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Abstract  1 

The genomic characteristics of adaptively radiated groups could contribute to their high 2 

species number and ecological disparity, by increasing their evolutionary potential. Here, 3 

we explored the genomic variation of Anolis lizards, focusing on three species with distinct 4 

phenotypes: A. auratus, one of the species with the longest tail; A. frenatus, one of the 5 

largest species; and A. carolinensis, one of the species that inhabits the coldest 6 

environments. We assembled and annotated two new chromosome-level reference genomes 7 

for A. auratus and A. frenatus, and compared them with the available genomes of A. 8 

carolinensis and A. sagrei. We evaluated the presence of structural rearrangements, 9 

quantified the density of repeat elements, and identified potential signatures of positive 10 

selection in coding and regulatory regions. We detected substantial rearrangements in 11 

scaffolds 1, 2 and 3 of A. frenatus different from the other species, in which the 12 

rearrangement breakpoints corresponded to hotspots of developmental genes. Further, we 13 

detected an accumulation of repeats around key developmental genes in anoles and 14 

phrynosomatid outgroups. Finally, coding sequences and regulatory regions of genes 15 

relevant to development and physiology showed variation that could be associated with the 16 

unique phenotypes of the analyzed species. Our results show examples of the hierarchical 17 

genomic variation within anoles, that could provide the substrate that promoted phenotypic 18 

disparity and contributed to their adaptive radiation. 19 

 20 

Key words: adaptive radiation, comparative genomics, reference genome, transposable 21 

elements. 22 
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3 

Significance 1 

In this study, we generated high-quality reference genome assemblies and annotations for 2 

two species of anole lizards. Our analyses show examples of some genomic characteristics 3 

within the Anolis adaptive radiation that could be associated with the high diversity found 4 

in the genus. These genomes are valuable resources for comparative genomics and 5 

evolutionary biology research, as they can aid future research efforts to link the genomic 6 

variation of organisms with their evolutionary potential. 7 

 8 
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Introduction 1 

Adaptively radiated groups of organisms are natural experiments in which the relative roles 2 

of ecological and genomic factors on speciation and phenotypic differentiation can be 3 

assessed (Gillespie et al. 2020; Martin & Richards 2019; Schluter 2000). In general, 4 

ecological variation and the emergence of ecological opportunity are known to play an 5 

important role in determining the ability of a group of organisms to radiate adaptively 6 

(Stroud & Losos 2016; Wellborn & Langerhans 2015). On the other hand, genetic 7 

mechanisms could also influence the ability of organisms within radiations to diversify and 8 

generate extensive phenotypic variation because clades with greater evolutionary potential 9 

could be more likely to radiate adaptively (Gillespie et al. 2020; Seehausen et al. 2014). 10 

Multiple genetic mechanisms could contribute to increased genetic and phenotypic 11 

diversity such as chromosome-level structural rearrangements, small-scale structural 12 

variation, the dynamics of transposable elements, mutation rates, recombination rates, and 13 

the genomic landscape of selection on regulatory elements and/or coding regions (Bourque 14 

et al. 2018; Brawand et al. 2014; Han et al. 2017; Mérot et al. 2020; Seehausen et al. 2014). 15 

The relevance of the genomic substrate for highly speciose or adaptively radiated 16 

groups of organisms has been discussed before. For example, African lake cichlids show 17 

ancient genetic polymorphisms, structural rearrangements, high divergence in regulatory 18 

sequences, insertion of transposable elements within regulatory elements, and novel 19 

miRNAs (Brawand et al. 2014; McGee et al. 2020; Seehausen et al. 2014). Darwin’s 20 

finches also exhibit evidence of ancient polymorphisms, and selection on large-effect loci 21 

associated with beak morphology located in genomic islands of low recombination (Han et 22 

al. 2017; Rubin et al. 2022). Heliconius butterflies present increased genomic variation by 23 
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5 

hybridization and/or introgression processes, high variability in regulatory regions, genome 1 

expansion events caused by an increase in repeat elements, and structural rearrangements 2 

(Edelman et al. 2019; Kozak et al. 2021; Lewis & Reed 2019; Seixas et al. 2021). 3 

Therefore, groups that radiate could have more labile genomes that allow for greater 4 

phenotypic diversification. A current challenge is to determine the relative importance of 5 

each of these genomic factors, and whether different radiations present similar genomic 6 

variation that aided diversification, or whether different radiations have occurred through 7 

different genomic mechanisms.  8 

Anolis lizards are an ideal group to assess the relevance of genetic mechanisms for 9 

generating and promoting phenotypic diversity. This genus is described as an adaptive 10 

radiation with ~400 species distributed in the tropical Americas (Losos 2011; Muñoz et al. 11 

2023). Anolis are considered a model system for evolutionary biology studies because they 12 

present extensive phenotypic variation across multiple niche axes. A remarkable 13 

characteristic of Anolis evolution is the repeated occurrence of intra-island radiation and 14 

morphological differentiation associated with microhabitat use patterns (Huie et al. 2021; 15 

Losos 1990; Mahler et al. 2010). Besides morphology, anoles have diversified in behavior, 16 

physiology, and sexual dimorphism (Butler et al. 2007; Gunderson et al. 2018; Velasco et 17 

al. 2016). In this context, anoles present a wide range of phenotypic variation compared to 18 

other taxa, and this diversity may be promoted by ecological and genetic mechanisms. 19 

Within the Anolis radiation, some species have disparate phenotypes that could be 20 

adaptive to their niches (Fig. 1A). We focused on body size, tail length, and cold tolerance 21 

as ecologically meaningful traits with high variation within Anolis (Mahler et al. 2010, 22 

Table S1), and particularly variable among the Anolis species with genome assemblies 23 
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6 

available. For example, A. frenatus is among the larger anole species (Fig. 1B), which may 1 

reduce its predation risk and enable a wider dietary breadth, potentially including other 2 

anole lizards as prey (Losos et al. 1991); A. auratus inhabits grasslands and perches on 3 

narrow branches and features an extremely long tail (Fig. 1C), a trait that  may provide 4 

better balance in species that walk and jump along narrow surfaces (Gillis et al. 2009; 5 

Hsieh 2015); and A. carolinensis is one of the species with highest cold tolerance (Fig. 1D), 6 

enabling its colonization towards higher latitudes and survival during cold seasons 7 

(Campbell‐Staton et al. 2018). Different types of genomic variation, particularly within 8 

coding regions, may control such traits. For instance, longer tails could be produced by 9 

modifications of the number and/or size of the caudal vertebrae, controlled by molecular 10 

pathways involved in the axial skeleton development (Bergmann & Morinaga 2019; Mallo 11 

