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Abstract

The inference of gene regulatory networks (GRNSs) is crucial to understanding the regulatory mechanisms that govern biological
processes. GRNs may be represented as edges in a graph, and hence, it have been inferred computationally for scRNA-seq data. A wisdom
of crowds approach to integrate edges from several GRNs to create one composite GRN has demonstrated improved performance when
compared with individual algorithm implementations on bulk RNA-seq and microarray data. In an effort to extend this approach to
scRNA-seq data, we present COFFEE (COnsensus single cell-type speciFic inFerence for gEnE regulatory networks), a Borda voting-based
consensus algorithm that integrates information from 10 established GRN inference methods. We conclude that COFFEE has improved
performance across synthetic, curated, and experimental datasets when compared with baseline methods. Additionally, we show that
a modified version of COFFEE can be leveraged to improve performance on newer cell-type specific GRN inference methods. Overall,
our results demonstrate that consensus-based methods with pertinent modifications continue to be valuable for GRN inference at the
single cell level. While COFFEE is benchmarked on 10 algorithms, it is a flexible strategy that can incorporate any set of GRN inference
algorithms according to user preference. A Python implementation of COFFEE may be found on GitHub: https://github.com/lodimk?2/

coffee
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Introduction

The study of biological systems is being conducted in several
different ways. One popular way of analyzing the relationship
between chromatin, transcription factors, and genes is to repre-
sent them as a complex network known as the gene regulatory
network (GRN). GRNs are crucial to the understanding of how
cellular identity is established and corrupted in disease. The
popular abstraction for analyzing GRNs is in the form of graphs,
in which the relationship between any two genes is quantified by
an edge score. The goal of GRN inference is to better understand
the gene expression patterns that connect transcription factors
and signaling proteins to target genes [1]. Several algorithms
have been developed to infer GRNs from bulk RNA-sequencing
data [2-4]. However, single cell transcription data present the
opportunity to observe cell-type specific gene expression patterns
and potentially gain further insight into the regulation of cells
[5]. The noise present in scRNA-seq datasets makes it difficult to
determine if results are biologically significant. Hence, validation
of constructed GRNs through pathway enrichment and literature
review become paramount [6].

Algorithms that infer GRNs from bulk RNA-sequencing data
have been adapted for single cell transcriptome data, to varying
degrees of success. The algorithms available to the community
vary in architecture and approach. Some are correlation-based

methods, such as LEAP and PPCOR [7, 8]. More recent algorithms
rely on linear regression and non-linear ordinary differential
equations (ODEs) to make GRN predictions. Additionally, some
algorithms require the input of time-point expression data, while
others do not. Often times, sSCRNA-seq experiments do not collect
this information, so a common accepted practice has been to
generate pseudotime point data with methods such as Slingshot
[9]. The increasing number of algorithms for this purpose becomes
an insurmountable task for researchers; how should a scientist
choose the best algorithm to construct a GRN from single cell
transcriptomics data? As scRNA-seq data have become more
accessible, Pratapa et al. sought to solve this problem by creating
an evaluation framework for 12 prominent GRN inference
algorithms [2]. Based on the performance of these algorithms
on synthetic, curated, and experimental single cell transcriptomic
datasets, the authors were able to make the recommendation that
the algorithms PIDC, GENIE3, and GRNBoost2 are the methods of
choice for researchers seeking to use a GRN inference algorithm
[2]. The robustness of these algorithms was measured using
the early precision ratio (EPR) score. EPR is a network, which
essentially measures the number of true positive interactions in
a network [10]. Rather than choosing select algorithms based on
an evaluation criteria, another approach to constructing GRNSs is
to leverage information from all of the present algorithms, using
the wisdom of crowds theory.
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The wisdom of crowds theory states that the collective knowl-
edge of a community is greater than the knowledge of any indi-
vidual. This theory has broad practical applications to a number
of fields [11]. Its implementation in GRN inference is not a new
concept; a study in 2012 by the DREAM5 Consortium et al. used a
consensus network approach for bulk RNA-sequencing data [12].
This consensus approach used the Borda count method, whichisa
ranked choice voting algorithm invented by John Charles de Borda
in 1770. The way the system works is that candidates are ranked
by the choice of the crowd and are assigned a score accordingly
(the candidate ranked in first receives the maximum number
of points, and so on). The candidate with the highest average
score then wins the election [13]. Building on this platform, we
implemented a normalized version of the Borda count system to
generate a consensus network approach applied to the inference
of miRNA-miRNA networks [1, 14]. This current study seeks to
improve this implementation by making it more specific to GRN
inference for single cell transcriptomics data.

The consensus approach for GRN inference has demonstrated
improved performance for microarray and bulk RNA-seq data [12].
Our motivation for this study was two-fold: we wanted to test
if a similar wisdom of crowds approach is effective for scRNA-
seq data. GRN inference for scRNA-seq data presents a unique
set of challenges. The noise present in pseudotime data, as well
as gene/cell dropouts, requires more sensitive algorithms to pre-
dict high-quality interactions [15]. With suboptimal performance
shown in several GRN inference algorithms, integrating them to
achieve increased performance may not necessarily be as intu-
itive as inference for bulk-RNA sequencing data [2]. Additionally,
with the advent of higher quality scRNA-seq and scATAC-seq data,
inferring GRNs by individual cell-type has become a paramount
task. Determining the individual regulatory interactions per cell-
type can lead to the identification of novel cell-types and dis-
ease progression mechanisms [16]. We sought to determine if
a consensus-based approach can lead to higher performance in
GRN inference for specific cell-types. To this end, we present
COFFEE, a consensus algorithm for scRNA-seq data, for both
cell-type specific and general scRNA-seq data. Since the con-
sensus approach works on the individual networks predicted by
each algorithm, it can readily integrate algorithms that leverage
scRNA-seq data or even multi-omics datasets (e.g. sScRNA-seq and
SCATAC-seq data). COFFEE differs from previous consensus GRN
inference methods as it is the first one to be applied to scRNAseq
data, as well as providing a way for individual algorithms or genes
to be prioritized in the weighting system.

