Can We Trust Your Voice?
Exploring Vulnerabilities in Voice Authentication

Ke Li, Cameron Baird, Dan Lin
Department of Computer Science, Vanderbilt University, Nashville, TN 37211 USA
{ke.li.1, cameron.j.baird, dan.lin} @ Vanderbilt.Edu

Abstract—As voice authentication technology becomes more
prevalent, its security flaws and vulnerabilities are garnering
increasing scrutiny. State-of-the-art deep neural network (DNN)
systems for voice authentication can achieve an accuracy of over
95%. However, DNN-based models are known to be vulnerable
to attacks such as adversarial examples and data poisoning. An
adversary may also take advantage of the limited generalization
of current DNN-based models to circumvent the system, only
requiring authentic voices to impersonate others. In this paper,
we leverage a data poisoning attack and two voice authentication
models to investigate the vulnerability and corresponding impacts
on individual user and system security. We introduce a new
toolkit, the Voice Authentication Poisoning Impact Evaluator
(VAPIE), incorporating conventional machine learning and VGG-
based models. VAPIE is designed to predict the potential impacts
of various data poisoning scenarios launched by different attack-
ers and to evaluate overall system security, achieving an accuracy
rate of over 70%. This facilitates a deeper understanding and
mitigation of the risks associated with voice authentication
technologies.

Index Terms—Voice Authentication, Deep Neural Network,
Data Poisoning Attack, SVM, Random Forest, VGG19

I. INTRODUCTION

Voice authentication (VA), also known as speaker verifi-
cation, is a biometric technique for verifying an individual’s
claimed identity using the unique features of their voice. VA
can be more convenient than passwords and PIN codes and
it has gained popularity in various applications [1], [2]. It is
envisioned that in the near future users will be able to use VA
to log into personal and shared devices. Currently, DNN-based
models for VA can authenticate users with accuracy as high
as 95% [3]-[5]. However, an overlooked vulnerability exists
in current VA systems: the underlying neural network may
recognize different people as the same person. For example,
consider Figure 1. If two users ul and w2 have similar
voices, u2 may gain access to the account of ul [6], [7].
This vulnerability in VA systems may be further magnified
after data poisoning attacks. The Adversary A in Figure 1
represents this concern. The data poisoning attack intentionally
corrupts the training data of a machine learning algorithm to
compromise the integrity and effectiveness of the model [7],
[8].

In this paper, we explore this vulnerability in VA systems
and propose a novel method to predict the impact of such
vulnerability under data poisoning attacks launched by differ-
ent attackers. Specifically, our research is guided by several
intriguing questions: Can users access others’ accounts using
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their voice? How many can they access? Are particular users
inherently more effective at impersonating multiple accounts?
What are the common features of such users? Furthermore,
we investigate whether a data poisoning attack enhances an
attacker’s ability to access more accounts and affects overall
voice authentication success rates.

To answer the above questions, we have conducted several
experiments using the state-of-the-art voice authentication
models, DeepSpeaker [4] and ResNet [5], which yield above
95% recognition accuracy. We first examine the vulnerabilities
of voice authentication models by calculating the number of
potential imposters and their capabilities. Then, we launch
data poisoning attacks on DeepSpeaker and evaluate the effect
of the attack. Finally, we propose a machine learning based
toolkit (including conventional machine learning models and
VGG-based models), called Voice Authentication Poisoning
Impact Evaluator (VAPIE), to predict the impact of possible
data poisoning attacks from various attackers. The VAPIE
model is a valuable tool for assessing the security of a voice
authentication system prior to deployment.

The rest of the paper is organized as follows. Section
IT reviews related work. Section III presents our proposed
method. Section IV reports the experimental results. Finally,
Section V concludes the paper.

II. RELATED WORK
A. Overall Voice Authentication (VA) Process

Consider a login system, such as online banking, that
employs a VA system. The process of authenticating users
with some system is generally called Automatic Speaker
Verification (ASV) [1], [9]. Note the distinction between
speaker verification and speaker recognition [10], where each
speech sample is predicted to be from one of N speakers.
Modern ASV systems use deep neural networks (DNNs) to
extract unique features/embeddings for each new speaker that
registers into the system. Though speakers can vary their
content and language, characteristics like rhythm and cadence



are somewhat consistent. DNNs trained on speech data learn to
map speech samples to high-dimensional features/embeddings
that act as digital ID for that speaker.

