
d
l
i
l
a
a
a
r
t
o
r
t

c
o

i
d

Knowledge-Based Systems 304 (2024) 112561

A
0

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Hoeffding adaptive trees for multi-label classification on data streams
Aurora Esteban a, Alberto Cano b, Amelia Zafra a,∗, Sebastián Ventura a
a Dept. of Computer Science and Numerical Analysis, Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of
Cordoba, Cordoba, 14071, Spain
b Dept. of Computer Science, Virginia Commonwealth University, Richmond, 23284-3068, VA, USA

A R T I C L E I N F O

Keywords:
Multi-label classification
Data streams
Incremental decision trees

A B S T R A C T

Data stream learning is a very relevant paradigm because of the increasing real-world scenarios generating data
at high velocities and in unbounded sequences. Stream learning aims at developing models that can process
instances as they arrive, so models constantly adapt to new concepts and the temporal evolution in the stream.
In multi-label data stream environments where instances have the peculiarity of belonging simultaneously to
more than one class, the problem becomes even more complex and poses unique challenges such as different
concept drifts impacting different labels at simultaneous or distinct times, higher class imbalance, or new labels
emerging in the stream. This paper proposes a novel approach to multi-label data stream classification called
Multi-Label Hoeffding Adaptive Tree (MLHAT). MLHAT leverages the Hoeffding adaptive tree to address these
challenges by considering possible relations and label co-occurrences in the partitioning process of the decision
tree, dynamically adapting the learner in each leaf node of the tree, and implementing a concept drift detector
that can quickly detect and replace tree branches that are no longer performing well. The proposed approach
is compared with other 18 online multi-label classifiers on 41 datasets. The results, validated with statistical
analysis, show that MLHAT outperforms other state-of-the-art approaches in 12 well-known multi-label metrics.
1. Introduction

Nowadays, many real applications in cyber–physical scenarios gen-
erate high volumes of data, arriving in unbounded sequences, at high
velocities, and with limited storage restrictions [1,2]. In this context,
ata stream mining emerges as an important paradigm in which the
earner does not have access to all data at once, must process each
nstance rapidly, and must learn in an online fashion. Thus, online
earning aims at developing models capable of constantly expanding
nd adapting, in contrast to the classic batch learning scenario, where
model is trained once all data are available [3]. Since data streams
re evolving, the underlying distribution may eventually change, expe-
iencing concept drift, which can impact the decision boundaries and
he performance of the classifier. This change can be abrupt, gradual,
r incremental, and it also may be recurring when past concepts
eappear [4]. Additional challenges include the high dimensionality of
he input space [5], the imbalance ratio in the class labels [6], or the
presence of missing labels in the training data [7], which increase the
omplexity and processing time of the learner and can lead to ignore
r forget minority classes.
In this context of complex data arriving rapidly and continuously

n a system, that may have limited storage or computation capabilities,
ecision trees have great potential due to their good balance between

∗ Corresponding author.
E-mail addresses: aestebant@uco.es (A. Esteban), acano@vcu.edu (A. Cano), azafra@uco.es (A. Zafra), sventura@uco.es (S. Ventura).

accuracy and low complexity. For forecasting on sequential data, for
example, there are interesting applications such as the work of Li
et al. [8], which proposes a method based on XGBoost to predict energy
consumption. For classification, IDTs are very popular and effective
algorithms for data stream classification [3]. IDTs are designed to
handle such scenarios by incrementally updating the decision model as
new data arrives, that is, they learn in a truly online manner, processing
instance by instance and being able to produce predictions at any
time. This allows the model to adapt to the data-changing distribu-
tion and detect changes in the underlying patterns concepts, making
them suitable for time-sensitive applications [1,2]. Additionally, IDTs
are inherently interpretable models, since humans can analyze the
path followed in the classification process. This makes them more
reliable models in critical applications. Despite these advantages, IDTs
have been applied mainly in the classical scenario of multi-class data
stream classification, but not in other more complex scenarios such as
multi-label data stream classification.

MLC extends the multi-class paradigm by allowing instances to be-
long to more than one class simultaneously. Traditional MLC methods
are not coping well with the increasing needs of large and complex
structures [3], as they assume a batch learning environment where
all data are available in advance. Thus, solving this problem with
https://doi.org/10.1016/j.knosys.2024.112561
Received 1 June 2024; Received in revised form 10 August 2024; Accepted 27 Sep
vailable online 2 October 2024
950-7051/© 2024 Elsevier B.V. All rights are reserved, including those for text and
tember 2024

 data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/knosys
https://www.elsevier.com/locate/knosys
mailto:aestebant@uco.es
mailto:acano@vcu.edu
mailto:azafra@uco.es
mailto:sventura@uco.es
https://doi.org/10.1016/j.knosys.2024.112561
https://doi.org/10.1016/j.knosys.2024.112561
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2024.112561&domain=pdf

A. Esteban et al. Knowledge-Based Systems 304 (2024) 112561
online learning is a promising approach in these data-intensive envi-
ronments. However, online MLC presents additional unique challenges,
like different concept drifts impacting different labels at simultaneous
or distinct times [6,9], or new labels emerging in the stream [7]. These
particularities, along with the own challenges related to both MLC and
stream mining, make online MLC especially difficult.

One of the most relevant models in IDTs are Hoeffding Trees (HTs),
based on the Hoeffding bound [10], which offers mathematical guar-
antees of convergence with respect to the equivalent batch-learning
decision tree. A HT builds the tree incrementally and never revisits de-
cisions already made. In contrast, Hoeffding Adaptive Tree (HAT) [11]
is a very popular evolution that incorporates concept drift detection in
each split as a mechanism to replace parts of the tree if they become
obsolete. In the multi-label scenario, there is only one native adaptation
of this paradigm exists, Multi-Label Hoeffding Tree (MLHT) [12], that
adapts classic HT by incorporating a multi-label classifier in the leaves.
Other proposals [13–15] include this algorithm in different ensemble
approaches to increase performance or include concept drift adapta-
tions. However, there is still room for improvement acting directly on
the base model, since a single tree versus an ensemble has multiple
advantages in terms of computational load, processing speed, or adap-
tation to concept drift. Our work aims to fill this gap by providing an
accurate model for MLC in data streams with additional difficulties such
as concept drift and label set imbalance evolution, contributing to a
significant advance in the multi-output IDTs research.

This paper presents a novel approach for multi-label data stream
classification based on Hoeffding bound named MLHAT. MLHAT evolves
over HAT with three main novelties to deal with MLC and its complex
decision space, label imbalance, and fast response to concept drift. The
main contributions of the work can be summarized as:

• The presentation of the novel MLHAT algorithm, which makes
significant advances in multi-label IDT in terms of:

– Considering relations and labels’ co-occurrences in the parti-
tioning process of the decision tree. The Bernoulli distribution
is used to model the probabilities.

– Dynamically adapting to the high imbalance between labels
in the multi-label stream. The number of instances arriving at
each leaf node and the impurity among them are monitored to
choose between different multi-label classifiers to perform the
prediction at leaves.

– Updating the decision model to the change in the data stream
distribution or concept drift. A concept drift detector is in-
serted into each intermediate node of the tree for building a
background branch when its performance starts to decrease.
This way, at the moment that concept drift is confirmed, the
background branch substitutes the main one in the decision
tree.

– Increasing the diversity in the learning process and the accu-
racy of the results. Two well-known methods in stream learning
are adapted to the model. On the one hand, applying bootstrap-
ping in instances to learn and, on the other hand, combining
the predictions produced by the main tree and the possible
background branches if they are significant enough.

• An extensive experimental study explores the performance of
MLHAT compared to the state of the art in tree-based methods
for online MLC. Specifically, 18 classifiers, 41 datasets, and 12
metrics are included in the experimental study.

• The source code of MLHAT and experiments are publicly avail-
able1 for the sake of reproducible comparisons in future work. In
addition, all the datasets used in the experimentation are public:
either they belong to well-known MLC benchmarks, or they are

1 https://github.com/aestebant/mlhat.
2
available in the repository in the case of datasets generated
synthetically to include explicit information about concept drift
in the multi-label context.

The rest of this work is organized as follows. The next section
provides a comprehensive review of related works in MLC, starting
with the fundamentals and going deeper into previous IDT proposals.
Section 3 introduces the MLHAT algorithm. Section 4 presents the
experimental study and the results, which compare our approach with
state-of-the-art methods on benchmark datasets, in addition to studying
its potential in an ensemble architecture. Finally, Section 5 presents
the conclusions, summarizes our research findings, and discusses future
research directions.

2. Related work

2.1. Multi-label data stream classification

The problem of multi-label data stream classification involves pre-
dicting multiple labels or categories for incoming data instances in
a streaming fashion. Let 𝑆 represent the data stream as a potential
unbounded sequence of instances (𝑋1, 𝑌1), (𝑋2, 𝑌2), . . . (𝑋𝑖, 𝑌𝑖), . . .where
𝑋𝑖 is the feature vector of the 𝑖th data instance, and 𝑌𝑖 is a binary vector
of labels for the 𝑖th data instance with 𝑛 binary indicators (𝑦1, 𝑦2,… , 𝑦𝑛)
for the presence or absence of each label of the label space  in the 𝑖th
instance. The goal of multi-label data stream classification is to predict
the label vectors 𝑌𝑖 for new, unseen instances of 𝑋𝑖 in the stream as
they arrive, using a predictive model 𝑀 , which can be a classifier or
a combination of them that can handle the multi-label nature of the
problem:

𝑀(𝑋𝑖) = 𝑌𝑖 ∀𝑖 ∈ 𝑆 (1)

In the online learning scenario, instances arrive at the model one at
a time, so it must be able to learn incrementally, updating its knowledge
to the last characteristics seen in the stream, unlike in the traditional
batch learning scenario, where models have all the data available from
the beginning for training and are built statically. In this context, the
so-called concept drift arises, which may affect the decision boundaries.
In concept drift, two factors must be considered. On the one hand,
when and how the concept drift appears. Concept drift can occur
suddenly, incrementally, gradually, or recurrently [4]. In sudden drift,
there is an instant change in the data distribution at a particular time,
rendering previous models unreliable. Incremental drift is characterized
by a steady progression through multiple concepts, with each shift
resulting in a new concept closer to the target distribution, and models
adapt incrementally to the drift. Gradual drift involves incoming data
alternating between two concepts, with a growing bias toward the
new distribution over time, and models can adapt gradually. Finally,
recurring drift refers to the reappearance of a previously seen concept,
and models can be saved and restored when this occurs. On the other
hand, it must be studied if drift is contained within one concept [16].
Thus, the real concept drift refers to a change that makes the previous
knowledge about a class’ decision boundary invalid, i.e., new knowl-
edge is required to adjust to the shift. In contrast, virtual concept drift
is a change that only alters the distribution of data within a known
concept, but not the decision boundary. Distinguishing between these
two types of drift prevents unnecessary modifications to the classifier.
Although concept drift is a general problem in stream learning, the
additional complexity of the multi-label space increases the potential
for label imbalance and label distribution changes.

As in the batch learning scenario, there are two general approaches
to deal with MLC in data streams [17]: (i) transforming multi-label
data into problems that can be solved using multi-class classifiers,
known as Problem Transformation (PT), or (ii) adapting the algorithms
from multi-class context to the multi-label paradigm by changing the

decision functions, known as Algorithm Adaptation (AA). Attending to

https://github.com/aestebant/mlhat

A. Esteban et al. Knowledge-Based Systems 304 (2024) 112561
PT, two main approaches can be followed: either Label Powerset (LP),
which transforms every combination in the label set into a single-class
value to convert the multi-label problem into a multi-class problem; or
Binary Relevance (BR), that passes from 𝑑-dimensional label vector  to
𝑑 binary classification learners that model each one a label to combine
the independent results into a multi-label output. Classifier Chain (CC)
is a variation of BR that compose a chain where the predictions of the
previous learners are fed as extra features to the subsequent classifiers.
PT approaches allow an easy and straightforward solution for MLC,
but they also have some known issues [18], including over-training,
worsening of class-imbalance problem and worst-case computational
complexity in the case of LP; loss of label correlation and increase of
computational load in the case of BR; or sensitivity to the label order
and error propagation for CC.

AA takes the opposite approach with respect to PT, focusing on
creating methods that natively support the multi-label output space
without transforming it. There are some examples of algorithm adapta-
tions based on k-Nearest Neighbors (kNN) [6,19,20], on rules [21,22],
or on neural networks trained following a mini-batch approach [7,9].
In general, models based on AA imply a significant reduction of model
complexity and computational load, in addition to being better adapted
to the multi-label task, with respect to the PT paradigm. In any case,
models and theoretical results obtained so far in online MLC are very
limited, and more effort should be put in this direction [17].

A significant challenge in MLC is the inherent class imbalance
present in many real-world applications [23]. This imbalance man-
ifests as a non-uniform distribution of samples and their respective
labels over the data space, becoming increasingly complex as the
number of labels grows. The challenge is further exacerbated in the
streaming context, where the imbalance often occurs simultaneously
with concept drift. In this dynamic environment, not only do labels
definitions change, but the imbalance ratio itself becomes fluid, with
labels roles potentially switching over time [5]. This renders static so-
lutions ineffective, as streams may oscillate between varying degrees of
imbalance and periods of balance among labels. Moreover, imbalanced
data streams can present additional difficulties such as small sample
sizes, borderline and rare instances, class overlapping, and noisy labels.
These factors compound the complexity of developing effective classi-
fication algorithms for multi-label data streams. In this context, current
approaches to handling imbalanced data streams typically fall into two
big categories: data-level approaches that resample the dataset to make
it balanced, or algorithm-level approaches that design methods to make
classifiers robust to skewed distributions [5]. However, focusing on
the multi-label data stream field, the research focuses on the second
approach. Specifically in this context, ensembles are very popular, with
BR, previously discussed, as the most straightforward method, although
there are other methods such as GOOWE-ML [14] which utilizes spatial
modeling to assign optimal weights to a stacked ensemble. In the case
of algorithms based on a single model, they need to incorporate specific
mechanisms adapted to their nature.

2.2. Incremental decision trees for multi-label data streams

IDTs are a type of decision tree designed to adapt to changes in
the data distribution over time. They are based on adapting their
structure as new instances arrive, extending the branches, or deleting
them if they are no longer accurate. Thus, they differ from classic
decision trees such as ID3, C4.5, or CART, in that they do not rebuild
the entire tree from scratch to learn from new data. In multi-class
classification based on IDTs, the state of the art is based on applying
the Hoeffding bound [3]. The Hoeffding bound offers a mechanism for
guaranteeing that the incremental tree building at any time would be
equivalent to that built in a batch learning scenario with a confidence
level given by the user. Thus, Domingos and Hulten proposed the
Hoeffding Tree (HT), also known as the Very Fast Decision Tree, [10],

which uses the Hoeffding bound to statistically support the decision

3
of the best possible split with the minimum number of instances seen
at any moment. Manapragada et al. propose in [24] the Extremely
Fast Decision Tree (EFDT), a faster approach in the splitting process
that uses the Hoeffding bound to split a node as soon as the split
improves the previous node. Another popular approach is Hoeffding
Adaptive Tree (HAT), presented by Bifet and Gavaldà [11], that evolves
from HT to incorporate a concept drift detector based on Adaptive
Windowing (ADWIN). This mechanism monitors the performance of
every split to build a parallel tree when drift is detected, then it uses
the Hoeffding bound to determine whether to replace the main branch
with the alternate sub-tree.

More recently, other IDTs beyond the Hoeffding approach have
arisen. Online Stochastic Gradient Tree (SGT) [25] presented by Gouk
et al. as an incremental adaptation of the stochastic gradient descent
method for building the decision tree. Mourtada et al. presented in [26]
an online Mondrian Tree (MT) that uses the recursive properties of
the Mondrian process to split the multidimensional space into regions
hierarchically. The online growth of the tree is carried out with an
adaptation of the context tree weighting algorithm.

The methods discussed so far have been designed for a multi-class
classification scenario with a single label as output. Although they
could be deployed in MLC by applying any PT technique as BR. For IDTs
natively designed for MLC, the main proposal for years has been MLHT,
proposed by Read et al. [12] as an adaptation of HT with multi-label
classifiers at leaves: the majority labelset in the base case and a tree
transformation method in the variation MLHT of Prune Set (MLHTPS).
More recently, Osojnik et al. presented Incremental Structured Output
Prediction Tree (iSOUPT) [27], a Hoeffding-based decision tree that
transforms the MLC problem into a multi-target regression one and
places an adaptive perceptron in the leaves to perform the predictions.

