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Abstract 
Severalmethods have been developed to computationally predict cell-types for single cell RNA sequencing (scRNAseq) data.Asmethods 
are developed, a common problem for investigators has been identifying the bestmethod they should apply to their specific use-case. To 
address this challenge,we present CHAI (consensus Clustering tHrough similArIty matrix integratIon for single cell-type identification), 
a wisdom of crowds approach for scRNAseq clustering. CHAI presents two competing methods which aggregate the clustering results 
from seven state-of-the-art clustering methods: CHAI-AvgSim and CHAI-SNF. CHAI-AvgSim and CHAI-SNF demonstrate superior 
performance across several benchmarking datasets. Furthermore, both CHAImethods outperform themost recent consensus clustering 
method, SAME-clustering.We demonstrate CHAI’s practical use case by identifying a leader tumor cell cluster enrichedwith CDH3.CHAI 
provides a platform for multiomic integration, and we demonstrate CHAI-SNF to have improved performance when including spatial 
transcriptomics data. CHAI overcomes previous limitations by incorporating the most recent and top performing scRNAseq clustering 
algorithms into the aggregation framework. It is also an intuitive and easily customizable R package where users may add their own 
clustering methods to the pipeline, or down-select just the ones they want to use for the clustering aggregation. This ensures that as 
more advanced clustering algorithms are developed, CHAI will remain useful to the community as a generalized framework. CHAI is 
available as an open source R package on GitHub: https://github.com/lodimk2/chai. 
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Introduction 
The advent of single cell RNA sequencing (scRNAseq) has allowed 
researchers to investigate transcriptional mechanisms at the 
single cell resolution. Notably, scRNAseq has contributed to the 
identification of rare cell types, assessing cell heterogeneity, 
and quantifying cell-cell variation [1]. A common methodology 
for identifying subpopulations from single cells has been 
unsupervised clustering [2].  However,  the nature of scRNAseq  
data presents unique challenges in identifying accurate clusters. 
For example, scRNAseq data is sparse, with frequent gene and 
cell dropouts. Additionally, scRNAseq data is high dimensional, 
which leads to data points being similar and therefore unreliable 
for downstream clustering tasks. Due to these factors, a diverse 
array of scRNAseq clustering methods have emerged recently [2]. 

While several clustering methods for scRNAseq data have been 
published, comprehensive benchmarking studies, such as the one 
from Yu et al., have indicated that there is no clear ’best method’ 
across all scenarios [3]. Due to the high amount of variability in 
scRNAseq data, even the most commonly used clustering algo-
rithms have distinct strengths and weaknesses. Take for exam-
ple Seurat, perhaps the most commonly used scRNAseq cluster-
ing platform: while results from Seurat often demonstrate high 

concordancewith ground-truth cell type populations, it also tends 
to overestimate the number of distinct cell types in a dataset [3, 4]. 
Seurat, along with other popular scRNAseq clustering workflows 
such as Spectrum and SC3, use community detection algorithms 
such as Leiden and Louvain as the primary mechanism for their 
clustering. Preprocessing steps, such as highly variable gene selec-
tion, or dimensionality reduction through Principal Component 
Analysis (PCA), have also become common place before perform-
ing the final clustering [3–6]. Additionally, common unsupervised 
clustering algorithms, such as k means or hierarchical clustering, 
are used to create initial clusters before reclustering, such as in 
CIDR [7]. More recently developed algorithms such as scSHC and 
CHOIR use a statistical significance testing to determine final 
cluster assignments and also serve as an evaluation framework 
outside of the commonly used metrics such as Adjusted Rand 
Index (ARI) and Normalized Mutual Information (NMI) [8–12]. 

With the various scRNAseq clustering methodologies currently 
available, a common question for investigators becomes: Which 
method should I use? As there is no definite answer for this, an 
intuitive approach is to integrate the results from the different 
clustering algorithms, into a ’clustering ensemble’ or ’consensus 
clustering’ [13]. This idea extends from the wisdom of crowds
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approach, which states that knowledge from the collective of a 
group is greater than that of an individual [14–16]. 

The idea of consensus clustering was introduced by Strehl 
and Ghosh, who pioneered hypergraph partitioning algorithms 
for integrating results from individual clustering results [17]. The 
framework of consensus clustering has been introduced to single 
cell biology in a variety of ways. A frequently used method, 
SC3, uses consensus clustering based on Clustering Similarity 
Partitioning Algorithm (CSPA) by running KMeans clustering sev-
eral times on a single cell count matrix, taking average simi-
larity across the binary matrix representations, and then per-
forming hierarchical clustering on the average consensus matrix 
[5]. Another method, scCCESS, performs consensus clustering by 
combining random low dimensional representations of a single 
cell count matrix through SIMLR, a clustering kernel specially 
optimized for single cell clustering. The authors of scCCESS noted 
that their autoencoder-based ensemble method is highly effective 
in isolating specific cell types [18]. These methods helped to 
highlight the effectiveness of wisdom of crowds approach for 
clustering in single cell biology. However, these consensus clus-
tering methods are self contained, which means that they run the 
same method several times, and perform consensus clustering on 
an aggregated matrix. Another method of consensus clustering 
is to incorporate results from several different methods into 
one composite result. This approach has also been successfully 
accomplished and benchmarked for single cell clustering. 

A method known as SAFE-Clustering implemented all three of 
Strehl andGhosh’s algorithms in an application to scRNAseq clus-
tering, which included the clustering methodologies Seurat, SC3, 
CIDER, t-SNE, and k-means in 2018 [19]. SAFE-Clustering demon-
strated robust performance across 12 benchmarking datasets, 
establishing the premise that consensus clustering is applicable 
to scRNAseq data. Another ensemble clustering method, SAME-
Clustering, uses a Mixture model Ensemble to aggregate results 
from different scRNAseq clustering methodologies [20]. However, 
since these methods were created in 2020 and prior, there have 
been further advancements made to the existing algorithms in 
their pipeline such as Seurat and SC3, and the other algorithms, 
such as CIDER and SIMLR, are not as widely used [3]. Addition-
ally, these ensemble clustering approaches are not immediately 
extendable to multi-omic data integration, which can provide 
even more insights toward distinct cell types and state. A consen-
sus aggregation approach is only as accurate as the performance 
of the individual information, and so we identified a need for 
an updated consensus clustering framework that can also seam-
lessly allow for multiomic data integration. 

