

1 A toy model for two-dimensional spin-fluctuation- induced unconventional superconductivity

2
 3 Cite as: *Fiz. Nizk. Temp.* **50**, 1264-1271 (December 2024); doi: 10.1063/10.0034348
 4 Submitted: 21 October 2024

5 **Q1 Tu M. Cao^{a)} and Igor I. Mazin**

6 AFFILIATIONS

7 Department of Physics and Astronomy, George Mason University, Fairfax, Center for Quantum Science and Engineering,
 8 George Mason University, Fairfax, Virginia 22030, USA

9
 10 ^{a)}Author to whom correspondence should be addressed: tcao5@gmu.edu
 11

12 ABSTRACT

13 Superconductivity had been one of the most enigmatic phenomena in condensed matter physics, puzzling the best theorists for 45 years,
 14 since the original discovery by Kamerlingh-Onnes in 1911 till the final solution by Bardeen, Cooper, and Schrieffer (BCS) in 1957. The orig-
 15 inal BCS proposal assumed the highest-symmetry form for the superconducting order parameter Δ , namely, a constant, and a uniform
 16 pairing interaction due to attractive mediation of ionic vibration. While it was rather soon realized that generalizations onto k -dependent
 17 order parameters and anisotropic pairing interaction was straightforward, only thirty years later, upon the discovery of high-temperature
 18 superconductivity in cuprates, high-order angular dependence of Δ and repulsive interaction, mediated by spin fluctuations or Coulomb
 19 repulsion brought such “unconventional” into the spotlight. In 2008 yet another such system was discovered, and eventually the idea of
 20 repulsion-mediated unconventional superconductivity was generally accepted. Apart from the two specific systems mentioned above, a large
 21 number of various specific implementations of this idea have been proposed, and it is becoming increasingly clear that it is worth studying
 22 mathematically how unconventional superconductivity emerges, and with what properties, for a simple, but sufficiently general theoretical
 23 model. In our project, we study systematically unconventional superconductivity in an isotropic two-dimensional model system of electrons,
 24 subjected to repulsive interactions of a simple, but physically motivated form: a delta function peaked at a particular momentum (from 0 to
 25 twice the Fermi momentum), or Gaussian of varying widths.

26 *Published under an exclusive license by AIP Publishing. <https://doi.org/10.1063/10.0034348>*

27 1. INTRODUCTION

28 Even though theorists were taking random forays into uncon-
 29 ventional superconductivity (“unconventional” here is defined as
 30 superconductivity that is not due to phonons, and/or with a
 31 momentum-dependent order parameter,¹ the real advent of this
 32 field was triggered by the discovery of the high-temperature super-
 33 conductivity in cuprates.² It took a decade to appreciate that the
 34 pairing symmetry there is d -wave, and that the likely pairing inter-
 35 action is due to spin-fluctuation exchange.³ This concept has
 36 gained currency afterwards, especially when it was recognized that
 37 the newly-discovered Fe-based superconductors, even while qualita-
 38 tively different and of different pairing symmetry, can also be
 39 described within the same paradigm.

40 The idea is tantalizingly simple. As we recall in the next
 41 section, while charge fluctuations, such as phonons, always induce
 42 interelectron attraction, and Coulomb interaction is always repulsive,
 43 spin fluctuations induce repulsion for singlet pairs, and attraction in
 44 triplet pairs (we are not discussing even more exotic odd-frequency

45 superconductivity, where this rule is reversed, even though this
 46 concept has also been brought up within the same framework.⁴ If,
 47 as it is usually the case, superconductivity develops upon suppres-
 48 sion of an antiferromagnetic order, spin-fluctuation spectrum is
 49 peaked, in the momentum space, at the wave vector correspond-
 50 ing to this order. If the Fermi surface geometry is such that this vector
 51 spans parts of the Fermi surface that, in a given pairing symmetry,
 52 have opposite signs, spin-fluctuation exchange will favor this partic-
 53 ular pairing symmetry. In case of high- T_c cuprates it happens to be
 54 the $x^2 - y^2$ d -wave symmetry, in Fe-based material a sign-changing
 55 s -wave,⁵ etc. Similar geometrical arguments were historically applied
 56 for triplet pairing, such as p -wave⁶ or f -wave.⁷

57 Apart from some heavy-fermion superconductors, most
 58 unconventional-superconductivity candidates are 2D, which greatly
 59 simplifies the problem. Keeping in mind that real materials usually
 60 have complex Fermi surfaces (high- T_c cuprates are an exception)
 61 and spin fluctuations often have a complicated spectrum, it is still
 62 useful to gather general insight into the interplay between the

63 Fermi surface geometry and the shape of the spin fluctuation spectrum using simple models.

64 In this paper, we are using a minimal 2D model, consisting of
65 a circular Fermi surface of a unit radius $k_F = 1$ and isotropic spin-
66 fluctuation induced pairing interaction, $V_{\mathbf{k},\mathbf{k}'} = V(|\mathbf{k} - \mathbf{k}'|)$, and
67 considering both singlet states up to $l = 4$ (i.e., s , d , and g) and
68 triplet up to $l = 5$ (i.e., p , f , and h). The high symmetry of the
69 model affords a great simplification of the mathematics involved.
70 without much loss of the essential physics.

