Applied Intelligence (2024) 54:12558-12575
https://doi.org/10.1007/510489-024-05763-w

®

Check for
updates

Improved KD-tree based imbalanced big data classification
and oversampling for MapReduce platforms

William C. Sleeman IV' - Martha Roseberry? - Preetam Ghosh? . Alberto Cano? - Bartosz Krawczyk?

Accepted: 11 August 2024 / Published online: 18 September 2024

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract

In the era of big data, it is necessary to provide novel and efficient platforms for training machine learning models over large
volumes of data. The MapReduce approach and its Apache Spark implementation are among the most popular methods that
provide high-performance computing for classification algorithms. However, they require dedicated implementations that
will take advantage of such architectures. Additionally, many real-world big data problems are plagued by class imbalance,
posing challenges to the classifier training step. Existing solutions for alleviating skewed distributions do not work well in the
MapReduce environment. In this paper, we propose a novel KD-tree based classifier, together with a variation of the SMOTE
algorithm dedicated to the Spark platform. Our algorithms offer excellent predictive power and can work simultaneously
with binary and multi-class imbalanced data. Exhaustive experiments conducted using the Amazon Web Service platform
showcase the high efficiency and flexibility of our proposed algorithms.

Keywords Apache Spark - Amazon web services - Imbalanced data - k-dimensional trees - Machine learning - SMOTE

1 Introduction

Modern systems increasingly generate massive amounts of
data, driving the desire and necessity to have algorithms that
can learn from big data. The data mining community has
developed, and continues to develop, many algorithms that
are capable of learning from big data, but the ever increasing
volume of data still presents challenges. Datasets may easily
be larger than is possible to store on a single machine, or
data may arrive continuously as an infinite stream, requiring

X William C. Sleeman IV
fsleeman @gmail.com

Martha Roseberry
mroseberry @vcu.edu

Preetam Ghosh
pghosh@vcu.edu

Alberto Cano
acano@vcu.edu

Bartosz Krawczyk

bartosz.krawczyk @rit.edu

Department of Radiation Oncology, Virginia Commonwealth
University, Richmond, Virginia, USA

Department of Computer Science, Virginia Commonwealth
University, Richmond, Virginia, USA

Center for Imaging Science, Rochester Institute of
Technology, Rochester, New York, USA

@ Springer

rapid processing. For much big data, distributed and paral-
lel processing is essential, which has led to an increase in
distributed platforms.

The Message Passing Interface (MPI) is a well established
framework for distributed computing which provides a com-
munication protocol for writing parallel applications using
distributed memory. While MPI gives a high level of con-
trol on how computational tasks are scheduled and data is
transferred, it comes with a cost. The software developer is
solely responsible for dispatching tasks, combining partial
results, and managing slow or failed nodes from a poten-
tially heterogeneous distributed environment. MapReduce
platforms, such as Apache Hadoop and Spark [1], provide
more generalized operations tailored for distributed comput-
ing. Unlike Hadoop, Spark uses in-memory computations
to achieve higher performance. The Spark API facilitates
the partitioning and communication required for distributed
computing, along with being explicitly fault-tolerant.

One popular approach used to learn from these large
datasets is the k-nearest neighbor (kKNN) algorithm. This
algorithm works by returning the k-nearest examples from
the training dataset compared to an incoming query exam-
ple. This simple algorithm can be used for both supervised
and unsupervised problems but does not scale well computa-
tionally if the training dataset is large. To solve this problem,

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-024-05763-w&domain=pdf

Improved KD-tree based imbalanced big data classification...

12559

approximate algorithms are often used to significantly speed
up execution time, at a potential cost to accuracy.

Another issue common to big data problems is class imbal-
ance. Many algorithms tend to favor the class with the most
examples, also known as the majority class. This problem is
compounded when the ratio of imbalance between classes is
very large or there are many different classes present. One
solution is to simply balance the dataset before preform-
ing classification, often done by oversampling the smaller
classes. The SMOTE algorithm [2] is a commonly used
method which creates new artificial examples based on the
existing ones to increase the size of the minority classes.

In this paper, we present a new approximate ANN
algorithm based on the k-dimensional tree (KD-tree) data
structure. This algorithm was implemented using the Scala
programming language for the Apache Spark platform. To
evaluate the strengths and weaknesses of this method, it is
compared to an existing hybrid-spill tree implementation [3].
The relationship between tree leaf size and both running
time and classifier accuracy is also investigated. Scalabil-
ity of these two implementations are also evaluated on the
Amazon Web Service (AWS) distributed computing envi-
ronment. Additionally, to cope with skewed distributions of
classes that are common in real-world big data, we present
a novel algorithm to improve the SMOTE oversampling for
both binary and multi-class imbalanced datasets using the
KD-tree data structure.

This paper is organized as follows. Section 2 presents a
background in k-nearest neighbor algorithms and the Apache
Spark platform. Our proposed method and experimental
setup is provided in Sections 3 and 4 with results presented
in Section 5. Concluding remarks are given in Section 6.

2 Background

The k-nearest neighbors algorithm (kKNN) is a lazy learner in
which the predicted class for a query example is determined
based on the classes of the k reference or training exam-
ples nearest to it. While quite simple, kNN can be highly
accurate and is often used for classification problems. How-
ever, given a set of reference points R with n examples and
a set of query points Q with m examples, kNN requires
O(nm) time to compute the distances between all the query
points and reference points. A common variation of kNN,
the all-nearest neighbors problem, represents the case where
R and Q are the same set, and in this case the complexity
is O(n?). For very large or high-dimensional datasets, this
becomes infeasible. Different techniques have been devel-
oped to focus on addressing the curse of dimensionality [4,
5], classification [6, 7], using approximate nearest neighbors
algorithms [8, 9], and developing parallel implementations
of kNN [10, 11]. Some recent works [12, 13] have shown

good results with the k-nearest neighbor based structural twin
support vector machine (KNN-STSVM) [14] which pairs the
traditional kNN and SVM algorithms.

2.1 Approximate kNN algorithms
2.1.1 Metric tree

A metric tree [15], shown in Fig. 1, is a binary tree that splits
the node data, N(v), based on a left and right pivot point,
denoted as v./c and v.rc. The pivot points ideally have the
maximum distance between any pair of examples in N(v) but
because this leads to O (n2) time, the points are often chosen
heuristically. A vector, i, is drawn between the pivot points
and the mid-point is used for splitting the data, where exam-
ples on each side are assigned to the corresponding child
tree. At each node, the hypersphere radius is also calculated
from the maximum distance between all points which can be
used for backtracking. If a given query point or its nearest
neighbor candidates falls within the radius around a pivot
point, backtracking on the branch will be performed. Build-
ing the tree requires O(dn log n) time, where d is the number
of dimensions, but in practice will end early if the specified
leaf size is greater than one. The total space required is O(n)
and each query takes O(d log n) time.

2.1.2 Spill tree

A spill-tree [16] is a variant of the metric-tree that instead of
partitioning data at the middle point, uses a buffer of width t
to include additional examples from each side of the split as
shown in Fig. 2. This can help to alleviate some classification
errors when query points are close to the border. The value of
T is estimated using the approximate average distance from
each example to their nearest neighbor [17]. Like the metric
tree, the spill tree also has a build time of O(dnlogn) and a
query time O(n). However, for any t greater than zero, the
additional examples included at each split will require more
space than the basic metric tree. As the value of T gets larger,
the chances of finding the true nearest neighbors increase but
so does the exclusion time and memory.

Median

Fig. 1 Example of the partitioning of a metric tree

@ Springer

12560

W.C. Sleeman IV et al.

I
I
I
I
vlc ’ [
I
I
I

Median

Fig.2 Example of the partitioning of the spill tree. Each child tree will
include examples in the opposing buffer region of width ©

2.1.3 KD-tree

As shown in Fig. 3, the KD-tree [18] is a binary tree that splits
data at each node based on the median value of a feature, also
called an axis. The KD-tree is often fast, as it does not need to
perform ¢1 or £2 distance calculations on each examples at
every node. The sorting portion of the KD-tree training is the
limiting factor but is not dependent on the number of features,
which is very beneficial for datasets with high dimensionality.
The KD-tree takes O(n log” n) time as the data at each split
needs to be sorted, although it is not dependent on the number
of dimensions. The total space required is O(n) and each
query takes O(logn) time.

2.1.4 Locality Sensitive Hashing (LSH)

Unlike the other described methods which partition data
using a tree structure, LSH [19, 20] uses hashing which
can work well with very high-dimensional data including
images [21]. The idea is to use a hash function that assigns
nearby examples to the same bucket. This approach can also
generate multiple hash tables using different hashing func-
tions and querying can build a set of close neighbors from
each table. LSH has a training time of O(n log n) and a query
time of O(log n). The hash tables require O(n) space for each
table created.