Overall, our study makes the following contributions:

e Establish that Borda count-based consensus GRN inference is
superior to individual algorithms, reaffirming the wisdom of
crowds approach in network inference.

¢ Create a robust framework for consensus inference of GRNs
from scRNAseq data, available on GitHub implemented in
Python.

e Illimunate the value of a weighted consensus approach for
cell-type specific GRN inference.

Materials and methods

Selection of algorithms

The algorithms selected for this study that form the basis for the
consensus network construction were from the BEELINE frame-
work proposed by Pratapa et al. A summary of these algorithms is
presented in Table 1.

We implemented the BEELINE evaluation framework and ran
each algorithm through the pipeline provided [2]. Once these
networks for each individual algorithm were constructed, we
used our proposed COFFEE framework to integrate them into one
consensus network.

Borda count implementation

Each algorithm from the BEELINE implementation outputs a
ranked edge list with a confidence score attached to each edge.
Since each algorithm is normalized in a different way, the edge
weights are not distributed equally, so the ranking of each edge
within the list across algorithms is considered. For example,
consider the ranking of four edges for three different algorithms,
each inferring a distinct ranked edge list.

The Borda count method allocates points to each rank, where
the highest ranked interaction receives the maximum number
of points, and the lowest ranked interaction receives zero points.
To receive a final rank between 0 and 1, the resulting weighted
ranks are normalized. In the example in Tables 2 and 3, there
are four example interactions; the interaction 14 is ranked at the
first position for Algorithm 1. Therefore, it receives the maximum
of three Borda points and a normalized score of 1. The resulting
Borda rank used is the normalized number of points received for
each algorithm.

Modifications were made to the original Borda count method in
order to make it more applicable for gene-gene relationships. Self
loops in the graph were removed, so a gene interacting with itself
was removed from consideration in the final consensus algorithm.
Additionally, due to high variance amongst algorithms, there were
several cases where an edge would appear in some algorithms
with a high ranking, and not appear at all in others. To handle this,
0 was inserted where an edge was not present into the calculation
and was considered for the Final Rank. We implemented a version
of the Borda count algorithm in Python, which takes a directory
of ranked lists as inputs, and will output the consensus network
for a user specified threshold.

Single cell-type specific GRN inference using
multimodal data: scMTNI

A promising direction of GRN inference for single cell transcrip-
tomics data is identifying unique GRN’s by cell type. The primary
challenge of this approach is identifying accurate cell lineages,
and the varying transcription factors that define them [16]. One
way to infer high-quality cell lineages, and therefore the impor-
tant transcription factors by cell type, is to integrate scRNA-seq
data with scATAC-seq data [5]. Single Cell Multi-Task Inference
(scMTNI) is a recently published multi-task learning framework
thatintegrates scATAC-seq with scRNA-seq data to infer cell-type
specific GRNs. It has demonstrated improved performance over
existing cell-type specific inference models. [5].

scMTNI is a multi-task learning framework that uses a prob-
abilistic graphical model-based method to infer GRN dynamics
from a cell lineage tree. The method defines a cell type as a group
of cells with similar transcriptome and accessibility levels. Each
cell type is treated as a task, and the goal of the method is to
infer a GRN for each task, as well as the ideal parameters. scMTNI
calculates the probability of each gene and its set of regulators
for each cell type, and uses this probability calculation to inform
the predicted network. For our comparative analysis, we used
the inferred consensus networks for each cell type in the coarse
Human Fetal Hematopoiesis dataset, with four cell types [25].
scMTNI was executed on several subsamples of each cell type, and
the final network prediction was informed through a confidence
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Table 1. Summary of algorithms used in the BEELINE framework that were leveraged in our proposed consensus network approach

Algorithm Name

Description

GENIE3 [17]

PPCOR [8]

LEAP [7]

SCODE

PIDC [18]

SINCERITIES [19]

GRNVBEM [20]

SCRIBE [21]

GRNBoost2 [22]

GRISLI [23]

SINGE [24]

Tree-based ensemble methods such as Random Forest that predict the expression profile of target genes from all other genes.
Interaction weights stem from how important an input gene on a target’s expression data. GENIE3 has been demonstrated to
be a consistent performer across various datasets [2].

Computes partial and semi-partial correlation coefficients for every pair of genes. Ranks are scaled between -1 and 1,
supporting inhibitory and activating network inference. PPCOR results in an undirected network. The negative and positive
weights (-1 to 1) are meant to signify an activating or inhibitory interaction. PPCOR was demonstrated to be a consistent
performer across various types of datasets [2].

Lag-based expression association for pseudotime series (LEAP). Calculates Pearson correlation of normalized mapped read
counts; final weightage per edge is the maximum Pearson correlation across all lag values. LEAP also contains a permutation
based test that assists in decreasing false discovery rates. LEAP outputs a directed network.

Implements ODEs for regulatory network representation from gene expression dynamics. Combines linear regression and
dimension reduction to improve algorithm efficiency.

Partial Information Decomposition and Context (PIDC). Computes pairwise mutual information between two genes. From here,
PIDC calculates per-gene thresholds that identify the most important interactions for each gene. PIDC outputs an undirected
network.

SINgle CEll Regularized Inference using TIme-stamped Expression profileS (SINCERITIES). Linear regression-based model to
recover directed regulatory relationships between genes. SINCERITIES uses Granger casualty, which infers the relationship
between change in gene expression of TFs from one window of time and its target genes in another window of time. The edges
are inferred through partial correlation analyses.

GRN Variational Bayesian Expectation-Maximization (GRNVBEM). Implements a Bayesian network model using a first-order
autoregressive system to estimate gene fold change at specific times. From here, GRNVBEM uses a Bayesian framework and
produces a directed graph with associated signs.