72 2. GENERAL THEORY

73 2.1. Anisotropic Bardeen-Cooper-Schrieffer theory

74 The Bardeen-Cooper-Schrieffer (BCS) theory introduced the
75 concept of a uniform order parameter Δ and a constant, attractive
76 pairing interaction $g = V_{\mathbf{k},\mathbf{k}'}$. The standard BCS equation then
77 reads:

$$\Delta = g \sum_{\mathbf{k}} \frac{\Delta}{2E_{\mathbf{k}}} \tanh\left(\frac{E_{\mathbf{k}}}{2T}\right) \approx g \sum_{\mathbf{k}} \frac{\Delta}{2\varepsilon_{\mathbf{k}}} \tanh\left(\frac{\varepsilon_{\mathbf{k}}}{2T}\right), \quad (1)$$

78 where $E_{\mathbf{k}} = \sqrt{\Delta^2 + \varepsilon_{\mathbf{k}}^2}$ is the excitation energy in the superconducting state, $\varepsilon_{\mathbf{k}}$ is the normal-state one-electron energy, with the
79 Fermi energy E_F set to zero, and $g > 0$ is the attractive constant
80 interaction; the second equality holds in the linear regime
81 $T_c - T \ll T_c$, $\Delta \ll T_c$. Furthermore, the interaction is presumed to be
82 non-zero only for $\varepsilon_{\mathbf{k}} < T_D$, a cut-off frequency. In the assumed
83 weak-coupling regime (not to be confused with the weak-coupling
84 limit of the Eliashberg theory), the dimensionless coupling constant
85 $\lambda = gN \ll 1$ (where N is the density of states at the Fermi level).
86 Going from integration over the momenta to integration over energies in Eq. (1), one obtains the linearized equation on T_c :

$$\Delta = \lambda \int_0^{T_D} \frac{\Delta}{2\varepsilon} \tanh\left(\frac{\varepsilon}{2T}\right) d\varepsilon. \quad (2)$$

89 The (small) order parameter can be cancelled out and the
90 remaining equation is easily solved in the $T_c \ll T_D$ limit to give

$$T_c = 1.13 T_D \exp(-1/\lambda),$$

92 where 1.13 comes from the Euler γ as $2e^\gamma/\pi$.

93 A straightforward generalization of the BCS theory allows for
94 the momentum dependence of both $V(\mathbf{k}, \mathbf{k}')$ and $\Delta(\mathbf{k})$. The gap
95 equation then becomes:

$$\begin{aligned} \Delta_{\mathbf{k}} &= \sum_{\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} N(\mathbf{k}') \Delta_{\mathbf{k}'} \log\left(\frac{1.13 T_D}{T_c}\right) \\ &= \sum_{\mathbf{k}'} \lambda_{\mathbf{k},\mathbf{k}'} \Delta_{\mathbf{k}'} \log\left(\frac{1.13 T_D}{T_c}\right), \end{aligned} \quad (3)$$

96 where $N(\mathbf{k}') = \frac{1}{v_F(\mathbf{k}')}$ is the local density of states at the Fermi
97 surface, with $v_F(\mathbf{k}')$ being the Fermi velocity.

In the proximity of weak-coupling limit on an anisotropic
98 Fermi surface, the order parameter equation can be expressed as an
99 eigenvalue problem:
100

$$\sum_{\mathbf{k}'} \lambda_{\mathbf{k},\mathbf{k}'} \Delta_{\mathbf{k}'} = \frac{1}{\log(1.13 T_D/T_c)} \Delta_{\mathbf{k}}. \quad (4)$$

The largest eigenvalue λ_{\max} of the matrix $\lambda_{\mathbf{k},\mathbf{k}'}$ thus gives the largest
101 critical temperature T_c at which a solution of the Eq. (4) is possible,
102 and the corresponding eigenvector $\Delta_{\mathbf{k}}$ gives us the corresponding
103 distribution of the order parameter over the Fermi surface near T_c
104 (but not at zero temperature). Then
105

$$T_c = 1.13 T_D \exp(-1/\lambda_{\max}) \quad (5)$$

in this formulation, λ_{\max} replaces the typical coupling constant λ in
106 the conventional BCS theory. Note that, in principle, the order
107 parameter Δ need not be real, but may have a complex phase.
108 However, it must satisfy (see the next section) the requirement that
109 $\Delta_{\mathbf{k}} = \Delta_{-\mathbf{k}}$ (we are not considering non-centrosymmetric crystal lat-
110 tices here), so any eigenvector that does not respect this condition,
111 even if it yields the largest eigenvalue, should be discarded.
112

2.2. Generalization onto triplet pairing

While the BCS theory assumes singlet pair with the opposite
114 spins, a similar theory can be written for triplet pairs, where each
115 pair has spin $S = 1$.⁸ Since the pair is now a spin-1 object, its state
116 has to be described by a spinor matrix, which, in turn, can be rep-
117 resented by a real-space axial vector. Furthermore, while in the
118 singlet case the pair wave function satisfy the Pauli principle by
119 virtue of its spin part, so that its spatial part $\Delta_{\mathbf{k}} = \Delta_{-\mathbf{k}}$ is inversion-
120 symmetric, the opposite is true for the triplet case, so the vector
121 order parameter is antisymmetric: $\mathbf{d}_{\mathbf{k}} = -\mathbf{d}_{-\mathbf{k}}$.
122

One can now write BCS-like equations on this vector order
123 parameter:
124

$$\begin{aligned} \mathbf{d}_{\mathbf{k}} &= \sum_{\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} N(\mathbf{k}') \mathbf{d}_{\mathbf{k}'} \log\left(\frac{1.13 T_D}{T_c}\right) \\ &= \sum_{\mathbf{k}'} \lambda_{\mathbf{k},\mathbf{k}'} \mathbf{d}_{\mathbf{k}'} \log\left(\frac{1.13 T_D}{T_c}\right). \end{aligned} \quad (6)$$

