PROOF COPY [LTP24-RE-00129]

Q1

Low Temperature

Physics

ARTICLE pubs.aip.org/aip/Itp

A toy model for two-dimensional spin-fluctuation-
induced unconventional superconductivity

2
3 Cite as: Fiz. Nizk. Temp. 50, 1264-1271 (December 2024); doi: 10.1063/10.0034348 @ m @
Submitted: 21 October 2024 )

4 View Online Export Citation CrossMark

, Tum. Cao?) and Igor I. Mazin

6 AFFILIATIONS

7 Department of Physics and Astronomy, George Mason University, Fairfax, Center for Quantum Science and Engineering,

8§ George Mason University, Fairfax, Virginia 22030, USA

9

10 ?Author to whom correspondence should be addressed: tcao5@gmu.edu

11

12 ABSTRACT

13 Superconductivity had been one of the most enigmatic phenomena in condensed matter physics, puzzling the best theorists for 45 years,

14 since the original discovery by Kamerlingh-Onnes in 1911 till the final solution by Bardeen, Cooper, and Schrieffer (BCS) in 1957. The orig-

15 inal BCS proposal assumed the highest-symmetry form for the superconducting order parameter A, namely, a constant, and a uniform

16 pairing interaction due to attractive mediation of ionic vibration. While it was rather soon realized that generalizations onto k-dependent

17 order parameters and anisotropic pairing interaction was straightforward, only thirty years later, upon the discovery of high-temperature

18 superconductivity in cuprates, high-order angular dependence of A and repulsive interaction, mediated by spin fluctuations or Coulomb

19 repulsion brought such “unconventional” into the spotlight. In 2008 yet another such system was discovered, and eventually the idea of

20 repulsion-mediated unconventional superconductivity was generally accepted. Apart from the two specific systems mentioned above, a large

21 number of various specific implementations of this idea have been proposed, and it is becoming increasingly clear that it is worth studying

22 mathematically how unconventional superconductivity emerges, and with what properties, for a simple, but sufficiently general theoretical

23 model. In our project, we study systematically unconventional superconductivity in an isotropic two-dimensional model system of electrons,

24 subjected to repulsive interactions of a simple, but physically motivated form: a delta function peaked at a particular momentum (from 0 to

25 twice the Fermi momentum), or Gaussian of varying widths.