Here, we present CHAI (consensus Clustering tHrough sim-
ilArIty matrIces), a consensus clustering methodology built 
upon binary similarity matrices. CHAI contains two clustering 
ensemble approaches, named CHAI-AvgSim and CHAI-SNF. CHAI-
AvgSim is performed by aggregating all clustering assignments 
with an average similarity matrix, and performing Spectral 
Clustering on the final average matrix. CHAI-SNF extends Sim-
ilarity Network Fusion (i.e. SNF), which is a network integration 
algorithm originally designed for multiomic data integration for 
patient subtyping and classification [21]. 

Both CHAImethods have demonstrated improved performance 
across several benchmarking datasets and conditions, showcas-
ing limited variability across runs, and low impact from poor 
performing algorithms. Additionally, we present a technique 
to integrate other data modalities into the CHAI framework, 
such as spatial transcriptomic data or ATAC-Seq data. CHAI 
contains seven state-of-the-art scRNAseq clustering algorithms 

(Seurat-Louvain, Seurat-SLC, CHOIR, RACEID, SC3, Spectrum, 
and scSHC) and is available as an R package [4–6, 8, 9, 22]. 
We seek to make CHAI a collaborative tool for the community 
by providing a way for scientists and developers to integrate 
their own clustering algorithms into the pipeline as well, which 
may potentially strengthen results as more advanced scRNAseq 
clustering algorithms emerge in the future. 

Overall, CHAI reinforces the importance of the wisdom of 
crowds approach for scRNAseq clustering. Specifically, this study 
makes the following contributions: to our knowledge, CHAI is the 
first method to incorporate average similarity on binary similarity 
matrices for consensus clustering across various methods on 
scRNAseq data. Additionally, CHAI is the first method to extend 
SNF for the purpose of ensemble clustering. This has a wide 
variety of applications in several fields that require clustering, not 
just single cell biology. Finally, CHAI is the first method to use SNF 
for multi-omic integration in single cell biology and highlights the 
power of simple similarity matrix representation of ’omic’ data. 

Materials and Methods 
The CHAI workflow may be summarized as three majors steps: 

(i) Run individual clustering algorithms and compute binary 
similarity matrix for each. 

(ii) Calculate Average Similarity matrix and/or SNF matrix. 
(iii) Run Spectral Clustering on either integrated matrix to deter-

mine final cell identities. 

The package is written in R and is available for installation on 
GitHub at https://github.com/lodimk2/chai. 

Individual clustering algorithms 
CHAI incorporates seven algorithms by default when using the 
package, which are described below. Users may also integrate 
information from other clustering methods. 

Seurat 
Seurat begins with dimensionality reduction methods such 
as PCA, Uniform Manifold Approximation and Projection, and 
t-distributed stochastic neighbor embedding (tSNE). It then iden-
tifies variably expressed genes, then a K nearest neighbor (KNN) 
graph is computed based upon these. From here, community 
detection algorithms are used to identify the final clusters. 
Both Louvain and smart local moving (SLM) rely on the local 
moving heuristic for modularity optimization. The premise is 
to continually move individual nodes from one community 
to another so that each node movement elicits a modularity 
increase. This is done in a random order. For each node, it is 
checked whether it is possible to increase the modularity by 
moving it to a different community. If this is possible, then the 
node is moved to the community that results in the highest 
modularity gain. This repeats until it is no longer possible to 
increase modularity through individual node movements. In 
CHAI, we used Louvain and SLM. There are two versions of 
Louvain that are used in the paper: Louvain and Louvain with 
Multilevel Refinement. Both algorithms follow the same steps, 
with the difference being that the local moving heuristic is run 
again at the end of the program to fine-tune the final community 
structure and to also guarantee that the final community 
structure can not be further optimized. First, an adjacency 
matrix of a network and the initial assignments of nodes to 
communities is inputted. The local moving heuristic is run. If the
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number of communities is less than the number of nodes, then 
a reduced network is created. A recursive call is then performed 
to identify the community structure of the reduced network. 
The communities are then merged based off this community 
structure. Finally, based off which version of Louvain is run, the 
local moving heuristic can be performed. SLM applies the local 
moving heuristic differently than Louvain. First, the local moving 
heuristic is run. Then, if the number of communities is less 
than the number of nodes, a subnetwork for each community is 
created and the localmoving heuristic is run for each subnetwork. 
A reduced network is then formed based on the community 
structure of the subnetworks. A recursive call is performed to 
identify the community structure of the reduced network, and 
the communities are merged based on those findings. 

CHOIR 
CHOIR constructs a hierarchical clustering tree. Using all cells, it 
identifies a set of features that have variable levels of expression. 
Then, dimensionality reduction is applied using either PCA, latent 
semantic indexing (LSI), or iterative LSI,with PCAbeing the default 
method. A nearest neighbor adjacency matrix is computed, and 
to generate the layers of the clustering tree, Louvain and Leiden 
clustering is used. MRtree is used to reshape the clustering trees 
into a hierarchical tree [8]. 

RaceID 
RaceID uses K-means clustering. First, a similarity matrix is con-
structed, which contains Pearson’s correlation coefficients for all 
pairs of cells. K-means clustering is then applied to it, and the 
number of clusters used for k-means clustering is decided on by 
the difference of the average within cluster dispersion in the data. 
It also computes Jaccard’s similarity to check if fewer clusters 
should have been produced [22]. 

SC3 
SC3 uses a gene filter to remove any genes or transcripts that 
are in less than X% of cells (X being commonly set to 6). After 
calculating the distance between the cells, using Euclidean, Pear-
son, and Spearman metrics, all distance matrices are then trans-
formed.K-means clustering is then applied.A consensusmatrix is 
computed using CSPA (Cluster-based Similarity Partitioning). For 
each individual cluster result, a binary similarity matrix is made. 
If two cells belong to one cluster, their similarity is 1; otherwise, 
it is 0. The consensus matrix is created by averaging all similarity 
matrices of the individual clustering. [5]. 

Spectrum 
Spectrum uses an adaptive density-aware kernel (based on the 
Zelnik–Manor self-tuning kernel and the Zhang density-aware 
kernel) to construct the similarity matrices. These matrices are 
combined using tensor product graph (TPG) diffusion. Then, 
the spectral clustering method is applied to the similarity 
matrix [6]. 

scSHC 
scSHC used hierarchical clustering as a part of their algorithm. 
The first step is to compute the distance between each cell, but 
since scRNA-seq data have small counts and high dimensionality, 
finding the Euclidean distance is unreliable. Therefore, Euclidean 
distance on the latent variables is computed instead. To identify 
the clusters, a desired family-wise error rate is decided upon 

(0.05 in simulated data and 0.25 on real data applications). The 
method goes down the tree to decide which splits should be kept. 
This decision is made using hypothesis testing: a test statistic 
is formed using the average silhouette, which is then compared 
to the desired family-wise error rate. If it is greater or equal to 
the desired family-wise error rate, then it failed to reject the null 
hypothesis, and all data should belong to one cluster. Otherwise, 
the data is split into the two proposed clusters and the method 
continues down the tree [9]. 

