Average Similarity matrix of m x m dimension, we calculate the
average per cell using the following formula:

_ 1 <&
My = > M®y,
k=1

Where:

n = Total number of samples
n; = Number of pairs of samples that are in the same cluster in
both the first and second clustering
a; = Number of samples in theith cluster according to the first
clustering
b; = Number of samples in thejth cluster according to the
second clustering.

This formula is repeated across each cell in the matrix until a
final m x m matrix is created.

Once the Average Similarity matrix is computed, we use Spec-
tral Clustering to determine the final cell clusters [23]. If the true
number of clusters is known to the user, they can use this k value
as the number of partitions to make on the Average Similarity
matrix. If the true number of k in the dataset is not known to
the user, we recommend calculating the k value for which the sil-
houette score is the highest. For all evaluations conducted in our
benchmarking, we conduct a silhouette score evaluation in range
2 to k+ 1, with k being the true number of clusters present in the
dataset. Despite the true number of clusters being known in the
benchmarking dataset, we choose a value of k computationally in
order to simulate working with unknown data.
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CHAI-SNF

The CHAI-SNF method begins similarly to CHAI-AvgSim, where
a clustering table containing Cell ID and Clustering Assignment
is converted into a binary similarity matrix for each clustering
algorithm. However, rather than taking an average vote across cell
to assignment similarities, we apply the SNF algorithm across all
binary similarity matrices [21].

The SNF algorithm was created for multiomic data integration
in bulk RNA sequencing data. It was used to integrate patient to
patient similarity matrices across three data modalities: mRNA
expression, DNA methylation, and microRNA (miRNA) expression.
Once the matrices were integrated, the final matrix was used
for downstream tasks such as cancer subtyping and survival
analysis [21]. In brief, SNF performs similarity matrix fusion by
converting a pairwise patient similarity matrix to a graph, where
nodes are the patients and edges are the relationships between
the patients. From here, SNF uses a network fusion step based
on message passing theory that iteratively updates each network,
which makes it more similar to the other networks until all
networks are the same. SNF has been demonstrated to remove
low edge weights, also known as 'weak edges’, from the final
network, and include only relationships that are more likely to
be in concordance with the ground-truth [21].

Ultimately, since we have cell to cell similarity matrices
for each clustering algorithm, applying SNF to the individual
algorithm’s binary similarity matrix representation was straight-
forward. We implemented SNF using the SNFtool package in
R, available on CRAN, using the default parameters. For more
detailed information on SNF, please refer to Wang et al. [21].

Similar to CHAI-AvgSim, we infer the final clusters by running
Spectral Clustering on the final SNF combined matrix, either by
knowing the true k value or by calculating the best k by silhouette
score optimization.

GraphST binary matrix representation for spatial
transcriptomics

GraphST is a method that integrates spatial coordinates with
scRNAseq data. One step in their process is to represent the
distance between cells as a binary matrix [24]. We incorporate that
logic here into CHAI in order to integrate spatial transcriptomics
into CHAI-AvgSim and CHAI-SNF.

GraphST creates an undirected neighborhood graph repre-
sented as a binary adjacency matrix, where the number of neigh-
bors to any one cell is set to be a predefined number k. The
neighbors of a spot s € S, where each spot is represented as a
vertex of the graph, represent the k spatially closest spots to s.
Enumerating S, the adjacency matrix M € R™", where n is the
number of spots, is constructed such that a; = 1ifi,j € S are
neighbors and 0 otherwise [24].

Aneighborhood matrix created utilizing the same logic is incor-
porated into CHAI-AvgSim as another clustering assignment in
the average matrix. Additionally, after applying CHAI-SNF on the
various clustering assignments to produce a preliminary cluster-
ing assignment matrix, SNF is applied once again on this resultant
matrix and the created neighborhood matrix to obtain the final
clustering matrix that incorporates spatial data.

Evaluation metrics

Adjusted rand index

ARI is a frequently used evaluation metric for clustering data,
particularly in single cell genomics clustering [19]. ARI measures
the concordance between a predicted set of clusters and the true

set of clusters, scaled between —1 and 1. The higher the ARI,
the better the performance, with 1 indicating a perfect overlap
between the predicted and true clusters [25].

ARI may be calculated using the following formula:

SO -EOS 00
0+ 01~ 6% 0/

Where:

n = Total number of samples
n; = Number of pairs of samples that are in the same cluster in
both the first and second clustering
a; = Number of samples in the ith cluster according to the first
clustering
bj = Number of samples in the jth cluster according to the
second clustering.

Normalized mutual information

Normalized Mutual Information (NMI) is a measure used to quan-
tify the similarity between predicted clusters and the true clus-
ters. It stems from the concept of mutual information, which
measures the amount of information obtained about one random
variable through the observation of another random variable. NMI
ranges from O to 1, where 0 indicates no mutual information
between the predicted and true clusters, and 1 indicates perfect
agreement between the predicted and true clusters [26].