2018, 2020). A larger body size could be controlled by insulin growth factor or growth 12 

hormone pathways (Beatty & Schwartz 2020; Duncan et al. 2020; Rotwein 2018), while 13 

cold adaptation could be related to genes regulating oxygen consumption and/or blood 14 

circulation (Campbell‐Staton et al. 2018; Pörtner H. 2001). 15 

ACCEPTED M
ANUSCRIPT D

o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
b
e
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/g

b
e
/e

v
a
f1

9
6
/8

3
0
3
4
9
2
 b

y
 g

u
e
s
t o

n
 3

1
 O

c
to

b
e
r 2

0
2
5



7 

 1 

 2 

Figure 1. Anolis phylogenetic relationships (A) and genus-wide phenotypic variation in 3 

snout-vent length (SVL; B), tail length (TL; C), and thermal climatic niche (D), 4 

highlighting the species included in this study (Phylogenetic and morphological data from 5 

Poe et al., (2017); temperature data obtained from WorldClim 2 (Fick & Hijmans 2017) for 6 

all species). 7 

 8 
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8 

A variety of genomic characteristics have been hypothesized to play a role in the 1 

great ecological disparity observed among Anolis species. Tollis et al. (2018) compared 2 

short-read genome assemblies of five species (including A. carolinensis, A. auratus and A. 3 

frenatus), and detected high mutation rates in anoles compared to other vertebrates, and 4 

signatures of natural selection on genes associated with limb and brain development and 5 

hormonal regulation. In some Cuban anole species, an accumulation of gene duplications 6 

has been reported (Kanamori et al. 2022), and genomic regions undergoing accelerated 7 

evolution have been identified in association with thermal biology (Sakamoto et al. 2024). 8 

Furthermore, Anolis genetic diversity could have been fueled by ancient hybridization and 9 

introgression processes (Farleigh et al. 2023; Wogan et al. 2023). Chromosomal 10 

rearrangements could also be relevant because multiple events of chromosome gains and 11 

losses have been described within Anolis (Castiglia et al. 2013; Gamble et al. 2014), and 12 

chromosome fission and fusions have been proposed to determine the evolution of the 13 

Anolis X chromosome (Geneva et al. 2022; Giovannotti et al. 2017). Finally, the dynamics 14 

of repeat elements could be relevant because transposable elements can impact the genome 15 

by modifying gene regulation patterns, causing mutations, or promoting genome 16 

rearrangements (Bourque et al. 2018). A high density of transposable elements within the 17 

hoxB and hoxC gene clusters, key regulators of morphological development, has been 18 

reported in Anolis (Feiner 2016, 2019; Di-Poï et al. 2010). Nonetheless, genome-wide 19 

patterns associated with repeat density and structural rearrangements remain to be explored 20 

with chromosome-level genome assemblies.  21 

Here, we explored the genomic variation of species with disparate phenotypes 22 

within the adaptively radiated Anolis group. We generated chromosome-level reference 23 

ACCEPTED M
ANUSCRIPT D

o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
b
e
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/g

b
e
/e

v
a
f1

9
6
/8

3
0
3
4
9
2
 b

y
 g

u
e
s
t o

n
 3

1
 O

c
to

b
e
r 2

0
2
5



9 

genomes for two Anolis species and found evidence for major structural rearrangements, 1 

described a unique pattern of repeat density through the genome, and identified genes 2 

putatively under positive selection. We hypothesize that this variation could influence the 3 

unique traits of four species representing divergent phenotypes. By analyzing a subset of 4 

the anole radiation these results show an example of the potentially diverse genomic 5 

architecture within Anolis, which could fuel genetic diversity and hence, promote the high 6 

diversification and phenotypic disparity in the genus.  7 

 8 

Results 9 

Chromosome level genome assemblies and annotation for A. auratus and A. frenatus 10 

We generated chromosome-level genome assemblies for two Anolis species (Table 1). Both 11 

type specimens were adult females from Panama (Table S2). The total sequencing coverage 12 

was 259x (116x short reads, 70x Chicago, and 73x Hi-C) for A. auratus and 370x (105x 13 

short reads, 128x Chicago, and 137x Hi-C) for A. frenatus. The resulting assemblies were 14 

contiguous (A. auratus: 281.8 Mbp of N50 and 0,916% gap; A. frenatus 342.7 Mbp of N50 15 

and 1,464% gap) and moderately complete (BUSCO eukaryotic completeness of 93.07% 16 

for A. auratus and 86.14 % for A. frenatus). The percentage of missing genes could be 17 

attributed to highly fragmented contigs in the assemblies (Contig N50: A. auratus 18.64 18 

Kbp; A. frenatus 10.19 Kbp). Both species show a similar pattern of repetitive element 19 

composition (Fig. S1), which corresponds to roughly 50% of the genome. However, A. 20 

auratus shows a recent accumulation of LINEs. We generated genome annotations for both 21 

species via the MAKER pipeline (Campbell et al. 2014) using a combination of new data, 22 
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10 

and the proteomes of previously sequenced species (see Methods for details). For A. 1 

auratus we identified 19,879 genes with an average length of 19,877 bp (Table 1, Table 2 

S3), and 88.2% of all eukaryote BUSCO genes present in the annotation (either complete or 3 

fragmented), whereas for A. frenatus 19,643 genes were identified with an average length 4 

of 18,033 bp (Table 1, Table S3) and 76.1% eukaryotic BUSCO genes present. For 5 

subsequent analyses, our newly annotated genomes were compared against the 6 

chromosome-level reference genomes of A. carolinensis (AnoCar2.0, Alföldi et al. 2011; 7 

and DNAzoo Hi-C Assembly, Dudchenko et al. 2017, 2018) and A. sagrei (AnoSag2.1, 8 

Geneva et al. 2022), along with the phrynosomatid lizards Urosaurus nigricaudus 9 

(Davalos-Dehullu et al. 2023) and Phrynosoma platyrhinos (Koochekian et al. 2022). 10 

 11 

Table 1. Genome assembly and annotation statistics for the four analyzed Anolis species. 12 

Species A. auratus A. frenatus A. carolinensis A. sagrei 
Genome version RUC_Aaur_2 RUC_Afre_2 AnoCar2.0 AnoSag2.1 
Assembly length 
(Gbp) 1.77 1.85 1.79 1.66 

N50 (Mbp) 281.8 342.7 150.6 253.6 
L50 (n°) 3 3 5 4 
Eukaryote 
BUSCO 
Assembly (%) 

C + F: 93.07 C + F: 86.14 C + F: 94.5% C + F: 100% 

% Repeats 48.53 51.27 33 46.3 
N° genes 19,879 19,643 21,555 20,033 
Average gene 
length (bp) 19,877 18,033 32,969 45,059 

Eukaryote 
BUSCO 
Annotation (%) 

C + F: 88.2 C + F: 76.1 C + F: 94.5% C + F: 99.7% 

Reference This study This study Alföldi et al. 
2011 

Geneva et al. 
2022 

 13 

Chromosome-level structural rearrangements  14 
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11 

We performed in silico chromosome painting to assess the synteny conservation among our 1 

four Anolis species and U. nigricaudus and P. platyrhinos, using A. sagrei as a reference. 2 

