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A B S T R A C T

Identifying anatomical correspondences in the human brain throughout the lifespan is an essential prerequisite 
for studying brain development and aging. But given the tremendous individual variability in cortical folding 
patterns, the heterogeneity of different neurodevelopmental stages, and the scarce of neuroimaging data, it is 
difficult to infer reliable lifespan anatomical correspondence at finer scales. To solve this problem, in this work, 
we take the advantage of the developmental continuity of the cerebral cortex and propose a novel transfer 
learning strategy: the model is trained from scratch using the age group with the largest sample size, and then is 
transferred and adapted to the other groups following the cortical developmental trajectory. A novel loss function 
is designed to ensure that during the transfer process the common patterns will be extracted and preserved, while 
the group-specific new patterns will be captured. The proposed framework was evaluated using multiple datasets 
covering four lifespan age groups with 1,000+ brains (from 34 gestational weeks to young adult). Our experi
mental results show that: 1) the proposed transfer strategy can dramatically improve the model performance on 
populations (e.g., early neurodevelopment) with very limited number of training samples; and 2) with the 
transfer learning we are able to robustly infer the complicated many-to-many anatomical correspondences 
among different brains at different neurodevelopmental stages. (Code will be released soon: https://github. 
com/qidianzl/CDC-transfer).

1. Introduction

The mammalian cerebral cortex is characterized by complex folding, 
which folds during the early brain development. Normal cortical growth 
and folding patterns are crucial for the brain circuitry and its functional 
organization (Shipp (2007)). Many brain function malformations, 
cognitive deficits, and mental disorders have shown close relationship to 
abnormalities in cortical folding caused by abnormal or interrupted 
neuronal development (Stutterd & Leventer (2014); Fern ́andez et al. 
(2016); Di Donato et al. (2017)). Therefore, understanding the devel
opment of the cortical folding pattern has long been an important topic. 
However, the cortical folding pattern varies strikingly across individuals 
and shows tremendous heterogeneity across different neuro
developmental stages. Building reliable lifespan anatomical correspon
dences, which aims to align cortex across individuals from different 

neurodevelopmental stages to establish longitudinal cross-subject cor
respondences, is an essential task and prerequisite for longitudinal 
studies of revealing brain developmental trajectories over age or esti
mating the brain anatomy-function relationship (Honey et al. (2010); 
Derrfuss & Mar (2009); Giedd & Rapoport (2010)).

To this end, brain atlases are commonly employed for cross-subject 
alignment, wherein the same atlas is aligned to different individual 
brains. However, this approach heavily relies on the regularity and 
commonality of anatomical structures, potentially ignoring individual 
differences. To address this limitation, researchers have explored finer 
gyral-sulcal cortical landscapes that enhance correspondence in brain 
alignment. One notable advancement involves the utilization of sulcal 
fundi as effective landmarks to improve the accuracy of cortex align
ment (Pantazis et al. (2010); Desai et al. (2005); Van Essen (2005)). 
Additionally, another study unveiled the presence of indivisible units 
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known as sulcal roots, which demonstrated a consistent organizational 
pattern across individuals during the fetal stage. These studies have 
demonstrated that meaningful cortical landmarks at finer resolutions 
can effectively decompose relatively large cortical folds into more spe
cific, atomic, and depictive units, thereby improving brain alignment 
accuracy. A recent breakthrough in the field has led to the identification 
of a new landmark that characterizes the cortical folding pattern at a 
finer resolution. This novel landmark, known as the 3-hinge gyrus 
(3HG), is defined as the convergence of gyri from three directions (Fig. 1
(B)). Extensive studies have confirmed that 3HGs are evolutionarily 
preserved across multiple primate species (Li et al. (2017)), robustly 
existed on human brains despite different populations or brain condi
tions (Chen et al. (2017); Ge et al. (2018); Zhang et al. (2020d, c)) and 
possessing both common and individual patterns (Zhang et al. (2023)).

Since 3HGs are identified in the individual space, to find reliable 
corresponding 3HGs across different brains, several methods (Zhang 
et al. (2020c, 2023)) have been proposed. However, these methods are 
designed to find the 3HG correspondences in single cohort, typically the 
adult cohort. When applied to lifespan study including multiple neuro
developmental stages, existing approaches typically either mix all stages 
and only train a single model or learn an independent model from 
scratch for each stage. The former strategy ignores the heterogeneity of 
different neurodevelopmental stages and can only obtain the common 
pattern shared by all states. Consequently, our understanding of the 
dynamic nature of neurodevelopmental processes remains limited. On 
the other hand, the second strategy fails to leverage the intrinsic re
lationships that exist across neurodevelopmental stages. This approach 
not only requires large datasets for each stage but also lacks the effi
ciency of utilizing shared knowledge and learned representations across 
different stages. Unfortunately, acquiring data for early neuro
developmental stages can be particularly challenging due to factors such 

as high acquisition costs, prevalent motion artifacts, and subject dropout 
rates. Consequently, the populations at many early neurodevelopmental 
stages in lifespan brain imaging dataset often have very limited samples 
and is insufficient to train an independent model from scratch. It thus 
would be beneficial if we can take the advantage of the intrinsic rela
tionship between different stages to facilitate the transfer of shared 
patterns across different neurodevelopmental stages.

In deep learning domain, Transfer Learning (TL) (Pan & Yang 
(2009); Woodworth & Thorndike (1901)) has emerged as a powerful 
technique for leveraging shared features across related domains. It al
lows us to harness the knowledge gained from a source domain and 
apply it to improve learning performance or reduce the reliance on 
labeled examples in a target domain. It is of particular significance when 
tackling tasks with limited samples and has shown superior perfor
mances in image classification (Long et al. (2015)), segmentation (Van 
Opbroek et al. (2014)), text sentiment classification (Blitzer et al. 
(2006)), and disease prediction (Khan et al. (2019)), etc. Inspired by 
these successful studies, in this work, we aim to design a novel transfer 
strategy to leverage the inherent relationship between different age 
groups to facilitate the transfer of shared patterns across neuro
developmental stages.

As the cortical folding undergoing and neurodevelopment progress
ing, the anatomical patterns of two close neurodevelopmental stages 
share more commonalities, especially during the adult stage. To take 
advantage of this type of cortical developmental continuity, we pro
posed a novel cortical developmental continuity (CDC) transfer frame
work (Fig. 1 (A)). Specifically, we trained the model from scratch by the 
age group with the largest sample size and then transferred and adapted 
the well-trained model to the other stages following the cortical devel
opmental trajectory. A novel loss function is designed to ensure that 
during the transfer process the common patterns will be extracted and 

Fig. 1. (A) The overall scheme of the proposed framework. The embedding model is trained from scratch by the adult group which has the most data samples and 
then successively transferred and adapted to other age groups, following the developmental trajectory of the cerebral cortex (Section 3.2). The detailed architecture 
of the embedding model is displayed in (C). (B) We used the 3HG network to describe the brain anatomy. Each 3HG is the conjunction of gyri from three directions 
and the 3HGs on the same hemisphere are connected by gyri hinges into a network (Section 3.1). For each 3HG, we used the anatomical regions it located in and its 
multi-hop connections with other 3HGs as two key features to generate multi-hop features, which is used as a data sample in the learning process (Section 3.1). (C) 
the embedding model adopted two-level encoding architecture to hierarchically map the input multi-hop features in a latent representation for each 3HG 
(Section 3.1).
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preserved, while the stage-specific new patterns will be captured. We 
applied our method on four age groups using adult HCP dataset and 
pediatric datasets with 1,000+ brains (from 34 gestational weeks to 
young adult). Our experimental results show that: 1) the proposed 
transfer strategy can dramatically improve the model performance on 
populations (e.g., early neurodevelopment) with very limited training 
samples; and 2) with the transfer learning we are able to robustly infer 
the complicated many-to-many anatomical correspondences among 
different brains at the same and/or different neurodevelopmental 
stages.