The mutual information between the predicted and true clus-
ters, C and K, is given by

2-1(C,K)

NMI(C,K) = 10 + 10"

Where:

NMI(C,K) = Normalized Mutual Information between clustering
CandK
I(C,K) = Mutual Information between clustering C and K
H(C) = Entropy of clustering C
H(K) = Entropy of clustering K.

Silhouette score

To evaluate the best k for Spectral Clustering on either the CHAI-
AvgSim or CHAI-SNF matrix, we calculate the best average Silhou-
ette Score. Silhouette score measures how close each sample in
one cluster is to the samples in neighboring clusters, which helps
to assess the quality of clustering. This metric ranges from —1
to 1, with a high score indicating a cell is matched closely to its
labeled cluster. Silhouette Score is calculated using the following
formula:

1 n
Silh tt = —
ilhouette score = > (

i=1

b() — a()
max{a(i), b(i)}) ’

Where:

n is the total number of samples

a(i) is the average distance from samplei to other points in
the same cluster

b(i) is the smallest average distance from samplei to points in
a different cluster.
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Figure 1. Flowchart depicting the CHAI workflow.

Results
CHAI workflow

CHAIis a consensus clustering method that presents two different
approaches for the integration of individual clustering results:
Average Similarity and SNF [21]. For a more detailed description
of each method, please refer to Methods section.

All CHAI-related methods (CHAI-AvgSim, CHAI-SNF, and CHAI-
ST) operate under binary matrices. For clustering algorithms,
these matrices are calculated by determining if two cells are
predicted to be in the same cluster. If they are, we assign 1 to the
matrix entry to designate that these two cells are related. If not,
we assign 0.

For the spatial coordinates binary matrix representation, we
use the methodology from GraphST [24]. First we calculate a
pairwise distance between cells based on the spatial coordinates.
Then, we run a KNN graph, with K being 3. If two cells are
neighbors based on this KNN graph, we assign a value of 1 to this
cell-cell relationship. If not, we assign 0.

To further illustrate this concept, consider a toy example with
three clustering algorithms and three cells. For all CHAI methods,
we first calculate the binary matrices. Fig. 1 depicts the overall
workflow, while Fig. 2a and b show the example runs of the CHAI
methodology.

Figure 2a shows how CHAI-AvgSim and CHAI-SNF are run. For
CHAI-AvgSim, we calculate an average of all the binary matrices
from the different clustering algorithms. Then, we run Spectral
Clustering on the resultant matrix to determine the final clusters.
For CHAI-SNF, we run SNF with default parameters on the binary
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Calculate Average Similarity  Use Spectral Clustering to
Matrix & SNF Matrix

Determine Final Clusters

matrices from the clustering algorithms. Then, we perform Spec-
tral Clustering on the resultant CHAI-SNF matrix to determine the
final clustering assignments.

We present three different ways to integrate spatial transcrip-
tomic data into CHAI (Fig. 2b). For CHAI-AvgSim-ST, we simply
include the binary matrix representation of the spatial coordinate
data as another matrix to be included into the AvgSim calculation.
We then run Spectral Clustering on the resultant matrix to deter-
mine the final clusters. For CHAI-SNF-First-Level, we run SNF
on all binary matrices, including the spatial coordinates binary
matrix representation. For CHAI-SNF-Second-Level, we first run
SNF on just the clustering assignment matrices and keep the
spatial coordinates binary matrix separate. Once the SNF matrix
for the clustering assignment binary matrices are calculated, we
run SNF again, this time with the clustering assignment matrix
from the first level SNF and the spatial coordinates matrix. For
both CHAI-SNF-First-Level and CHAI-SNF-Second-Level, we run
Spectral Clustering on the resulting matrix to determine the final
clusters. The main difference between CHAI-SNEF-First-Level and
CHAI-SNF-Second-Level is that the latter gives more weight to the
spatial coordinate data, since it is included separately as an "'omic’
rather than just another clustering assignment as considered in
CHAI-SNF-First-Level. Users may make the decision to run CHAI-
SNEF-First-Level or CHAI-SNF-Second-Level based on their prior
biological knowledge of their datasets.

We benchmarked the performance of both CHAI methods
on several datasets. We used 10 publicly available scRNAseq
datasets for our main performance evaluation. Additionally, we
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(b) Example of running CHAI-ST-AvgSim, CHAI-ST-SNF-First-Level, and
CHAI-ST-SNF-Second-Level
Figure 2. CHAI Workflow Examples.

took advantage of the size and complexity in the Zheng68K We chose to evaluate using ARI and NMI as they each mea-
PBMC dataset to create subsampled datasets to evaluate the sure the overlap between predicted and ground truth clustering
performance of CHAI on various dataset conditions, such as the assignments, and their value decreases as disagreements between
number of cells and the number of cell types. In brief, we find subpopulations increase [27]. We display the ARI evaluation in
that CHAI is a more consistent and accurate performer in diverse the main text, and the NMI evaluation in the supplementary

dataset conditions when compared with baseline algorithms. materials.