The VA process begins with the registration phase. When
a new user signs up for a VA account, they will be prompted
to upload speech samples to the system. The neural net-
work embeddings corresponding to these samples are stored
as reference for later login attempts. After registration, the
user provides new speech samples as login attempts to their
account. To check if the user should be verified, the features
corresponding to the new sample are compared with the
reference speech using distance functions like cosine similarity
[10].

To compute feature embeddings from speech samples,
DNNs are the state-of-the-art solution. Early approaches used
statistical features [10] or parametric approaches [11], [12].
However, modern DNNs outperform classical machine learn-
ing techniques when applied to VA [3]-[5], [13]. For this
reason, we chose a DNN-based model for experiments.

B. Data Poisoning Attacks

In a data poisoning attack [14], an adversary tampers with
training data to intentionally mislead a machine learning
model. A recent industry survey [15] found that data poisoning
may pose more of a security threat than other types of machine
learning attacks such as model inversion or adversarial exam-
ples. There are several types of data poisoning. A backdoor
attack [16] is characterized by a specific trigger pattern that
is embedded into the training data. When that trigger, or
backdoor, is present during inference, the model will produce
a predetermined output. Backdoor attacks can be subtle as
trigger patterns are often small perturbations to the input that
are not noticeable by humans [17]. Another type of data
poisoning attack is label flipping [18], where the labels of
some training examples are switched to incorrect ones.

Although some works about data poisoning can be borrowed
from the image domain [19], [20], there are generally less
works for audio. In addition, methods used in the image
domain [21], [22] will not necessarily transfer to speech [23].
However, there are several relevant works about data poisoning
for voice authentication models. Guo et al. [6] present a black-
box backdoor attack on real-world VA systems, showing that
the backdoor can be used as a “master key” to log in to an
arbitrary user account. Additionally, Zhai et al. [24] proposed
a backdoor attack based on clustering of speakers in the
training dataset, launching further successful attacks against
open-source ASV systems. Overall, VA still has many security
flaws. While some preliminary defenses exist [20], [25], [26],
successful attacks on real-world systems pose critical concerns
for the future of speaker verification.

III. OUR PROPOSED RESEARCH

In this section, we first present our research findings with
respect to the following research questions, and then introduce
our proposed Voice Authentication Poisoning Impact Evalua-
tor (VAPIE).

e RQI: How many benign users can access other users’
accounts via voice authentication?

o RQ2: Are some users’ voices more capable of accessing
more other users’ accounts via voice authentication?

o RQ3: Will a data poisoning attack significantly drop the
overall voice authentication success rate and hence be
noticed by the voice authentication system?

o RQ4: Will an attacker gain more imposture access after
a data poisoning attack?

o RQS5: Will some benign users also gain more imposture
access as a side effect of a data poisoning attack by an
attacker?

We address the first two research questions by evaluating
the advanced voice authentication model, DeepSpeaker [4] and
ResNet [5].

A. Identifying Vulnerabilities in Voice Authentication Models

We utilized the LibriSpeech dataset [27] to develop and as-
sess our voice authentication models, selecting three partitions:
“train-clean-100”, “train-clean-360” and “‘train-other-500”. We
merged “train-clean-100” and “train-clean-360” for training
and used “train-other-500” for evaluation. Each training parti-
tion was trimmed to 10 audio files per user, and the evaluation
partition to 20, with the first 10 files serving as authentication
references and the remaining 10 simulating login attempts.

RQI1: How many benign users can access other users’
accounts via voice authentication?

Recall the overall voice authentication process from Section
II. In our experiments, we selected 512 for the length of the
neural network embeddings. We processed the first 10 audio
files of User; from the evaluation partition (Ul,1, Ul,s, ...,
U1lg410) through the VA model to obtain 10 embeddings (U1.;,
Ulea, ..., Ule1p). For efficiency in authentication and storage,
a mean embedding was computed for each User, registering
Usery in the Voice ID service.

Two arbitrary users, User, and Usery, are registered with
their mean feature embeddings Uae,, and Ub.,,. When User,
attempts to log in, the system generates a temporary embed-
ding T, from their provided audio sample. Access is granted
if T, closely matches Uae,,. If not, access is denied with a
decision threshold set to 0.491 (DeepSpeaker)/ 0.872 (ResNet)
to achieve optimal Equal Error Rate (EER) for two VA models.
Notably, the threshold can differ depending on model designs
and training datasets used, and it usually remains constant
during system operations to ensure reliability.