2. Related works

2.1. Methods for inferring 3HG correspondences

Establishing 3HG cross-subject correspondence is a significant yet 
under-researched topic. Two existing studies have attempted to address 
this issue from different perspectives. In 2020, Zhang et al. (2020c)
proposed a two-view, group-wise graph matching method leveraging 
both cortical folding patterns and DTI-derived fiber shapes to estimate 
3HG correspondences. Their approach aims to jointly optimize 
anatomical topological patterns and axonal connectivity as two views, 
maximizing the consistency between corresponding 3HGs across 
different brains. However, this method faces three challenges: Firstly, 
the robustness and computational time depend heavily on the number of 
samples due to the group-wise optimization scheme. Secondly, the 
method performs independent graph matching from scratch, limiting its 
ability to generalize 3HG correspondences to new brains and new 
datasets. Thirdly, the features of the two views are handcrafted, which 
weakens the method’s adaptability to individual variations, potentially 
undermining its effectiveness.

To address these limitations, Zhang et al. (2023) developed a 
learning-based embedding framework that can effectively encode indi
vidual cortical folding patterns into a group of anatomically meaningful 
feature embeddings. Within this framework, each 3HG is represented by 
a combination of these feature embeddings, utilizing individual-specific 
combining coefficients. This approach enables the encoding of regular 
folding patterns within the embedding vectors while preserving indi
vidual variations through the combination coefficients. This method has 
successfully been applied to infer anatomical correspondences among 
adult cohorts. However, a limitation of this self-supervised embedding 
approach is its reliance on large datasets during the training step. This 
poses a challenge when applying this method to brain longitudinal 
studies, as populations in some early neurodevelopmental stages often 
consist of a limited number of samples. Training a reliable embedding 
model from scratch becomes unfeasible in such scenarios. To solve this 
problem, we take the advantage of the developmental continuity of the 
cerebral cortex and proposed a novel CDC transfer framework. This 
framework leverages the inherent relationship between different age 
groups to facilitate the transfer of shared patterns across neuro
developmental stages.

2.2. Transfer learning in medical image analysis

Over the past decade, deep learning (DL) techniques (Wang et al. 
(2021); Zhou et al. (2023)) have significantly advanced various domains 
of computer vision, particularly in tasks such as classification (Abdar 
et al. (2021); Díaz-Pernas et al. (2021)) and segmentation (Khan et al. 
(2020)) for medical image analysis. Unlike traditional machine learning 
approaches that rely on shallow architectures, DL architectures elimi
nate the need for manual feature engineering (LeCun et al. (2015)). This 
absence of feature engineering is advantageous because it removes the 
constraints imposed by feature selection, thereby maximizing the in
formation available for classification tasks. However, the effectiveness 
of DL models hinges on the availability of large annotated datasets for 
training. Acquiring such datasets, especially in the medical domain, 

poses substantial challenges due to high costs associated with image 
collection. Furthermore, the complexity increases when these datasets 
need to be annotated by professional radiologists, whose expertise en
sures accurate labeling but also adds significant additional expenses. In 
some cases, the costs incurred from annotation can exceed those of 
image acquisition itself. To mitigate these difficulties, researchers have 
introduced transfer learning (Pan & Yang (2009); Woodworth & 
Thorndike (1901)) techniques into the field of medical image analysis. 
Unlike traditional machine learning algorithms that focus on isolated 
tasks, transfer learning leverages knowledge learned from source tasks 
to enhance learning in related target tasks. This advantage stems from 
transfer learning models being pre-trained on extensive generic datasets, 
with task-specific datasets used solely for fine-tuning the model.

Over the past decades, transfer learning has been extensively applied 
across various imaging anatomy domains, covering the brain (Deepak 
et al. (2020); Mehrotra et al. (2020); Plata et al. (2017)), heart (Liao 
et al. (2020)), chest (Khan et al. (2021); Polat et al. (2021)), abdomen 
(Meng et al. (2020); Peng et al. (2019)), breast (Yap et al. (2017)), skin 
(Liu et al. (2020)), and retinal (Hervella et al. (2020)) areas. These 
studies span multiple imaging modalities including Computed Tomog
raphy (CT) (Khan et al. (2021); Liao et al. (2020)), Magnetic Resonance 
Imaging (MRI) (Deepak et al. (2020); Mehrotra et al. (2020); Plata et al. 
(2017); Liao et al. (2020)), Ultrasound (US) (Yap et al. (2017); Meng 
et al. (2020)), and Radiography (X-rays) (Polat et al. (2021)). 
CNN-based architectures such as LeNet (Yap et al. (2017)), U-Net 
(Hervella et al. (2020); Liao et al. (2020)), AlexNet (Deepak et al. 
(2020); Mehrotra et al. (2020); Plata et al. (2017)), VGGNet (Deepak 
et al. (2020); Meng et al. (2020)), ResNet (Deepak et al. (2020); Meh
rotra et al. (2020); Liao et al. (2020)), GoogLeNet (Deepak et al. (2020); 
Mehrotra et al. (2020)), DenseNet (Khan et al. (2021); Polat et al. 
(2021)), and SqueezeNet (Mehrotra et al. (2020)) are the most widely 
used transfer learning models for medical image analysis. These net
works were initially trained on the ImageNet dataset and subsequently 
adapted to medical image datasets. However, while transferring 
pre-trained models trained on natural image datasets like ImageNet has 
proven successful in many applications, challenges arise due to differ
ences in characteristics between medical images and natural images, 
leading to suboptimal results in some medical imaging tasks.

Inspired by the knowledge transfer capabilities of transfer learning 
and aiming to mitigate ineffective results stemming from disparities 
between the source and target domains, we introduced a CDC transfer 
framework for inferring lifespan brain anatomical correspondence. The 
CDC transfer strategy capitalizes on the developmental continuity of the 
brain, enabling the capture and transfer of common patterns across 
various developmental stages. This approach efficiently utilizes limited 
samples to capture group-specific patterns, enhancing training effi
ciency. Importantly, all transfer learning operations are conducted 
within the same domain, ensuring effective knowledge transfer without 
the inefficiencies associated with cross-domain adaptation.

3. Methods

The CDC framework is grounded in the fundamental principle of 
continuous brain development, aiming to leverage the inherent rela
tionship between different age groups to facilitate the transfer of shared 
patterns across neurodevelopmental stages. This is accomplished by a 
sequential learning process that initiates with the age group possessing 
the largest sample size for robustness and generalizability. Then, the 
learned knowledge is transferred to other age groups, following the 
developmental trajectory of the cerebral cortex. This approach facili
tates the propagation of common patterns throughout the learning 
process, while effectively utilizing the limited samples to capture group- 
specific patterns.