Possible symmetries of the vector \mathbf{d} are enumerated, for the three
126 most common crystal symmetries, cubic, tetragonal and hexagonal, in
127 the review Ref. 8. For the purpose of our minimal model, they can be
128 greatly simplified, since, first, we only need to consider 2D representa-
129 tion, and, second, neglecting spin-orbit coupling essentially renders all
130 triplet unitary states with the same angular momentum degenerate. For
131 instance, for a tetragonal or hexagonal system Sigrist and Ueda⁸ list
132 four unitary states, $\mathbf{d}_{\mathbf{k}} = \text{const} \cdot (k_x \hat{\mathbf{x}} \pm k_y \hat{\mathbf{y}})$, or $\text{const} \cdot (k_x \hat{\mathbf{y}} \pm k_y \hat{\mathbf{x}})$,
133 which are all degenerate. Thus, it is enough to consider only
134 $\mathbf{d}_{\mathbf{k}} = \text{const} \cdot (k_x \hat{\mathbf{x}} + k_y \hat{\mathbf{y}}) = \text{const} \cdot \mathbf{k}/k$. Correspondingly, triplet states
135 with higher angular momenta than p ($l=1$) can be, without a loss of
136 generality, written as $\mathbf{d}_{\mathbf{k}} = \Delta^T(\mathbf{k}) \mathbf{k}$ where, according to our model,
137 $k=1$, and Δ^T is a scalar inversion-symmetric function.
138

139 Substituting this form into Eq. (6), we get

$$\Delta_{\mathbf{k}}^T \mathbf{k} = \sum_{\mathbf{k}'} \lambda_{\mathbf{k}, \mathbf{k}'} \Delta_{\mathbf{k}'}^T \mathbf{k}' \log \left(\frac{1.13 T_D}{T_c} \right), \quad (7)$$

140

$$\Delta_{\mathbf{k}}^T = \sum_{\mathbf{k}'} \lambda_{\mathbf{k}, \mathbf{k}'} \Delta_{\mathbf{k}'}^T \mathbf{k} \cdot \mathbf{k}' \log \left(\frac{1.13 T_D}{T_c} \right), \quad (8)$$

141 which has the same form as for the singlet pairing, but replacing
142 the $\lambda_{\mathbf{k}, \mathbf{k}'}$ matrix with $\lambda_{\mathbf{k}, \mathbf{k}'}(\mathbf{k} \cdot \mathbf{k}')$. Importantly, the interaction
143 matrix λ in the singlet case is, for the same spin fluctuation spec-
144 trum, three times larger, due to spin-rotational invariance.⁸ In
145 order to keep the same notations for both cases, we now replace
146 Eq. (3) with the following:

$$\Delta_{\mathbf{k}}^S = 3 \sum_{\mathbf{k}'} \lambda_{\mathbf{k}, \mathbf{k}'} \Delta_{\mathbf{k}'}^S \log \left(\frac{1.13 T_D}{T_c} \right). \quad (9)$$

147

148 3. SIMPLIFIED MODEL OF 149 SPIN-FLUCTUATION-INDUCED INTERACTION

150 When one includes all the aforementioned generalizations of
151 the BCS theory, the phase diagram of the resulting superconducting
152 state becomes rather complex. Some qualitative understanding can
153 be gained from a simple toy model of a uniform 2D electron gas
154 with an isotropic spin-fluctuation induced interaction.

155 Thus, we take the spin-fluctuation pairing interaction to be
156 $V(\mathbf{k}, \mathbf{k}') = Vf(|\mathbf{k} - \mathbf{k}'|)$, which is presumed to have a peak at a
157 momentum Q . We will consider two models for V : first, a Dirac- δ
158 function, and, second, a Gaussian with a finite width κ . The
159 Gaussian model is more realistic, but the δ -function model allows
160 for an analytical solution and serves as a limiting test case when
161 $\kappa \rightarrow 0$. The forms of the interaction are, respectively,

$$f = \delta(|\mathbf{k} - \mathbf{k}'| - Q),$$

$$f = \frac{1}{\kappa \sqrt{\pi}} \exp \left[-\frac{(|\mathbf{k} - \mathbf{k}'| - Q)^2}{\kappa^2} \right].$$

162 Note that for $Q = |\mathbf{k} - \mathbf{k}'|$:

$$Q = \sqrt{\mathbf{k}^2 + \mathbf{k}'^2 - 2\mathbf{k}\mathbf{k}' \cos(\tilde{\varphi})} = \sqrt{2 - 2\cos(\tilde{\varphi})},$$

163 where $\tilde{\varphi}$ is the angle between \mathbf{k} and \mathbf{k}' , and $|\mathbf{k}|, |\mathbf{k}'|$ are normalized
164 to 1. This implies that the parameter Q has values in the interval
165 $[0, 2]$, with $Q = 0$, when \mathbf{k} and \mathbf{k}' overlap, and $Q = 2$ when they
166 are opposite. We do not consider cases where the peak in the spin
167 fluctuation spectrum is outside of the Fermi surface ($Q > 2$).

170 3.1. Angle representation

171 As we have $|\mathbf{k}|^2 = 1$, it is convenient to rewrite the BCS equa-
172 tion in the angle space. The order parameter now depends on the

angle variable φ, φ' :

$$\lambda \Delta^S(\varphi) = -\frac{3N}{2\pi} \int_0^{2\pi} V(\varphi, \varphi') \Delta^S(\varphi') d\varphi', \quad (10)$$

$$\lambda \Delta^T(\varphi) = \frac{N}{2\pi} \int_0^{2\pi} V(\varphi, \varphi') \Delta^T(\varphi') \cos(\varphi - \varphi') d\varphi', \quad (11)$$