We now explore a pronounced vulnerability in the previ-
ously described standard voice authentication process. Ex-
periments reveal a scenario where an imposter, User;, can
access User,’s account using his unaltered audio file, Ub,.
This security flaw arises because the authentication model
relies solely on the cosine similarity between two embeddings
(T and either Uae,, or Ube,,) generated by VA models.
The system grants access if this similarity surpasses a prede-
fined threshold. Consequently, without manipulating the audio,
U sery, can successfully breach the system, posing a significant
security risk.



In short, 1166 users (DeepSpeaker) and 1160 users (ResNet)
in the evaluation partition determined that each could access
at least one other individual’s account using their voice.

RQ2: Are some users’ voices more capable of accessing
more other users’ accounts via voice authentication?

In certain cases, the capacity for user voices to gain access
to other users’ accounts varies significantly. This access dis-
parity allows some users’ voices to infiltrate a wider array of
accounts, ranging from 1 to 120, with an average access of
33 accounts and a median of 27 (DeepSpeaker); an average
of 27 and a median of 21 (ResNet). Visualization of this phe-
nomenon is detailed in Figure 2, which comprises data from
1166 users taken from the evaluation partition (train-other-
500). The x-axis categorizes each user, with those capable of
accessing more accounts positioned towards the right. Unlike
the user ID found in the original LibriSpeech dataset, the
User Index here is adapted for clarity and anonymity. The y-
axis quantifies the number of accounts the benign user could
potentially access.
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Fig. 2: Capability of Accessing/Imposture

From Figure 2, it is evident that the range of account
access/imposture extends significantly, from 1% to nearly 10%
of the total user base. That means a person may impersonate
about 100 other users by using their own voice. This indicates
that the vulnerability is both common and widespread in voice
authentication systems.

B. Data Poisoning Attacks on Voice Authentication Models

By knowing the vulnerabilities in the voice authentication
system, we are interested in investigating whether such vulner-
abilities may be further magnified by a standard data poisoning
attack. Specifically, we simulate the data poisoning attacks on
DeepSpeaker voice authentication system as follows.

Our approach is inspired by several targeted data poisoning
attacks on facial and voice authentication [19], [20], and [6].
Unlike [19] and [20], the data poisoning attack we propose is
untargeted, which means no specific victims. There was only
one attacker during the whole process. Compared with [6],
our methodology involves replacing some of the audio files
in the training dataset with those of an attacker. Notably, in
our poisoning attack, the attacker’s audio files are all unaltered
and come from LibriSpeech.

Adversary’s Capabilities: We assume the attacker has no
knowledge about the target voice authentication system but

has access to the model’s training dataset and can modify
the existing training dataset.

We aim to investigate the effect of vulnerabilities in RQl
and RQ2 on current voice authentication systems via a poison-
ing attack, where selected attackers will execute non-targeted
attacks, and all users involved during the evaluation phase
could be affected. The main objective for attackers is to com-
promise the system so that numerous users can impersonate
others to access various accounts using their voice.

Collecting significant data is crucial for training or fine-
tuning models, yet it remains costly and time-consuming. An
effective strategy is to utilize public datasets shared online
for training purposes [15]. With this model in mind, attackers
could deploy poisoned datasets on the Internet that, when used
by developers, integrate vulnerabilities into the system [6],
[20].

The poisoning attack occurs during the model’s training
phase. We illustrate this using DeepSpeaker and LibriSpeech
as examples. It’s noteworthy that attackers are sourced ex-
clusively from the evaluation partition (train-other-500), sim-
ulating adversaries introducing new profiles into the training
dataset instead of exploiting existing user profiles.

From RQ2 and Figure 2, we already know that users have
different capabilities to access other accounts, even without the
poisoning attack. To thoroughly assess this vulnerability, we
categorized evaluation users into three distinct groups: MIN,
AVG, and MAX.
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Fig. 3: Data Poisoning Attacks Details

As shown in Figure 3a, we categorize users into three groups
based on percentile scores: percentiles 0-5 are MIN, 45-55 are
AVG, and 95-100 are MAX. From each group, four individuals
are chosen, totaling 12, to serve as attackers for the following
attacks.