Table 1 summarizes these previous proposals on IDT, together with
our MLHAT, considering their main limitations regarding achieving
high performance in evolving and imbalanced data streams in a multi-
label environment. Thus, we analyze if they natively support MLC
or if a problem transformation is needed and if the splitting criteria
considers the multi-label specific problems like the co-occurrence be-
tween labels. We also analyze if the proposals are adaptable to concept
drift, i.e., if the algorithm is able to modify previously built branches.
For this characteristic, MLHAT stands out as the only proposal that
incorporates a concept drift detector adapted to MLC. Finally, we study
if the proposals are sensitive to the greater class imbalance that exists in
multi-label versus the traditional multi-class scenario. This characteris-
tic is quantified by considering whether the models incorporate some
mechanism dependent on the cardinality of the received instances. In
this case, MLHAT is the only proposal adaptable to the imbalance
between labels, by monitoring metrics associated with this problem that
determine which multi-label classifier to use in each leaf of the tree.

3. Multi-label Hoeffding adaptive tree

This section presents the complete specification of the proposed
Multi-Label Hoeffding Adaptive Tree (MLHAT), an IDT that attempts
to overcome the limitations of previous decision tree-based methods for
multi-label data streams. Previous works on adapting HTs to multi-label
data streams have three main drawbacks that have caused a lack of pop-
ularity, in contrast to the equivalent in traditional data streams. MLHAT
evolves from the classical HAT [11] by adding multiple components to
address these limitations as follows:

Firstly, previous IDTs for MLC may not consider the relationship be-
tween labels when deciding whether to split a leaf node. These IDTs rely
on the entropy function to calculate information gain between the orig-
inal leaf and potential splits, which assumes that labels are mutually
exclusive, as in multi-class scenarios. However, in MLC environments,
where labels often co-occur, this method creates additional uncertainty
and leads to equalized entropies of the original node and its potential

splits, impeding tree growth. The proposed MLHAT algorithm uses a

A. Esteban et al. Knowledge-Based Systems 304 (2024) 112561
Table 1
IDTs for MLC on data streams.
Algorithm Acronym Ref. Applicable to

multi-label
Split criteria Adaptable to

concept drift
Adaptable to
class imbalance

Hoeffding Tree HT [10] Transforming the
domain

Information gain assuming
classes independence

✕ ✕

Extremely Fast Decision Tree EFDT [24] Transforming the
domain

Information gain assuming
classes independence

✕ ✕

Hoeffding Adaptive Tree HAT [11] Transforming the
domain

Information gain assuming
classes independence

✓ ✕

Stochastic Gradient Tree SGT [25] Transforming the
domain

Loss function minimization
between target and prediction

✕ ✕

Mondrian Tree MT [26] Transforming the
domain

Loss function minimization
between target and prediction

✕ ✕

Multi-Label Hoeffding Tree MLHT [12] Natively Information gain considering
co-occurrence between labels

✕ ✕

Incremental Structured Output
Prediction Tree

iSOUPT [27] Natively Reduction of intra-cluster
variance

✕ ✕

Multi-Label Hoeffding
Adaptive Tree

MLHAT Our proposal Natively Multi-label information gain
based on multi-variate
Bernoulli process

✓ ✓
Fig. 1. Flowchart of Multi-Label Hoeffding Adaptive Tree.
l
o
S
e
w
i
a
(
M

3

t
g
s
o
s
a
s
m
r
d
e
w
1
o

multivariate Bernoulli process [28] to calculate the entropy, which
considers groups of labels that appear together with higher probability,
leading to more accurate approximations of the information gain. This
approach also affects the computation of the Hoeffding bound, which
determines the significance of the best-split point.

Secondly, previous IDTs for MLC do not account for the imbalance
in observed label sets, which may be very severe due to the large
number of potential label combinations. This issue affects the final clas-
sification at the leaf nodes, as previous models assume either a naive
scenario predicting the majority set or a complex multi-label classifier
trained on each leaf. The proposed MLHAT deals with imbalanced label
sets by incorporating two markers at the leaves, multivariate binary
entropy and cardinality, and using four prediction scenarios based on
their values and set thresholds. Depending on the difficulty of the
scenario, the tree leaf will dynamically alternate between a simpler or
a more complex classifier.

Finally, existing proposals for concept drift detection in multi-label
IDT [15,29,30] delegate the mechanism to an ensemble approach, lead-
ing to not pruning at branch level, which adds unnecessary complexity
to the model. In contrast, MLHAT incorporates an ADWIN detector at
each node, similar to HAT [11] but with two main differences: it is
adapted to monitor multi-label accuracy and it accelerates the reaction
to concept drift by triggering an early warning to build a parallel sub-
tree in the background of the current node. The background sub-tree
replaces the main one if the concept drift is confirmed.

The pseudocode is presented by Algorithms 1 and 2, which defines
the function leafLearning() used previously. Fig. 1 shows an example of
how the MLHAT tree evolves over time, starting with a single node that
splits as more instances from the stream arrive. The general architecture
 m

4
is detailed in Section 3.1. The colored squares represent the different
evels of the classifier to be used on the leaves, which will depend
n the impurity and cardinality of the instances that reach them (see
ection 3.3). When the received instances are sufficient and different
nough, the node is split into two sub-branches based on a feature 𝑓𝑖
ith split point 𝑥 (see Section 3.4). It may happen that a split point
s no longer valid due to concept drift. In this case, it is replaced by
nother tree built in parallel and updated to the new data distribution
see Section 3.5). In addition to the learning process described above,
LHAT can produce predictions at any time as described in Section 3.6.

.1. Building the tree

Decision tree algorithms work through recursive partitioning of
he training set to obtain subsets that are as pure as possible to a
iven target class, or set of labels in MLC. Classical decision trees
uch as ID3, C4.5 and CART, as well as their multi-label adaptation
r transformation approximations [31], assume that all training in-
tances are available at training time, building the tree considering
ll the characteristics simultaneously. However, IDTs learn from data
equences, updating the model as the data distribution evolves and
ore information is available. This paradigm eliminates the need for
etraining the whole model when new data arrives, and for keeping all
ata in memory. It also allows to perform predictions at any moment,
ven without having received many instances for training. The general
orkflow of MLHAT is similar to previous Hoeffding tree works [10–
2], but with the particularity of being the first proposal, to the best
f our knowledge, of incorporating concept drift adaptation in a native
ulti-label incremental tree.

A. Esteban et al.

H
n
w
i
(
l
m
e
p
g
n
s

t
h
w
n
a
t
c
w
c
f

Knowledge-Based Systems 304 (2024) 112561
Algorithm 1: Multi-Label Hoeffding Adaptive Tree (MLHAT)
Input:
𝑆 ← {(𝑋0 , 𝑌0), (𝑋1 , 𝑌1), ..., (𝑋𝑖 , 𝑌𝑖), ...}: potentially unbounded multi-label data stream
𝛿𝑎𝑙𝑡 , 𝛿𝑠𝑝𝑙 : significance levels in the Hoeffding bound for managing alternate trees and splitting nodes respectively
𝜅𝑎𝑙𝑡: number of instances an alternate tree should see to being considered relevant
𝜆: Poisson distribution parameter
Symbols:
𝐷𝑇 (𝑛): sub-tree growing from a node 𝑛
𝑝𝑎𝑡ℎ: succession of nodes followed by 𝑋𝑖 from an starting point 𝐷𝑇 (𝑛𝑗) until a leaf it reached
𝛼: multi-label ADWIN concept-drift detector based for each 𝑛
𝑊 : instances seen by each 𝑛, weighted according 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆)

1 MLHAT ← new leaf ⊳ Initialize the tree with a single leaf with empty statistics and fresh classifiers
2 for 𝑆𝑖 = (𝑋𝑖 , 𝑌𝑖) ∈ 𝑆 do
3 𝑤 ← 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) weight for learning
4 𝑝𝑎𝑡ℎ ← traverse MLHAT on 𝑋𝑖
5 𝑍𝑖 ← MLHAT prediction on 𝑋𝑖
6 for 𝑛 ∈ 𝑝𝑎𝑡ℎ do
7 𝛼 ← ADWIN update based on 𝑌𝑖 and 𝑍𝑖 ⊳ Error monitoring and drift update
8 if 𝛼 detects warning and ∄𝐷𝑇 ′(𝑛) then ⊳ Start growing an alternate tree in the node’s background
9 𝐷𝑇 ′(𝑛) ← new sub-tree in background
10 end if
11 if ∃ 𝐷𝑇 ′(𝑛) and 𝑊 (𝐷𝑇 ′(𝑛)) > 𝜅𝑎𝑙𝑡 then
12 𝑒 ← 𝛼 monitored error in 𝐷𝑇 (𝑛)
13 𝑒′ ← 𝛼′ monitored error in 𝐷𝑇 ′(𝑛)
14 𝜖𝑎𝑙𝑡 ← Hoeffding bound associated to 𝑒 (Eq. (16))
15 if (𝑒 − 𝑒′) > 𝜖𝑎𝑙𝑡 then ⊳ Alternate tree is better than main one with confidence 1 − 𝛿𝑎𝑙𝑡
16 𝐷𝑇 (𝑛) ← 𝐷𝑇 ′(𝑛)
17 𝐷𝑇 ′(𝑛) ← ∅
18 end if
19 if (𝑒′ − 𝑒) > 𝜖𝑎𝑙𝑡 then ⊳ Alternate tree has significantly worsened the main one
20 𝑛 ← prune 𝐷𝑇 ′(𝑛)
21 end if
22 end if
23 𝑠 ← update statistics of 𝑛 based on 𝑌𝑖 weighted by 𝑤
24 if 𝑛 is leaf then ⊳ Incremental learning on leaf classifiers and attempt to split in more branches
25 leafLearning(𝑛, 𝑆𝑖 , 𝑤, 𝛿𝑠𝑝𝑙)
26 end if
27 if ∃ 𝐷𝑇 ′(𝑛) then ⊳ Alternate tree keeps growing in the background
28 𝑝𝑎𝑡ℎ′ ← traverse 𝐷𝑇 ′(𝑛)
29 for 𝑛 ∈ 𝑝𝑎𝑡ℎ′ do
30 𝛼′ ← ADWIN update based on 𝑌𝑖 and 𝑍𝑖
31 𝑠 ← update statistics of 𝑛 based on 𝑌𝑖 weighted by 𝑤
32 if 𝑛 is leaf then
33 leafLearning(𝑛, 𝑆𝑖 , 𝑤, 𝛿𝑠𝑝𝑙)
34 end if
35 end for
36 end if
37 end for
38 end for
T
MLHAT is built on two fundamental components in leaves: (i) the
oeffding bound that determines when a node should split, and (ii)
ode statistics about the instances that reach it. Initially, MLHAT starts
ith a single node, the root, which will be a leaf node receiving the
ncome instances and updating its statistics about label distributions
details in Section 3.2), as well as multi-label classifiers for imbalanced
earning (details in Section 3.3). For every 𝜅𝑠𝑝𝑙 instances received, the
odel tries to split the node using the feature that minimizes the node
ntropy. For that purpose, a Hoeffding bound 𝜂𝑠𝑝𝑙 determines with high
robability if the estimated entropy minimization is significant enough
iven the number of instances observed. How to determine possible
ode split points and associated Hoeffding bound in the multi-label
cenario are described in detail in Section 3.4.
Once the Hoeffding bound is passed, the root node is divided into

wo children nodes at the selected split point in the feature space,
aving now a branch node with two leaf nodes. Each of these children
ill generate statistics equivalent to those described above from the
ew instances it receives according to the new partition. Likewise, at
ny time a node may encounter a feature whose split point exceeds
he Hoeffding bound, which will cause a new splitting of that node,
ausing the tree to grow to a new level of depth. In this way, the tree
ould expand incrementally as long as the entropy of the leaf nodes
an be minimized with new splits. MLHAT implements a mechanism
or pruning branches that are no longer needed due to concept drift.
5
hus, each node incorporates a concept drift detector 𝛼 that tracks
accuracy during training. If the performance starts to decrease at any
node 𝑛, a background sub-tree 𝐷𝑇 ′(𝑛) starts to be built from that node.
This tree will grow in parallel to the main one, 𝐷𝑇 (𝑛). For every 𝜅𝑎𝑙𝑡
instances received, errors of the current and alternate subtrees, 𝑒 and
𝑒′, are compared. Again, a Hoeffding bound 𝜖𝑎𝑙𝑡 is used to determine
if the difference in performance is significant enough to make changes
in the general structure of MLHAT. Section 3.5 describes the complete
specification of the concept drift adaptation in MLHAT.

Finally, it should be noted that the entire training process is condi-
tioned by an online bootstrapping following a Poisson(𝜆) distribution,
in order to apply an extra weight in some instances to perform resam-
pling with replacement from the stream. This approach has been used in
multiple previous proposals for data stream classification [16,32–35].
This extra weight 𝑤 affects the node statistics, the count of instances
seen 𝑊 , as well as the multi-label classifiers used in leaves in general.
However, if the classifier in question is based on bagging, it will already
have its own modification of the weight of the instances following
a Poisson(𝜆) distribution independent of that of the general MLHAT
model, since this is the canonical way to simulate bagging in the online
paradigm [35]. In this case, applying both modifiers to the instances
used to train the classifier would distort the data too much, so only the

Poisson(𝜆) of the classifier is applied to its learning process.

A. Esteban et al. Knowledge-Based Systems 304 (2024) 112561
Algorithm 2: Leaf learning in MLHAT
Input:
𝑛: leaf node belonging to MLHAT to update
𝑆𝑖 = (𝑋𝑖 , 𝑌𝑖): multi-label instance
𝑤: weight of the instance in learning process
𝛿𝑠𝑝𝑙 : significance levels in the Hoeffding bound for splitting nodes
𝜅𝑠𝑝𝑙 : number of instances a leaf should observe between split attempts
𝜂: number of instances a leaf should see to consider high cardinality
Symbols:
𝛾↓𝐶 : online classifier for low complexity scenario
𝛾↑𝐶 : online classifier for high complexity scenario
: labels’ space
 : features’ space
𝑓 (𝜇, 𝜎2): Gaussian estimator for conditional probabilities 𝑝(𝑙|𝑥𝑓) ∀𝑙 ∈ 

1 Function leafLearning(𝑛, 𝑆𝑖 , 𝑤, 𝛿𝑠𝑝𝑙):
2 𝑓𝑙 (𝜇, 𝜎2) ← update node stats on 𝑋𝑖(𝑓), 𝑌𝑖, 𝑤 ∀𝑓, 𝑙 ∈  ,
3 𝐻0 ← current entropy in 𝑛 (Eq. (5))
4 if 𝐻0 > 0 then
5 if 𝜅𝑠𝑝𝑙 instances received since last split try then ⊳ Attempt to split
6 for 𝑓 ∈  do
7 𝐻(𝑓, 𝑠) ← entropy at the 𝑠 that minimizes post-split entropy (Eq. (11)) among possible splits given by 𝑓 (𝜇, 𝜎2)
8 end for
9 𝜖𝑠𝑝𝑙 ← Hoeffding bound associated to 𝐿 (Eq. (7))
10 𝐺𝑓1 ← information gain of the best split candidate 𝑓𝑖 at 𝑠𝑘 (Eq. (8))
11 𝐺𝑓2 ← information gain of the second best 𝑓𝑗 at 𝑠𝑙
12 if (𝐺𝑓1 − 𝐺𝑓2) > 𝜖𝑠𝑝𝑙 then ⊳ There is a split outperforming the rest ones with confidence 1 − 𝛿𝑠𝑝𝑙
13 𝑛 ← replace leaf by a split at (𝑓1 , 𝑠𝑘)
14 𝐷𝑇 (𝑛) ← new branch for 𝑥𝑓 ≤ 𝑠𝑘
15 𝐷𝑇 (𝑛) ← new branch for 𝑥𝑓 > 𝑠𝑘
16 end if
17 end if
18 if n is 𝑙𝑒𝑎𝑓 then ⊳ No split, training of leaf classifiers continues
19 if 𝑊 (𝑛) < 𝜂 then ⊳ Node cardinality is low
20 𝛾↓𝐶 ← incremental learning on 𝛾↓𝐶 (𝑆𝑖 , 𝑤)
21 end if
22 𝛾↑𝐶 ← incremental learning on 𝛾↑𝐶 (𝑆𝑖 , 𝑤) ⊳ 𝛾↑𝐶 starts learning before 𝑛 reaches high cardinality
23 else ⊳ Learning on the new leaves grown from 𝑛
24 𝑙𝑒𝑎𝑓 ← traverse 𝐷𝑇 (𝑛)
25 leafLearning(𝑛, 𝑆𝑖 , 𝑤, 𝛿𝑠𝑝𝑙)
26 end if
27 end if
28 end function
3.2. Modeling label co-occurrences with the multivariate Bernoulli process

In several steps of the MLHAT building process, as in any decision
tree, the entropy of the labels observed at each node plays an important
role. To obtain a real measure of entropy in MLC, the co-occurrence of
labels must be taken into account. In this paper, we use a multivariate
Bernoulli distribution [28] to model this behavior, whose purpose
is modeling multiple binary random variables simultaneously. Each
binary random variable can take on one of two possible values (0 or
1), which represents the presence or absence of a specific event or
condition, just like in the MLC. The Bernoulli distribution has inter-
esting properties analogous to the Gaussian distribution that allow us
to extend it to high dimensions and construct the so-called multivariate
Bernoulli distribution [28].

