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Identifying anatomical correspondences in the human brain throughout the lifespan is an essential prerequisite
for studying brain development and aging. But given the tremendous individual variability in cortical folding
patterns, the heterogeneity of different neurodevelopmental stages, and the scarce of neuroimaging data, it is
difficult to infer reliable lifespan anatomical correspondence at finer scales. To solve this problem, in this work,
we take the advantage of the developmental continuity of the cerebral cortex and propose a novel transfer
learning strategy: the model is trained from scratch using the age group with the largest sample size, and then is
transferred and adapted to the other groups following the cortical developmental trajectory. A novel loss function
is designed to ensure that during the transfer process the common patterns will be extracted and preserved, while
the group-specific new patterns will be captured. The proposed framework was evaluated using multiple datasets
covering four lifespan age groups with 1,000+ brains (from 34 gestational weeks to young adult). Our experi-
mental results show that: 1) the proposed transfer strategy can dramatically improve the model performance on
populations (e.g., early neurodevelopment) with very limited number of training samples; and 2) with the
transfer learning we are able to robustly infer the complicated many-to-many anatomical correspondences
among different brains at different neurodevelopmental stages. (Code will be released soon: https://github.
com/qidianzl/CDC-transfer).

1. Introduction

The mammalian cerebral cortex is characterized by complex folding,
which folds during the early brain development. Normal cortical growth
and folding patterns are crucial for the brain circuitry and its functional
organization (Shipp (2007)). Many brain function malformations,
cognitive deficits, and mental disorders have shown close relationship to
abnormalities in cortical folding caused by abnormal or interrupted
neuronal development (Stutterd & Leventer (2014); Fern andez et al.
(2016); Di Donato et al. (2017)). Therefore, understanding the devel-
opment of the cortical folding pattern has long been an important topic.
However, the cortical folding pattern varies strikingly across individuals
and shows tremendous heterogeneity across different neuro-
developmental stages. Building reliable lifespan anatomical correspon-
dences, which aims to align cortex across individuals from different
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neurodevelopmental stages to establish longitudinal cross-subject cor-
respondences, is an essential task and prerequisite for longitudinal
studies of revealing brain developmental trajectories over age or esti-
mating the brain anatomy-function relationship (Honey et al. (2010);
Derrfuss & Mar (2009); Giedd & Rapoport (2010)).

To this end, brain atlases are commonly employed for cross-subject
alignment, wherein the same atlas is aligned to different individual
brains. However, this approach heavily relies on the regularity and
commonality of anatomical structures, potentially ignoring individual
differences. To address this limitation, researchers have explored finer
gyral-sulcal cortical landscapes that enhance correspondence in brain
alignment. One notable advancement involves the utilization of sulcal
fundi as effective landmarks to improve the accuracy of cortex align-
ment (Pantazis et al. (2010); Desai et al. (2005); Van Essen (2005)).
Additionally, another study unveiled the presence of indivisible units
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known as sulcal roots, which demonstrated a consistent organizational
pattern across individuals during the fetal stage. These studies have
demonstrated that meaningful cortical landmarks at finer resolutions
can effectively decompose relatively large cortical folds into more spe-
cific, atomic, and depictive units, thereby improving brain alignment
accuracy. A recent breakthrough in the field has led to the identification
of a new landmark that characterizes the cortical folding pattern at a
finer resolution. This novel landmark, known as the 3-hinge gyrus
(3HG), is defined as the convergence of gyri from three directions (Fig. 1
(B)). Extensive studies have confirmed that 3HGs are evolutionarily
preserved across multiple primate species (Li et al. (2017)), robustly
existed on human brains despite different populations or brain condi-
tions (Chen et al. (2017); Ge et al. (2018); Zhang et al. (2020d, ¢)) and
possessing both common and individual patterns (Zhang et al. (2023)).

Since 3HGs are identified in the individual space, to find reliable
corresponding 3HGs across different brains, several methods (Zhang
et al. (2020c, 2023)) have been proposed. However, these methods are
designed to find the 3HG correspondences in single cohort, typically the
adult cohort. When applied to lifespan study including multiple neuro-
developmental stages, existing approaches typically either mix all stages
and only train a single model or learn an independent model from
scratch for each stage. The former strategy ignores the heterogeneity of
different neurodevelopmental stages and can only obtain the common
pattern shared by all states. Consequently, our understanding of the
dynamic nature of neurodevelopmental processes remains limited. On
the other hand, the second strategy fails to leverage the intrinsic re-
lationships that exist across neurodevelopmental stages. This approach
not only requires large datasets for each stage but also lacks the effi-
ciency of utilizing shared knowledge and learned representations across
different stages. Unfortunately, acquiring data for early neuro-
developmental stages can be particularly challenging due to factors such
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as high acquisition costs, prevalent motion artifacts, and subject dropout
rates. Consequently, the populations at many early neurodevelopmental
stages in lifespan brain imaging dataset often have very limited samples
and is insufficient to train an independent model from scratch. It thus
would be beneficial if we can take the advantage of the intrinsic rela-
tionship between different stages to facilitate the transfer of shared
patterns across different neurodevelopmental stages.

In deep learning domain, Transfer Learning (TL) (Pan & Yang
(2009); Woodworth & Thorndike (1901)) has emerged as a powerful
technique for leveraging shared features across related domains. It al-
lows us to harness the knowledge gained from a source domain and
apply it to improve learning performance or reduce the reliance on
labeled examples in a target domain. It is of particular significance when
tackling tasks with limited samples and has shown superior perfor-
mances in image classification (Long et al. (2015)), segmentation (Van
Opbroek et al. (2014)), text sentiment classification (Blitzer et al.
(2006)), and disease prediction (Khan et al. (2019)), etc. Inspired by
these successful studies, in this work, we aim to design a novel transfer
strategy to leverage the inherent relationship between different age
groups to facilitate the transfer of shared patterns across neuro-
developmental stages.

As the cortical folding undergoing and neurodevelopment progress-
ing, the anatomical patterns of two close neurodevelopmental stages
share more commonalities, especially during the adult stage. To take
advantage of this type of cortical developmental continuity, we pro-
posed a novel cortical developmental continuity (CDC) transfer frame-
work (Fig. 1 (A)). Specifically, we trained the model from scratch by the
age group with the largest sample size and then transferred and adapted
the well-trained model to the other stages following the cortical devel-
opmental trajectory. A novel loss function is designed to ensure that
during the transfer process the common patterns will be extracted and
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Fig. 1. (A) The overall scheme of the proposed framework. The embedding model is trained from scratch by the adult group which has the most data samples and
then successively transferred and adapted to other age groups, following the developmental trajectory of the cerebral cortex (Section 3.2). The detailed architecture
of the embedding model is displayed in (C). (B) We used the 3HG network to describe the brain anatomy. Each 3HG is the conjunction of gyri from three directions
and the 3HGs on the same hemisphere are connected by gyri hinges into a network (Section 3.1). For each 3HG, we used the anatomical regions it located in and its
multi-hop connections with other 3HGs as two key features to generate multi-hop features, which is used as a data sample in the learning process (Section 3.1). (C)
the embedding model adopted two-level encoding architecture to hierarchically map the input multi-hop features in a latent representation for each 3HG

(Section 3.1).
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preserved, while the stage-specific new patterns will be captured. We
applied our method on four age groups using adult HCP dataset and
pediatric datasets with 1,000+ brains (from 34 gestational weeks to
young adult). Our experimental results show that: 1) the proposed
transfer strategy can dramatically improve the model performance on
populations (e.g., early neurodevelopment) with very limited training
samples; and 2) with the transfer learning we are able to robustly infer
the complicated many-to-many anatomical correspondences among
different brains at the same and/or different neurodevelopmental
stages.