To ensure that this manuscript is self-contained, we firstly introduced 
the 3HG identification (Chen et al. (2017)) and 3HG embedding (Zhang 
et al. (2023)) in Section 3.1, offering the necessary background 
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information. Following that, in Section 3.2, we have elaborated on the 
proposed CDC transfer framework

3.1. Background

3.1.1. 3HG identification
The process of 3HG identification consists of five steps, as depicted in 

Fig. 2. Firstly, the entire cerebral cortex is segmented into gyral crest and 
sulcal basins based on the gyral altitude (Fig. 2(a and b)). Subsequently, 
a tree marching algorithm is employed to connect all the vertices of the 
gyral crest, resulting in a graph representation (Fig. 2(c)). In the next 
step, redundant branches shorter than a predefined threshold are trim
med, while the main trunks are preserved (Fig. 2(d and e)). The resulting 
graph is referred to as GyralNet. 3HGs are defined as the conjunctions 
with three branches on the Gyralnet. Finally, the entire cortex of each 
hemisphere is divided into 75 regions of interest (ROIs) by surface 
parcellation with the Destrieux Atlas (Destrieux et al. (2010)). Each 3HG 
belongs to one specific ROI (Fig. (2f)), and this association is numeri
cally represented using one-hot encoding with a 1D vector of size 75: 
x ∈ R1 × 75.

3.1.2. 3HG anatomical embedding
Based on the insights from Zhang et al. (2023), the 3HG anatomical 

embedding is highlighted as a more effective representation of 3HG 
anatomical patterns compared to one-hot encoding. This forms the basis 
of the proposed CDC transfer framework. In this subsection, we provide 
a brief overview of the 3HG anatomical embedding.

The 3HG network (GyralNet) can be represented by a graph G = (A ,

X ), where the adjacency matrix A =
[
ai,j

]
∈ RN×N represents the direct 

connections between N 3HGs (nodes) and the one-hot encoding matrix 
(feature matrix) X = {x1; x2; ⋯; xN} ∈ RN× 75 represents the association 
between N 3HGs and 75 ROIs. To capture indirect connections between 
nodes at different hop levels, the lth power of A , denoted as A l, is used to 
represent the lth − hop indirect connections. Consequently, the lth −hop 
feature of 3HGi can be obtained by multiplying al

i, the ith row of A l, with 
X . Using these definitions, we can formulate the l −hop feature of 3HGi 

as (1). This l − hop feature encompasses the features from the 0th −hop to 
the lth − hop, capturing the connection patterns of 3HGi with other nodes 
in the network at various hop distances. 

Fi
l =

[
xi; a1

i X ; a2
i X ; ⋯;al

iX
]

∈ R(l+1) × 75 (1) 

Taking Fi
l as input, a self-supervised embedding framework (Fig. 1

(C)) is designed to learn meaningful feature embedding for each ROI, 
just like the word embedding in NLP. The encoding and decoding pro
cesses can be formulated as: 

Ei
H = σ

(
Fi

l ⋅E
)

(2) 

Ei
F = σ

(
WF⋅Ei

H
)

(3) 

Ê
i
H = σ

(
WD1 ⋅Ei

F
)

(4) 

F̂
i
l = Ê

i
H⋅WD2 (5) 

where σ is the non-linear activation function and E =

{AptCommandmathbbe1; AptCommandmathbbe2; ⋯;

AptCommandmathbbe75} ∈ R75 ×d is the learnable ROI embeddings. The 
input feature (Fi

l) was firstly embedded via E hop by hop to generate the 
hierarchical multi-hop embeddings Ei

H ∈ R(l+1) × d, and then was further 
fused into a single embedding vector Ei

F ∈ R1 × d by WF ∈ R1 × (l+1). The 
MSE loss is adopted to evaluate the two-level decoding (WD1 ∈ R(l+1) × 1 

and WD2 ∈ Rd× 75) and the objective function is defined as (6): 

L = α ‖ Ei
H − Ê

i
H‖

2
F + β‖ Fi

l − F̂
i
l ‖

2

F (6) 

In our proposed CDC transfer framework, the same embedding ar
chitecture was employed as the initial model to learn the ROI embed
dings E from scratch, using data samples of adult group. Subsequently, 
we proposed a novel CDC transfer strategy to transfer and adapt E to 
other age groups, following the developmental trajectory of the cerebral 
cortex. This transfer process allowed us to leverage the accumulated 
knowledge and apply it to characterize both the common and the group- 
specific anatomical patterns across different age groups.

3.2. Cortical Developmental Continuity (CDC) transfer framework

CDC transfer framework is proposed to take the advantage of the 
continuous nature of the development of cortical folding and achieve the 
optimal performance improvement (Fig. 1 (A)). Specifically, we adopt 
shared ROIs across all neurodevelopmental stages as features and define 
a common feature space. This allows data samples from different age 
groups to be mapped to the same feature space and to be represented in a 
consistent multi-hop form (Section 3.1). Taking the 3HG multi-hop 
features as input, the embedding framework (Section 3.1) is trained 
from scratch by the age group with the largest data samples to endow the 
model with good generalizability. Then the learned ROI feature em
beddings E is transferred and adapted to the next age group. During the 
transfer process, the common pattern buried in E is gradually extracted 
and combined with the new group-specific patterns learned from new 
data samples. Finally, the combination of the common patterns and the 
group specific patterns is used to create the ROI embeddings for that 
group and then transferred to another age group in the following steps. 
To maximize the effectiveness, the transfer process follows the cortical 
developmental trajectory from one age group to the next closest age 
group, since they tend to share the greatest consistency.

Fig. 3 illustrates the transfer process between four age groups within 
the CDC framework. The embedding framework is initially trained from 
scratch by group 1, utilizing a self-supervised task to learn the ROI 
feature embeddings E1 specific to group 1. Subsequently, E1 is trans
ferred to group 2, which is the closest age group to group 1. During the 
transfer process, E1 can be divided into two components: the common 
pattern shared by groups 1 and 2, and the specific pattern unique to 
group 1. The goal is to transfer the common pattern to group 2, allowing 
data samples from group 2 to be effectively utilized for learning the 

Fig. 2. Pipeline of 3HGs identification. a: White matter surface is reconstructed, and color coded by gyri altitude. b: The watershed algorithm is applied on the gyral 
altitude map to divide the surface into gyral crest (white regions) and sulcal basins (colorful regions). c: A tree marching algorithm is used to connect vertices in gyral 
crest regions. d-e: Redundant branches are trimmed when their length is shorter than a predefined threshold, and the main trunk remained is the 3HG network, which 
is termed GyralNet in (Zhang et al. (2020c)). f: Each 3HG is labeled by the region of interest (ROI) it belongs to.
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specific patterns of group 2. To achieve this, a new group-specific 
embedding matrix Es2

1,2 is initialized to capture the group-specific pat
terns of group 2. Simultaneously, the common pattern Ec

1,2 is initialized 
with E1 and iteratively updated during the training process. Conse
quently, the ROI feature embeddings of group 2, denoted as E2, are 
obtained as the sum of Ec

