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Abstract 
The inference of gene regulatory networks (GRNs) is crucial to understanding the regulatory mechanisms that govern biological 
processes.GRNsmay be represented as edges in a graph, andhence, it have been inferred computationally for scRNA-seq data.Awisdom 
of crowds approach to integrate edges from several GRNs to create one composite GRN has demonstrated improved performance when 
compared with individual algorithm implementations on bulk RNA-seq and microarray data. In an effort to extend this approach to 
scRNA-seq data, we present COFFEE (COnsensus single cell-type speciFic inFerence for gEnE regulatory networks), a Borda voting-based 
consensus algorithm that integrates information from 10 established GRN inference methods. We conclude that COFFEE has improved 
performance across synthetic, curated, and experimental datasets when compared with baseline methods. Additionally, we show that 
a modified version of COFFEE can be leveraged to improve performance on newer cell-type specific GRN inference methods. Overall, 
our results demonstrate that consensus-based methods with pertinent modifications continue to be valuable for GRN inference at the 
single cell level. While COFFEE is benchmarked on 10 algorithms, it is a flexible strategy that can incorporate any set of GRN inference 
algorithms according to user preference. A Python implementation of COFFEE may be found on GitHub: https://github.com/lodimk2/ 
coffee 
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Introduction 
The study of biological systems is being conducted in several 
different ways. One popular way of analyzing the relationship 
between chromatin, transcription factors, and genes is to repre-
sent them as a complex network known as the gene regulatory 
network (GRN). GRNs are crucial to the understanding of how 
cellular identity is established and corrupted in disease. The 
popular abstraction for analyzing GRNs is in the form of graphs, 
in which the relationship between any two genes is quantified by 
an edge score. The goal of GRN inference is to better understand 
the gene expression patterns that connect transcription factors 
and signaling proteins to target genes [1]. Several algorithms 
have been developed to infer GRNs from bulk RNA-sequencing 
data [2–4]. However, single cell transcription data present the 
opportunity to observe cell-type specific gene expression patterns 
and potentially gain further insight into the regulation of cells 
[5]. The noise present in scRNA-seq datasets makes it difficult to 
determine if results are biologically significant. Hence, validation 
of constructed GRNs through pathway enrichment and literature 
review become paramount [6]. 

Algorithms that infer GRNs from bulk RNA-sequencing data 
have been adapted for single cell transcriptome data, to varying 
degrees of success. The algorithms available to the community 
vary in architecture and approach. Some are correlation-based 

methods, such as LEAP and PPCOR [7, 8]. More recent algorithms 
rely on linear regression and non-linear ordinary differential 
equations (ODEs) to make GRN predictions. Additionally, some 
algorithms require the input of time-point expression data, while 
others do not. Often times, scRNA-seq experiments do not collect 
this information, so a common accepted practice has been to 
generate pseudotime point data with methods such as Slingshot 
[9]. The increasing number of algorithms for this purpose becomes 
an insurmountable task for researchers; how should a scientist 
choose the best algorithm to construct a GRN from single cell 
transcriptomics data? As scRNA-seq data have become more 
accessible, Pratapa et al. sought to solve this problem by creating 
an evaluation framework for 12 prominent GRN inference 
algorithms [2]. Based on the performance of these algorithms 
on synthetic, curated, and experimental single cell transcriptomic 
datasets, the authors were able tomake the recommendation that 
the algorithms PIDC, GENIE3, and GRNBoost2 are the methods of 
choice for researchers seeking to use a GRN inference algorithm 
[2]. The robustness of these algorithms was measured using 
the early precision ratio (EPR) score. EPR is a network, which 
essentially measures the number of true positive interactions in 
a network  [10]. Rather than choosing select algorithms based on 
an evaluation criteria, another approach to constructing GRNs is 
to leverage information from all of the present algorithms, using 
the wisdom of crowds theory.
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The wisdom of crowds theory states that the collective knowl-
edge of a community is greater than the knowledge of any indi-
vidual. This theory has broad practical applications to a number 
of fields [11]. Its implementation in GRN inference is not a new 
concept; a study in 2012 by the DREAM5 Consortium et al. used a 
consensus network approach for bulk RNA-sequencing data [12]. 
This consensus approach used the Borda countmethod,which is a 
ranked choice voting algorithm invented by John Charles de Borda 
in 1770. The way the system works is that candidates are ranked 
by the choice of the crowd and are assigned a score accordingly 
(the candidate ranked in first receives the maximum number 
of points, and so on). The candidate with the highest average 
score then wins the election [13]. Building on this platform, we 
implemented a normalized version of the Borda count system to 
generate a consensus network approach applied to the inference 
of miRNA–miRNA networks [1, 14]. This current study seeks to 
improve this implementation by making it more specific to GRN 
inference for single cell transcriptomics data. 

The consensus approach for GRN inference has demonstrated 
improved performance formicroarray and bulk RNA-seq data [12]. 
Our motivation for this study was two-fold: we wanted to test 
if a similar wisdom of crowds approach is effective for scRNA-
seq data. GRN inference for scRNA-seq data presents a unique 
set of challenges. The noise present in pseudotime data, as well 
as gene/cell dropouts, requires more sensitive algorithms to pre-
dict high-quality interactions [15]. With suboptimal performance 
shown in several GRN inference algorithms, integrating them to 
achieve increased performance may not necessarily be as intu-
itive as inference for bulk-RNA sequencing data [2]. Additionally, 
with the advent of higher quality scRNA-seq and scATAC-seq data, 
inferring GRNs by individual cell-type has become a paramount 
task. Determining the individual regulatory interactions per cell-
type can lead to the identification of novel cell-types and dis-
ease progression mechanisms [16]. We sought to determine if 
a consensus-based approach can lead to higher performance in 
GRN inference for specific cell-types. To this end, we present 
COFFEE, a consensus algorithm for scRNA-seq data, for both 
cell-type specific and general scRNA-seq data. Since the con-
sensus approach works on the individual networks predicted by 
each algorithm, it can readily integrate algorithms that leverage 
scRNA-seq data or even multi-omics datasets (e.g. scRNA-seq and 
scATAC-seq data). COFFEE differs from previous consensus GRN 
inference methods as it is the first one to be applied to scRNAseq 
data, as well as providing a way for individual algorithms or genes 
to be prioritized in the weighting system. 