2. Related works
2.1. Methods for inferring 3HG correspondences

Establishing 3HG cross-subject correspondence is a significant yet
under-researched topic. Two existing studies have attempted to address
this issue from different perspectives. In 2020, Zhang et al. (2020c)
proposed a two-view, group-wise graph matching method leveraging
both cortical folding patterns and DTI-derived fiber shapes to estimate
3HG correspondences. Their approach aims to jointly optimize
anatomical topological patterns and axonal connectivity as two views,
maximizing the consistency between corresponding 3HGs across
different brains. However, this method faces three challenges: Firstly,
the robustness and computational time depend heavily on the number of
samples due to the group-wise optimization scheme. Secondly, the
method performs independent graph matching from scratch, limiting its
ability to generalize 3HG correspondences to new brains and new
datasets. Thirdly, the features of the two views are handcrafted, which
weakens the method’s adaptability to individual variations, potentially
undermining its effectiveness.

To address these limitations, Zhang et al. (2023) developed a
learning-based embedding framework that can effectively encode indi-
vidual cortical folding patterns into a group of anatomically meaningful
feature embeddings. Within this framework, each 3HG is represented by
a combination of these feature embeddings, utilizing individual-specific
combining coefficients. This approach enables the encoding of regular
folding patterns within the embedding vectors while preserving indi-
vidual variations through the combination coefficients. This method has
successfully been applied to infer anatomical correspondences among
adult cohorts. However, a limitation of this self-supervised embedding
approach is its reliance on large datasets during the training step. This
poses a challenge when applying this method to brain longitudinal
studies, as populations in some early neurodevelopmental stages often
consist of a limited number of samples. Training a reliable embedding
model from scratch becomes unfeasible in such scenarios. To solve this
problem, we take the advantage of the developmental continuity of the
cerebral cortex and proposed a novel CDC transfer framework. This
framework leverages the inherent relationship between different age
groups to facilitate the transfer of shared patterns across neuro-
developmental stages.

2.2. Transfer learning in medical image analysis

Over the past decade, deep learning (DL) techniques (Wang et al.
(2021); Zhou et al. (2023)) have significantly advanced various domains
of computer vision, particularly in tasks such as classification (Abdar
et al. (2021); Diaz-Pernas et al. (2021)) and segmentation (Khan et al.
(2020)) for medical image analysis. Unlike traditional machine learning
approaches that rely on shallow architectures, DL architectures elimi-
nate the need for manual feature engineering (LeCun et al. (2015)). This
absence of feature engineering is advantageous because it removes the
constraints imposed by feature selection, thereby maximizing the in-
formation available for classification tasks. However, the effectiveness
of DL models hinges on the availability of large annotated datasets for
training. Acquiring such datasets, especially in the medical domain,
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poses substantial challenges due to high costs associated with image
collection. Furthermore, the complexity increases when these datasets
need to be annotated by professional radiologists, whose expertise en-
sures accurate labeling but also adds significant additional expenses. In
some cases, the costs incurred from annotation can exceed those of
image acquisition itself. To mitigate these difficulties, researchers have
introduced transfer learning (Pan & Yang (2009); Woodworth &
Thorndike (1901)) techniques into the field of medical image analysis.
Unlike traditional machine learning algorithms that focus on isolated
tasks, transfer learning leverages knowledge learned from source tasks
to enhance learning in related target tasks. This advantage stems from
transfer learning models being pre-trained on extensive generic datasets,
with task-specific datasets used solely for fine-tuning the model.

Over the past decades, transfer learning has been extensively applied
across various imaging anatomy domains, covering the brain (Deepak
et al. (2020); Mehrotra et al. (2020); Plata et al. (2017)), heart (Liao
et al. (2020)), chest (Khan et al. (2021); Polat et al. (2021)), abdomen
(Meng et al. (2020); Peng et al. (2019)), breast (Yap et al. (2017)), skin
(Liu et al. (2020)), and retinal (Hervella et al. (2020)) areas. These
studies span multiple imaging modalities including Computed Tomog-
raphy (CT) (Khan et al. (2021); Liao et al. (2020)), Magnetic Resonance
Imaging (MRI) (Deepak et al. (2020); Mehrotra et al. (2020); Plata et al.
(2017); Liao et al. (2020)), Ultrasound (US) (Yap et al. (2017); Meng
et al. (2020)), and Radiography (X-rays) (Polat et al. (2021)).
CNN-based architectures such as LeNet (Yap et al. (2017)), U-Net
(Hervella et al. (2020); Liao et al. (2020)), AlexNet (Deepak et al.
(2020); Mehrotra et al. (2020); Plata et al. (2017)), VGGNet (Deepak
et al. (2020); Meng et al. (2020)), ResNet (Deepak et al. (2020); Meh-
rotra et al. (2020); Liao et al. (2020)), GoogLeNet (Deepak et al. (2020);
Mehrotra et al. (2020)), DenseNet (Khan et al. (2021); Polat et al.
(2021)), and SqueezeNet (Mehrotra et al. (2020)) are the most widely
used transfer learning models for medical image analysis. These net-
works were initially trained on the ImageNet dataset and subsequently
adapted to medical image datasets. However, while transferring
pre-trained models trained on natural image datasets like ImageNet has
proven successful in many applications, challenges arise due to differ-
ences in characteristics between medical images and natural images,
leading to suboptimal results in some medical imaging tasks.

Inspired by the knowledge transfer capabilities of transfer learning
and aiming to mitigate ineffective results stemming from disparities
between the source and target domains, we introduced a CDC transfer
framework for inferring lifespan brain anatomical correspondence. The
CDC transfer strategy capitalizes on the developmental continuity of the
brain, enabling the capture and transfer of common patterns across
various developmental stages. This approach efficiently utilizes limited
samples to capture group-specific patterns, enhancing training effi-
ciency. Importantly, all transfer learning operations are conducted
within the same domain, ensuring effective knowledge transfer without
the inefficiencies associated with cross-domain adaptation.

3. Methods

The CDC framework is grounded in the fundamental principle of
continuous brain development, aiming to leverage the inherent rela-
tionship between different age groups to facilitate the transfer of shared
patterns across neurodevelopmental stages. This is accomplished by a
sequential learning process that initiates with the age group possessing
the largest sample size for robustness and generalizability. Then, the
learned knowledge is transferred to other age groups, following the
developmental trajectory of the cerebral cortex. This approach facili-
tates the propagation of common patterns throughout the learning
process, while effectively utilizing the limited samples to capture group-
specific patterns.

To ensure that this manuscript is self-contained, we firstly introduced
the 3HG identification (Chen et al. (2017)) and 3HG embedding (Zhang
et al. (2023)) in Section 3.1, offering the necessary background
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information. Following that, in Section 3.2, we have elaborated on the
proposed CDC transfer framework

3.1. Background

3.1.1. 3HG identification

The process of 3HG identification consists of five steps, as depicted in
Fig. 2. Firstly, the entire cerebral cortex is segmented into gyral crest and
sulcal basins based on the gyral altitude (Fig. 2(a and b)). Subsequently,
a tree marching algorithm is employed to connect all the vertices of the
gyral crest, resulting in a graph representation (Fig. 2(c)). In the next
step, redundant branches shorter than a predefined threshold are trim-
med, while the main trunks are preserved (Fig. 2(d and e)). The resulting
graph is referred to as GyralNet. 3HGs are defined as the conjunctions
with three branches on the Gyralnet. Finally, the entire cortex of each
hemisphere is divided into 75 regions of interest (ROIs) by surface
parcellation with the Destrieux Atlas (Destrieux et al. (2010)). Each 3HG
belongs to one specific ROI (Fig. (2f)), and this association is numeri-
cally represented using one-hot encoding with a 1D vector of size 75:
x € Rl % 75,

3.1.2. 3HG anatomical embedding

Based on the insights from Zhang et al. (2023), the 3HG anatomical
embedding is highlighted as a more effective representation of 3HG
anatomical patterns compared to one-hot encoding. This forms the basis
of the proposed CDC transfer framework. In this subsection, we provide
a brief overview of the 3HG anatomical embedding.