In our setup, each label 𝐿 ∈  is defined as a Bernoulli random
variable with binary outcomes chosen from 𝑙 ∈ {0, 1} and with a
probability mass function

𝑃 (𝐿 = 𝑙) = 𝑝𝑙(1 − 𝑝)1−𝑙 (2)

Since the possible outcomes are mutually exclusive, 𝑃 (𝐿 = 1) = 1 −
𝑃 (𝐿 = 0), the entropy of 𝐿 is given by

𝐻(𝐿) = −𝑝 log2(𝑝) − (1 − 𝑝) log2(1 − 𝑝) (3)

Considering all the labels in the problem (𝐿1, 𝐿2,… , 𝐿𝑛), we have a
𝑛-dimensional random vector of possible correlated Bernoulli random
variables that can take values (0, 0,… , 0), (1, 0,… , 0), . . . (1, 1,… , 1).

Extending from (2), the probability mass function in this case is

6
𝑃 (𝐿1 = 𝑙1, 𝐿2 = 𝑙2,… , 𝐿𝑛 = 𝑙𝑛) = 𝑝
∏𝑛

𝑖=1(1−𝑙𝑖)
0,0,…,0 𝑝

𝑙1
∏𝑛

𝑖=2(1−𝑙𝑖)
1,0,…,0

𝑝
(1−𝑙1)𝑙2

∏𝑛
𝑖=3(1−𝑙𝑖)

0,1,…,0 ⋯ 𝑝
∏𝑛

𝑙𝑖
1,1,…,1

(4)

And the total entropy is defined as the sum of the entropies of all 𝑛
Bernoulli random variables:

𝐻(𝐿1, 𝐿2,… , 𝐿𝑛) =
𝑛
∑

𝑖=1
−𝑝𝑙𝑖 log2(𝑝𝑙𝑖) − (1 − 𝑝𝑙𝑖) log2(1 − 𝑝𝑙𝑖) (5)

Furthermore, as part of the exponential distribution family [36], the
multivariate Bernoulli distribution has other properties applicable to
MLC, like equivalence of independence and uncorrelatedness, and the
fact that both marginal and conditional distributions of a random vector
that follows a multivariate Bernoulli distribution are also multivariate
Bernoulli. This implies that the conditional probability of any subset
of labels 𝐴 = (𝐿𝑖 = 𝑙𝑖, ..𝐿𝑗 = 𝑙𝑗) given any subset of the rest of them
𝐵 = (𝐿𝑘 = 𝑙𝑘, ..𝐿𝑚 = 𝑙𝑚) can be computed applying:

𝑃 (𝐴|𝐵) =
𝑃 (𝐴 ∪ 𝐵)
𝑃 (𝐵)

=
𝑝(𝑙𝑖,… , 𝑙𝑗 ,… , 𝑙𝑘,… , 𝑙𝑚)

𝑝(𝑙𝑘,… , 𝑙𝑚)
(6)

3.3. Dynamic multi-label learning at leaves

MLHAT incorporates multi-label classifiers in the leaves to find the
last co-dependencies after the discrimination carried out by the rest
of the path in the tree. Due to the complexities of the data flows,
and especially in MLC, there is a large imbalance between label sets
that also affects the number of instances received in each leaf node.
Therefore, the learning and prediction strategy should not be uniform

for all leaf nodes. There is a previous MLC proposal [37] that employs

A. Esteban et al.

3

M
t
i
t
o

𝜖

w
p

c
t
i
e
p
p

𝐺

T

𝑝

a

a

Knowledge-Based Systems 304 (2024) 112561
different classifiers depending on the data partition carried out by a
decision tree. However, this proposal is designed for a batch learning
scenario, so the inference process, the classifiers employed, and the
criteria are not applicable to MLC in the data streams. MLHAT dynam-
ically adapts leaves components as the label distribution of the data
stream evolves. For this purpose, each node monitors two markers:
(i) the current multi-label entropy at the node 𝐻0 as in previously
discussed Eq. (5), and (ii) the cardinality 𝑊 of the node, which is the
number of instances that have reached it at a given time. These markers
provide MLHAT with four possible learning/prediction scenarios for the
multi-label classifiers used in leaves, affecting both the main tree and
alternate ones:

• 𝐻0 = 0: entropy cannot be minimized anymore, i.e., the path
to the leaf perfectly separates instances of the same label set.
Thus, the model does not need to train additional multi-label
classifiers because predicting the majority label set is accurate and
computationally efficient.

• 𝐻0 > 0 & 𝑊 ≤ 𝜂: the leaf is going through an intermediate
state with entropy starting to increase but cardinality under a
given threshold 𝜂. At this point, the leaf incrementally trains
a low-cardinality classifier 𝛾↓𝐶 good at detecting relationships
between labels early in data-poor scenarios. In Section 4.2 we
study the effect of several multi-label online classifiers to finally
select a LP transformation of kNN because its balance between
low complexity and high accuracy with few instances.

• 𝛥𝐺(𝐻0) ≤ 𝜖𝑠𝑝𝑙 & 𝑊 > 𝜂: a high number of instances but a low
information gain 𝛥𝐺 between the entropies currently and after the
eventual split, imply that it is difficult to separate the label-sets
given their feature space. The information gain computation is
discussed in Section 3.4. In this scenario, it is necessary to employ
a more data demanding and computationally expensive multi-
label classifier, but capable of finding deeper relationships, while
keeping computational complexity under control so that MLHAT
remains competitive in a stream data scenario. Section 4.2 dis-
cusses the effect of various multi-label online classifiers based
on ensembles and determines BR transformation of the ensemble
ADWIN Bagging (ABA)+Logistic Regression (LR) as the most
suitable option due to its superiority in learning from larger data
streams.

• 𝛥𝐺(𝐻0) > 𝜖𝑠𝑝𝑙 & 𝑊 > 𝜂: if after passing the high cardinality
threshold it is also observed that entropy increases and there are
significant differences between possible splits, the node has seen
enough and sufficiently diverse instances, so it is ready to attempt
to split following the procedure described in Section 3.4.

.4. Multi-label splitting into new branches

The Hoeffding bound mathematically supports the split decisions in
LHAT leaves determining the minimum number of instances needed
o decide if the split candidate would be equivalent to the one selected
n a batch learning scenario where all instances are available. We define
he Hoeffding bound for MLC based on [10] but considering the number
f known label sets |𝐿| instead of the single labels:

𝑠𝑝𝑙 =

√

log2(|𝐿|)2 ln(1∕𝛿𝑠𝑝𝑙)
2𝑊

(7)

here 𝑊 is the number of instances received and 𝛿𝑠𝑝𝑙 is an error
arameter for measuring the confidence in the decision.
The Hoeffding bound is used to determine if the first best-split

andidate is significantly better than the second one. To find these
wo best candidates, each possible candidate in the features space
s evaluated using the information gain 𝐺(𝑓, 𝑠) between the current
ntropy 𝐻0 at the node that may be partitioned, and the estimated
osterior entropy 𝐻(𝑓, 𝑠) if the data received in that node so far were
artitioned at feature 𝑓 taking value 𝑠:

(𝑓, 𝑠) = 𝐻 −𝐻(𝑓, 𝑠) (8)
0

7
he information gain difference 𝛥𝐺 between the attribute 𝑓𝑖 with the
best split at the value 𝑠𝑘, and the second best split given at the attribute
𝑓𝑗 with value 𝑠𝑙, with 𝑖 ≠ 𝑗, is computed to pass the Hoeffding test:

𝛥𝐺 = (𝐺(𝑓𝑖, 𝑠𝑘) − 𝐺(𝑓𝑗 , 𝑠𝑙)) > 𝜖𝑠𝑝𝑙 (9)

If this test is satisfied, the best split point 𝑓𝑖 = 𝑠𝑗 , found after
observing 𝑊 instances in the leaf, would be the same as the one that
would be selected in a batch learning scenario, with a confidence of
1 − 𝛿𝑠𝑝𝑙.

To calculate the different entropies implied in the process consider-
ing label co-occurrences, we use the multivariate Bernoulli distribution
as discussed in Section 3.2. Thus, 𝐻0 is directly obtained from Eq. (5),
where label priors 𝑝(𝑙) are obtained from the counters maintained by
the node:

𝑝(𝑙) =
𝑊𝑙
𝑊

∀ 𝑙 ∈  (10)

The entropy after the candidate binary split 𝐻(𝑓, 𝑠) is also estimated
as a succession of binary entropies, aggregating the entropies from the
generated branches given by whether the splitting criterion is met,
(𝑥𝑓 ∈ 𝑠) or not (𝑥𝑓 ∉ 𝑠):

𝐻(𝑓, 𝑠) = 𝑝(𝑠)𝐻(𝑥𝑓 ∈ 𝑠) + 𝑝(¬𝑠)𝐻(𝑥𝑓 ∉ 𝑠) (11)

where 𝑝(𝑠) and 𝑝(¬𝑠) are the probabilities of occurrence of the splitting
criterion, to balance the importance of each partition, and 𝐻(𝑓 ∈ 𝑠)
and 𝐻(𝑓 ∉ 𝑠) measure the entropies of each branch by conditioning
the labels probabilities to the splitting criterion:

𝐻(𝑥𝑓 ∈ 𝑠) =
∑

𝑙∈
−𝑝(𝑙|𝑠) log2(𝑝(𝑙|𝑠)) − 𝑝(¬𝑙|𝑠) log2(𝑝(¬𝑙|𝑠))

𝐻(𝑥𝑓 ∉ 𝑠) =
∑

𝑙∈
−𝑝(𝑙|¬𝑠) log2(𝑝(𝑙|¬𝑠)) − 𝑝(¬𝑙|¬𝑠) log2(𝑝(¬𝑙|¬𝑠))

(12)

The computation of the conditional probabilities of equation de-
pends on the nature of the feature 𝑓 . Our MLHAT natively handles
categorical and numerical features. In categorical cases, the given
feature has already well-defined partitions 𝑓 ∈ {𝐴,𝐵,… , 𝑋}. Since both
the feature and the label take discrete and mutually exclusive values,
conditional probabilities are obtained by counting the occurrences of
the given label 𝑊𝑙,𝑠 among all the observed instances in the node that
meet the criterion 𝑊𝑠:

𝑝(𝑙|𝑥𝑓 = 𝑠) =
𝑊𝑙,𝑠

𝑊𝑠
, 𝑝(¬𝑙|𝑥𝑓 = 𝑠) = 1 − 𝑝(𝑙|𝑥𝑓 = 𝑠)

(𝑙|𝑥𝑓 ≠ 𝑠) =
𝑊𝑙,¬𝑠

𝑊¬𝑠
, 𝑝(¬𝑙|𝑥𝑓 ≠ 𝑠) = 1 − 𝑝(𝑙|𝑥𝑓 ≠ 𝑠)

(13)

On the other hand, for numerical features that do not have discrete
partition points but move in a certain range, 𝑓 ∈ [𝑎, 𝑏], 𝑎, 𝑏 ∈ R, we
use a common approach in decision trees [38] consisting of modeling
the feature space with Gaussian estimators  (𝜇, 𝜎2). This provides an
efficient way to calculate conditional probabilities given a splitting
point 𝑠 ∈ [𝑎, 𝑏] to create the branches such that:

𝑝(𝑙|𝑥𝑓 ≤ 𝑠) =
𝑝(𝑥𝑓 ≤ 𝑠|𝑙)𝑝(𝑙)

𝑝(𝑥𝑓 ≤ 𝑠)
,

𝑝(¬𝑙|𝑥𝑓 ≤ 𝑠) =
𝑝(𝑥𝑓 ≤ 𝑠|¬𝑙)𝑝(¬𝑙)

𝑝(𝑥𝑓 ≤ 𝑠)

𝑝(𝑙|𝑥𝑓 > 𝑠) =
(1 − 𝑝(𝑥𝑓 ≤ 𝑠|𝑙))𝑝(𝑙)

𝑝(𝑥𝑓 > 𝑠)
,

𝑝(¬𝑙|𝑥𝑓 > 𝑠) =
(1 − 𝑝(𝑥𝑓 ≤ 𝑠|¬𝑙))𝑝(¬𝑙)

𝑝(𝑥𝑓 > 𝑠)

(14)

where 𝑝(𝑥𝑓 ≤ 𝑠) and 𝑝(𝑥𝑓 > 𝑠) are normalizing constants for all labels,
nd 𝑝(𝑙) and 𝑝(¬𝑙) are defined in (10). Finally, 𝑝(𝑥𝑓 ≤ 𝑠|𝑙) and 𝑝(𝑥𝑓 ≤

𝑠|¬𝑙) are obtained from the cumulative density functions, 𝛷𝑓,𝑙(𝑓 ≤ 𝑠)
nd 𝛷𝑓,¬𝑙(𝑓 ≤ 𝑠), associated with the respective Gaussian estimators
maintained in the node for each pair of feature 𝑓 ∈  and target in

A. Esteban et al. Knowledge-Based Systems 304 (2024) 112561
Fig. 2. Example of information gain computation in MLHAT in the categorical and the numerical cases.
d
s
i
i
u
d
t
s
𝛼
a
w
a
d
t

d
s
c
a
a

𝜖

G

𝑙 ∈ . Thus, the inverse conditional probability in each case is obtained
as:

𝑝(𝑥𝑓 ≤ 𝑠|𝑙) = 𝛷𝑓,𝑙(𝑓 ≤ 𝑠) = 0.5
1 + erf(𝑠 − 𝜇)

𝜎
√

2
(15)

For the categorical features, the splitting values to evaluate are
given by the support of the given feature, while for the numerical
features, a binning process from the observed range of the feature
is applied to obtain possible splitting points 𝑠. Fig. 2 shows a very
simple example for each case, obtaining the information gain of the
possible splits given a problem with only one feature and one label.
In the first case, the node has so far received 26 instances, which are
distributed in 16 positive and 10 negative for the only label considered,
which gives it an initial entropy of 𝐻0 = 0.96. For these instances,
the information gain of a hypothetical categorical variable that takes
three possible values is evaluated. After applying the process described
above, it is obtained that splitting on 𝑠 = 𝐴 provides the highest
discriminant power so that split value would be the candidate to
apply the Hoeffding bound and, if it passes it, expand the node as
shown in the figure to create two new branches. In the second case of
Fig. 2, a node has received 200 instances equally distributed between
positive and negative for the considered label, so the initial entropy
is maximum. These instances have a numerical variable that has been
observed to move between in the range [0, 9] approximately. The figure
shows the observed distribution of the variable for each target and
the associated Gaussian estimate. In the example, four possible split
values are considered, obtained from applying the binning process in
the observed range. It is determined that 𝑠 = 4 is the one that maximizes
the information gain. If this candidate exceeded the Hoeffding limit, it
would be used to expand the node into two branches, as shown in the

example.