CHAI-AvgSim 
Once the individual clustering assignment algorithms are run, 
they will each be represented as a table containing the Cell ID in 
one column, and the Clustering Assignment as the other column. 
From here, we convert this table to a binary similarity matrix. 
We represent a cell to clustering assignment vector as a binary 
similarity matrix using the following rules: 

(i) If two cells have the same clustering assignment, assign a 
value of 1 to a binary similarity matrix corresponding to the 
two cells. 

(ii) If two cells do not have the same clustering assignment, 
assign a value of 0 to the binary similarity matrix corre-
sponding to the two cells. 

Through this method, each clustering assignment is converted 
into a binary similarity matrix. Each binary similarity matrix per 
algorithm is then aggregated into an Average Similarity matrix, 
which simply put is a cell to cell correlation matrix containing 
the per element average rank across all individual clustering 
algorithm matrices. 

Consider a dataset with m cells. Therefore, each binary similar-
ity matrix per algorithm will be of dimension m×m. To construct 
an Average Similarity matrix of m×m dimension,we calculate the 
average per cell using the following formula: 

M̄ij = 
1 
n 

n∑
k=1 

(M(k) )ij, 

Where: 

n = Total number of samples 
nij = Number of pairs of samples that are in the same cluster in 

both the first and second clustering 
ai = Number of samples in theith cluster according to the first 

clustering 
bj = Number of samples in thejth cluster according to the 

second clustering. 

This formula is repeated across each cell in the matrix until a 
final m × m matrix is created. 

Once the Average Similarity matrix is computed, we use Spec-
tral Clustering to determine the final cell clusters [23]. If the true 
number of clusters is known to the user, they can use this k value 
as the number of partitions to make on the Average Similarity 
matrix. If the true number of k in the dataset is not known to 
the user, we recommend calculating the k value for which the sil-
houette score is the highest. For all evaluations conducted in our 
benchmarking, we conduct a silhouette score evaluation in range 
2 to  k+ 1, with  k being the true number of clusters present in the 
dataset. Despite the true number of clusters being known in the 
benchmarking dataset, we choose a value of k computationally in 
order to simulate working with unknown data.
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CHAI-SNF 
The CHAI-SNF method begins similarly to CHAI-AvgSim, where 
a clustering table containing Cell ID and Clustering Assignment 
is converted into a binary similarity matrix for each clustering 
algorithm.However, rather than taking an average vote across cell 
to assignment similarities, we apply the SNF algorithm across all 
binary similarity matrices [21]. 

The SNF algorithm was created for multiomic data integration 
in bulk RNA sequencing data. It was used to integrate patient to 
patient similarity matrices across three data modalities: mRNA 
expression,DNAmethylation, andmicroRNA (miRNA) expression. 
Once the matrices were integrated, the final matrix was used 
for downstream tasks such as cancer subtyping and survival 
analysis [21]. In brief, SNF performs similarity matrix fusion by 
converting a pairwise patient similarity matrix to a graph, where 
nodes are the patients and edges are the relationships between 
the patients. From here, SNF uses a network fusion step based 
on message passing theory that iteratively updates each network, 
which makes it more similar to the other networks until all 
networks are the same. SNF has been demonstrated to remove 
low edge weights, also known as ’weak edges’, from the final 
network, and include only relationships that are more likely to 
be in concordance with the ground-truth [21]. 

Ultimately, since we have cell to cell similarity matrices 
for each clustering algorithm, applying SNF to the individual 
algorithm’s binary similarity matrix representation was straight-
forward. We implemented SNF using the SNFtool package in 
R, available on CRAN, using the default parameters. For more 
detailed information on SNF, please refer to Wang et al. [21]. 

Similar to CHAI-AvgSim, we infer the final clusters by running 
Spectral Clustering on the final SNF combined matrix, either by 
knowing the true k value or by calculating the best k by silhouette 
score optimization. 

GraphST binary matrix representation for spatial 
transcriptomics 
GraphST is a method that integrates spatial coordinates with 
scRNAseq data. One step in their process is to represent the 
distance between cells as a binarymatrix [24].We incorporate that 
logic here into CHAI in order to integrate spatial transcriptomics 
into CHAI-AvgSim and CHAI-SNF. 

GraphST creates an undirected neighborhood graph repre-
sented as a binary adjacency matrix, where the number of neigh-
bors to any one cell is set to be a predefined number k. The  
neighbors of a spot s ∈ S, where each spot is represented as a 
vertex of the graph, represent the k spatially closest spots to s. 
Enumerating S, the adjacency matrix M ∈ Rn×n, where  n is the 
number of spots, is constructed such that aij = 1 if i, j ∈ S are 
neighbors and 0 otherwise [24]. 

Aneighborhoodmatrix created utilizing the same logic is incor-
porated into CHAI-AvgSim as another clustering assignment in 
the average matrix. Additionally, after applying CHAI-SNF on the 
various clustering assignments to produce a preliminary cluster-
ing assignment matrix, SNF is applied once again on this resultant 
matrix and the created neighborhood matrix to obtain the final 
clustering matrix that incorporates spatial data. 

Evaluation metrics 
Adjusted rand index 
ARI is a frequently used evaluation metric for clustering data, 
particularly in single cell genomics clustering [19]. ARI measures 
the concordance between a predicted set of clusters and the true 

set of clusters, scaled between −1 and 1. The higher the ARI, 
the better the performance, with 1 indicating a perfect overlap 
between the predicted and true clusters [25]. 

ARI may be calculated using the following formula: 

ARI =
∑

ij

(nij 
2

) − [
∑

i

(ai 
2

) ∑
j

(bj 
2

)
/
(n 
2

)
] 

1 
2 [

∑
i

(ai 
2

) + ∑
j

(bj 
2

)
] − [

∑
i

(ai 
2

) ∑
j

(bj 
2

)
/
(n 
2

)
] 
, 

Where: 

n = Total number of samples 
nij = Number of pairs of samples that are in the same cluster in 

both the first and second clustering 
ai = Number of samples in the ith cluster according to the first 

clustering 
bj = Number of samples in the jth cluster according to the 

second clustering. 

Normalized mutual information 
Normalized Mutual Information (NMI) is a measure used to quan-
tify the similarity between predicted clusters and the true clus-
ters. It stems from the concept of mutual information, which 
measures the amount of information obtained about one random 
variable through the observation of another randomvariable.NMI 
ranges from 0 to 1, where 0 indicates no mutual information 
between the predicted and true clusters, and 1 indicates perfect 
agreement between the predicted and true clusters [26]. 