The 3HG network (GyralNet) can be represented by a graph & = (<7,
'), where the adjacency matrix &/ = [a;;] € RNV represents the direct
connections between N 3HGs (nodes) and the one-hot encoding matrix
(feature matrix) 2 = {x1;x2; ---;xy} € RV* 75 represents the association
between N 3HGs and 75 ROIs. To capture indirect connections between
nodes at different hop levels, the I power of .27, denoted as ./, is used to
represent the I — hop indirect connections. Consequently, the I —hop
feature of 3HG; can be obtained by multiplying a!, the i’ row of .«/!, with
& . Using these definitions, we can formulate the [ —hop feature of 3HG;
as (1). This I — hop feature encompasses the features from the 0" —hop to
the I — hop, capturing the connection patterns of 3HG; with other nodes
in the network at various hop distances.

Fi=[x; ¢ #; @7; -;d2] eR"D > 7 m

Taking F! as input, a self-supervised embedding framework (Fig. 1
(Q)) is designed to learn meaningful feature embedding for each ROI,
just like the word embedding in NLP. The encoding and decoding pro-
cesses can be formulated as:

B, = o(F'E) @
Ey = o(W'-Ep) (©)
E, = o(W"' -E.) “

Gyral Crest

gment Tree marching

_Gyral Altitude =
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F, = B, -wP (5)

where o is the non-linear activation function and E=
{AptCommandmathbbe, ; AptCommandmathbbe,; ---;

AptCommandmathbbeys} € R7° *4 is the learnable ROI embeddings. The
input feature (F!) was firstly embedded via E hop by hop to generate the
hierarchical multi-hop embeddings Ei;, € R * 4 and then was further
fused into a single embedding vector Ei. € R! * 4 by WF ¢ R! * (*1) The
MSE loss is adopted to evaluate the two-level decoding (WP* € R&1) x 1

and WP € R%* 75) and the objective function is defined as (6):

i )
. . ~0 . ~i
L =a | By —Eylly + Il Fi — Fy Il ©)

In our proposed CDC transfer framework, the same embedding ar-
chitecture was employed as the initial model to learn the ROI embed-
dings E from scratch, using data samples of adult group. Subsequently,
we proposed a novel CDC transfer strategy to transfer and adapt E to
other age groups, following the developmental trajectory of the cerebral
cortex. This transfer process allowed us to leverage the accumulated
knowledge and apply it to characterize both the common and the group-
specific anatomical patterns across different age groups.

3.2. Cortical Developmental Continuity (CDC) transfer framework

CDC transfer framework is proposed to take the advantage of the
continuous nature of the development of cortical folding and achieve the
optimal performance improvement (Fig. 1 (A)). Specifically, we adopt
shared ROIs across all neurodevelopmental stages as features and define
a common feature space. This allows data samples from different age
groups to be mapped to the same feature space and to be represented in a
consistent multi-hop form (Section 3.1). Taking the 3HG multi-hop
features as input, the embedding framework (Section 3.1) is trained
from scratch by the age group with the largest data samples to endow the
model with good generalizability. Then the learned ROI feature em-
beddings E is transferred and adapted to the next age group. During the
transfer process, the common pattern buried in E is gradually extracted
and combined with the new group-specific patterns learned from new
data samples. Finally, the combination of the common patterns and the
group specific patterns is used to create the ROI embeddings for that
group and then transferred to another age group in the following steps.
To maximize the effectiveness, the transfer process follows the cortical
developmental trajectory from one age group to the next closest age
group, since they tend to share the greatest consistency.

Fig. 3 illustrates the transfer process between four age groups within
the CDC framework. The embedding framework is initially trained from
scratch by group 1, utilizing a self-supervised task to learn the ROI
feature embeddings [E; specific to group 1. Subsequently, E; is trans-
ferred to group 2, which is the closest age group to group 1. During the
transfer process, [F; can be divided into two components: the common
pattern shared by groups 1 and 2, and the specific pattern unique to
group 1. The goal is to transfer the common pattern to group 2, allowing
data samples from group 2 to be effectively utilized for learning the

Single 3HG

Fig. 2. Pipeline of 3HGs identification. a: White matter surface is reconstructed, and color coded by gyri altitude. b: The watershed algorithm is applied on the gyral
altitude map to divide the surface into gyral crest (white regions) and sulcal basins (colorful regions). c: A tree marching algorithm is used to connect vertices in gyral
crest regions. d-e: Redundant branches are trimmed when their length is shorter than a predefined threshold, and the main trunk remained is the 3HG network, which
is termed GyralNet in (Zhang et al. (2020c¢)). f: Each 3HG is labeled by the region of interest (ROI) it belongs to.
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Fig. 3. Illustration of the transfer process in the proposed cortical developmental continuity (CDC) transfer framework. The diagram demonstrates the transfer
process within the framework using four groups as an example. Each group (labeled as group 1, group 2, group 3, and group 4) possesses its own set of input samples

(I)) and obtained the corresponding output (I;). Each age group learns its own fusion layer and two decoder layers (WF, WP, and WP2), while the learning process of
embedding [F; is guided by CDC transfer strategy. Specifically, the embedding framework is trained from scratch using group 1's input samples, resulting in the
generation of the ROI feature embedding (E;). During the training process, a common part, denoted as [ ,, is extracted from [;, representing the shared features

between group 1 and group 2. This common part is combined with the group-specific embeddings (Ey>,) learned by group 2, resulting in the ROI feature embedding

for group 2. This process is repeated by each pair of adjacent groups, including groups 1 and 2, groups 2 and 3, and so on, transferring the learned ROI embeddings

successively from one group to the closest neighboring group.

specific patterns of group 2. To achieve this, a new group-specific
embedding matrix E}, is initialized to capture the group-specific pat-
terns of group 2. Simultaneously, the common pattern E , is initialized
with E; and iteratively updated during the training process. Conse-
quently, the ROI feature embeddings of group 2, denoted as [, are
obtained as the sum of E{ , and EY: Ez = Ef , + EY’,. The residual part
between the original [; and the updated [Ff, represents the specific
pattern of group 1. To ensure that the learned [] , indeed captures the
common pattern shared by the two groups, and that E}, accurately

captures the group-specific pattern of group 2, two regularizers are
proposed and defined as follows:

Lipe = max(O,cos([E‘l{Z, [Eifz) —m)7 me (-1, 1) @

Leom =2 — cos([Ei_z, [E1> - cos([Eﬁvz., [E2> ®

The two regularizers proposed in the CDC framework utilize cosine
similarity, which is a common measure to assess the similarity or
dissimilarity between two inputs in nonlinear embedding learning or
semi-supervised learning scenarios. The first regularizer, Z,, aims to
push away the two group-specific embeddings, E}', and E?,, by ensuring
a minimum distance between them. The hyperparameter m defines the
lower bound distance to be maintained. The second regularizer, o,
works to bring the common part, E ,, closer to both ROI embeddings [,
and [E,. This regularizer encourages the shared patterns to align with
both groups, enhancing the transfer of common knowledge. In (7) and
(8), we illustrate the application of the two regularizers using groups 1
and 2 as examples. These regularizers are consistently applied during the
transfer process for each pair of adjacent groups, including groups 1 and
2, groups 2 and 3, and so on. Their purpose is to preserve the distinction
between group-specific patterns while promoting alignment of common
patterns across groups. The whole transfer learning process is guided by
the reconstruction objective function (6) and constrained by the two
regularizers.