8
3.5. Concept drift adaptation

ADWIN [30] is an adaptive algorithm that detects changes in data
istribution on a set number of instances. It works by comparing the
tatistical properties of two sub-portions of a window and determining
f there is a significant difference in the mean values. Many methods
n the field of stream learning implement ADWIN [11,16,29]. MLHAT
tilizes ADWIN by incorporating a detector 𝛼 at each node of the
ecision tree and potential background sub-trees. This allows ADWIN
o detect changes in the data distribution that could only impact
pecific features determined by different paths in the tree. Specifically,
monitors the error 𝑒 in the Hamming loss between the baseline 𝑌𝑖
nd the prediction 𝑍𝑖 of the training instances. Upon detection of a
arning drift, a background sub-tree starts growing from the node
ffected, with the same components and expanding upon the new data
istribution. More discussion of the effect of the monitored metric on
he final performance is presented in Section 4.2.
The Hoeffding bound is used to determine the moment when the

ifference between errors in main 𝑒 and alternate 𝑒′ sub-trees are
ignificant enough, with a confidence of 1 − 𝛿𝑎𝑙𝑡, to perform structural
hanges. The Hoeffding bound 𝜖𝑎𝑙𝑡 for alternating trees is based on [11]
nd defined from monitored errors and instances seen by both main 𝑊
nd alternate 𝑊 ′ sub-trees as:

𝑎𝑙𝑡 =

√

2𝑒(1 − 𝑒′)(𝑊 +𝑊 ′) ln(2∕𝛿𝑎𝑙𝑡)
𝑊 ⋅𝑊 ′ (16)

iven this threshold, we have three possible scenarios:

• (𝑒 − 𝑒′) > 𝛿𝑎𝑙𝑡: the alternate tree is better than the main one so
it will be replaced, pruning the previous structure at the node
affected by the concept drift and resetting the drift detector in
the alternate tree for future concept drifts.

A. Esteban et al.

3

a
b
c
p
b
t
a
t

w
c
t

Knowledge-Based Systems 304 (2024) 112561
Algorithm 3: Classification in MLHAT
Input:
𝑋𝑖: an unknown multi-label instance in the 𝑆 domain
𝜂: number of instances a leaf should see to consider high cardinality
𝜅𝑎𝑙𝑡: number of instances an alternate tree should see to being considered relevant
Symbols:
MLHAT : Initialized model trained with at least one instance
𝐷𝑇 (𝑛): subtree growing from a node 𝑛
𝑒: monitored error by 𝛼 at a node
𝑊 : instances seen by each 𝑛, weighted according 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆)
𝛾↓𝐶 : online classifier for low complexity scenario
𝛾↑𝐶 : online classifier for high complexity scenario

1 𝑝𝑎𝑡ℎ ← traverse MLHAT on 𝑋𝑖
2 𝑙𝑒𝑎𝑓 ← leaf node reached by 𝑋𝑖 through 𝑝𝑎𝑡ℎ
3 if node entropy is 0 then ⊳ All the instances discriminated by 𝑝𝑎𝑡ℎ belong to same labelset
4 𝑍𝑖 ← final prediction as the majority labelset
5 else
6 if 𝑊 (𝑙𝑒𝑎𝑓) < 𝜂 then
7 𝑝(𝑍𝑖) ← 𝛾↓𝐶 probabilistic multi-label prediction on 𝑋𝑖 pondered by 𝑒
8 else
9 𝑝(𝑍𝑖) ← 𝛾↑𝐶 probabilistic multi-label prediction on 𝑋𝑖 pondered by 𝑒
10 end if
11 for 𝑛 ∈ 𝑝𝑎𝑡ℎ do ⊳ 𝑍𝑖 is complemented with the ones provided by significant alternate trees
12 if ∃ 𝐷𝑇 ′(𝑛) then
13 𝑙𝑒𝑎𝑓 ′ ← leaf node reached traversing 𝐷𝑇 ′(𝑛) on 𝑋𝑖
14 if 𝑊 (𝑝𝑎𝑡ℎ) > 𝜅𝑎𝑙𝑡 then
15 if 𝑊 (𝑙𝑒𝑎𝑓 ′) < 𝜂 then
16 𝑝(𝑍𝑖)+ ← 𝛾↓𝐶 probabilistic multi-label prediction on 𝑋𝑖 pondered by 𝑒
17 else
18 𝑝(𝑍𝑖)+ ← 𝛾↑𝐶 probabilistic multi-label prediction on 𝑋𝑖 pondered by 𝑒
19 end if
20 end if
21 end if
22 end for
23 𝑍𝑖 ← final prediction after accumulated probabilities normalization
24 end if
a
s
c
o
h
f
p
t
b
o
c
(
i
a
w
T
i

4

t
f

• (𝑒′ − 𝑒) > 𝛿𝑎𝑙𝑡: the alternate tree is not improving the main one
because the concept drift was reversed. In this case, the main tree
remains without changes and the alternate tree is pruned.

• 𝛿𝑎𝑙𝑡 ≥ |𝑒 − 𝑒′|: if no significant differences are found, the two
sub-trees continue to receive instances and expand to eventually
differentiate their performance.

.6. Classification at leaves

In the stream learning paradigm, the instances to be classified can
rrive at any time, without there being a differentiated phase between
uilding the model and generating the predictions. In MLHAT, the
lassification process is detailed in Algorithm 3 and consists of two
hases: (i) traversing the tree with the incoming instance using the tree
ranches that partition the feature space and (ii) assigning a label set
o the instance depending on the leaf state reached. Three scenarios
re considered in the leaf node, related to the entropy and cardinality
hresholds used in learning (see Section 3.3):

• 𝐻0 = 0: minimal entropy implies that all the instances seen until
the moment by the reached node belong to the same label set, so
the target instance is also assigned to that label set.

• 𝐻0 > 0 & 𝑊 ≤ 𝜂: the cardinality of the node is still low, so the
least data demanding classifier 𝛾↓𝐶 is used to assign a label set to
the target instance.

• 𝐻0 > 0 & 𝑊 > 𝜂: the cardinality of the node is high and,
because it is still not partitioned, the decision boundaries in the
feature space should be difficult to determine. Therefore, the
classification of the target instance is performed with the most
computationally complex classifier 𝛾↑𝐶 .

As mentioned, if MLHAT is in the midst of a concept change, it
ill have a main tree and one or more alternate sub-trees that are
andidates to replace the branches whose performance is declining. In
hese cases, the instance to be classified could simultaneously reach
9
leaf node of the main tree and one or more leaves of the alternate
ub-trees. In the context of additional complexity of multi-label stream
lassification, one of the main challenges is to accelerate the speed
f reaction to concept drift. Along these lines, in Section 3.5 we
ave proposed the alarm-based drift early adaptation mechanism. And
ollowing this line, in this section we propose a system for combining
redictions between the main tree and the possible alternate sub-trees
hat an instance to be predicted can reach. The idea is to maintain a
alance between the main structure that has the statistical guarantees
f the Hoeffding bound, and to provide a fast response to possible
oncept drifts. Thus, this weighting will be done under two conditions:
i) only leaves from alternate trees that have received at least 𝜅𝑎𝑙𝑡
nstances (the same threshold as for considering the replacement of an
lternate tree) will be taken into account, and (ii) the prediction will be
eighted based on the error monitored in each of the leaves involved.
he Section 4.2 discusses how this measure affects model performance
n a practical way.

. Experimental study

This section presents the experimental study and comparison with
he state-of-the-art works. The experiments are designed to answer the
ollowing research questions:

• RQ1: Can MLHAT demonstrate competitive performance com-
pared to the state of the art incremental decision tree methods
for multi-label data streams?

• RQ2: Is it more beneficial to use MLHAT’s native multi-label split
criterion rather than applying Problem Transformation (PT) to
use a non-adapted split criterion?

• RQ3: Is MLHAT robust in a multi-label data stream scenario
where concept drift may appear?

A. Esteban et al.

s
h
f
i
e
l
c
I
s
t
I
(
f
t
t
b
p
b
b

4

r
o
a
b

Knowledge-Based Systems 304 (2024) 112561
Table 2
Algorithms included in the comparative studies.
Family Ref. Year Acr Algorithm Adaptable to

concept-drift
Adaptable to
class-imbalance

BR+IDT [10] 2000 HT Hoeffding Tree ✕ ✓

BR+IDT [11] 2009 HAT Hoeffding Adaptive Tree ✓ ✓

BR+IDT [24] 2018 EFDT Extremely Fast Decision Tree ✕ ✓

BR+IDT [25] 2019 SGT Stochastic Gradient Tree ✕ ✓

BR+IDT [26] 2021 MT Mondrian Tree ✕ ✓

BR+Bayesian [32] 2009 NB Gaussian Naïve Bayes ✕ ✓

BR+Distance [39] 2021 kNN k-Nearest Neighbors ✕ ✓

BR+Rules [40] 2016 AMR Adaptive Model Rules ✓ ✓

BR+Ensb [32] 2009 ABA ADWIN Bagging + Logistic Regression ✓ ✓

BR+Ensb [32] 2009 ABO ADWIN Boosting + Logistic Regression ✓ ✓

BR+Forest [29] 2017 ARF Adaptive Random Forest ✓ ✓

BR+Forest [26] 2021 AMF Aggregated Mondrian Forest ✕ ✓

AA+IDT [12] 2012 MLHT Multi-Label Hoeffding Tree ✕ ✕

AA+IDT [12] 2012 MLHTPS MLHT of Prune Set ✕ ✕

AA+IDT [27] 2017 iSOUPT Incremental Structured Output Prediction Tree ✕ ✕

AA+NN [7] 2024 MLBELS Multi-Label Broad Ensemble Learning System ✕ ✕

AA+Ensb+DT [14] 2018 GOCC Online Stacked Ensemble of Classifier Chain of HT ✕ ✓

AA+Ensb+DT [14] 2018 GORT Online Stacked Ensemble of iSOUPT ✕ ✕

AA+IDT This 2024 MLHAT Multi-Label Hoeffding Adaptive Tree ✓ ✓
d
p
t
𝑢
𝑍
e
c
s
f
i
r

4

w
t
a
𝛼

d
l
T

4.1. Experimental setup

4.1.1. Algorithms
Table 2 presents a taxonomy of the 16 multi-label incremental algo-

rithms used in this experimental study, including Binary Relevance (BR)
to transform the problem and Algorithm Adaptation (AA) methods, as
well as whether they are adaptable to concept drift and adaptable to
class-imbalance (yes (✓), no (✕)). As discussed in Section 2, we have
considered whether algorithms are adaptive to class imbalance if they
include explicit elements such as an ensemble-based construction or our
proposal with dynamic leaf classifiers. The same for concept drift, they
are considered adaptive if they incorporate explicit elements for this
purpose. All algorithms are implemented in Python and are publicly
available in the River library [39]. The source code of MLHAT is also
publicly available in the repository associated with this work2 for the
ake of reproducibility. In model selection, approaches based on IDT
ave special prevalence. Thus, we consider 5 multi-class IDTs trans-
ormed to MLC using BR; 3 IDTs for MLC, and 2 forest-based methods,
.e., ensembles designed for specific trees as base models. Moreover, the
xperimentation includes other algorithms from well-known paradigms
ike neighbors, rules, Bayes, and bagging and boosting, as well as the re-
ent MLBELS, based on neural network and trained in mini-batches [7].
n this last case, in order to make the experimentation conditions as
imilar as possible to the other proposals, which work purely online,
he smallest batch size studied by the authors, 50 instances, is used.
n general, the hyperparameter setting has followed three principles:
i) not to make individualized adjustments per dataset, (ii) to start
rom the configurations suggested by the authors or mostly used in
he literature, and (iii) to keep equivalent configurations in models of
he same family. Thus, all Hoeffding trees, including our MLHAT, have
een configured with Hoeffding significance 𝛿𝑠𝑝𝑙 = 1e−5 and a grace
eriod of 𝜅𝑠𝑝𝑙 = 200, and all ensembles have been configured with 10
ase models. The complete parameter specification per algorithm can
e found in the associated repository.

.1.2. Datasets
Multi-label datasets used in the experimental study cover a wide

ange of properties. On the one hand, we evaluate the performance
f the algorithms included in the study on 29 real datasets publicly
vailable3 of up to 269,648 instances, 31,802 features, and 374 la-
els. These datasets are used to address RQ1 and RQ2. The complete

2 https://github.com/aestebant/mlhat.
3 https://www.uco.es/kdis/mllresources/.
10
specification of each dataset is shown in Table 3 attending to the
number of instances, features, and labels, as well as other statistics like
cardinality (average amount of labels per instance), density (cardinality
divided by the number of labels), and the mean imbalance ratio per
label (average degree of imbalance between labels). Moreover, the last
column indicates whether the instances in the dataset are presented in
a temporal order: yes (✓), no (✕), or this information cannot be known
from the provided description (–). Since in these datasets there is no
explicit information about concept drift, this factor can give an idea
about the chances of finding concept drift in them.

To the authors’ knowledge, there are no public multi-label datasets
that expressly contain information about concept-drift [12,13,41].9
Therefore, to address RQ3, 12 additional datasets are synthetically
generated to study the impact of various types of concept drift. These
datasets have been generated with the MOA framework [42] and are
public in the repository associated to this paper. We employ three
multi-label generators based on Random Tree, Radial Basis Function
(RBF) and Hyper-plane, under two configurations widely used [12]:
30 attributes and 8 labels, and 80 attributes and 25 labels. The drifts
are controlled by two parameters: the label cardinality 𝑍 and the label
dependency 𝑢, that are altered in different ways to generate the four
main types of concept drift in MLC: sudden, gradual, incremental and
recurrent. In all cases, the drifts take place at 3 times depending on
the size 𝑁 of the stream: at times 𝑁∕4, 2𝑁∕4 and 3𝑁∕4, and each
rift changes the underlying concept of the stream. Thus, the controlled
arameters in the first stretch of the stream are 𝑍 = 1.5, 𝑢 = 0.25; in
he second only the label dependency changes, so we have 𝑍 = 1.5,
= 0.15; in the third stretch only the cardinality changes to have
= 3.0, 𝑢 = 0.15; and finally, in the fourth, they both change to

nd up with 𝑍 = 1.5, 𝑢 = 0.25 again. In the recurrent case, only the
onfigurations of the 1st and 3rd stretches are alternated twice. Table 4
hows the main characteristics of these synthetic datasets regarding
eatures, labels, type of concept drift and its width, i.e., for how many
nstances the drift change extends. For more details, refer to the paper
epository.

.1.3. Evaluation metrics
Due to the incremental nature of the data streams, the canonical

ay to evaluate performance working with them follows a test-then-
rain scheme known as prequential evaluation [43]. In this work, we
pply this methodology to all experiments setting a forgetting factor of
= 0.995 and 50 steps between evaluations.
For comparing the performance between algorithms, we employ 11

ifferent metrics that evaluate the total and partial correctness of multi-
abel prediction [31], as well as the total computing time in seconds.
he metrics are defined as follows on the labels 𝐿 and the instances 𝑛.

https://github.com/aestebant/mlhat
https://www.uco.es/kdis/mllresources/

A. Esteban et al.

a

m

S

H

E

l
u
a

Knowledge-Based Systems 304 (2024) 112561
Table 3
Real-world datasets used in the experimental study.
Dataset Abbreviation Instan. Features Labels Card. Dens. MeanIR Temporal order

Flags Flags 194 19 7 3.39 0.48 2.255 ✕

WaterQuality WQ 1,060 16 14 5.07 0.36 1.767 –
Emotions Emo 593 72 6 1.87 0.31 1.478 ✕

VirusGO Virus 207 749 6 1.22 0.20 4.041 ✕

Birds Birds 645 260 19 1.01 0.05 5.407 –
Yeast Yeast 2,417 103 14 4.24 0.30 7.197 ✕

Scene Scene 2,407 294 6 1.07 0.18 1.254 ✕

GnegativePseAAC Gneg 1,392 440 8 1.05 0.13 18.448 –
CAL500 CAL500 502 68 174 26.04 0.15 20.578 ✕

HumanPseAAC Human 3,106 440 14 1.19 0.08 15.289 –
Yelp Yelp 10,806 671 5 1.64 0.33 2.876 ✓

Medical Med 978 1,449 45 1.25 0.03 89.501 ✓

EukaryotePseAAC Eukar 7,766 440 22 1.15 0.05 45.012 –
Slashdot Slashdot 3,782 1,079 22 1.18 0.05 19.462 ✓

Hypercube HC 100,000 100 10 1.00 0.10 – –
Hypersphere HS 100,000 100 10 2.31 0.23 – –
Langlog Langlog 1,460 1,004 75 15.94 0.21 39.267 ✓

StackexChess Stackex 1,675 585 227 2.41 0.01 85.790 ✓

ReutersK500 Reuters 6,000 500 103 1.462 0.01 54.081 –
Tmc2007500 Tmc 28,596 500 22 2.22 0.10 17.134 ✓

Ohsumed Ohsum 13,929 1,002 23 0.81 0.04 7.869 ✓

D20ng D20ng 19,300 1,006 20 1.42 0.07 1.007 ✓

Mediamill Media 43,907 120 101 4.38 0.04 256.405 –
Corel5k Corel5k 5,000 499 374 3.52 0.01 189.568 ✕