173 where $\cos(\varphi - \varphi') = \mathbf{k} \cdot \mathbf{k}'$. It is convenient to expand the solution
174 for $\Delta(\varphi)$ in circular harmonics $y_l = \exp(il\varphi)$, where φ is the
175 angular coordinate on the Fermi circle. The inversion constraint
176 $\Delta_{\mathbf{k}} = \Delta_{-\mathbf{k}}$ for both singlet and triplet pairing is satisfied by $l = 2n$
177 so that:

$$\exp[2in(\varphi + k\pi)] = \exp[i(2n\varphi + 2nk\pi)] = \exp(2in\varphi), \quad (12)$$

178 where k is an integer and $\varphi + k\pi$ represent the inversion of the
179 angle φ . After $\Delta_{\mathbf{k}}$ is expanded in y_l , the problem is reduced to cal-
180 culating λ by direct integration and selecting the maximal value
181 among all even $l = 2n$. Note that in the order parameter Eq. (11)
182 for triplet states, there is another dependence on φ from
183 $\cos(\varphi - \varphi')$, leading to $\Delta_{\mathbf{k}}^T(\mathbf{k} \cdot \mathbf{k}')$ behaving as $l = 2n + 1$, an odd
184 orbital number.
185

186 4. SOLUTIONS

187 4.1. Dirac- δ distribution

188 Introducing the angle $\alpha = 2 \sin^{-1}(Q/2)$ or $Q = 2\sin(\alpha/2)$, we
189 then have
190

$$|\mathbf{k} - \mathbf{k}'| - Q = |\sqrt{2 - 2\cos(\varphi - \varphi')}| - 2\sin(\alpha/2) = |2\sin(\tilde{\varphi}/2)| - 2\sin(\alpha/2),$$

191 where $\tilde{\varphi} = \varphi' - \varphi$. In the simplest case, $f(|\mathbf{k} - \mathbf{k}'|) = \delta(|\mathbf{k} - \mathbf{k}'| - Q)$
192 can be converted into angle variables as $f[|2\sin(\tilde{\varphi}/2)| - 2\sin(\alpha/2)]$. A
193 useful formula is

$$\delta(F(x) - a) = \sum_i \frac{\delta(x - x_i)}{|dF/dx|_{x=x_i}},$$

194 in this equation i labels all solutions of the equation $F(x) - a = 0$ (in
195 our case there are two $\tilde{\varphi} = \pm \alpha$). Differentiating $f(\varphi\varphi')$ with respect to
196 φ' gives $\cos(\tilde{\varphi}/2)_{\tilde{\varphi}=\pm\alpha}$. The pairing interaction is then

$$V(\varphi, \varphi') = V \left(\frac{\delta(\tilde{\varphi} - \alpha)}{\cos(\alpha/2)} + \frac{\delta(\tilde{\varphi} + \alpha)}{\cos(-\alpha/2)} \right). \quad (13)$$

197 Singlet state. With the solution for $\Delta_{\mathbf{k}}^S$ from Eq. (10) the order parameter
198

198 reads

$$\lambda_n^S \exp(2in\varphi) = -\frac{3N}{2\pi} \int_0^{2\pi} V(\varphi, \varphi') \exp(2in\varphi') d\varphi',$$

200 since, the integral on the right-hand side (RHS) is evaluated
201 with respect to φ' , we can switch the variable $\tilde{\varphi}$ by dividing both
202 sides with $\exp(2in\varphi)$:

$$\lambda_n^S = -\frac{3N}{2\pi} \int_0^{2\pi} V(\varphi, \varphi') \exp(2in\tilde{\varphi}) d(\tilde{\varphi}), \quad (14)$$

203 the integral can be solved analytically with the pairing interaction
204 modified by Dirac- δ distribution Eq. (13):

$$\lambda_n^S = -\frac{3NV}{\pi\sqrt{1-Q^2/4}} T_{2n}(1-Q^2/2), \quad (15)$$

205 where we expressed the solution for λ_n^S with Chebyshev polynomials
206 of the first kind $T_n(\cos\theta) = \cos(n\theta)$. Another way to rewrite
207 this expression more compactly is to introduce an auxiliary variable
208 $\tilde{Q} = \cos(\alpha/2) = \sqrt{1-Q^2/4}$. Then

$$\lambda_n^S = -\frac{3NV}{\pi\tilde{Q}} T_{2n}(2\tilde{Q}^2 - 1). \quad (16)$$

209 *Triplet State.* Following analogous steps, we derive a corresponding
210 order parameter equation with Eq. (11) for triplet states:

$$\lambda_n^T = \frac{N}{2\pi} \int_0^{2\pi} V(\varphi, \varphi') \exp(2in\tilde{\varphi}) \cos(\tilde{\varphi}) d(\tilde{\varphi}), \quad (17)$$

211 in which the pairing strength constant λ_n^T can be derived analyti-
212 cally in a manner similar to that of the singlet case:

$$\lambda_n^T = \frac{NV(2\tilde{Q}^2 - 1)}{\pi\tilde{Q}} T_{2n}(2\tilde{Q}^2 - 1). \quad (18)$$

213 We then create a diagram to determine, within the range of α from
214 0 to π , which state yields the maximum λ_{\max} and find the corre-
215 sponding orbital number: $l = 2n$ for the singlet state (*s, d, g*) and
216 $l = 2n + 1$ for the triplet state (*p, f, h*), with n in the range [0, 2],
217 respectively.