Uses Restricted Directed Information (cRDI) to measure mutual information between the past state and current state of a
target gene based on time-stamped single-cell gene expression data. SCRIBE is further made efficient for larger datasets by
using a context likelihood of relatedness algorithm, which removes edges that do not correspond to direct effects from a TF
and a target.

Based on GENIE3 framework, improves efficiency through stochastic Gradient Boosting Machine regression. GRNBOOST?2
trains a regression model to infer its edges for each gene in the dataset. GRNBOOST?2 has been demonstrated to have
consistent performance across various types of datasets [2].

Gene Regulation Inference for Single-cell with Linear differential equations and velocity interference (GRISLI). Estimates cell
velocity based on changing gene expression data. From here, GRISLI computes the GRN by solving a sparse regression problem
that relates the gene expression of each cell.

Single-cell Inference of Network using Granger Ensembles (SINGE). Uses kernel-based Granger Causality regression to solve
irregularities in time-stamped single-cell genomics data. The inspiration from SINGE came from the fact that pseudotime data
for each cell do not take into account the over cell system’s dynamic processes.

Table 2. Ranked individual predictions for three example algorithms, e.g. interactions denoted I

Normalized Borda Points Borda Points Rank Alg. 1 Alg. 2 Alg. 3
(Borda Ranking)

1 3 1 14 12 12
0.667 2 2 12 13 13
0.334 1 3 1 14 11

0 0 4 I3 11 14

Table 3. Final Borda ranks for each example interaction

are predicted from these algorithms may still be valuable in

predicting cell-type specific GRNs. To test this theory, we used

Interaction Average of Borda Ranking Final Rank

an adapted version of COFFEE and compared its performance to
12 (0.667+1+1) /3 0.889 SCMTNI on a cell-type specific dataset.
13 (0+0.667+0.667) /3 0445 For cell-type specific GRN inference, we included four algo-
14 (140.334+0) / 3 0.445 ith that d ¢ . doti dat . t PPCOR
1 (0.3344040.334) / 3 0222 rithms that do not require pseudotime data as input: ,

GENIE3, GRNBOOST?2, and PIDC [8, 17, 18, 22]. The reasons for

score from the subsampling. We used a confidence cut off of 0.8 to
calculate the evaluation metrics, as recommended by the authors

of scMTNI [5].

this were two-fold. Firstly, these algorithms were shown to be the
top performing and had high stability on experimental datasets
[2]. Additionally, since they do not require pseudotime data as
input, these algorithms were less likely to be sensitive to poor
pseudotime calculation and remove an element of uncertainty
from the calculation.

Cell-type specific COFFEE framework

The algorithms used for COFFEE have not been specifically opti-
mized for cell-type GRN inference. However, interactions that

When using COFFEE for cell-type specific GRN inference, we
prioritized the information from the well-established cell-type
specific GRN inference algorithm, such as scMTNI. scMTNI is
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superior in inferring cell-type specific GRNs, as it incorporates
scRNA-seq and scATAC-seq data [5]. We added scMTNI to the COF-
FEE pipeline and calculated a consensus network with scMTNI,
PPCOR, GENIE3, GRNBOOST? and PIDC. For this analysis, we mod-
ified COFFEE to provide an initial score of 1 for any edges found in
the scMTNI pipeline, thus prioritizing the edges found in scMTNI
higher than that in the other four algorithms. Then, we evaluated
COFFEE+scMTNI on the baseline inferred scMTNI network. Con-
ceptually, this framework is similar to earlier consensus methods
for GRN inference where expert knowledge on possible edges is
prioritized a priori.

Filtering highly varying genes with Slingshot

The primary goal of Slingshot is to reconstruct pseudotime data
based on cell lineages for scRNA-seq datasets. Slingshot organizes
the cell into clusters and defines cell lineages based on the
potential ordering or changing of cell states. We chose Slingshot
to determine the pseudotime data to maintain consistency with
the BEELINE evaluation framework; Pratapa et al. calculated the
pseudotime data for the synthetic, curated, and experimental
datasets used in our benchmarking, and we did not deviate from
this calculation.

We used Slingshot to filter highly varying genes for cell-type
specific GRN inference. We first loaded the gene expression
matrix into the BEELINE package and performed the standard
pre-processing and dimensionality reduction recommended by
the package authors. Then, we calculated the highly varying
genes across pseudotime points for one cell lineage, as we were
computing varying genes per cell cluster. From here, we selected
the top 500 highly varying genes; all P-values were <0.01 [9].

Evaluation

To evaluate our COFFEE framework against baseline algorithms,
we used precision, recall, and F-score when comparing to the gold
standard network.

Precision

Precision is defined as the number of correctly predicted inter-
actions divided by the total number of predicted interactions. It
measures how accurate the positive predictions of the algorithm
are and calculated as follows:

True Positives

Precision = — —
True Positives + False Positives

Recall

Recall is defined as the ratio of all correctly predicted interactions
to all actual positives. It measures how completely the algorithm
predicts true interactions as follows:

True Positives

Recall = — -
True Positives + False Negatives

F-score

F-score is defined as the harmonic mean between precision and
recall. It provides a balanced representation of the relationship
between precision and recall and calculated as follows:

Precision x Recall

FS =2X —————————
core x Precision + Recall

We used F-score to determine the ideal threshold for COFFEE
when applied to various dataset sizes.

Data
Synthetic datasets

The primary benefit of using Synthetic datasetsis to have a known
GRN that has a comparable ground truth for reliable evaluation.
Previous methods have used GeneNetWeaver; however, Pratapa
et al. described limitations to this method [26]. Therefore, they
created BoolODE. BoolODE converts a Boolean model to nonlinear
ODEs, which assists in capturing the logical relationship between
regulators [2]. We directly used the Synthetic datasets provided by
the authors of BEELINE without any additional preprocessing. The
BEELINE authors created six datasets based on different network
structures: Linear (LI), Cycle (CY), LL (Linear Long), BF (Bifurcat-
ing), BFC (Bifurcating Converging), and TF (Trifurcating). For our
evaluation of COFFEE, we aggregated the datasets by number of
cell-types, rather than the network structure. The cell-group sizes
were 100, 200, 500, 2000, and 5000 cells. Each group contained 50
individual datasets with a varying number of genes, each with
their own ground-truth network. We used the Synthetic datasets
to determine the ideal threshold for the consensus algorithm
implemented in COFFEE.