Overall, our study makes the following contributions: 

• Establish that Borda count-based consensus GRN inference is 
superior to individual algorithms, reaffirming the wisdom of 
crowds approach in network inference. 

• Create a robust framework for consensus inference of GRNs 
from scRNAseq data, available on GitHub implemented in 
Python. 

• Illimunate the value of a weighted consensus approach for 
cell-type specific GRN inference. 

Materials and methods 
Selection of algorithms 
The algorithms selected for this study that form the basis for the 
consensus network construction were from the BEELINE frame-
work proposed by Pratapa et al. A summary of these algorithms is 
presented in Table 1. 

We implemented the BEELINE evaluation framework and ran 
each algorithm through the pipeline provided [2]. Once these 
networks for each individual algorithm were constructed, we 
used our proposed COFFEE framework to integrate them into one 
consensus network. 

Borda count implementation 
Each algorithm from the BEELINE implementation outputs a 
ranked edge list with a confidence score attached to each edge. 
Since each algorithm is normalized in a different way, the edge 
weights are not distributed equally, so the ranking of each edge 
within the list across algorithms is considered. For example, 
consider the ranking of four edges for three different algorithms, 
each inferring a distinct ranked edge list. 

The Borda count method allocates points to each rank, where 
the highest ranked interaction receives the maximum number 
of points, and the lowest ranked interaction receives zero points. 
To receive a final rank between 0 and 1, the resulting weighted 
ranks are normalized. In the example in Tables 2 and 3, there  
are four example interactions; the interaction I4 is ranked at the 
first position for Algorithm 1. Therefore, it receives the maximum 
of three Borda points and a normalized score of 1. The resulting 
Borda rank used is the normalized number of points received for 
each algorithm. 

Modifications were made to the original Borda countmethod in 
order to make it more applicable for gene-gene relationships. Self 
loops in the graph were removed, so a gene interacting with itself 
was removed fromconsideration in the final consensus algorithm. 
Additionally, due to high variance amongst algorithms, there were 
several cases where an edge would appear in some algorithms 
with a high ranking, and not appear at all in others. To handle this, 
0 was inserted where an edge was not present into the calculation 
and was considered for the Final Rank.We implemented a version 
of the Borda count algorithm in Python, which takes a directory 
of ranked lists as inputs, and will output the consensus network 
for a user specified threshold. 

Single cell-type specific GRN inference using 
multimodal data: scMTNI 
A promising direction of GRN inference for single cell transcrip-
tomics data is identifying unique GRN’s by cell type. The primary 
challenge of this approach is identifying accurate cell lineages, 
and the varying transcription factors that define them [16]. One 
way to infer high-quality cell lineages, and therefore the impor-
tant transcription factors by cell type, is to integrate scRNA-seq 
data with scATAC-seq data [5]. Single Cell Multi-Task Inference 
(scMTNI) is a recently published multi-task learning framework 
that integrates scATAC-seq with scRNA-seq data to infer cell-type 
specific GRNs. It has demonstrated improved performance over 
existing cell-type specific inference models. [5]. 

scMTNI is a multi-task learning framework that uses a prob-
abilistic graphical model-based method to infer GRN dynamics 
from a cell lineage tree. The method defines a cell type as a group 
of cells with similar transcriptome and accessibility levels. Each 
cell type is treated as a task, and the goal of the method is to 
infer a GRN for each task, as well as the ideal parameters. scMTNI 
calculates the probability of each gene and its set of regulators 
for each cell type, and uses this probability calculation to inform 
the predicted network. For our comparative analysis, we used 
the inferred consensus networks for each cell type in the coarse 
Human Fetal Hematopoiesis dataset, with four cell types [25]. 
scMTNIwas executed on several subsamples of each cell type, and 
the final network prediction was informed through a confidence
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Table 1. Summary of algorithms used in the BEELINE framework that were leveraged in our proposed consensus network approach 

Algorithm Name Description 

GENIE3 [17] Tree-based ensemble methods such as Random Forest that predict the expression profile of target genes from all other genes. 
Interaction weights stem from how important an input gene on a target’s expression data. GENIE3 has been demonstrated to 
be a consistent performer across various datasets [2]. 

PPCOR [8] Computes partial and semi-partial correlation coefficients for every pair of genes. Ranks are scaled between -1 and 1, 
supporting inhibitory and activating network inference. PPCOR results in an undirected network. The negative and positive 
weights (-1 to 1) are meant to signify an activating or inhibitory interaction. PPCOR was demonstrated to be a consistent 
performer across various types of datasets [2]. 

LEAP [7] Lag-based expression association for pseudotime series (LEAP). Calculates Pearson correlation of normalized mapped read 
counts; final weightage per edge is the maximum Pearson correlation across all lag values. LEAP also contains a permutation 
based test that assists in decreasing false discovery rates. LEAP outputs a directed network. 

SCODE Implements ODEs for regulatory network representation from gene expression dynamics. Combines linear regression and 
dimension reduction to improve algorithm efficiency. 

PIDC [18] Partial Information Decomposition and Context (PIDC). Computes pairwise mutual information between two genes. From here, 
PIDC calculates per-gene thresholds that identify the most important interactions for each gene. PIDC outputs an undirected 
network. 

SINCERITIES [19] SINgle CEll Regularized Inference using TIme-stamped Expression profileS (SINCERITIES). Linear regression-based model to 
recover directed regulatory relationships between genes. SINCERITIES uses Granger casualty, which infers the relationship 
between change in gene expression of TFs from one window of time and its target genes in another window of time. The edges 
are inferred through partial correlation analyses. 

GRNVBEM [20] GRN Variational Bayesian Expectation-Maximization (GRNVBEM). Implements a Bayesian network model using a first-order 
autoregressive system to estimate gene fold change at specific times. From here, GRNVBEM uses a Bayesian framework and 
produces a directed graph with associated signs. 

SCRIBE [21] Uses Restricted Directed Information (cRDI) to measure mutual information between the past state and current state of a 
target gene based on time-stamped single-cell gene expression data. SCRIBE is further made efficient for larger datasets by 
using a context likelihood of relatedness algorithm, which removes edges that do not correspond to direct effects from a TF 
and a target. 