iy Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/10.0034348

27 1. INTRODUCTION superconductivity, where this rule is reversed, even though this 45
28 Even though theorists were taking random forays into uncon- concep t has also been brought up witbi.n the same framework." If, 4
29 ventional superconductivity (“unconventional” here is defined as as it is usually Fhe case, sup‘erconductmjcy develops upon suppres- - 47
30 superconductivity that is not due to phonons, and/or with a sion of an antiferromagnetic order, spin-fluctuation spectrum is 48
31 momentum-dependent order parameter,’ the real advent of this peaked, in the momentum space, at the wave vector corresponding 49
32 field was triggered by the discovery of the high-temperature super- to this order. If the Fermi surface geometry is such that this vector 50
33 conductivity in cuprates.” It took a decade to appreciate that the ~ spans parts of the Fermi surface that, in a given pairing symmetry, 51
34 pairing symmetry there is d-wave, and that the likely pairing inter- have opposite signs, spin-fluctuation exchange will favor this partic- 52
35 action is due to spin-fluctuation exchange.3 This concept has ular pairing symmetry. In case of high-T, cuprates it happens to be 53
36 gained currency afterwards, especially when it was recognized that the x> — y* d-wave symmetry, in Fe-based material a sign-changing 54
37 the newly-discovered Fe-based superconductors, even while qualita- s-wave,” etc. Similar geometrical arguments were historically applied 55
38 tively different and of different pairing symmetry, can also be for triplet pairing, such as p-wave® or f-wave.” 56
39 described within the same paradigm. Apart from some heavy-fermion superconductors, most 57
40 The idea is tantalizingly simple. As we recall in the next unconventional-superconductivity candidates are 2D, which greatly 58
41 section, while charge fluctuations, such as phonons, always induce simplifies the problem. Keeping in mind that real materials usually 59
42 interelectron attraction, and Coulomb interaction is always repulsive, have complex Fermi surfaces (high-T, cuprates are an exception) 60
43 spin fluctuations induce repulsion for singlet pairs, and attraction in and spin fluctuations often have a complicated spectrum, it is still 61
44 triplet pairs (we are not discussing even more exotic odd-frequency useful to gather general insight into the interplay between the 62
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63 Fermi surface geometry and the shape of the spin fluctuation spec- In the proximity of weak-coupling limit on an anisotropic 98
64 trum using simple models. Fermi surface, the order parameter equation can be expressed as an 99
65 In this paper, we are using a minimal 2D model, consisting of eigenvalue problem: 100
66 a circular Fermi surface of a unit radius kr = land isotropic spin-
67 fluctuation induced pairing interaction, Vi, = V(lk —Kk'|), and 1
) MDAy = ——————— Ar. 4
68 considering both singlet states up to [ =4 (ie., s, d, and g) and %: KT T Jog (1.13Tp/T,) k )
69 triplet up to =5 (ie, p, f, and h). The high symmetry of the
70 m.odel affords a great simpliﬁc:ation Of. the mathematics involved, The largest eigenvalue A,y of the matrix 2y o thus gives the largest 101
71 without much loss of the essential physics. critical temperature T, at which a solution of the Eq. (4) is possible, 102
and the corresponding eigenvector Ay gives us the corresponding 103
distribution of the order parameter over the Fermi surface near T, 104
75 2. GENERAL THEORY (but not at zero temperature). Then 105
73 2.1. Anisotropic bardeen-Cooper-Schrieffer theory T, = 1.13Tpexp(—1/Amax) (5)
74 The Bardeen-Cooper-Schrieffer (BCS) theory introduced the . i ) ) ) )
75 concept of a uniform order parameter A and a constant, attractive in this formglatlon, Amax replaces the tYPIC?ﬂ. couPllng constant 4 in 106