3.3. Evaluation methods
The proposed framework is evaluated from three perspectives:

3.3.1. Effectiveness of ROI embedding

The ROI embeddings are obtained by recovering the multi-hop
connection patterns of 3HGs at a population level, serving as funda-
mental components for representing each 3HG. Consequently, the ROI
embeddings are expected to effectively capture the regularity of the
anatomical pattern among 3HGs within the population. The strength of
the 3HG’s | — hop connection is adopted to describe the anatomical

pattern of 3HGs, which refers to the number of edges with a length of [
that connect two ROIs in the 3HG network. If two ROIs have a high/low
[ — hop strength, it indicates that they are strongly/weakly connected in
the 3HG network at the [ — hop level. As a result, their I — hop embed-
dings should exhibit a corresponding high/low similarity in the
embedding space.

3.3.2. Effectiveness of inferring lifespan 3HG correspondences

The primary motivation of this work is to establish reliable brain
anatomical longitudinal correspondences. To evaluate this, we applied
the generated 3HG embeddings to the task of inferring complicated
many-to-many cross-subject and cross-group anatomical correspon-
dences of 3HGs. An effective 3HG embedding vector is expected to
preserve the individuality of 3HGs while providing reliable cross-subject
and cross-group 3HG anatomical correspondences.

3.3.3. Comparison of different transfer strategies

Ablation studies were conducted to evaluate each component of the
proposed CDC transfer framework and compare the performance of
different transfer strategies and brain atlases with different granularity.

4. Results

We conducted experiments with four age groups: adult (22-35Y), 2-
year (2Y), 6-month (6M), and 34-gestational-week (34W, preterm). For
each group, we applied the proposed multi-hop feature embedding
method (Section 3.1) to the identified 3HGs (Section 3.1). Initially, we
trained the model from scratch using the adult group, which provided
the largest data sample. Subsequently, we sequentially transferred the
well-trained model to the other three age groups: 2-year, 6-month, and
finally the 34-week group. For each age group, the model was trained
end-to-end in a self-supervised manner. To evaluate the effectiveness of
the learned ROI feature embeddings (E) for each age group, we analyzed
the strength of the 3HG’s [ — hop connection (Section 3.3). Furthermore,
we extended the learned ROI embeddings and the well-trained model to
the independent testing dataset, generating individual embedding vec-
tors for each 3HG. The efficacy of these generated 3HG embeddings was
assessed in the task of lifespan anatomical correspondence, enabling
inference of cross-subject and cross-group anatomical correspondences.

The Result Section is organized as follows: Section 4.1 introduces the
experimental setting; Section 4.2 evaluates the effectiveness of the
learned ROI embeddings; Section 4.3 presents the results of lifespan 3HG
correspondences; and Section 4.4 is the ablation study which compares
the influence of different regularizers, different transfer strategies, and
brain atlases with different granularity.
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4.1. Experimental setting

4.1.1. Data setting

In this work, we used structural MRI of 1,064 adults from Human
Connectome Project (HCP) S1200 release. The detailed imaging pa-
rameters can be referred to (Zhang et al. (2020b, 2022)). We followed
the standardized pre-processing procedures outlined in (Zhang et al.
(2021, 2020a)) for imaging data. These steps included brain skull
removal, tissue segmentation, and cortical surface reconstruction by
FreeSurfer package (Fischl (2012)). To demonstrate the effectiveness of
proposed CDC transfer strategy, we only used pediatric structural MRI of
30/30/10 subjects in 2-year/6-month/34-week groups from NDA and
dHCP datasets. All pediatric images were processed with an
infant-dedicated pipeline (http://www.ibeat.cloud/) (Wang et al.
(2023)). Destrieux parcellation (Destrieux et al. (2010)) was used to
conduct ROI labeling for all the four age groups. After pre-processing,
400/164/500 training/validation/testing splitting was adopted for the
adult group, 10/10/10 training/validation/testing splitting was adop-
ted for 2Y and 6M groups, and 5/2/3 training/validation/testing split-
ting was adopted for the 34W group.

4.1.2. Model setting

For multi-hop features, we compared 1-hop (I = 1 in (1)), 2-hop, and
3-hop feature embedding for adult group and transferred the model of 1-
hop and 2-hop embedding to other age groups since they provide better
results. In our experiments, when training from scratch with the adult
group, the ROI embeddings E was initialized by identity matrix with
dimension d = 128 to ensure equal initial distance between any two ROI
embeddings. The other layers, including fusion layer (W) and two
decoder layers (WP and WP2), were implemented by fully connected
layers and initialized following the Xavier scheme. The hyper-
parameters a and  were both set to 1.0. We employed the non-linear
activation function ¢ as relu. The Adam optimizer was used to train
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the whole model with standard learning rate 0.001, weight decay 0.01,
and momentum rates (0.9, 0.999). The embedding framework comprises
a learnable embedding layer E = €R’ 4 a fusion layer
WFeR *H) | and two decoder layers WP ¢ R1 1 and
WPz € R¥ 75, The total number of parameters is 150 d + 2(I + 1) ~ 20k.
Consequently, the parameter count is small, resulting in very fast
training. Training from scratch with approximately 400K 3HGs from
1000 adult subjects takes about 4 hours using a GTX 1080 Ti GPU.

4.2. Evaluation of ROI embeddings

We conducted an evaluation of the learned ROI embeddings by using
the strength of 3HG’s | — hop connection, as described in Section 3.1.
The results are presented in Fig. 4. Fig. 4(a) presents the results of ROI
embeddings learned by training from scratch with the adult group. The
first column of Fig. 4(a) displays the connection strength, which serves
as the ground truth, is calculated using the entire population of 1,064
subjects from the adult group to ensure statistical representativeness.
The second column of Fig. 4(a) displays the cosine similarity between
the learned ROI embedding vectors. To facilitate analysis, we divided
the 3HG’s multi-hop connections into three types: gyri-gyri connections
(top left of each matrix), gyri-sulci connections (top right and bottom
left), and sulci-sulci connections (bottom right). These connections refer
to the relationships between gyral regions, between gyral and sulcal
regions, and between sulcal regions, respectively. The results for
different hops are displayed in separate rows.