1,2 and Es2
1,2: E2 = Ec

1,2 + E
s2
1,2. The residual part 

between the original E1 and the updated Ec
1,2 represents the specific 

pattern of group 1. To ensure that the learned Ec
1,2 indeed captures the 

common pattern shared by the two groups, and that Es2
1,2 accurately 

captures the group-specific pattern of group 2, two regularizers are 
proposed and defined as follows: 

L spe = max
(

0, cos
(

E
s1
1,2, E

s2
1,2

)
− m

)
, m ∈ (−1, 1) (7) 

L com = 2 − cos
(

Ec
1,2, E1

)
− cos

(
Ec

1,2, E2

)
(8) 

The two regularizers proposed in the CDC framework utilize cosine 
similarity, which is a common measure to assess the similarity or 
dissimilarity between two inputs in nonlinear embedding learning or 
semi-supervised learning scenarios. The first regularizer, L spe, aims to 
push away the two group-specific embeddings, Es1

1,2 and Es2
1,2, by ensuring 

a minimum distance between them. The hyperparameter m defines the 
lower bound distance to be maintained. The second regularizer, L com, 
works to bring the common part, Ec

1,2, closer to both ROI embeddings E1 

and E2. This regularizer encourages the shared patterns to align with 
both groups, enhancing the transfer of common knowledge. In (7) and 
(8), we illustrate the application of the two regularizers using groups 1 
and 2 as examples. These regularizers are consistently applied during the 
transfer process for each pair of adjacent groups, including groups 1 and 
2, groups 2 and 3, and so on. Their purpose is to preserve the distinction 
between group-specific patterns while promoting alignment of common 
patterns across groups. The whole transfer learning process is guided by 
the reconstruction objective function (6) and constrained by the two 
regularizers.

3.3. Evaluation methods

The proposed framework is evaluated from three perspectives:

3.3.1. Effectiveness of ROI embedding
The ROI embeddings are obtained by recovering the multi-hop 

connection patterns of 3HGs at a population level, serving as funda
mental components for representing each 3HG. Consequently, the ROI 
embeddings are expected to effectively capture the regularity of the 
anatomical pattern among 3HGs within the population. The strength of 
the 3HG’s l − hop connection is adopted to describe the anatomical 

pattern of 3HGs, which refers to the number of edges with a length of l 
that connect two ROIs in the 3HG network. If two ROIs have a high/low 
l − hop strength, it indicates that they are strongly/weakly connected in 
the 3HG network at the l − hop level. As a result, their l − hop embed
dings should exhibit a corresponding high/low similarity in the 
embedding space.

3.3.2. Effectiveness of inferring lifespan 3HG correspondences
The primary motivation of this work is to establish reliable brain 

anatomical longitudinal correspondences. To evaluate this, we applied 
the generated 3HG embeddings to the task of inferring complicated 
many-to-many cross-subject and cross-group anatomical correspon
dences of 3HGs. An effective 3HG embedding vector is expected to 
preserve the individuality of 3HGs while providing reliable cross-subject 
and cross-group 3HG anatomical correspondences.

3.3.3. Comparison of different transfer strategies
Ablation studies were conducted to evaluate each component of the 

proposed CDC transfer framework and compare the performance of 
different transfer strategies and brain atlases with different granularity.

4. Results

We conducted experiments with four age groups: adult (22-35Y), 2- 
year (2Y), 6-month (6M), and 34-gestational-week (34W, preterm). For 
each group, we applied the proposed multi-hop feature embedding 
method (Section 3.1) to the identified 3HGs (Section 3.1). Initially, we 
trained the model from scratch using the adult group, which provided 
the largest data sample. Subsequently, we sequentially transferred the 
well-trained model to the other three age groups: 2-year, 6-month, and 
finally the 34-week group. For each age group, the model was trained 
end-to-end in a self-supervised manner. To evaluate the effectiveness of 
the learned ROI feature embeddings (E) for each age group, we analyzed 
the strength of the 3HG’s l − hop connection (Section 3.3). Furthermore, 
we extended the learned ROI embeddings and the well-trained model to 
the independent testing dataset, generating individual embedding vec
tors for each 3HG. The efficacy of these generated 3HG embeddings was 
assessed in the task of lifespan anatomical correspondence, enabling 
inference of cross-subject and cross-group anatomical correspondences.

The Result Section is organized as follows: Section 4.1 introduces the 
experimental setting; Section 4.2 evaluates the effectiveness of the 
learned ROI embeddings; Section 4.3 presents the results of lifespan 3HG 
correspondences; and Section 4.4 is the ablation study which compares 
the influence of different regularizers, different transfer strategies, and 
brain atlases with different granularity.

Fig. 3. Illustration of the transfer process in the proposed cortical developmental continuity (CDC) transfer framework. The diagram demonstrates the transfer 
process within the framework using four groups as an example. Each group (labeled as group 1, group 2, group 3, and group 4) possesses its own set of input samples 
(Ii) and obtained the corresponding output ( Îi ). Each age group learns its own fusion layer and two decoder layers (WF, WD1 , and WD2 ), while the learning process of 
embedding Ei is guided by CDC transfer strategy. Specifically, the embedding framework is trained from scratch using group 1′s input samples, resulting in the 
generation of the ROI feature embedding (E1). During the training process, a common part, denoted as Ec

1,2, is extracted from E1, representing the shared features 
between group 1 and group 2. This common part is combined with the group-specific embeddings (Es2

1,2) learned by group 2, resulting in the ROI feature embedding 
for group 2. This process is repeated by each pair of adjacent groups, including groups 1 and 2, groups 2 and 3, and so on, transferring the learned ROI embeddings 
successively from one group to the closest neighboring group.
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4.1. Experimental setting

4.1.1. Data setting
In this work, we used structural MRI of 1,064 adults from Human 

Connectome Project (HCP) S1200 release. The detailed imaging pa
rameters can be referred to (Zhang et al. (2020b, 2022)). We followed 
the standardized pre-processing procedures outlined in (Zhang et al. 
(2021, 2020a)) for imaging data. These steps included brain skull 
removal, tissue segmentation, and cortical surface reconstruction by 
FreeSurfer package (Fischl (2012)). To demonstrate the effectiveness of 
proposed CDC transfer strategy, we only used pediatric structural MRI of 
30/30/10 subjects in 2-year/6-month/34-week groups from NDA and 
dHCP datasets. All pediatric images were processed with an 
infant-dedicated pipeline (http://www.ibeat.cloud/) (Wang et al. 
(2023)). Destrieux parcellation (Destrieux et al. (2010)) was used to 
conduct ROI labeling for all the four age groups. After pre-processing, 
400/164/500 training/validation/testing splitting was adopted for the 
adult group, 10/10/10 training/validation/testing splitting was adop
ted for 2Y and 6M groups, and 5/2/3 training/validation/testing split
ting was adopted for the 34W group.