2.2 Hybrid-spill tree implementation

In addition to these traditional data structures, Liu et al. [16,
22] introduced a improved data structure call a hybrid-spill
tree which is a combination the traditional metric and spill-
trees. Child trees are created using spill-trees unless one of the
children is larger than p percent of the parent node’s data. The
default value of p is 0.7 and was unchanged in all experiments
presented in this paper. If the ratio is larger than p, the spill-
tree is removed and replaced with a metric tree. This helps to
keep the overall tree balanced and ensures a O(log n) depth.
Branching of the hybrid-spill tree is halted when the number
of examples before splitting is less than a user defined leaf

@ Springer

size. Backtracking is performed on metric-tree nodes, but
not on spill-tree nodes as the t buffer is already including
candidate examples that belong to an adjacent branch.

The combination of these two approaches was shown to
have a good trade off between accuracy and runtime perfor-
mance. The worse case runtime and space performance is the
same as the metric tree and, assuming the tree is balanced,
querying for the nearest neighbor is time O (m logn).

To further aid the Spark based parallelism, the hybrid-
spill tree itself is distributed. The training data is partitioned
to create a shallow, top level metric-tree and for each leaf
a hybrid-tree is created. When querying is performed, each
example goes through the top metric-tree but without the
backtracking. Instead, the top level search is done in parallel
to avoid multiple iterations. If the query point is close to
the boundary, both branches are traversed. This results in
nearest neighbor candidates for each top tree traversed and
the best overall k-nearest neighbors are returned. An existing
implementation [3] of the hybrid-spill tree was used as a
benchmark for the classification experiments in Section 4.

2.3 Apache spark

As the distance computation between any two points is
entirely independent of any other distance computation, ANN
can easily benefit from parallel and distributed implementa-
tions. Spark is a framework for parallel computing that was
specifically designed for iterative computation, such as is
common in machine learning and data mining algorithms.
Because of this, Spark is an ideal platform for kNN [23-25].

Apache Spark is a popular implementation of the MapRe-
duce architecture which provides a scalable platform for big
data operations [26]. This model has three main phases: map,
shuffle, and reduce. As shown in Fig. 4, data is first mapped to
distributed computational nodes to provide parallelism. Inter-
mediate results from the map step are shuffled, i.e. reordered
or grouped, and then sent to the reduce phase where the final
results are prepared. Unlike Apache Hadoop, another popu-
lar open source implementation on MapReduce, Spark stores
intermediate results in main memory when possible and max-
imizes the available computational power by optimizing the
DAG of dependent tasks.

Figure 5 shows how resources are managed and data is
shared on a Spark cluster. On the Driver Node, the Spark
Context object creates a Cluster Manager, such as YARN or
Mesos, that requests resources from the Worker Nodes. From
each Worker Node, Executors are assigned resources, which
process computational tasks on one or more CPU threads. In
addition to running as a truly distributed platform, Apache
Spark can also utilize multi-threading on a single machine
using the standalone mode which can be useful if the user
has access to a large multi-core computer with sufficient
memory.

Improved KD-tree based imbalanced big data classification...

12561

Fig.3 KD-tree data structure.
Data is partitioned at each
branching based on the median
value of the current axis

Axis 1

Axis 2

Axis

Apache Spark also supports the DataFrame data structure
which provides popular SQL-style database optimization
tools [27] and supports distributed MapReduce related oper-
ations like map, reduce, and filter. Code used for both KD
and hybrid-spill trees [3] is based on DataFrames which will
be abbreviated as DF in the following algorithms.

2.4 Imbalanced data

Learning from imbalanced data is one of the biggest chal-
lenges in modern machine learning [28], despite more than
three decades of progress [29]. This is caused by a widespread
appearance of skewed classes in various real-life domains.
However, the difficulty lies not only in the uneven number of
data examples among classes, but also in the example-level
characteristics, such as class overlapping [30], borderline
examples, small disjuncts, and label noise [29]. Most of
works on imbalanced data focus on binary problems with
well-defined minority and majority classes. Less attention
has been paid to more complex cases of multi-class imbal-
anced data, where relationships among classes are much
more difficult to analyze [31].

:Shufﬂe:

|
Mapper | :

Reducer

Mapper

Reducer- Output

Reducer

Fig.4 The three main phases of the MapReduce model: map, shuffle,
reduce

Training Data

MG GG
Axis 1
Median
F(Or==~ ,-- QO---1 - -< D
/ Axis 2 \ / Axis 2 \
Median Median
000 000 ([X X) 000

Imbalanced classification becomes even more challenging
in the context of big data [29]. Here, we not only face vast
volumes of data, but we also need to adapt existing algo-
rithms to high-performance computing environments [32,
33], or propose novel solutions purely dedicated to large-
scale datasets [34, 35].

Many standard classification algorithms fail when facing
large-scale problems, even when implemented on dedicated
architectures [36]. This can be explained by the fact that
data partitioning among cluster nodes plays an important
role in training local models and may actually corrupt the
original class imbalance ratio, leading to over- or under-
trained classifiers. Therefore, it is necessary to take this fact
into account and embed node-based solutions into each base
learner [37, 38]. Popular examples of successful usage of
learning methods to cope with imbalanced big data include
fuzzy rule-based [39] and associative classifiers [40], as well
as Support Vector Machines [41].

Data preprocessing, most commonly in the form of sam-
pling, is a highly popular branch of algorithms for alleviating

Executor

Task Task

Executor

Task Task

Spark Context

Executor

Task Task

Fig. 5 The Spark cluster architecture for resource allocation and data
transfer. Dashed lines show resource allocation and solid lines shows
data transfer

@ Springer

12562

W.C. Sleeman IV et al.

class imbalance [42]. Despite their successes in small-scale
datasets, their implementations on high-performance clusters
is far from straightforward. Recent works on MapReduce-
based oversampling [43] and undersampling [44], as well
as their GPU-based counterparts [45] report various diffi-
culties originating from local divisions of data examples. It
was observed that despite their good performance on local
nodes, they do not return a satisfactory global performance
after the reduction phase. This shows that there is a need for
novel sampling methods specifically dedicated to MapRe-
duce environments. To the best of our knowledge, sampling
for multi-class imbalanced problems in the big data context
has not yet been discussed in the literature.

In the context of big data, imbalanced problems may be
too difficult to be tackled by a single technique. A combina-
tion of algorithms, such as feature selection, data reduction,
and sampling may be necessary to tackle such a task [46].
Alternatively, one may use ensembles trained at each node,
combined with local class balancing, in order to improve the
predictive power. Successful implementations include Ran-
dom Forest [47] and ensembles of Neural Networks [48, 49].

3 Proposed algorithms

In this section, we present two different KD-tree based imple-
mentations for the Apache Spark framework: a classifier and
a novel method for addressing class imbalance.

3.1 KD-tree classifier

While the KD-tree classifier has been implemented in several
other languages and frameworks [50, 51], we are unaware of
any publicly available implementations in Scala for Apache
Spark. The popular sklearn Python package does include a
KD-Tree implementation but as version 1.4.2 it only supports
serial processing. Our KD-tree implementation is based on
the existing Apache Spark hybrid-spill tree implementation
[3] and since it fits the same machine learning pipelineing
model the two methods are interchangeable. The top level
metric-tree partitioning presented in the hybrd-spill tree was
also used for the KD-tree to allow for a direct comparison.
The KD-tree classifier works as an approximate nearest
neighbor algorithm by creating a KD-tree and performing
DEFS to find a leaf node. Examples present in a leaf node are
tested to find the k-nearest neighbors. Like the spill-tree, a
buffer region was used to help with the query examples near
the median splits. A static buffer size of 25% of the node
data size was chosen empirically, as it seemed to have a good
balance between speed and performance while not intro-
ducing more complexity into this simple algorithm. Future
work will be needed to determine if that value is universally
appropriate or if there is another computationally inexpensive

@ Springer

method for discovering an optimal value for a given dataset.
Although training this KD-tree requires O(nlog?n) time
compared to O(n log n) for the hybrid-spill tree, its partition-
ing approach is independent to the number of dimensions.
Like the hybrid-spill tree, querying for the nearest neighbor
is also O(m logn).

Algorithm 1 shows the pseudo code for the Apache Spark
implementation for the KD-tree training phase. As with
the hybrid-tree method, the query is performed by iterating
through the trained tree. However, instead of a pivot point,
the branch selection is based on the median value of the axis
specified for that level in the tree. Once a leaf node is reached,
all of the present examples are examined to find the k-nearest
neighbors using the brute force approach; majority voting is
performed to pick the predicted class. To improve the run-
time of this algorithm, backtracking was not performed, but
could be easily added if required.

Algorithm 1 Generate KD tree.

KD-TREE Data Structure:
pivot: vector
median: Double
axis: Int
radius: Double
leftChild: Tree
rightChild: Tree

procedure BUILD- KD- TREE(data: vector, leafSize: Int, axis: Int)
if data.size == 0 then
return Leaf(Empty)
else if data.size <= leaf Size then
return Leaf(data)
else
sorted < sortByAxis(data)
medldx < sorted.size/2
med Example < sorted[medldx]
radius < max(data.map(x — dist(x, data[medldx]))
left < datal0, medIdx % 1.25]
right <— datalmedldx — medldx % 0.25, data.size]
axis < axis + 1
return KD-TREE(med Example, medldx, axis, radius,
BUILD-KD-TREE(lef't, leaf Size, axis),
BUILD-KD-TREE(right, leaf Size, axis))
end if
end procedure

3.2 KD-tree based SMOTE

Challenges can arise when attempting to classify datasets
that are class imbalanced. Classifiers tend to favor major-
ity classes when presented with imbalanced data which can
negatively impact performance, especially with the minority
classes [29]. One solution is to balance the classes by over-
sampling the minority classes with methods such as random
oversampling or SMOTE.