Since 3-hop connections (the third row) cover a larger range of the
cerebral cortex and connect remote regions that cannot be directly
connected by 1-hop and 2-hop connections, ROI pairs with weak 1-hop
and 2-hop connections may exhibit strong 3-hop connections. This can
lead to inaccurate representation of the connection strength between
ROI pairs. As a result, the learned embedding vectors of these regions

Ground Truth From Scratch CDC Transfer Ground Truth
N TN
=N . i
N _”'
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From Scratch/CDC Transfer: Embedding Similarity

High

Ground Truth: Connection Strength

Fig. 4. Evaluation of the learned ROI embeddings using strength of the 3HG’s I — hop connection (defined in Section 3.1). (a) The first column displays the strength of
the 3HG’s 1-hop, 2-hop, and 3-hop connections, which were calculated based on the whole population of the adult group consisting of 1,064 subjects. The results of
the three different hops are presented in three separate rows. The second column shows the embedding similarity matrices, which were obtained by calculating the
cosine similarity between pairs of ROI embeddings. These ROI embeddings were learned from scratch using the training dataset of the adult group. (b) The well-
trained model for 1-hop embedding, as obtained in (a), was sequentially transferred by CDC transfer strategy to the 2-year group, then to the 6-month group,
and finally to the 34-week group. The embedding similarity matrices of the learned ROI embeddings are presented in the second column. Additionally, for each
group, a model was trained from scratch using the same training dataset, and the embedding similarity matrices of the learned ROI embeddings are shown in the first
column. The third column displays the connection strength matrices (ground truth), which were calculated based on the whole population of each age group. (c)
Similar to (b), this subfigure presents the results of the 2-hop embedding. The order of the brain regions in all the matrices in (a), (b), and (c) corresponds to the order
defined in the Destrieux atlas (Destrieux et al. (2010)), where the first 44 regions primarily represent gyri, while the remaining 31 regions represent sulci.
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show approximate similarities and form a smooth square at the top-left
corner (the third row of Fig. 4(a)), which undermines the effectiveness of
the ROI embeddings. In contrast, 1-hop and 2-hop embeddings provide
better results. Therefore, we only transferred the well-trained models of
1-hop and 2-hop embeddings to the other three age groups and dis-
played the results of CDC transfer framework in the second column of
Fig. 4(b) and (c), respectively. In addition, to illustrate the superiority of
the CDC transfer framework, for each age group, we trained a model
from scratch using the same training dataset and displayed the results in
the first column of Fig. 4(b) and (c). The connection strength (ground
truth) is shown in the third column.

It is important to note that the ground truth matrix represents the
strength of actual anatomical connections between ROIs in the cortical
space, whereas the embedding similarity matrix depicts the cosine
similarity between the learned ROI embedding vectors, representing the
relationship between ROIs in the embedding space. Hence, the presence
of similar patterns in the two matrices indicates that the learned ROI
embeddings effectively capture the common anatomical patterns.

We can see that for both 1-hop (Fig. 4(b)) and 2-hop (Fig. 4(c))
embeddings, when trained from scratch, most gyri-gyri connections (top
left of each matrix) areas of the similarity matrices in the ROI embed-
dings appear as patches with the same color (highlighted by pink
squares). This indicates that the regions covered by each patch share the
same similarity. However, in the corresponding locations of the ground
truth matrices, the connection strength between these regions exhibits
noticeable differences (highlighted by green squares). In contrast, the
embedding similarity matrices obtained through the CDC transfer
framework successfully capture these differences and display patterns
that are highly similar to the ground truth matrices. These results indi-
cate that the ROI embeddings learned by the CDC transfer framework
accurately capture the common patterns. More specifically, when two
ROIs have strong or weak connections in cortical space (3HG network),
they also exhibit correspondingly high or low similarities in the
embedding space.

In addition to visualization, we conducted quantitative analysis
using three measures: cosine similarity (CS), structural similarity index
measure (SSIM), and Pearson correlation coefficient (PCC), to assess the
similarity between the ground truth and the learned embeddings. The
results for 1-hop and 2-hop embedding were reported in Tables 1 and 2,
respectively. In these tables, the measures are calculated between the
embedding similarity matrices obtained from different methods (rows)
and the ground truth matrices of different age groups (columns). The
values calculated between two matrices from the same age group are
highlighted with colorful borders.

We analyzed the results from two perspectives. Firstly, for each age
group, larger values of the three measures between the learned
embedding matrices and the corresponding ground truth matrices
(within the colorful blocks) indicate the superiority of the respective
method. From the tables we can see that for both 1-hop and 2-hop

Table 1
1-Hop embedding similarity.
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embeddings, the three measures obtained from the CDC transfer strat-
egy (the second row in colorful blocks) show significant improvements
compared to training from scratch (the first row in colorful blocks).
Secondly, we evaluated whether the learned embeddings could capture
group-specific patterns while avoiding trapping into common patterns of
the overall population. To assess this, we highlighted the highest values
of the three measures with a blue color. To capture the group-specific
pattern, the highest values should be obtained between the learned
embedding similarity matrix and the ground truth matrix from the same
age group (within the colorful blocks). Therefore, the presence of more
highest values marked with blue color within the colorful blocks in-
dicates the superior performance of the corresponding method. From the
tables we can see that for the CDC transfer framework, nearly all the
largest values are located within the colorful blocks. In contrast, when
training from scratch, most of the largest values are obtained outside the
colorful blocks. These results suggest that the proposed CDC transfer
strategy can effectively improve the embedding effectiveness and cap-
ture the group-specific patterns.

4.3. 3HGs longitudinal correspondences

For each age group, we applied the learned ROI embeddings and the
well-trained model to the testing dataset to generate 3HG embeddings —
E}; (defined in (3)). As discussed in Section 3.1, an effective 3HG
embedding is expected to be able to provide reliable longitudinal cross-
subject 3HG correspondences as well as preserve the individuality.

4.3.1. Inferring reliable lifespan 3HG correspondences

We randomly selected a subject (sub-O in Figs. 5 and 6) and
employed its 3HGs as the exemplars to infer the corresponding 3HGs in
other subjects across different age groups. For each exemplar 3HG, the
inference process involved the following steps: 1) for each 3HG in
different subjects from different age groups, the cosine similarity be-
tween its embedding vector with the embedding vector of the exemplar
3HG was calculated; 2) for each subject, the corresponding 3HGs were
identified by selecting the ones that had a cosine similarity of 1.0 to the
exemplar 3HG; 3) If no 3HGs had a cosine similarity of 1.0 to the
exemplar 3HG, the 3HG with the highest cosine similarity (above a
predefined threshold) was chosen as the corresponding 3HG. By
following these steps, the corresponding 3HGs for each exemplar 3HG in
different subjects were obtained.

To provide a clearer visualization, we selected 35 exemplar 3HGs
from sub-0 that spanned the entire cerebral cortex. In Fig. 5 (1-hop
embedding) and Fig. 6 (2-hop embedding), we showed the corre-
sponding 3HGs of these exemplars in 15 randomly selected subjects
(sub-1 to sub-15) from 4 age groups, obtained using different methods.
The locations of the 3HGs are represented by bubbles, and the corre-
sponding 3HGs in different subjects are denoted by the same color. To
evaluate the accuracy of the different methods in inferring lifespan 3HG

GT 34W 6M 2Y Adult
Emb. CS SSIM PCC CS SSIM  PCC CS SSIM  PCC CS SSIM  PCC
34W FS 0.445 0.227 0.438 | 0.445 0.231 0.436 | 0.449 0.232 0.439 | 0416 0.219 0.410
CDC 0.613 0.771 0.605 | 0.597 0.777 0.589 | 0.601 0.770 0.593 | 0.556 0.768 0.548
6M FS 0478 0294 0.473 | 0480 0.295 0473 | 0.487 0.296 0.480 | 0.446 0.288 0.442
CDC 0.593  0.759 0.585 | 0.610 0.764 0.602 | 0.598 0.758 0.590 | 0.553 0.757 0.545
2y FS 0.409 0.266 0.400 | 0.409 0.269 0.392 | 0.412 0.270 0.395 | 0.382 0.260 0.369
CDC 0.586 0.724 0.579 | 0.593 0.724 0.584 | 0.604 0.729 0.596 | 0.546 0.722  0.539