The mutual information between the predicted and true clus-
ters, C and K, is  given  by  

NMI(C,K) = 
2 · I(C,K) 

H(C) + H(K) 
, 

Where: 

NMI(C,K) = Normalized Mutual Information between clustering 
C and K 

I(C,K) = Mutual Information between clustering C and K 
H(C) = Entropy of clustering C 
H(K) = Entropy of clustering K. 

Silhouette score 
To evaluate the best k for Spectral Clustering on either the CHAI-
AvgSim or CHAI-SNF matrix,we calculate the best average Silhou-
ette Score. Silhouette score measures how close each sample in 
one cluster is to the samples in neighboring clusters, which helps 
to assess the quality of clustering. This metric ranges from −1 
to 1, with a high score indicating a cell is matched closely to its 
labeled cluster. Silhouette Score is calculated using the following 
formula: 

Silhouette score = 
1 
n 

n∑
i=1

(
b(i) − a(i) 

max{a(i), b(i)}
)
, 

Where: 

n is the total number of samples 
a(i) is the average distance from samplei to other points in 

the same cluster 
b(i) is the smallest average distance from samplei to points in 

a different cluster. 
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Figure 1. Flowchart depicting the CHAI workflow. 

Results 
CHAI workflow 
CHAI is a consensus clusteringmethod that presents two different 
approaches for the integration of individual clustering results: 
Average Similarity and SNF [21]. For a more detailed description 
of each method, please refer to Methods section. 

All CHAI-related methods (CHAI-AvgSim, CHAI-SNF, and CHAI-
ST) operate under binary matrices. For clustering algorithms, 
these matrices are calculated by determining if two cells are 
predicted to be in the same cluster. If they are, we assign 1 to the 
matrix entry to designate that these two cells are related. If not, 
we assign 0. 

For the spatial coordinates binary matrix representation, we 
use the methodology from GraphST [24]. First we calculate a 
pairwise distance between cells based on the spatial coordinates. 
Then, we run a KNN graph, with K being 3. If two cells are 
neighbors based on this KNN graph, we assign a value of 1 to this 
cell–cell relationship. If not, we assign 0. 

To further illustrate this concept, consider a toy example with 
three clustering algorithms and three cells. For all CHAI methods, 
we first calculate the binary matrices. Fig. 1 depicts the overall 
workflow, while Fig. 2a and b show the example runs of the CHAI 
methodology. 

Figure 2a shows how CHAI-AvgSim and CHAI-SNF are run. For 
CHAI-AvgSim, we calculate an average of all the binary matrices 
from the different clustering algorithms. Then, we run Spectral 
Clustering on the resultant matrix to determine the final clusters. 
For CHAI-SNF, we run SNF with default parameters on the binary 

matrices from the clustering algorithms. Then, we perform Spec-
tral Clustering on the resultant CHAI-SNFmatrix to determine the 
final clustering assignments. 

We present three different ways to integrate spatial transcrip-
tomic data into CHAI (Fig. 2b). For CHAI-AvgSim-ST, we simply 
include the binary matrix representation of the spatial coordinate 
data as anothermatrix to be included into the AvgSim calculation. 
We then run Spectral Clustering on the resultant matrix to deter-
mine the final clusters. For CHAI-SNF-First-Level, we run SNF 
on all binary matrices, including the spatial coordinates binary 
matrix representation. For CHAI-SNF-Second-Level, we first run 
SNF on just the clustering assignment matrices and keep the 
spatial coordinates binary matrix separate. Once the SNF matrix 
for the clustering assignment binary matrices are calculated, we 
run SNF again, this time with the clustering assignment matrix 
from the first level SNF and the spatial coordinates matrix. For 
both CHAI-SNF-First-Level and CHAI-SNF-Second-Level, we run 
Spectral Clustering on the resulting matrix to determine the final 
clusters. The main difference between CHAI-SNF-First-Level and 
CHAI-SNF-Second-Level is that the latter gives more weight to the 
spatial coordinate data, since it is included separately as an ’omic’ 
rather than just another clustering assignment as considered in 
CHAI-SNF-First-Level. Users may make the decision to run CHAI-
SNF-First-Level or CHAI-SNF-Second-Level based on their prior 
biological knowledge of their datasets. 

We benchmarked the performance of both CHAI methods 
on several datasets. We used 10 publicly available scRNAseq 
datasets for our main performance evaluation. Additionally, we
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Figure 2. CHAI Workflow Examples. 

took advantage of the size and complexity in the Zheng68K 
PBMC dataset to create subsampled datasets to evaluate the 
performance of CHAI on various dataset conditions, such as the 
number of cells and the number of cell types. In brief, we find 
that CHAI is a more consistent and accurate performer in diverse 
dataset conditions when compared with baseline algorithms. 

We chose to evaluate using ARI and NMI as they each mea-
sure the overlap between predicted and ground truth clustering 
assignments, and their value decreases as disagreements between 
subpopulations increase [27]. We display the ARI evaluation in 
the main text, and the NMI evaluation in the supplementary 
materials.
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CHAI outperforms existing clustering methods 
on benchmarking datasets 
To assess the performance of CHAI-AvgSim and CHAI-SNF, we 
compared them to seven individual algorithms that form the 
consensus method. We ran each algorithm on 10 commonly used 
benchmarking datasets with varying tissue source, the number of 
cells and the number of cell types.We evaluated the performance 
using ARI. 

We see in Fig. 3a that both CHAI-AvgSim andCHAI-SNF demon-
strate robust and consistent performance across benchmarked 
datasets. Notably, CHAI-AvgSim was a top three performer in 8 
out of 10 datasets.We show the frequency of top three performers 
in each dataset in a heatmap, depicted in Fig. 3b. CHAI-AvgSim 
and CHAI-SNF have the highest frequency of being the top three 
performing algorithms, with scores of 80% and 60%, respectively. 

The variability of performance in other baseline algorithms is 
very noticeable in this analysis. Widely used algorithms such as 
SC3 and RaceID demonstrate very strong performances in some 
datasets, like the Zeisel mouse brain dataset, but very poorly in 
others, such as the SC-Mixology-Dropseq dataset [5, 22, 28, 29]. 
The primary benefit of the CHAI consensus algorithms is that 
they reduce this variability in performance. We visualize this 
variability by plotting the distribution of ARI values as a boxplot, 
seen in Fig. 3c. Both CHAI-AvgSim and CHAI-SNF have higher 
median ARI than any of the baseline clustering methods. This 
analysis also helps to highlight the difference in performance 
between the two CHAI methods. CHAI-SNF has a higher median 
ARI, a higher third quartile threshold, and a higher maximum 
ARI than CHAI-AvgSim, demonstrating its potential for high accu-
racy. However, it has a much larger interquartile range, which 
suggests higher variability in performance. CHAI-AvgSim, on the 
other hand, has a comparable median ARI with other baseline 
methods, such as Seurat-Louvain and Seurat-SLC. The primary 
advantage of CHAI-AvgSim lies in its low interquartile range, as 
it has the lowest interquartile range when compared with any 
other baseline algorithm. This shows that CHAI-AvgSim is a much 
more consistent performer across various datasets than any other 
algorithm including CHAI-SNF, making it a robust choice. 