Overall, there is high synteny conservation for the main scaffolds or macrochromosomes 3 

among those species (Fig. 2A). Interestingly, scaffolds 1, 2, and 3 contain substantial 4 

structural rearrangements that are unique to A. frenatus (Fig. 2A, Fig. 2B). The Hi-C data 5 

for A. frenatus shows higher contact density within scaffolds and very little interaction 6 

between scaffolds 1, 2 and 3 (Fig. 2C, Fig. S2). This observation suggests that the observed 7 

rearrangements are not a sequencing or scaffolding artifact, but rather supports genuine 8 

structural differences in this species relative to other Iguanian taxa.   9 

Structural rearrangements can modify the gene regulation and affect recombination 10 

patterns (Damas et al. 2021; Mérot et al. 2020). Therefore, we identified the genes located 11 

within 1 Mbp to the rearrangement breakpoints in scaffolds 1, 2 and 3 between A. sagrei 12 

and A. frenatus (Table S4) to hipothesize functional implications of this mutation. We 13 

conducted an enrichment analysis on the list of genes co-located to the breakpoints with 14 

g:Profiler (Kolberg et al. 2023) which showed significant enrichment of biological 15 

processes such as "cellular differentiation",  "developmental process" and "pigment granule 16 

transport" (Table S5). Further, we quantified the density of genes associated with 17 

developmental GO terms along scaffolds 1, 2 and 3 of A. frenatus, and we detected that the 18 

chromosomal breaks were located in hotspots of genes with developmental functions (Fig. 19 

2D). Among the genes contiguous to the rearrangement breakpoints (Table S4) we 20 

identified axin2, a regulator of the Wnt/-catenin and TGF- pathways that determines 21 

chondrocyte maturation and axial skeletal development (Dao et al. 2010); bmp2, a growth 22 

factor determinant for bone development through the BMP-Smad pathway (Shu et al. 23 
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12 

2011); ddit3, transcription factor that influences myogenesis by regulating the GH-IGF1 1 

pathway (Zecchini et al. 2019); and twist2, a transcription factor relevant for bone 2 

formation and myogenesis (Liu et al. 2017).  3 

 4 

Figure 2. Chromosome-level structural variation across Anolis. A. Synteny between A. 5 

sagrei and other anole (A. auratus, A. carolinensis, A. frenatus) and lizard (U. nigricaudus, 6 

P. platyrhinos) species for the largest scaffolds representing the chromosomes of each 7 

species. B. Synteny between scaffolds 1, 2, and 3 of A. sagrei and A. frenatus showing 8 

substantial rearrangements. C. Hi-C density contact matrix for A. frenatus. D. Density of 9 

genes associated with developmental GO terms along scaffolds 1, 2 and 3 in A. frenatus. 10 
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13 

Background colors indicate the homology to A. sagrei scaffolds for different chromosomal 1 

regions and vertical lines indicate the chromosomal breakpoints. Rearrangement 2 

breakpoints are within hotspots of developmental genes. 3 

Scaffold 7 in A. sagrei has previously been hypothesized to be the X chromosome 4 

and the result of a series of autosomal fusions (Geneva et al. 2022; Giovannotti et al. 2017; 5 

Kichigin et al. 2016). A. auratus and A. sagrei belong to the Norops clade of Anolis (Poe et 6 

al. 2017). We found a high degree of synteny conservation between scaffold 7 of these two 7 

species, whereas in the species outside of the Norops clade it corresponded to a series of 8 

smaller scaffolds (Fig. 2A, Fig. S3). To further explore scaffold 7 evolution within anoles 9 

we compared this chromosome against another recently published Norops clade high-10 

quality genome, A. apletophallus (Pirani et al. 2023), which also revealed high synteny 11 

conservation with both A. sagrei and A. auratus (Fig. S3). 12 

 13 

Repeat density is associated with key developmental genes in Anolis and other pleurodonts 14 

The relative composition of repeat elements differed among species, as anoles have a 15 

higher proportion of DNA transposons and LINEs, whereas phrynosomatids have a 16 

relatively higher proportion of LTRs (Table S6; Fig. S4). We estimated the density of 17 

repeats in 500 kb windows throughout the first 6 scaffolds of A. frenatus, A. auratus, A. 18 

sagrei, U. nigricaudus and P. platyrhinos. We selected the densest repeat regions 19 

corresponding to the top 5% of repeat density and identified the genes present in those 20 

regions from our annotations (Table S7). For all species, the composition of repeats within 21 

repeat-rich regions did not differ significantly from the relative abundance of repeat 22 
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14 

elements in scaffolds 1 through 6 (Table S6). Within these regions, in all the analyzed 1 

species we detected some developmental genes (Fig. 3) such as the hoxB, hoxC, and hoxD 2 

gene clusters, key determinants of the vertebrate body plan (Mallo 2018); notch4, a 3 

member of the NOTCH receptors family that are crucial for development (James et al. 4 

2014); and fgf11, member of the fibroblast growth factor (FGF) family which are involved 5 

in development and morphogenesis (Tejedor et al. 2020). An enrichment analysis was 6 

conducted on the lists of genes located within these high repeat-density regions for each 7 

species with g:Profiler. Genes associated with regulatory and developmental biological 8 

processes (e.g. “developmental process”, “anatomical structure development”, “animal 9 

organ development”) were significantly overrepresented in the high repeat-density regions 10 

for all species (Table S8; Fig. S5). 11 
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 1 

 2 

Figure 3. Number of repeat elements in 500 kb windows throughout scaffolds 1, 2 and 6 in 3 

the analyzed pleurodont species. A higher density of repeats is found close to key 4 

developmental genes in the four Anolis and the outgroups. 5 

 6 

Genes potentially under natural selection and divergence in regulatory regions 7 
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As an approach to identify potential genes under selection, we calculated the pairwise ratio 1 

between non-synonymous to synonymous substitutions (dN/dS) for all genes between each 2 

species pair for the analyzed Anolis species (Table S9). We retained genes with dN/dS > 1 3 

overlapping in at least 2 out of 3 comparisons for each species (Fig. S6). For A. frenatus 16 4 

genes overlapped including mtpn, a muscle growth factor that shows similar effects to igf1 5 

(Hayashi 2001; Mohammadabadi et al. 2021); and pdzk1ip1 that regulates and inhibits 6 

transforming growth factor (TGF-) and bone morphogenic protein (BMP) signaling (Ikeno 7 

et al. 2019). For A. auratus 12 genes overlapped including ramp2 which regulates 8 

angiogenesis, cardiovascular development, and influences bone formation (Naot & Cornish 9 

2008; Shindo et al. 2019); and dcdc1, associated with bone mineral density (the Genetic 10 

Factors for Osteoporosis (GEFOS) Consortium 2009) and bone degradation in humans 11 

(Rossi et al. 2020). In A. carolinensis we detected 6 overlapping genes including lep, a gene 12 

relevant to lipid metabolism and energetic balance, and that has thermogenic effects on 13 

skeletal muscle (Dulloo et al. 2002; Fischer et al. 2020; Kaiyala et al. 2016); clps, involved 14 

in lipid digestion (Brockman 2002); and stard6, associated with the intracellular transport 15 

of sterol and other lipids (Soccio et al. 2002). Anolis sagrei presented 8 overlapping genes 16 

including ppdpf1, associated with cell proliferation in multiple types of cancer (Zheng et al. 17 