The SMOTE algorithm creates new examples for the
minority classes to alleviate the class imbalance in the

Improved KD-tree based imbalanced big data classification...

12563

dataset. For each class to be oversampled, five examples are
randomly selected and the average of their feature values
are used to create a new example. These synthetic examples
are added to the dataset until the given minority class has
the desired size. While these examples were not part of the
original dataset, the idea is that they will occupy underrep-
resented regions of the true feature space which will then
improve classifier accuracy. Algorithm 2 shows our Scala
based Apache Spark implementation of SMOTE.

Algorithm 2 Generate SMOTE example DataFrame.

Ensure: Examples in DataFrame belong to the same class
procedure SMOTE(DF: DataFrame, ClassLabel: Int)
fuvs = Arrayl[5]
fori =1to5do
index < Random.nextInt(DF .count)
example <— DF[index]
fusli] < example. filter(featureVector)
end for
transposed < fus¥
averages < transposed.map(rowSum/5)
smoteFeatureVector <— averages
smoteExample <— {smoteFeatureVector, ClassLabel}
return smote Example
end procedure

However, this approach may result in synthetic examples
that do not well represent the true feature space for the given
class. Figure 6 shows an example dataset with the classes
represented by green triangles and blue circles. If the blue
class needs to be oversampled with SMOTE, the traditional
approach will sample from all possible examples in that class
to create new synthetic examples. Shown in red crosses, we
can see that the examples created by SMOTE often fall within
the feature space of the wrong class and likely will negatively
affect classification accuracy. This problem may be more
pronounced if the level of class imbalance varies between
clusters or if the feature space is not evenly represented.

Instead of having SMOTE sample from all possible class
examples, we present a method that only uses examples that
are close together. This can be achieved by clustering the
training dataset using the leaves of a KD-tree. In our imple-
mentation, one KD-tree is created per class and each new
SMOTE example is generated with five random examples
from a single KD-tree leaf.

Algorithm 3’s KD-CLUSTER-FIT method starts by filter-
ing the dataset by class and calculates the size of the majority
class. In our experiments, the minority classes were oversam-
pled to match the size of the majority class. For each class,
the CREATE-TREE method first determines which features
to use for future tree splitting. Using these selected features,
the BUILD-TREE method is started but returns an array of
the resulting leaves instead of a complete KD-tree. Each
of these leaves represent a cluster of approximate nearest
neighbors.

Features that have less than three unique values will not
be used. If a splitting feature contains only one unique value,
there is no way to tell where to place the median splitting point
and it would be unlikely that the partitioning would provide
any information gain. While a median point could be easily
found if two unique values exist for a splitting feature, the
resulting branches could be highly imbalanced, which may
negatively affect speed and accuracy.

After the features are selected, the specific feature to be
used for each split can be adjusted. The SMOTE based class
balancing did not work well in initial tests when features
were used in the same order as presented in the training data.
However, results improved when the feature with the smallest
standard deviation at the current node was used. Future work
will be required to determine what considerations are needed
when addressing binary features and choosing the optimal
feature at each split.

Algorithm 3 Fitting KD-tree model using SMOTE.

procedure KD- CLUSTER- FIT(DF: DataFrame)
labels < DF .select("label").distinct()
classDFs < labels.map(x — DF.filter"label" == x))
maxClassCount <— max(classDFs.map(x — x.size)))
return labels.map(class DF — CREATE-TREE(class DF))
end procedure

procedure CREATE- TREE(DF: DataFrame, label: Int)
for index from O until DF .number O f Features do
if DF[index].distinct() > 2 then
axisToUse.append(index)
end if
end for
return BUILD-TREE(DF,
axisToUse[0])
end procedure

leaf Size, axisToUse,

procedure BUILD- TREE(data: DataFrame, leafSize: Int, axis-
ToUse: Int, currentAxis: Int)
if data.size == 0 then
return EM PTY
else if data.size <= leaf Size then
return data
else
nextAxis <~
STD(datalaxis])))
sortedData < data.sorted By(next Axis)
leftData < sorted Datal0, sorted Data.median]
right Data <« sorted Datalsorted Data.median,
sortedData.size]
leftResults < BUILD-TREE(left Data,
leaf Size, axisToUse, next Axis)
right Results <— BUILD-TREE(right Data,
leaf Size, axisToUse, next Axis)
return left Result 4+ right Results
end if
end procedure

min(axisToUse.map(axis —

Once the training data has been clustered using the
KD-tree leaves, oversampling can be performed with Algo-
rithm 4. For each class, a corresponding leaf cluster is

@ Springer

12564

W.C. Sleeman IV et al.

Fig.6 Example dataset
showing over sampling the blue
circle class with SMOTE (red
crosses) and with SMOTE based

on KD-trees (black stars). The *

KD-tree partitioning of the blue
circle class is overlaid with
black lines

* *
N2,

*/>\< y&zf XXk X
e W ¥\

randomly chosen and five examples in that collection are used
to generate a new SMOTE example. This process is contin-
ued until each class has as many examples as the majority
class.

Algorithm 4 Oversampling with SMOTE.

procedure SMOTE- OVERSAMPLE(DF: DataFrame)
labels < DF .select("label").distinct()
classDFs < labels.map(x — DF.filter(label == x))
maxClassCount <— max(class DFs.map(x — x.count))
if wusingStandardSMOTE then sampledClassDFs <«
classDFs.map(classDF —
STANDARD-SMOTE-OVERSAMPLE
(class DF, maxClassCount))
balanced DF < union(sampledClass DF's)
return balanced DF
else if usingK DTrees then
classCluster Arrays <— KD-CLUSTER-FIT(DF)
end if
end procedure

procedure KD- CLUSTER- SMOTE- OVERSAMPLE(
classDF: DataFrame, targetSampleCount: Int, trees: KDTree)

samplesToAdd <« targetSampleCount - class DF .count()
sampled Data <« trees.map(label - (0 to
samplesToAdd).map(x —

SMOTE (x.randomCluster, label))

return union(sampled Data)

end procedure

procedure STANDARD- SMOTE- OVERSAMPLE(
classDF: DataFrame, targetSampleCount: Int)
if classDF .count() < targetSampleCount then
samplesToAdd <« targetSampleCount —
class DF .count()
newSamples < (0 to samplesToAdd).map(x <«
SMOTE(class DF, class DF .label)
return union(class DF, newSamples)
else
return class D F
end if
end procedure

@ Springer

*
* | %

X
X
*
* A
\Z * r
*

3.3 Local versus distributed implementations

Most traditional machine learning and graph algorithms
were designed for serial processing making their execution
straightforward. Although adding multi-threading capabili-
ties increases complexity, these algorithms often have sec-
tions that are trivial to parallelize, such as for loops that
iterate over all training examples. As Algorithm 1 shows,
most of the computational work is attributed to sorting which
can easily benefit from parallelism. However, running these
algorithms on a single computer will not be possible if the
dataset becomes too large, therefore requiring a distributed
solution.

While adding at least some parallelism with multi-
threading may be trivial, upgrading serial algorithms to run
efficiently on a distributed environment requires more plan-
ning from the start. Apache Spark gains parallelism by
distributing DataFrames or their underlying resilient dis-
tributed dataset (RDD) data structure to computational nodes.
This is done by performing MapReduce operations like map,
filter and reduce on DataFrames and letting the Apache Spark
framework to manage task scheduling in the background.
Because most of the traditional algorithms do not follow
these design patters, they usually have to be completely writ-
ten from scratch or at least be based on sub-components that
already have Apache Spark support. Cluster management and
the extra network traffic does introduce some overhead, but
it comes with an ease of use, fault tolerance through data
replication and the ability to utilize a heterogeneous cluster
environment.

3.4 Spark configurations

One of the main challenges with using Apache Spark is
how to properly configure the cluster [52-54], something
we also experienced while performing the experiments in

Improved KD-tree based imbalanced big data classification...

12565

Section 4.3. There are currently over 100 parameters that
can be adjusted, including the number of executors, amount
of memory per executor, the shuffling behavior and when the
base JVM garbage collector should run. Although many of
these parameters can be safely kept at the default settings,
those dealing with memory can be critical to efficiently or
even successfully run jobs. For example, the cluster driver
and executors have their own memory settings which can
differ significantly, especially if they run on a heterogeneous
cluster. Allocating too much memory can reduce the num-
ber of executors that can run on a node, while not allocating
enough memory can cause out-of-memory errors. Choosing
the optimal cluster parameters can be difficult and likely task
specific, but finding the right combination can significantly
improve runtime performance [55, 56].

4 Experimental study

This experimental study was designed to answer the follow-
ing research questions (RQs):

e RQ1: Does the proposed KD-tree implementation out-
perform the existing state-of-the-art Hybrid-Spill Tree in
both predictive power and computational efficiency?

e RQ2:Isthe proposed SMOTE variant for the MapReduce
platform capable of efficiently combating class imbal-
ance, while avoiding the MapReduce pitfall of local data
partitioning?

e RQ3: Is our method flexible enough to work with both
binary and multi-class imbalanced problems, without a
need for any changes in its structure?