Curated datasets

Curated datasets are published Boolean models for GRNs that
capture the specific regulatory processes of a given develop-
mental process. For our evaluation, we selected three of the
four Curated datasets used in the BEELINE evaluation frame-
work: ventral spinal cord (VSC) development, hematopoietic stem
cell (HSC) differentiation, and gonadal sex determination (GSD)
[27-29]. The authors of the BEELINE framework used BoolODE to
create 10 simulated datasets with 2000 cells based on the cell
trajectories and gene expression patterns of the original Boolean
models. We used the gene expression matrix and pseudotime data
as is from the BEELINE data download, without any additional
preprocessing.

The BEELINE authors also used the mammalian cortical area
development (mCAD) Boolean model dataset in their evaluation
framework; however, the authors noted that the algorithm results
for this model were outliers, with poor performance results across
all algorithms, which differed for the other Curated datasets
[2, 30]. Therefore, we opted not to include mCAD in our evaluation
process.

Experimental datasets

To evaluate COFFEE on experimental methods, we chose two from
human cells and two from mice cells. Similar to the Synthetic
and Curated datasets, we used the preprocessed data from the
BEELINE framework [2].

To compute the GRN inference using the important genes, we
used the gene ordering file computed by the GAM R package to
select the 500 top genes varying across pseudotime points, as
detailed in the BEELINE evaluation protocol. This gene ordering
file was provided in the dataset download from BEELINE. [2].

We also utilized the ground truth networks provided by the
authors of BEELINE per experimental dataset cell type [2]. These
ground truth sets were obtained from the ENCODE, ChIP-Atlas,
and ESCAPE databases for ChIP-seq data from the same or similar
cell type. For our evaluation, we only considered interactions that
contained genes present in the ground truth networks.
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Dataset Description

hHEP [31] scRNA-seq experiment on induced pluripotent stem cells (iPSC). Contains 425 scRNA-seq measurements across
various timepoints. Pseudotime was calculated using Slingshot with Day 0 as the starting cluster and Day 21 as the
ending cluster [9].

hESCs [32] Timecourse scRNA-seq experiment from 758 cells using the differentiation protocol in order to produce definitive
endoderm cells from human embryonic stem cells, measured at 0, 12, 24, 36, 72, and 96 h. Using slingshot, the
pseudotime was calculated using 0 h as the starting cluster and 96 h as the ending cluster [9].

mHSCs [33] Contains normalized expression data for 1656 HSPCs across 4773 genes. Pseudotime was computed using Slingshot

across three lineages, which were erythroid, granulocyte-monocyte, and lymphoid [9]. The GRN for each lineage was

separately inferred.
Mouse embryonic stem
cells (mESC) [34]

0 h and the ending cluster being 72 h [9].

scRNA-seq expression measurements for 421 primitive endoderm (PrE) cells differentiated from mESCs, from five
diferent time points: 0, 12, 24, 48, and 72 h. Pseudotime was calculated using Slingshot, with the starting cluster being

Table 5. Number of cells per cell type in Human Fetal
Hematopoiesis Cell dataset

Cell-Type Number of Cells
GPs-Granulocytes 443

HSC-MPP 1367

LMP 1522

MEMP 1522

Cell-type-specific dataset

To evaluate COFFEE’s performance on cell-type-specific lineages,
we used a dataset that scMTNI was benchmarked on. We com-
pared the performance of COFFEE, scMTNI, and COFFEE+scMTNI
with a published scRNA-seq and scATAC-seq dataset of human
fetal hematopoiesis cells. This study captured specifications for
various blood lineages. We considered the coarse resolution of
study to test the model on larger datasets, which contained
four cell-types: g HSC, multipotent lymphoid-myeloid progenitors
(LMPs), MK-erythroid-mast progenitors (MEMPs), and granulocytic
progenitors (GPs). The authors of scMTNI provided their prepro-
cessed data per cell-type, in addition to the networks inferred by
their method.

To use the data on COFFEE, we followed a similar process
to our Experimental dataset evaluation by selecting the top 500
genes across pseudotime points using Slingshot [9]. To compare
to scMTNI, we used the networks inferred by scMTNI provided in
the author’s dataset download, using a confidence cutoff of 0.8,
which is the recommendation of the authors of sScMTNI [5].

Results

To evaluate the performance of the consensus algorithm using the
Borda algorithm, we tested it on four different kinds of datasets:
Synthetic, Curated, Experimental, and Cell-Type-Specific infer-
ence. In each case, we demonstrate that the wisdom of crowds
approach leads to better performance across datasets. To evalu-
ate, we used precision, recall, and F-score.

Synthetic datasets

The Synthetic datasets were obtained from the Beeline evaluation
framework [2]. We grouped the datasets by size, to evaluate the
performance of the consensus algorithm as more genes and cells
are present in a given dataset. There were five size groups present
in the Synthetic datasets: 100, 200, 500, 2000, and 5000 cells. The

Table 6. Optimal threshold by F-Score for Synthetic dataset sizes

Dataset Size Optimal Threshold
100 Cells 0.75
200 Cells 0.75
500 Cells 0.65
2000 Cells 0.65
5000 Cells 0.65

number of genes varied depending on a specific dataset within
the size group.

A key component of the consensus algorithm is determining
a threshold at which to keep high confidence edges. A similar
Borda-based method for miRNA networks, miRsig used a default
threshold cut off of 90%, which results in keeping the top 10% of
predicted edges [1]. However, due to the cell to cell gene variation
in gene expression present in single cell genomics data, we tested
the algorithm on lower thresholds and evaluated its performance
[35]. We used the mean F-Score to determine the ideal threshold
value by dataset size [1].