G20z 41990300 L€ uo 3senb Aq $E£0GY . 2/ 1 L #0eqa/G/SZ/o101E/qIq/WOod dno-dlWwapede//:sdiy Wwolj papeojumo(q



CHALI outperforms existing clustering methods
on benchmarking datasets

To assess the performance of CHAI-AvgSim and CHAI-SNF, we
compared them to seven individual algorithms that form the
consensus method. We ran each algorithm on 10 commonly used
benchmarking datasets with varying tissue source, the number of
cells and the number of cell types. We evaluated the performance
using ARL

We see in Fig. 3a that both CHAI-AvgSim and CHAI-SNF demon-
strate robust and consistent performance across benchmarked
datasets. Notably, CHAI-AvgSim was a top three performer in 8
out of 10 datasets. We show the frequency of top three performers
in each dataset in a heatmap, depicted in Fig. 3b. CHAI-AvgSim
and CHAI-SNF have the highest frequency of being the top three
performing algorithms, with scores of 80% and 60%, respectively.

The variability of performance in other baseline algorithms is
very noticeable in this analysis. Widely used algorithms such as
SC3 and RacelD demonstrate very strong performances in some
datasets, like the Zeisel mouse brain dataset, but very poorly in
others, such as the SC-Mixology-Dropseq dataset [5, 22, 28, 29].
The primary benefit of the CHAI consensus algorithms is that
they reduce this variability in performance. We visualize this
variability by plotting the distribution of ARI values as a boxplot,
seen in Fig. 3c. Both CHAI-AvgSim and CHAI-SNF have higher
median ARI than any of the baseline clustering methods. This
analysis also helps to highlight the difference in performance
between the two CHAI methods. CHAI-SNF has a higher median
ARI, a higher third quartile threshold, and a higher maximum
ARI than CHAI-AvgSim, demonstrating its potential for high accu-
racy. However, it has a much larger interquartile range, which
suggests higher variability in performance. CHAI-AvgSim, on the
other hand, has a comparable median ARI with other baseline
methods, such as Seurat-Louvain and Seurat-SLC. The primary
advantage of CHAI-AvgSim lies in its low interquartile range, as
it has the lowest interquartile range when compared with any
other baseline algorithm. This shows that CHAI-AvgSim is a much
more consistent performer across various datasets than any other
algorithm including CHAI-SNF, making it a robust choice.

We also calculated the rank of each algorithm across the
benchmarking datasets, as shown in Fig. 3. This was done as
another metric to measure top performance. Algorithms with a
lower rank are higher performers (1 being the best rank, and so
on). The median rank of CHAI-AvgSim and CHAI-SNF are quite low
at ~3 making them a safe choice for accurate clustering across
diverse datasets. Additionally, we see that the minimum for CHAI-
SNF and CHAI-AvgSim is ~1 and 2, respectively, showing that it
is more likely to be a top performing algorithm than the other
baseline algorithms.

Here, we also compare CHAI to a previous consensus
clustering method, SAME Clustering [20]. CHAI incorporates more
algorithms than SAME clustering and also runs the latest version
of Seurat [4]. We demonstrate that at least one of the two CHAI
methods outperforms SAME clustering in 8 of the 10 datasets.
SAME clustering and CHAI have similar median ARI's and distri-
butions. CHAI-SNF has the highest upper quartile cutoff value and
the highest median across all algorithms. It also demonstrated
the highest ARI for any of the benchmarking datasets. Despite the
similarities in ARI distribution, we see that both CHAI methods
have a lower distribution of rank when compared with SAME
clustering. CHAI-AvgSim and CHAI-SNF have a median rank of 3
and 2, respectively, compared with SAME clustering’s median rank
of 5. Additionally, CHAI-AvgSim is the most consistent performer
in terms of rank, with its lowest rank across datasets being 5,
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compared with CHAI-SNF's lowest rank of 6 and SAME-Clustering’s
lowest rank of 7.

CHALI outperforms existing clustering methods
across varying dataset sizes and complexity

In order to evaluate CHAI on varying datasets in terms of com-
plexity and size, we took advantage of the varying cell types
and large number of cells in the Zheng68K PBMC dataset [30].
We created six different datasets, with three different sizes and
number of cell types. We refer to the datasets with five equally
sized groups as 'simple’ cases and randomly selected groups as
‘challenging’.