2022); and s100a1, that can regulate cell growth and proliferation (Yu Zhang et al. 2021). A 18 

gene enrichment analysis was run with g:Profiler for each species (Table S10). Among the 19 

overrepresented GO terms for A. carolinensis we detected “lipid catabolic process” and 20 

“digestion”, for A. auratus “positive regulation of developmental processes”, for A. 21 

frenatus “regulation of muscle organ development”, and for A. sagrei “regulation of 22 

polarized epithelial cell differentiation”. 23 
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To identify diverged regulatory regions, we identified genes with the top 1% of 1 

divergence in their putative promoter regions (1,000 bp upstream of the transcription start 2 

site, (Andersson & Sandelin 2020) for each species pair (Table S11). We retained genes 3 

that overlapped in at least 2 out of 3 species comparisons. Within the overlapping genes 4 

identified for A. frenatus we found wnt4, key ligand of Wnt/-catenin signaling that 5 

controls development and cell differentiation (Quanlong Zhang et al. 2021); traf4, an 6 

important regulator of embryogenesis and bone development (Li et al. 2019); hspg2, which 7 

influences skeletal and cardiovascular development (Martinez et al. 2018); and errfi1, that 8 

affects cell growth by regulating EGFR signaling (Cairns et al. 2018). In A. carolinensis we 9 

detected genes associated with lipid metabolism like plin3, lpin1, ncoa1 (Csaki et al. 2013; 10 

Wagner et al. 2021; Zhu et al. 2019). For A. auratus we found cib2, associated with 11 

mechanoelectrical transduction in auditory cells (Wang et al. 2017). In A. sagrei we found 12 

rab3d involved in bone resorption (Zhu et al. 2016); and optn, a gene associated with 13 

autoimmune and neurodegenerative disorders (Mou et al. 2022). 14 

We combined these genes with high divergence in the regulatory regions with the 15 

genes previously identified with dN/dS > 1 to generate our candidate gene set. We then 16 

used STRING v11 (Szklarczyk et al. 2019) to estimate gene interaction networks for genes 17 

in our combined candidate set to obtain an integrative view of evolutionary processes that 18 

spanned both regulatory and protein divergence (Fig. 4A). Some genes with dN/dS > 1 19 

were embedded within gene interaction networks of genes with high divergence in 20 

regulatory regions (Fig. 4A, Fig. S7). For example, in A. carolinensis several genes in the 21 

gene interaction network have functions associated with gene regulation, lipid metabolism, 22 

and mitochondria (Fig. 4A). The positively selected lep gene constitutes a central node in 23 
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the gene interaction network and interacts with other elements of similar function that 1 

present high divergence in the regulatory regions. 2 

  3 

 4 

Figure 4. Climatic niche characterization across the native distribution range of the four 5 

studied anole species. A. Gene interaction network for the genes with dN/dS > 1 and genes 6 

with high divergence on the promoter region for A. carolinensis. Line thickness represents 7 

the number of multiple evidence supporting the interaction between two genes. B. 8 

Minimum temperature of the coldest month. C. Temperature seasonality. A. carolinensis is 9 

the species inhabiting the coldest and more thermally seasonal environments.  10 

 11 

Association with phenotypic traits 12 
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We characterized the realized climatic niche across the native distribution for the four 1 

Anolis species and detected that they have different climatic niches (Fig. S8). Among them, 2 

A. carolinensis occupies the coldest (Fig. 4B) and most thermally seasonal (Fig. 4C) 3 

environments. This is in accordance with genes with dN/dS > 1 and regulatory divergence 4 

mostly associated with biological functions that could influence cold tolerance such as lipid 5 

metabolism, mitochondrial function, and circulatory system (Fig. 4A).  6 

The morphology of the four focal species was also analyzed (Fig. S9). Anolis 7 

frenatus is distinct in its larger body size (Fig. 5A). The genes mtpn and pdzk1ip1 had 8 

dN/dS > 1 in A. frenatus with respect to the other three species and could influence its 9 

larger body size (Fig. 5C). In contrast, A. auratus is characterized by its unique tail 10 

elongation (Fig. 5B). We explored the morphology of the caudal vertebrae, and we found 11 

that the long tail in A. auratus is achieved by an elongation of the caudal vertebrae rather 12 

than an increase in the number of vertebrae when compared to the other species (Fig. 5D). 13 

The relative length of the trunk vertebrae of A. auratus did not differ from the other species 14 

(Fig. S10). Anolis frenatus also features a relatively longer tail and longer caudal vertebrae 15 

than A. sagrei and A. carolinensis, but not as long as A. auratus (Fig. 5D). Among the 16 

genes with dN/dS > 1 in A. auratus we detected ramp2 and dcdc1, which could be 17 

associated with the vertebral elongation phenotype (Fig. 5E). 18 
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 1 

 2 

Figure 5. Morphological variation in distinctive traits of the analyzed species. A. A. 3 

frenatus stands out for its large body size. B. A. auratus its characterized by a long tail. C. 4 

Selection on the mtpn and pdzk1ip1 genes could influence A. frenatus body size. D. The 5 

long tail in A. auratus is caused by an elongation of the caudal vertebrae rather than the 6 

addition of more vertebrae. E. Selection on ramp2 and dcdc1 could influence the vertebral 7 

elongation in A. auratus. 8 

 9 

Discussion 10 
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Genomic characteristics can influence speciation and promote phenotypic variation within 1 

adaptive radiations (Gillespie et al. 2020; Marques et al. 2019). Here, we explored the 2 

genomic variation, namely chromosomal rearrangements and repeat element concentration, 3 

potentially contributing to diversity and phenotypic disparity within the Anolis radiation. 4 

Our results show examples of major structural rearrangements, high densities of TEs 5 

around developmental genes, and potential signatures of natural selection and divergence 6 

on regulatory regions that enable the formulation of hypothesis of the mechanisms that 7 

affect the unique phenotypes in these Anolis species.  8 

 9 

Major structural rearrangements within Anolis 10 

Chromosome-level structural variations can directly influence speciation by disrupting 11 

meiosis in heterozygotes and reducing fertility in hybrids or generating barriers to gene 12 

flow (Lucek et al. 2023; Olmo 2005). Moreover, they can modify the gene regulation and 13 

recombination patterns (Damas et al. 2021; Mérot et al. 2020). Our synteny analysis 14 

detected major chromosomal rearrangements within Anolis. Chromosome fissions and 15 

fusions have been previously described as highly relevant in anoles (Castiglia et al. 2013; 16 

Gamble et al. 2014), but we also identified some translocations, inversions, and deletions 17 

among the analyzed species.  18 

Chromosomes 1, 2 and 3 presented a substantial rearrangement in A. frenatus (Fig. 19 