Emb.: Embeddings; GT: Ground Truth; FS: Training From Scratch; CDC: CDC Transfer; Blue values: the largest values of each measure for each group; Colorful

bounder: the embeddings and the ground truth are from the same group.
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Table 2
2-Hop embedding similarity.
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GT 34W 6M 2Y Adult
Emb. CS SSIM  PCC CS SSIM  PCC CS SSIM  PCC CS SSIM  PCC
AW FS 0423  0.125 0.398 | 0.424 0.130 0.392 | 0.428 0.131 0.398 | 0.399 0.116 0.377
CDC 0.597 0.572  0.581 | 0.574 0.568 0.558 | 0.584 0.571 0.567 | 0.526 0.546 0.510
oM FS 0415 0.081 0.390 | 0.420 0.083 0.389 | 0.425 0.084 0.400 | 0.389 0.074 0.366
CDC 0.556  0.452 0.538 | 0.600 0.463 0.582 | 0.591 0.462 0.573 | 0.513 0.435 0.495
2y FS 0462 0206 0.438 | 0471 0.210 0443 | 0481 0.211 0456 | 0433 0.194 0.410
CDC 0.554 0.501 0.536 | 0.578 0.512 0.560 | 0.596 0.513 0.579 | 0.511 0.486 0.493

Emb.: Embeddings; GT: Ground Truth; FS: Training From Scratch; CDC: CDC Transfer; Blue values: the largest values of each measure for each group; Colorful

bounder: the embeddings and the ground truth are from the same group.
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Fig. 5. Lifespan correspondences of 3HGs via 1-hop embedding. The 3HGs of a randomly selected subject in 34W group (sub-0) were used as exemplary 3HGs. To
find the corresponding 3HGs on other subjects, the following pipeline was adopted: 1) for each 3HG in different subjects from different age groups, the cosine
similarity between its embedding vector with the embedding vector of the exemplar 3HG was calculated; 2) for each subject, the corresponding 3HGs were identified
by selecting the 3HGs that had a cosine similarity of 1.0 to the exemplar 3HG; 3) If no 3HGs had a cosine similarity of 1.0 to the exemplar 3HG, the 3HG with the
highest cosine similarity (above a predefined threshold) was chosen as the corresponding 3HG. Following these steps, the corresponding 3HGs for each exemplar 3HG
in different subjects were obtained. For better visualization, we selected 35 exemplar 3HGs from sub-0 that spanned the entire cerebral cortex and showed the
corresponding 3HGs in 15 randomly selected subjects (from sub-1 to sub-15) from 4 age groups, obtained using different methods. The corresponding 3HGs in
different subjects are represented using the same color. Two experts were involved to evaluate the correspondence results and two kinds of errors: inaccuracy/missing

error, are marked by red circle/triangle with black border.

correspondences, we involved two experts who identified and labeled
two types of correspondence errors: 1) inaccuracy error, which means
that the identified corresponding 3HGs are not the best matches. Inac-
curacy errors were marked by red circles with black border; and 2)
missing error, which means the corresponding 3HGs were not identified.
The missing errors were marked by red triangles with black, pointing to
the location of the correct corresponding 3HG.

The results demonstrate that the corresponding 3HGs identified
using the CDC transfer strategy consistently align with the common
anatomical landscapes across individuals of different age groups. There
were two inaccuracy errors (sub4, sub8) and two missing errors (sub8,
sub10) in the 1-hop embedding results, and one inaccuracy error (sub-3)
and one missing error (sub-5) in the 2-hop embedding results.

Comparatively, when trained from scratch, there were significantly
more errors, with 14 inaccuracy errors and 27 missing errors in the 1-
hop embedding, and 14 inaccuracy errors and 26 missing errors in the
2-hop embedding. Furthermore, there were no noticeable differences in
the quality of correspondences between the age groups using the CDC
transfer strategy. However, when trained from scratch, there were
substantial differences in correspondence performance among the age
groups. For instance, the results for the adult group were notably worse,
with nearly all corresponding 3HGs missing. These findings indicate that
the proposed CDC framework provides an effective approach for
designing practical pre-training paradigms and facilitating downstream
tasks in brain longitudinal studies.
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Fig. 6. Lifespan correspondences of 3HGs via 2-hop embedding. The detailed description can be referred to Fig. 5.

4.3.2. Preserving the individuality

Cross-subject intensive variability is a crucial characteristic exhibi-
ted by the human cerebral cortex. To demonstrate the capability of the
learned 3HG embeddings to capture cross-subject individuality, we
randomly selected four 3HGs located at different positions on the ce-
rebral cortex as exemplars (pointed by yellow arrows) and identified
their corresponding 3HGs in different subjects. For each subject, any
3HGs with a cosine similarity greater than 0.9 to the exemplar 3HG were
identified as corresponding 3HGs. We randomly chose three subjects
from each of the four age groups (34W, 6M, 2Y, and adult) and presented
the results in Fig. 7. Distinct folding patterns are observed in the cerebral
cortex of the 12 subjects. For instance, consider the exemplar 3HG-1
situated at the conjunction of the middle frontal gyrus and precentral
gyrus, where no other 3HGs are found nearby. However, for the first
subject in adult group (marked by green arrow), the cortical folding
patterns exhibit greater complexity. As a result, multiple 3HGs are
clustered together at that specific location. Conversely, for the second
subject in adult group (marked by pink arrow), there is no convergence
between the middle frontal gyrus and the precentral gyrus, leading to
the absence of 3HGs in that area. More examples have been marked in
the remaining three exemplars. These results indicate that the 3HG
embeddings learned by CDC transfer framework can effectively preserve
the individual variabilities.

4.4. Ablation study

4.4.1. Comparison of different regularizers

In CDC transfer, two regularizers g and £, are used to guide the
model in capturing common and group-specific patterns. To assess the
impact of these regularizers on the embedding performance, we con-
ducted an ablation study. Specifically, we compared the embedding
performance across four settings for each age group: with only % ¢om,
with only Zg., without both . and £ o, and the CDC transfer with
both Z. and Z"com. The results are reported in Table 3.

We analyzed the results from two perspectives. Firstly, we focused on
the values of the three measures within the colorful blocks, where the
embedding matrix and the corresponding ground truth matrix belong to

the same group. A higher value of the three measures indicates greater
similarity between the two matrices, thus demonstrating the effective-
ness of the corresponding method. As shown in Table 3, within each
colorful block, the three measures obtained from the other three settings
displayed a significant decrease compared to CDC transfer. For example,
in the 2Y group (pink block), the SSIM measure between the embedding
matrix learned via CDC transfer and the ground truth matrix was 0.513,
whereas it dropped to 0.403 and 0.269 with a single regularizer. When
trained without any regularizers, it further decreased to 0.184. Sec-
ondly, for each method (row), we highlighted the highest values of the
three measures with a blue color. Similar with the analysis of Table 1
and 2, the presence of more highest values marked with blue color
within the colorful blocks indicates the superior performance of the
corresponding method in capturing group-specific pattern. From the
results we can see that for the CDC transfer framework, all the largest
values are located within the colorful blocks. In contrast, many of the
largest values under the other three settings are obtained outside the
colorful blocks. These findings suggest that both regularizers are
necessary for accurately capturing group-specific patterns.

In addition to the embedding performance, we also evaluated the
training efficiency by examining the convergence curves obtained using
the independent validation dataset, as shown in Fig. 8. We can see that
for all the three age groups, 34W (Fig. 8 (a)), 6M (Fig. 8 (b)), and 2Y
(Fig. 8 (c)), when compared to training from scratch, the four transfer
settings can achieve remarkably better results with significantly lower
loss. Moreover, among the four transfer settings, the proposed CDC
transfer with both regularizers demonstrates faster convergence towards
a better solution.

