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12 ABSTRACT

13 Superconductivity had been one of the most enigmatic phenomena in condensed matter physics, puzzling the best theorists for 45 years,
14 since the original discovery by Kamerlingh-Onnes in 1911 till the final solution by Bardeen, Cooper, and Schrieffer (BCS) in 1957. The orig-
15 inal BCS proposal assumed the highest-symmetry form for the superconducting order parameter Δ, namely, a constant, and a uniform
16 pairing interaction due to attractive mediation of ionic vibration. While it was rather soon realized that generalizations onto k-dependent
17 order parameters and anisotropic pairing interaction was straightforward, only thirty years later, upon the discovery of high-temperature
18 superconductivity in cuprates, high-order angular dependence of Δ and repulsive interaction, mediated by spin fluctuations or Coulomb
19 repulsion brought such “unconventional” into the spotlight. In 2008 yet another such system was discovered, and eventually the idea of
20 repulsion-mediated unconventional superconductivity was generally accepted. Apart from the two specific systems mentioned above, a large
21 number of various specific implementations of this idea have been proposed, and it is becoming increasingly clear that it is worth studying
22 mathematically how unconventional superconductivity emerges, and with what properties, for a simple, but sufficiently general theoretical
23 model. In our project, we study systematically unconventional superconductivity in an isotropic two-dimensional model system of electrons,
24 subjected to repulsive interactions of a simple, but physically motivated form: a delta function peaked at a particular momentum (from 0 to
25 twice the Fermi momentum), or Gaussian of varying widths.

26
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/10.0034348

27 1. INTRODUCTION

28 Even though theorists were taking random forays into uncon-
29 ventional superconductivity (“unconventional” here is defined as
30 superconductivity that is not due to phonons, and/or with a
31 momentum-dependent order parameter,1 the real advent of this
32 field was triggered by the discovery of the high-temperature super-
33 conductivity in cuprates.2 It took a decade to appreciate that the
34 pairing symmetry there is d-wave, and that the likely pairing inter-
35 action is due to spin-fluctuation exchange.3 This concept has
36 gained currency afterwards, especially when it was recognized that
37 the newly-discovered Fe-based superconductors, even while qualita-
38 tively different and of different pairing symmetry, can also be
39 described within the same paradigm.
40 The idea is tantalizingly simple. As we recall in the next
41 section, while charge fluctuations, such as phonons, always induce
42 interelectron attraction, and Coulomb interaction is always repulsive,
43 spin fluctuations induce repulsion for singlet pairs, and attraction in
44 triplet pairs (we are not discussing even more exotic odd-frequency

45superconductivity, where this rule is reversed, even though this
46concept has also been brought up within the same framework.4 If,
47as it is usually the case, superconductivity develops upon suppres-
48sion of an antiferromagnetic order, spin-fluctuation spectrum is
49peaked, in the momentum space, at the wave vector corresponding
50to this order. If the Fermi surface geometry is such that this vector
51spans parts of the Fermi surface that, in a given pairing symmetry,
52have opposite signs, spin-fluctuation exchange will favor this partic-
53ular pairing symmetry. In case of high-Tc cuprates it happens to be
54the x2 � y2 d-wave symmetry, in Fe-based material a sign-changing
55s-wave,5 etc. Similar geometrical arguments were historically applied
56for triplet pairing, such as p-wave6 or f-wave.7

57Apart from some heavy-fermion superconductors, most
58unconventional-superconductivity candidates are 2D, which greatly
59simplifies the problem. Keeping in mind that real materials usually
60have complex Fermi surfaces (high-Tc cuprates are an exception)
61and spin fluctuations often have a complicated spectrum, it is still
62useful to gather general insight into the interplay between the
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63 Fermi surface geometry and the shape of the spin fluctuation spec-
64 trum using simple models.
65 In this paper, we are using a minimal 2D model, consisting of
66 a circular Fermi surface of a unit radius kF ¼ 1and isotropic spin-
67 fluctuation induced pairing interaction, Vk,k0 ¼ V(jk � k0j), and
68 considering both singlet states up to l ¼ 4 (i.e., s, d, and g) and
69 triplet up to l ¼ 5 (i.e., p, f, and h). The high symmetry of the
70 model affords a great simplification of the mathematics involved,
71 without much loss of the essential physics.