76 pairing interaction g = Vj . The standard BCS equation then the conventional BCS theory. Note that, in principle, the order 107
77 reads: parameter A need not be real, but may have a complex phase. 108
However, it must satisfy (see the next section) the requirement that 109
A &1 Ax = A_x (we are not considering non-centrosymmetric crystal lat- 110
A=g Z Etanh (ﬁ) ~& Z 2er tanh (ﬁ)a 1) tices here), so any eigenvector that does not respect this condition, 111
k k : even if it yields the largest eigenvalue, should be discarded. 112
78 where Ex = \/A? + & is the excitation energy in the supercon-
79 ducting state, gy is the normal-state one-electron energy, with the
80 Fermi energy Er set to zero, and g > 0 is the attractive constant 2.2. Generalization onto triplet pairing 113
81 interaction; the second equality holds in the linear regime . . . .
© T — T<T. AT Furthergqoretythe interaction is pres. T ’?o be While the BCS theory assumes singlet pair with the opposite 114
o ¢ © Iv £ c < T > coff f Ip th d spins, a similar theory can be written for triplet pairs, where each 115
non-zero only for & , a cut-off frequency. In the assume ) . . o . o
21 weak-cou liny re iml; (notDto be confuse dqwith }Lhe weak-counlin pair has spin S = 1.% Since the pair is now a spin-1 object, its state 116
limit of }F Elg h“i h he di onl I ping has to be described by a spinor matrix, which, in turn, can be rep- 117
:: )tl’nlt (])\] ; T (115 e;\%'f e:}’lry)ét ¢ 1m<;nst10tn esst Ct(l)lumeg C_O?Stagt resented by a real-space axial vector. Furthermore, while in the 118
= where N is the density of states at the Fermi level). : ; . . S
8; Going from integration over the m:)ymenta to integration over ener- singlet case the pair wave function satisfy the Pauli principle by 119
oing Ea. (1 & btains the i red 1teg 7. virtue of its spin part, so that its spatial part Ax = A_y is inversion- 120
8 gies in Eq. (1), one obtains the linearized equation on T.: symmetric, the opposite is true for the triplet case, so the vector 121
. order parameter is antisymmetric: dx = —d_y. 122
FA £ One can now write BCS-like equations on this vector order 123
A=2 J 2—8tanh <ﬁ> de. @ parameter: 124
0
1.13Tp
80 The (small) order parameter can be cancelled out and the dy :Z Vi N(K)dye log( T >
91 remaining equation is easily solved in the T.<Tp limit to give K ‘
1.13Tp
T, = 1.13Tpexp(—1/4), B Zk: P log( T. ) ©
?2 where 1.13 .con}fes frogx the Eull.er v as 2;’/ }71[ : 1L R Possible symmetries of the vector d are enumerated, for the three 126
:3 . A straight Ofiwar ci;enera lfzal:l?[r}i (1/ tk ek}%CS :iherrlZ aT(LWS OF " most common crystal symmetries, cubic, tetragonal and hexagonal, in 127
o4 the n}omentum T G (k, k') and A(k). The gap the review Ref. 8. For the purpose of our minimal model, they can be 128
95 equation then becomes: greatly simplified, since, first, we only need to consider 2D representa- 129
tion, and, second, neglecting spin-orbit coupling essentially renders all 130
A = Z Vi N(K) A log (1'13 TD) triplet unitary states with the same angular momentum degenerateé For 131
o T instance, for a tetragonal or hexagonal system Sigrist and Ueda® list 132
1.13Tp four unitary states, di = const - (k,X + k,y), or const - (k,y + k,X), 133
= Z A A log T , (3) which are all degenerate. Thus, it is enough to consider only 134
K ¢ dy = const - (kX + k,y) = const - k/k.. Correspondingly, triplet states 135
, L ) ] with higher angular momenta than p (I=1) can be, without a loss of 136
9o where N(K') == is the local density of states at the Fermi generality, written as dj = AT(k)k where, according to our model, 137
97 surface, with vp(k’) being the Fermi velocity. k=1, and A7 is a scalar inversion-symmetric function. 138
Low Temp. Phys. 50, 1 (2024); doi: 10.1063/10.0034348 50, 2