4.4.2. Comparison with other transfer strategies

In the proposed CDC transfer, we adopted a specific type of transfer
strategy where the embedding transfer traverses all previous age groups
before reaching the target group. For example, in the case of the 34W
group, the embedding transfer starts from the adult group and sequen-
tially transfers to the 2Y, 6M, and finally to the 34W group. To explore
the necessity of traversing all previous groups, we conducted experi-
ments and compared different transfer strategies, the results of which
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Fig. 7. Cross-subject individuality and variability. We selected four exemplar 3HGs (indicated by yellow arrows) to examine their correspondences in subjects from
four different age groups (34W, 6M, 2Y, and Adult). For each age group, we randomly selected three subjects and established correspondences based on a cosine
similarity threshold of 0.9. The corresponding 3HGs are visualized as bubbles, with the color of the bubbles indicating the cosine similarity. Given the intensive
variability of cerebral cortex, it is possible to find varying numbers of correspondences, ranging from zero to multiple, across different subjects.

are presented in Table 4. For 34W and 6M groups, there are three and
two different transfer strategies, respectively.

From the results, two key observations can be made. Firstly, different
transfer strategies achieve comparable performance with approximate
values of the three measures between the embedding matrices and the
ground truth matrices from the same age group (within colorful blocks);
Secondly, the transfer strategy that involves traversing all previous
groups tends to outperform others in capturing group-specific patterns.
For example, in the case of the 6M group, when the model was directly
transferred from the adult group, skipping the 2Y group, the highest
value of SSIM was obtained between the embedding matrix of the 6M
group and the ground truth matrix of the 2Y group (highlighted in blue).
However, when the model traversed all the groups, the highest values of
the three measures were obtained between the embedding matrix and
the ground truth matrix of the 6M group, indicating a better capture of
group-specific patterns. Additionally, the convergence curves of the five
transfer strategies are presented in Fig. 8 (d). It can be observed that
models trained using more groups exhibit faster convergence.

4.4.3. Comparison of different brain atlases
The ROI embeddings serve as the features of 3HGs and play an
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important role in the embedding learning and 3HG correspondence. In
this section, we discussed the influence of the brain atlases with different
levels of granularity on the performance. Specifically, we used three
different atlases: the Desikan-Killiany Atlas (Desikan et al., 2006) with
72 ROIs, the Destrieux Atlas (Destrieux et al., 2010) with 150 ROIs, and
the gwMRF parcellations with 1000 ROIs (Schaefer et al., 2018). For the
Desikan-Killiany and Destrieux atlases, we used the Freesurfer package
(Fischl (2012)) to map the atlases to the individual brain, and for the
gWMRF 1000 atlas, we used the code and method released by the au-
thors  (https://github.com/ThomasYeoLab/CBIG/tree/master/stable
_projects/brain_parcellation/Schaefer2018 LocalGlobal) to map the
atlas to the individual brain. We displayed the three different atlases in
Fig. 9a. We also calculated the average number of 3HGs per ROI and the
mean cosine similarity between corresponding 3HGs of the three atlases.
The mean cosine similarity is calculated as follows: for each anchor 3HG,
we identified the top-1 corresponding 3HG with the greatest cosine
similarity value in each subject. Then we calculated the mean cosine
similarity across all the anchor 3HGs and population. From the results,
we can see that as the granularity increases, the area covered by each
ROI generally decreases, and thus the mean 3HG number decreases. For
the mean cosine similarity, compared to the other two atlases, the
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Table 3
Evaluation of the two regularizers.
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GT 34W 6M 2Y Adult
Emb. CS SSIM PCC CS SSIM PCC CS SSIM PCC CS SSIM PCC
34W L., | 0489 0293 0472] 0495 0290 0477| 0510 0291 0.493] 0431 0277 0413
Lope | 0543 0458 0.528| 0.546 0454 0.531] 0.560 0.455 0.546| 0484 0436 0.469
No 0465 0248 0.450| 0470 0243 0.454| 0486 0244 0472 0403 0234 0388
CDC | 0597 0572 0581] 0574 0.568 0.558] 0.584 0.571 0.567| 0.526 0.546 0.510
6M |L.n | 0466 0236 0446 0.511 0244 0491 0516 0243 0496] 0417 0226 0.397
Lope | 0488 0298 0469 0539 0310 0521 0544 0307 0.526 0438 0285 0419
No 0432 0252 0412 0489 0263 0469 0495 0260 0476 0382 0242 0.361
CDC | 0556 0452 0.538) 0.600 0.463 0582 0.591 0462 0.573| 0.513 0435 0.495
2Y |Lom | 0464 0259 0445 0496 0267 0478 0.517 0269 0.500 0419 0251 0.401
Lope | 0487 0385 0471] 0517 0399 0502 0539 0403 0.525 0443 0376 0.427
No 0419 0.180 0.396| 0.448 0.183 0425 0469 0.184 0448 0372 0.171 0.350
CDC | 0554 0501 0.536| 0578 0.512 0560 0596 0513 0579 0.511 0486 0.493

Emb.: Embeddings; GT: Ground Truth; CDC: CDC Transfer; Blue values: the largest values of each measure for each training strategy; Colorful bounder: the em-

beddings and the ground truth are from the same group.
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Fig. 8. Convergence curves of different regularizer settings (a-c) and different transfer strategies (d).

gwMRF 1000 has significantly lower values. This indicates that the
embedding vectors between corresponding 3HGs have lower similarity.
To better analyze this difference, we showed the embedding matrices
learned using different atlases in Fig. 9c and d.

From Fig. 9¢c, we can see that as the granularity increases, the spar-
sity of the ground truth matrices also increases. Similarly, the patterns of
the embedding matrices are consistent with the ground truth matrices.
To quantitatively measure this, we calculated the sparsity of the ground
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truth matrices for each atlas, as shown in Fig. 9d. Consistent with the
visualization results, the sparsity values increase as the granularity in-
creases. We also used three different measures to check the similarity
between the learned embedding matrices and the ground truth matrices,
and all three atlases show high similarity between the two matrices. Of
all the four measures, only the change in sparsity trends correlates with
the change in mean cosine similarity. We infer that as granularity in-
creases, the brain is divided into more regions, leading to more regions
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Table 4
Comparison of different transfer strategies.
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GT 34W 6M 2Y Adult
Emb. CS SSIM PCC  CS SSIM PCC €S SSIM PCC  CS SSIM PCC
34W | Adult-34W 0.592 0.555 0.576] 0.567 0.552 0.551] 0.578 0.553 0.561| 0.520 0.531 0.503
Adult-2Y-34W 0.591 0.552 0.575| 0.567 0.549 0.551| 0.576 0.551 0.560| 0.519 0.528 0.503
Adult-2Y-6M-34W | 0.597 0.572 0.581| 0.574 0.568 0.558| 0.584 0.571 0.567| 0.526 0.546 0.510
6M | Adult-6M 0.557 0.452 0.539] 0.600 0.463 0.580 0.591 0.464 0.573] 0.514 0.435 0.496
Adult-2Y-6M 0.556 0.452 0.538 0.600 0.463 0.582 0.591 0.462 0.573| 0.513 0.435 0.495

Emb.: Embeddings; GT: Ground Truth; Blue values: the largest values of each measure for each training strategy; Colorful bounder: the embeddings and the ground

truth are from the same group.
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Fig. 9. Comparison of different atlases. a. The three different atlases at different levels of granularity. b. The mean cosine similarity of top-1 corresponding 3HGs and
the average number of 3HGs per ROI of the three atlases. c. The learned embedding similarity matrices and the corresponding ground truth matrices of three different
atlases. d. Four measures are used to test the similarity between the ground truth and the learned embedding matrices as well as the sparsity of these matrices.

without 3HGs and thus increasing sparsity. Because many regions lack
3HGs to mediate connections with other regions, the overall correlation
between regions decreases. This results in a lower cosine similarity be-
tween the learned embedding vectors.