CHAI-AvgSim and CHAI-SNF are robust performers across
dataset conditions, as seen in Fig. 4a. Both methods are top three
performers in all six of the subsampled datasets; additionally,
CHAI-AvgSim is the top performer in three of the six datasets.
Either CHAI method has a better ARI than SAME-Clustering, the
other consensus clustering method, in all six of the subsampled
sets. In Fig 4c, we note that CHAI-AvgSim has the highest
median ARI, while CHAI-SNF has the lowest interquartile range.
This suggests that CHAI-AvgSim calculates a higher ARI more
frequently, but CHAI-SNF is more consistent in performance.

We also sought to evaluate how well each method performs
when faced with a simple or challenging dataset. Figure 4b dis-
plays the percent difference between simple and challenging
datasets for each algorithm across dataset sizes. Most algorithms
decrease in performance in terms of ARI when evaluated on
a dataset with randomly selected groups, across dataset size.
Notably, CHAI-SNF seems to actually increase in performance on
challenging datasets, even as the size of the dataset increases.
We consider that a consistent algorithm would perform well
when dataset sizes are the same, but the topologies of clus-
ters are different. Therefore, we examine the absolute value of
percent difference across dataset sizes, but between the simple
and challenging datasets, depicted in Fig. 4d. CHAI-SNF has very
little difference between simple and challenging datasets; this
is in contrast to CHAI-AvgSim, which has the highest median
ARI and a low interquartile range, but displays a larger percent
difference between its simple and challenging cases. Both meth-
ods ultimately outperform the other consensus method, SAME-
Clustering, in terms of median ARI, consistent performance by
ARI distribution, and low percent difference between simple and
challenging cases.

CHALI derives validated biological insights in a
breast cancer dataset: case study

A potential concern surrounding consensus clustering methods
is that the features of certain methods may be overshadowed by
the results from all other methods. scRNAseq clustering methods
use a variety of different techniques to determine the final cell to
cluster assignments, which involve a varying degree of biological
information [3]. Many methods, such as Seurat and CHOIR, filter
the initial expression matrix through PCA and identify the highly
variable genes within the dataset [4, 8]. Other methods, such as
tSNE + KMeans Clustering, do not use any prederived biological
insight prior to clustering [20]. There are also clustering meth-
ods, such as CIDER, which recluster cells based on differentially
expressed gene (DEG) signature [31]. With this diversity in clus-
tering in mind, we tested if CHAI can reliably derive biological
conclusions as a standalone method. We decided to use CHAI-
AvgSim for this analysis, as it demonstrated better consistency
across dataset conditions than CHAI-SNF in our benchmarking.
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ARI Performance Evaluation for CHAI versus Baseline Algorithms Across Benchmarking Datasets
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Figure 3. CHAI evaluation on benchmarking datasets.

Here, we perform clustering on a dataset from Hwang et al,
which studies collective cell migration of breast cancer [32]. Dur-
ing collective migration in vivo, breast cancer cells move as a
cluster and prior work suggests that cells within the clusters
can be heterogeneous [33]. Thus, Hwang et al. used single cell

sequencing to identify different cell populations within collec-
tively migrating clusters, with the ultimate goal to understand
how cells at the front, known as leader cells, may have unique
gene signatures that allow them to lead migration. To induce
migration, Hwang et al. used biochemical and biomechanical

G20z 1900300 L¢ uo 1senb Aq €051 .2/ | L #9eqa/G/5Z/a101KE/qIq/Wod dNodlWapede//:sdRy WOy papeojumoq



CHAI | 9

ARI Performance Evaluation for CHAI versus Baseline Algorithms Across Zheng Datasets
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Figure 4. CHAI evaluation on Zheng subsampled datasets.

gradients and performed single cell sequencing analysis after
migration had occured (GEO Accession number: GSE171203) [32].
After induction of biochemical gradient stromal-derived factor 1
(SDF1), single cell sequencing analysis of tumor clusters revealed
9 different cell population types and 1 primary cluster of leader
cells with differential expression of Cadherin-3 (CDH3) [32].

challenging cases for each algorithm.

In our data validation, we analyzed the dataset for the cell clus-
ters migrating in response to the biochemical gradient stromal
derived factor 1 (SDF1) and refer to this dataset as 'SDF1’. First, we
performed consensus clustering using CHAI-AvgSim on the SDF1
dataset, which also revealed 9 different clusters. To determine
how accurately CHAI was able to identify leader cells in the SDF1
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(b) Volcano plot of differentially expressed genes in CHAI-AvgSim Cluster 5, which has the highest
overlap to the leader cell population in the SDF1 dataset. The CDH3 gene is labeled.