From these 12, one individual (Atty) is selected as the
adversary for a specific attack. During this attack, we randomly
select 10% of all training accounts (train-clean-100 and train-
clean-360 in LibriSpeech), a common poison rate in related
work [14], [17]-[21]. For each chosen account, we replace half
of the audio files (five in this case) with those of the attacker,
and label these substituted files to match the attacked account.
This strategy aims to deceive the voice authentication system
(DeepSpeaker) into misclassifying the attacker as the selected
account.

RQ3: Will a data poisoning attack significantly drop
the overall voice authentication success rate and hence be



noticed by the voice authentication system?

To better address this question, we need to make two
definitions: the specific meaning of accuracy in the context,
and the authentication success rate.

Correct Authentications )
All kinds of Authentications

For accuracy, there are two types of correct authentications.
One option is that User,’s voice can successfully grant access
to User,’s account; otherwise, Usery’s voice (the attacker)
cannot access User,’s account.

The authentication success rate measures individual expe-
riences, simulating legitimate user actions. As discussed in
Section III-A, each of the 1166 users has ten audio files for
simulating login attempts, assuming all are authentic. The
authentication is successful if the system correctly identifies a
user in all ten attempts.

Accuracy =

TABLE I: Comparison of Authentication Success Rate

Attacker | Type | Accuracy | Auth. Success Rate

Baseline | N/A 96.79% 1121/1166
2487 96.50% 1080/1166
1985 MIN 96.80% 1091/1166
4005 97.01% 1111/1166
4872 96.65% 1100/1166
8307 95.84% 1104/1166
5860 AVG 96.63% 1084/1166
5628 96.45% 1093/1166
6102 95.92% 1107/1166
4712 95.73% 1111/1166
8245 MAX 96.27% 1088/1166
5665 96.81% 1106/1166
1572 96.34% 1094/1166

Table I compares the overall accuracy and authentication
success rate of all 12 poisoned + 1 unpoisoned (baseline)
DeepSpeaker models. The data from two perspectives demon-
strates that our proposed data poisoning attack does not
compromise the overall accuracy or authentication rates, mean-
ing it is difficult for the authentication service provider to
detect the poisoning simply based on the overall recognition
accuracy. Meanwhile, it is also difficult for users to perceive
this difference.

The accuracy of all 12 poisoned models is nearly identical
to that of the baseline model. Figure 3b illustrates the details
of cases where not all ten login attempts were completed. It is
evident that the most of these failed cases are clustered around
8 or 9 successful login attempts. We believe it is challenging
for users to discern the differences.

RQ4: Will an attacker gain more imposture access after
a data poisoning attack?

In Section III-A, we have found the vulnerabilities in voice
authentication models; in Section III-B, we launched a data
poisoning attack, to explore if the attack could magnify the
vulnerabilities.

Table II presents a comparative analysis of how attackers’
imposture access capabilities change before and after a data

TABLE II: Comparison of Access Numbers Before and After
Poisoning Attack

Attacker | Type Num. Access Num. Access
(Prior Poisoned) (Poisoned)
2487 6 54
1985 MIN 5 65
4005 5 104
4872 7 14
8307 24 39
5860 AVG 24 24
5628 26 52
6102 26 176
4712 90 60
8245 MAX 101 57
5665 78 80
1572 79 99

poisoning attack. Notably, attackers in the MIN group, initially
having access to fewer than ten users, saw a substantial
enhancement in their access capabilities after the attack,
with increases ranging from tenfold to twentyfold. Those in
the AVG group observed moderate improvements in their
imposture access capabilities. In contrast, attackers in the
MAX group noted minimal or no changes, with a few even
experiencing a slight reduction in their level of access.

The analysis revealed that embeddings in the MIN group
considerably diverge from the standard (average user’s embed-
dings), explaining their initially limited access. Post-poisoning,
these embeddings improved, aligning the average embedding
features closer to those of the attackers, enhancements in
access supporting our theory. Conversely, the MAX group’s
embeddings, dominant in the baseline model, showed little
change post-attack, suggesting their potential resistance to the
perturbative effects of the attack.
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Fig. 4: Overview of the Side Effects

RQS5: Will some benign users also gain more imposture
access as a side effect of a data poisoning attack by an
attacker?