Corel16k001 Corel16k 13,766 500 153 2.86 0.02 34.155 ✕

Bibtex Bibtex 7,395 1,836 159 2.40 0.02 12.498 ✕

NusWideCVLADplus NWC 269,648 129 81 1.87 0.02 95.119 –
NusWideBoW NWB 269,648 501 81 1.87 0.02 95.119 –
Imdb Imdb 120,919 1,001 28 1.00 0.04 25.124 ✕

YahooSociety YahooS 14,512 31,802 27 1.67 0.06 302.068 –
EurlexSM Eurlex 19,348 5,000 201 2.21 0.01 536.976 ✓
Table 4
Synthetic datasets used in the experimental study.
Dataset Instances Features Labels Generator Drift type Drift width

SynTreeSud 50,000 20 num.+10 cat. 8 Random tree Sudden 1
SynRBFSud 50,000 80 numeric 25 Random RBF Sudden 1
SynHPSud 50,000 30 numeric 8 Hyper plane Sudden 1
SynTreeGrad 50,000 20 num.+10 cat. 8 Random tree Gradual 500
SynRBFGrad 50,000 80 numeric 25 Random RBF Gradual 500
SynHPGrad 50,000 30 numeric 8 Hyper plane Gradual 500
SynTreeInc 50,000 20 num.+10 cat. 8 Random tree Incremental 275
SynRBFInc 50,000 80 numeric 25 Random RBF Incremental 275
SynHPInc 50,000 30 numeric 8 Hyper plane Incremental 275
SynTreeRec 50,000 20 num.+10 cat. 8 Random tree Recurrent 1
SynRBFRec 50,000 80 numeric 25 Random RBF Recurrent 1
SynHPRec 50,000 30 numeric 8 Hyper plane Recurrent 1
𝑡
f

Example-based metrics evaluate the difference between the actual
nd predicted labelsets, averaged over 𝑛. Given a true labelset 𝑌𝑖 =

{𝑦𝑖1...𝑦𝑖𝐿} and a predicted one 𝑍𝑖 = {𝑧𝑖1...𝑧𝑖𝐿}, the example-based
etrics considered are:

ubset accuracy = 1
𝑛

𝑛
∑

𝑖=0
1|𝑌𝑖 = 𝑍𝑖

amming loss = 1
𝑛𝐿

𝑛
∑

𝑖=0

𝐿
∑

𝑙=0
1|𝑦𝑖𝑙 ≠ 𝑧𝑖𝑙

Example-based precision = 1
𝑛

𝑛
∑

𝑖=0

|𝑌𝑖 ∪𝑍𝑖|

|𝑍𝑖|

Example-based recall = 1
𝑛

𝑛
∑

𝑖=0

|𝑌𝑖 ∪𝑍𝑖|

|𝑌𝑖|

xample-based F1 = 1
𝑛

𝑛
∑

𝑖=0

2|𝑌𝑖 ∪𝑍𝑖|

|𝑌𝑖| + |𝑍𝑖|

(17)

Label-based metrics measure the performance across the different
abels, that can be micro- or macro-averaged depending on if it is
sed the joint statistics for all labels or the per-label measures are
veraged into a single value. Given for each label 𝑙 its true positives
11
𝑝𝑙 =
∑𝑛

𝑖=0 1|𝑦𝑖𝑙 = 𝑧𝑖𝑙 = 1, true negatives 𝑡𝑛𝑙 =
∑𝑛

𝑖=0 1|𝑦𝑖𝑙 = 𝑧𝑖𝑙 = 0,
alse positives 𝑓𝑝𝑙 =

∑𝑛
𝑖=0 1|𝑦𝑖𝑙 = 0, 𝑧𝑖𝑙 = 1, and false negatives 𝑓𝑛𝑙 =

∑𝑛
𝑖=0 1|𝑦𝑖𝑙 = 1, 𝑧𝑖𝑙 = 0, the macro-averaged metrics considered are:

Macro-averaged precision = 1
𝐿

𝐿
∑

𝑙=0

𝑡𝑝𝑙
𝑡𝑝𝑙 + 𝑓𝑝𝑙

Macro-averaged recall = 1
𝐿

𝐿
∑

𝑙=0

𝑡𝑝𝑙
𝑡𝑝𝑙 + 𝑓𝑛𝑙

(18)

while the considered micro-averaged metrics are defined as:

Micro-averaged precision =
∑𝐿

𝑙=0 𝑡𝑝𝑙
∑𝐿

𝑙=0 𝑡𝑝𝑙 +
∑𝐿

𝑙=0 𝑓𝑝𝑙

Micro-averaged recall =
∑𝐿

𝑙=0 𝑡𝑝𝑙
∑𝐿

𝑙=0 𝑡𝑝𝑙 +
∑𝐿

𝑙=0 𝑓𝑛𝑙

(19)

Additionally, Macro-averaged F1 and Micro-averaged F1 are also
considered, defined as the harmonic mean of precision and recall in
an equivalent way to the example-based F1 defined above.

A. Esteban et al.

4

F
h
e
p
e
m
s
i
S
v
s
c
d
e
u

c
l
e

t
a
a
i
t
c
b
t
t
r
T
s

r
t
C
I
d
w
s
p
A
i
t
t
e
P
e
E
p
i
h
b
o
a
g
a
r
t
a
a
t
a
i
d
f
k
T
b
c
f
s
b
t
s
o
s
s
t
r

Knowledge-Based Systems 304 (2024) 112561
Table 5
Hyperparameter study for MLHAT.
Parameter Studied values Final value

Significance for split 𝛿𝑠𝑝𝑙 Fixed by
state-of-the-art

1e−7

Leaf grace period 𝜅𝑠𝑝𝑙 Fixed by state of
the art

200

Significance for tree replacement 𝛿𝑎𝑙𝑡 [0.01, 0.10] 0.05
Alternate tree grace period. 𝜅𝑎𝑙𝑡 [100, 500] 200
Cardinality threshold 𝜂 [100, 1000] 750
Poisson parameter 𝜆 [1, 6] 1
Drift metric 𝑒 Subset Acc.,

Hamming loss,
Micro-F1, Macro-F1

Hamming loss

𝛾↓𝐶 base HT, kNN, NB, LR kNN
𝛾↓𝐶 transformation BR, LP, CC LP
𝛾↑𝐶 base NB, LR LR
𝛾↑𝐶 ensemble BA [35], BO [35],

BOLE [33], SRP
[46]

BA

𝛾↑𝐶 transformation BR, LP, CC BR

4.2. Analysis of components in MLHAT

As discussed in the model description in Section 3, MLHAT is highly
configurable through a wide variety of hyperparameters ranging from
the entropy and cardinality thresholds to the classifiers to be used in
the leaves and the metrics to be used to monitor the concept drift. The
configuration of these hyperparameters is non-trivial, as it encompasses
a multitude of possible combinations that evolve categorical, integer,
decimal, and logarithmic parameters. In response to this challenge,
we employ a well-known systematic approach for hyperparameter op-
timization [44] that combines the Tree-structured Parzen Estimator
(TPE) algorithm to generate configurations that maximize the objective
function, with the Hyperband pruner that accelerates the search by
discarding the less promising combinations. This methodology allows
us to efficiently traverse the vast hyperparameter space of MLHAT, as
well as to understand the importance of each hyperparameter and its
influence on the final performance. The study has been implemented
in Python through the Optuna framework [45].

The conditions of the study are primarily determined by the op-
timization function and the range of each hyperparameter. The opti-
mization function is defined as the Subset accuracy, measured through
prequential evaluation (see Section 4.1.3). To make the iterative search
feasible, a minimum subset of datasets was selected from the full exper-
imental set. These datasets were chosen based on lower complexity and
maximizing differences in terms of cardinality, density, and concept
drift. The selected datasets, representing 19% of the total set used in the
experiment, are: Flags, Emotions, VirusGO, Birds, Yeast, Scene, SynHPSud,
and SynHPGrad. Details on these datasets can be found in Tables 3 and
.
The search ranges for each hyperparameter are shown in Table 5.

or numerical attributes, typical ranges from Hoeffding tree literature
ave been used. To monitor concept drift, any MLC metric can be
mployed. However, it is preferable to use a metric that covers overall
erformance and is sensitive to class imbalance, as it will operate at
ach tree node level. In this study, two example metrics and two label
etrics are tested. For the leaf nodes, any pair of online multi-label clas-
ifiers can be used, provided they meet two criteria. First, they must not
ncorporate drift detection mechanisms, as this is done at the tree level.
econd, they should balance short and long-term performance to cover
arious scenarios a leaf may encounter, as discussed in Section 3.3. The
tudy examines different classifier complexities. For low-complexity
lassifiers, it represents four main paradigms in online classification:
ecision trees, distance-based models, Naïve Bayes, and linear mod-
ls. For high-complexity classifiers, it compares different ensembles,

sing low-complexity methods as base models to control overall model s

12
omplexity. All ensembles use 10 base models, as is standard in on-
ine learning paradigms [16]. Both low and high-complexity classifiers
xplore various transformations from multi-label to single-label space.
Fig. 3 shows the results of the hyperparameters search, including

he optimization history obtained with the framework described above,
nd the importance of each hyperparameter in the final performance
ccording to the ANOVA functional framework [47], that quantifies the
nfluence of both single hyperparameters and the interactions between
hem from the marginal predicted performance. Finally, the parallel
oordinate plot shows the most promising hyperparameter combination
ased on the average performance in the subset of datasets selected for
his phase. Please note that not all combinations are present because of
he guided search method employed. The best hyperparameter configu-
ation found by the optimization method is shown in the last column of
able 5. This configuration will be used in the rest of the experimental
tudy over the whole set of datasets.
The study indicates that the high-complexity classifier is the most

elevant parameter for MLHAT performance, specifically the label
ransformation method, where BR performs much better than LP and
C, probably because it deals more efficiently with label imbalance.
n contrast, the transformation used in the low-complexity classifier
oes not have very important differences in the final result: when
orking with little data, the multi-label space is small and the three
tudied methods provide equivalent results. The second most important
arameter is the threshold for establishing a high-cardinality scenario.
lthough the results will vary depending on the pair of classifiers used,
t appears that around 600 instances received at a leaf node is the op-
imal point to move to the most complex classifier. When dealing with
he highly complex scenario, it becomes evident that bagging-based
nsembles, represented by Oza Bagging (BA) and Streaming Random
atches (SRP), offer more advantages compared to boosting-based
nsembles, namely Oza Boosting (BO) and Boosting Online Learning
nsemble (BOLE). This observation arises from the fact that boosting
rimarily concentrates on enhancing the performance of misclassified
nstances. However, in the context of MLHAT, where the feature space
as already undergone discrimination through the tree structure, this
oosting emphasis may result in overfitting. As a base classifier, LR far
utperforms Gaussian Naïve Bayes (NB), which, having not completed
ny runs because they were pruned earlier, does not appear in the
raph. In the low complexity case, working with a single model and not
n ensemble, it is required a more sophisticated learner to obtain good
esults. Thus, HT and kNN are the most promising. Finally, attending
o the metric for monitoring concept drift, although not as influential
s other parameters, there is a clear loser: macro-average is not a good
pproach, as it does not take into account label imbalance. The rest of
he metrics have a similar potential to detect concept drift in general,
lthough probably in studies where only a specific type of concept drift
s affected, one metric would respond better than another to accelerate
etection. The final configuration for MLHAT, showed in Table 5,
ollows these lines: for the low complexity leaf classifier a multi-label
NN obtains better performance than the closest alternative of HT.
he LP transformation is preferred due to the possibility to capture
etter the label correlation than BR. The high complexity classifier is
onformed as a bagging of LRs, that combines good performance and
ast execution in data-intense scenarios. Hamming loss is the metric
elected for monitoring the concept drift. This metric that maintains a
alance between the proportion of correct and incorrect labels inside
he labelset, rather than relying on subset accuracy, which is too
trict to be informative. With this configuration, 620 instances are the
ptimal threshold a leaf should see to pass from low to high cardinality
cenarios, and 450 are the minimum instances an alternate tree should
ee to try to replace the main tree. Finally, the 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆 = 1) indicates
hat is desirable to model the instances’ weight as events that occur
elatively infrequently but with a consistent average rate.
Once the MLHAT hyperparameters have been established, the last
tudy examines the effect of combining the predictions of the alternate

A. Esteban et al. Knowledge-Based Systems 304 (2024) 112561
Fig. 3. Automatic optimization of MLHAT.
Fig. 4. Effect on the performance of combining predictions from the main and the alternate trees in MLHAT.
trees that are constructed during the occurrence of concept-changes
explained in Section 3.6. This study focuses on the micro-average F1
score obtained with the fixed parameters of Table 5 and altering only
the way of obtaining the predictions during the prequential evaluation.
Fig. 4 shows the differences between results per dataset. Combining
the predictions gives an average F1 score of 0.4916, while using the
main tree alone gives 0.4475. In other words, the method proposed in
Section 3 improves the results on average by 5%. The results per dataset
will depend on whether MLHAT detects the concept drift alarm and
whether it is finally confirmed or not. In most datasets, this measure
has little effect because either the concept drift does not occur or it
is quickly confirmed and the alternate structure becomes part of the
main tree. In any case, since the grace period 𝜅 must be exceeded
𝑎𝑙𝑡

13
to consider the predictions of the alternate trees, and the predictions
are weighted with the branch error in real time, the inclusion of the
possible alternate trees is done in a fairly conservative manner that
prevents it from having significant adverse effects. Moreover, we see
datasets such as D20ng, Nuwideb or synthetic datasets with explicit
concept drift information where combining the predictions has a very
positive effect on the average result, with differences of up to 30 times
in F1. This is due to the fact that in these cases there are more gradual
concept drifts in which it is positive to consider at the same time the
main tree and the alternatively emerging branches. In conclusion, this
measure is considered positive for the overall performance of MLHAT
and will be used in the remainder of the comparative study.

A. Esteban et al.

b
t
d
t
t
o
o
r
s
a
i
a
h
r
d
t
a
t
o
a
w
m

Knowledge-Based Systems 304 (2024) 112561
Table 6
Results for example-based F1 on each dataset.
Dataset MLHAT NB HT EFDT MT AMF ABOLR GORT MLHTPS MLBELS