4.1.2. Model setting
For multi-hop features, we compared 1-hop (l = 1 in (1)), 2-hop, and 

3-hop feature embedding for adult group and transferred the model of 1- 
hop and 2-hop embedding to other age groups since they provide better 
results. In our experiments, when training from scratch with the adult 
group, the ROI embeddings E was initialized by identity matrix with 
dimension d = 128 to ensure equal initial distance between any two ROI 
embeddings. The other layers, including fusion layer (WF) and two 
decoder layers (WD1 and WD2 ), were implemented by fully connected 
layers and initialized following the Xavier scheme. The hyper- 
parameters α and β were both set to 1.0. We employed the non-linear 
activation function σ as relu. The Adam optimizer was used to train 

the whole model with standard learning rate 0.001, weight decay 0.01, 
and momentum rates (0.9, 0.999). The embedding framework comprises 
a learnable embedding layer E = ∈ R75 ×d, a fusion layer 
WF ∈ R1 ×(l+1), and two decoder layers WD1 ∈ R(l+1) × 1 and 
WD2 ∈ Rd× 75. The total number of parameters is 150 d + 2(l + 1) ≈ 20k. 
Consequently, the parameter count is small, resulting in very fast 
training. Training from scratch with approximately 400K 3HGs from 
1000 adult subjects takes about 4 hours using a GTX 1080 Ti GPU.

4.2. Evaluation of ROI embeddings

We conducted an evaluation of the learned ROI embeddings by using 
the strength of 3HG’s l − hop connection, as described in Section 3.1. 
The results are presented in Fig. 4. Fig. 4(a) presents the results of ROI 
embeddings learned by training from scratch with the adult group. The 
first column of Fig. 4(a) displays the connection strength, which serves 
as the ground truth, is calculated using the entire population of 1,064 
subjects from the adult group to ensure statistical representativeness. 
The second column of Fig. 4(a) displays the cosine similarity between 
the learned ROI embedding vectors. To facilitate analysis, we divided 
the 3HG’s multi-hop connections into three types: gyri-gyri connections 
(top left of each matrix), gyri-sulci connections (top right and bottom 
left), and sulci-sulci connections (bottom right). These connections refer 
to the relationships between gyral regions, between gyral and sulcal 
regions, and between sulcal regions, respectively. The results for 
different hops are displayed in separate rows.

Since 3-hop connections (the third row) cover a larger range of the 
cerebral cortex and connect remote regions that cannot be directly 
connected by 1-hop and 2-hop connections, ROI pairs with weak 1-hop 
and 2-hop connections may exhibit strong 3-hop connections. This can 
lead to inaccurate representation of the connection strength between 
ROI pairs. As a result, the learned embedding vectors of these regions 

Fig. 4. Evaluation of the learned ROI embeddings using strength of the 3HG’s l − hop connection (defined in Section 3.1). (a) The first column displays the strength of 
the 3HG’s 1-hop, 2-hop, and 3-hop connections, which were calculated based on the whole population of the adult group consisting of 1,064 subjects. The results of 
the three different hops are presented in three separate rows. The second column shows the embedding similarity matrices, which were obtained by calculating the 
cosine similarity between pairs of ROI embeddings. These ROI embeddings were learned from scratch using the training dataset of the adult group. (b) The well- 
trained model for 1-hop embedding, as obtained in (a), was sequentially transferred by CDC transfer strategy to the 2-year group, then to the 6-month group, 
and finally to the 34-week group. The embedding similarity matrices of the learned ROI embeddings are presented in the second column. Additionally, for each 
group, a model was trained from scratch using the same training dataset, and the embedding similarity matrices of the learned ROI embeddings are shown in the first 
column. The third column displays the connection strength matrices (ground truth), which were calculated based on the whole population of each age group. (c) 
Similar to (b), this subfigure presents the results of the 2-hop embedding. The order of the brain regions in all the matrices in (a), (b), and (c) corresponds to the order 
defined in the Destrieux atlas (Destrieux et al. (2010)), where the first 44 regions primarily represent gyri, while the remaining 31 regions represent sulci.
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show approximate similarities and form a smooth square at the top-left 
corner (the third row of Fig. 4(a)), which undermines the effectiveness of 
the ROI embeddings. In contrast, 1-hop and 2-hop embeddings provide 
better results. Therefore, we only transferred the well-trained models of 
1-hop and 2-hop embeddings to the other three age groups and dis
played the results of CDC transfer framework in the second column of 
Fig. 4(b) and (c), respectively. In addition, to illustrate the superiority of 
the CDC transfer framework, for each age group, we trained a model 
from scratch using the same training dataset and displayed the results in 
the first column of Fig. 4(b) and (c). The connection strength (ground 
truth) is shown in the third column.

It is important to note that the ground truth matrix represents the 
strength of actual anatomical connections between ROIs in the cortical 
space, whereas the embedding similarity matrix depicts the cosine 
similarity between the learned ROI embedding vectors, representing the 
relationship between ROIs in the embedding space. Hence, the presence 
of similar patterns in the two matrices indicates that the learned ROI 
embeddings effectively capture the common anatomical patterns.

We can see that for both 1-hop (Fig. 4(b)) and 2-hop (Fig. 4(c)) 
embeddings, when trained from scratch, most gyri-gyri connections (top 
left of each matrix) areas of the similarity matrices in the ROI embed
dings appear as patches with the same color (highlighted by pink 
squares). This indicates that the regions covered by each patch share the 
same similarity. However, in the corresponding locations of the ground 
truth matrices, the connection strength between these regions exhibits 
noticeable differences (highlighted by green squares). In contrast, the 
embedding similarity matrices obtained through the CDC transfer 
framework successfully capture these differences and display patterns 
that are highly similar to the ground truth matrices. These results indi
cate that the ROI embeddings learned by the CDC transfer framework 
accurately capture the common patterns. More specifically, when two 
ROIs have strong or weak connections in cortical space (3HG network), 
they also exhibit correspondingly high or low similarities in the 
embedding space.

In addition to visualization, we conducted quantitative analysis 
using three measures: cosine similarity (CS), structural similarity index 
measure (SSIM), and Pearson correlation coefficient (PCC), to assess the 
similarity between the ground truth and the learned embeddings. The 
results for 1-hop and 2-hop embedding were reported in Tables 1 and 2, 
respectively. In these tables, the measures are calculated between the 
embedding similarity matrices obtained from different methods (rows) 
and the ground truth matrices of different age groups (columns). The 
values calculated between two matrices from the same age group are 
highlighted with colorful borders.

We analyzed the results from two perspectives. Firstly, for each age 
group, larger values of the three measures between the learned 
embedding matrices and the corresponding ground truth matrices 
(within the colorful blocks) indicate the superiority of the respective 
method. From the tables we can see that for both 1-hop and 2-hop 

embeddings, the three measures obtained from the CDC transfer strat
egy (the second row in colorful blocks) show significant improvements 
compared to training from scratch (the first row in colorful blocks). 
Secondly, we evaluated whether the learned embeddings could capture 
group-specific patterns while avoiding trapping into common patterns of 
the overall population. To assess this, we highlighted the highest values 
of the three measures with a blue color. To capture the group-specific 
pattern, the highest values should be obtained between the learned 
embedding similarity matrix and the ground truth matrix from the same 
age group (within the colorful blocks). Therefore, the presence of more 
highest values marked with blue color within the colorful blocks in
dicates the superior performance of the corresponding method. From the 
tables we can see that for the CDC transfer framework, nearly all the 
largest values are located within the colorful blocks. In contrast, when 
training from scratch, most of the largest values are obtained outside the 
colorful blocks. These results suggest that the proposed CDC transfer 
strategy can effectively improve the embedding effectiveness and cap
ture the group-specific patterns.