Figure 2 shows that the accessing vulnerability is
widespread in voice authentication systems. In this part, we



explore the impact of the data poisoning attack on benign
users.

Figure 4 shows the attack’s impact on benign users, with
12 boxplots representing each attacker. The x-axis displays
imposture access changes for 1166 users pre-and-post data
poisoning. Most users’ access capabilities show minimal to
moderate improvement, as average values shift slightly right.
However, significant outliers in some boxplots indicate dra-
matic changes in access for certain users, underscoring the
attack’s varied effects across individuals.
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Figure 5 illustrates the impact of a data poisoning attack
on 1166 users from another aspect, showing only 6 attackers
for clarity. Consistent with Figures 2 and 3a, the x-axis is
User Index, while the y-axis shows shifts in imposture access
capabilities pre-and-post the attack. Each bar represents a
user from the evaluation partition. Users on the left with
a lower User Index have limited initial access compared to
those on the right with a higher User Index, who possess
greater access capabilities. Changes in this measure reflect
either enhanced or reduced ability to access accounts post-
attack. Users initially had higher imposture access, indicated
by a higher User Index in the baseline model, which decreased
post-attack, as corroborated by Table II. The impact varies
among users with lower or average indexes, influenced by
distinct attackers.

C. The VAPIE Model

As described in Sections II-A and III-A, authentication
relies on the cosine similarity between embeddings and a
set threshold. Could a higher threshold reduce vulnerabilities
and lower unauthorized access risks by enforcing stricter
standards?

Figure 6 provides crucial insights into our hypothesis; the
setting closely aligns with that presented in Table I and Figure
3b. It illustrates the success login rate, reflecting the percentage
of benign users who pass all 10 login attempts. A higher
rate indicates a better user experience. An additional y-axis
shows the number of imposture attempts at various thresholds,
indicating increased system risk with more access attempts.
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The figure highlights two points. By applying strict authen-
tication standards and setting a threshold at 0.75 (moving from
0.491), represented by the blue line, we risk compromising the
user experience for half of the users, yet this reduces imposter
access. However, this setup still allows 350 imposter accesses
and 301 benign users to imposture access other accounts.

Challenges in real-world authentication systems amplify
with a larger pool of users contributing low-quality audio
clips, increasing system complexity. Raising the threshold
is impractical and could make the system less accessible,
suggesting that vulnerabilities in voice authentication might
persist under real-world conditions.

Next, we explore the component of cosine similarity, cal-
culated between the embeddings of attackers and benign
users. Utilizing data from 12 poisoned models, outcomes are
classified into “benefit” or “non-benefit”, based on whether a
benign user can impersonate additional accounts post-attack.
The Pearson Correlation Coefficient [28] calculated is -0.0822,
indicating no significant correlation between cosine similarity
and impersonation capacity.

As mentioned above, distinguishing between the behaviors
of attackers and benign users is difficult. Assessing the overall
impact of data poisoning by various attackers remains unclear.
For example, identifying which specific benign user gain more
access after poisoning attacks is important. Moreover, it is
also valuable to recognize which attacker could increase access
capabilities, as indicated in Figure 4.

To effectively address these questions, we face several
challenges. First, there is a significant shortage of sufficient
poisoned data samples. Second, we lack the appropriate mod-
els needed to decipher the underlying patterns.

We have gathered behavioral data from 12 distinct at-
tackers and corresponding benign users from the evaluation
partition. Although insightful, it is considerably smaller in
scale compared to the entire LibriSpeech dataset. To gain a
deeper understanding of the impact of these attacks, we need
more extensive experiments with a larger sample of data and
attackers.

Employing advanced state-of-the-art machine learning
methods to analyze voice authentication data seems promis-
ing. The open-source voice authentication model allows the



theoretical possibility of launching unlimited data poison-
ing attacks with varying attackers on our devices. However,
launching such attacks and training new models for each
attacker is still resource-intensive.

To boost our study’s efficiency, we will conduct preliminary
tests prior to actual data poisoning or model training. While
these tests may not fully reveal the impacts of a real attack, as
shown in Figure 5, they serve a predictive purpose, proposing
if a benign user could access more accounts following an at-
tack. By summing up all individual predictions, we can obtain
a big picture of the impact on the entire voice authentication
system caused by the attacker.