Published under an exclusive license by AIP Publishing



PROOF COPY [LTP24-RE-00129]

Low Temperature
Physics

ARTICLE pubs.aip.org/aip/Itp

139 Substituting this form into Eq. (6), we get angle variable ¢, ¢': 173
1.13Tp 2
Ak = Z A ALK 10g< ) @) 3N
I. o) = - 31 [ Ve 1@ (10)
140 . 0
Al 7Z/Ikk/A k-K'1 g( .T D), ®) 174
¢ 2
187 = Y [ Vg, AT (¢! )cos( !d (11)
141 which has the same form as for the singlet pairing, but replacing ¢ *Y ¢ ¢~ @)de,
142 the Ajy¢ matrix with A0 (k k). Importantly, the interaction 0
143 matrix A in the singlet case is, for the same spin fluctuation spec- ,
144 trum, three times larger, due to spin-rotational invariance.” In where cos(¢ — ¢') = k- K. It is convenient to expand the solution 175
145 order to keep the same notations for both cases, we now replace for A(g) in circular harmonics y; = exp(ilp), where ¢ is the 176
146 Eq. (3) with the following; angular coordinate on the Fermi circle. The inversion constraint 177
Ax = A_x for both singlet and triplet pairing is satisfied by [ = 2n 178
1.13Tp so that: 179
A=3) 1 /A,10< ) )
k Z Kk By 108 T.
. exp[2in(¢ + kr)] = expliRne + 2nkr)] = exp(2ing), (12)
145 3. SIMPLIFIED MODEL OF where k is an integer and ¢ + kz irepresent the inversion of the 180
149 SPIN-FLUCTUATION-INDUCED INTERACTION angle Q. After Ak is expanded in Vi the prOblem is reduced to cal- 181
culating A by direct integration and selecting the maximal value 182
150 When one includes all. the aforementione.d generalizations. of among all even [ = 2n. Note that in the order parameter Eq. (11) 183
151 the BCS theory, the phase diagram of the resulting superconducting  for triplet states, there is another dependence on ¢ from 184
152 state becomes rather complex. Some qualitative understanding can cos(¢ — ), leading to Alf(k -K') behaving as [ =21+ 1, an odd 185
153 be gained from a simple toy model of a uniform 2D electron gas orbital number. 186
154 with an isotropic spin-fluctuation induced interaction.
155 Thus, we take the spin-fluctuation pairing interaction to be
156 V(k, k') = Vf([k — K'|), which is presumed to have a peak at a
157 momentum Q. We will consider two models for V: first, a Dirac-8
158 function, and, second, a Gaussian with a finite width x. The 4. SOLUTIONS 187
159 Gaussian model is more realistic, but the §-function model allows 4.1. Dirac-é distribution 188
160 for an analytical solution' and serves as a limi‘Fing test case when Introducing the angle o = 2sin! (Q/2) or Q = 2sin(a/2), we 189
161 k — 0. The forms of the interaction are, respectively, then have 190
f=6(k—K| - Q) ,
k —K|—Q=|y2—2cos(¢ — ¢)| — 2sin(a/2)
102 1 (k— K| - Q> = |2sin(@/2)| — 2sin(a/2),
f= P20 4 = . ) )
where = ¢/ — ¢. In the simplest case, f(|k — k'|) = §(]k — k'| — Q) 191
163 Note that for Q = |k — K/|: can be converte;d into angle variables as f[|2sin(@/2)| — 2sin(a/2)]. A 192
useful formula is 193
Q= \/k2 TR - 2kK cos(®) = /2 — 2cos(®), Slx — x;)
8(F(x) —a) = Z i,
165 where @ is the angle between k and k', and [k|, [k'| are normalized —
166 to 1. This implies that the parameter Q has values in the interval o o . ) )
167 [0, 2], with Q = 0, when k and K overlap, and Q = 2 when they in this equation i labelf all solutions of the equation F(x) —a =0 (in 194
168 are opposite. We do not consider cases where the peak in the spin ~ OUr case there are two ¢ = ia.)-. leferentlétlngf (¢¢f) with respect to 195