KNN AMR HAT SGT ARF ABALR GOCC MLHT iSOUPT

Flags 0.605 0.619 0.635 0.554 0.696 0.677 0.696 0.634 0.613 0.694 0.617 0.561 0.557 0.553 0.557 0.615 0.628 0.554 0.450
WQ 0.533 0.524 0.525 0.528 0.394 0.406 0.430 0.259 0.330 0.503 0.480 0.524 0.528 0.530 0.517 0.239 0.361 0.522 0.428
Emo 0.446 0.445 0.601 0.291 0.544 0.542 0.492 0.318 0.019 0.461 0.338 0.273 0.283 0.294 0.288 0.333 0.477 0.291 0.514
Virus 0.730 0.702 0.095 0.561 0.196 0.439 0.196 0.355 0.428 0.373 0.841 0.539 0.561 0.577 0.537 0.337 0.164 0.547 0.520
Birds 0.482 0.062 0.000 0.089 0.000 0.000 0.038 0.026 0.023 0.039 0.041 0.072 0.070 0.377 0.380 0.000 0.000 0.089 0.134
Yeast 0.588 0.562 0.533 0.464 0.582 0.575 0.570 0.422 0.454 0.548 0.461 0.463 0.465 0.563 0.503 0.519 0.551 0.476 0.591
Scene 0.948 0.811 0.611 0.916 0.419 0.533 0.646 0.193 0.538 0.803 0.812 0.913 0.912 0.933 0.933 0.184 0.622 0.876 0.786
Gneg 0.913 0.724 0.682 0.948 0.623 0.632 0.621 0.205 0.678 0.728 0.865 0.947 0.946 0.953 0.953 0.392 0.628 0.950 0.696
CAL500 0.351 0.349 0.348 0.327 0.314 0.305 0.314 0.280 0.305 0.317 0.325 0.330 0.325 0.327 0.322 0.338 0.297 0.327 0.318
Human 0.885 0.588 0.348 0.896 0.358 0.478 0.410 0.095 0.209 0.672 0.467 0.890 0.894 0.904 0.904 0.295 0.234 0.862 0.678
Yelp 0.836 0.631 0.373 0.705 0.552 0.617 0.650 0.388 0.453 0.758 0.616 0.741 0.743 0.770 0.771 0.438 0.510 0.723 0.666
Med 0.539 0.419 0.002 0.199 0.375 0.395 0.525 0.129 0.196 0.135 0.453 0.130 0.121 0.212 0.166 0.231 0.002 0.217 0.667
Eukar 0.912 0.726 0.317 0.903 0.509 0.682 0.617 0.038 0.403 0.786 0.579 0.912 0.911 0.922 0.922 0.260 0.207 0.882 0.790
Slashdot 0.361 0.149 0.000 0.018 0.060 0.108 0.159 0.049 0.007 0.085 0.175 0.007 0.006 0.058 0.077 0.150 0.006 0.045 0.421
HS 0.855 0.846 0.401 0.839 0.726 0.873 0.820 0.324 0.587 0.867 0.614 0.853 0.853 0.892 0.879 0.501 0.562 0.689 –
HC 0.993 0.994 0.966 0.981 0.906 0.963 0.915 0.015 0.994 0.993 0.995 0.987 0.987 0.993 0.993 0.786 0.806 0.909 0.987
Langlog 0.221 0.047 0.000 0.030 0.000 0.000 0.054 0.013 0.006 0.002 0.006 0.018 0.019 0.198 0.199 0.001 0.029 0.033 0.125
Stackex 0.222 0.098 0.001 0.082 0.009 0.018 0.120 0.030 0.014 0.028 0.033 0.097 0.096 0.094 0.100 0.144 0.000 0.103 0.309
Reuters 0.034 0.165 0.000 0.001 0.113 0.129 0.171 0.012 0.047 0.066 0.092 0.000 0.000 0.035 0.027 0.069 0.002 0.000 0.460
Tmc 0.628 0.451 0.294 0.590 0.489 0.489 0.425 0.288 0.389 0.482 0.480 0.600 0.590 0.609 0.619 0.215 0.446 0.580 0.633
Ohsum 0.398 0.042 0.233 0.144 0.286 0.309 0.257 0.142 0.017 0.104 0.004 0.188 0.180 0.283 0.260 0.142 0.294 0.174 0.378
D20ng 0.600 0.090 0.000 0.079 0.329 0.307 0.375 0.124 0.067 0.108 0.066 0.208 0.185 0.367 0.327 0.083 0.259 0.162 0.530
Media 0.633 0.564 0.170 0.528 0.491 0.498 0.492 0.294 0.450 0.553 0.504 0.532 0.531 0.624 0.623 0.426 0.357 0.500 0.548
Corel5k 0.197 0.111 0.012 0.016 0.059 0.114 0.121 0.012 0.108 0.259 0.163 0.013 0.014 0.467 0.467 0.043 0.012 0.014 0.204
Corel16k 0.226 0.165 0.010 0.029 0.054 0.132 0.141 0.016 0.059 0.285 0.099 0.012 0.011 0.510 0.511 0.059 0.082 0.015 0.225
Bibtex 0.310 0.019 0.000 0.159 0.171 0.183 0.190 0.145 0.095 0.120 0.111 0.144 0.145 0.124 0.129 0.067 0.088 0.159 0.289
NWC 0.404 0.258 0.219 0.049 0.125 0.172 0.160 – – 0.162 – 0.041 0.040 0.394 0.403 0.008 0.138 0.050 –
Imdb 0.192 0.141 0.175 0.017 0.029 0.035 0.060 – – 0.023 – 0.039 0.042 0.198 0.196 0.252 0.006 0.027 0.347
NWB 0.431 0.247 0.106 0.060 0.085 0.174 0.177 – – 0.173 – 0.058 0.057 – 0.387 0.006 0.050 0.048 –
YahooS 0.450 0.205 0.367 0.387 0.202 0.257 0.214 – – 0.216 – 0.443 0.430 0.410 0.403 0.401 0.019 0.413 0.483
Eurlex 0.527 0.205 0.091 0.478 0.334 0.348 0.234 – 0.085 0.271 – 0.588 0.572 0.535 0.536 0.090 0.018 0.553 –

Average 0.531 0.386 0.262 0.383 0.324 0.367 0.364 0.185 0.280 0.375 0.394 0.391 0.390 0.493 0.484 0.246 0.253 0.380 0.488
Ranking 3.387 8.196 13.484 9.661 11.097 9.419 8.806 15.823 14.726 9.355 11.306 9.435 9.629 5.806 5.839 13.032 13.984 9.839 7.177

Best results are in bold.
Non finished experiments due to scalability problems marked with –. The physical limitations for all the experiments are set to 200 GB of RAM and 360 h of executions.
4.3. Analysis of MLHAT compared to previous proposals

This section evaluates and compares the overall performance of
the 19 online algorithms in the 31 real world datasets for the 11
MLC metrics, plus time of execution, to address RQ1. The analysis is
organized as follow. Table 6 analyzes in detail the results broken down
y model and dataset, showing the detail of one of the MLC metrics of
he study: the example-based F1. We have chosen to show this metric in
etail due to its relevance in the MLC field as it adequately summarizes
he balance between sensitivity and specificity of the different labels
hat make up the dataset. Due to space limitations and the large number
f methods and datasets included in the experimentation, the details
f the rest of the metrics included in the study are available in the
epository associated with the work.4 The last two rows of Table 6
how the summary of the metric under study in two useful ways to get
n idea of the overall performance of each method: On the one hand,
t is indicated the average that each model has obtained taking into
ccount all the datasets that make up the body of the table. On the other
and, the ranking of each model is shown as the position it obtains with
espect to the other methods in the comparison, averaged over all the
atasets that make up the body of the table. These two statistics are in
urn obtained for the rest of the MLC metrics that make up the study,
nd are shown in Tables 7 and 8 respectively. Thus, Table 6 serves
o make a detailed study of the particularities of each model by type
f dataset, while Tables 7 and 8 show the general trends by approach
nd family of algorithms. In addition, our experiments are supported
ith statistical tests that validate the significant differences between
ethods. Specifically, the Friedman test [48] is applied for each metric

4 https://github.com/aestebant/mlhat.
14
under study with the rankings in Table 8. Friedman’s test shows that
there are significant differences with high confidence (𝑝−value → 0) for
all metrics. Therefore, the post-hoc Bonferroni–Dunn procedure [48] is
applied to a selection of the most representative metrics to find between
which groups of algorithms these differences occur. Fig. 5 shows the
results at confidence level 𝛼 = 99% for subset accuracy, hamming loss,
example-based F1, micro-averaged F1, macro-averaged F1, and time.

The results show that MLHAT outperforms on average the other
methods in accurate prediction of the labelset of each instance with
subset accuracy of 33.23%, as well as the best balance between false
positives and false negatives at the instance level (example-based F1
of 53.06%), and at the label level both absolute (macro F1 of 40.64%)
and prevalence-weighted (micro F1 of 53.42%). These differences are
supported by statistical tests, which indicate that for these metrics
MLHAT outperforms the baseline of the Bayesian and rules approaches,
NB and AMR, as well as non-Hoeffding IDTs SGT and MT. This indicates
that most single-model proposals do not deal well with the additional
complexity of MLC transformed with BR in terms of predicting the exact
labelset, the average match by instances, nor the average match by
labels. In this line, MLBELS and iSOUPT obtain better results than these
proposals, showing the potential to adapt specific components of the
decision tree to the multi-target paradigm. In the same way, we see
that GOCC and GORT, that also incorporate specific MLC mechanisms,
are also very competitive. However, these methods obtain worse results
than MLHAT with differences per metric. In the case of MLBELS, it is
observed that it has problems matching exactly the predicted labelset,
although it maintains a good average of hits per label. This makes it
significantly worse than MLHAT in subset accuracy, hamming loss, and
macro F1, while in Micro F1 and example-based F1, it is at the same
level. This may be due to the method used for keeping the co-relation

between labels, which is modeled with a neural network. For iSOUPT,

https://github.com/aestebant/mlhat

A. Esteban et al. Knowledge-Based Systems 304 (2024) 112561
Table 7
Average results for each evaluation metric considering all datasets.
Algorithm Su. Acc H. Loss Ex. F1 Ex. Pre Ex. Rec Mi. F1 Mi. Pre Mi. Rec Ma. F1 Ma. Pre Ma. Rec Time (s)

MLHAT 0.3323 0.0745 0.5306 0.7494 0.5397 0.5342 0.6296 0.4910 0.4064 0.5899 0.3833 17,355
KNN 0.2575 0.0850 0.3857 0.4238 0.3808 0.4198 0.5405 0.3746 0.2802 0.3953 0.2629 137,827
NB 0.1216 0.1499 0.2618 0.2597 0.3550 0.2725 0.3346 0.3620 0.1925 0.1920 0.2877 10,122
AMR 0.2534 0.0861 0.3828 0.4212 0.3826 0.4076 0.6589 0.3718 0.2911 0.3823 0.2764 39,651
HT 0.1902 0.0891 0.3236 0.3694 0.3205 0.3682 0.5291 0.3142 0.2309 0.3045 0.2190 56,964
HAT 0.2262 0.0842 0.3674 0.4135 0.3650 0.4095 0.5436 0.3558 0.2618 0.3326 0.2480 58,059
EFDT 0.2101 0.0857 0.3642 0.4066 0.3661 0.4095 0.5223 0.3599 0.2689 0.3283 0.2555 49,423
SGTa 0.0474 0.2863 0.1848 0.2096 0.3119 0.2059 0.2057 0.3162 0.1510 0.1566 0.3010 66,433
MTa 0.1593 0.1010 0.2804 0.3443 0.2652 0.3185 0.5954 0.2601 0.2053 0.3156 0.1925 61,381
ARF 0.2489 0.0750 0.3746 0.4307 0.3596 0.4164 0.7160 0.3498 0.2714 0.4287 0.2490 36,633
AMFa 0.2458 0.0874 0.3938 0.4584 0.3786 0.4351 0.6870 0.3716 0.3026 0.4280 0.2801 119,653
ABALR 0.2702 0.0826 0.3911 0.4336 0.3856 0.4176 0.6859 0.3734 0.2986 0.3988 0.2774 16,920
ABOLR 0.2669 0.0837 0.3896 0.4305 0.3858 0.4144 0.6817 0.3734 0.2982 0.3969 0.2787 18,540
GOCCa 0.2980 0.0853 0.4935 0.6797 0.5103 0.5022 0.5801 0.4689 0.3928 0.5472 0.3687 74,899
GORT 0.2887 0.0844 0.4836 0.6848 0.5018 0.4920 0.5810 0.4565 0.3802 0.5407 0.3560 35,117
MLHT 0.1667 0.1247 0.2459 0.2816 0.2366 0.2476 0.3072 0.2251 0.1155 0.1370 0.1356 1,934
MLHTPS 0.1588 0.1012 0.2534 0.3033 0.2465 0.2727 0.4522 0.2438 0.1749 0.2211 0.1772 39,472
iSOUPT 0.2510 0.0880 0.3803 0.4216 0.3779 0.4103 0.6762 0.3677 0.2748 0.3624 0.2596 8,577
MLBELSa 0.2779 0.1027 0.4880 0.5595 0.5251 0.4978 0.5234 0.4805 0.2977 0.5280 0.2973 110,060

Best results are in bold.
a Results computed without considering all datasets due to scalability limitations. The physical limitations for all the experiments are set to 200GB of RAM and 360 h of executions.
Table 8
Friedman’s test and average ranks for each evaluation metric.
Algorithm Su.Acc H.Loss Ex.F1 Ex.Pre Ex.Rec Mi.F1 Mi.Prec Mi.Rec Ma.F1 Ma.Prec Ma.Rec Time (s)

MLHAT 4.129 6.323 3.387 3.548 4.290 3.774 7.710 4.613 3.839 3.935 4.161 6.419
KNN 7.290 9.355 8.194 9.290 9.032 8.000 10.226 9.065 8.419 7.290 9.129 15.226
NB 14.935 13.468 13.484 15.194 11.710 14.113 15.016 11.387 13.081 14.629 11.677 3.710
AMR 9.790 8.048 9.661 9.855 10.081 9.403 7.242 9.919 9.468 8.823 9.726 8.613
HT 11.065 9.258 11.097 11.129 11.403 10.968 10.645 11.339 11.177 11.855 11.339 7.581
HAT 9.371 9.500 9.419 9.903 9.677 9.065 10.516 9.645 9.194 10.355 9.548 9.387
EFDT 10.097 11.129 8.806 9.226 8.984 8.839 11.129 8.887 8.532 10.435 8.887 11.065
SGT 17.194 18.339 15.823 16.177 11.919 16.145 17.758 11.435 13.113 16.016 10.435 17.726
MT 13.726 11.952 14.726 13.113 14.984 14.177 10.113 15.113 13.758 12.919 14.177 12.371
ARF 8.419 5.129 9.355 8.871 9.871 8.968 5.161 9.871 9.516 6.677 10.226 10.742
AMF 11.048 9.016 11.306 10.403 12.081 11.210 7.855 12.145 11.048 9.597 11.565 17.597
ABALR 8.742 6.161 9.435 9.371 10.177 9.145 5.210 10.177 10.048 8.371 10.403 6.194
ABOLR 8.548 6.806 9.629 9.468 10.048 9.355 5.581 10.177 9.919 8.661 10.048 6.032
GOCC 6.403 8.500 5.806 4.919 5.581 5.984 9.468 5.774 4.532 5.048 5.129 14.742
GORT 7.210 8.726 5.839 4.339 5.903 5.887 8.952 5.935 4.758 4.919 5.323 11.323
MLHT 10.290 15.226 13.032 13.871 13.194 13.645 15.806 13.355 15.774 16.871 14.677 1.000
MLHTPS 12.645 12.323 13.984 13.339 14.113 14.419 12.516 14.242 14.419 15.000 14.210 9.806
iSOUPT 9.726 7.694 9.839 10.161 10.194 9.532 6.629 10.000 10.484 10.419 10.548 3.935
MLBELS 9.371 13.048 7.177 7.823 6.758 7.371 12.468 6.919 8.919 8.177 8.790 16.532

Friedman’s 𝜒2 165.39 201.67 185.01 205.32 143.37 190.97 224.76 138.02 187.20 251.68 145.12 418.51
𝑝-value 2.2e−16 2.2e−16 2.2e−16 2.2e−16 2.2e−16 2.2e−16 2.2e−16 2.2e−16 2.2e−16 2.2e−16 2.2e−16 2.2e−16

Best results are in bold.
the results are worse because it does not control the concept drift
as MLHAT does. This factor also makes MLHAT outperform previous
Hoeffding trees, although they will be discussed in detail in Section 4.4.
GOCC and GORT are also close to MLHAT in subset accuracy and
F1 score, as they are potent ensembles that combine several IDT ge-
ometrically averaged. However, combining 10 base trees still performs
worse than MLHAT because they do not incorporate their specific tree-
level adaptations. kNN works quite well without the need to explicitly
consider the concept drift because it already works with a window of
the n most recent instances. Finally, ensembles in general also perform
better because they combine several classifiers and incorporate concept
drift detectors usually. Thus, statistical tests indicate that MLHAT only
may not differ from kNN and ensemble-based methods like MLBELS,
GOCC, ARF, or ABA in different metrics, which are significantly more
complex as the differences in time indicate. Although when this occurs,
there is no algorithm that excels in more than one metric or that
achieves better results on average, so we can state that there is no clear
alternative to MLHAT in terms of overall accuracy.

On the other hand, the results indicate a weakness of MLHAT in
terms of the accuracy of the positive labels, that is, it tends to predict

an accurate subset of the real labelset, but without including all the

15
active labels. This affects the results in Hamming loss, making MLHAT
not statistically superior to the most potent previous methods based
on ensembles. Although it is not statistically inferior either. This also
affects the micro-averaged precision, where MLHAT does not obtain the
best average results either. Thus, it can be seen that obtaining a good
accuracy across instances, or in other words, minimizing Hamming
loss, is a complicated problem, where the performance of the main
proposals is blurred. Thus, in this metric, the ensemble-based methods
of ABA and Adaptive Random Forest (ARF) obtain the best results,
although MLHAT obtains good enough recall results to be superior
overall through the F1 score. Other models like iSOUPT and Adaptive
Model Rules (AMR) are also at the same level of performance in this
metric according to statistical tests. However, we can see that these
algorithms obtain these results at the cost of worse recall rates, while
MLHAT remains competitive in this metric in all scenarios, making the
overall performance in the end superior.