Figure 5. CHAI-AvgSim analysis of CDH3 leader cell population in SDF1-
induced migration dataset.

dataset, we compared percentage of shared cells between the
ground truth clusters and the clusters predicted by CHAI-AvgSim.
In Hwanget al.’s single cell analysis, cluster 4 contained the leader
cells, and we see in Fig. 5a that cluster 4 has greater than 90% cell
overlap with CHAI-AvgSim Cluster 5. In other words, over 90% of
the cells predicted to be in Cluster 5 from CHAI-AvgSim are in fact
experimentally validated leader cells.

To validate biological relevance of our approach, we calculated
DEGs and visualized them using a volcano plot in Fig. Sb. We
calculated the DEGs by running the FindAllMarkers function in
Seurat [4]. The primary goal behind this analysis was to determine
whether CHAI cluster 5 cell population was enriched for CDH3, a
demonstrated leader cell marker in the original study [32], as a
way to validate cluster 5 is indeed the leader cell population. Our
analysis demonstrates that CDH3 is significantly upregulated in
the CHAI-AvgSim leader cell cluster, when compared with other
clusters. Thus, CHAI-AvgSim was able to accurately identify the
leader cell subpopulation distinctly. This study demonstrates the
accuracy of CHAI and validates its ability as a method to derive
biological insights.

Integration of spatial transcriptomics data with
CHAI: CHAI-ST

As CHAI relies on binary matrices to represent cell to cell rela-
tionships, we evaluated if other modalities may be integrated into
the CHAI framework, provided that they can be represented as
binary matrices. Spatial transcriptomics is an emerging sequenc-
ing technology that quantifies the location of a cell at the time
of sequencing [34]. A recently published method, GraphST, is
able to represent the relationship between cells based on their
spatial coordinate distance as a binary matrix [24]. We extend this
approach from GraphST and easily integrate it into the proposed
CHAI framework. The main purpose of this experiment was to
quantify if the incorporation of other data modalities to CHAI will
improve the overall clustering accuracy.

We present several options to integrate spatial transcriptomics
into the CHAI package. For CHAI-AvgSim, we integrated the spatial
transcriptomics data by simply including it in the average matrix
calculation as another modality. For CHAI-SNF, we first ran SNF on
the clustering algorithm binary matrices. We then ran SNF again
on the clustering algorithm SNF matrix and the binary matrix
from the spatial transcriptomics data, therefore running two
levels of SNF. Finally. we run CHAI-SNF-First-Level, in which we
incorporate the spatial transcriptomics binary matrix alongside
the binary matrices of the other clustering algorithms, and run
SNF just once to determine the final clustering assignments [21].

We evaluated CHAI with the integration of spatial transcrip-
tomics coordinates on four datasets using ARI. From this analysis,
we find that the integration of spatial transcriptomics with CHAI-
SNF improves the ARI in all four datasets. Additionally, we see
that the integration of spatial transcriptomics causes either CHAI
method to be the top performing algorithm in three out of the four
datasets. The ARI for CHAI-AvgSim stays relatively the same when
including spatial transcriptomics in most datasets, except for the
Vandenbom Liver Cancer dataset, where the integration of the
additional data significantly aids its performance. From this anal-
ysis, we conclude that it is best to include spatial transcriptomics
with CHAI-SNF. We see that incorporating the spatial coordinates
separately and running two levels of SNF leads to better ARI in
three of the four datasets. There is also no downside to including
spatial transcriptomics data with CHAI-SNF or CHAI-AvgSim if
available; even if the results do not significantly improve, we
see that adding the additional information will still keep the ARI
approximately the same.

To evaluate the effectiveness of CHAI-ST as a standalone
method, we compared it to GraphST and STGNNKs, two methods
for clustering of spatial transcriptomics data [24, 35]. Since the
benchmarking results in Fig. 6 show that integrating the spatial
transcriptomic results into CHAI-ST-SNF at the second level
yielded the best results, we chose to use this method for our
evaluation, in addition to CHAI-AvgSim-ST. Sicnce STGNNKks relies
on 10X Genomics Visium datasets as input, we compared both
CHAI-ST methods to the baseline methods on three human DLPFC
10X Visium datasets [35, 36]. These datasets are frequently used
for benchmarking of spatial transcriptomic clustering methods,
including GraphST since they have experimentally annotated
ground truth cluster labels [24]. We chose to evaluate on datasets
151507, 151508, and 151509 [36].

From the results in Fig. 7a. we found that GraphST outperforms
both CHAI-ST methods as well as STGNNks in terms of ARI
on the Human DLPFC 10X Visium datasets, with a median
ARI of 0.43. Additionally, we found that CHAI outperforms
STGNNKks across the three 10X datasets. We hypothesize that the
superior performance of GraphST is due to the fact that it
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Figure 6. ARI evaluation for CHAI spatial transcriptomic integration; all CHAI spatial transcriptomics integrated are suffixed with "-st’ in the bar labels.

incorporates image data into their clustering pipeline, while CHAI
and STGNNks do not. When comparing a dataset without images,
we demonstrate that in the Savas Breast Cancer dataset, CHAI-
SNF-ST outperforms GraphST. We unfortunately were not able
to compare STGNNks with this dataset since it is not in the 10X
Visium format, which is what that software requires. A further
extension of CHAI-ST would be to include image data into the
consensus pipeline.