72 2. GENERAL THEORY

73 2.1. Anisotropic bardeen–Cooper–Schrieffer theory

74 The Bardeen–Cooper–Schrieffer (BCS) theory introduced the
75 concept of a uniform order parameter Δ and a constant, attractive
76 pairing interaction g ¼ Vk,k0 . The standard BCS equation then
77 reads:

Δ ¼ g
X
k

Δ

2Ek
tanh

Ek
2T

� �
� g

X
k

Δ

2εk
tanh

εk
2T

� �
, (1)

78 where Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ ε2k

q
is the excitation energy in the supercon-

79 ducting state, εk is the normal-state one-electron energy, with the
80 Fermi energy EF set to zero, and g . 0 is the attractive constant
81 interaction; the second equality holds in the linear regime
82 Tc � T�Tc, Δ�Tc. Furthermore, the interaction is presumed to be
83 non-zero only for εk , TD, a cut-off frequency. In the assumed
84 weak-coupling regime (not to be confused with the weak-coupling
85 limit of the Eliashberg theory), the dimensionless coupling constant
86 λ ¼ gN�1 (where N is the density of states at the Fermi level).
87 Going from integration over the momenta to integration over ener-
88 gies in Eq. (1), one obtains the linearized equation on Tc:

Δ ¼ λ

ðTD

0

Δ

2ε
tanh

ε

2T

� �
dε: (2)

8990 The (small) order parameter can be cancelled out and the
91 remaining equation is easily solved in the Tc�TD limit to give

Tc ¼ 1:13TDexp(�1/λ),

92 where 1.13 comes from the Euler γ as 2eγ/π.
93 A straightforward generalization of the BCS theory allows for
94 the momentum dependence of both V(k, k0) and Δ(k). The gap
95 equation then becomes:

Δk ¼
X
k0

Vk,k0N(k0)Δk0 log
1:13TD

Tc

� �

¼
X
k0

λk,k0Δk0 log
1:13TD

Tc

� �
, (3)

96 where N(k0) ¼ 1
vF (k

0) is the local density of states at the Fermi

97 surface, with vF(k
0) being the Fermi velocity.

98In the proximity of weak-coupling limit on an anisotropic
99Fermi surface, the order parameter equation can be expressed as an

100eigenvalue problem:

X
k0

λk,k0Δk0 ¼
1

log (1:13TD/Tc)
Δk: (4)

101The largest eigenvalue λmax of the matrix λk,k0 thus gives the largest
102critical temperature Tc at which a solution of the Eq. (4) is possible,
103and the corresponding eigenvector Δk gives us the corresponding
104distribution of the order parameter over the Fermi surface near Tc

105(but not at zero temperature). Then

Tc ¼ 1:13TDexp(�1/λmax) (5)

106in this formulation, λmax replaces the typical coupling constant λ in
107the conventional BCS theory. Note that, in principle, the order
108parameter Δ need not be real, but may have a complex phase.
109However, it must satisfy (see the next section) the requirement that
110Δk ¼ Δ�k (we are not considering non-centrosymmetric crystal lat-
111tices here), so any eigenvector that does not respect this condition,
112even if it yields the largest eigenvalue, should be discarded.