In Fig. 1, we see that a different consensus threshold is appro-
priate depending on the size of the dataset. For the smaller
datasets (100 or 200 cells), a threshold value of 0.75 leads to the
best F-Score performance for COFFEE. For larger datasets (500,
2000, and 5000 cells), a threshold value of 0.65 leads to the best
F-Score. Users may decide to maximize precision or recall rather
than F-Score, which would lead to a different threshold being
used. We found that increasing the threshold value increases the
precision.

Table 6 shows the optimal threshold by F-Score for each
dataset size. These thresholds were used for the evaluation of
COFFEE against the baseline algorithms, as well as reporting the
performance on Curated, Experimental, and Cell-Type-Specific
datasets.

To evaluate the performance of COFFEE against the baseline
algorithms, we primarily used F-Score, precision, and recall as the
metrics.

Figure 2 depicts the performance of COFFEE against the base-
line algorithms by F-Score. We observe that across dataset sizes,
COFFEE demonstrates a better performance. It is also significant
to note that algorithms perform differently based on the data
sizes. For example, SINCERITIES has a comparitively weaker F-
Score for smaller datasets containing 100 or 200 cells than it
does with 500, 2000, or 5000 cells. A consensus-based approach
such as COFFEE mitigates this variance by integrating information
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Figure 1. Optimal threshold for COFFEE based on dataset size, by mean F-Score; across Synthetic datasets, the threshold yielding the best mean F-score
for each size grouping was selected as the ideal threshold for future COFFEE experiments, and the highest mean F-Score is colored in red.

from the top performing algorithms despite dataset size. In short,
COFFEE is less susceptible to variation in its performance based
on differences present in a dataset.

To analyze the performance of the algorithms in further detail,
we also looked at the mean precision and recall for each dataset
size group across algorithms. From the analysis in Fig. 3, we see
that the precision in COFFEE is much higher than in any of the
other base line algorithms, while its recall is much lower. In
Supplementary Figs S4 and S5, we evaluated COFFEE using AUPRC
and AUROC as well.

Curated datasets
We next evaluated the performance of COFFEE on the Curated

datasets from the BEELINE evaluation framework. Each dataset
contained 2000 cells, so the threshold used for COFFEE was the

previously identified optimal one of 0.65. We evaluated COFFEE’s
performance using precision, recall, and F-Score.

The precision-recall analysis for Curated datasets can be seen
in Fig. 4. Similar to the Synthetic sets, COFFEE showcases higher
precision compared with the baseline algorithms in three of the
four datasets. This demonstrates COFFEE’s stability across differ-
ing datasets; even with Curated data, the consensus approach is
able to capture high confidence edges when compared with the
ground truth data.

We further explored COFFEE’s performance by F-score against
the baseline algorithms. These results are visualized in Fig. 5.
We can observe that COFFEE performs very well compared with
the baseline algorithms in terms of F-score in three of the four
datasets. Much like the Synthetic datasets, we see high variation
in the baseline algorithms performance, even when applied to
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Figure 2. Boxplot of F-Score performance on Synthetic datasets grouped by size; from this analysis, it is clear that COFFEE has superior performance
when compared with the individual algorithms making up the consensus, across dataset sizes, and COFFEE is colored in green.

Curated sets. For example, SCODE performed better than most
other algorithms in the GSD Curated dataset but performed the
worst in the VSC set. COFFEE was able to perform better than most
other algorithms in three of the four datasets. In Supplementary
Figs S6 and S7, we evaluated COFFEE using AUPRC and AUROC.

Experimental datasets
Furthermore, we evaluated the performance of COFFEE on four
of the Experimental datasets from the BEELINE evaluation frame-
work. Each dataset contained a variable number of cells, and so
we used a threshold of 0.65. We evaluated COFFEE’s performance
using precision, recall, and F-score.

To be consistent with BEELINE’s evaluation framework, we
evaluated the Experimental datasets on cell-type-specific and

non-specific networks. All datasets were collected from Chip-Seq
protocol, as outlined in BEELINE [2].

Figures 6 and 7 display the results of COFFEE compared with
the baseline algorithms. We noticed that some algorithms did
not predict any edges for certain datasets, while they did predict
some edges for the others. Therefore, each COFFEE run contained
a differing number of algorithms across datasets.

Across the majority of datasets and both the cell-type-specific
ground truth and non-specific ground truths, we see that COF-
FEE performs better than the baseline algorithms in terms of
F-score. However, for the mDC dataset, COFFEE performed poorly;
the BEELINE evaluation framework also noted that mDC was
an outlier in their performance evaluations, with several algo-
rithms demonstrating worse than normal performance [2]. This
could be due to mDC having a much higher density in their
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Figure 3. Precision and recall performance on Synthetic datasets grouped by size; across dataset sizes, COFFEE demonstrates improved precision, but

less comparable recall than the individual algorithms.

gold-standard network, making it difficult for algorithms to iden-
tify high confidence edges.

We evaluated COFFEE against the baseline algorithms by the
EPR metric, and these results are shown in Supplementary Fig.
S2. Furthermore, we evaluated COFFEE on the Experimental
datasets using AUPRC and AUROC, and these results are shown
in Supplementary Tables S1 and S2, respectively.

Contribution of individual algorithms to COFFEE

When working with ensemble algorithms such as COFFEE, an
important step in the workflow is deciding which, or how many,
algorithms to include in the final consensus aggregation. For con-
sensus GRNs on Bulk RNA-Sequencing data, including as many
algorithms as possible lead to the best results [12]. By default,

COFFEE includes all algorithms fed into the pipeline and weighs
them equally.