218 4.2. Gaussian distribution

219 Following analogous steps as with the Dirac- δ distribution, the
220 pairing interaction $V(|\mathbf{k} - \mathbf{k}'|)$ for the Gaussian function can be
221 expressed in terms of the angle variable $\tilde{\varphi}$:

$$V(\tilde{\varphi}) = \frac{V}{\kappa\sqrt{\pi}} \exp\left\{-\frac{[2|\sin(\tilde{\varphi}/2)| - 2\sin(\alpha/2)]^2}{\kappa^2}\right\}. \quad (19)$$

Singlet State. The pairing strength constant equation given the Gaussian model for pairing interaction in the variable $\tilde{\varphi}$ is as follows:

$$\lambda_n^S = -\frac{3NV}{2\kappa\pi^{3/2}} \int_0^{2\pi} \exp(2in\tilde{\varphi}) \times \exp\left\{-\frac{[2|\sin(\tilde{\varphi}/2)| - 2\sin(\alpha/2)]^2}{\kappa^2}\right\} d\tilde{\varphi}, \quad (20)$$

note that the integrand $F(\tilde{\varphi})$ under the integral in the RHS of Eq. (20) is an even function, meaning that $F(\tilde{\varphi}) = F(\tilde{\varphi} + \pi)$. That leads to

$$\int_0^{2\pi} F(\tilde{\varphi}) d\tilde{\varphi} = \int_0^\pi F(\tilde{\varphi}) d\tilde{\varphi} + \int_\pi^{2\pi} F(\tilde{\varphi}) d\tilde{\varphi} = 2 \int_0^\pi F(\tilde{\varphi}) d\tilde{\varphi},$$

which simplifies Eq. (20) to

$$\lambda_n^S = -\frac{3NV}{\kappa\pi^{3/2}} \int_0^\pi \cos(2n\tilde{\varphi}) \exp\left\{-\frac{[2|\sin(\tilde{\varphi}/2)| - 2\sin(\alpha/2)]^2}{\kappa^2}\right\} d\tilde{\varphi},$$

it is more favorable to solve Eq. (20) numerically due to its complexity. For large values of κ , the equation can be solved straightforwardly by Simpson's rule. As κ approaches small values, the expression under the integral in Eq. (20) varies more and more rapidly, making Simpson's rule impractical. A useful numerical method for small κ is Gauss-Hermite quadrature. Introducing

$$x = \frac{2|\sin(\tilde{\varphi}/2)| - 2\sin(\alpha/2)}{\kappa}$$

Equation (20) is then expressed in terms of the variable x as follows:

$$\lambda_n^S \approx -\frac{3NV}{\pi^{3/2}} \int_{-\infty}^{\infty} \exp(-x^2) \frac{\cos\{4n\arcsin[x\kappa/2 + \sin(\alpha/2)]\}}{\sqrt{1 - [x\kappa/2 + \sin(\alpha/2)]^2}} dx, \quad (21)$$

rapidly converging the regime of small κ , where Simpson's rule fails. Applying Gauss-Hermite quadrature, we have

$$\lambda_n^S \approx \frac{-3NV}{\pi^{3/2}} \sum_{i=1}^n w_i \frac{\cos\{4n\arcsin[x_i\kappa/2 + \sin(\alpha/2)]\}}{\sqrt{1 - [x_i\kappa/2 + \sin(\alpha/2)]^2}}.$$

Triplet State. Analogously to the singlet case, the pairing strength constant for triplet state equation considering the Gaussian model

243 for pairing interaction in the variable $\tilde{\varphi}$ is as follows:

$$\lambda_n^T = \frac{NV}{2\kappa\pi^{3/2}} \int_0^{2\pi} \exp(2in\tilde{\varphi}) \cos(\tilde{\varphi}) \times \exp\left\{-\frac{[2|\sin(\tilde{\varphi}/2)| - 2\sin(\alpha/2)]^2}{\kappa^2}\right\} d\tilde{\varphi}, \quad (22)$$

244 with integrand being an even function, Eq. (22) can be transformed
245 into

$$\lambda_n^T = \frac{NV}{\kappa\pi^{3/2}} \int_0^\pi \cos(2n\tilde{\varphi}) \cos(\tilde{\varphi}) \exp\left\{-\frac{[2\sin(\tilde{\varphi}/2) - 2\sin(\alpha/2)]^2}{\kappa^2}\right\} d\tilde{\varphi}.$$

246 Implementing a similar procedure as in the singlet case, we can
247 analyze the solution for large and small values of κ :

- 248 - Values in the upper range of κ : Eq. (22) can be solved
249 numerically using Simpson's rule.
- 250 - Values in the lower range of κ : The linearized order parameter
251 reads

$$\lambda_n^T \approx \frac{NV}{\pi^{3/2}} \int_{-\infty}^{\infty} \cos\{2\arcsin[x\kappa/2 + \sin(\alpha/2)]\} \times \frac{\cos\{4n\arcsin[x\kappa/2 + \sin(\alpha/2)]\}}{\sqrt{1 - [x\kappa/2 + \sin(\alpha/2)]^2}} \exp(-x^2) dx. \quad (23)$$

253 Gauss-Hermite quadrature is an appropriate method for
254 obtaining a valid approximation:

$$\lambda_n^T \approx \frac{NV}{\pi^{3/2}} \sum_{i=1}^n w_i \frac{\cos\{4n\arcsin[x_i\kappa/2 + \sin(\alpha/2)]\}}{\sqrt{1 - [x_i\kappa/2 + \sin(\alpha/2)]^2}} \times \cos\{2\arcsin[x_i\kappa/2 + \sin(\alpha/2)]\}.$$

255

256 5. RESULTS

257 5.1. Dirac- δ distribution

258 The eigenvalue interaction parameter λ_{\max} is intrinsically positive,
259 aligned with physical expectations of interaction strengths
260 within the system; hence, the diagram excludes values of negative
261 eigenvalues. The red line, representing the singlet pairing interaction
262 (blue line), except for a small range of $0 < |Q| < 0.45$. Within this
263 interval, p -waves states show a relative increase in triplet interaction
264 strength. In the dominant domain of singlet states, there are mostly
265 g -wave states and d -wave states.