1132.2. Generalization onto triplet pairing

114While the BCS theory assumes singlet pair with the opposite
115spins, a similar theory can be written for triplet pairs, where each
116pair has spin S ¼ 1.8 Since the pair is now a spin-1 object, its state
117has to be described by a spinor matrix, which, in turn, can be rep-
118resented by a real-space axial vector. Furthermore, while in the
119singlet case the pair wave function satisfy the Pauli principle by
120virtue of its spin part, so that its spatial part Δk ¼ Δ�k is inversion-
121symmetric, the opposite is true for the triplet case, so the vector
122order parameter is antisymmetric: dk ¼ �d�k .
123One can now write BCS-like equations on this vector order
124parameter:

dk ¼
X
k0

Vk,k0N(k0)dk0 log
1:13TD

Tc

� �

¼
X
k0

λk,k0dk0 log
1:13TD

Tc

� �
: (6)

125126Possible symmetries of the vector d are enumerated, for the three
127most common crystal symmetries, cubic, tetragonal and hexagonal, in
128the review Ref. 8. For the purpose of our minimal model, they can be
129greatly simplified, since, first, we only need to consider 2D representa-
130tion, and, second, neglecting spin-orbit coupling essentially renders all
131triplet unitary states with the same angular momentum degenerate. For
132instance, for a tetragonal or hexagonal system Sigrist and Ueda8 list
133four unitary states, dk ¼ const � (kxx̂+ ky ŷ), or const � (kx ŷ + ky x̂),
134which are all degenerate. Thus, it is enough to consider only
135dk ¼ const � (kxx̂ þ kyŷ) ¼ const � k/k:. Correspondingly, triplet states
136with higher angular momenta than p (l= 1) can be, without a loss of
137generality, written as dk ¼ ΔT(k)k where, according to our model,
138k = 1, and ΔT is a scalar inversion-symmetric function.
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139 Substituting this form into Eq. (6), we get

ΔT
k k ¼

X
k0

λk,k0Δ
T
k0k

0 log
1:13TD

Tc

� �
, (7)

140

ΔT
k ¼

X
k0

λk,k0Δ
T
k0k � k0 log 1:13TD

Tc

� �
, (8)

141 which has the same form as for the singlet pairing, but replacing
142 the λk,k0 matrix with λk,k0 (k � k0). Importantly, the interaction
143 matrix λ in the singlet case is, for the same spin fluctuation spec-
144 trum, three times larger, due to spin-rotational invariance.8 In
145 order to keep the same notations for both cases, we now replace
146 Eq. (3) with the following:

ΔS
k ¼ 3

X
k0

λk,k0Δ
S
k0 log

1:13TD

Tc

� �
: (9)

147

148 3. SIMPLIFIED MODEL OF
149 SPIN-FLUCTUATION-INDUCED INTERACTION

150 When one includes all the aforementioned generalizations of
151 the BCS theory, the phase diagram of the resulting superconducting
152 state becomes rather complex. Some qualitative understanding can
153 be gained from a simple toy model of a uniform 2D electron gas
154 with an isotropic spin-fluctuation induced interaction.
155 Thus, we take the spin-fluctuation pairing interaction to be
156 V(k, k0) ¼ Vf (jk � k0j), which is presumed to have a peak at a
157 momentum Q. We will consider two models for V : first, a Dirac-δ
158 function, and, second, a Gaussian with a finite width κ. The
159 Gaussian model is more realistic, but the δ-function model allows
160 for an analytical solution and serves as a limiting test case when
161 κ ! 0. The forms of the interaction are, respectively,

f ¼ δ(jk � k0j � Q),

162

f ¼ 1
κ

ffiffiffi
π

p exp � (jk � k0j � Q)2

κ2

" #
:

163164 Note that for Q ¼ jk � k0j:

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k02 � 2kk0cos(~w)

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2cos(~w)

p
,

165 where ~w is the angle between k and k0, and jkj, jk0j are normalized
166 to 1. This implies that the parameter Q has values in the interval
167 [0, 2], with Q ¼ 0, when k and k0 overlap, and Q ¼ 2 when they
168 are opposite. We do not consider cases where the peak in the spin
169 fluctuation spectrum is outside of the Fermi surface (Q . 2).