4.1 Performance metrics
The average accuracy (AvAcc) and class balance accuracy

(CBA) metrics were used for the model accuracy metrics
because most of the presented datasets are multi-class and

imbalanced. As shown in Formula (1), the basic accuracy
only considers the global accuracy and may be biased towards
to the majority classes. Both AvAcc and CBA take in account
performance per class and introduce a higher penalty for pre-
dicting the minority class examples incorrectly.

tp+1itn
tp+tn+ fp+ fn

tpi +tn;
AvAcc =
pri +tni+ fpi + fni

i=1

accuracy =

C
mat; ;
Cpa=y — " g

=l max()_ mat; j, Y matj;)
i=1 j=1

4.2 Datasets

To evaluate these algorithms, we have chosen seven datasets
[57-62] with varying properties. As shown in Table 1, there is
awide variation in the number of classes and features for each
dataset allowing us to see how the proposed methods behave
when presented with these combinations. Also shown is the
imbalance ratio of the largest class size over the smallest.

4.3 Experiments on AWS

To perform our experiments, we have chosen the Ama-
zon Web Service (AWS) platform with Elastic MapReduce
(EMR). The EMR platform allows for easy deployment of
cluster based applications, such as Hadoop and Spark, in
a distributed environment. All experiments were performed
using 1, 2, 4, and 6 c5.2xlarge instances for the computa-
tional work with each c5.2xlarge virtual instance providing
8 vCores, or threads, and 16 GB of RAM. For both classi-
fication and KD-tree based SMOTE, we have allocated 10
GB of memory to each executor and used one executor per
instance.

Table 1 Number of features,

classes and maximum class Dataset Instances Features Classes Imb. Ratio
balance ratio for each test Cover type 581,012 54 104.4
Traffic violations 1,378,663 26 7 10.5
SEER 2,532,629 11 10 5.7
Intel sensors 2,219,803 5 58 31.2
IoT 3,000,000 115 11 4.9
SUSY 5,000,000 18 2 1.2
HIGGS 11,000,000 28 2 1.1

@ Springer

12566

W.C. Sleeman IV et al.

Fig.7 Classification running
times for leaf size 10

Legend
—e— Hybrid Training Time
--4—- KD-Tree Training Time
—e— Hybrid Prediction Time

Cover Type

o
o

Running Time (s)
= N W
o
o

--a- KD-Tree Prediction Time 00
0 8 16 32 48
Number of Threads
@ 60 Traffic Violations 0 80 SEER
Q Q 60
-
920 E,40
= € 20
c C
S 0 : S 0
9 8 16 32 48 8 16 32 48
Number of Threads Number of Threads
7S Intel Sensors 0 loT
© 200
£
g 50 210
= Nﬂ»\.-___. =
C C
S 00— - S 0= .
o 8 16 32 48 8 16 32 48
Number of Threads Number of Threads
7y 50 SUSY 0 HIGGS
o 50
_E 40
30
= 220
= c10
S 0 S 0
2 8 16 32 48 8 16 32 48

Number of Threads

Our first experiments compare the runtime performance
and classifier accuracy of the proposed KD-tree and the
existing hybrid-spill tree classifiers. For each dataset, both
algorithms are run with a combination of leaf sizes (10, 100,
500, 1000, 2500) and number of computational threads (8,
16, 32, 48). The second round of experiments compares the
standard SMOTE algorithm against the proposed KD-tree
based SMOTE modified algorithm. These experiments were
run on all datasets with same number of threads as with the
classifier experiments.

5 Results

This section presents the results of the KD-tree classifier and
SMOTE experiments.

5.1 Classifiers
For the classifier experiments, we compared the running

time and model accuracy between the existing Hybrid-Spill
tree against our proposed KD-tree implementation. Two

@ Springer

Number of Threads

significant parameters for both algorithms are the leaf size
of the tree and the k value for the number of examples to use
for class prediction. Figures 7, 8 and 9 show running times
for various leaf sizes against the number of threads used and
the value k=5 was used for all experiments.

In almost all presented cases, the KD-tree was faster than
the Hybrid-Spill tree for both training and prediction phases.
Thread level scaling was also shown to be dependent on the
leaf size for both algorithms. Figure 7 shows that adding more
threads consistently improves running times but this effect
is diminished as the leaf size increases. Using a leaf size of
500 still shows some scaling but the improvements do not
continue beyond 16 or 32 threads and performance starts to
degrade when the leaf size is 2500.

Increasing the leaf size improves training times for both
algorithms, but the KD-tree can be almost two times faster
than the Hybrid-Spill tree for small leaf sizes. However, this
performance difference decreases as the leaf size increases
and at leaf size 2500 the times are almost identical. The
running time between the two methods is much more notice-
able for making predictions. As the leaf size increases, the
gap between the KD-tree and Hybrid-Spill tree performance

Improved KD-tree based imbalanced big data classification... 12567
Fig.8 Classification running Legend = Cover Type
times for leaf size 500 : i : <
—e— Hybrid Training Time o 30
--4—- KD-Tree Training Time E 20
—e— Hybrid Prediction Time gl
--a- KD-Tree Prediction Time g 0
3
g 0 8 16 32 48
Number of Threads
- Traffic Violations 0 20 SEER
(]
=10
C
£ £ 5
c C
> 0 S0
o 8 16 32 48 8 16 32 48
Number of Threads Number of Threads
Intel Sensors = loT
@ 40
-E 30
o 220
I= €10
C c
S 0l= S 0 : .
9 8 16 32 48 8 16 32 48
Number of Threads Number of Threads
0 SUSY 0 HIGGS
£ =
£ 10 = Bla
2. gie I Ao 4
g g 5|0——r_g o —
S 0 S5 0 .
o 8 16 32 48 8 16 32 48

Number of Threads

widens with many cases where the KD-tree is two to three
times faster (RQ1 answered). This is apparent in Fig. 10,
where the KD-tree performance is mostly flat as leaf size
increases but the Hybrid-Spill tree starts slowing down.
The Hybrid tree tends to be more accurate than the
KD-tree for both metrics, but the AvAcc differences are min-
imal. However, the KD-tree performs best for two datasets
including Covtype, where its CBA result is two times better
than that with the Hybrid-Spill tree (RQ1 answered) Fig. 11.
The Hybrid-Spill tree CBA results were not largely
affected by increasing leaf sizes, but this generally had a
negative impact on the KD-tree classifier, although this is
opposite for the Covtype dataset. Additionally, the AvAcc
and CBA metrics were not significantly influenced by the
thread count for either the KD-tree or the Hybrid-Spill tree.

5.2 SMOTE

To test the impact of KD-trees on SMOTE, the Spark ML
Random Forest classifier was used with 5-fold cross vali-
dation and the KD-tree leaf size was set to 64 as it seemed
to work well across all datasets. We observed that the class

Number of Threads

prediction accuracy largely varies depending on the individ-
ual dataset. Figure 12 shows the accuracy ratios between
standard SMOTE and SMOTE with KD-Tree example selec-
tion. Using standard SMOTE as a baseline, we can see that
the tree method is best in five of the seven cases. The new
method does worse on the SUSY dataset, but this only has a
relative difference of 3%. The best result was with the Sen-
sors dataset, where the KD-tree method had a 12% percent
improvement on CBA accuracy. The average improvement
across all seven datasets was 0.14% for AvAcc and 3.4%
for CBA. While the KD-tree based method had little influ-
ence on AvAcc compared to standard SMOTE, it had a much
larger effect on the CBA results. This may be because the
more discerning KD-tree based oversampling method mostly
benefits small and difficult to classify classes. Another obser-
vation is that the KD-tree clustering method shows the largest
improvements on datasets with high class imbalance which
may be the main strength of this approach (RQ2 answered)
(Fig. 13).

Tables 2 and 3 show the AvAcc and CBA values for the
number of threads used. As shown in Table 2, there was very
little difference for the AvAcc metric relative to the number of

@ Springer

12568

W.C. Sleeman IV et al.

Fig.9 Classification running

. ; Legend 7 Cover Type
times for leaf size 2500 . e : =
—e— Hybrid Training Time o 50
--&- KD-Tree Training Time E 40
—e— Hybrid Prediction Time 8’38
-4~ KD-Tree Prediction Time €10
3
o 0 8 16 32 48
Number of Threads
@ Traffic Violations 0 SEER
o 60 o .\1——0\.
g "\0\'/. £ 30
~ 40 20
ch 201 A----m- R N g 10 .'W::‘ ------------ ‘ - *
= o — —4 =
S5 0 S 0
9 8 16 32 48 8 16 32 48
Number of Threads Number of Threads
0 Intel Sensors @ loT
Q [0
€ 100 €
F 75 =
g 50 g
£ 35 £
C c
S 0 - . S 0= . .
o 8 16 32 48 8 16 32 48
Number of Threads Number of Threads
%40 SUSY % HIGGS
£30 k—’/\.—. £ ol \—//
= =
g,20 P 8‘40
‘€ 10 i L Al =207 A " & &
L 2 —
5o - 5 ole= oy " -
2 8 16 32 48 8 16 32 48

Number of Threads

threads used with all maximum and relative differences under
0.5%. However, there was a larger range of CBA values for
all datasets with the largest relative difference being almost
8% for the Intel Sensors dataset. This dataset has a high
number of classes, 58, which may be a contributing factor
to this result. The changes in the minority class accuracy
can have a significant effect on the CBA metric such that any
perturbations in the class balancing may be more pronounced
(RQ3 answered).