169 fluctuation spectrum is outside of the Fermi surface (Q > 2). @' gives cos (¢/2);— 1 o The pairing interaction is then 196
se—0a) dle+a)
no_
170 3.1. Angle representation Vie, @) = V(Cos(a/z) cos(— a/2) (13)
171 As we have |k|> = 1, it is convenient to rewrite the BCS equa-
172 tion in the angle space. The order parameter now depends on the Singlet state. With the solution for A from Eq. (10) the order parameter 197
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198 reads Singlet State. The pairing strength constant equation given the 222
Gaussian model for pairing interaction in the variable ¢ is as 223
N e follows: 224
Kexp(2ing) = -3 [ Vie. exp(aing)de.
3
0 2z
/IS*——3NV xp(2ing)
200 since, the integral on the right-hand side (RHS) is evaluated n T T i | PN
201 with respect to ¢, we can switch the variable @ by dividing both g )
. . N 2|sin(@/2)| — 2sin(a/2
202 sides with exp(2ine): X exp{_ [2[sin(@/2)] i sin(a/2)] }d?p, (20)
i
27
2= N (g oexpin@)d(z 14
" T on (¢ @)exp2in@)d(@), (14) note that the integrand F(&) under the integral in the RHS of 226
0 Eq. (20) is an even function, meaning that F(p) = F(o + x). That 227
) ) ) L ) leads to 228
203 the integral can be solved analytically with the pairing interaction
204 modified by Dirac-8 distribution Eq. (13):
2 T 2 T
3NV P)de = | F(2)da D)o — P)da
o - o G2 W | F@de = [F@ae+ [ F@rp =2 | e,
1 — Q%4 0 0 T 0
205 where we expressed the solution for A3 with Chebyshev polynomi- L -
206 als of the first kind T,(cos ) = cos(n6). Another way to rewrite VIRRL fies Ea- (20) to 229
207 this expression more compactly is to introduce an auxiliary variable
ps T
208 Q = COS(a/Z) =+1- Q2/4. Then s 3NV B [251n(¢/2) _ 251n(a/2)]2 ~
A = ——— | cos(2np) expq — do,
ANV n il 2
=2
Ay=— 5 @2 -1, (16) 0
. . . . it is more favorable to solve Eq. (20) numerically due to its com- 230
209 Triplet State. Following analogous steps, we derive a corresponding . . .
510 ord ; B ith Eq. (11) for triplet states: plexity. For large values of x, the equation can be solved straight- 231
+10 order parameter equation with £q. or tripiet states: forwardly by Simpson’s rule. As x approaches small values, the 232
. expression under the integral in Eq. (20) varies more and more 233
r N , o A rapidly, making Simpson’s rule impractical. A useful numerical 234
Ay = o J Vig: @)exp2ing)cos(@)d(), a7) method for small x is Gauss-Hermite quadrature. Introducing 235
0
211 in which the pairing strength constant A7 can be derived analyti- X = 2|sin(@/2)| — 2sin(a/ 2).
212 cally in a manner similar to that of the singlet case: K
~2 . . . .
NVQRQ —1) = Equation (20) is then expressed in terms of the variable x as 236
Ay == T2Q = 1). (18)  follows: 237
7Q
213 We then create a diagram to determine, within the range of o from 0 . .
214 0 to m, which state yields the maximum Ay, and find the corre- A5~ — 3NV J exp(—x?) cos{dnarcsin[xx/2 + sin(a/2)]} d
215 sponding orbital number: [ = 2n for the singlet state (s, d, g) and ! s ) \/ 1 — [xk/2 + sin(a/2)]*
216 1 =2n+1 for the triplet state (p, f, h), with n in the range [0, 2], 51
217 respectively. 1)
rapidly converging the regime of small x, where Simpson’s 238
218 4.24Catssian distribution rule fails. Applying Gauss—-Hermite quadrature, we have 240
219 Following analogous steps as with the Dirac-8 distribution, the ; . )
220 pairing interaction V(Jk —k'|) for the Gaussian function can be 25 ~ —3N VZ W_cos{4narcs1n[x,-r(/ 2 + sin(a/ 2)]}'