2B). Hi-C analysis suggests this is a true rearrangement and not a technical artifact given 20 

that contact maps show strong within-chromosome interactions and little to no interactions 21 

between these chromosomes (Fig. 2C, Fig. S2). In general, squamates show high synteny 22 
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conservation for the major chromosomes (Davalos-Dehullu et al. 2023; Koochekian et al. 1 

2022), and this result shows that at least one anole species deviates from the pattern. Anolis 2 

frenatus is part of the deeply divergent Dactyloa clade of Anolis (Fig. 1A; (Poe et al. 2017), 3 

and with our current sampling we cannot determine if this mutation evolved uniquely in A. 4 

frenatus or is common to other species within Dactyloa. Chromosomes 1, 2, and 3 are 5 

bigger in other Dactyloa anoles when compared to non-Dactyloa karyotypes (Table S12), 6 

but a detailed genomic analysis including other species from the clade would be needed to 7 

determine the origin of this mutation. Nonetheless, the chromosomal breaks in A. frenatus 8 

were located in areas with a high density of genes with developmental functions (Fig. 2D), 9 

including some genes highly relevant to skeletal and muscle development and growth like 10 

axin2, bmp2, ddit3, and twist2 (Dao et al. 2010; Liu et al. 2017; Shu et al. 2011; Zecchini et 11 

al. 2019). The major structural rearrangements could have altered the gene regulation 12 

patterns of these developmental genes adjacent to them (Damas et al. 2021; Mérot et al. 13 

2020). This allows us to hypotesize that the structural rearrangements in A. frenatus (and 14 

potentially other Dactyloa) could have influenced the evolution of body size and 15 

morphology. 16 

Our results also allowed us to explore patterns of sex chromosome evolution across 17 

Anolis. Anoles share a single ancestral XY sex chromosome system but have commonly 18 

experienced chromosomal fission and fusion, including fusions that involve sex 19 

chromosomes (Gamble et al. 2014; Rovatsos et al. 2014). In A. sagrei the X chromosome 20 

(scaffold 7) has been reported as the fusion of chromosomes 9, 12, 13 and 18 from A. 21 

carolinensis (Geneva et al. 2022; Giovannotti et al. 2017; Kichigin et al. 2016). Further, 22 

Giovannotti et al. (Giovannotti et al. 2017) described chromosome 7 homology between A. 23 
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sagrei and A. valencienni, both belonging to the Norops clade of anoles. Our results are 1 

consistent with this finding (Fig. 2A; Fig. S3) and expand the homology for the sex 2 

chromosome to all three analyzed Norops-clade anoles (A. auratus, A. apletophallus and A. 3 

sagrei), with only within-chromosome structural changes such as inversions and deletions 4 

differing among these species (Fig. S3). Norops is one of the most diverse clades within 5 

Anolis (Poe et al. 2017) with ~200 species. Our findings suggest that the X-autosome 6 

fusions detected in Anolis sagrei arose early in the clade (~40 Mya; Fig. 1), and highlight 7 

the relevance of sex chromosome evolution for anole diversification (Gamble et al. 2014; 8 

Rovatsos et al. 2014). 9 

 10 

Key developmental genes in repeat-rich regions in Anolis and other pleurodonts. 11 

Repeat elements can be a source of genetic variation because they can modify gene 12 

regulation patterns, be a source of mutations, and trigger structural rearrangements 13 

(Bourque et al. 2018; Schrader & Schmitz 2019). The genome-wide percentage of repeats 14 

was similar among species (Table 1), but A. carolinensis had a lower percentage of repeats, 15 

potentially due to the comparatively less complete and contiguous assembly currently 16 

available for this species (Alföldi et al. 2011). The relative composition of repeat families 17 

differed among genera, with anoles characterized by a higher abundance of DNA 18 

transposons and LINEs (Fig. S4)(as previously reported; Feiner 2019; Gable et al. 2023). 19 

Moreover, we found a high density of repeats associated with key developmental genes 20 

such as notch4, fgf11, and the hoxB, hoxC and hoxD clusters in Anolis and the outgroups 21 

(Fig. 3; James et al. 2014; Mallo 2020; Tejedor et al. 2020). An enrichment analysis 22 

detected that genes located in repeat-rich regions were mostly associated with 23 
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developmental and regulatory functions (Fig. S4, Table S6). For all analyzed species, the 1 

composition of repeat families within repeat-rich regions did not differ from their genome-2 

wide relative abundance (Table S4). This suggests that the patterns of repeat accumulation 3 

are not biased toward a specific class of repeats. Other gene families, such as the major 4 

histocompatibility complex (MHC), have also been described to show a higher abundance 5 

of repeats in anoles versus other squamates (Card et al. 2022).  6 

Feiner (Feiner 2016, 2019) reported this unique pattern of repeat accumulation 7 

around the hox gene clusters in anoles, whereas other more distantly related squamates have 8 

a significantly lower number of repeats in these regions. Those studies, however, did not 9 

include other pleurodont lizards such as the phrynosomatids U. nigricaudus and P. 10 

platyrhinos. Thus, our analysis expands the pattern of repeat element accumulation to other 11 

genes that also affect development (Table S5) and indicates that this is not a feature 12 

exclusive to Anolis but is also present in other species from the Pleurodonta clade of 13 

Iguania. Pleurodont lizards include some of the most diverse vertebrate genera with respect 14 

to species number and morphological variation (e.g. Anolis, Liolaemus, Sceloporus; 15 

Alencar et al. 2024; Blankers et al. 2013). Therefore, the accumulation of repeat elements 16 

around developmental genes could be a source of genetic variation that fueled 17 

morphological innovation in pleurodont groups (Feiner 2019). Exploring the potential 18 

effects of the repeat accumulation on genetic and phenotypic variation for these lizard 19 

groups is key to understanding whether TE dynamics contribute to their evolvability and 20 

diversification. However, additional genomes assembled from within pleurodonts and other 21 

iguanians are needed to identify specifically when this pattern arose.  22 

 23 
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Potential signatures of selection on coding regions and regulatory divergence could 1 

influence unique phenotypes in Anolis 2 

For the analyzed species we detected some candidate genes potentially under selection and 3 

genes with high divergence in their regulatory regions that we can hypothesize to influence 4 

their unique phenotypes (Fig. 4, Fig. S7). While phylogenetically explicit methods could 5 

provide better insight into the lineage-specific signatures of selection given the lack of 6 

evolutionary independence among our samples, we focused on pairwise comparisons 7 

because our heavily underrepresented sampling of the anole diversity (four out of over 400 8 

species) could bias comparative analyses (Boettiger et al. 2012). Moreover, we 9 

acknowledge that our approach has more power to identify signatures of pervasive selection 10 

rather than episodic selection. Future work, combining more comprehensive sampling 11 

within Anolis with estimates of selection using a phylogenetic approach, has the potential to 12 

provide further, powerful insights into the evolutionary dynamics of the genus. 13 

Anolis carolinensis presented dN/dS > 1 and high regulatory divergence on genes 14 

potentially influencing cold adaptation. In general, ectotherm adaptation to cold 15 

environments involves physiological processes of oxygen consumption and blood 16 

circulation (Angilletta Jr. 2009; Campbell‐Staton et al. 2018). Among the genes under 17 

selection in A. carolinensis, leptin (lep) was a central node in the gene interaction network 18 