Discussion

Clustering for scRNAseq data is a common task that has a variety
of approaches. Each method has their own individual strengths
and weaknesses, and there is currently no one best method that
works with definitive superiority in all situations. This conclusion
hasbeen drawn from several benchmarking studies, including the

one we put forward in this study [3]. Other ensemble clustering
methods have been applied for scRNAseq data, but these are
based on older versions of scRNAseq clustering methods and
have not been updated or maintained frequently [19, 20]. With
CHAI-AvgSim and CHAI-SNF, we present two distinct consensus
clustering methods that each have their own advantages. Both
methods demonstrate improved performance on several dataset
conditions and complexities.

First, we chose 10 benchmarking datasets to evaluate both
CHAI-AvgSim and CHAI-SNF on and compared them with the
individual clustering algorithms that made up the consensus
pipeline. We found that CHAI-SNF has the highest median ARI
across all of the dataset runs, and the highest maximum ARI as
well. However, CHAI-AvgSim demonstrates comparable median
ARI while also having the lowest interquartile range out of
all of the other algorithms. This, combined with the fact that
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(b) Comparison of CHAI-ST to GraphST on the Savas Breast Cancer dataset,
which contains spatial coordinates but not cell image data. Evaluation was
performed based on ARI.

Figure 7. CHAI-ST benchmarking on human DLPFC 10X visium datasets
and Savas breast cancer dataset.

CHAI-AvgSim is a top three performer in 80% of all benchmarking
datasets, suggests that it is a more consistent and safer choice
to use when the exact structure of a dataset is not known.
We note the variation across all of the datasets in most of the
algorithms. The previous consensus clustering method we chose
to compare to, SAME clustering, has a similar median ARI and
interquartile range when compared with both CHAI-AvgSim and
CHAI-SNF. However, it has a much lower median rank and does
not feature as regularly in the list of top 3 performers across
datasets. When evaluated on simple and challenging cases, both
CHAI-AvgSim and CHAI-SNF show consistency between the two
cases. We note that CHAI-SNF has a significant percent difference
between its simple and challenging cases, across all dataset sizes.

From this analysis, we are able to conclude that CHAI-SNF is
least susceptible to varying performance as dataset complexities
increase.

When comparing both CHAI methodologies to SAME-Clustering,
it is important to note that we used the current version of SAME-
Clustering available, where SC3 does not run in its package
due to a bug (see: https://github.com/yycunc/SAMEclustering/
issues/4. Therefore, SC3 is included in our pipeline, while not
being included in SAME-Clustering’s in all of the evaluations
we conducted [5, 20]. Despite this fact, we are still confident of
CHAT's performance as it incorporates several other algorithms
that are not included in SAME-Clustering. Users may also notice
Spectrum’s poor performance, often displaying subzero and
negative ARI [6]. We included Spectrum anyways to demonstrate
that CHAI's performance is overall unaffected by a singular poor
performing algorithm, provided that the rest of the algorithms
demonstrate a reasonable accuracy. As more clustering algo-
rithms are added and the community continues to see variable
performances, CHAI will remain to be a stable choice unlikely
to be influenced by one singular extremely poor performing
algorithm.

When gold standard cell types are not available, we sought to
demonstrate CHAI's practical usability for identifying important
clusters and biomarkers in a real-world application. We found
that CHAI was able to identify a CDH3-enriched cell population
which has been linked to leading cell migration in breast cancer
[32]. This demonstrates that not only does CHAI have a better per-
formance in terms of accuracy it is also able to derive biologically
meaningful results.

As multiomic data for single cell genomics increase, the need to
integrate this information will continue to arise [37]. In this study,
we choose spatial transcriptomic coordinate data as an example
for multiomic integration with CHAI Using a binary similarity
matrix method developed from GraphST, we show that adding
this additional omic to CHAI-AvgSim increases it significantly
in one benchmarking dataset and keeps performance relatively
the same in the other datasets [24]. For CHAI-SNF on the other
hand, the integration of spatial transcriptomic data increases the
performance in all cases. As the original purpose of SNF was to
integrate disparate modes of data for the same sample, this makes
CHAI-SNF a logical choice for this purpose [21]. The nature of
CHALI allows for it to accommodate other forms of data, so long
as they can be represented as a binary similarity matrix between
cells. This makes it a generalized method for not only standard
clustering, but multiomic clustering as well. The flexibility of the
binary matrix architecture will lend CHAI usable in a variety of
different purposes going forward.