GRNBoost2 [22] Based on GENIE3 framework, improves efficiency through stochastic Gradient Boosting Machine regression. GRNBOOST2 
trains a regression model to infer its edges for each gene in the dataset. GRNBOOST2 has been demonstrated to have 
consistent performance across various types of datasets [2]. 

GRISLI [23] Gene Regulation Inference for Single-cell with Linear differential equations and velocity interference (GRISLI). Estimates cell 
velocity based on changing gene expression data. From here, GRISLI computes the GRN by solving a sparse regression problem 
that relates the gene expression of each cell. 

SINGE [24] Single-cell Inference of Network using Granger Ensembles (SINGE). Uses kernel-based Granger Causality regression to solve 
irregularities in time-stamped single-cell genomics data. The inspiration from SINGE came from the fact that pseudotime data 
for each cell do not take into account the over cell system’s dynamic processes. 

Table 2. Ranked individual predictions for three example algorithms, e.g. interactions denoted I 

Normalized Borda Points 
(Borda Ranking) 

Borda Points Rank Alg. 1 Alg. 2 Alg. 3 

1 3 1 I4 I2 I2 
0.667 2 2 I2 I3 I3 
0.334 1 3 I1 I4 I1 
0 0 4 I3 I1 I4 

Table 3. Final Borda ranks for each example interaction 

Interaction Average of Borda Ranking Final Rank 

I2 (0.667+1+1) / 3 0.889 
I3 (0+0.667+0.667) / 3 0.445 
I4 (1+0.334+0) / 3 0.445 
I1 (0.334+0+0.334) / 3 0.222 

score from the subsampling.We used a confidence cut off of 0.8 to 
calculate the evaluation metrics, as recommended by the authors 
of scMTNI [ 5]. 

Cell-type specific COFFEE framework 
The algorithms used for COFFEE have not been specifically opti-
mized for cell-type GRN inference. However, interactions that 

are predicted from these algorithms may still be valuable in 
predicting cell-type specific GRNs. To test this theory, we used 
an adapted version of COFFEE and compared its performance to 
scMTNI on a cell-type specific dataset. 

For cell-type specific GRN inference, we included four algo-
rithms that do not require pseudotime data as input: PPCOR, 
GENIE3, GRNBOOST2, and PIDC [8, 17, 18, 22]. The reasons for 
this were two-fold. Firstly, these algorithms were shown to be the 
top performing and had high stability on experimental datasets 
[2]. Additionally, since they do not require pseudotime data as 
input, these algorithms were less likely to be sensitive to poor 
pseudotime calculation and remove an element of uncertainty 
from the calculation. 

When using COFFEE for cell-type specific GRN inference, we 
prioritized the information from the well-established cell-type 
specific GRN inference algorithm, such as scMTNI. scMTNI is
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superior in inferring cell-type specific GRNs, as it incorporates 
scRNA-seq and scATAC-seq data [5].We added scMTNI to the COF-
FEE pipeline and calculated a consensus network with scMTNI, 
PPCOR, GENIE3, GRNBOOST2 and PIDC. For this analysis, we mod-
ified COFFEE to provide an initial score of 1 for any edges found in 
the scMTNI pipeline, thus prioritizing the edges found in scMTNI 
higher than that in the other four algorithms. Then, we evaluated 
COFFEE+scMTNI on the baseline inferred scMTNI network. Con-
ceptually, this framework is similar to earlier consensus methods 
for GRN inference where expert knowledge on possible edges is 
prioritized a priori. 

Filtering highly varying genes with Slingshot 
The primary goal of Slingshot is to reconstruct pseudotime data 
based on cell lineages for scRNA-seq datasets. Slingshot organizes 
the cell into clusters and defines cell lineages based on the 
potential ordering or changing of cell states. We chose Slingshot 
to determine the pseudotime data to maintain consistency with 
the BEELINE evaluation framework; Pratapa et al. calculated the 
pseudotime data for the synthetic, curated, and experimental 
datasets used in our benchmarking, and we did not deviate from 
this calculation. 

We used Slingshot to filter highly varying genes for cell-type 
specific GRN inference. We first loaded the gene expression 
matrix into the BEELINE package and performed the standard 
pre-processing and dimensionality reduction recommended by 
the package authors. Then, we calculated the highly varying 
genes across pseudotime points for one cell lineage, as we were 
computing varying genes per cell cluster. From here, we selected 
the top 500 highly varying genes; all P-values were <0.01 [9]. 

Evaluation 
To evaluate our COFFEE framework against baseline algorithms, 
we used precision, recall, and F-score when comparing to the gold 
standard network. 

Precision 
Precision is defined as the number of correctly predicted inter-
actions divided by the total number of predicted interactions. It 
measures how accurate the positive predictions of the algorithm 
are and calculated as follows: 

Precision = True Positives 
True Positives + False Positives 

Recall 
Recall is defined as the ratio of all correctly predicted interactions 
to all actual positives. It measures how completely the algorithm 
predicts true interactions as follows: 

Recall = True Positives 
True Positives + False Negatives 

F-score 
F-score is defined as the harmonic mean between precision and 
recall. It provides a balanced representation of the relationship 
between precision and recall and calculated as follows: 

F Score = 2 × 
Precision × Recall 
Precision + Recall 

We used F-score to determine the ideal threshold for COFFEE 
when applied to various dataset sizes. 

Data 
Synthetic datasets 
The primary benefit of using Synthetic datasets is to have a known 
GRN that has a comparable ground truth for reliable evaluation. 
Previous methods have used GeneNetWeaver; however, Pratapa 
et al. described limitations to this method [26]. Therefore, they 
created BoolODE. BoolODE converts a Boolean model to nonlinear 
ODEs, which assists in capturing the logical relationship between 
regulators [2].We directly used the Synthetic datasets provided by 
the authors of BEELINE without any additional preprocessing. The 
BEELINE authors created six datasets based on different network 
structures: Linear (LI), Cycle (CY), LL (Linear Long), BF (Bifurcat-
ing), BFC (Bifurcating Converging), and TF (Trifurcating). For our 
evaluation of COFFEE, we aggregated the datasets by number of 
cell-types, rather than the network structure. The cell-group sizes 
were 100, 200, 500, 2000, and 5000 cells. Each group contained 50 
individual datasets with a varying number of genes, each with 
their own ground-truth network. We used the Synthetic datasets 
to determine the ideal threshold for the consensus algorithm 
implemented in COFFEE. 