(Fig. 4). Moreover, other genes associated with lipid metabolism (e.g. clps, stard6, ncoa1, 19 

lpin1, plin3) were also identified in our analysis. Lipid metabolism has been proposed as a 20 

potential thermal adaptation in ectotherms (Wollenberg Valero et al. 2014). For instance, it 21 

could be an alternative energy source during cold seasons with lower resource availability 22 

(Sun et al. 2022), or it could be associated with changes in cell membrane composition 23 
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impacting fluidity in colder temperatures (Seebacher et al. 2009). Genes associated with 1 

lipid metabolism have been identified as undergoing accelerated evolution when comparing 2 

Cuban anole species with different thermal biology (Sakamoto et al. 2024). Furthermore, 3 

genes interacting with leptin and involved in lipid metabolism have been identified as 4 

under-selection in A. cybotes populations inhabiting cold high-elevation environments 5 

(Rodríguez et al. 2017). Therefore, it is possible that changes in lipid metabolism could 6 

constitute an adaptation to cold environments in A. carolinensis. We also detected 7 

divergence in the regulatory region of genes associated with the circulatory system and 8 

mitochondria (Fig. 4). Populations of A. carolinensis inhabiting colder environments show 9 

lower oxygen consumption rates, and signatures of selection and changes in the expression 10 

of genes associated with the circulatory system (Campbell‐Staton et al. 2016, 2018). Thus, 11 

changes in these genes could enhance oxygen intake for low oxygen availability under cold 12 

temperatures in A. carolinensis versus other anole species. 13 

A. auratus stands out for its long tail. This species is usually found on the grass in 14 

dense vegetation patches, and a long tail may provide better balance when walking or 15 

jumping across narrow perches (Gillis et al. 2009; Hsieh 2015). Body elongation is a 16 

convergent phenotype in several reptiles, and most species develop longer bodies through 17 

the addition of vertebrae (Bergmann & Morinaga 2019). However, the extremely long tail 18 

in A. auratus is achieved by elongation of the caudal vertebrae rather than the addition of 19 

more segments (Fig. 5D). The longest caudal vertebrae in A. auratus are located distal to 20 

the ninth caudal vertebrae (e.g., Ca10-21, Fig. 5D). In anoles, the m. caudofemoralis longus 21 

originates from the proximal caudal vertebrae (e.g. Ca2-8 in A. sagrei, Herrel et al. 2008; 22 

Ca2-9 in A. heterodermus, A. tolimensis, and A. valencienni, Herrel et al. 2008; Ríos‐23 
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Orjuela et al. 2020; and Ca3-8 in A. carolinensis, Ritzman et al. 2012). This primary hip 1 

joint extensor is essential for locomotion and may also assist with lateral flexion of the tail 2 

when the hindlimb is fixed (Ritzman et al. 2012). Therefore, caudal vertebral elongation in 3 

A. auratus is most pronounced in a region of the tail that is less functionally constrained. 4 

The pattern of caudal vertebrae elongation in A. auratus is similar to that seen in the tail of 5 

arboreal Peromyscus maniculatus (Kingsley et al. 2024), the cervical vertebrae of giraffes 6 

(Agaba et al. 2016), the trunk of some plethodontid salamanders (Parra-Olea & Wake 7 

2001) and some fish species (Ward & Mehta 2010). Among the mechanisms that could 8 

determine caudal vertebral elongation are genes associated with axial development and 9 

determinants of the caudal region such as the hox13 genes, fgf8, or fgfr1 (Agaba et al. 2016; 10 

Kingsley et al. 2024; Mallo 2018, 2020; Ye & Kimelman 2020). Nonetheless, genes 11 

positively selected in giraffes did not show dN/dS > 1 in A. auratus (Fig. S11). In our 12 

genetic data, we detected dN/dS > 1 in ramp2 and dcdc1, which influence bone 13 

development (Naot & Cornish 2008; the Genetic Factors for Osteoporosis (GEFOS) 14 

Consortium 2009). Heterozygote knockout mice for ramp2 present skeletal abnormalities 15 

such as lower bone density and delayed development of the lumbar vertebrae, producing a 16 

similar pattern of vertebral elongation (Kadmiel et al. 2011). In Peromyscus maniculatus, 17 

dcdc1 is located within a locus associated with tail length (Kingsley et al. 2024). Thus, the 18 

mutations in these genes could contribute to the unique tail phenotype in A. auratus. 19 

Finally, A. frenatus is characterized by a large body size and relatively long limbs. 20 

In general, vertebrate body size is determined by genes associated with insulin growth 21 

factors and growth hormone pathways (Beatty & Schwartz 2020; Kemper et al. 2012; 22 

Rotwein 2018; Silva et al. 2023). Our analysis identified some candidate genes potentially 23 
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associated with large body size in A. frenatus. We detected dN/dS > 1 on the mtpn and 1 

pdzk1ip1 genes, both involved in muscle development, growth, and morphogenesis 2 

(Hayashi 2001; Ikeno et al. 2019; Massagué 2012; Mohammadabadi et al. 2021; Wang et 3 

al. 2014). Injection of mtpn in mice produces increased body and muscle weights (Shiraishi 4 

et al. 2006). Moreover, among the genes that presented high divergence in regulatory 5 

regions for A. frenatus we identified other genes highly relevant for development. For 6 

instance, wnt4 can be modulated by the growth hormone (Vouyovitch et al. 2016), and 7 

mice with overexpression of wnt4 present dwarfism (Lee & Behringer 2007). Further, 8 

knockout mice for traf4 show reduced body weight than wildtype mice (Shiels et al. 2000). 9 

We interpret these results with caution because, given the phylogenetic distance between A. 10 

frenatus and the other study species, we cannot be certain whether these mutations are 11 

exclusive to A. frenatus or could be shared with other Dactyloa anoles. 12 

Overall, the genes with dN/dS > 1 and with high divergence in their regulatory 13 

regions perform relevant biological functions that could affect the phenotypes of the 14 

analyzed species. This indicates that the combination of mechanisms acting at different 15 

hierarchical levels can aid in the generation of adaptive phenotypes in anoles. Changes in 16 

regulatory regions could provide more evolvability than changes in protein-coding 17 

sequences that are in general more constrained to mutations given their biological function 18 

(Hill et al. 2021; Sakamoto et al. 2024). Therefore, exploring the effects of regulatory 19 

sequence divergence and regulatory RNAs on gene expression and their impacts on species 20 

traits is key to understanding how this variation could promote anole phenotypic diversity. 21 