5.3 Speed-up by total threads

In Table 4, we show a comparison of runtime speed-up
between the two tree algorithms based on the number of
threads used for both the training and predicting tasks. These
results were from the experiments using a leaf size of 10
as it would be the most computational intensive and should
better highlight the potential of runtime improvements. The
speed-up rate shown was calculated by dividing the runtime
of using eight threads by the time taken using the additional
threads. Compared to using only eight, the increasing number
of threads results in hardware ratios of 2, 4 and 6. This pro-

@ Springer

Number of Threads

vides the theoretical runtime improvement for those three
cluster configurations, although in practice results will be
lower because of overhead and underutilized processors.

In these experiments, the KD-tree had a higher speed-
up based on cluster size with four of the seven datasets.
Both algorithms showed a higher rate of improvement
with the classifier prediction task compared to the training.
Although speed-ups were consistently demonstrated with
additional hardware, the rate of improvement varied signif-
icantly between different datasets. The Cover Type dataset
showed maximum gains of over 4x, approaching the theo-
retical increase of 6x, but best result for training with the
Intel Sensor dataset was only 1.6x. Although the speed-
ups were often similar between these two algorithm, the
KD-tree already had a lower running time as highlighted in
Figs. 7-10.

5.4 Scale-up by tree depth

Similar to speed-up, we also assessed the performance
increase based on scaling up the computational workload.
Table 5 shows the runtime improvement ratio going from

Improved KD-tree based imbalanced big data classification...

12569

Fig. 10 Classification running
times with 48 threads for each
leaf size

Legend
—e— Hybrid Training Time
--4- KD-Tree Training Time
—e— Hybrid Prediction Time
--&- KD-Tree Prediction Time

Cover Type

=]
24 0 10 100 500 1000 2500
Leaf Size
@ 60 Traffic Violations 0 SEER
E €30
£ 40 £
[5o
(o)} (o)}
£20 £10
C c
S 0 > 0
[10 100 500 1000 2500 10 100 500 1000 2500
Leaf Size Leaf Size
0 Intel Sensors 0 loT
g g 60
F F 40
()} [e)]
£ £20
= C
C c
S 0L . . . S 0L . .
o 10 100 500 1000 2500 10 100 500 1000 2500
Leaf Size Leaf Size
0 SUSY 0 HIGGS
o 25 o
£20 £
[15 -
210 £
c 5 c
[C
> 0 . S0 — x
2 10 100 500 1000 2500 x 10 100 500 1000 2500
Leaf Size Leaf Size

eight to 48 threads with different leaf sizes. As the leaf size
decreases, more child trees are needed making the overall tree
deeper and requiring more computation. This additional work
would likely result in better processor utilization and there-
fore potential runtime performance. These results show that
cluster efficiency improves as the size of the task increases,
with one exception of the Intel Sensors dataset.

6 Conclusions and future works

We have presented a new KD-tree classifier and a novel
class balancing method, both implemented in Scala for the
Apache Spark framework. Our comparisons between KD and
hybrid-spill tree algorithms on the AWS distributed comput-
ing platform has given some insight on the strengths and
weaknesses of these two methods. In this paper, we also
demonstrated that the quality of oversampling with SMOTE
can be improved using the leaves of trained KD-trees. These
implementations are available on Github at https://github.
com/fsleeman/spark-knn.

While the hybrid-spill classifier often provided the high-
est accuracy, it was slower than the KD-tree implementation.
For two datasets, the KD-tree had the best classification accu-
racy showing that in some cases the KD-tree is both faster
and more accurate. Our experiments showed that the leaf size
played a significant role in running time of both methods, but
was more significant for the hybrid-spill tree as the leaf sizes
increased. Large leaves mean that the resulting tree will not
be as tall, so more work will be required to perform near-
est neighbor on the leaf examples. The hybrid-spill tree is
at risk of getting penalized multiple times when backtrack-
ing on metric-trees, something that the KD-tree avoids. The
number of threads did not have a significant effect on clas-
sification accuracy, but runtime performance increased until
approximately 16 to 32 threads and this trend was exhibited
for both algorithms.

For class balancing, our KD-tree clustering method
showed classifier improvements for five out of seven datasets.
The cluster based oversampling method showed the biggest
difference when applied to the most class imbalanced
datasets, highlighting a potential application for this method.
Standard SMOTE oversampling ran faster except for the

@ Springer

https://github.com/fsleeman/spark-knn
https://github.com/fsleeman/spark-knn

12570

W.C. Sleeman IV et al.

Fig. 11 CBA results for each

Cover Type

leaf size using 48 threads 0.05
0.04
Legend < 0.03
—e— Hybrid CBA o) 0021 o o o o
—a— KD-Tree CBA 0.01
0.00
10 100 500 1000 2500
Leaf Size
Traffic Violations SEER
020{r—2— ¢ — 22 0.6 m
< 0.15 < 0.4
So.10 S ,
0.05 0.
0.00 10 100 500 1000 2500 0.0 10 100 500 1000 2500
Leaf Size Leaf Size
Intel Sensors loT
10jg——9¢——9¢ —o o
00156 — o s —4—4| g T L+ 23
é 0.010 é 8-2
0.005 0:2
0.000 10 100 500 1000 2500 0.0 10 100 500 1000 2500
Leaf Size Leaf Size
SUSY HIGGS
06{F—F—2—2—12 82 s—9o—9¢ — ¢ —9¢
é 0.4 é 0:3
0.2 92
0.0 - - 0.0 - y
10 100 500 1000 2500 10 100 500 1000 2500
Leaf Size Leaf Size

sensors dataset which has many classes, illustrating another
potential use for the KD-tree clustering method. Like with the
classification experiments, runtime performance increased

Accuracy Ratios for AvAcc and CBA

until 16 to 32 threads. The datasets used in these exper-
iments were large, but the size of the generated KD-trees
were proportional to the number of examples in each class,
significantly smaller than the original datasets.

Apache Spark’s primary data structure is the tabular
DataFrame and the presented KD-tree algorithm should work

e EEE CBA on any data that can fit that format. One limitation of this and
1125 EEN AvAc other traditional tree algorithms is that they were not designed
¢ 1.100 to handle non-vector based data. These algorithms expect
E’ 1.075 that each example will be a 1-dimensional vector of features
>1.050 rather than a multi-dimensional matrix or other more com-
g plicated structures. These tree algorithms can still use image
é 1023 data directly if flattened, but this approach will likely reduce
< 1.0001 predictive performance as some spacial information will be
0.975 1 lost. Future work should include the design and implemen-
0.950 - tation of tree algorithms that inherently support spatial data
(:T";'peé ViTorIaaifiigns SEER: SL’:;'”S g SHSC HIGGS formats and their corresponding distance metrics.

Fig. 12 Accuracy results between standard SMOTE and SMOTE with
KD-trees

@ Springer

Improved KD-tree based imbalanced big data classification... 12571

Fig. 13 Running times for L p 7 Cover Type
SMOTE and SMOTE with egen , >
KD-trees —e— SMOTE Preprocessmg =
--«-- SMOTE+ Preprocessing =
—e— SMOTE Training 2
--a-- SMOTE+ Training g
—e— SMOTE Total Time 2
" SMOTE+ Total Time ® Nuri?)er of Thfjads “®
- Traffic Violations - SEER
P 100 Py
£ 80 £80
[[
o 60 o 60
< 40 <40
5 20 520
2 8 16 32 48 < 8 16 32 48
Number of Threads Number of Threads
I Intel Sensors I loT
© 125
€
iz 100
o 75
< 50
S 25
o 8 16 32 48 8 16 32 48
Number of Threads Number of Threads
D SUSY 0 HIGGS ‘
()] O Anl T e ST
£ g 40 :
[= =309 koo JUNEEE A N
g E 20 V:
£ 8 16 32 48 x 8 16 32 48
Number of Threads Number of Threads
Table 2 AvAcc accuracy ratio -

Dataset Total threads Max relative Max absolute
between SMOTE and SMOTE 8 16 32 48 difference (%) difference
with KD-trees

Cover type 64.35 64.36 64.34 64.36 0.03 0.02

Traffic violations 81.08 81.20 81.08 81.16 0.15 0.12

SEER 93.32 93.37 93.33 93.38 0.06 0.06

Intel sensors 94.90 9491 94.90 94.90 0.01 0.01

IoT 99.61 99.54 99.52 99.39 0.22 0.22

SUSY 77.60 77.56 77.66 77.59 0.13 0.10

HIGGS 66.87 67.16 67.00 67.16 0.43 0.29
;a:ale 3 gﬁg;ﬁcurzcgl\rfg%z Dataset Total threads Max relative Max absolute

ctween an 8 16 32 48 difference (%) difference
with KD-trees

Cover type 4.67 4.69 4.78 4.61 3.69 0.17

Traffic violations 21.72 22.13 21.65 21.64 2.26 0.49

SEER 44.80 45.20 45.06 44.77 0.96 0.43

Intel sensors 0.94 0.92 0.88 0.95 7.95 0.07

TIoT 96.61 96.25 95.99 95.10 1.59 1.51

SUSY 73.46 73.48 73.48 73.38 0.14 0.10

HIGGS 64.44 65.28 64.99 65.85 2.19 1.41

@ Springer

12572

W.C. Sleeman IV et al.