Regarding the real-time factor, the results show that MLHAT is in
the middle part of the ranking, close to the BR+HAT transformation. It
is slower than the rest of the multi-label IDTs and other less sophisti-
cated proposals, such as NB or LR’s ensembles. On the other hand, it

is faster than non-Hoeffding IDTs SGT and MT, which have scalability

A. Esteban et al.

p
A
k
t
k
s
a
m
d
m
t
a
d
d
c

t
f
d
B
M
o
l
c
i
b
b
g
t
l
o
C
d
m
d
p

Knowledge-Based Systems 304 (2024) 112561
Fig. 5. Critical distance of Bonferroni–Dunn’s post-hoc tests (𝛼 = 99%).
o
t
a
s
l
g
M

roblems for larger datasets. This is accentuated in the forest approach
MF. MLHAT is also faster than the most similar performing methods:
NN, ARF, and MLBELS. On the one hand, kNN is directly dependent on
he number of features and instances. Although MLHAT also maintains
NNs in the leaves, the initial partition of the problem using the tree
tructure considerably accelerates the process. ARF, GOCC and GORT
re slower because they assembles IDTs in a more computationally de-
anding system with concept drift detectors at tree level, while MLHAT
rift detectors operate at branch level, maintaining smaller alternate
odels. Finally, MLBELS has scalability issues that cause larger datasets
o fail. This is due to the combination of an ensemble that maintains
s many models as labels, and a mechanism that maintains a pool of
iscarded models that increases up to 100 per label. Section 4.6 will
iscuss this factor in more detail in conjunction with the computational
omplexity and memory consumption evolution of the model.
The results per dataset for a specific metric from Table 6 confirm

hat MLHAT is not only better on average but consistently outperforms
or datasets with varying characteristics, being the best in 12 of 31
ata sets and ranking in the first quartile in 23 of 31 data sets.
eyond comparison, these results help identify the problems where
LHAT performs best and where it may be more appropriate to use
ther algorithms. Thus, we can see that for extremely short flows,
ess than 1000 instances, MLHAT works well in high-dimensionality
ases such as Medical and VirusGO where there are more features than
nstances. If there are fewer features, other simpler models perform
etter. As other authors discussed [12], this is due to Hoeffding trees
eing conservative models that need a large number of instances to
row. For longer streams, MLHAT generally performs very well, as
he tree can grow properly. However, if the number of features is
ow (less than 500), ensemble-based methods like ABA or ARF can
btain better results, as seen in the cases of EukaryotePseACC, and
orel5k. MLHAT performs better than the other algorithms in high
imensional spaces, probably because of the partitioning of the truly
ulti-label feature space. By considering label co-occurrence in the
ecision tree partitioning process, it better handles the additional com-
lexity of this scenario compared to transforming the problem or using
16
ther multi-label decision trees that do not incorporate Bernoulli at
his stage. Additionally, keeping two types of classifiers in the leaves
llows MLHAT to remain competitive across streams of all lengths: in
horter cases, MLHAT’s behavior more closely mimics a kNN, while in
onger ones, it approximates an ABA. Finally, we can also highlight the
ood performance of MLHAT on unbalanced datasets (given by a high
eanIR) like Mediamill, YahooSociety, EurlexSM or NuwWideCVLAD-

plus among others. This is also a consequence of adapting the leaves
classifier to the cardinality of the labels seen so far, which prevents
overfitting of the majority labels and, on the other hand, moves to a
more advanced classifier when the complexity of the dataset requires
it.

4.4. Analysis of MLHAT compared to previous Hoeffding trees

After comparing MLHAT with all other online MLC paradigms, the
second study addresses RQ2 by focusing the comparison on previous
Hoeffding IDTs and specifically HAT, an algorithm with several com-
mon elements with MLHAT but ignoring the additional complexity of
multi-label learning. For this analysis, Tables 7, 8, and 6, and Fig. 5
previously discussed are analyzed putting the focus on the Hoeffding
trees.

As has been shown in the previous section, MLHAT is 10.61%
better at predicting the exact labelset for an instance than the trans-
formation BR+HAT, and around 15% better in the different versions
of the F1 score, indicating better accuracy per label. These differences
are confirmed by Bonferroni–Dunn, that indicates the superiority of
MLHAT in all the metrics except for Hamming loss and the time of
execution, in which they are equivalent. This implies that introducing
a natively multi-label split criterion that takes into account label co-
occurrence through a multivariate Bernoulli distribution is a more
effective approach than trying to classify each label separately with
BR+HAT. In addition, considering this occurrence allows our model
to adapt to the label imbalance that affects the number of labels that
each leaf separates, which also contributes to increase the benefits of
MLHAT over HAT. Datasets with explicit temporal information gener-

ally show that MLHAT is more responsive to possible concept drifts

A. Esteban et al.

m
t
t
c
c
S
o
i
m
l
e

4

e
i
c
d
t
o
t
d
a
M
p
t

e
c
t
i
p
h
p
t
u
m
n
i
a
o
I
t
i
v
d
p
i
o
t
c

d
s
d
S
c
t
h
e
d
a
i
H
o
d
a
(
i
a

d

Knowledge-Based Systems 304 (2024) 112561
than HAT. This means that, although both use ADWIN-based branch-
level detectors, MLHAT’s approach of considering all labels together
obtains better results than considering the accuracy of each label
individually. However, as the RBF generator-based datasets indicate,
the HAT drift detector may perform better with data following this
distribution. Finally, in terms of execution time, MLHAT is on average
2.7 times faster than HAT. This is because in BR, a separated tree must
be maintained for each label, which is slower than maintaining a single
tree, even though it has an extra computational load due to the leaf
classifiers.

HT and EFDT are Hoeffding trees that have the same problems as
HAT due to not adapting the algorithm to the multi-label context. In
addition, they slightly worsen the results by not incorporating concept
drift detection. In particular, the way of applying the Hoeffding bound
ẃith less guarantees’’ of EFDT versus HT seems to benefit it more, since
it compensates for the absence of drift adaptation with a faster tree
growth method. MLHAT applies the Hoeffding bound more similarly to
HT and HAT, although the other modifications and components specific
to the multi-label problem have more effect on the performance of the
algorithm, so it obtains better results than EFDT, and also than HT, in
all criteria.

Attending to previous Hoeffding trees adaptations to MLC, MLHT
and MLHTPS, the results show that MLHAT outperforms them in all
performance metrics. In these cases, we observe how the results penal-
ize a partitioning criterion that does not consider the co-occurrence of
labels, as well as the absence of concept drift adaptation. Thus, we see
that only a multi-label classifier on the leaves is not enough to obtain
competitive results. In this line, it can be extracted from the results in
Table 6 that, in general, the more complex MLHTPS leaf classifier is
ore beneficial. On the other hand, the differences in the execution
imes of MLHT and MLHTPS allow us to quantify the influence of
he leaf classifier on the real-time factor in these models. Thus, we
an see that, while MLHT is the fastest model in the experiment, the
hange from the base classifier to an expensive model such as the Prune
et ensemble of HTs increases the execution time by about 20 times
n average. This gives us an idea of the importance of the classifiers
n MLHAT for the complexity of the model. Thus, the MLHAT time
etrics show that in this sense it is more beneficial to maintain two
ess computationally expensive classifiers such as kNN and ABA+LR for
ach leaf.

.5. Analysis of concept drift adaptation

This section addresses RQ3 by making a detailed analysis of the
volution of MLHAT performance along the data stream and how
t responds to different concept drift. In this study, we focus on a
omprehensive analysis of the evolution of the performance across the
ata stream. Thus, we include a subset of the real-world datasets with a
emporal component that allows us to study complex concept drifts that
ccur in real scenarios. To conduct a categorized study, and because
here are no available multi-label datasets that include explicit concept
rift information, synthetic datasets have been generated for this study,
s mentioned in Section 4.1.2, in order to evaluate the performance of
LHAT under concept drifts of different types. Finally, to facilitate the
resentation of results, this section focuses the comparative study on
he most competitive algorithms according to the results of Section 4.3
and tries to include only one representative in the case of families with
more than one algorithm. Thus, HAT, kNN and AMR are included as the
most competitive BR transformations of single models; ABA and ARF
represent the BR transformations of ensembles; and MLBELS, iSOUPT
and GORT cover the previous AA.

Fig. 6 shows the evolution of the example-based F1 score, every
50 instances, on the subset of the real-world datasets that have a
temporal order, and all the synthetic datasets. These results show
great variability and that there is no one algorithm that fits all data

distributions without exception. The main conclusion is that there

17
is a relationship between the distribution of the input data and the
algorithms that perform better: streams generated with random tree
benefit more from tree-based algorithms, while those generated with
RBF will be better solved with NB or kNN, although when working with
high dimensionality, ensemble-based methods obtain better results.
MLHAT in general is more consistent than other proposals, performing
acceptably across all distributions. Specifically, MLHAT excels in real-
world datasets. However, with more complex datasets, ensemble-based
methods such as MLBELS or ARF obtain better results. The reasons for
this are detailed below.

It can be extracted that kNN is characterized by having acceptable
performance in the early stages of the stream and being resistant
to class imbalance and concepts changes. However, the high dimen-
sionality and impossibility of recalling past features make it stagnate
compared to other models like HAT or ARF, as can be seen in D20ng
or Yelp. Models that in different ways are based on the cooperation
of linear models, AMR, ABA, and iSOUPT, follow similar patterns:
they perform better after having seen a large number of instances and
gradually concept changes as in Yelp or SynHPGrad. MLHAT in a way
volves on these two approaches thanks to the synergy of its two base
lassifiers: at the beginning of the stream it improves rapidly thanks to
he kNN it uses as low complexity leaf classifiers. Later, if complexity
ncreases, the LR baggings, improved by the built tree structure, take
art in this scenario. This is seen in D20ng or SynHPRec. On the other
and, ARF and HAT, the BR transformations of Hoeffding trees, may
erform better than MLHAT on data generated with RBF. However,
hey are not perfect in these scenarios because they do not perform
niformly for all distributions through which the stream passes. This
ay be due to the greater complexity of these data and the larger
umber of labels, making the BR ensemble necessary, especially when
t is a forest ensemble, as in the case of ARF. In the case of GORT, also
n ensemble of IDTs in this case applying the stacking technique, it is
bserved that it may have potential in real-world datasets such as Yelp.
t is also observed that it improves in all cases to individual iSOUPT,
he model used as a basis for this proposal. However, in most cases
t is significantly worse than MLHAT despite assembling 10 models
ersus the single MLHAT tree. This indicates the power of MLHAT
esign elements versus the assembly of multiple IDTs. Finally, MLBELS’
erformance depends on the type of stream. In general, it responds well
f the labels are linearly separable, as with synthetic generators based
n Hyperplane and RandomTree. However, with real data and RBF,
he nature of its neural networks does not allow it to excel with more
omplex patterns.
By concept drift type, MLHAT offers uniform performance in the

ifferent types. Although some models may achieve better results in
pecific scenarios, MLHAT handles concept changes better in sud-
en, gradual and especially recurrent cases, as seen in SynHPRec and
ynTreeRec. This indicates that using a multi-label metric to monitor
oncept drift is highly beneficial, as it detects changes more quickly
han alternatives that monitor each label separately. This flexibility in
andling different types of concept drift makes MLHAT particularly
ffective with real datasets, which often exhibit more mixed concept
rift patterns. The incremental concept drift is the most challenging for
ll algorithms and MLHAT is not an exception. We see how in SynHPInc
t is outperformed by MLHT and MLBELS, and in SynRBFInc by ARF
AT and kNN. In these cases, it might be worth exploring an ensemble
ption. Hamming loss is the metric used in the experimentation for
etecting the concept drift in MLHAT, for serving well in general for
ll the types of concept drifts, especially those found in real datasets
see Section 4.2). However, to maximize adaptability to abrupt changes,
t might be more beneficial to employ another metric, such as subset
ccuracy.
We can summarize the contributions of MLHAT in terms of concept

rift in the following key points:

• MLHAT shows consistent performance across various data distri-

butions, more so than other proposals.

A. Esteban et al. Knowledge-Based Systems 304 (2024) 112561
Fig. 6. Prequential evaluation of example-based F1 on a selection of datasets with concept drift (expressed as vertical lines). The type of concept drift is given by the name of
the synthetic dataset; more information in Table 4.
• MLHAT combines strengths of different approaches: On the one
hand, it used kNN as low-complexity leaf classifiers for rapid
improvement at stream start. On the other hand, it employs
LR baggings, enhanced by tree structure, for handling increased
complexity.

• MLHAT offers uniform performance across different types of con-
cept drift: Handles concept changes better in sudden, gradual,
and especially recurrent cases. This flexibility makes MLHAT par-
ticularly effective with real datasets, which often exhibit mixed-

concept drift patterns.

18
• MLHAT’s use of a multi-label metric (Hamming loss) to monitor
concept drift is highly beneficial, as it detects changes more
quickly than alternatives that monitor each label separately. How-
ever, other metrics might be more beneficial for maximizing
adaptability to abrupt changes.

• Attending to the performance in specific scenarios, we can ob-
serve that MLHAT excels particularly in real-world datasets; that
it may be outperformed by ensemble methods (e.g., MLBELS,
ARF) on more complex datasets; and that can struggle with

incremental concept drift, like all tested algorithms.

A. Esteban et al.

4

o
t
b
i
w

a
t
m
s
s
c
w
t
e
𝑓
i
𝑂
t
t
m
o
c
o
d

t
l
f
o

Knowledge-Based Systems 304 (2024) 112561
Fig. 7. Resources consumption on a selection of the biggest datasets using logarithmic scale.
t
m
d
d
p
w
o
w
a
e
T
G
o
e
l
I
t
t
i
e
o
t
o

5

(
a
i
a
p
t
a
d
v

• While not always the top performer, MLHAT generally provides
more consistent results across various data distributions and drift
types compared to other algorithms tested.

.6. Analysis of efficiency

In the context of data stream classification, the efficiency and speed
f processing instances are of great importance, as they are expected
o arrive at high speed. Thus, the model must not only be accurate
ut also scalable, keeping its growth controlled over time. As shown
n Section 4.3, MLHAT is a time-competitive algorithm. In this section,
e analyze the details of the time and memory consumption of MLHAT.
The space and time complexity of MLHAT is upper-bounded by HT

nd lower-bounded by the ADWIN method to prune nodes. Following
he reasoning of [49], we can divide the operations in the tree into three
ain components: updating the statistics in the leaf, evaluating possible
plits, and learning in the corresponding leaf classifier. Updating the
tatistics requires traversing the tree to the leaf and updating the label
ounts at each node along the path. This has a complexity of 𝑂(ℎ𝑙)
here ℎ is the height of the tree and 𝑙 is the number of labels in
he multi-label problem. To look for possible splits, 𝑓 splits will be
valuated, where 𝑓 is the number of features or attributes. For each
split, 𝑣 computations of information gains are required. Finally, each
nformation gain requires 𝑐 operations. Thus, split evaluations require
(𝑓𝑣𝑐) operations. Lastly, the complexity of learning in leaves is in
he upper bound of the high-complexity classifier, a bagging method
hat aggregates 𝑘 = 10 logistic regressions, whose complexity depends
ainly on the number of features 𝑓 . Thus, this step has a complexity
f 𝑂(𝑘𝑓). In conclusion, the total complexity of MLHAT in the worst-
ase scenario will be 𝑂(ℎ𝑙𝑓 2𝑣𝑐𝑘). Empirical results are shown below to
bserve the real resource consumption of MLHAT and how the concept
rift affects it.
Fig. 7 shows the evolution in time and memory consumption of

he different paradigms for a selection of datasets that combine the
argest number of instances and a different number of attributes. To
acilitate the visualization of results, only the most representative meth-
ds selected in the previous section are plotted here. The results show
 i

19
hat MLHAT is faster and more efficient than most models, especially
odels of similar performance like kNN and MLBELS. This is largely
ue to the use of a single decision tree and its adaptation to concept
rift. Thus, when concept drift is detected and pruning of obsolescent
arts of the tree occurs, the memory occupied by the model decreases,
hich also affects the processing speed of the instances. In contrast,
ther IDT-based models such as MLHTPS, iSOUPT, SGT or AMF grow
ithout limits, which can be problematic for longer streams. This is
ccentuated in ensemble versions of these ones like GORT. This is
vident in the case for SGT and AMF in NusWideBow, for example.
heir results have not been able to finish due to requiring hundreds of
B of RAM and/or more than 240 h of execution. Other models based
n HT and with concept drift, such as ARF and HAT also scale poorly,
specially with datasets that have many labels. This is due to the multi-
abel transformation of BR requires training one model for each label.
n the case of ARF, this implies a memory consumption that can be 100
imes higher than that of MLHAT and takes 10 times longer to process
he same amount of information. Other proposals such as kNN or ABA
mply minimal or no build-up of the model, which makes them very
fficient in memory and also in time. MLHAT builds its leaf classifiers
n these models, so their presence hardly affects the total computation
ime and memory used by our proposal, keeping it competitive with
ther tree-based models like MLHTPS or iSOUPT.