To test if other combinations of algorithms would outperform
the case of including all possible algorithms into the pipeline
as done currently, we performed an experiment by dropping
one algorithm from COFFEE and evaluate its performance by F1
score on the Synthetic datasets from BEELINE [2]. The results
of this experiment are shown in Fig. 8. From this analysis, we
see that the performance is generally even across dataset sizes.
For the larger dataset sizes, such as 2000 and 5000 cells, exclud-
ing algorithms yielded better performance when compared with
including all 10 available algorithms. This result demonstrates
that it is possible to have improved results when including less
algorithms, which was not the case in Bulk RNA-Seq consensus
GRNS [12].
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Figure 4. Precision and recall performance on Curated datasets; across Curated datasets, COFFEE demonstrated improved precision but less comparable

recall.

Another key question is to identify which algorithms should be
included in the final consensus pipeline, if not all. To determine
this, we evaluated the effect of dropping an algorithm on the
Fscore performance, when compared with including all algo-
rithms. The result of this experiment is shown in Fig. 9. From this
analysis, we see that across groups of dataset sizes, the impact
of removing a singular algorithm is consistent. There is no con-
clusive combination of fewer algorithms that would improve the
full consensus results with 10 algorithms included considering
different datasets and their sizes. In Supplementary Fig. S1, we
demonstrate the variation of performance when considering an 8
algorithm combination (i.e. dropping two algorithms rather than
just one).

Cell-type-specific inference

Existing GRN inference methods for scRNA-seq data have not
been specifically designed for cell-type specific datasets and net-
works. These methods do not consider the global regulatory struc-
ture of cell-types within tissue and therefore may not be represen-
tative of key regulatory interactions [16]. To test the consensus
method for cell-type-specific inference, we first tried a two-level
consensus approach.

On each of the Synthetic datasets used to evaluate the per-
formance of COFFEE, we partitioned the dataset into cell types
using Seurat clustering and filtered the gene expression matrices
and pseudotime data accordingly [36]. From here, we ran COFFEE
with all 10 baseline algorithms; once the networks were obtained
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Figure 5. F-score performance on Curated datasets, and COFFEE demonstrated improved performance across two of the three Curated datasets in terms

of F-score.

for each cell type, we ran the Borda point algorithm again, this
time integrating edges from each cell type to have one composite
network for the dataset. We then compared this second level
consensus network to the COFFEE algorithm ran on the whole
Synthetic datasets without cell-type partitioning.

We see in Fig. 10 that using the second level consensus
approach drastically decreases the performance of COFFEE. We
conclude from this analysis that the networks from individual
cell-types are not entirely representative of the true global
regulatory structure; therefore, a different approach is required
for cell-type specific inference that takes into account cell-lineage
information [5].

To analyze the performance of COFFEE against scMTNI for cell-
type-specific performance, we used a dataset that scMTNI was
initially benchmarked on [5]. The dataset is from a Human Fetal

Hematopoietic cell study that studied the regulatory dynamics
during human development for multiple human blood cell types
[25]. In concordance with scMTNI's benchmarking process, we
used the annotated lineages clusters, which were: HSC and Multi-
Potent Progenitor (HSC-MPP), MKerythroid-mast progenitors com-
bined with cycling MEMPs, GPs, and LMPs [5].

We used the single cell expression matrix provided by the
authors of scMTNI to run the four algorithms in COFFEE. Similar
to the BEELINE framework, we calculated the 500 most varying
genes across pseudotime points using Slingshot per cell type [9],
using one lineage. These 500 genes were used to infer the GRNs
for COFFEE.

For evaluation, we used the Cus-KO gold standard network
described in scMTNI [5]. We chose this dataset to be gold standard
since it was the network that scMTNI had the best performance
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metrics with [5]. Cus-KO contains interactions from the knock-
down-based GM12878 lymphoblastoid cell line downloaded from
Cusanovich et al. [37]. We filtered the gold-standard network to
only contain interactions with a P-value <0.01. Additionally, we
filtered the inferred networks from both scMTNI and COFFEE
to contain only genes present in the gold standard network.
Finally, we selected the top 1000 edges from the scMTNI inferred
networks and performed a sensitivity analysis for the best COFFEE
threshold.

In Fig. 11, we see the performance of COFFEE for various thresh-
olds when compared with scMTNI. In two cell types, LMP and
MEMP, COFFEE showcases a better performance by F-score. How-
ever, scMTNI performes significantly better on the GPs and HSC-
MPP cell types. We also noted that there is little to no effect with
the COFFEE threshold on the performance of the algorithm.
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With the cell-type-specific prioritized algorithm, which we call
COFFEE+scMTNI, we see that a consensus approach is able to
improve the performance of scMTNI on all cell types. Thus, we can
determine that the individual four algorithms predict true inter-
actions that were not initially learned by scMTNI. We evaluated
COFFEE+scMTNI on the Human Fetal Hematopoietic as described
earlier [25]. The results of this analysis are shown in Fig. 12.

Case study: COFFEE uncovers key regulatory
interactions in breast cancer T cells

In order to demonstrate the practical usability of COFFEE, we
analyzed a dataset containing 6311 T Cells isolated from human
breast cancer tissue. The study by Savas et al. revealed hetero-
geneity within the breast cancer T Cell population. Subclustering
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Figure 7. F-score performance on Experimental datasets using non-Cell-Type-Specific Ground Truth; COFFEE demonstrated improved performance in
terms of F-score in all of the Experimental datasets for the non-Cell-Type-specific ground truth.

revealed the presence of tissue resident memory cells (named as
CD8+ TRM cells) [38]. Tissue resident memory cells are crucial to
immune response and defense, particularly from an oncology per-
spective [39]. Further analysis from Savas et al. revelaed improved
patient prognosis by increased presence of the CD8+ TRM
cells [38].