Table4 How many times faster
the tree algorithms run using
additional threads

Table 5 Runtime improvements
by going from 8 to 48 threads
based on an increasing
workload, represented by the
decreasing leaf count

@ Springer

Dataset Algorithm Training Predicting
total threads total threads
16 (2x) 32 (4x) 48 (6x) 16 (2x) 32 (4x) 48 (6x)
Cover type Hybrid 1.85 3.38 4.39 1.97 4.04 5.63
KD-tree 1.93 3.67 4.26 1.96 3.89 4.88
Traffic violations Hybrid 1.38 1.61 1.66 1.61 2.00 2.35
KD-tree 1.59 2.22 2.52 1.65 2.69 3.39
SEER Hybrid 1.50 1.90 2.03 1.70 2.39 3.15
KD-tree 1.66 2.34 2.62 1.78 2.85 3.69
Intel sensors Hybrid 1.29 1.47 1.31 1.63 2.47 2.68
KD-tree 1.37 1.61 141 1.69 2.59 2.85
IoT Hybrid 1.73 2.74 3.26 1.90 341 4.66
KD-tree 1.79 3.03 3.61 1.95 3.49 4.72
SUSY Hybrid 1.49 2.69 2.61 1.56 297 3.30
KD-tree 1.38 2.58 2.57 1.36 2.60 2.95
HIGGS Hybrid 1.53 2.29 2.52 1.61 2.54 3.03
KD-tree 1.77 2.27 2.46 1.76 2.34 2.82

All values are relative to using eight threads

The bold emphasis was added to highlight the result from the best performing algorithm (KD-tree or Hybrid)
for each dataset/leaf count combindation

Dataset Leaf Count
2500 1000 500 100 10
Cover type Hybrid 1.22 0.98 1.38 1.83 4.39
KD-tree 1.31 1.41 1.44 1.87 4.26
Traffic violations Hybrid 1.06 1.10 1.14 1.16 1.66
KD-tree 1.09 1.11 1.16 1.27 2.52
SEER Hybrid 1.11 1.08 1.20 1.35 2.03
KD-tree 1.10 1.15 1.22 1.33 2.62
Intel sensors Hybrid 1.20 1.61 1.74 1.15 1.31
KD-tree 1.35 1.34 1.37 1.34 1.41
IoT Hybrid 1.24 1.60 1.54 1.73 3.26
KD-tree 1.61 1.37 1.48 2.01 3.61
SUSY Hybrid 0.99 1.07 1.11 1.19 2.61
KD-tree 1.08 1.15 1.18 1.16 2.57
HIGGS Hybrid 1.06 1.03 1.11 1.18 2.52
KD-tree 1.09 1.12 1.18 1.25 2.46

The bold emphasis was added to highlight the result from the best performing algorithm (KD-tree or Hybrid)
for each dataset/leaf count combindation

Improved KD-tree based imbalanced big data classification...

12573

Author Contributions William C. Sleeman I'V: Conceptualization, Soft-
ware, Writing - original draft, Writing - review & editing; Martha
Roseberry: Conceptualization, Writing - original draft, Writing - review
& editing; Preetam Ghosh: Conceptualization, Supervision. Writing
- review & editing; Alberto Cano: Funding acquisition, Supervision,
Writing - review & editing; Bartosz Krawczyk: Supervision, Writing -
review & editing

Funding This research was partially supported by the Amazon AWS
Machine Learning Research award.

Data Availability Statement The datasets used in this work are publicly
available and referenced in the bibliography section.

Code Availability Statement https://github.com/fsleeman/spark-knn

References

10.

11.

Zaharia M, Xin RS, Wendell P, Das T, Armbrust M, Dave A, Meng
X, Rosen J, Venkataraman S, Franklin MJ (2016) Apache Spark: a
unified engine for big data processing. Commun ACM 59(11):56—
65. https://doi.org/10.1145/2934664

Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002)
SMOTE: synthetic minority over-sampling technique. J Artif Intell
Res 16:321-357. https://doi.org/10.1613/jair.953

Fang F (2018) spark-knn. https://github.com/saurfang/spark-knn.
Accessed: 12-14-2018

Su Z, Hu Q, Denoeux T (2020) A distributed rough evidential
k-nn classifier: integrating feature reduction and classification.
IEEE Trans Fuzzy Syst 29(8):2322-2335. https://doi.org/10.1109/
TFUZZ.2020.2998502

Sun L, Zhang J, Ding W, Xu J (2022) Feature reduction for imbal-
anced data classification using similarity-based feature clustering
with adaptive weighted k-nearest neighbors. Inf Sci 593:591-613.
https://doi.org/10.1016/].ins.2022.02.004

Taunk K, De S, Verma S, Swetapadma A (2019) A brief review
of nearest neighbor algorithm for learning and classification.
In: 2019 International Conference on Intelligent Computing and
Control Systems (ICCS), pp 1255-1260. https://doi.org/10.1109/
ICCS45141.2019.9065747. IEEE

Cunningham P, Delany SJ (2021) k-nearest neighbour classifiers-a
tutorial. ACM Comput Surv (CSUR) 54(6):1-25. https://doi.org/
10.1145/3459665

Jo J, Seo J, Fekete J (2018) Panene: a progressive algorithm for
indexing and querying approximate k-nearest neighbors. IEEE
IEEE Trans Vis Comput Graph 26(2):1347-1360. https://doi.org/
10.1109/TVCG.2018.2869149

Li W, Zhang Y, Sun Y, Wang W, Li M, Zhang W, Lin X
(2019) Approximate nearest neighbor search on high dimensional
data—experiments, analyses, and improvement. IEEE Trans Knowl
Data Eng 32(8):1475-1488. https://doi.org/10.1109/TKDE.2019.
2909204

Gowanlock M (2021) Hybrid knn-join: parallel nearest neighbor
searches exploiting cpu and gpu architectural features. J Parallel
Distrib Comput 149:119-137. https://doi.org/10.1016/].jpdc.2020.
11.004

Skryjomski P, Krawczyk B, Cano A (2019) Speeding up k-
nearest neighbors classifier for large-scale multi-label learning
on GPUs. Neurocomputing 354:10-19. https://doi.org/10.1016/j.
neucom.2018.06.095

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

Mir A, Nasiri JA (2018) Knn-based least squares twin support
vector machine for pattern classification. Appl Intell 48(12):4551-
4564. https://doi.org/10.1007/s10489-018-1225-z

Xie F, Xu Y (2019) An efficient regularized k-nearest neighbor
structural twin support vector machine. Appl Intell 49:4258-4275.
https://doi.org/10.1007/s10489-019-01505-5

Pan X, Luo Y, Xu Y (2015) K-nearest neighbor based structural
twin support vector machine. Knowl-Based Syst 88:34—44. https://
doi.org/10.1016/j.knosys.2015.08.009

Uhlmann JK (1991) Satisfying general proximity/similarity queries
with metric trees. Inf Process Lett 40(4):175-179. https://doi.org/
10.1016/0020-0190(91)90074-R

Liu T, Moore A, Yang K, Gray A (2004) An investigation of prac-
tical approximate nearest neighbor algorithms. Adv Neural Inf
Process Syst 17. https://doi.org/10.5555/2976040.2976144
Clarkson KL (2006) Nearest-neighbor searching and metric space
dimensions. Nearest-neighbor methods for learning and vision: the-
ory and practice 15-59

Bentley JL (1975) Multidimensional binary search trees used for
associative searching. Commun ACM 18(9):509-517. https://doi.
org/10.1145/361002.361007

Gionis A, Indyk P, Motwani R (1999) Similarity search in high
dimensions via hashing. In: Proc 25th VLDB Conf, pp 518-529.
https://doi.org/10.5555/645925.671516

Kanj S, Briils T, Gazut S (2018) Shared nearest neighbor clus-
tering in a locality sensitive hashing framework. J Comput Biol
25(2):236-250. https://doi.org/10.1089/cmb.2017.0113

Ren X, Zheng X, Cui L, Wang G, Zhou H (2022) Asymmetric
similarity-preserving discrete hashing for image retrieval. Appl
Intell 1-18. https://doi.org/10.1007/s10489-022-04167-y

Liu T, Rosenberg C, Rowley HA (2007) Clustering billions of
images with large scale nearest neighbor search. In: IEEE Work-
shop on Applications of Computer Vision (WACV’07), pp 28-28.
https://doi.org/10.1109/WACV.2007.18