4.3. 3HGs longitudinal correspondences

For each age group, we applied the learned ROI embeddings and the 
well-trained model to the testing dataset to generate 3HG embeddings – 
Ei

F (defined in (3)). As discussed in Section 3.1, an effective 3HG 
embedding is expected to be able to provide reliable longitudinal cross- 
subject 3HG correspondences as well as preserve the individuality.

4.3.1. Inferring reliable lifespan 3HG correspondences
We randomly selected a subject (sub-0 in Figs. 5 and 6) and 

employed its 3HGs as the exemplars to infer the corresponding 3HGs in 
other subjects across different age groups. For each exemplar 3HG, the 
inference process involved the following steps: 1) for each 3HG in 
different subjects from different age groups, the cosine similarity be
tween its embedding vector with the embedding vector of the exemplar 
3HG was calculated; 2) for each subject, the corresponding 3HGs were 
identified by selecting the ones that had a cosine similarity of 1.0 to the 
exemplar 3HG; 3) If no 3HGs had a cosine similarity of 1.0 to the 
exemplar 3HG, the 3HG with the highest cosine similarity (above a 
predefined threshold) was chosen as the corresponding 3HG. By 
following these steps, the corresponding 3HGs for each exemplar 3HG in 
different subjects were obtained.

To provide a clearer visualization, we selected 35 exemplar 3HGs 
from sub-0 that spanned the entire cerebral cortex. In Fig. 5 (1-hop 
embedding) and Fig. 6 (2-hop embedding), we showed the corre
sponding 3HGs of these exemplars in 15 randomly selected subjects 
(sub-1 to sub-15) from 4 age groups, obtained using different methods. 
The locations of the 3HGs are represented by bubbles, and the corre
sponding 3HGs in different subjects are denoted by the same color. To 
evaluate the accuracy of the different methods in inferring lifespan 3HG 

Table 1 
1-Hop embedding similarity.

Emb.: Embeddings; GT: Ground Truth; FS: Training From Scratch; CDC: CDC Transfer; Blue values: the largest values of each measure for each group; Colorful 
bounder: the embeddings and the ground truth are from the same group.
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correspondences, we involved two experts who identified and labeled 
two types of correspondence errors: 1) inaccuracy error, which means 
that the identified corresponding 3HGs are not the best matches. Inac
curacy errors were marked by red circles with black border; and 2) 
missing error, which means the corresponding 3HGs were not identified. 
The missing errors were marked by red triangles with black, pointing to 
the location of the correct corresponding 3HG.

The results demonstrate that the corresponding 3HGs identified 
using the CDC transfer strategy consistently align with the common 
anatomical landscapes across individuals of different age groups. There 
were two inaccuracy errors (sub4, sub8) and two missing errors (sub8, 
sub10) in the 1-hop embedding results, and one inaccuracy error (sub-3) 
and one missing error (sub-5) in the 2-hop embedding results. 

Comparatively, when trained from scratch, there were significantly 
more errors, with 14 inaccuracy errors and 27 missing errors in the 1- 
hop embedding, and 14 inaccuracy errors and 26 missing errors in the 
2-hop embedding. Furthermore, there were no noticeable differences in 
the quality of correspondences between the age groups using the CDC 
transfer strategy. However, when trained from scratch, there were 
substantial differences in correspondence performance among the age 
groups. For instance, the results for the adult group were notably worse, 
with nearly all corresponding 3HGs missing. These findings indicate that 
the proposed CDC framework provides an effective approach for 
designing practical pre-training paradigms and facilitating downstream 
tasks in brain longitudinal studies.

Table 2 
2-Hop embedding similarity.

Emb.: Embeddings; GT: Ground Truth; FS: Training From Scratch; CDC: CDC Transfer; Blue values: the largest values of each measure for each group; Colorful 
bounder: the embeddings and the ground truth are from the same group.

Fig. 5. Lifespan correspondences of 3HGs via 1-hop embedding. The 3HGs of a randomly selected subject in 34W group (sub-0) were used as exemplary 3HGs. To 
find the corresponding 3HGs on other subjects, the following pipeline was adopted: 1) for each 3HG in different subjects from different age groups, the cosine 
similarity between its embedding vector with the embedding vector of the exemplar 3HG was calculated; 2) for each subject, the corresponding 3HGs were identified 
by selecting the 3HGs that had a cosine similarity of 1.0 to the exemplar 3HG; 3) If no 3HGs had a cosine similarity of 1.0 to the exemplar 3HG, the 3HG with the 
highest cosine similarity (above a predefined threshold) was chosen as the corresponding 3HG. Following these steps, the corresponding 3HGs for each exemplar 3HG 
in different subjects were obtained. For better visualization, we selected 35 exemplar 3HGs from sub-0 that spanned the entire cerebral cortex and showed the 
corresponding 3HGs in 15 randomly selected subjects (from sub-1 to sub-15) from 4 age groups, obtained using different methods. The corresponding 3HGs in 
different subjects are represented using the same color. Two experts were involved to evaluate the correspondence results and two kinds of errors: inaccuracy/missing 
error, are marked by red circle/triangle with black border.
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4.3.2. Preserving the individuality
Cross-subject intensive variability is a crucial characteristic exhibi

ted by the human cerebral cortex. To demonstrate the capability of the 
learned 3HG embeddings to capture cross-subject individuality, we 
randomly selected four 3HGs located at different positions on the ce
rebral cortex as exemplars (pointed by yellow arrows) and identified 
their corresponding 3HGs in different subjects. For each subject, any 
3HGs with a cosine similarity greater than 0.9 to the exemplar 3HG were 
identified as corresponding 3HGs. We randomly chose three subjects 
from each of the four age groups (34W, 6M, 2Y, and adult) and presented 
the results in Fig. 7. Distinct folding patterns are observed in the cerebral 
cortex of the 12 subjects. For instance, consider the exemplar 3HG-1 
situated at the conjunction of the middle frontal gyrus and precentral 
gyrus, where no other 3HGs are found nearby. However, for the first 
subject in adult group (marked by green arrow), the cortical folding 
patterns exhibit greater complexity. As a result, multiple 3HGs are 
clustered together at that specific location. Conversely, for the second 
subject in adult group (marked by pink arrow), there is no convergence 
between the middle frontal gyrus and the precentral gyrus, leading to 
the absence of 3HGs in that area. More examples have been marked in 
the remaining three exemplars. These results indicate that the 3HG 
embeddings learned by CDC transfer framework can effectively preserve 
the individual variabilities.

4.4. Ablation study

4.4.1. Comparison of different regularizers
In CDC transfer, two regularizers L spe and L com are used to guide the 

model in capturing common and group-specific patterns. To assess the 
impact of these regularizers on the embedding performance, we con
ducted an ablation study. Specifically, we compared the embedding 
performance across four settings for each age group: with only L com, 
with only L spe, without both L spe and L com, and the CDC transfer with 
both L spe and L com. The results are reported in Table 3.