Curated datasets 
Curated datasets are published Boolean models for GRNs that 
capture the specific regulatory processes of a given develop-
mental process. For our evaluation, we selected three of the 
four Curated datasets used in the BEELINE evaluation frame-
work: ventral spinal cord (VSC) development, hematopoietic stem 
cell (HSC) differentiation, and gonadal sex determination (GSD) 
[27–29]. The authors of the BEELINE framework used BoolODE to 
create 10 simulated datasets with 2000 cells based on the cell 
trajectories and gene expression patterns of the original Boolean 
models.We used the gene expressionmatrix and pseudotime data 
as is from the BEELINE data download, without any additional 
preprocessing. 

The BEELINE authors also used the mammalian cortical area 
development (mCAD) Boolean model dataset in their evaluation 
framework; however, the authors noted that the algorithm results 
for this model were outliers,with poor performance results across 
all algorithms, which differed for the other Curated datasets 
[2, 30]. Therefore, we opted not to include mCAD in our evaluation 
process. 

Experimental datasets 
To evaluate COFFEE on experimental methods,we chose two from 
human cells and two from mice cells. Similar to the Synthetic 
and Curated datasets, we used the preprocessed data from the 
BEELINE framework [2]. 

To compute the GRN inference using the important genes, we 
used the gene ordering file computed by the GAM R package to 
select the 500 top genes varying across pseudotime points, as 
detailed in the BEELINE evaluation protocol. This gene ordering 
file was provided in the dataset download from BEELINE. [2]. 

We also utilized the ground truth networks provided by the 
authors of BEELINE per experimental dataset cell type [2]. These 
ground truth sets were obtained from the ENCODE, ChIP-Atlas, 
and ESCAPE databases for ChIP–seq data from the same or similar 
cell type. For our evaluation, we only considered interactions that 
contained genes present in the ground truth networks.
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Table 4. Experimental datasets used to evaluate COFFEE 

Dataset Description 

hHEP [31] scRNA-seq experiment on induced pluripotent stem cells (iPSC). Contains 425 scRNA-seq measurements across 
various timepoints. Pseudotime was calculated using Slingshot with Day 0 as the starting cluster and Day 21 as the 
ending cluster [9]. 

hESCs [32] Timecourse scRNA-seq experiment from 758 cells using the differentiation protocol in order to produce definitive 
endoderm cells from human embryonic stem cells, measured at 0, 12, 24, 36, 72, and 96 h. Using slingshot, the 
pseudotime was calculated using 0 h as the starting cluster and 96 h as the ending cluster [9]. 

mHSCs [33] Contains normalized expression data for 1656 HSPCs across 4773 genes. Pseudotime was computed using Slingshot 
across three lineages, which were erythroid, granulocyte-monocyte, and lymphoid [9]. The GRN for each lineage was 
separately inferred. 

Mouse embryonic stem 
cells (mESC) [34] 

scRNA-seq expression measurements for 421 primitive endoderm (PrE) cells differentiated from mESCs, from five 
diferent time points: 0, 12, 24, 48, and 72 h. Pseudotime was calculated using Slingshot, with the starting cluster being 
0 h and the ending cluster being 72 h [9]. 

Table 5. Number of cells per cell type in Human Fetal 
Hematopoiesis Cell dataset 

Cell-Type Number of Cells 

GPs-Granulocytes 443 
HSC-MPP 1367 
LMP 1522 
MEMP 1522 

Cell-type–specific dataset 
To evaluate COFFEE’s performance on cell-type–specific lineages, 
we used a dataset that scMTNI was benchmarked on. We com-
pared the performance of COFFEE, scMTNI, and COFFEE+scMTNI 
with a published scRNA-seq and scATAC-seq dataset of human 
fetal hematopoiesis cells. This study captured specifications for 
various blood lineages. We considered the coarse resolution of 
study to test the model on larger datasets, which contained 
four cell-types: g HSC,multipotent lymphoid-myeloid progenitors 
(LMPs),MK-erythroid-mast progenitors (MEMPs), and granulocytic 
progenitors (GPs). The authors of scMTNI provided their prepro-
cessed data per cell-type, in addition to the networks inferred by 
their method. 

To use the data on COFFEE, we followed a similar process 
to our Experimental dataset evaluation by selecting the top 500 
genes across pseudotime points using Slingshot [9]. To compare 
to scMTNI, we used the networks inferred by scMTNI provided in 
the author’s dataset download, using a confidence cutoff of 0.8, 
which is the recommendation of the authors of scMTNI [5]. 

Results 
To evaluate the performance of the consensus algorithmusing the 
Borda algorithm, we tested it on four different kinds of datasets: 
Synthetic, Curated, Experimental, and Cell-Type–Specific infer-
ence. In each case, we demonstrate that the wisdom of crowds 
approach leads to better performance across datasets. To evalu-
ate, we used precision, recall, and F-score. 

Synthetic datasets 
The Synthetic datasets were obtained from the Beeline evaluation 
framework [2]. We grouped the datasets by size, to evaluate the 
performance of the consensus algorithm as more genes and cells 
are present in a given dataset. There were five size groups present 
in the Synthetic datasets: 100, 200, 500, 2000, and 5000 cells. The 

Table 6. Optimal threshold by F-Score for Synthetic dataset sizes 

Dataset Size Optimal Threshold 

100 Cells 0.75 
200 Cells 0.75 
500 Cells 0.65 
2000 Cells 0.65 
5000 Cells 0.65 

number of genes varied depending on a specific dataset within 
the size group. 

A key component of the consensus algorithm is determining 
a threshold at which to keep high confidence edges. A similar 
Borda-based method for miRNA networks, miRsig used a default 
threshold cut off of 90%, which results in keeping the top 10% of 
predicted edges [1]. However, due to the cell to cell gene variation 
in gene expression present in single cell genomics data, we tested 
the algorithm on lower thresholds and evaluated its performance 
[35]. We used the mean F-Score to determine the ideal threshold 
value by dataset size [1]. 