 22 

Conclusions 23 
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Our analysis of novel genome assemblies of four anole species constitutes an early step to 1 

identifying the genomic variation that could contribute to the extensive phenotypic 2 

disparity among Anolis species. In Anolis, chromosome-level structural rearrangements 3 

could directly generate reproductive isolation and affect the gene regulation patterns of 4 

genes relevant to development and morphological configuration. Further, a high density of 5 

repeat elements close to key developmental genes could also contribute to variation in the 6 

expression of such genes. Finally, natural selection on few coding sequences but relevant to 7 

species traits, in addition to divergence in regulatory regions could also play a role in 8 

shaping phenotypic diversity. The interaction between these genomic characteristics and 9 

selection pressures potentially enabled the evolution of disparate phenotypes within anoles, 10 

but further analysis of a wider sample of high-quality genomes would help to formally 11 

address this hypothesis. We highlight that besides ecological opportunity, the genomic 12 

architecture of organisms can also influence adaptive radiations. 13 

 14 

Methods 15 

Sampling and type specimens  16 

The A. auratus specimen was collected in Gamboa, Panama, and the A. frenatus specimen 17 

in Soberania National Park, Panama (Collecting Permits: SE/A-33-11 and SC/A-21-12, 18 

Autoridad Nacional de Ambiente, ANAM, Republic of Panama; IACUC Protocol: 2011-19 

0616-2014-07 Smithsonian Tropical Research Institute). Additional samples of A. 20 

carolinensis and A. sagrei obtained from the Sullivan Company (Nashville, TN) and 21 

Marcus Cantos Reptiles (Fort Myers, FL) were included for morphological analyses 22 
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(IACUC Protocol: Arizona State University 19-1053R and 12-1247R). Table S1 shows the 1 

number of individuals collected per species and locations used for reference genome 2 

assemblies and morphological analyses. Specimens were euthanized by intracoelomic 3 

injection of sodium pentobarbital (IACUC Protocols 09-1053R, 12-1274R, and 15-1416R 4 

ASU). The type specimens for the A. auratus and A. frenatus reference genomes 5 

corresponded to adult females. 6 

 7 

Reference Genomes 8 

We generated new reference genomes for A. auratus and A. frenatus. Skeletal muscle from 9 

the A. auratus type specimen, and liver and heart from A. frenatus type specimen were sent 10 

for DNA extraction and whole genome sequencing. The RUC_Aaur_2 and RUC_Afre_2 11 

genomes were sequenced by Dovetail Genomics on an Illumina PE150 platform, de novo 12 

assembled with meraculous v2.2.2.5 (Chapman et al. 2011). HiRise v2.1.6-072ca03871cc 13 

(Putnam et al. 2016) scaffolding was performed with Chicago and Hi-C chromatic 14 

conformation capture libraries. The published genome assemblies and annotations of A. 15 

carolinensis (AnoCar2.0, Alföldi et al. 2011; and Hi-C assembly from DNAzoo, 16 

Dudchenko et al. 2017, 2018) and A. sagrei (AnoSag2.1, Geneva et al. 2022) were included 17 

for comparative genomic analyses. Table 1 shows the assembly statistics for the four Anolis 18 

genomes. Additionally, we included the reference genome of the phrynosomatids 19 

Phrynosoma platyrhinos (MUOH_PhPlat_1.1, Koochekian et al. 2022) and Urosaurus 20 

nigricaudus (ASU_Uro_nig_1, Davalos-Dehullu et al. 2023) for some comparative 21 

genomic analyses.  22 
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A genome annotation was generated for A. auratus and A. frenatus. For each 1 

species, repeats were identified on the genome sequences by using RepeatModeler v2.0.1 2 

(Flynn et al. 2020), and then repeat elements were soft-masked on the assembly with 3 

RepeatMasker v4.1.1 (Smit et al. 2015). To aid in annotation we generated a de novo 4 

transcriptome for each species using tail and ovary/yolk for A. auratus and brain and ovary 5 

for A. frenatus. Tissue samples were collected from the same animals used for genome 6 

sequencing. Tissues were sent to the Yale Center for Genomic Analyses (YCGA; West 7 

Haven, CT) for RNA extraction, cDNA poly-A-enriched Illumina library preparation and 8 

sequencing on an Illumina NovaSeq S4 platform using 150-bp paired end reads. Read 9 

quality was assessed with FastQC v0.11.7 (Andrews 2010), and reads were trimmed with 10 

Trimgalore v0.6.8 (Krueger 2015). Then a de novo transcriptome assembly was generated 11 

with Trinity v2.12.0 (Grabherr et al. 2011). The generated transcriptomes were used as 12 

evidence for each species genome annotation respectively. 13 

Multiple iterations of Maker v3.01.03 (Campbell et al. 2014) were run to annotate 14 

the genomes. We used the species-specific transcripts, and the protein-coding sequences 15 

from A. carolinensis and A. sagrei as evidence. A first round of Maker was run for aligning 16 

and mapping transcript and protein evidence. Then, two additional rounds of ab initio gene 17 

model prediction using Augustus v3.4.0 (Stanke et al. 2006) and SNAP v2006-07-28 (Korf 18 

2004) were run. After each round of Maker, the Annotation Edit Distance (AED) was 19 

recorded, and annotation completeness was assessed with BUSCO v5.4.2 (Simão et al. 20 

2015) on the predicted transcripts obtained from Maker, comparing against the eukaryote 21 

and sauropsid gene datasets. 22 

 23 
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Chromosome-level structural rearrangements 1 

We investigated synteny among the main scaffolds from the four analyzed Anolis species 2 

along with the phrynosomatids P. platyrhinos and U. nigricaudus by in silico chromosome 3 

painting. For this analysis, we used the high contiguity DNAzoo Hi-C-scaffolded genome 4 

assembly of A. carolinensis (Dudchenko et al. 2017, 2018). All species were compared 5 

against the A. sagrei genome as a reference, because it is the species with the most 6 

contiguous and complete genome among our samples (Geneva et al. 2022). The first 14 7 

scaffolds from A. sagrei, representative of its chromosomes, were split in chunks of 100 bp 8 

with “faSplit” v438 from the UCSC Bioinformatic Utilities (Kuhn et al. 2013). Then, we 9 

used blastn v2.10.0 (Camacho et al. 2009) to map each fragment onto the 5 other species’ 10 

genome. We retained matches with at least 50 bp length, and that were contiguous in at 11 

least 5 matches (Koochekian et al. 2022). To further explore the chromosome X evolution 12 

within Anolis, we compared chromosome 7 from A. sagrei to the closely related A. 13 

apletophallus (Pirani et al. 2023) following the same methodology.  14 

 15 

Hi-C data analysis 16 

Link density histograms were generated with Juicer v2.0 (Durand et al. 2016) by mapping 17 

paired reads from the Hi-C libraries for A. auratus and A. frenatus to the finished genome 18 

assembly to assess chromatin conformation and to validate our chromosomal 19 

rearrangements. Hi-C contact maps were visualized with Juicebox v1.9.8 (Dudchenko et al. 20 

2018). 21 

 22 
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Developmental genes located in A. frenatus scaffolds 1, 2 and 3 rearrangement  1 