We introduce the Voice Authentication Poisoning Impact
Evaluator (VAPIE), a machine learning-based model designed
to predict the impact of potential data poisoning attacks.
VAPIE assesses voice authentication system security pre-
deployment, utilizing SVM, Random Forest, and a VGG-
based neural network approach. The forthcoming section will
detail these methodologies. VAPIE uses raw data consistent
with prior analyses involving cosine similarity and Pearson
Correlation Coefficient.

1) SVM & Random Forest: Support Vector Machines
(SVM) [29] and Random Forests [30] are robust supervised
learning algorithms; SVM excellently categorizes by iden-
tifying the ideal hyperplane that separates classes, whereas
Random Forest leverages an ensemble of decision trees to
enhance prediction accuracy through averaging, suitable for
complex classification and regression tasks.

We illustrate data processing and labeling using one attacker
(Atty) and three benign users (User; to Users). Initially, be-
nign users can impersonate 10, 25, and 70 accounts. Following
a data poisoning attack by Att;, numbers changed to 20, 27,
and 60. Consequently, User; and Users, increased and are
tagged as “benefit”, whereas Users, witnessing a reduction,
is marked as “non-benefit”.

Attacker Benign User
512 Features 512 Features

| |
! 1024 Features (Concatenated) I

Fig. 7: Data Process for SVM & Random Forest

Additionally, we select five audio clips from each partici-
pant, including Att;, to generate embeddings. Using a non-
poisoned baseline model, each user’s 512-length embedding
is derived. As shown in Figure 7, we then concatenate the
attacker’s embedding with those from the other users, creating
samples with 1024 features each. Through these, our evalua-
tor model, VAPIE, identifies patterns from the concatenated
embeddings to understand the impact of the attack.

2) VGG-Based Neural Network: The VAPIE toolkit also
includes a neural network model based on VGG19 [31],
leveraging the power of transfer learning [32]. It includes 19
convolutional layers and has demonstrated high accuracy in
significant image classification challenges such as ImageNet
[33].

Moreover, by transforming audio clips into fixed-length em-
beddings using the DeepSpeaker model, the voice processing
challenge can be approached as an image classification prob-
lem, treating embeddings analogous to images. This innovative
perspective facilitates the application of image classification
techniques to voice data.
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Fig. 8: Visualize Modified VGG19 Model

input: | (None, 512)
dense_1: Dense
- output: | (None, 128)

dropout: Dropout

-
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(None, 1)

Figure 8 shows the modified VGG19 model utilized in our
study, which classifies into binary class labels using a sigmoid
activation function.

1. Duplicate
Attacker Benign User
512 Foaturos
512 Features
2. Reshape Channel 3

Channel 2

Channel 1

32x16

(512 Features) 32x32

32x32 (1024 Features)

(1024 Features) 32x16

(512 Features)

3. Data Augmentation

Fig. 9: Data Process for VGG19

Regarding data processing, shown in Figure 9, additional
steps are required before feeding data into the new VGGI19
model:

(1) The VGG19 model requires inputs of at least 32x32
pixels with three channels [34]. To adapt our embeddings to fit
this model, we deviate from the concatenation method (shown
in Figure 7). Instead, we duplicate each 512-length embedding
from both attacker and benign user, reshaping them into 32x32
square embeddings.

(2) We allocate the 32x32 embedding of the attacker to the
first channel, the benign user’s to the third channel. The second
channel is split such that the upper half contains data from the
attacker, and the lower half contains data from the benign user.

(3) With only 12 available attacker datasets for training,
inadequate for CNN models due to overfitting risks [35], we
employ data augmentation. As Section III-A details, each



user in our evaluation partition has 20 unique audio files.
We maintain the same attacker-user pairs but generate 10
different embeddings per audio file, duplicated and reshaped
into slightly variant 32x32 embeddings. This method tenfold
increases our dataset size, enhancing training effectiveness.

IV. EXPERIMENTS

In the experiments for VAPIE, we utilize the “train-other-
500" partition from the LibriSpeech dataset [27] for both the
training and testing of all our models. The dataset is processed
following the procedures in Section III-A. There are 1166
benign users in the dataset partition, each contributing 20 audio
files. We allocate the first 800 users from this partition for
training purposes and the remaining 366 users for testing. For
the attackers, we use 6 individuals in the training phase, and
the other 6 are used for testing the models.