221 expressed in terms of the angle variable ¢: : R l V1 = [xix/2 + sin(a/2)]?
. . 2
V(@) = v exp{f [2]sin(¢/2)| — 2sin(a/2)] } (19) Triplet State. Analogously to the singlet case, the pairing strength 241
KT K? constant for triplet state equation considering the Gaussian model 242
Low Temp. Phys. 50, 1 (2024); doi: 10.1063/10.0034348 50, 4
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243 for pairing interaction in the variable ¢ is as follows: 1.0
2z
NV o _
if = 2 J exp(2in)cos(@)
0
0.5r
2Jsin(@/2)| — 2sin(a/2)]® :
« oxp{ - ESE 20Dy &,
K
244 with integrand being an even function, Eq. (22) can be transformed
245 into ot L’
¢y
3
NV o [2sin(@/2) — 2sin(@/2)]) -
/1: = mjcos(Zm,o)cos(go) exp{f p déo.
0
0.5F
246 Implementing a similar procedure as in the singlet case, we can
247 analyze the solution for large and small values of x:
248 - Values in the upper range of x: Eq. (22) can be solved k1
249 numerically using Simpson’s rule.
250 - Values in the lower range of «: The linearized order parame- -1.0 ' : L
251 ter reads -1.0 -0.5 0 0.5 1.0
NV * FIG. 1. Model circular Fermi surface of radius kr = 1.
AZ: ~—s J cos{2arcsin[xx/2 + sin(a/2)]}
3
cos{4narcsin[xxk/2 + sin(a/2)]} 2 5.2. Gaussian distribution 272
' = exp(—x“)dx. (23)
\/1 — [xx/2 + sin(a/2)] The Gaussian model represents a more realistic approximation 273
. . . compared to the idealized Dirac-d model. By varying the width 274
253 .C%auss—ngmlte qu'adra.ture is an appropriate method for parameter away from zero, we can develop a comprehensive phase 275
254 obtaining a valid approximation: diagram that distinguishes between singlet and triplet states. 276
., ) i As discussed, employing Simpson’s rule becomes more appro- 277
T NV Z w; cos{dnaarcsin[x;x/2 + sin(a/2)]} priate for solving Eqgs. (20) and (22) over a broader range of k, with 278
N 2 — \/ 1 — [xix/2 + sin(a/Z)]z a particular focus on values starting from x = 0.02. As illustrated 279
. . in Fig. 3, the physical significance of phase dominance is preserved 280
x cos{2arcsin[x;x/2 + sin(a/2)]}.
255
’ 30 Dirac-
— Mag, x:
—Max A
256 5. RESULTS 25 Tlmlss—sl-lcrmilc
d
257 5.1. Dirac-é distribution éz ok :¢
< 7 .
258 The eigenvalue interaction parameter Am,y is intrinsically posi- 2 o
259 tive, aligned with physical expectations of interaction strengths = 1.5F
260 within the system; hence, the diagram excludes values of negative 2
261 eigenvalues. The red line, representing the singlet pairing interac- _%’D 1.0+
262 tion, shows dominance over the triplet pairing interaction (blue 53}
263 line), except for a small range of 0 < |Q| < 0.45. Within this 05k
264 interval, p-waves states show a relative increase in triplet interaction ’
265 strength. In the dominant domain of singlet states, there are mostly | : |
266 g-wave states and d-wave states. 0 0 0.5 1.0 1.5 2.0
267 The Gaussian distribution closely approximates the Dirac-3 Parameter O
268 model as x approaches zero, as illustrated in the Fig. 2 above,
269 where we compare phase transition of the Gaussian model with FIG. 2. Phase ransit e — deled by Diracss f
270 width k¥ = 0.001 to that of the Dirac-3 model. The result confirmed fion and Gaissesi;nfilr:gtri]gn(s) vjlltT]g: :ano 03? el stales modeled by Lirac-o func-
271 the model’s hypothesis. o
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TABLE I. Symmetry of gap functions of states.