We explored which genes were located adjected to the rearrangement among scaffolds 1, 2, 2 

and 3 detected between A. frenatus and A. sagrei. For this, we pulled from the A. sagrei 3 

annotation the genes located within 1 Mbp from the scaffold breakpoints identified with the 4 

synteny analysis. We performed an enrichment analysis on the genes located in these 5 

regions with g:Profiler ve111_eg58_p18_30541362 (Kolberg et al. 2023) to assess which 6 

biological processes were overrepresented in that gene list. Then, we extracted the list of 7 

genes present in scaffolds 1, 2, and 3 in A. frenatus to identify if the chromosomal breaks 8 

were located in hotspots of genes with developmental function. We identified and extracted 9 

all the GO terms included in the list of genes located on each scaffold with g:Profiler using 10 

Homo sapiens as a reference, and we retained only the genes matching GO terms that 11 

included any of the keywords: “development”, “morpho”, “growth” or “organ”. We then 12 

calculated the number of genes with those developmental functions along each 13 

chromosome in 500 kbp windows in R v4.1.2 (R Core Team 2022) with a custom script. 14 

 15 

Repeat density through the genomes 16 

For A. auratus, A. frenatus, A. sagrei, U. nigricaudus and P. platyrhinos we calculated the 17 

repeat density for each one of the largest 6 scaffolds. First, we reclassified repeat families 18 

for the annotations of U. nigricaudus, P. platyrhinos and A. sagrei, following the same 19 

methodology used for A. auratus and A. frenatus. We compared the repeat family 20 

composition for the largest 6 scaffolds among the five species with a Fisher’s exact test in 21 

R. Then, the number of repeats was calculated in 500 kbp windows, and we retained repeats 22 
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longer than 50 bp and with a score value over 10 (Feiner 2016). Then, we selected the 500 1 

kbp windows corresponding to the highest 5% of repeat density per scaffold for each 2 

species with a custom script in R. To assess if those regions were enriched in a particular 3 

class of repeats, we compared the repeat family composition of the repeat-rich regions 4 

against the largest 6 scaffolds for each species with a Fisher’s exact test. Then, we 5 

identified the genes located within those high repeat density regions using the respective 6 

genome annotations. An enrichment analysis was performed to identify the most 7 

represented gene ontology (GO) categories on the list of genes situated in high repeat 8 

regions for each species with g:Profiler, and the enriched GO terms were semantically 9 

organized and visualized with Revigo v1.8.1 (Supek et al. 2011). 10 

 11 

Identification of genes potentially under positive selection and regulatory elements with 12 

high divergence 13 

We looked for genes potentially under positive selection among the four Anolis species by 14 

calculating the ratio between non-synonymous to synonymous mutations (dN/dS) between 15 

orthologs from species pairs with the “orthologr” package (Drost et al. 2015) in R using the 16 

Comeron’s (Comeron 1995) method. To identify genes with dN/dS > 1 in each species, we 17 

retained the genes overlapping in at least 2 out of 3 comparisons between the focal and the 18 

other three species. We focused on pairwise comparisons instead of phylogenetically 19 

explicit methods to detect genes under selection, because heavily underrepresented 20 

phylogenies could bias comparative analyses (Boettiger et al. 2012). Moreover, having 21 

fewer than 10 species significantly decreases the statistical power when using phylogeny-22 

based approaches (Murrell et al. 2012). An enrichment analysis was performed on the list 23 
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of positively selected genes with g:Profiler to identify the most represented GO terms for 1 

each species, using Homo sapiens as a reference. 2 

To assess regulatory regions with high divergence we focused on the 1000 kb 3 

upstream of the transcription start, which includes the promoter region (Andersson & 4 

Sandelin 2020). We compared orthologs between species pairs previously identified with 5 

“orthologr” in R. Each ortholog pair was aligned with mafft v7.520 (Katoh & Standley 6 

2013) and the genetic distance between aligned orthologs was estimated with the “bio3d” 7 

package (Grant et al. 2006) in R. We considered the genes with the top 1% of genetic 8 

distance as genes with the highest divergence in their regulatory regions between species 9 

pairs. For each species we retained the genes overlapping in at least 2 out of 3 comparisons. 10 

Finally, we used STRING v12.0 (Szklarczyk et al. 2019) to evaluate gene interactions 11 

among the genes under selection and the genes with high regulatory divergence for each 12 

species. 13 

 14 

Climatic niche analyses 15 

For each species, occurrence records were obtained from the Global Biodiversity 16 

Information Facility (GBIF.Org 2021). Occurrences were deduplicated and manually 17 

curated to accurately represent the native distribution of each species. The final dataset 18 

included 881 occurrences for A. auratus, 175 for A. frenatus, 27,546 for A. carolinensis, 19 

and 24,419 for A. sagrei. Raster data for the 19 bioclimatic variables with 1 km2 of spatial 20 

resolution was obtained from the WorldClim v2 database (Fick & Hijmans 2017). For each 21 

occurrence point, the corresponding values of the 19 bioclimatic variables were obtained 22 
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using QGIS v3.16.16-Hannover (QGIS.org 2020). We qualitatively compared the climatic 1 

niche among the four analyzed species. Climatic variation was visualized with a Principal 2 

Component Analysis (PCA) in R, and the main variables differentiating species were 3 

identified based on their loadings in the first two principal components.  4 

 5 

Morphological analyses 6 

Additional samples for the four Anolis species were included for morphological analyses. 7 

Skeletal data was obtained from osteological preparations following Tollis et al. (2018) 8 

modification of amphibian protocols, or from micro-computed tomography (microCT) 9 

images collected in a Siemens Inveon micro-CT scanner at the RII Translational 10 

Bioimaging Resource at the University of Arizona (Table S2). For skeletal preparations, 11 

individuals were photographed with a scale in a stereodissecting microscope (Nikon 12 

SMZ800 with Coolpix 995 digital camera), and morphological traits were measured with 13 

ImageJ v1.53k (Schneider et al. 2012). For microCT scans, digital images were analyzed 14 

and measured with InVesalius v3.1.1 (Amorim et al. 2015). For each species we measured 15 

snout–vent length (SVL), axilla–groin distance (AGD), forelimb total length (FLL), 16 

forelimb autopod length, forelimb stylopod length, forelimb zeugopod length, hindlimb 17 

total length (HLL), hindlimb autopod length, hindlimb stylopod length, hindlimb zeugopod 18 

length, head width (HW), head length (HL), head height (HH) and tail length (TL). We also 19 

analyzed the osteology of the caudal vertebrae for the four Anolis species. For this, we 20 

measured the distance from the distal end of the cotyle to the proximal tip of the condyle on 21 

each caudal vertebra. All measurements apart from SVL were standardized by dividing by 22 
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the distance between the snout to the end of the sacral vertebrae as an approximation to 1 

body size. We compared microCT and skeletal preparation measurements with a paired T-2 

test to assess possible bias in the sampling methodology (Table S13). 3 

Data Availability 4 

All raw read files have been accessioned to the NCBI SRA under BioProject 5 

#PRJNA1096315. Final genome assemblies and annotations have been accessioned to the 6 

Harvard Dataverse (https://doi.org/10.7910/DVN/F9NDWL). 7 
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