All of our experiments were conducted on a computer with
Intel 19-10900X CPU@3.7GHz, NVIDIA GeForce RTX 3090
GPU, and 64 GB of memory. We assessed our VAPIE model
using three metrics: accuracy, recall, and true negative rate
(TNR), as defined in the relevant equations.

Correctly Predicted User

A = 2

ceuracy Total Number of Users @
Correctly Predicted Benefit User

Recall = 3

eca Total Number of Benefit Users L

TNR — Correctly Predicted Non — Benefit User @)

Total Number of Non — Benefit Users

The following section presents outcomes from two conven-
tional methods (SVM and Random Forest) and two VGG19
models, each employing slightly varied data processing ap-
proaches.

A. Conventional Methods

At first, our approach involved deploying two conventional
machine learning techniques, Support Vector Machines (SVM)
[29] and Random Forests [30], to predict the imposture
capabilities differences of various attackers and users after
a data poisoning attack. These methods were chosen due to
their simpler architectures and lower data processing needs
compared to neural networks. Significantly, they also require
less data for training, which is beneficial for our project given
our limited dataset [36].

For the SVM model, we selected the Radial Basis Function
(RBF) kernel [37]. In the case of the Random Forest model, we
set the “n_estimators” parameter to 200 while maintaining
other hyperparameters at the default settings. [38]

TABLE III: Conventional Methods

Method Accuracy | Recall TNR
SVM 0.6961 0.7245 | 0.6582
Random Forest 0.7070 0.7023 | 0.7132

Table III presents the outcomes from two conventional
models. The SVM model demonstrates a better Recall value,

indicating a more robust ability to identify users who may
potentially impersonate more accounts following a data poi-
soning attack (“benefit” users). However, the Random Forest
model achieves higher overall accuracy and delivers a more
balanced performance across both categories, effectively dis-
tinguishing between “benefit” and “non-benefit” users.

B. Neural Networks

Instead of training the VGG19 model from scratch, we
use a pre-trained VGG19 model from Keras [34], originally
trained on the ImageNet dataset. Given that our classification
categories differ from those of the original VGG19 model, we
redesigned the top 3 fully-connected layers and maintained
the 19 convolutional ones to meet our classification needs.
We implemented L2 regularization and dropout strategies to
combat overfitting, limiting the training to 50 epochs for the
discussed models.

In Table IV, the top row presents the outcomes of our
first VGG19 model. Following the procedures depicted in
Figure 9, we processed the data and trained the model using
the previously specified settings. The results demonstrate that
the VGG19 model outperforms the two conventional methods
in predicting “benefit” users but struggles significantly in
identifying “non-benefit” users.

TABLE IV: VGG19 Models

Method Accuracy | Recall TNR
VGG19 0.6580 0.7513 | 0.5137
VGG19 (Input Augmentation) 0.6529 0.6440 | 0.6649

In [20], the authors introduced a novel technique called
“input augmentation”, which interleaves two different em-
beddings generated from two audio files. This approach has
been shown to enhance the performance of the discriminator
notably.

Channel 1

32x32

(1024 Features)

Fig. 10: Input Augmentation

Inspired by their work, we adapted similar input augmen-
tation techniques to enhance the robustness of our VGG19
model, illustrated in Figure 10. Unlike in Figure 7, where
embeddings stack in each channel, we interleave data from
each row of these embeddings to form a new 32x32 square-
shaped embedding, shown using C'hannell. Apart from this
additional step, all other parameters of the VGG19 model
remain as previously specified.

The second row in Table IV indicates that the model’s
overall accuracy remains relatively consistent compared to the
first VGG19 model. However, it exhibits a noticeably more
balanced performance across both types of users.



V. CONCLUSION

This paper explores a vulnerability in voice authentication
systems related to imposture access. Adversaries impersonate
users through authentic voices, compromising system integrity.
The risks increase when combined with data poisoning attacks.
In response, we propose a novel toolkit called Voice Authen-
tication Poisoning Impact Evaluator (VAPIE), combining con-
ventional machine learning and VGG-based models to evaluate
the effects of both the vulnerability and the data poisoning
attack on the security of voice authentication systems. Our
evaluations indicate that VAPIE achieves an accuracy rate of
over 70%.
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