We also calculated the rank of each algorithm across the 
benchmarking datasets, as shown in Fig. 3. This was done as 
another metric to measure top performance. Algorithms with a 
lower rank are higher performers (1 being the best rank, and so 
on). Themedian rank of CHAI-AvgSim andCHAI-SNF are quite low 
at ∼3 making them a safe choice for accurate clustering across 
diverse datasets. Additionally,we see that the minimum for CHAI-
SNF and CHAI-AvgSim is ∼1 and 2, respectively, showing that it 
is more likely to be a top performing algorithm than the other 
baseline algorithms. 

Here,  we also compare CHAI to a previous consensus  
clustering method, SAME Clustering [20]. CHAI incorporates more 
algorithms than SAME clustering and also runs the latest version 
of Seurat [4]. We demonstrate that at least one of the two CHAI 
methods outperforms SAME clustering in 8 of the 10 datasets. 
SAME clustering and CHAI have similar median ARI’s and distri-
butions.CHAI-SNF has the highest upper quartile cutoff value and 
the highest median across all algorithms. It also demonstrated 
the highest ARI for any of the benchmarking datasets. Despite the 
similarities in ARI distribution, we see that both CHAI methods 
have a lower distribution of rank when compared with SAME 
clustering. CHAI-AvgSim and CHAI-SNF have a median rank of 3 
and 2, respectively, comparedwith SAME clustering’smedian rank 
of 5. Additionally, CHAI-AvgSim is the most consistent performer 
in terms of rank, with its lowest rank across datasets being 5, 

comparedwith CHAI-SNF’s lowest rank of 6 and SAME-Clustering’s 
lowest rank of 7. 

CHAI outperforms existing clustering methods 
across varying dataset sizes and complexity 
In order to evaluate CHAI on varying datasets in terms of com-
plexity and size, we took advantage of the varying cell types 
and large number of cells in the Zheng68K PBMC dataset [30]. 
We created six different datasets, with three different sizes and 
number of cell types. We refer to the datasets with five equally 
sized groups as ’simple’ cases and randomly selected groups as 
’challenging’. 

CHAI-AvgSim and CHAI-SNF are robust performers across 
dataset conditions, as seen in Fig. 4a. Both methods are top three 
performers in all six of the subsampled datasets; additionally, 
CHAI-AvgSim is the top performer in three of the six datasets. 
Either CHAI method has a better ARI than SAME-Clustering, the 
other consensus clustering method, in all six of the subsampled 
sets. In Fig. 4c, we note that CHAI-AvgSim has the highest 
median ARI, while CHAI-SNF has the lowest interquartile range. 
This suggests that CHAI-AvgSim calculates a higher ARI more 
frequently, but CHAI-SNF is more consistent in performance. 

We also sought to evaluate how well each method performs 
when faced with a simple or challenging dataset. Figure 4b dis-
plays the percent difference between simple and challenging 
datasets for each algorithm across dataset sizes. Most algorithms 
decrease in performance in terms of ARI when evaluated on 
a dataset with randomly selected groups, across dataset size. 
Notably, CHAI-SNF seems to actually increase in performance on 
challenging datasets, even as the size of the dataset increases. 
We consider that a consistent algorithm would perform well 
when dataset sizes are the same, but the topologies of clus-
ters are different. Therefore, we examine the absolute value of 
percent difference across dataset sizes, but between the simple 
and challenging datasets, depicted in Fig. 4d. CHAI-SNF has very 
little difference between simple and challenging datasets; this 
is in contrast to CHAI-AvgSim, which has the highest median 
ARI and a low interquartile range, but displays a larger percent 
difference between its simple and challenging cases. Both meth-
ods ultimately outperform the other consensus method, SAME-
Clustering, in terms of median ARI, consistent performance by 
ARI distribution, and low percent difference between simple and 
challenging cases. 

CHAI derives validated biological insights in a 
breast cancer dataset: case study 
A potential concern surrounding consensus clustering methods 
is that the features of certain methods may be overshadowed by 
the results from all other methods. scRNAseq clustering methods 
use a variety of different techniques to determine the final cell to 
cluster assignments, which involve a varying degree of biological 
information [3]. Many methods, such as Seurat and CHOIR, filter 
the initial expression matrix through PCA and identify the highly 
variable genes within the dataset [4, 8]. Other methods, such as 
tSNE + KMeans Clustering, do not use any prederived biological 
insight prior to clustering [20]. There are also clustering meth-
ods, such as CIDER, which recluster cells based on differentially 
expressed gene (DEG) signature [31]. With this diversity in clus-
tering in mind, we tested if CHAI can reliably derive biological 
conclusions as a standalone method. We decided to use CHAI-
AvgSim for this analysis, as it demonstrated better consistency 
across dataset conditions than CHAI-SNF in our benchmarking.
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8 | Lodi et al.

Figure 3. CHAI evaluation on benchmarking datasets. 

Here, we perform clustering on a dataset from Hwang et al., 
which studies collective cell migration of breast cancer [ 32]. Dur-
ing collective migration  in vivo, breast cancer cells move as a 
cluster and prior work suggests that cells within the clusters 
can be heterogeneous [33]. Thus, Hwang et al. used single cell 

sequencing to identify different cell populations within collec-
tively migrating clusters, with the ultimate goal to understand 
how cells at the front, known as leader cells, may have unique 
gene signatures that allow them to lead migration. To induce 
migration, Hwang et al. used biochemical and biomechanical
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Figure 4. CHAI evaluation on Zheng subsampled datasets. 

gradients and performed single cell sequencing analysis after 
migration had occured (GEO Accession number: GSE171203) [ 32]. 
After induction of biochemical gradient stromal-derived factor 1 
(SDF1), single cell sequencing analysis of tumor clusters revealed 
9 different cell population types and 1 primary cluster of leader 
cells with differential expression of Cadherin-3 (CDH3) [32]. 