To further investigate the impact of atlas granularity on the 3HG
correspondence task, we selected four anchor 3HGs (highlighted by
yellow arrows) from various brain regions and inferred their corre-
sponding 3HGs in other subjects. Based on the statistical results shown
in Fig. 9b, we set a cosine similarity threshold of 0.9 for the Desikan-
Killiany and Destrieux atlases to identify corresponding 3HGs. Specif-
ically, any 3HG with a cosine similarity value of 0.9 or higher is
considered a corresponding 3HG to the anchor 3HG. For the
gwMRF1000 atlas, we used a threshold of 0.05 for identifying
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corresponding 3HGs. We showed the results of six randomly selected
subjects in Fig. 10. In the figure, the identified corresponding 3HGs in
each subject are represented by bubbles, and the cosine similarity is
color-coded. For each subject, there are three cerebral cortex sections
corresponding to three subfigures, arranged from left to right in
increasing granularity: 72 ROIs, 150 ROIs, and 1000 ROIs. As the
granularity increases, we can see that the number of identified corre-
sponding 3HGs in each subject decreases, which is consistent with the
mean 3HG number values shown in Fig. 9b. Additionally, the distribu-
tion of the corresponding 3HGs gradually becomes more localized
around the region of the anchor 3HG, resulting in more precise identi-
fication. However, when the granularity becomes too high, such as at
1000 regions, some existing corresponding 3HGs may be missed
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Fig. 10. The results of identified corresponding 3HGs of 4 anchor 3HGs in 6 randomly selected subjects using different brain atlases.
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(highlighted by red crosses).
5. Discussion

5.1. Comparison with other transfer learning strategies in medical image
analysis

In the evaluation of this study, we try to compare the proposed
method with other transfer learning approaches in the field of medical
imaging analysis. We observed that existing research predominantly
focuses on classification and segmentation tasks (Kora et al. (2022);
Atasever et al. (2023)) using diverse medical imaging modalities such as
CT (Khan et al. (2021); Liao et al. (2020)), MRI (Deepak et al. (2020);
Mehrotra et al. (2020); Plata et al. (2017); Liao et al. (2020)), Ultrasound
(Yap et al. (2017); Meng et al. (2020)), and X-rays (Polat et al. (2021)).
To handle the image features, the most commonly utilized deep learning
models in these studies are CNN-based architectures such as LeNet (Yap
et al. (2017)), U-Net (Hervella et al. (2020); Liao et al. (2020)), AlexNet
(Deepak et al. (2020); Mehrotra et al. (2020); Plata et al. (2017)),
VGGNet (Deepak et al. (2020); Meng et al. (2020)), ResNet (Deepak
et al. (2020); Mehrotra et al. (2020); Liao et al. (2020)), GoogLeNet
(Deepak et al. (2020); Mehrotra et al. (2020)), DenseNet (Khan et al.
(2021); Polat et al. (2021)), and SqueezeNet (Mehrotra et al. (2020)).
However, our work differs from these studies in terms of the specific
problems addressed, the data formats used, and the models applied.
Transfer learning is typically implemented through two main methods:
weight initialization and fine-tuning. In weight initialization, pretrained
model weights trained on different datasets are directly applied and then
updated with the new training data. Fine-tuning involves updating only
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certain layers of the model while keeping others frozen. Successful
transfer learning hinges on the similarity of features between the source
and target tasks, such as shared image-related characteristics, which
allows pretrained models to effectively enhance training efficiency for
the target task. As a result, it is hard for us to feed our data, which
employs 3HG networks as input to address lifespan brain anatomical
correspondence, into these models trained on using medical image
features for classification and segmentation tasks to conducted fair
comparison. Recent reviews have also noted similar difficulties,
revealing that only 13% of transfer learning studies conduct compari-
sons with other models (Kora et al. (2022)). This underscores the
inherent complexities in benchmarking and effectively comparing
diverse transfer learning approaches. Consequently, in our results sec-
tion, we are unable to provide direct comparisons with other works.

5.2. Scalability and applicability of CDC transfer

The proposed CDC transfer framework is designed to provide an
effective embedding of 3HGs that can generalize across different data-
sets. To validate this, we used the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) dataset, a large, independent dataset that aims to
detect and track Alzheimer’s disease. We applied the trained model to
the ADNI dataset, generating 3HG embedding vectors for 480 newly
collected individuals and evaluating the performance in the 3HG life-
span correspondence task. We also used sub0 from the 34W group as the
anchor subject and inferred the correspondence in the ADNI subjects.
Using the same criteria as in Section 4.3, we identified the corresponding
3HGs for anchor 3HGs and randomly selected eight individuals to
display the results in Fig. 11. As in Figs. 5 and 6, the locations of the

1 —

3HG Correspondence

35

Fig. 11. 3HG lifespan correspondence results of a new independent ADNI dataset.
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3HGs are represented by bubbles, and the corresponding 3HGs in
different subjects are denoted by the same color. From the results, we
can see that the corresponding 3HGs identified in different individuals
have consistent locations in terms of common anatomical landmarks.
For example, 3HG #0 (marked by purple arrows) and 3HG #35 (marked
by red arrows) are found in the front end of the inferior temporal gyri
and the top of the postcentral gyri, respectively, across all subjects.
However, we also observed that due to individual differences, some
anchor 3HGs do not have corresponding 3HGs in other subjects. For
example, 3HG #12 does not have corresponding 3HGs in sub-3 and sub-
4.

It is worth noting that the ADNI dataset includes different groups,
such as elderly normal controls, mild cognitive impairment (MCI) pa-
tients, and AD patients. In this experiment, we did not distinguish be-
tween the elderly normal controls and patients in the ADNI dataset.
Whether the distribution patterns of 3HGs differ between patient groups
and normal individuals is a question that remains to be explored and
warrants further investigation in future work. In general, the results in
Fig. 11 further demonstrate that our proposed CDC transfer framework
has good generalizability.

6. Conclusions

In this study, we introduced the cortical developmental continuity
(CDQ) transfer framework, aiming to leverage the continuous nature of
cortical folding development and achieve optimal performance
enhancement. Our approach involves transferring ROI feature embed-
dings across different age groups, following the developmental trajec-
tory of the cerebral cortex. This allows the accumulation and
propagation of common patterns while capturing group-specific pat-
terns. To guide the transfer process effectively, we introduced two novel
regularizers that facilitate the capture of both common and group-
specific patterns.

To evaluate the proposed CDC transfer framework, we conducted
experiments using multiple datasets that encompassed four age groups,
consisting of over 1,000 brains ranging from 34 gestational weeks to
young adult. The experimental results demonstrate the significant
improvement in model performance when dealing with populations
with limited training samples. Moreover, the CDC transfer learning
approach enables robust inference of complex many-to-many anatom-
ical correspondences among different brains at the same or different
neurodevelopmental stages. Additionally, the CDC transfer framework
offers valuable insights into addressing complex problems that span
multiple stages, characterized by a shared underlying inherent rela-
tionship alongside considerable cross-stage heterogeneity.
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