266 The Gaussian distribution closely approximates the Dirac- δ
267 model as κ approaches zero, as illustrated in the Fig. 2 above,
268 where we compare phase transition of the Gaussian model with
269 width $\kappa = 0.001$ to that of the Dirac- δ model. The result confirmed
270 the model's hypothesis.

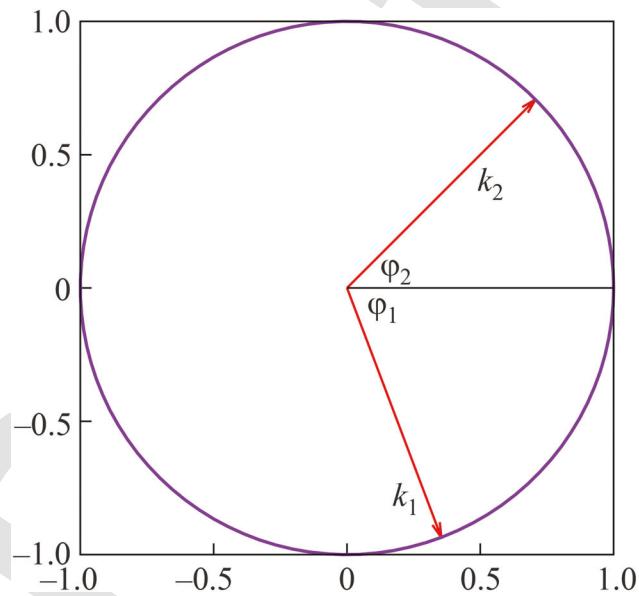


FIG. 1. Model circular Fermi surface of radius $k_F = 1$.

272 5.2. Gaussian distribution

273 The Gaussian model represents a more realistic approximation
274 compared to the idealized Dirac- δ model. By varying the width
275 parameter away from zero, we can develop a comprehensive phase
276 diagram that distinguishes between singlet and triplet states.

277 As discussed, employing Simpson's rule becomes more appropriate
278 for solving Eqs. (20) and (22) over a broader range of κ , with
279 a particular focus on values starting from $\kappa = 0.02$. As illustrated
280 in Fig. 3, the physical significance of phase dominance is preserved

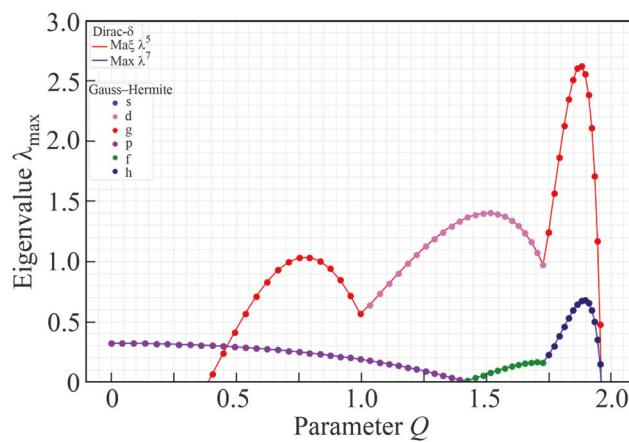


FIG. 2. Phase transitions of singlet and triplet states modeled by Dirac- δ function and Gaussian functions with $\kappa = 0.001$.

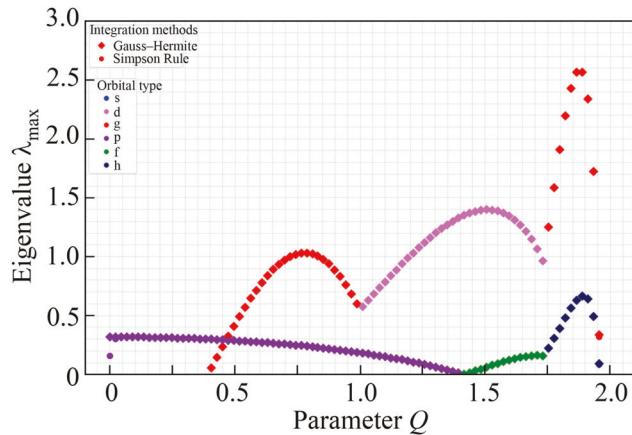


FIG. 3. Phase transitions of singlet and triplet states modeled by gaussian function with $\kappa = 0.02$ computed by Gauss–Hermite quadrature vs Simpson’s rule.

281 in both cases when $\kappa = 0.02$. This method enables the construction
 282 of a detailed phase diagram that examines the interaction parameter λ , with a focus on identifying the values of n that optimize λ .
 283 This, in turn, provides deeper insights into the system's behavior
 284 across different parameter regimes.

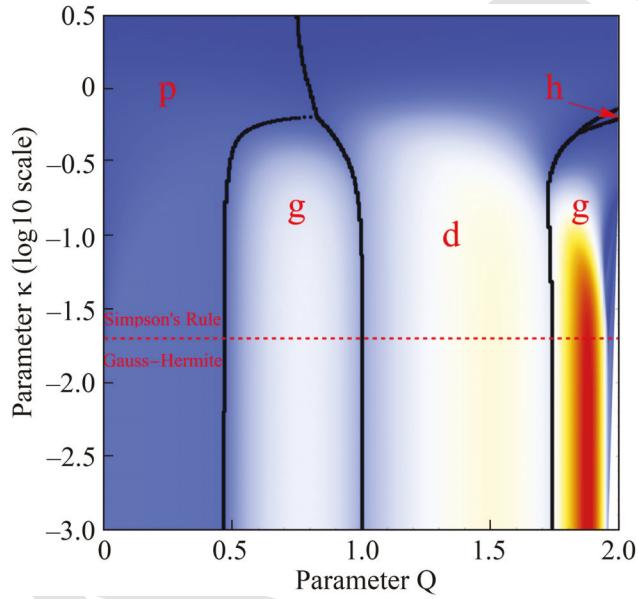


FIG. 4. Phase diagram as a function of the spin-fluctuation wave vector Q and the fluctuation spectrum width κ . The color corresponds to the absolute values of the largest eigenvalue λ_{\max} of the interaction matrix, and the diagram is cut at $\lambda_{\max} > 0.01$. The symmetry of the corresponding superconducting state is marked for the corresponding stability regions.