In Fig. 1, we see that a different consensus threshold is appro-
priate depending on the size of the dataset. For the smaller 
datasets (100 or 200 cells), a threshold value of 0.75 leads to the 
best F-Score performance for COFFEE. For larger datasets (500, 
2000, and 5000 cells), a threshold value of 0.65 leads to the best 
F-Score. Users may decide to maximize precision or recall rather 
than F-Score, which would lead to a different threshold being 
used. We found that increasing the threshold value increases the 
precision. 

Table 6 shows the optimal threshold by F-Score for each 
dataset size. These thresholds were used for the evaluation of 
COFFEE against the baseline algorithms, as well as reporting the 
performance on Curated, Experimental, and Cell-Type–Specific 
datasets. 

To evaluate the performance of COFFEE against the baseline 
algorithms, we primarily used F-Score, precision, and recall as the 
metrics. 

Figure 2 depicts the performance of COFFEE against the base-
line algorithms by F-Score. We observe that across dataset sizes, 
COFFEE demonstrates a better performance. It is also significant 
to note that algorithms perform differently based on the data 
sizes. For example, SINCERITIES has a comparitively weaker F-
Score for smaller datasets containing 100 or 200 cells than it 
does with 500, 2000, or 5000 cells. A consensus-based approach 
such as COFFEEmitigates this variance by integrating information
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Figure 1. Optimal threshold for COFFEE based on dataset size, by mean F-Score; across Synthetic datasets, the threshold yielding the best mean F-score 
for each size grouping was selected as the ideal threshold for future COFFEE experiments, and the highest mean F-Score is colored in red. 

from the top performing algorithms despite dataset size. In short, 
COFFEE is less susceptible to variation in its performance based 
on differences present in a dataset. 

To analyze the performance of the algorithms in further detail, 
we also looked at the mean precision and recall for each dataset 
size group across algorithms. From the analysis in Fig. 3, we  see  
that the precision in COFFEE is much higher than in any of the 
other base line algorithms, while its recall is much lower. In 
Supplementary Figs S4 and S5,we evaluated COFFEE using AUPRC 
and AUROC as well. 

Curated datasets 
We next evaluated the performance of COFFEE on the Curated 
datasets from the BEELINE evaluation framework. Each dataset 
contained 2000 cells, so the threshold used for COFFEE was the 

previously identified optimal one of 0.65. We evaluated COFFEE’s 
performance using precision, recall, and F-Score. 

The precision-recall analysis for Curated datasets can be seen 
in Fig. 4. Similar to the Synthetic sets, COFFEE showcases higher 
precision compared with the baseline algorithms in three of the 
four datasets. This demonstrates COFFEE’s stability across differ-
ing datasets; even with Curated data, the consensus approach is 
able to capture high confidence edges when compared with the 
ground truth data. 

We further explored COFFEE’s performance by F-score against 
the baseline algorithms. These results are visualized in Fig. 5. 
We can observe that COFFEE performs very well compared with 
the baseline algorithms in terms of F-score in three of the four 
datasets. Much like the Synthetic datasets, we see high variation 
in the baseline algorithms performance, even when applied to
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Figure 2. Boxplot of F-Score performance on Synthetic datasets grouped by size; from this analysis, it is clear that COFFEE has superior performance 
when compared with the individual algorithms making up the consensus, across dataset sizes, and COFFEE is colored in green. 

Curated sets. For example, SCODE performed better than most 
other algorithms in the GSD Curated dataset but performed the 
worst in the VSC set. COFFEEwas able to performbetter thanmost 
other algorithms in three of the four datasets. In Supplementary 
Figs S6 and S7, we evaluated COFFEE using AUPRC and AUROC. 

Experimental datasets 
Furthermore, we evaluated the performance of COFFEE on four 
of the Experimental datasets from the BEELINE evaluation frame-
work. Each dataset contained a variable number of cells, and so 
we used a threshold of 0.65. We evaluated COFFEE’s performance 
using precision, recall, and F-score. 

To be consistent with BEELINE’s evaluation framework, we 
evaluated the Experimental datasets on cell-type–specific and 

non-specific networks. All datasets were collected from Chip-Seq 
protocol, as outlined in BEELINE [2]. 

Figures 6 and 7 display the results of COFFEE compared with 
the baseline algorithms. We noticed that some algorithms did 
not predict any edges for certain datasets, while they did predict 
some edges for the others. Therefore, each COFFEE run contained 
a differing number of algorithms across datasets. 

Across the majority of datasets and both the cell-type–specific 
ground truth and non-specific ground truths, we see that COF-
FEE performs better than the baseline algorithms in terms of 
F-score. However, for the mDC dataset, COFFEE performed poorly; 
the BEELINE evaluation framework also noted that mDC was 
an outlier in their performance evaluations, with several algo-
rithms demonstrating worse than normal performance [2]. This 
could be due to mDC having a much higher density in their
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Figure 3. Precision and recall performance on Synthetic datasets grouped by size; across dataset sizes, COFFEE demonstrates improved precision, but 
less comparable recall than the individual algorithms. 

gold-standard network, making it difficult for algorithms to iden-
tify high confidence edges. 

We evaluated COFFEE against the baseline algorithms by the 
EPR metric, and these results are shown in Supplementary Fig. 
S2. Furthermore, we evaluated COFFEE on the Experimental 
datasets using AUPRC and AUROC, and these results are shown 
in Supplementary Tables S1 and S2, respectively. 

Contribution of individual algorithms to COFFEE 
When working with ensemble algorithms such as COFFEE, an 
important step in the workflow is deciding which, or how many, 
algorithms to include in the final consensus aggregation. For con-
sensus GRNs on Bulk RNA-Sequencing data, including as many 
algorithms as possible lead to the best results [12]. By default, 

COFFEE includes all algorithms fed into the pipeline and weighs 
them equally. 