The transcription factor STAT1 is linked to immune response
pathways [38]. STAT1 is also demonstrated to be imperative for
CD8+ T cell proliferation. To better understand the role of STAT1
within CD8+ TRM cells specifically, we inferred a GRN specific
to the CD8+ TRM cells using COFFEE. We filtered from the 6311
cells down to 685 using Seurat [36]. From there, we followed a
similar process as the Experimental datasets, by selecting the
top 500 genes varying by pseudotime using Slingshot [9]. To
ensure analysis of STAT1, we manually included STAT1 into the

resulting gene list. We ran COFFEE using PPCOR, GENIE3, GRN-
BOOST2, and PIDC, since they demonstrated the best performance
on experimental datasets, using a threshold of 0.65. Once the
network was generated, the network was filtered by selecting
interactions only where STAT1 was the regulator. This resulted in
137 total significant interactions of STAT1 within the CD8+ TRM
cells.

To determine which interactions were relevant to cancer, we
used the Network of Cancer Genes and Healthy Drivers [40]. Of
the 137 total interactions with STAT1, 30 of them were demon-
strated to be cancer associated by the Network of Caner Genes
and Healthy Drivers. We then performed a GO Biological Process
(BP) Overrepresentation Analysis using the ClusterProfiler R pack-
age to determine the functional role of these cancer associated
genes [41].
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Comparison of F-Score Distribution Across Synthetic Datasets Removing One Algorithm
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Figure 8. Comparison of F-score distribution across synthetic datasets: removing one algorithm; the label corresponds to an algorithm being removed
from the consensus; for example, the box labeled "GENIE3” represents a consensus algorithm performance for the other nine algorithms in the pipeline.

The GO BP analysis importantly revealed enrichment for
MHC protein complex assembly-related and adaptive immune
response pathways. The MHC protein complex assembly is a
significant finding, as this pathway has previously been linked
to CD8+ T cells. The MHC protein is what allows CD8+ T cells
to identify pathological cells that express mutated proteins. A
common mechanism for cancers is to target the MHC protein
and therefore weaken the effectiveness of the CD8+ T cells [42].
The pathway enrichment reveals that STAT1 potentially has a
key role in regulating the MHC protein complex, specifically in
the CD8+ TRM subcluster. Further analysis could be performed
to determine individual gene importance to these pathways, and
knockout experiments could be performed to confirm STAT1's
role in this regulatory process.

Discussion

From our analysis, we are able to conclude that a consensus
approach for single cell GRN inference has several advantages.
Across various types of datasets, COFFEE demonstrated improved
performance in determining true interactions when compared
with gold standard datasets.

For Synthetic datasets, we determined the ideal threshold to
select edges from the consensus network generated by COFFEE.
We found that for larger datasets, including more edges improved
the performance of the algorithm, while for smaller datasets, a
higher threshold maximized the F-score when compared with the
gold standard. However, users may want to adjust the threshold
value based on the statistic they want to maximize; increasing
the consensus threshold will lead to a higher precision, while
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Comparison of Algorithm Contribution Based On Percent Change in F-Score Performance Across Synthetic Datasets
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Figure 10. F-score performance for Second Level Consensus vs COFFEE on
Synthetic datasets.

decreasing the threshold will lead to a higher recall. The suggested
thresholds in Table 6 are based on the F-score. Users ideally
should run COFFEE with various threshold values and evaluate
the performance on their particular dataset.

We also found that there was significant variation between
algorithm performance on dataset size, which is an effect also
noticed in previous scRNAseg-based GRN inference benchmark-
ing studies [43]. For example, SINCERITIES did not perform as
well as the other baseline algorithms on smaller datasets but
performed extremely well on larger datasets in terms of F-score.
The primary advantage of COFFEE is that the algorithm has
consistent high performance across multiple types of datasets;
thisisinherentin the algorithm design, as edges appearingin mul-
tiple GRN inferred networks will have higher confidence scores
in the final consensus network. This approach establishes that
the consensus approach will work across several different kinds
of datasets, particularly with a large selection of algorithms to
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Figure 11. F-score for each cell type across COFFEE thresholds and scMTNIL.

integrate. COFFEE is a generalizable tool, where any number or
type of algorithm results may be used for the downstream con-
sensus integration. Therefore, as methods improve for scRNAseq
GRN inference, COFFEE will remain valuable as a tool for the
community.

This effect is even more pronounced when analyzing Curated
and Experimental datasets. Despite the number of cells being
the same across Curated datasets, different algorithms performed
better on some datasets than others. This establishes that users
cannot go by dataset size alone when choosing an optimal algo-
rithm. Additionally, algorithms that require pseudotime data as
input are more likely to suffer in their performance if the pseu-
dotime data are inaccurate, or incorrectly computed [2]. While
Pratapa et al. in their benchmarking study make suggestions for
which algorithms to use for various datasets, a far safer approach
would be to use a consensus-based method. We see that across
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Curated datasets, COFFEE has high F-score values. In contrast,
we see that each Curated dataset had a different top performer.
Without considering COFFEE, the top performer for VSC was
GENIE3, PPCOR for HSC, and SINCERITIES for GSD. The variation
in algorithm performance across datasets makes a consensus
method such as COFFEE a safe choice to consistently infer high-
quality networks.

On the Experimental datasets, we chose to evaluate on Cell-
Type-specific and Non-Specific ground truths, as was done in
the BEELINE evaluation framework [2]. From this analysis, we
noticed that while the baseline algorithms performed poorly on
the Non-Specific networks, COFFEE performed significantly bet-
ter. However for the Cell-Type-Specific ground truth data, COF-
FEE performed better generally, but there was less difference
between the baseline and consensus methods in terms of F-score.
This suggests that COFFEE without modifications is not as well
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Figure 12. F-score for each cell-type across COFFEE thresholds and COFFEE+scMTNI.

equipped to infer more specific interactions, rather than general
interactions collected by organism level Chip-Seq networks. This
trend is also seen when evaluating COFFEE based on EPR. EPR
is defined as the precision of the top k edges when compared
with the ground truth, where k is the number of interactions
present in the filtered ground truth. The reasoning behind this
was that experimental groups would primarily be interested in
only high confidence edges from a network [2]. COFFEE demon-
strates a higher EPR, and a much better EPR for the Non-Specific
networks when compared with the Cell-Type-Specific networks.
We show this result in Supplementary Figs S2 and S3. This find-
ing motivated us to adapt the COFFEE algorithm for cell-type-
specific inference, by developing a prioritized consensus method.
We see that across dataset types and conditions, COFFEE generally
demonstrates higher precision but a lower recall. This is due to the

fact that it is giving more precedence to high confidence edges
predicted by other algorithms. Therefore, COFFEE is more likely
to predict true edges but may potentially not be able to predict
all edges present in a GRN. Therefore, we can conclude that when
COFFEE predicts an edge, it is likely to be a true edge but may not
predict all correct edges in a GRN.