In our data validation,we analyzed the dataset for the cell clus-
ters migrating in response to the biochemical gradient stromal 
derived factor 1 (SDF1) and refer to this dataset as ’SDF1’. First, we 
performed consensus clustering using CHAI-AvgSim on the SDF1 
dataset, which also revealed 9 different clusters. To determine 
how accurately CHAI was able to identify leader cells in the SDF1
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Figure 5. CHAI-AvgSim analysis of CDH3 leader cell population in SDF1-
induced migration dataset. 

dataset, we compared percentage of shared cells between the 
ground truth clusters and the clusters predicted by CHAI-AvgSim. 
In Hwang et al.’s single cell analysis, cluster 4 contained the leader 
cells, and we see in Fig. 5a that cluster 4 has greater than 90% cell 
overlap with CHAI-AvgSim Cluster 5. In other words, over 90% of 
the cells predicted to be in Cluster 5 from CHAI-AvgSim are in fact 
experimentally validated leader cells. 

To validate biological relevance of our approach, we calculated 
DEGs and visualized them using a volcano plot in Fig. 5b. We  
calculated the DEGs by running the FindAllMarkers function in 
Seurat [4]. The primary goal behind this analysis was to determine 
whether CHAI cluster 5 cell population was enriched for CDH3, a 
demonstrated leader cell marker in the original study [32], as a 
way to validate cluster 5 is indeed the leader cell population. Our 
analysis demonstrates that CDH3 is significantly upregulated in 
the CHAI-AvgSim leader cell cluster, when compared with other 
clusters. Thus, CHAI-AvgSim was able to accurately identify the 
leader cell subpopulation distinctly. This study demonstrates the 
accuracy of CHAI and validates its ability as a method to derive 
biological insights. 

Integration of spatial transcriptomics data with 
CHAI: CHAI-ST 
As CHAI relies on binary matrices to represent cell to cell rela-
tionships, we evaluated if other modalities may be integrated into 
the CHAI framework, provided that they can be represented as 
binary matrices. Spatial transcriptomics is an emerging sequenc-
ing technology that quantifies the location of a cell at the time 
of sequencing [34]. A recently published method, GraphST, is 
able to represent the relationship between cells based on their 
spatial coordinate distance as a binary matrix [24].We extend this 
approach from GraphST and easily integrate it into the proposed 
CHAI framework. The main purpose of this experiment was to 
quantify if the incorporation of other data modalities to CHAI will 
improve the overall clustering accuracy. 

We present several options to integrate spatial transcriptomics 
into the CHAI package. For CHAI-AvgSim,we integrated the spatial 
transcriptomics data by simply including it in the average matrix 
calculation as anothermodality. For CHAI-SNF,we first ran SNF on 
the clustering algorithm binary matrices. We then ran SNF again 
on the clustering algorithm SNF matrix and the binary matrix 
from the spatial transcriptomics data, therefore running two 
levels of SNF. Finally. we run CHAI-SNF-First-Level, in which we 
incorporate the spatial transcriptomics binary matrix alongside 
the binary matrices of the other clustering algorithms, and run 
SNF just once to determine the final clustering assignments [21]. 

We evaluated CHAI with the integration of spatial transcrip-
tomics coordinates on four datasets using ARI. From this analysis, 
we find that the integration of spatial transcriptomics with CHAI-
SNF improves the ARI in all four datasets. Additionally, we see 
that the integration of spatial transcriptomics causes either CHAI 
method to be the top performing algorithm in three out of the four 
datasets. The ARI for CHAI-AvgSim stays relatively the samewhen 
including spatial transcriptomics in most datasets, except for the 
Vandenbom Liver Cancer dataset, where the integration of the 
additional data significantly aids its performance. From this anal-
ysis, we conclude that it is best to include spatial transcriptomics 
with CHAI-SNF. We see that incorporating the spatial coordinates 
separately and running two levels of SNF leads to better ARI in 
three of the four datasets. There is also no downside to including 
spatial transcriptomics data with CHAI-SNF or CHAI-AvgSim if 
available; even if the results do not significantly improve, we 
see that adding the additional information will still keep the ARI 
approximately the same. 

To evaluate the effectiveness of CHAI-ST as a standalone 
method, we compared it to GraphST and STGNNKs, two methods 
for clustering of spatial transcriptomics data [24, 35]. Since the 
benchmarking results in Fig. 6 show that integrating the spatial 
transcriptomic results into CHAI-ST-SNF at the second level 
yielded the best results, we chose to use this method for our 
evaluation, in addition to CHAI-AvgSim-ST. Sicnce STGNNks relies 
on 10X Genomics Visium datasets as input, we compared both 
CHAI-STmethods to the baselinemethods on three humanDLPFC 
10X Visium datasets [35, 36]. These datasets are frequently used 
for benchmarking of spatial transcriptomic clustering methods, 
including GraphST since they have experimentally annotated 
ground truth cluster labels [24]. We chose to evaluate on datasets 
151507, 151508, and 151509 [36]. 

From the results in Fig. 7a.we found that GraphST outperforms 
both CHAI-ST methods as well as STGNNks in terms of ARI 
on the Human DLPFC 10X Visium datasets, with a median 
ARI of 0.43. Additionally, we found that CHAI outperforms 
STGNNks across the three 10X datasets. We hypothesize that the 
superior performance of GraphST is due to the fact that it
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Figure 6. ARI evaluation for CHAI spatial transcriptomic integration; all CHAI spatial transcriptomics integrated are suffixed with ’-st’ in the bar labels.  

incorporates image data into their clustering pipeline, while CHAI 
and STGNNks do not.When comparing a dataset without images, 
we demonstrate that in the Savas Breast Cancer dataset, CHAI-
SNF-ST outperforms GraphST. We unfortunately were not able 
to compare STGNNks with this dataset since it is not in the 10X 
Visium format, which is what that software requires. A further 
extension of CHAI-ST would be to include image data into the 
consensus pipeline. 

Discussion 
Clustering for scRNAseq data is a common task that has a variety 
of approaches. Each method has their own individual strengths 
and weaknesses, and there is currently no one best method that 
works with definitive superiority in all situations. This conclusion 
has been drawn from several benchmarking studies, including the 

one we put forward in this study [3]. Other ensemble clustering 
methods have been applied for scRNAseq data, but these are 
based on older versions of scRNAseq clustering methods and 
have not been updated or maintained frequently [19, 20]. With 
CHAI-AvgSim and CHAI-SNF, we present two distinct consensus 
clustering methods that each have their own advantages. Both 
methods demonstrate improved performance on several dataset 
conditions and complexities. 