To test if other combinations of algorithms would outperform 
the case of including all possible algorithms into the pipeline 
as done currently, we performed an experiment by dropping 
one algorithm from COFFEE and evaluate its performance by F1 
score on the Synthetic datasets from BEELINE [2]. The results 
of this experiment are shown in Fig. 8. From this analysis, we 
see that the performance is generally even across dataset sizes. 
For the larger dataset sizes, such as 2000 and 5000 cells, exclud-
ing algorithms yielded better performance when compared with 
including all 10 available algorithms. This result demonstrates 
that it is possible to have improved results when including less 
algorithms, which was not the case in Bulk RNA-Seq consensus 
GRNs [12].
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Figure 4. Precision and recall performance on Curated datasets; across Curated datasets, COFFEE demonstrated improved precision but less comparable 
recall. 

Another key question is to identify which algorithms should be 
included in the final consensus pipeline, if not all. To determine 
this, we evaluated the effect of dropping an algorithm on the 
Fscore performance, when compared with including all algo-
rithms. The result of this experiment is shown in Fig. 9. From this 
analysis, we see that across groups of dataset sizes, the impact 
of removing a singular algorithm is consistent. There is no con-
clusive combination of fewer algorithms that would improve the 
full consensus results with 10 algorithms included considering 
different datasets and their sizes. In Supplementary Fig. S1, we  
demonstrate the variation of performance when considering an 8 
algorithm combination (i.e. dropping two algorithms rather than 
just one). 

Cell-type–specific inference 
Existing GRN inference methods for scRNA-seq data have not 
been specifically designed for cell-type specific datasets and net-
works. Thesemethods do not consider the global regulatory struc-
ture of cell-types within tissue and thereforemay not be represen-
tative of key regulatory interactions [16]. To test the consensus 
method for cell-type–specific inference, we first tried a two-level 
consensus approach. 

On each of the Synthetic datasets used to evaluate the per-
formance of COFFEE, we partitioned the dataset into cell types 
using Seurat clustering and filtered the gene expression matrices 
and pseudotime data accordingly [36]. From here, we ran COFFEE 
with all 10 baseline algorithms; once the networks were obtained
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Figure 5. F-score performance on Curated datasets, and COFFEE demonstrated improved performance across two of the three Curated datasets in terms 
of F-score. 

for each cell type, we ran the Borda point algorithm again, this 
time integrating edges from each cell type to have one composite 
network for the dataset. We then compared this second level 
consensus network to the COFFEE algorithm ran on the whole 
Synthetic datasets without cell-type partitioning. 

We see in Fig. 10 that using the second level consensus 
approach drastically decreases the performance of COFFEE. We 
conclude from this analysis that the networks from individual 
cell-types are not entirely representative of the true global 
regulatory structure; therefore, a different approach is required 
for cell-type specific inference that takes into account cell-lineage 
information [5]. 

To analyze the performance of COFFEE against scMTNI for cell-
type–specific performance, we used a dataset that scMTNI was 
initially benchmarked on [5]. The dataset is from a Human Fetal 

Hematopoietic cell study that studied the regulatory dynamics 
during human development for multiple human blood cell types 
[25]. In concordance with scMTNI’s benchmarking process, we 
used the annotated lineages clusters, which were: HSC and Multi-
Potent Progenitor (HSC-MPP),MKerythroid-mast progenitors com-
bined with cycling MEMPs, GPs, and LMPs [5]. 

We used the single cell expression matrix provided by the 
authors of scMTNI to run the four algorithms in COFFEE. Similar 
to the BEELINE framework, we calculated the 500 most varying 
genes across pseudotime points using Slingshot per cell type [9], 
using one lineage. These 500 genes were used to infer the GRNs 
for COFFEE. 

For evaluation, we used the Cus-KO gold standard network 
described in scMTNI [5].We chose this dataset to be gold standard 
since it was the network that scMTNI had the best performance
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Figure 6. F-score performance on Experimental datasets using Cell-Type–Specific Ground Truth data; COFFEE demonstrated improved performance in 
terms of F-score in three of the four Experimental datasets. 

metrics with [ 5]. Cus-KO contains interactions from the knock-
down-based GM12878 lymphoblastoid cell line downloaded from 
Cusanovich et al. [37]. We filtered the gold-standard network to 
only contain interactions with a P-value <0.01. Additionally, we 
filtered the inferred networks from both scMTNI and COFFEE 
to contain only genes present in the gold standard network. 
Finally, we selected the top 1000 edges from the scMTNI inferred 
networks and performed a sensitivity analysis for the best COFFEE 
threshold. 

In Fig. 11,we see the performance of COFFEE for various thresh-
olds when compared with scMTNI. In two cell types, LMP and 
MEMP, COFFEE showcases a better performance by F-score. How-
ever, scMTNI performes significantly better on the GPs and HSC-
MPP cell types. We also noted that there is little to no effect with 
the COFFEE threshold on the performance of the algorithm. 

With the cell-type-specific prioritized algorithm, which we call 
COFFEE+scMTNI, we see that a consensus approach is able to 
improve the performance of scMTNI on all cell types. Thus,we can 
determine that the individual four algorithms predict true inter-
actions that were not initially learned by scMTNI. We evaluated 
COFFEE+scMTNI on the Human Fetal Hematopoietic as described 
earlier [25]. The results of this analysis are shown in Fig. 12. 

Case study: COFFEE uncovers key regulatory 
interactions in breast cancer T cells 
In order to demonstrate the practical usability of COFFEE, we 
analyzed a dataset containing 6311 T Cells isolated from human 
breast cancer tissue. The study by Savas et al. revealed hetero-
geneity within the breast cancer T Cell population. Subclustering
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Figure 7. F-score performance on Experimental datasets using non-Cell-Type–Specific Ground Truth; COFFEE demonstrated improved performance in 
terms of F-score in all of the Experimental datasets for the non-Cell-Type–specific ground truth. 

revealed the presence of tissue resident memory cells (named as 
CD8+ TRM cells) [ 38]. Tissue resident memory cells are crucial to 
immune response and defense, particularly from an oncology per-
spective [39]. Further analysis from Savas et al. revelaed improved 
patient prognosis by increased presence of the CD8+ TRM 
cells [38]. 