We analyzed the results from two perspectives. Firstly, we focused on 
the values of the three measures within the colorful blocks, where the 
embedding matrix and the corresponding ground truth matrix belong to 

the same group. A higher value of the three measures indicates greater 
similarity between the two matrices, thus demonstrating the effective
ness of the corresponding method. As shown in Table 3, within each 
colorful block, the three measures obtained from the other three settings 
displayed a significant decrease compared to CDC transfer. For example, 
in the 2Y group (pink block), the SSIM measure between the embedding 
matrix learned via CDC transfer and the ground truth matrix was 0.513, 
whereas it dropped to 0.403 and 0.269 with a single regularizer. When 
trained without any regularizers, it further decreased to 0.184. Sec
ondly, for each method (row), we highlighted the highest values of the 
three measures with a blue color. Similar with the analysis of Table 1 
and 2, the presence of more highest values marked with blue color 
within the colorful blocks indicates the superior performance of the 
corresponding method in capturing group-specific pattern. From the 
results we can see that for the CDC transfer framework, all the largest 
values are located within the colorful blocks. In contrast, many of the 
largest values under the other three settings are obtained outside the 
colorful blocks. These findings suggest that both regularizers are 
necessary for accurately capturing group-specific patterns.

In addition to the embedding performance, we also evaluated the 
training efficiency by examining the convergence curves obtained using 
the independent validation dataset, as shown in Fig. 8. We can see that 
for all the three age groups, 34W (Fig. 8 (a)), 6M (Fig. 8 (b)), and 2Y 
(Fig. 8 (c)), when compared to training from scratch, the four transfer 
settings can achieve remarkably better results with significantly lower 
loss. Moreover, among the four transfer settings, the proposed CDC 
transfer with both regularizers demonstrates faster convergence towards 
a better solution.

4.4.2. Comparison with other transfer strategies
In the proposed CDC transfer, we adopted a specific type of transfer 

strategy where the embedding transfer traverses all previous age groups 
before reaching the target group. For example, in the case of the 34W 
group, the embedding transfer starts from the adult group and sequen
tially transfers to the 2Y, 6M, and finally to the 34W group. To explore 
the necessity of traversing all previous groups, we conducted experi
ments and compared different transfer strategies, the results of which 

Fig. 6. Lifespan correspondences of 3HGs via 2-hop embedding. The detailed description can be referred to Fig. 5.
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are presented in Table 4. For 34W and 6M groups, there are three and 
two different transfer strategies, respectively.

From the results, two key observations can be made. Firstly, different 
transfer strategies achieve comparable performance with approximate 
values of the three measures between the embedding matrices and the 
ground truth matrices from the same age group (within colorful blocks); 
Secondly, the transfer strategy that involves traversing all previous 
groups tends to outperform others in capturing group-specific patterns. 
For example, in the case of the 6M group, when the model was directly 
transferred from the adult group, skipping the 2Y group, the highest 
value of SSIM was obtained between the embedding matrix of the 6M 
group and the ground truth matrix of the 2Y group (highlighted in blue). 
However, when the model traversed all the groups, the highest values of 
the three measures were obtained between the embedding matrix and 
the ground truth matrix of the 6M group, indicating a better capture of 
group-specific patterns. Additionally, the convergence curves of the five 
transfer strategies are presented in Fig. 8 (d). It can be observed that 
models trained using more groups exhibit faster convergence.

4.4.3. Comparison of different brain atlases
The ROI embeddings serve as the features of 3HGs and play an 

important role in the embedding learning and 3HG correspondence. In 
this section, we discussed the influence of the brain atlases with different 
levels of granularity on the performance. Specifically, we used three 
different atlases: the Desikan-Killiany Atlas (Desikan et al., 2006) with 
72 ROIs, the Destrieux Atlas (Destrieux et al., 2010) with 150 ROIs, and 
the gwMRF parcellations with 1000 ROIs (Schaefer et al., 2018). For the 
Desikan-Killiany and Destrieux atlases, we used the Freesurfer package 
(Fischl (2012)) to map the atlases to the individual brain, and for the 
gwMRF 1000 atlas, we used the code and method released by the au
thors (https://github.com/ThomasYeoLab/CBIG/tree/master/stable 
_projects/brain_parcellation/Schaefer2018_LocalGlobal) to map the 
atlas to the individual brain. We displayed the three different atlases in 
Fig. 9a. We also calculated the average number of 3HGs per ROI and the 
mean cosine similarity between corresponding 3HGs of the three atlases. 
The mean cosine similarity is calculated as follows: for each anchor 3HG, 
we identified the top-1 corresponding 3HG with the greatest cosine 
similarity value in each subject. Then we calculated the mean cosine 
similarity across all the anchor 3HGs and population. From the results, 
we can see that as the granularity increases, the area covered by each 
ROI generally decreases, and thus the mean 3HG number decreases. For 
the mean cosine similarity, compared to the other two atlases, the 

Fig. 7. Cross-subject individuality and variability. We selected four exemplar 3HGs (indicated by yellow arrows) to examine their correspondences in subjects from 
four different age groups (34W, 6M, 2Y, and Adult). For each age group, we randomly selected three subjects and established correspondences based on a cosine 
similarity threshold of 0.9. The corresponding 3HGs are visualized as bubbles, with the color of the bubbles indicating the cosine similarity. Given the intensive 
variability of cerebral cortex, it is possible to find varying numbers of correspondences, ranging from zero to multiple, across different subjects.
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gwMRF 1000 has significantly lower values. This indicates that the 
embedding vectors between corresponding 3HGs have lower similarity. 
To better analyze this difference, we showed the embedding matrices 
learned using different atlases in Fig. 9c and d.

From Fig. 9c, we can see that as the granularity increases, the spar
sity of the ground truth matrices also increases. Similarly, the patterns of 
the embedding matrices are consistent with the ground truth matrices. 
To quantitatively measure this, we calculated the sparsity of the ground 

truth matrices for each atlas, as shown in Fig. 9d. Consistent with the 
visualization results, the sparsity values increase as the granularity in
creases. We also used three different measures to check the similarity 
between the learned embedding matrices and the ground truth matrices, 
and all three atlases show high similarity between the two matrices. Of 
all the four measures, only the change in sparsity trends correlates with 
the change in mean cosine similarity. We infer that as granularity in
creases, the brain is divided into more regions, leading to more regions 

Table 3 
Evaluation of the two regularizers.

Emb.: Embeddings; GT: Ground Truth; CDC: CDC Transfer; Blue values: the largest values of each measure for each training strategy; Colorful bounder: the em
beddings and the ground truth are from the same group.

Fig. 8. Convergence curves of different regularizer settings (a-c) and different transfer strategies (d).
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without 3HGs and thus increasing sparsity. Because many regions lack 
3HGs to mediate connections with other regions, the overall correlation 
between regions decreases. This results in a lower cosine similarity be
tween the learned embedding vectors.