. Conclusions and future work

This paper introduced Multi-Label Hoeffding Adaptive Tree
MLHAT), an IDT for multi-label data streams. MLHAT incorporates
multi-probabilistic split criterion to natively consider co-occurrences
n multi-label data and monitors the labelsets’ entropy and cardinality
t the leaves to adapt the classification process complexity. We also
roposed to monitor the concept drift on the intermediate nodes of the
ree, allowing the review of split decisions if performance decreases,
nd replacing affected branches with new ones adapted to the new data
istribution. These combined mechanisms allow MLHAT to overcome
arious multi-label stream difficulties, such as concept drift and class
mbalance. We presented an exhaustive experimental study to assess

A. Esteban et al. Knowledge-Based Systems 304 (2024) 112561
the competitiveness of MLHAT against 16 different multi-label online
classifiers, including the main previous IDTs and representations of
other online paradigms. The experimentation covered 41 datasets and
12 multi-label metrics, for which MLHAT achieved the top average
result in 10 metrics. We also analyzed the MLHAT evolution across the
stream through prequential evaluation, which allowed us to observe
that it can perform very well from an early stage of the data stream
and that it also adapts quickly to concept drift.

Future work on MLHAT can focus on several aspects. Firstly, while
our work has shown that MLHAT is a competitive method for MLC in
data streams, it may depend on a non-trivial parameter setting process.
Therefore, it would be interesting to study modifications to reduce the
number of parameters to be adjusted, for example, with hyperparam-
eterization or dynamic adjustments. Secondly, our experiments have
shown that there are experiments with a high label density in which
MLHAT performance can be improved by ensembles. Thus, it can be
interesting to explore certain techniques, such as bagging, boosting, or
random subspaces. Finally, it would be valuable to explore the applica-
tion of MLHAT to real-world scenarios and domains where multi-label
stream learning has great potential, such as predictive maintenance,
pose estimation, or autonomous driving.

CRediT authorship contribution statement

Aurora Esteban: Writing – review & editing, Writing – original
draft, Software, Methodology, Investigation, Formal analysis, Data cu-
ration. Alberto Cano: Writing – review & editing, Validation, Supervi-
sion, Software, Resources, Formal analysis, Conceptualization. Amelia
Zafra: Writing – review & editing, Writing – original draft, Validation,
Supervision, Methodology, Investigation, Funding acquisition, Formal
analysis, Conceptualization. Sebastián Ventura: Writing – review &
editing, Supervision, Investigation, Funding acquisition, Formal analy-
sis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

There is a link in the paper for repository with data/code.

Acknowledges

This research was supported in part by grant PID2020-115832GB-
I00 funded by MICIN/AEI/10.13039/501100011033, by the ProyExcel-
0069 project funded by Departament of University, Research and In-
novation of the Andalusian Government, and by a FPU predoctoral
grant FPU19/03924 from the Spanish Ministry of Universities. High
Performance Computing resources provided by the HPRC core facility
at Virginia Commonwealth University (https://hprc.vcu.edu) were used
for conducting the research reported in this work.

References

[1] N. Åkerblom, Y. Chen, M. Haghir Chehreghani, Online learning of energy
consumption for navigation of electric vehicles, Artificial Intelligence 317 (2023)
1–25.

[2] B. Krawczyk, Active and adaptive ensemble learning for online activity
recognition from data streams, Knowl.-Based Syst. 138 (2017) 69–78.

[3] M. Bahri, A. Bifet, J. Gama, H.M. Gomes, S. Maniu, Data stream analysis:
Foundations, major tasks and tools, Wiley Interdiscip. Rev.: Data Min. Knowl.
Discov. 11 (3) (2021) 1–17.

[4] G.J. Aguiar, A. Cano, A comprehensive analysis of concept drift locality in data

streams, Knowl.-Based Syst. 289 (2024) 1–18.

20
[5] G. Aguiar, B. Krawczyk, A. Cano, A survey on learning from imbalanced data
streams: taxonomy, challenges, empirical study, and reproducible experimental
framework, Mach. Learn. (2023) 1–60.

[6] M. Roseberry, B. Krawczyk, Y. Djenouri, A. Cano, Self-adjusting k near-
est neighbors for continual learning from multi-label drifting data streams,
Neurocomputing 442 (2021) 10–25.

[7] S. Bakhshi, F. Can, Balancing efficiency vs. effectiveness and providing missing
label robustness in multi-label stream classification, Knowl.-Based Syst. 289
(2024) 1–14.

[8] C. Li, D. Zhu, C. Hu, X. Li, S. Nan, H. Huang, ECDX: Energy consumption
prediction model based on distance correlation and XGBoost for edge data center,
Inform. Sci. 643 (2023) 1–13.

[9] J. Du, C.M. Vong, Robust online multilabel learning under dynamic changes in
data distribution with labels, IEEE Trans. Cybern. 50 (1) (2020) 374–385.

[10] P. Domingos, G. Hulten, Mining high-speed data streams, in: Proceedings of the
6th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2000, pp. 71–80.

[11] A. Bifet, R. Gavaldà, Adaptive learning from evolving data streams, in: Proceed-
ings of the 8th International Symposium of Intelligent Data Analysis, 2009, pp.
249–260.

[12] J. Read, A. Bifet, G. Holmes, B. Pfahringer, Scalable and efficient multi-label
classification for evolving data streams, Mach. Learn. 88 (1–2) (2012) 243–272.

[13] Z. Shi, Y. Xue, Y. Wen, G. Cai, Efficient class incremental learning for multi-label
classification of evolving data streams, in: Proceedings of the 2014 International
Joint Conference on Neural Networks, 2014, pp. 2093–2099.

[14] A. Büyükçakir, H. Bonab, F. Can, A novel online stacked ensemble for multi-
label stream classification, in: Proceeding of the 27th International Conference
on Information and Knowledge Management, 2018, pp. 1063–1072.

[15] S. Liang, W. Pan, D. You, Z. Liu, L. Yin, Incremental deep forest for multi-label
data streams learning, Appl. Intell. 52 (12) (2022) 13398–13414.

[16] G. Alberghini, S. Barbon Junior, A. Cano, Adaptive ensemble of self-adjusting
nearest neighbor subspaces for multi-label drifting data streams, Neurocomputing
481 (2022) 228–248.

[17] W. Liu, H. Wang, X. Shen, I. Tsang, The emerging trends of multi-label learning,
IEEE Trans. Pattern Anal. Mach. Intell. 44 (11) (2021) 7955–7974.

[18] J.M. Moyano, E.L. Gibaja, K.J. Cios, S. Ventura, Review of ensembles of multi-
label classifiers: Models, experimental study and prospects, Inf. Fusion 44 (2018)
33–45.

[19] M.L. Zhang, Z.H. Zhou, ML-KNN: A lazy learning approach to multi-label
learning, Pattern Recognit. 40 (7) (2007) 2038–2048.

[20] M. Roseberry, S. Džeroski, A. Bifet, A. Cano, Aging and rejuvenating strategies
for fading windows in multi-label classification on data streams, in: Proceedings
of the 38th ACM/SIGAPP Symposium on Applied Computing, 2023, pp. 390–397.

[21] R. Sousa, J. Gama, Online multi-label classification with adaptive model rules,
in: Proceedings of the XVII Conference of the Spanish Association for Artificial
Intelligence, 2016, pp. 58–67.

[22] R. Sousa, J. Gama, Multi-label classification from high-speed data streams with
adaptive model rules and random rules, Prog. Artif. Intell. 7 (3) (2018) 177–187.

[23] A.N. Tarekegn, M. Giacobini, K. Michalak, A review of methods for imbalanced
multi-label classification, Pattern Recognit. 118 (2021) 107965.

[24] C. Manapragada, G.I. Webb, M. Salehi, Extremely fast decision tree, in: Proceed-
ings of the 24th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2018, pp. 1953–1962.

[25] H. Gouk, B. Pfahringer, E. Frank, Stochastic gradient trees, in: Proceedings of
the 11th Asian Conference on Machine Learning, 2019, pp. 1094–1109.

[26] J. Mourtada, S. Gaïffas, E. Scornet, AMF: Aggregated Mondrian forests for online
learning, J. R. Stat. Soc. Ser. B Stat. Methodol. 83 (3) (2021) 505–533.

[27] A. Osojnik, P. Panov, S. Džeroski, Multi-label classification via multi-target
regression on data streams, Mach. Learn. 106 (6) (2017) 745–770.

[28] B. Dai, S. Ding, G. Wahba, Multivariate Bernoulli distribution, Bernoulli 19 (4)
(2013) 1465–1483.

[29] H.M. Gomes, A. Bifet, J. Read, J.P. Barddal, F. Enembreck, B. Pfharinger,
G. Holmes, T. Abdessalem, Adaptive random forests for evolving data stream
classification, Mach. Learn. 106 (9–10) (2017) 1469–1495.

[30] A. Bifet, R. Gavaldà, Learning from time-changing data with adaptive windowing,
in: Proceedings of the 2007 SIAM International Conference on Data Mining,
2007, pp. 443–448.

[31] J. Bogatinovski, L. Todorovski, S. Džeroski, D. Kocev, Comprehensive compara-
tive study of multi-label classification methods, Expert Syst. Appl. 203 (February)
(2022) 1–18.

[32] A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, R. Gavaldà, New ensemble methods
for evolving data streams, in: Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2009, pp. 139–147.

[33] R.S.M. De Barros, S.G.T. De Carvalho Santos, P.M.G. Junior, A boosting-like
online learning ensemble, in: Proceedings of the 2016 International Joint
Conference on Neural Networks, 2016, pp. 1871–1878.

[34] A. Bifet, G. Holmes, B. Pfahringer, Leveraging bagging for evolving data streams,
in: Proceedings of the European Conference on Machine Learning and Knowledge

Discovery in Databases, 2010, pp. 135–150.

https://hprc.vcu.edu
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb1
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb1
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb1
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb1
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb1
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb2
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb2
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb2
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb3
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb3
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb3
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb3
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb3
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb4
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb4
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb4
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb5
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb5
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb5
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb5
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb5
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb6
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb6
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb6
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb6
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb6
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb7
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb7
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb7
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb7
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb7
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb8
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb8
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb8
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb8
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb8
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb9
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb9
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb9
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb10
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb10
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb10
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb10
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb10
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb11
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb11
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb11
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb11
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb11
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb12
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb12
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb12
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb13
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb13
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb13
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb13
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb13
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb14
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb14
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb14
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb14
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb14
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb15
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb15
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb15
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb16
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb16
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb16
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb16
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb16
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb17
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb17
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb17
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb18
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb18
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb18
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb18
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb18
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb19
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb19
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb19
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb20
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb20
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb20
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb20
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb20
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb21
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb21
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb21
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb21
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb21
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb22
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb22
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb22
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb23
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb23
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb23
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb24
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb24
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb24
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb24
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb24
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb25
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb25
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb25
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb26
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb26
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb26
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb27
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb27
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb27
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb28
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb28
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb28
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb29
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb29
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb29
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb29
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb29
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb30
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb30
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb30
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb30
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb30
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb31
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb31
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb31
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb31
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb31
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb32
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb32
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb32
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb32
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb32
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb33
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb33
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb33
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb33
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb33
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb34
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb34
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb34
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb34
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb34

A. Esteban et al. Knowledge-Based Systems 304 (2024) 112561
[35] N.C. Oza, S. Russell, Online bagging and boosting, in: Proceedings of the
8th International Workshop on Artificial Intelligence and Statistics, 2001, pp.
229–236.

[36] E.B. Andersen, Sufficiency and exponential families for discrete sample spaces,
J. Amer. Statist. Assoc. 65 (331) (1970) 1248–1255.

[37] A. Law, A. Ghosh, Multi-label classification using binary tree of classifiers, IEEE
Trans. Emerg. Top. Comput. Intell. 6 (3) (2022) 677–689.

[38] Ł. Korycki, B. Krawczyk, Streaming decision trees for lifelong learning, in:
Machine Learning and Knowledge Discovery in Databases. Proceedings of the
2021 ECML PKDD Research Track, 2021, pp. 502–518.

[39] J. Montiel, M. Halford, S.M. Mastelini, G. Bolmier, R. Sourty, R. Vaysse, A.
Zouitine, H.M. Gomes, J. Read, T. Abdessalem, A. Bifet, River: Machine learning
for streaming data in python, J. Mach. Learn. Res. 22 (2021) 1–8.

[40] J. Duarte, J. Gama, A. Bifet, Adaptive model rules from high-speed data streams,
ACM Trans. Knowl. Discov. Data 10 (3) (2016) 1–22.

[41] R. Cerri, J.D.C. Junior, E.R. Faria, J. Gama, A new self-organizing map based
algorithm for multi-label stream classification, in: Proceedings of the 36th ACM
Symposium on Applied Computing, 2021, pp. 418–426.

[42] A. Bifet, G. Holmes, R. Kirkby, B. Pfahringer, MOA: Massive online analysis, J.
Mach. Learn. Res. 11 (2010) 1601–1604.

[43] J. Gama, P.P. Rodrigues, R. Sebastião, Evaluating algorithms that learn from data
streams, in: Proceedings of the 2009 ACM Symposium on Applied Computing,
2009, pp. 1496–1500.
21
[44] B. Bischl, M. Binder, M. Lang, T. Pielok, J. Richter, S. Coors, J. Thomas, T.
Ullmann, M. Becker, A.L. Boulesteix, D. Deng, M. Lindauer, Hyperparameter
optimization: Foundations, algorithms, best practices, and open challenges, Wiley
Interdiscip. Rev.: Data Min. Knowl. Discov. 13 (2) (2023).

[45] T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama, Optuna: A next-generation
hyperparameter optimization framework, in: Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2019, pp.
2623–2631.

[46] H.M. Gomes, J. Read, A. Bifet, Streaming random patches for evolving data
stream classification, in: Proceedings of the 2019 IEEE International Conference
on Data Mining, 2019, pp. 240–249.

[47] F. Hutter, H. Hoos, K. Leyton-Brown, An efficient approach for assessing
hyperparameter importance, in: Proceedings of the 31st International Conference
on Machine Learning, Vol. 2, 2014, pp. 1130–1144.

[48] T.G. Dietterich, Statistical tests for comparing supervised classication learning
algorithms, Neural Comput. 10 (7) (1998) 1–24.

[49] E. Garcia-Martin, A. Bifet, N. Lavesson, R. König, H. Linusson, Green accelerated
Hoeffding tree, in: Proceedings of the 2021 TinyML Research Symposium, 2021,
pp. 1–8.

http://refhub.elsevier.com/S0950-7051(24)01195-X/sb35
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb35
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb35
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb35
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb35
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb36
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb36
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb36
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb37
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb37
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb37
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb38
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb38
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb38
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb38
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb38
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb39
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb39
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb39
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb39
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb39
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb40
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb40
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb40
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb41
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb41
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb41
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb41
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb41
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb42
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb42
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb42
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb43
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb43
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb43
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb43
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb43
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb44
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb44
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb44
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb44
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb44
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb44
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb44
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb45
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb45
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb45
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb45
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb45
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb45
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb45
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb46
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb46
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb46
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb46
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb46
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb47
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb47
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb47
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb47
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb47
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb48
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb48
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb48
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb49
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb49
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb49
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb49
http://refhub.elsevier.com/S0950-7051(24)01195-X/sb49

	Hoeffding adaptive trees for multi-label classification on data streams
	Introduction
	Related work
	Multi-label data stream classification
	Incremental decision trees for multi-label data streams

	Multi-Label Hoeffding Adaptive Tree
	Building the tree
	Modeling label co-occurrences with the Multivariate Bernoulli Process
	Dynamic multi-label learning at leaves
	Multi-label splitting into new branches
	Concept drift adaptation
	Classification at leaves

	Experimental study
	Experimental setup
	Algorithms
	Datasets
	Evaluation metrics

	Analysis of components in MLHAT
	Analysis of MLHAT compared to previous proposals
	Analysis of MLHAT compared to previous Hoeffding trees
	Analysis of concept drift adaptation
	Analysis of efficiency

	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledges
	References