The transcription factor STAT1 is linked to immune response 
pathways [38]. STAT1 is also demonstrated to be imperative for 
CD8+ T cell proliferation. To better understand the role of STAT1 
within CD8+ TRM cells specifically, we inferred a GRN specific 
to the CD8+ TRM cells using COFFEE. We filtered from the 6311 
cells down to 685 using Seurat [36]. From there, we followed a 
similar process as the Experimental datasets, by selecting the 
top 500 genes varying by pseudotime using Slingshot [9]. To 
ensure analysis of STAT1, we manually included STAT1 into the 

resulting gene list. We ran COFFEE using PPCOR, GENIE3, GRN-
BOOST2, and PIDC, since they demonstrated the best performance 
on experimental datasets, using a threshold of 0.65. Once the 
network was generated, the network was filtered by selecting 
interactions only where STAT1 was the regulator. This resulted in 
137 total significant interactions of STAT1 within the CD8+ TRM 
cells. 

To determine which interactions were relevant to cancer, we 
used the Network of Cancer Genes and Healthy Drivers [40]. Of 
the 137 total interactions with STAT1, 30 of them were demon-
strated to be cancer associated by the Network of Caner Genes 
and Healthy Drivers. We then performed a GO Biological Process 
(BP) Overrepresentation Analysis using the ClusterProfiler R pack-
age to determine the functional role of these cancer associated 
genes [41].
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Figure 8. Comparison of F-score distribution across synthetic datasets: removing one algorithm; the label corresponds to an algorithm being removed 
from the consensus; for example, the box labeled ”GENIE3” represents a consensus algorithm performance for the other nine algorithms in the pipeline. 

The GO BP analysis importantly revealed enrichment for 
MHC protein complex assembly-related and adaptive immune 
response pathways. The MHC protein complex assembly is a 
significant finding, as this pathway has previously been linked 
to CD8+ T cells. The MHC protein is what allows CD8+ T cells 
to identify pathological cells that express mutated proteins. A 
common mechanism for cancers is to target the MHC protein 
and therefore weaken the effectiveness of the CD8+ T cells [ 42]. 
The pathway enrichment reveals that STAT1 potentially has a 
key role in regulating the MHC protein complex, specifically in 
the CD8+ TRM subcluster. Further analysis could be performed 
to determine individual gene importance to these pathways, and 
knockout experiments could be performed to confirm STAT1’s 
role in this regulatory process. 

Discussion 
From our analysis, we are able to conclude that a consensus 
approach for single cell GRN inference has several advantages. 
Across various types of datasets, COFFEE demonstrated improved 
performance in determining true interactions when compared 
with gold standard datasets. 

For Synthetic datasets, we determined the ideal threshold to 
select edges from the consensus network generated by COFFEE. 
We found that for larger datasets, including more edges improved 
the performance of the algorithm, while for smaller datasets, a 
higher threshold maximized the F-score when compared with the 
gold standard. However, users may want to adjust the threshold 
value based on the statistic they want to maximize; increasing 
the consensus threshold will lead to a higher precision, while
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Figure 9. Percent change of F-score distribution across synthetic datasets: removing one algorithm; the label corresponds to an algorithm being removed 
from the consensus; for example, the box labeled ”GENIE3” represents a consensus algorithm performance for the other nine algorithms in the pipeline. 

Figure 10. F-score performance for Second Level Consensus vs COFFEE on 
Synthetic datasets. 

decreasing the thresholdwill lead to a higher recall. The suggested 
thresholds in Table 6 are based on the F-score. Users ideally 
should run COFFEE with various threshold values and evaluate 
the performance on their particular dataset. 

We also found that there was significant variation between 
algorithm performance on dataset size, which is an effect also 
noticed in previous scRNAseq-based GRN inference benchmark-
ing studies [43]. For example, SINCERITIES did not perform as 
well as the other baseline algorithms on smaller datasets but 
performed extremely well on larger datasets in terms of F-score. 
The primary advantage of COFFEE is that the algorithm has 
consistent high performance across multiple types of datasets; 
this is inherent in the algorithmdesign,as edges appearing inmul-
tiple GRN inferred networks will have higher confidence scores 
in the final consensus network. This approach establishes that 
the consensus approach will work across several different kinds 
of datasets, particularly with a large selection of algorithms to
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Figure 11. F-score for each cell type across COFFEE thresholds and scMTNI. 

integrate. COFFEE is a generalizable tool, where any number or 
type of algorithm results may be used for the downstream con-
sensus integration. Therefore, as methods improve for scRNAseq 
GRN inference, COFFEE will remain valuable as a tool for the 
community. 

This effect is even more pronounced when analyzing Curated 
and Experimental datasets. Despite the number of cells being 
the same across Curated datasets, different algorithms performed 
better on some datasets than others. This establishes that users 
cannot go by dataset size alone when choosing an optimal algo-
rithm. Additionally, algorithms that require pseudotime data as 
input are more likely to suffer in their performance if the pseu-
dotime data are inaccurate, or incorrectly computed [2]. While 
Pratapa et al. in their benchmarking study make suggestions for 
which algorithms to use for various datasets, a far safer approach 
would be to use a consensus-based method. We see that across 

Curated datasets, COFFEE has high F-score values. In contrast, 
we see that each Curated dataset had a different top performer. 
Without considering COFFEE, the top performer for VSC was 
GENIE3, PPCOR for HSC, and SINCERITIES for GSD. The variation 
in algorithm performance across datasets makes a consensus 
method such as COFFEE a safe choice to consistently infer high-
quality networks. 