To further investigate the impact of atlas granularity on the 3HG 
correspondence task, we selected four anchor 3HGs (highlighted by 
yellow arrows) from various brain regions and inferred their corre
sponding 3HGs in other subjects. Based on the statistical results shown 
in Fig. 9b, we set a cosine similarity threshold of 0.9 for the Desikan- 
Killiany and Destrieux atlases to identify corresponding 3HGs. Specif
ically, any 3HG with a cosine similarity value of 0.9 or higher is 
considered a corresponding 3HG to the anchor 3HG. For the 
gwMRF1000 atlas, we used a threshold of 0.05 for identifying 

corresponding 3HGs. We showed the results of six randomly selected 
subjects in Fig. 10. In the figure, the identified corresponding 3HGs in 
each subject are represented by bubbles, and the cosine similarity is 
color-coded. For each subject, there are three cerebral cortex sections 
corresponding to three subfigures, arranged from left to right in 
increasing granularity: 72 ROIs, 150 ROIs, and 1000 ROIs. As the 
granularity increases, we can see that the number of identified corre
sponding 3HGs in each subject decreases, which is consistent with the 
mean 3HG number values shown in Fig. 9b. Additionally, the distribu
tion of the corresponding 3HGs gradually becomes more localized 
around the region of the anchor 3HG, resulting in more precise identi
fication. However, when the granularity becomes too high, such as at 
1000 regions, some existing corresponding 3HGs may be missed 

Table 4 
Comparison of different transfer strategies.

Emb.: Embeddings; GT: Ground Truth; Blue values: the largest values of each measure for each training strategy; Colorful bounder: the embeddings and the ground 
truth are from the same group.

Fig. 9. Comparison of different atlases. a. The three different atlases at different levels of granularity. b. The mean cosine similarity of top-1 corresponding 3HGs and 
the average number of 3HGs per ROI of the three atlases. c. The learned embedding similarity matrices and the corresponding ground truth matrices of three different 
atlases. d. Four measures are used to test the similarity between the ground truth and the learned embedding matrices as well as the sparsity of these matrices.
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Fig. 10. The results of identified corresponding 3HGs of 4 anchor 3HGs in 6 randomly selected subjects using different brain atlases.
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(highlighted by red crosses).

5. Discussion

5.1. Comparison with other transfer learning strategies in medical image 
analysis

In the evaluation of this study, we try to compare the proposed 
method with other transfer learning approaches in the field of medical 
imaging analysis. We observed that existing research predominantly 
focuses on classification and segmentation tasks (Kora et al. (2022); 
Atasever et al. (2023)) using diverse medical imaging modalities such as 
CT (Khan et al. (2021); Liao et al. (2020)), MRI (Deepak et al. (2020); 
Mehrotra et al. (2020); Plata et al. (2017); Liao et al. (2020)), Ultrasound 
(Yap et al. (2017); Meng et al. (2020)), and X-rays (Polat et al. (2021)). 
To handle the image features, the most commonly utilized deep learning 
models in these studies are CNN-based architectures such as LeNet (Yap 
et al. (2017)), U-Net (Hervella et al. (2020); Liao et al. (2020)), AlexNet 
(Deepak et al. (2020); Mehrotra et al. (2020); Plata et al. (2017)), 
VGGNet (Deepak et al. (2020); Meng et al. (2020)), ResNet (Deepak 
et al. (2020); Mehrotra et al. (2020); Liao et al. (2020)), GoogLeNet 
(Deepak et al. (2020); Mehrotra et al. (2020)), DenseNet (Khan et al. 
(2021); Polat et al. (2021)), and SqueezeNet (Mehrotra et al. (2020)). 
However, our work differs from these studies in terms of the specific 
problems addressed, the data formats used, and the models applied. 
Transfer learning is typically implemented through two main methods: 
weight initialization and fine-tuning. In weight initialization, pretrained 
model weights trained on different datasets are directly applied and then 
updated with the new training data. Fine-tuning involves updating only 

certain layers of the model while keeping others frozen. Successful 
transfer learning hinges on the similarity of features between the source 
and target tasks, such as shared image-related characteristics, which 
allows pretrained models to effectively enhance training efficiency for 
the target task. As a result, it is hard for us to feed our data, which 
employs 3HG networks as input to address lifespan brain anatomical 
correspondence, into these models trained on using medical image 
features for classification and segmentation tasks to conducted fair 
comparison. Recent reviews have also noted similar difficulties, 
revealing that only 13% of transfer learning studies conduct compari
sons with other models (Kora et al. (2022)). This underscores the 
inherent complexities in benchmarking and effectively comparing 
diverse transfer learning approaches. Consequently, in our results sec
tion, we are unable to provide direct comparisons with other works.

5.2. Scalability and applicability of CDC transfer

The proposed CDC transfer framework is designed to provide an 
effective embedding of 3HGs that can generalize across different data
sets. To validate this, we used the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) dataset, a large, independent dataset that aims to 
detect and track Alzheimer’s disease. We applied the trained model to 
the ADNI dataset, generating 3HG embedding vectors for 480 newly 
collected individuals and evaluating the performance in the 3HG life
span correspondence task. We also used sub0 from the 34W group as the 
anchor subject and inferred the correspondence in the ADNI subjects. 
Using the same criteria as in Section 4.3, we identified the corresponding 
3HGs for anchor 3HGs and randomly selected eight individuals to 
display the results in Fig. 11. As in Figs. 5 and 6, the locations of the 

Fig. 11. 3HG lifespan correspondence results of a new independent ADNI dataset.
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3HGs are represented by bubbles, and the corresponding 3HGs in 
different subjects are denoted by the same color. From the results, we 
can see that the corresponding 3HGs identified in different individuals 
have consistent locations in terms of common anatomical landmarks. 
For example, 3HG #0 (marked by purple arrows) and 3HG #35 (marked 
by red arrows) are found in the front end of the inferior temporal gyri 
and the top of the postcentral gyri, respectively, across all subjects. 
However, we also observed that due to individual differences, some 
anchor 3HGs do not have corresponding 3HGs in other subjects. For 
example, 3HG #12 does not have corresponding 3HGs in sub-3 and sub- 
4.

It is worth noting that the ADNI dataset includes different groups, 
such as elderly normal controls, mild cognitive impairment (MCI) pa
tients, and AD patients. In this experiment, we did not distinguish be
tween the elderly normal controls and patients in the ADNI dataset. 
Whether the distribution patterns of 3HGs differ between patient groups 
and normal individuals is a question that remains to be explored and 
warrants further investigation in future work. In general, the results in 
Fig. 11 further demonstrate that our proposed CDC transfer framework 
has good generalizability.

6. Conclusions

In this study, we introduced the cortical developmental continuity 
(CDC) transfer framework, aiming to leverage the continuous nature of 
cortical folding development and achieve optimal performance 
enhancement. Our approach involves transferring ROI feature embed
dings across different age groups, following the developmental trajec
tory of the cerebral cortex. This allows the accumulation and 
propagation of common patterns while capturing group-specific pat
terns. To guide the transfer process effectively, we introduced two novel 
regularizers that facilitate the capture of both common and group- 
specific patterns.

To evaluate the proposed CDC transfer framework, we conducted 
experiments using multiple datasets that encompassed four age groups, 
consisting of over 1,000 brains ranging from 34 gestational weeks to 
young adult. The experimental results demonstrate the significant 
improvement in model performance when dealing with populations 
with limited training samples. Moreover, the CDC transfer learning 
approach enables robust inference of complex many-to-many anatom
ical correspondences among different brains at the same or different 
neurodevelopmental stages. Additionally, the CDC transfer framework 
offers valuable insights into addressing complex problems that span 
multiple stages, characterized by a shared underlying inherent rela
tionship alongside considerable cross-stage heterogeneity.
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