170 3.1. Angle representation

171 As we have jkj2 ¼ 1, it is convenient to rewrite the BCS equa-
172 tion in the angle space. The order parameter now depends on the

173angle variable w, w0:

λΔS(w) ¼ � 3N
2π

ð2π
0

V(w, w0)ΔS(w0)dw0, (10)

174

λΔT(w) ¼ N
2π

ð2π
0

V(w, w0)ΔT (w0)cos(w� w0)dw0, (11)

175where cos(w� w0) ¼ k � k0. It is convenient to expand the solution
176for Δ(w) in circular harmonics yl ¼ exp(ilw), where w is the
177angular coordinate on the Fermi circle. The inversion constraint
178Δk ¼ Δ�k for both singlet and triplet pairing is satisfied by l ¼ 2n
179so that:

exp[2in(wþ kπ)] ¼ exp[i(2nwþ 2nkπ)] ¼ exp(2inw), (12)

180where k is an integer and wþ kπ irepresent the inversion of the
181angle w. After Δk is expanded in yl , the problem is reduced to cal-
182culating λ by direct integration and selecting the maximal value
183among all even l ¼ 2n. Note that in the order parameter Eq. (11)
184for triplet states, there is another dependence on w from
185cos(w� w0), leading to ΔT

k (k � k0) behaving as l ¼ 2nþ 1, an odd
186orbital number.

1874. SOLUTIONS

1884.1. Dirac-δ distribution

189Introducing the angle α ¼ 2 sin�1 (Q/2) or Q ¼ 2sin(α/2), we
190then have

jk � k0j � Q ¼ j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2cos(w� w0)

p
j � 2sin(α/2)

¼ j2sin(~w/2)j � 2sin(α/2),

191where ~w ¼ w0 � w. In the simplest case, f (jk � k0j) ¼ δ(jk � k0j � Q)
192can be converted into angle variables as f [j2sin(~w/2)j � 2sin(α/2)]. A
193useful formula is

δ(F(x)� a) ¼
X
i

δ(x � xi)
jdF=dxjx¼xi

;

194in this equation i labels all solutions of the equation F(x)� a ¼ 0 (in
195our case there are two ~w ¼ +α): Differentiating f (ww0) with respect to
196w0 gives cos (~w/2)~w¼+α . The pairing interaction is then

V(w;w0) ¼ V
δ(~w� α)
cos(α=2)

þ δ(~wþ α)
cos(� α=2)

� �
: (13)

197Singlet state. With the solution for ΔS
k from Eq. (10) the order parameter
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198 reads

λSnexp(2inw) ¼ � 3N
2π

ð2π
0

V(w;w0)exp(2inw0)dw0;

199200 since, the integral on the right-hand side (RHS) is evaluated
201 with respect to w0, we can switch the variable ~w by dividing both
202 sides with exp(2inw):

λSn ¼ � 3N
2π

ð2π
0

V(w, w0)exp(2in~w)d(~w), (14)

203 the integral can be solved analytically with the pairing interaction
204 modified by Dirac-δ distribution Eq. (13):

λSn ¼ � 3NV

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Q2/4

p T2n(1� Q2/2) , (15)

205 where we expressed the solution for λSn with Chebyshev polynomi-
206 als of the first kind Tn( cos θ) ¼ cos(nθ). Another way to rewrite
207 this expression more compactly is to introduce an auxiliary variable
208 ~Q ¼ cos(α/2) ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Q2/4
p

. Then

λSn ¼ � 3NV

π~Q
T2n(2~Q

2 � 1): (16)

209 Triplet State. Following analogous steps, we derive a corresponding
210 order parameter equation with Eq. (11) for triplet states:

λTn ¼ N
2π

ð2π
0

V(w, w0)exp(2in~w)cos(~w)d(~w), (17)

211 in which the pairing strength constant λTn can be derived analyti-
212 cally in a manner similar to that of the singlet case:

λTn ¼ NV(2~Q
2 � 1)

π~Q
T2n(2~Q

2 � 1): (18)

213 We then create a diagram to determine, within the range of α from
214 0 to π, which state yields the maximum λmax and find the corre-
215 sponding orbital number: l ¼ 2n for the singlet state (s, d, g) and
216 l ¼ 2nþ 1 for the triplet state (p, f, h), with n in the range [0, 2],
217 respectively.