Maillo J, Ramirez S, Triguero I, Herrera F (2017) kNN-IS: an
iterative Spark-based design of the k-nearest neighbors classifier
for big data. Knowl-Based Syst 117:3-15. https://doi.org/10.1016/
j-knosys.2016.06.012

Ramirez-Gallego S, Krawczyk B, Garcia S, WoZniak M, Benitez
JM, Herrera F (2017) Nearest neighbor classification for high-
speed big data streams using Spark. IEEE Transactions on Systems,
Man, and Cybernetics: Syst 47(10):2727-2739. https://doi.org/10.
1109/TSMC.2017.2700889

Gonzalez-Lopez J, Ventura S, Cano A (2018) Distributed nearest
neighbor classification for large-scale multi-label data on Spark.
Futur Gener Comput Syst 87:66-82. https://doi.org/10.1016/j.
future.2018.04.094

Ramirez-Gallego S, Ferndndez A, Garcia S, Chen M, Herrera F
(2018) Big data: tutorial and guidelines on information and process
fusion for analytics algorithms with mapreduce. Inf Fusion 42:51—
61

Villarroya S, Baumann P (2022) A survey on machine learning in
array databases. Appl Intell 1-24. https://doi.org/10.1007/s10489-
022-03979-2

Krawczyk B (2016) Learning from imbalanced data: open chal-
lenges and future directions. Progress in Artificial Intelligence
5(4):221-232. https://doi.org/10.1007/s13748-016-0094-0
Fernandez A, Garcia S, Galar M, Prati RC, Krawczyk B, Herrera F,
Fernandez A, Garcia S, Galar M, Prati RC et al (2018) Foundations
on imbalanced classification. Learning from Imbalanced Data Sets
19-46. https://doi.org/10.1007/978-3-319-98074-4_2

Sdez JA, Galar M, Krawczyk B (2019) Addressing the overlapping
data problem in classification using the one-vs-one decomposition
strategy. IEEE Access 7:83396-83411. https://doi.org/10.1109/
ACCESS.2019.2925300

@ Springer

https://github.com/fsleeman/spark-knn
https://doi.org/10.1145/2934664
https://doi.org/10.1613/jair.953
https://github.com/saurfang/spark-knn
https://doi.org/10.1109/TFUZZ.2020.2998502
https://doi.org/10.1109/TFUZZ.2020.2998502
https://doi.org/10.1016/j.ins.2022.02.004
https://doi.org/10.1109/ICCS45141.2019.9065747
https://doi.org/10.1109/ICCS45141.2019.9065747
https://doi.org/10.1145/3459665
https://doi.org/10.1145/3459665
https://doi.org/10.1109/TVCG.2018.2869149
https://doi.org/10.1109/TVCG.2018.2869149
https://doi.org/10.1109/TKDE.2019.2909204
https://doi.org/10.1109/TKDE.2019.2909204
https://doi.org/10.1016/j.jpdc.2020.11.004
https://doi.org/10.1016/j.jpdc.2020.11.004
https://doi.org/10.1016/j.neucom.2018.06.095
https://doi.org/10.1016/j.neucom.2018.06.095
https://doi.org/10.1007/s10489-018-1225-z
https://doi.org/10.1007/s10489-019-01505-5
https://doi.org/10.1016/j.knosys.2015.08.009
https://doi.org/10.1016/j.knosys.2015.08.009
https://doi.org/10.1016/0020-0190(91)90074-R
https://doi.org/10.1016/0020-0190(91)90074-R
https://doi.org/10.5555/2976040.2976144
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://doi.org/10.5555/645925.671516
https://doi.org/10.1089/cmb.2017.0113
https://doi.org/10.1007/s10489-022-04167-y
https://doi.org/10.1109/WACV.2007.18
https://doi.org/10.1016/j.knosys.2016.06.012
https://doi.org/10.1016/j.knosys.2016.06.012
https://doi.org/10.1109/TSMC.2017.2700889
https://doi.org/10.1109/TSMC.2017.2700889
https://doi.org/10.1016/j.future.2018.04.094
https://doi.org/10.1016/j.future.2018.04.094
https://doi.org/10.1007/s10489-022-03979-2
https://doi.org/10.1007/s10489-022-03979-2
https://doi.org/10.1007/s13748-016-0094-0
https://doi.org/10.1007/978-3-319-98074-4_2
https://doi.org/10.1109/ACCESS.2019.2925300
https://doi.org/10.1109/ACCESS.2019.2925300

12574

W.C. Sleeman IV et al.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

Lango M, Stefanowski J (2022) What makes multi-class imbal-
anced problems difficult? an experimental study. Expert Syst Appl
199:116962. https://doi.org/10.1016/j.eswa.2022.116962

Cano A (2018) A survey on graphic processing unit computing
for large-scale data mining. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery 8(1). https://doi.org/10.1002/
widm.1232

Cano A, Krawczyk B (2019) Evolving rule-based classifiers with
genetic programming on GPUs for drifting data streams. Patt Recog
87:248-268. https://doi.org/10.1016/j.patcog.2018.10.024
Hasanin T, Khoshgoftaar TM, Leevy JL, Bauder RA (2019)
Severely imbalanced big data challenges: investigating data sam-
pling approaches. J Big Data 6(1):1-25. https://doi.org/10.1186/
s40537-019-0274-4

Sleeman WC IV, Krawczyk B (2021) Multi-class imbalanced
big data classification on spark. Knowl-Based Syst 212:106598.
https://doi.org/10.1016/j.knosys.2020.106598

Hasanin T, Khoshgoftaar TM, Leevy JL, Seliya N (2019) Examin-
ing characteristics of predictive models with imbalanced big data.
J Big Data 6:69. https://doi.org/10.1186/s40537-019-0231-2
Abdel-Hamid NB, El-Ghamrawy SM, El-Desouky Al, Arafat H
(2018) A dynamic Spark-based classification framework for imbal-
anced big data. J Grid Comput 16(4):607-626. https://doi.org/10.
1007/s10723-018-9465-z

Hassib EM, El-Desouky Al, El-Kenawy EM, El-Ghamrawy SM
(2019) An imbalanced big data mining framework for improving
optimization algorithms performance. IEEE Access 7:170774—
170795. https://doi.org/10.1109/ACCESS.2019.2955983
Fernandez A, Almansa E, Herrera F (2017) Chi-Spark-RS: an
Spark-built evolutionary fuzzy rule selection algorithm in imbal-
anced classification for big data problems. In: IEEE Int Conf Fuzzy
Syst, pp 1-6. https://doi.org/10.1109/FUZZ-1EEE.2017.8015520
Almasi M, Abadeh MS (2018) A new MapReduce associative
classifier based on a new storage format for large-scale imbal-
anced data. Clust Comput 21(4):1821-1847. https://doi.org/10.
1007/s10586-018-2812-9

Ferndndez A, del Rio S, Chawla NV, Herrera F (2017) An insight
into imbalanced big data classification: outcomes and challenges.
Complex Intell Syst 3:105-120. https://doi.org/10.1007/s40747-
017-0037-9

Chen H, Shen Y (2017) Reducing imbalance ratio in MapReduce.
In: IEEE International Symposium on Cloud and Service Comput-
ing, pp 279-282. https://doi.org/10.1109/SC2.2017.54

Basgall MJ, Hasperué W, Naiouf MR, Fernandez A, Herrera F
(2019) An analysis of local and global solutions to address big data
imbalanced classification: a case study with SMOTE preprocess-
ing. In: Conference on cloud computing and big data, pp 75-85.
https://doi.org/10.1007/978-3-030-27713-0_7

Triguero I, Galar M, Bustince H, Herrera F (2017) A first attempt
on global evolutionary undersampling for imbalanced big data.
In: IEEE Congress on Evolutionary Computation (CEC) pp 2054—
2061 .https://doi.org/10.1109/CEC.2017.7969553

Gutiérrez PD, Lastra M, Benitez JM, Herrera F (2017) SMOTE-
GPU: big data preprocessing on commodity hardware for imbal-
anced classification. Prog Artif Intell 6(4):347-354. https://doi.org/
10.1007/s13748-017-0128-2

Triguero I, del Rio S, Lépez V, Bacardit J, Benitez JM, Herrera F
(2015) ROSEFW-REF: the winner algorithm for the ECBDL’ 14 big
data competition: an extremely imbalanced big data bioinformatics
problem. Knowl-Based Syst 87:69-79. https://doi.org/10.1016/].
knosys.2015.05.027

del Rio S, Lopez V, Benitez JM, Herrera F (2014) On the use of
MapReduce for imbalanced big data using random forest. Inf Sci
285:112-137. https://doi.org/10.1016/.ins.2014.03.043

@ Springer

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

Zhai J, Zhang S, Wang C (2017) The classification of imbalanced
large data sets based on MapReduce and ensemble of ELM clas-
sifiers. Int J Mach Learn Cybern 8(3):1009-1017. https://doi.org/
10.1007/s13042-015-0478-7