We have found that both CHAI methods outperform exist-
ing baseline methods on a variety of datasets in terms of size,
complexity, and number of cell-types. Additionally, both CHAI
methods demonstrate the least percent change between sim-
ple and challenging dataset subsamples from the Zheng 68k
dataset [30]. In fact, we found that CHAI-SNF actually improves
its performance for challenging datasets. CHAI also shows a
performance improvement when integrated with other 'omics’ of
data, in this case spatial transcriptomics coordinates. For these
advancements, CHAI provides value as a software package that
can be used as is by the community and will continue to be useful
in the future as more advanced clustering algorithms and 'omics’
representations develop.

An important consideration is deciding which CHAI method
to use; based on our evaluation, we make the recommenda-
tion to users to use CHAI-AvgSim for the majority of datasets

G20z 41990300 L€ uo 3senb Aq $E£0GY . 2/ 1 L #0eqa/G/SZ/o101E/qIq/WOod dno-dlWwapede//:sdiy Wwolj papeojumo(q


https://github.com/yycunc/SAMEclustering/issues/4
https://github.com/yycunc/SAMEclustering/issues/4
https://github.com/yycunc/SAMEclustering/issues/4
https://github.com/yycunc/SAMEclustering/issues/4
https://github.com/yycunc/SAMEclustering/issues/4
https://github.com/yycunc/SAMEclustering/issues/4

and conditions. This is due to CHAI-AvgSim'’s superior perfor-
mance in terms of median ARI and smaller variation across
several diverse benchmarking datasets. However, CHAI-SNF is the
superior method for multi-omic integration, as it demonstrated
improved performance against CHAI-AvgSim when integrating
spatial transcriptomics data.

Further evaluation remains to be done on the best algorithms
to use in the consensus pipeline for a particular dataset condi-
tions. An immediate limitation of CHAI is that it is not currently
possible to select an ideal set of algorithms to be used in the
final consensus, as the individual algorithms demonstrate large
variation in performance. Even in very obvious cases of poor
performance, such as Spectrum on the Baron dataset evaluations
in Fig. 3a, dropping Spectrum led to very negligible changes in
performance. As more robust and consensus algorithms are cre-
ated, CHAI will maintain its success as an integration method,
and this will alleviate concerns regarding the performance of
individual algorithms. In these instances, we aim for CHAI to be
customizable, where several algorithms can be added or removed
based on user preference. Ideally, these choices will be informed
by community best practices. However, based on current evalua-
tions, it is our recommendation to include as many algorithms as
possible.

Conclusion

We present CHAI a consensus clustering method demonstrating
robust and superior performance in a wide variety of dataset
conditions for scRNA-seq data. CHAl is able to detect key biomark-
ers in cancer tumor cells; additionally, CHAI provides a platform
for multiomic integration. We hope that CHAI is a tool for the
community, where new algorithms may be integrated seamlessly
and other omics are built into the pipeline.

Data
Baron pancreas data

Baron et al. addresses the limitations of previous gene expres-
sion profiling in the pancreas by using a droplet-based, single-
cell RNA sequencing method to analyze over 12 000 individ-
ual pancreatic cells from four human donors and two mouse
strains [38]. The analysis demonstrated 15 distinct clusters of
cells, including subpopulations which were validated through
immunohistochemistry. Additionally, heterogeneity was observed
within human beta-cells, highlighting differences in gene regu-
lation related to functional maturation and endoplasmic reticu-
lum stress. Leveraging single-cell data, the researchers detected
disease-associated differential expression and identified novel
cell type-specific transcription factors and signaling receptors
[38]. Over the years, the Baron dataset has served as a resource for
validating and comparing findings in single-cell RNA sequencing
studies because it is a large dataset with a view of gene expression
patterns across distinct cell types [39]. You may download the
data through GEO with accession number GSE84133.

Muraro pancreas data

Few proteins uniquely distinguish cells within the pancreas, creat-
ing a challenge because traditional techniques such as immuno-
histochemistry rely on specific markers and may not sufficiently
distinguish various cell populations. Muraro et al. describes using
an automated platform that combines Fluorescence-Activated
Cell Sorting (FACS), robotics, and the CEL-Seq2 sequencing pro-
tocol [40]. This approach allowed them to obtain transcriptomes
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from thousands of single pancreatic cells from deceased organ
donors. As a result, they were able to identify cell type-specific
transcription factors, discover a subpopulation of REG3A-positive
acinar cells, and establish CD24 and TM4SF4 as markers for
sorting alpha and beta cells. (GEO accession number: GSE85241).

SC-Mixology data

The SC-Mixology dataset involves three human lung adenocar-
cinoma cell lines: HCC827, H1975, and H2228. Single cells from
each cell line were processed using CEL-seq2, Drop-seq, and 10X
Chromium library preparation methods then sorted into 384-well
plates. Additionally, bulk RNA from each cell line was mixed in
different ratios, diluted to single-cell equivalents, and sequenced
[29]. The data are downloadable from the authors’ Github: https://
github.com/LuyiTian/sc_mixology.