218 4.2. Gaussian distribution

219 Following analogous steps as with the Dirac-δ distribution, the
220 pairing interaction V(jk � k0j) for the Gaussian function can be
221 expressed in terms of the angle variable ~w:

V(~w) ¼ V
κ

ffiffiffi
π

p exp � [2jsin(~w/2)j � 2sin(α/2)]2

κ2

� �
: (19)

222Singlet State. The pairing strength constant equation given the
223Gaussian model for pairing interaction in the variable ~w is as
224follows:

λSn ¼ � 3NV
2κπ3/2

ð2π
0

exp(2in~w)

� exp � [2jsin(~w/2)j � 2sin(α/2)]2

κ2

� �
d~w, (20)

225226note that the integrand F(~w) under the integral in the RHS of
227Eq. (20) is an even function, meaning that F(~w) ¼ F(~wþ π). That
228leads to

ð2π
0

F(~w)d~w ¼
ðπ
0

F(~w)d~wþ
ð2π
π

F(~w)d~w ¼ 2
ðπ
0

F(~w)d~w,

229which simplifies Eq. (20) to

λSn ¼ � 3NV
κπ3/2

ðπ
0

cos(2n~w) exp � [2sin(~w/2)� 2sin(α/2)]2

κ2

� �
d~w,

230it is more favorable to solve Eq. (20) numerically due to its com-
231plexity. For large values of κ, the equation can be solved straight-
232forwardly by Simpson’s rule. As κ approaches small values, the
233expression under the integral in Eq. (20) varies more and more
234rapidly, making Simpson’s rule impractical. A useful numerical
235method for small κ is Gauss–Hermite quadrature. Introducing

x ¼ 2jsin(~w/2)j � 2sin(α/2)
κ

:

236Equation (20) is then expressed in terms of the variable x as
237follows:

λSn � � 3NV
π3/2

ð1
�1

exp(�x2)
cos{4narcsin[xκ/2þ sin(α/2)]}ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� [xκ/2þ sin(α/2)]2
p dx,

(21)

238239rapidly converging the regime of small κ, where Simpson’s
240rule fails. Applying Gauss–Hermite quadrature, we have

λSn �
�3NV
π3/2

Xn
i¼1

wi
cos{4narcsin[xiκ/2þ sin(α/2)]}ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� [xiκ/2þ sin(α/2)]2
p :

241Triplet State. Analogously to the singlet case, the pairing strength
242constant for triplet state equation considering the Gaussian model
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243 for pairing interaction in the variable ~w is as follows:

λTn ¼ NV
2κπ3/2

ð2π
0

exp(2in~w)cos(~w)

� exp � [2jsin(~w/2)j � 2sin(α/2)]2

κ2

� �
d~w, (22)

244 with integrand being an even function, Eq. (22) can be transformed
245 into

λTn ¼ NV
κπ3/2

ðπ
0

cos(2n~w)cos(~w) exp � [2sin(~w/2)� 2sin(α/2)]2

κ2

� �
d~w:

246 Implementing a similar procedure as in the singlet case, we can
247 analyze the solution for large and small values of κ:
248 – Values in the upper range of κ: Eq. (22) can be solved
249 numerically using Simpson’s rule.
250 – Values in the lower range of κ: The linearized order parame-
251 ter reads

λTn � NV
π3/2

ð1
�1

cos{2arcsin[xκ/2þ sin(α/2)]}

� cos{4narcsin[xκ/2þ sin(α/2)]}ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� [xκ/2þ sin(α/2)]2

p exp(�x2)dx: (23)

252253 Gauss–Hermite quadrature is an appropriate method for
254 obtaining a valid approximation:

λTn � NV
π3/2

Xn
i¼1

wi
cos{4naarcsin[xiκ/2þ sin(α/2)]}ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� [xiκ/2þ sin(α/2)]2
p

� cos{2arcsin[xiκ/2þ sin(α/2)]}:

255

256 5. RESULTS

257 5.1. Dirac-δ distribution

258 The eigenvalue interaction parameter λmax is intrinsically posi-
259 tive, aligned with physical expectations of interaction strengths
260 within the system; hence, the diagram excludes values of negative
261 eigenvalues. The red line, representing the singlet pairing interac-
262 tion, shows dominance over the triplet pairing interaction (blue
263 line), except for a small range of 0 , jQj , 0:45. Within this
264 interval, p-waves states show a relative increase in triplet interaction
265 strength. In the dominant domain of singlet states, there are mostly
266 g-wave states and d-wave states.
267 The Gaussian distribution closely approximates the Dirac-δ
268 model as κ approaches zero, as illustrated in the Fig. 2 above,
269 where we compare phase transition of the Gaussian model with
270 width κ ¼ 0:001 to that of the Dirac-δ model. The result confirmed
271 the model’s hypothesis.

2725.2. Gaussian distribution

273The Gaussian model represents a more realistic approximation
274compared to the idealized Dirac-δ model. By varying the width
275parameter away from zero, we can develop a comprehensive phase
276diagram that distinguishes between singlet and triplet states.
277As discussed, employing Simpson’s rule becomes more appro-
278priate for solving Eqs. (20) and (22) over a broader range of κ, with
279a particular focus on values starting from κ ¼ 0:02. As illustrated
280in Fig. 3, the physical significance of phase dominance is preserved

FIG. 1. Model circular Fermi surface of radius kF ¼ 1.

FIG. 2. Phase transitions of singlet and triplet states modeled by Dirac-δ func-
tion and Gaussian functions with κ ¼ 0:001.
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281 in both cases when κ ¼ 0:02. This method enables the construction
282 of a detailed phase diagram that examines the interaction parame-
283 ter λ, with a focus on identifying the values of n that optimize λ.
284 This, in turn, provides deeper insights into the system’s behavior
285 across different parameter regimes.

286The phase diagram presented, Fig. 4, demonstrates the insta-
287bility of the dominant state as it varies with parameters κ and Q in
288the ranges [10�3, 5] and [0, 2], respectively. Singlet-wave states are
289not observed at low Q in the ranges [0, 0:45]; only triplet-wave
290states present, with the prevalence of p-wave states. Nevertheless,
291due to the factor of 3 associated with the rotational invariance of
292singlet-wave pairing, singlet-wave states generally dominate the
293interaction strength (g-wave and d-wave). For κ approaching from
2940, simulating Dirac-δ distribution, and Q approaches its maximum
295value of 2, there is an absence of pairing interactions for any orbit-
296als, reflecting the physical interpretation the unpopularity of the
297spin-fluctuation pairing for antiferromagnetic pairs of electrons. A
298thorough analysis of the system’s behavior can be obtained through
299diagrams of orbital gap functions of each wave state.
300Table I shows the symmetry of gap functions for states
301depicted in Fig. 4, categorized by orbital symmetry (L) and the com-
302monly used s-, p-, d-wave symmetries in a two-dimensional surface.
303The basis functions for the scalar singlet (S = 0) order parameter Δ,
304and for the vector triplet (S ¼ 1) order parameter d are listed.
305Note that the gap functions for spin-triplet states with the
306same angular momentum can have degenerate states. For example,
307the p-wave symmetry on an isotropic 2D Fermi surface has five
308degenerate (without spin-orbit coupling) representations:

309kxx̂+ kyŷ,
310kyx̂+ kxŷ,
311kxẑ þ ikyẑ (Anderson–Brinkmann–Morelstatae),
312all of which can be expressed by kxx̂ þ kyŷ, the isotropic Balian–
313Werthamer state. Hence, the gap functions listed in Table I effec-
314tively represent all these degenerate states.

FIG. 3. Phase transitions of singlet and triplet states modeled by gaussian func-
tion with κ ¼ 0:02 computed by Gauss–Hermite quadrature vs Simpson’s rule.

FIG. 4. Phase diagram as a function of the spin-fluctuation wave vector Q and
the fluctuation spectrum width κ. The color corresponds to the absolute values
of the largest eigenvalue λmax of the interaction matrix, and the diagram is cut
at λmax . 0:01. The symmetry of the corresponding superconducting state is
marked for the corresponding stability regions.