TABLE I. Symmetry of gap functions of states.

	S	L	$\Delta(\mathbf{k})$ or $d(\mathbf{k})$
S	0	s	1
T	1	p	$\cos \varphi$
S	0	d	$\cos 2\varphi$
T	1	f	$\cos 3\varphi$
S	0	g	$\cos 4\varphi$
T	1	h	$\cos 5\varphi$

The phase diagram presented, Fig. 4, demonstrates the instability of the dominant state as it varies with parameters κ and Q in the ranges $[10^{-3}, 5]$ and $[0, 2]$, respectively. Singlet-wave states are not observed at low Q in the ranges $[0, 0.45]$; only triplet-wave states present, with the prevalence of p -wave states. Nevertheless, due to the factor of 3 associated with the rotational invariance of singlet-wave pairing, singlet-wave states generally dominate the interaction strength (g -wave and d -wave). For κ approaching from 0, simulating Dirac- δ distribution, and Q approaches its maximum value of 2, there is an absence of pairing interactions for any orbitals, reflecting the physical interpretation the unpopularity of the spin-fluctuation pairing for antiferromagnetic pairs of electrons. A thorough analysis of the system's behavior can be obtained through diagrams of orbital gap functions of each wave state.

Table I shows the symmetry of gap functions for states depicted in Fig. 4, categorized by orbital symmetry (L) and the commonly used s -, p -, d -wave symmetries in a two-dimensional surface. The basis functions for the scalar singlet ($S=0$) order parameter Δ , and for the vector triplet ($S=1$) order parameter \mathbf{d} are listed.

Note that the gap functions for spin-triplet states with the same angular momentum can have degenerate states. For example, the p -wave symmetry on an isotropic 2D Fermi surface has five degenerate (without spin-orbit coupling) representations:

$$\begin{aligned} k_x \hat{x} &\pm k_y \hat{y}, & 309 \\ k_y \hat{x} &\pm k_x \hat{y}, & 310 \end{aligned}$$

$k_x\hat{z} + ik_y\hat{z}$ (Anderson–Brinkmann–Morelstaatea),
 311
 all of which can be expressed by $k_x\hat{x} + k_y\hat{y}$, the isotropic Balian–
 312
 Werthamer state. Hence, the gap functions listed in Table I effec-
 313
 tively represent all these degenerate states.
 314

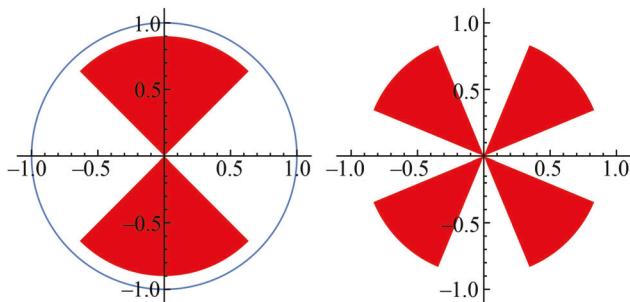


FIG. 5. Pairing (red) and pair-breaking (white) regions for scattering from the leftmost point on the Fermi surface. Left: d -wave; right: g -wave.

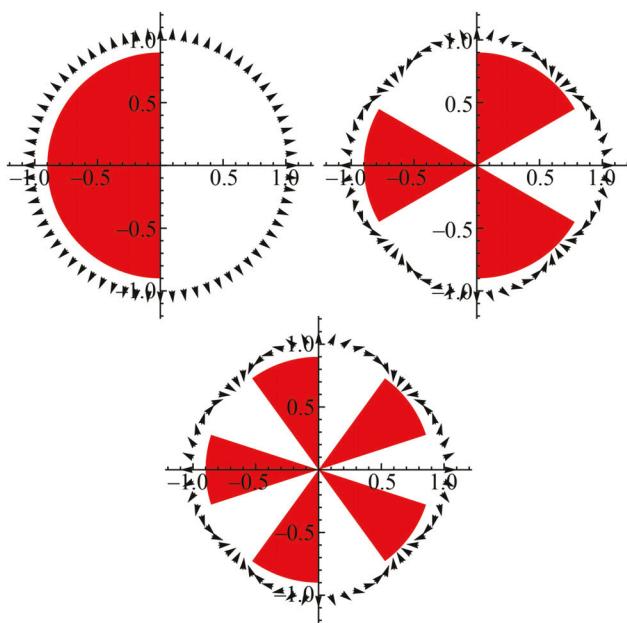


FIG. 6. Pairing (red) and pair-breaking (white) regions for scattering from the leftmost point on the Fermi surface. Left: p -wave; right: f -wave; bottom: h -wave. The direction of the \mathbf{d} is indicated by arrows.

315 Figures 5 and 6 provide visual clues to the structure of the
 316 phase diagram (Fig. 4). First of all, at small Q (i.e., for approxi-
 317 mately ferromagnetic spin fluctuations), singlet states cannot form;
 318 only triplet-wave states can take advantage of such spin fluctua-
 319 tions. For the p -wave states fluctuations with small, but finite Q are
 320 also pairing, therefore it is not very sensitive to the width of the
 321 fluctuation spectrum. Indeed we find p -wave to be stable at Q up to
 322 nearly 0.5, and its range of stability increase with κ .
 323

324 At $\varphi \sim \pi/4$ ($Q = 1 \sin \pi/8 \sim 0.76$) the state that is most favored
 325 is g , albeit its advantage gradually deteriorates when κ becomes
 326 comparable with Q . Not that factor of three in Eq. (9) additionally
 327 favors singlet states. Indeed we see that the critical temperature for
 328 the g state is maximized at $Q \approx 0.76$.