Zeisel mouse brain

Zeisel et al. utilized single-cell RNA sequencing to analyze 3436
mouse brain and 1504 lung cell transcriptomes, aiming to under-
stand vascular diseases. They identified 15 distinct cell clusters in
the brain cortex and hippocampus and 17 in the lung, providing
insight on tissue cellular diversity and organization [41] (GEO
accession number: GSE103840).

Zheng 68K PBMC data

The Zheng68K dataset by 10X CHROMIUM is a large dataset
consisting of 68 450 blood mononuclear cells. The dataset was
developed using an adaption of GemCode single-cell technology.
There are eleven subtypes of cells within this dataset, those
being CD8+ cytotoxic T cells (30.3%), CD8+/CD45RA+ naive
cytotoxic cells (24.3%), CD56+ NK cells (12.8%), CD4+/CD25 T
Reg cells (9.0%), CD19+ B cells (8.6%), CD4+/CD45RO+ memory
cells (4.5%), CD14+ monocyte cells (4.2%), dendritic cells (3.1%),
CD4-+/CD45RA+/CD25- naive T cells (2.7%), CD34+ cells (0.4%),
and CD4+ T Helper?2 cells (0.1%). For CHAI benchmarking, we took
advantage of the diversity contained in the Zheng68K dataset by
subsampling it into six smaller datasets, those being:

. 1000 cells with 5 equal populations
. 1000 cells with random populations
. 2500 cells with 5 equal populations
. 2500 cells with random populations
. 5000 cells with 5 equal populations
. 5000 cells with random populations.

oY U1 o W N

From this subsampling analysis, we were able to benchmark
CHALI against varying dataset conditions and controls [30]. We
consider the datasets with equal populations to be ’simple’
datasets and with random groups to be 'challenging’ datasets.

Savas breast cancer T Cell Data

Savas et al. [42] studied the characteristics of T cells in breast can-
cer tumor-infiltrating lymphocytes (TILs). Multi-parameter flow
cytometry was utilized to analyze breast cancers for their TIL con-
tent. Data were obtained from 84 individuals with primary breast
cancers and 45 individuals with metastatic breast cancers. The
findings revealed significant heterogeneity in the infiltrating T
cell population and suggested that CD8+ tissue resident memory
T (TRM) cells contribute to breast cancer immunosurveillance and
are primarily modulated by immune checkpoint inhibition.

The dataset used in this paper was obtained by performing
single cell RNA sequencing on 5759 purified CD3+ single T cells
passing quality control from two primary triple negative breast
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cancer (TNBC) patients, encompassing a total of 15 623 genes and
11 different gene expression annotations. The spatial coordinates
of the cells obtained from the tissue are also recorded. Data used
can be downloaded from Broad Institute’s Single Cell Portal with
accession number SCP2331.

Vandenbon mouse liver cancer visium data

Zonation refers to the spatial organization of gene expression
within the liver such that hepatocyte functions are specified by
relative distance to the bloodstream. In [43], Vandenbon et al.
utilized spatial transcriptomics in order to investigate the quan-
tity and zonation of hepatic genes in mice with cancer with the
intention of determining whether liver zonation is influenced by
solid cancers. This study found that liver zonation was influenced
by breast cancers, exemplified by affected xenobiotic catabolic
process genes, zonally elicited acute phase response, and zonally
activated innate immune cells in the liver. Breast cancers zonally
influencing liver gene expression profiles results in zonal liver
functions also being affected. Data for this study were obtained
from wild-type female mice. Four mouse liver samples consisting
of two 4T1 cancer-bearing mice samples, Cancerl and Cancer2,
and two sham samples, Sham1 and Sham?2, were processed with
10x Genomics Visium spatial transcriptomics, culminating in a
dataset with a total of 7758 spots and 32 285 genes clustered into
13 cell type categories.

For this case study, the Cancerl (2110 spots), Cancer2 (1438
spots), and Sham1 (1952 spots) samples were utilized. The data
used can be downloaded from Broad Institute’s Single Cell Portal
with accession number SCP2046.

Key Points

¢ Several clustering methods have emerged for scRNAseq
data; however, there is no consensus on the true 'best’
method to use in all cases.

e We present CHAI, a clustering algorithm that uses a
wisdom of crowds approach to integrate the results from
several different clustering algorithms into one compos-
ite clustering assignment.

e CHAI demonstrates improved performance on several
benchmarking datasets, including outperforming previ-
ous consensus clustering methods. CHAI also provides a
platform for the integration of multi-omic data, which
we demonstrate using spatial transcriptomics.
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