TABLE I. Symmetry of gap functions of states.

S L Δ(k) or d(k)

S 0 s 1
T 1 p cos w
S 0 d cos 2w
T 1 f cos 3w
S 0 g cos 4w
T 1 h cos 5w

FIG. 5. Pairing (red) and pair-breaking (white) regions for scattering from the
leftmost point on the Fermi surface. Left: d-wave; right: g-wave.
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315 Figures 5 and 6 provide visual clues to the structure of the
316 phase diagram (Fig. 4). First of all, at small Q (i.e., for approxi-
317 mately ferromagnetic spin fluctuations), singlet states cannot form;
318 only triplet-wave states can take advantage of such spin fluctua-
319 tions. For the p-wave states fluctuations with small, but finite Q are
320 also pairing, therefore it is not very sensitive to the width of the
321 fluctuation spectrum. Indeed we find p-wave to be stable at Q up to
322 nearly 0.5, and its range of stability increase with κ.
323 At w�π/4 (Q ¼ 1 sin π/8�0:76) the state that is most favored
324 is g, albeit its advantage gradually deteriorates when κ becomes
325 comparable with Q. Not that factor of three in Eq. (9) additionally
326 favors singlet states. Indeed we see that the critical temperature for
327 the g state is maximized at Q � 0:76.
328 As Q increases further towards

ffiffiffi
2

p � 1:4 the situation repli-
329 cates that in the high-Tc cuprates, since this wave vector corre-
330 sponds to the nearest neighbor antiferomagnetic coupling on a
331 square lattice. Of course, the d-state, which corresponds specifically
332 to the dx2�y2 on the square CuO2 lattices, fits this Q perfectly, and
333 we see another singlet (d) maximum at this vector. It is stronger
334 than that for the g- wave, because the pairing region is broader.
335 This fact is also responsible for enlargement of the d-stability
336 region at larger κ.
337 Finally, the g-state is again becoming well paired for
338 Q�2 sin 3π/8 � 1:85, albeit at slightly larger Q�2

ffiffiffiffiffiffiffiffiffiffiffiffi
7π/16

p � 1:96
339 the h-states become competitive — but still lose by a factor of
340 three, except in a thin sliver of the phase diagram at κ � 0:632.
341 As Q approaches its maximum value of 2, the calculated criti-
342 cal temperature drop precipitously. This can be rationalized as

343follows: spin fluctuations with Q ¼ 2 are attractive for triplet
344pairing, but, since k � k ¼ �1 for the two opposite points, it is pair-
345breaking. For the singlet pairing it is repulsive, but then the sign of
346the order parameter must be the same for those point, by symme-
347try, so it is again pair-breaking. Larger widths slightly alleviate this
348frustration, so that pairing with, consequently, g, h, and d symmetry
349becomes possible—but very weak.

3506. CONCLUSIONS

351Spin-fluctuation pairing interactions with varying momen-
352tum-space structures can lead to a rich variety of unconventional
353pairing states, many of which exhibit unique symmetries and pari-
354ties that are unattainable through individual interactions alone.
355Even the extremely simple toy model of an isotropic 2D Fermi
356surface with isotropic spin fluctuations can lead, as a function of
357the position and width of the spin fluctuation maximum, to a sur-
358prisingly rich phase diagram with singlet and triplet pairing states
359with angular momenta L = 1, 2, 3, 4 or 5. While some of our find-
360ings may be model specific, such as a rather tiny stability region of
361the h-wave state, most of them are quite generic: dominance of the
362p-wave paring close to ferromagnetism, d-pairing in the regime
363similar to nearest-neighbor spin correlations in cuprates, and
364strong stability of g-wave for other spin fluctuation wave vector.
365Another generic finding is the increased stability of p- and d-waves
366at the expense of the g-wave at larger-width fluctuation spectra.
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FIG. 6. Pairing (red) and pair-breaking (white) regions regions for scattering
from the leftmost point on the Fermi surface. Left: p-wave; right: f-wave; bottom:
h-wave. The direction of the d is indicated by arrows.
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