329 As Q increases further towards $\sqrt{2} \approx 1.4$ the situation repli-
 330 cates that in the high- T_c cuprates, since this wave vector corre-
 331 sponds to the nearest neighbor antiferromagnetic coupling on a
 332 square lattice. Of course, the d -state, which corresponds specifically
 333 to the $d_{x^2-y^2}$ on the square CuO_2 lattices, fits this Q perfectly, and
 334 we see another singlet (d) maximum at this vector. It is stronger
 335 than that for the g -wave, because the pairing region is broader.
 336 This fact is also responsible for enlargement of the d -stability
 337 region at larger κ .

338 Finally, the g -state is again becoming well paired for
 339 $Q \sim 2 \sin 3\pi/8 \approx 1.85$, albeit at slightly larger $Q \sim 2\sqrt{7\pi/16} \approx 1.96$
 340 the h -states become competitive — but still lose by a factor of
 341 three, except in a thin sliver of the phase diagram at $\kappa \approx 0.632$.

342 As Q approaches its maximum value of 2, the calculated criti-
 343 cal temperature drop precipitously. This can be rationalized as

follows: spin fluctuations with $Q = 2$ are attractive for triplet 343
 344 pairing, but, since $\mathbf{k} \cdot \mathbf{k} = -1$ for the two opposite points, it is pair- 344
 345 breaking. For the singlet pairing it is repulsive, but then the sign of 345
 346 the order parameter must be the same for those point, by symme- 346
 347 try, so it is again pair-breaking. Larger widths slightly alleviate this 347
 348 frustration, so that pairing with, consequently, g , h , and d symmetry 348
 349 becomes possible—but very weak. 349

6. CONCLUSIONS

350 Spin-fluctuation pairing interactions with varying momen- 351
 351 tum-space structures can lead to a rich variety of unconventional 352
 352 pairing states, many of which exhibit unique symmetries and pari- 353
 353 ties that are unattainable through individual interactions alone. 354
 354 Even the extremely simple toy model of an isotropic 2D Fermi 355
 355 surface with isotropic spin fluctuations can lead, as a function of 356
 356 the position and width of the spin fluctuation maximum, to a sur- 357
 357 prisingly rich phase diagram with singlet and triplet pairing states 358
 358 with angular momenta $L = 1, 2, 3, 4$ or 5. While some of our find- 359
 359 ings may be model specific, such as a rather tiny stability region of 360
 360 the h -wave state, most of them are quite generic: dominance of the 361
 361 p -wave paring close to ferromagnetism, d -pairing in the regime 362
 362 similar to nearest-neighbor spin correlations in cuprates, and 363
 363 strong stability of g -wave for other spin fluctuation wave vector. 364
 364 Another generic finding is the increased stability of p - and d -waves 365
 365 at the expense of the g -wave at larger-width fluctuation spectra. 366

ACKNOWLEDGMENTS

367 We gratefully acknowledge financial support from the Intensive 368
 368 Undergraduate Research Scholars Program (URSP) at the Office of 369
 369 Student Scholarship, Creative Activities, and Research (OSCAR), 370
 370 George Mason University. The project was also partially supported 371
 371 by the National Science Foundation (Award No. 2214194) and 372
 372 through resources provided by the Office of Research Computing at 373
 373 George Mason University (<https://orc.gmu.edu>) funded in part by 374
 374 grants from the National Science Foundation (Award Nos. 1625039 375
 375 and 2018631). We also extend our appreciation to Dr. Rafael 376
 376 Fernandes who suggested to us the idea of this project. 377

REFERENCES

1. I. I. Mazin, Unconventional superconductivity, in: *Encyclopedia of Condensed Matter Physics*, edited by, T. Chakraborty (Elsevier, 2024). 379
 380
2. M. R. Norman, “The challenge of unconventional superconductivity,” *Science* 381
 382 332, 196 (2011). 382
3. T. Moriya and K. Ueda, “Antiferromagnetic spin fluctuation and superconductivity,” *Rep. Prog. Phys.* 383
 383 66, 1299 (2003). 384
4. M. D. Johannes, I. I. Mazin, D. J. Singh, and D. A. Papaconstantopoulos, 385
 385 “Nesting, spin fluctuations, and odd-gap superconductivity in $\text{Na}_x\text{CoO}_2 \cdot$ 386
 yH_2O ,” *Phys. Rev. Lett.* 386 93, 097005 (2004). 387
5. P. J. Hirschfeld, M. M. Korshunov, and I. Mazin, “Gap symmetry and structure 388
 388 of Fe-based superconductors,” *Rep. Prog. Phys.* 389 74, 1245 (2011). 389
6. T. M. Rice and M. Sigrist, “ Sr_2ruo_4 : An electronic analogue of ^3He ,” *J. Phys.: 390
 390 Condens. Matter* 7, L643 (1995). 391
7. I. I. Mazin, H. O. Jeschke, F. Lechermann, H. Lee, M. Fink, R. Thomale, and 392
 392 R. Valentí, “Theoretical prediction of a strongly correlated dirac metal,” *Nat. 393
 393 Commun.* 5, 4261 (2014). 394
8. M. Sigrist and K. Ueda, “Phenomenological theory of unconventional supercon- 395
 395 ductivity,” *Rev. Mod. Phys.* 63, 239 (1991). 396