L A(k) or d(k)

1
cos ¢
cos 2¢
cos 3¢
cos 4¢
cos 5¢

— O = O = O

N VOOV O»
0g h T @

The phase diagram presented, Fig. 4, demonstrates the insta-
bility of the dominant state as it varies with parameters x and Q in
the ranges [10°3, 5] and [0, 2], respectively. Singlet-wave states are
not observed at low Q in the ranges [0, 0.45]; only triplet-wave
states present, with the prevalence of p-wave states. Nevertheless,
due to the factor of 3 associated with the rotational invariance of

286
287
288
289
290
291

EIG. 3 Phase transitions of singlet and triplet _states modeled by _gaussian func- singlet-wave pairing, singlet-wave states generally dominate the 292
tion with & = 0.02 computed by Gauss-Hermite quadrature vs Simpson’s rule. . . .
interaction strength (g-wave and d-wave). For x approaching from 293
0, simulating Dirac-8 distribution, and Q approaches its maximum 294
value of 2, there is an absence of pairing interactions for any orbit- 295
281 in both cases when x = 0.02. This method enables the construction als, reflecting the physical interpretation the unpopularity of the 296
282 of a detailed phase diagram that examines the interaction parame- spin-fluctuation pairing for antiferromagnetic pairs of electrons. A 297
283 ter A, with a focus on identifying the values of n that optimize A. thorough analysis of the system’s behavior can be obtained through 298
284 This, in turn, provides deeper insights into the system’s behavior diagrams of orbital gap functions of each wave state. 299
285 across different parameter regimes. Table I shows the symmetry of gap functions for states 300
depicted in Fig. 4, categorized by orbital symmetry (L) and the com- 301
monly used s-, p-, d-wave symmetries in a two-dimensional surface. 302
The basis functions for the scalar singlet (S=0) order parameter A, 303
0.5 and for the vector triplet (S = 1) order parameter d are listed. 304
Note that the gap functions for spin-triplet states with the 305
0 same angular momentum can have degenerate states. For example, 306
the p-wave symmetry on an isotropic 2D Fermi surface has five 307
) degenerate (without spin-orbit coupling) representations: 308
§ —0.5 ke + kyy, 309
o kyx + k.y, 310
o0 ~1.0 k«z + ik,z (Anderson-Brinkmann-Morelstatae), 311
é all of which can be expressed by k.x + k,J, the isotropic Balian- 312
v Werthamer state. Hence, the gap functions listed in Table I effec- 313
§ -1.5 tively represent all these degenerate states. 314
)
g
5 2.0
=5
-2.5
1
3'00 0.5 1.0 1.5 2.0
Parameter Q
FIG. 4. Phase diagram as a function of the spin-fluctuation wave vector Q and
the fluctuation spectrum width x. The color corresponds to the absolute values
of the largest eigenvalue Anqx Of the interaction matrix, and the diagram is cut
at Amax > 0.01. The symmetry of the corresponding superconducting state is FIG. 5. Pairing (red) and pair-breaking (white) regions for scattering from the
marked for the corresponding stability regions. leftmost point on the Fermi surface. Left: d-wave; right: g-wave.
Low Temp. Phys. 50, 1 (2024); doi: 10.1063/10.0034348 50, 6
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follows: spin fluctuations with Q =2 are attractive for triplet 343
pairing, but, since k - k = —1 for the two opposite points, it is pair- 344
breaking. For the singlet pairing it is repulsive, but then the sign of 345
the order parameter must be the same for those point, by symme- 346
try, so it is again pair-breaking. Larger widths slightly alleviate this 347
frustration, so that pairing with, consequently, g, i, and d symmetry 348
becomes possible—but very weak. 349
6. CONCLUSIONS 350
Spin-fluctuation pairing interactions with varying momen- 351
tum-space structures can lead to a rich variety of unconventional 352
pairing states, many of which exhibit unique symmetries and pari- 353
ties that are unattainable through individual interactions alone. 354
Even the extremely simple toy model of an isotropic 2D Fermi 355
surface with isotropic spin fluctuations can lead, as a function of 356
the position and width of the spin fluctuation maximum, to a sur- 357
prisingly rich phase diagram with singlet and triplet pairing states 358
with angular momenta L =1, 2, 3, 4 or 5. While some of our find- 359
ings may be model specific, such as a rather tiny stability region of 360
the h-wave state, most of them are quite generic: dominance of the 361
p-wave paring close to ferromagnetism, d-pairing in the regime 362
similar to nearest-neighbor spin correlations in cuprates, and 363
strong stability of g-wave for other spin fluctuation wave vector. 364
FIG. 6. Pairing (red) and pair-breaking (white) regions regions for scattering Another generic finding is the 1ncreaseq stability Off’ - and d-waves 365
from the leftmost point on the Fermi surface. Left: p-wave; right: f-wave; bottom: at the expense of the g-wave at larger-width fluctuation spectra. 366
h-wave. The direction of the d is indicated by arrows.
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