Zhai J, Zhang S, Zhang M, Liu X (2018) Fuzzy integral-based
ELM ensemble for imbalanced big data classification. Soft Comput
22(11):3519-3531. https://doi.org/10.1007/s00500-018-3085-1
PedregosaF, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel
O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas
J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E
(2011) Scikit-learn: machine learning in Python. J Mach Learn Res
12:2825-2830. https://doi.org/10.5555/1953048.2078195

Wehr D, Radkowski R (2018) Parallel kd-tree construction on the
gpu with an adaptive split and sort strategy. Int J Parallel Program
46:1139-1156. https://doi.org/10.1007/s10766-018-0571-0
AhmedN, Barczak AL, Rashid MA, Susnjak T (2021) Anenhanced
parallelisation model for performance prediction of apache spark
on a multinode hadoop cluster. Big Data and Cognitive Computing
5(4):65

Aziz K, Zaidouni D, Bellafkih M (2019) Leveraging resource man-
agement for efficient performance of apache spark. J Big Data
6(1):78

Chicco D, Ferraro Petrillo U, Cattaneo G (2023) Ten quick tips for
bioinformatics analyses using an apache spark distributed comput-
ing environment. PLoS Comput Biol 19(7):1011272

Minukhin S, Brynza N, Sitnikov D (2020) Analyzing performance
of apache spark mllib with multinode clusters on azure hdinsight:
spark-perf case study. In: International scientific conference “intel-
lectual systems of decision making and problem of computational
intelligence", pp 114-134. Springer

Singh T, Gupta S, Satakshi Kumar M (2023) Adaptive load
balancing in cluster computing environment. J Supercomput
79(17):20179-20207

(1998) Remote Sensing and GIS Program, Colorado State Uni-
versity: Covertype data set. Retrieved from: https://archive.ics.uci.
edu/ml/datasets/Covertype

(2018) Montgomery County of Maryland: Traffic violations.
Retrieved from: https://catalog.data.gov/dataset/traffic- violations-
56dda (2018)

(2018) Surveillance, Epidemiology, and End Results (SEER) Pro-
gram (www.seer.cancer.gov) Research Data (1975-2016), National
Cancer Institute, DCCPS, Surveillance Research Program, released
April 2019, based on the November 2018 submission

(2004) Intel Berkeley Research Lab: Intel lab data. Retrieved from:
http://db.csail.mit.edu/labdata/labdata.html (2004)

Meidan Y, Bohadana M, Mathov Y, Mirsky Y, Shabtai A, Breiten-
bacher D, Elovici Y (2018) N-baiot—network-based detection of
iot botnet attacks using deep autoencoders. IEEE Pervasive Com-
put 17(3):12-22. https://doi.org/10.1109/MPRV.2018.03367731
Baldi P, Sadowski P, Whiteson D (2014) Searching for exotic par-
ticles in high-energy physics with deep learning. Nat Commun
5:4308. https://doi.org/10.1038/ncomms5308

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

https://doi.org/10.1016/j.eswa.2022.116962
https://doi.org/10.1002/widm.1232
https://doi.org/10.1002/widm.1232
https://doi.org/10.1016/j.patcog.2018.10.024
https://doi.org/10.1186/s40537-019-0274-4
https://doi.org/10.1186/s40537-019-0274-4
https://doi.org/10.1016/j.knosys.2020.106598
https://doi.org/10.1186/s40537-019-0231-2
https://doi.org/10.1007/s10723-018-9465-z
https://doi.org/10.1007/s10723-018-9465-z
https://doi.org/10.1109/ACCESS.2019.2955983
https://doi.org/10.1109/FUZZ-IEEE.2017.8015520
https://doi.org/10.1007/s10586-018-2812-9
https://doi.org/10.1007/s10586-018-2812-9
https://doi.org/10.1007/s40747-017-0037-9
https://doi.org/10.1007/s40747-017-0037-9
https://doi.org/10.1109/SC2.2017.54
https://doi.org/10.1007/978-3-030-27713-0_7
https://doi.org/10.1109/CEC.2017.7969553
https://doi.org/10.1007/s13748-017-0128-2
https://doi.org/10.1007/s13748-017-0128-2
https://doi.org/10.1016/j.knosys.2015.05.027
https://doi.org/10.1016/j.knosys.2015.05.027
https://doi.org/10.1016/j.ins.2014.03.043
https://doi.org/10.1007/s13042-015-0478-7
https://doi.org/10.1007/s13042-015-0478-7
https://doi.org/10.1007/s00500-018-3085-1
https://doi.org/10.5555/1953048.2078195
https://doi.org/10.1007/s10766-018-0571-0
https://archive.ics.uci.edu/ml/datasets/Covertype
https://archive.ics.uci.edu/ml/datasets/Covertype
https://catalog.data.gov/dataset/traffic-violations-56dda
https://catalog.data.gov/dataset/traffic-violations-56dda
www.seer.cancer.gov
http://db.csail.mit.edu/labdata/labdata.html
https://doi.org/10.1109/MPRV.2018.03367731
https://doi.org/10.1038/ncomms5308

Improved KD-tree based imbalanced big data classification...

12575

William C. Sleeman IV is an
Instructor in the Department
of Radiation Oncology at Vir-
ginia Commonwealth University,
Richmond VA. He received Com-
puter Engineering BS and MS
degrees from the University of
Virginia in 2004 and Virginia
Commonwealth University in
2007, respectively, and a PhD
in Computer Science from Vir-
ginia Commonwealth University
in 2021. His research interests
include machine learning, imbal-
anced data, high performance
computing and health informatics.

Martha Roseberry is an Appli-
cations Analyst at Virginia Com-
monwealth University, Richmond
VA, USA. She obtained her Ph.D.
in Computer Science from Vir-
ginia Commonwealth University,
her M.L.I.S from Kent State Uni-
versity and her B.A. in Physics
from The College of Wooster. Her
research interests include machine
learning, multi-label learning, and
data streaming mining.

Preetam Ghosh is a Professor in
the Department of Computer Sci-
ence at Virginia Commonwealth
University. He obtained his MS
and PhD degrees in Computer
Science Engineering from UT-
Arlington and BS in Computer
Science from Jadavpur University,
Kolkata India. His research inter-
ests include algorithms, stochastic
modeling, discrete event sim-
ulation and data analytics in
biological systems and mobile
computing related issues in per-
vasive grids that has resulted in
several federally funded research projects from NSF, NIH, DoD and
USVHA.

Alberto Cano is an Associate
Professor with the Department
of Computer Science, Virginia
Commonwealth University,
USA, where he heads the High-
Performance Data Mining Lab.
He obtained his BSc degrees
in Computer Engineering and
in Computer Science from the
University of Cordoba, Spain,
in 2008 and 2010, respectively,
and his MSc and PhD degrees
in Intelligent Systems and Com-
puter Science from the University
of Granada, Spain, in 2011 and
2014, respectively. His research is focused on machine learning, data
mining, data streams, general-purpose computing on graphics pro-
cessing units, Apache Spark, and evolutionary computation. He has
published over 58 articles in high-impact factor journals, 58 con-
tributions to international conferences, two book chapters, and one
book in the areas of machine learning, data mining, and parallel, dis-
tributed, and GPU computing. Dr. Cano is Area Editor of the journal
Information Fusion. He is also the Faculty Director of the VCU High
Performance Research Computing core facility.

Bartosz Krawczyk is an Assistant
Professor in the Chester F. Carl-
son Center for Imaging Science at
Rochester Institute of Technology,
where he heads Machine Learning
and Computer Vision (MLVision)
Lab. He received the M.Sc. and
Ph.D. degrees from the Wroclaw
University of Science and Tech-
nology, Wroclaw, Poland, in 2012
and 2015, respectively.

Dr. Krawczyk has authored
more than 60 journal articles and
more than 100 contributions to
conferences. He has coauthored
the book Learning from Imbalanced Datasets (Springer, 2018). He is
a Program Committee member for high-ranked conferences, such as
KDD (Senior PC member), AAAIL IJCAI, ECML-PKDD, IEEE Big-
Data, and IJCNN. He was a recipient of prestigious awards for his
scientific achievements such as the IEEE Richard Merwin Scholarship,
the IEEE Outstanding Leadership Award, and the Amazon Machine
Learning Award, among others. He served as a Guest Editor for four
journal special issues and as the Chair for 20 special session and work-
shops. He is the member of the editorial board for Applied Soft Com-
puting (Elsevier).

@ Springer

	Improved KD-tree based imbalanced big data classification and oversampling for MapReduce platforms
	Abstract
	1 Introduction
	2 Background
	2.1 Approximate kNN algorithms
	2.1.1 Metric tree
	2.1.2 Spill tree
	2.1.3 KD-tree
	2.1.4 Locality Sensitive Hashing (LSH)

	2.2 Hybrid-spill tree implementation
	2.3 Apache spark
	2.4 Imbalanced data

	3 Proposed algorithms
	3.1 KD-tree classifier
	3.2 KD-tree based SMOTE
	3.3 Local versus distributed implementations
	3.4 Spark configurations

	4 Experimental study
	4.1 Performance metrics
	4.2 Datasets
	4.3 Experiments on AWS

	5 Results
	5.1 Classifiers
	5.2 SMOTE
	5.3 Speed-up by total threads
	5.4 Scale-up by tree depth

	6 Conclusions and future works
	References