On the Experimental datasets, we chose to evaluate on Cell-
Type–specific and Non-Specific ground truths, as was done in 
the BEELINE evaluation framework [2]. From this analysis, we 
noticed that while the baseline algorithms performed poorly on 
the Non-Specific networks, COFFEE performed significantly bet-
ter. However for the Cell-Type–Specific ground truth data, COF-
FEE performed better generally, but there was less difference 
between the baseline and consensus methods in terms of F-score. 
This suggests that COFFEE without modifications is not as well
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Figure 12. F-score for each cell-type across COFFEE thresholds and COFFEE+scMTNI. 

equipped to infer more specific interactions, rather than general 
interactions collected by organism level Chip-Seq networks. This 
trend is also seen when evaluating COFFEE based on EPR. EPR 
is defined as the precision of the top k edges when compared 
with the ground truth, where k is the number of interactions 
present in the filtered ground truth. The reasoning behind this 
was that experimental groups would primarily be interested in 
only high confidence edges from a network [ 2]. COFFEE demon-
strates a higher EPR, and a much better EPR for the Non-Specific 
networks when compared with the Cell-Type–Specific networks. 
We show this result in Supplementary Figs S2 and S3. This find-
ing motivated us to adapt the COFFEE algorithm for cell-type– 
specific inference, by developing a prioritized consensus method. 
We see that across dataset types and conditions,COFFEE generally 
demonstrates higher precision but a lower recall. This is due to the 

fact that it is giving more precedence to high confidence edges 
predicted by other algorithms. Therefore, COFFEE is more likely 
to predict true edges but may potentially not be able to predict 
all edges present in a GRN. Therefore, we can conclude that when 
COFFEE predicts an edge, it is likely to be a true edge but may not 
predict all correct edges in a GRN. 

We see that a modified COFFEE algorithm is able to improve 
the performance of a well-established cell-type specific GRN 
inference algorithm. Despite the lack of the additional informa-
tion that scMTNI takes as input, COFFEE with four algorithms 
had improved performance on two out of four cell-types on the 
benchmarking dataset. We were also able to substantially 
improve the performance of scMTNI by incorporating a prioritized 
consensus approach, where interactions predicted by scMTNI 
were all initialized with a raw count of 1. We anticipate that
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Figure 13. COFFEE driven STAT1 regulatory analysis within CD8+ TRM cells in human breast cancer. 

the modified consensus approach has the potential to be very 
effective for cell-type–specific GRN inference as more methods 
are made available to the community. 

We also note that COFFEE can be integrated with other ”omics” 
and database sources. For example, Transcriptome Wide Asso-
ciation Studies (TWAS) are a valuable tool for determining key 
regulators for particular phenotypes. If regulators are confirmed 
from TWAS studies, then they can be prioritized within the COF-
FEE algorithm, in a similar way as shown in our Cell-Type–specific 
inference method. However, rather than giving higher priority to 
weights predicted from a certain algorithm, we can give higher 
weightage to interactions where the regulator of that interaction 
is predicted from TWAS studies. Tools such as kTWAS, mkTWAS, 
and webTWAS tool in particular seems very useful to this end 
[44–46]. Additionally, the integration of information from data-
bases such as String or Wikipathways can be beneficial to the 
COFFEE workflow [47, 48]. The most straightforward way to inte-
grate the results from String or Wikipathway databases for con-
sensus would be to integrate the results from a inference method 
that predicts GRNs from these databases and then have this 
network within the COFFEE pipeline for consensus integration 
[47, 48]. GRN inference methods that utilize data from these 
databases show promise for this approach, such as the method 
from Abbaszadeh et al. [49]. 

Another way to use the String or Wikipathway information 
would be to identify regulators for a disease or biological context 
(such as searching for regulators of breast cancer) and give higher 
weightage to edges predicted from COFFEE that contain those 
regulators [47, 48]. This would require some manual work from 
the user and also some prior knowledge regarding the biological 
context of the network. However, this has the potential to be a 
way to integrate additional knowledge sources within the COFFEE 
framework. 

We conclude that while a regular consensus approach for bulk 
RNA-seq data has performed well in prior studies, a modified 
consensus approach is warranted for scRNA-seq data. The best 
practice method for bulk RNA-seq GRN inference is to incorporate 
as many algorithms as possible, as this demonstrates improved 
performance [1]. However, we see that a consensus approach for 
scRNA-seq data requires more careful selection of the algorithms 
incorporated for integration. We demonstrate that across Syn-
thetic datasets of differing sizes, distinct algorithm combinations 
leads to variable performance. From this result, we establish that 

simply including every GRN algorithm available will not neces-
sarily lead to the best performance in the consensus approach. 
Therefore, the user needs to exercise discretion in choosing the 
best algorithm combination for their individual needs, and more 
benchmarking in this area needs to be done in order to make 
specific recommendations. 

The primary limitation of a consensus-based approach is that 
it is only as strong as its underlying algorithms. As more improved 
GRN inference algorithms emerge, it will be difficult to determine 
what will be the best algorithm for any given dataset. With this 
point in mind, we continue to see a consensus-based approach 
to be beneficial for the community when there is uncertainty in 
choosing the best algorithms to use. 

Conclusion 
In this paper, we present COFFEE, a Borda voting-based consen-
sus algorithm for GRN inference on scRNA-seq data. COFFEE 
has demonstrated improved and consistent performance across 
Synthetic, Curated, and Experimental datasets. Additionally, a 
modified consensus-based approach for cell-type–specific GRN 
inference has shown a promising ability to improve performance 
on existing state-of-the-art methods, by augmenting important 
gene interactions. As future work improves the landscape of 
cell-type specific GRN inference, this will necessitate a weighted 
consensus algorithm approach to merge the predictions of the 
sets of cell-type–specific and non-cell-type–specific algorithms 
for robust GRN inference. 

Key Points 
• Several GRN inference methods for scRNAseq data have 

been developed, each with distinct underlying method-
ologies and capabilities; extensive benchmarking has 
determined that there is no singular method that is the 
best in all cases. 

• We present COFFEE, a Borda count voting-based consen-
sus algorithm that uses a wisdom of crowds approach 
to integrate the results from several different GRN infer-
ence algorithms into one composite network. 

• COFFEE demonstrates improved performance on several 
benchmarking datasets from the BEEELINE evaluation 
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framework, across Synthetic, Curated, and Experimental 
datasets. 

• We also highlight the effectiveness of a prioritized con-
sensus algorithm; methods that are shown to perform 
better or incorporate other data modalities can be prior-
itized in the COFFEE setup so that predictions from them 
are given more importance. To demonstrate this, we 
chose scMTNI for cell-type–specific GRN inference and 
demonstrate that a prioritized COFFEE with scMTNI per-
forms better than just using predictions from scMTNI. 

Supplementary data 
Supplementary data is available at Briefings in Bioinformatics 
online. 
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