First, we chose 10 benchmarking datasets to evaluate both 
CHAI-AvgSim and CHAI-SNF on and compared them with the 
individual clustering algorithms that made up the consensus 
pipeline. We found that CHAI-SNF has the highest median ARI 
across all of the dataset runs, and the highest maximum ARI as 
well. However, CHAI-AvgSim demonstrates comparable median 
ARI while also having the lowest interquartile range out of 
all of the other algorithms. This, combined with the fact that
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Figure 7. CHAI-ST benchmarking on human DLPFC 10X visium datasets 
and Savas breast cancer dataset. 

CHAI-AvgSim is a top three performer in 80% of all benchmarking 
datasets, suggests that it is a more consistent and safer choice 
to use when the exact structure of a dataset is not known. 
We note the variation across all of the datasets in most of the 
algorithms. The previous consensus clustering method we chose 
to compare to, SAME clustering, has a similar median ARI and 
interquartile range when compared with both CHAI-AvgSim and 
CHAI-SNF. However, it has a much lower median rank and does 
not feature as regularly in the list of top 3 performers across 
datasets. When evaluated on simple and challenging cases, both 
CHAI-AvgSim and CHAI-SNF show consistency between the two 
cases.We note that CHAI-SNF has a significant percent difference 
between its simple and challenging cases, across all dataset sizes. 

From this analysis, we are able to conclude that CHAI-SNF is 
least susceptible to varying performance as dataset complexities 
increase. 

When comparing bothCHAImethodologies to SAME-Clustering, 
it is important to note that we used the current version of SAME-
Clustering available, where SC3 does not run in its package 
due to a bug (see: https://github.com/yycunc/SAMEclustering/ 
issues/4. Therefore, SC3 is included in our pipeline, while not 
being included in SAME-Clustering’s in all of the evaluations 
we conducted [5, 20]. Despite this fact, we are still confident of 
CHAI’s performance as it incorporates several other algorithms 
that are not included in SAME-Clustering. Users may also notice 
Spectrum’s poor performance, often displaying subzero and 
negative ARI [6]. We included Spectrum anyways to demonstrate 
that CHAI’s performance is overall unaffected by a singular poor 
performing algorithm, provided that the rest of the algorithms 
demonstrate a reasonable accuracy. As more clustering algo-
rithms are added and the community continues to see variable 
performances, CHAI will remain to be a stable choice unlikely 
to be influenced by one singular extremely poor performing 
algorithm. 

When gold standard cell types are not available, we sought to 
demonstrate CHAI’s practical usability for identifying important 
clusters and biomarkers in a real-world application. We found 
that CHAI was able to identify a CDH3-enriched cell population 
which has been linked to leading cell migration in breast cancer 
[32]. This demonstrates that not only does CHAI have a better per-
formance in terms of accuracy it is also able to derive biologically 
meaningful results. 

Asmultiomic data for single cell genomics increase, the need to 
integrate this information will continue to arise [37]. In this study, 
we choose spatial transcriptomic coordinate data as an example 
for multiomic integration with CHAI. Using a binary similarity 
matrix method developed from GraphST, we show that adding 
this additional omic to CHAI-AvgSim increases it significantly 
in one benchmarking dataset and keeps performance relatively 
the same in the other datasets [24]. For CHAI-SNF on the other 
hand, the integration of spatial transcriptomic data increases the 
performance in all cases. As the original purpose of SNF was to 
integrate disparatemodes of data for the same sample, thismakes 
CHAI-SNF a logical choice for this purpose [21].  The nature of  
CHAI allows for it to accommodate other forms of data, so long 
as they can be represented as a binary similarity matrix between 
cells. This makes it a generalized method for not only standard 
clustering, but multiomic clustering as well. The flexibility of the 
binary matrix architecture will lend CHAI usable in a variety of 
different purposes going forward. 

We have found that both CHAI methods outperform exist-
ing baseline methods on a variety of datasets in terms of size, 
complexity, and number of cell-types. Additionally, both CHAI 
methods demonstrate the least percent change between sim-
ple and challenging dataset subsamples from the Zheng 68k 
dataset [30]. In fact, we found that CHAI-SNF actually improves 
its performance for challenging datasets. CHAI also shows a 
performance improvement when integrated with other ’omics’ of 
data, in this case spatial transcriptomics coordinates. For these 
advancements, CHAI provides value as a software package that 
can be used as is by the community and will continue to be useful 
in the future as more advanced clustering algorithms and ’omics’ 
representations develop. 

An important consideration is deciding which CHAI method 
to use; based on our evaluation, we make the recommenda-
tion to users to use CHAI-AvgSim for the majority of datasets
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and conditions. This is due to CHAI-AvgSim’s superior perfor-
mance in terms of median ARI and smaller variation across 
several diverse benchmarking datasets. However, CHAI-SNF is the 
superior method for multi-omic integration, as it demonstrated 
improved performance against CHAI-AvgSim when integrating 
spatial transcriptomics data. 

Further evaluation remains to be done on the best algorithms 
to use in the consensus pipeline for a particular dataset condi-
tions. An immediate limitation of CHAI is that it is not currently 
possible to select an ideal set of algorithms to be used in the 
final consensus, as the individual algorithms demonstrate large 
variation in performance. Even in very obvious cases of poor 
performance, such as Spectrum on the Baron dataset evaluations 
in Fig. 3a, dropping Spectrum led to very negligible changes in 
performance. As more robust and consensus algorithms are cre-
ated, CHAI will maintain its success as an integration method, 
and this will alleviate concerns regarding the performance of 
individual algorithms. In these instances, we aim for CHAI to be 
customizable, where several algorithms can be added or removed 
based on user preference. Ideally, these choices will be informed 
by community best practices. However, based on current evalua-
tions, it is our recommendation to include as many algorithms as 
possible. 

Conclusion 
We present CHAI, a consensus clustering method demonstrating 
robust and superior performance in a wide variety of dataset 
conditions for scRNA-seq data.CHAI is able to detect key biomark-
ers in cancer tumor cells; additionally, CHAI provides a platform 
for multiomic integration. We hope that CHAI is a tool for the 
community, where new algorithms may be integrated seamlessly 
and other omics are built into the pipeline. 

Data 
Baron pancreas data 
Baron et al. addresses the limitations of previous gene expres-
sion profiling in the pancreas by using a droplet-based, single-
cell RNA sequencing method to analyze over 12 000 individ-
ual pancreatic cells from four human donors and two mouse 
strains [38]. The analysis demonstrated 15 distinct clusters of 
cells, including subpopulations which were validated through 
immunohistochemistry. Additionally, heterogeneity was observed 
within human beta-cells, highlighting differences in gene regu-
lation related to functional maturation and endoplasmic reticu-
lum stress. Leveraging single-cell data, the researchers detected 
disease-associated differential expression and identified novel 
cell type-specific transcription factors and signaling receptors 
[38]. Over the years, the Baron dataset has served as a resource for 
validating and comparing findings in single-cell RNA sequencing 
studies because it is a large dataset with a view of gene expression 
patterns across distinct cell types [39]. You may download the 
data through GEO with accession number GSE84133. 