We see that a modified COFFEE algorithm is able to improve
the performance of a well-established cell-type specific GRN
inference algorithm. Despite the lack of the additional informa-
tion that scMTNI takes as input, COFFEE with four algorithms
had improved performance on two out of four cell-types on the
benchmarking dataset. We were also able to substantially
improve the performance of scMTNI by incorporating a prioritized
consensus approach, where interactions predicted by scMTNI
were all initialized with a raw count of 1. We anticipate that
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Regulated Genes of STAT1 in CD8+ TRM Cells

(a) Highest confidence (EdgeWeight > 0.9) interactions of
STAT1 within the CD8+ TRM cells. The network visualiza-
tion was generated using the igraph R package.
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Figure 13. COFFEE driven STAT1 regulatory analysis within CD8+ TRM cells in human breast cancer.

the modified consensus approach has the potential to be very
effective for cell-type-specific GRN inference as more methods
are made available to the community.

We also note that COFFEE can be integrated with other "omics”
and database sources. For example, Transcriptome Wide Asso-
ciation Studies (TWAS) are a valuable tool for determining key
regulators for particular phenotypes. If regulators are confirmed
from TWAS studies, then they can be prioritized within the COF-
FEE algorithm, in a similar way as shown in our Cell-Type-specific
inference method. However, rather than giving higher priority to
weights predicted from a certain algorithm, we can give higher
weightage to interactions where the regulator of that interaction
is predicted from TWAS studies. Tools such as kTWAS, mkTWAS,
and webTWAS tool in particular seems very useful to this end
[44-46]. Additionally, the integration of information from data-
bases such as String or Wikipathways can be beneficial to the
COFFEE workflow [47, 48]. The most straightforward way to inte-
grate the results from String or Wikipathway databases for con-
sensus would be to integrate the results from a inference method
that predicts GRNs from these databases and then have this
network within the COFFEE pipeline for consensus integration
[47, 48]. GRN inference methods that utilize data from these
databases show promise for this approach, such as the method
from Abbaszadeh et al. [49].

Another way to use the String or Wikipathway information
would be to identify regulators for a disease or biological context
(such as searching for regulators of breast cancer) and give higher
weightage to edges predicted from COFFEE that contain those
regulators [47, 48]. This would require some manual work from
the user and also some prior knowledge regarding the biological
context of the network. However, this has the potential to be a
way to integrate additional knowledge sources within the COFFEE
framework.

We conclude that while a regular consensus approach for bulk
RNA-seq data has performed well in prior studies, a modified
consensus approach is warranted for scRNA-seq data. The best
practice method for bulk RNA-seq GRN inference is to incorporate
as many algorithms as possible, as this demonstrates improved
performance [1]. However, we see that a consensus approach for
scRNA-seq data requires more careful selection of the algorithms
incorporated for integration. We demonstrate that across Syn-
thetic datasets of differing sizes, distinct algorithm combinations
leads to variable performance. From this result, we establish that

simply including every GRN algorithm available will not neces-
sarily lead to the best performance in the consensus approach.
Therefore, the user needs to exercise discretion in choosing the
best algorithm combination for their individual needs, and more
benchmarking in this area needs to be done in order to make
specific recommendations.

The primary limitation of a consensus-based approach is that
itis only as strong as its underlying algorithms. As more improved
GRN inference algorithms emerge, it will be difficult to determine
what will be the best algorithm for any given dataset. With this
point in mind, we continue to see a consensus-based approach
to be beneficial for the community when there is uncertainty in
choosing the best algorithms to use.

Conclusion

In this paper, we present COFFEE, a Borda voting-based consen-
sus algorithm for GRN inference on scRNA-seq data. COFFEE
has demonstrated improved and consistent performance across
Synthetic, Curated, and Experimental datasets. Additionally, a
modified consensus-based approach for cell-type-specific GRN
inference has shown a promising ability to improve performance
on existing state-of-the-art methods, by augmenting important
gene interactions. As future work improves the landscape of
cell-type specific GRN inference, this will necessitate a weighted
consensus algorithm approach to merge the predictions of the
sets of cell-type—specific and non-cell-type-specific algorithms
for robust GRN inference.

Key Points

e Several GRN inference methods for scRNAseq data have
been developed, each with distinct underlying method-
ologies and capabilities; extensive benchmarking has
determined that there is no singular method that is the
best in all cases.

e We present COFFEE, a Borda count voting-based consen-
sus algorithm that uses a wisdom of crowds approach
to integrate the results from several different GRN infer-
ence algorithms into one composite network.

e COFFEE demonstrates improved performance on several
benchmarking datasets from the BEEELINE evaluation
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framework, across Synthetic, Curated, and Experimental
datasets.

e We also highlight the effectiveness of a prioritized con-
sensus algorithm; methods that are shown to perform
better or incorporate other data modalities can be prior-
itized in the COFFEE setup so that predictions from them
are given more importance. To demonstrate this, we
chose scMTNI for cell-type-specific GRN inference and
demonstrate that a prioritized COFFEE with scMTNI per-
forms better than just using predictions from scMTNI.

Supplementary data

Supplementary data is available at Briefings in Bioinformatics
online.
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