Muraro pancreas data 
Fewproteins uniquely distinguish cells within the pancreas, creat-
ing a challenge because traditional techniques such as immuno-
histochemistry rely on specific markers and may not sufficiently 
distinguish various cell populations. Muraro et al. describes using 
an automated platform that combines Fluorescence-Activated 
Cell Sorting (FACS), robotics, and the CEL-Seq2 sequencing pro-
tocol [40]. This approach allowed them to obtain transcriptomes 

from thousands of single pancreatic cells from deceased organ 
donors. As a result, they were able to identify cell type-specific 
transcription factors, discover a subpopulation of REG3A-positive 
acinar cells, and establish CD24 and TM4SF4 as markers for 
sorting alpha and beta cells. (GEO accession number: GSE85241). 

SC-Mixology data 
The SC-Mixology dataset involves three human lung adenocar-
cinoma cell lines: HCC827, H1975, and H2228. Single cells from 
each cell line were processed using CEL-seq2, Drop-seq, and 10X 
Chromium library preparation methods then sorted into 384-well 
plates. Additionally, bulk RNA from each cell line was mixed in 
different ratios, diluted to single-cell equivalents, and sequenced 
[29]. The data are downloadable from the authors’ Github: https:// 
github.com/LuyiTian/sc_mixology. 

Zeisel mouse brain 
Zeisel et al. utilized single-cell RNA sequencing to analyze 3436 
mouse brain and 1504 lung cell transcriptomes, aiming to under-
stand vascular diseases. They identified 15 distinct cell clusters in 
the brain cortex and hippocampus and 17 in the lung, providing 
insight on tissue cellular diversity and organization [41] (GEO  
accession number: GSE103840). 

Zheng 68K PBMC data 
The Zheng68K dataset by 10X CHROMIUM is a large dataset 
consisting of 68 450 blood mononuclear cells. The dataset was 
developed using an adaption of GemCode single-cell technology. 
There are eleven subtypes of cells within this dataset, those 
being CD8+ cytotoxic T cells (30.3%), CD8+/CD45RA+ naive 
cytotoxic cells (24.3%), CD56+ NK cells (12.8%), CD4+/CD25 T 
Reg cells (9.0%), CD19+ B cells (8.6%), CD4+/CD45RO+ memory 
cells (4.5%), CD14+ monocyte cells (4.2%), dendritic cells (3.1%), 
CD4+/CD45RA+/CD25- naive T cells (2.7%), CD34+ cells (0.4%), 
and CD4+ T Helper2 cells (0.1%). For CHAI benchmarking,we took 
advantage of the diversity contained in the Zheng68K dataset by 
subsampling it into six smaller datasets, those being: 

1. 1000 cells with 5 equal populations 
2. 1000 cells with random populations 
3. 2500 cells with 5 equal populations 
4. 2500 cells with random populations 
5. 5000 cells with 5 equal populations 
6. 5000 cells with random populations. 

From this subsampling analysis, we were able to benchmark 
CHAI against varying dataset conditions and controls [30]. We 
consider the datasets with equal populations to be ’simple’ 
datasets and with random groups to be ’challenging’ datasets. 

Savas breast cancer T Cell Data 
Savas et al. [42] studied the characteristics of T cells in breast can-
cer tumor-infiltrating lymphocytes (TILs). Multi-parameter flow 
cytometry was utilized to analyze breast cancers for their TIL con-
tent. Data were obtained from 84 individuals with primary breast 
cancers and 45 individuals with metastatic breast cancers. The 
findings revealed significant heterogeneity in the infiltrating T 
cell population and suggested that CD8+ tissue resident memory 
T (TRM) cells contribute to breast cancer immunosurveillance and 
are primarily modulated by immune checkpoint inhibition. 

The dataset used in this paper was obtained by performing 
single cell RNA sequencing on 5759 purified CD3+ single T cells 
passing quality control from two primary triple negative breast

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/5/bbae411/7745034 by guest on 31 O

ctober 2025

https://github.com/LuyiTian/sc_mixology
https://github.com/LuyiTian/sc_mixology
https://github.com/LuyiTian/sc_mixology
https://github.com/LuyiTian/sc_mixology
https://github.com/LuyiTian/sc_mixology
https://github.com/LuyiTian/sc_mixology


14 | Lodi et al.

cancer (TNBC) patients, encompassing a total of 15 623 genes and 
11 different gene expression annotations. The spatial coordinates 
of the cells obtained from the tissue are also recorded. Data used 
can be downloaded from Broad Institute’s Single Cell Portal with 
accession number SCP2331. 

Vandenbon mouse liver cancer visium data 
Zonation refers to the spatial organization of gene expression 
within the liver such that hepatocyte functions are specified by 
relative distance to the bloodstream. In [43], Vandenbon et al. 
utilized spatial transcriptomics in order to investigate the quan-
tity and zonation of hepatic genes in mice with cancer with the 
intention of determining whether liver zonation is influenced by 
solid cancers. This study found that liver zonation was influenced 
by breast cancers, exemplified by affected xenobiotic catabolic 
process genes, zonally elicited acute phase response, and zonally 
activated innate immune cells in the liver. Breast cancers zonally 
influencing liver gene expression profiles results in zonal liver 
functions also being affected. Data for this study were obtained 
from wild-type female mice. Four mouse liver samples consisting 
of two 4T1 cancer-bearing mice samples, Cancer1 and Cancer2, 
and two sham samples, Sham1 and Sham2, were processed with 
10x Genomics Visium spatial transcriptomics, culminating in a 
dataset with a total of 7758 spots and 32 285 genes clustered into 
13 cell type categories. 

For this case study, the Cancer1 (2110 spots), Cancer2 (1438 
spots), and Sham1 (1952 spots) samples were utilized. The data 
used can be downloaded from Broad Institute’s Single Cell Portal 
with accession number SCP2046. 

Key Points 
• Several clustering methods have emerged for scRNAseq 

data; however, there is no consensus on the true ’best’ 
method to use in all cases. 

• We present CHAI, a clustering algorithm that uses a 
wisdom of crowds approach to integrate the results from 
several different clustering algorithms into one compos-
ite clustering assignment. 

• CHAI demonstrates improved performance on several 
benchmarking datasets, including outperforming previ-
ous consensus clustering methods. CHAI also provides a 
platform for the integration of multi-omic data, which 
we demonstrate using spatial transcriptomics. 
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