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Abstract— Longitudinal and continuous monitoring of
cough is crucial for early and accurate diagnosis of res-
piratory diseases. While recent developments in wearables
offer a promise for daily assessment at-home remote symp-
tom monitoring with respect to more accurate and less
frequent assessment in the clinics, important practical
challenges exist such as maintaining user speech privacy
and potential poor audio quality and background noise
in uncontrolled real-world settings. This study addresses
these challenges by developing and optimizing a compact
multimodal cough detection system, enhanced with an
Out-of-Distribution (OOD) detection algorithm. The cough
sensing modalities include audio and Inertial Measurement
Unit (IMU) signals. We optimized this multimodal cough
detection system by training with an enhanced dataset
and employing a weighted multi-loss approach for the ID
classifier. For OOD detection, we improved the system by
reconstructing the training data components. Our prelimi-
nary results indicate the robustness of the system across
window sizes from 1 to 5 seconds and performs efficiently
at low audio frequencies, which can protect user privacy
due to illegibility or incomprehensibility at lower sampling
rates. Although we found that the multimodal model is
sensitive to OOD data, the final optimized robust mul-
timodal cough detection system outperforms the single-
modal model integrated with OOD detection. Specifically,
the optimized system maintains 90.08% accuracy and a
cough F1 score of 0.7548 at a 16 kHz audio frequency, and
87.3% accuracy and a cough F1 score of 0.7015 at 750 Hz,
even with half of the data being OOD during inference. The
misclassified components mainly originate from nonverbal
sounds, including snheezes and groans. These issues could
be further mitigated by acquiring more data on cough,
speech, and other nonverbal vocalizations. In general, we
observed that the Audio-IMU multimodal model incorpo-
rating OOD detection techniques significantly improved
cough detection performance and could provide a tangible
solution to real-world acoustic cough detection problems.
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of-distribution, bio-signal processing, machine learning.

[. INTRODUCTION

Respiratory diseases, such as asthma and chronic obstructive
pulmonary disease (COPD), impose a significant global burden
in terms of morbidity and mortality [1]. Cough is a primary
symptom of these chronic conditions, whose frequency is used
for both diagnosis and management [2]. However, accurate
quantification of cough frequency is challenging because it
often relies on patient recall, which tends to underestimate the
actual frequency of coughing [3]. This underestimation can
negatively impact clinical care and lead to undertreatment of
these chronic conditions. To improve the assessment of chronic
cough, continuous tracking of the type and frequency of cough
is essential. In-home wearable devices can facilitate long-
term remote symptom monitoring by incorporating machine
learning models to record and analyze biosignals [4], [5],
such as cough sounds. Typically, these models classify specific
sounds using only audio input, assuming the data are clean.
The reliability of these systems is heavily dependent on the
quality of the collected audio data, which may introduce
significant uncertainty during the activities of the daily life
in real world environments. Therefore, incorporating a robust
architecture to guard against this uncertainty and implementing
multimodality to enhance detection are important.

The integration of data acquired from multiple sensing
modalities offers several advantages for improving system
reliability and performance. Using data from diverse sources,
such as audio, visual, and textual information, machine learn-
ing (ML) models can achieve a more comprehensive under-
standing of the problem at hand. In clinical scenarios, bio-
signals, demographic information, and clinical knowledge are
commonly used together as additional source of information
for smart health systems [6]. In our prior work [7], an audio-
Inertial Measurement Unit (IMU) multimodal model has been
shown to improve the accuracy and robustness of cough
detection systems during physical activities; thereby, reducing
error rates and enhancing overall system resilience.

Another way to improve model robustness is to incorporate
the Out-of-Distribution (OOD) detection, which is a technique
employed to identify samples that deviate from the distribution
of the data used to construct the system. We call these samples
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Fig. 1: Overview of the Robust Multimodal Cough Detection System Pipeline. 1) The data are collected by chest-mounted
wearable sensors; 2) The filtered audio signal and IMU signals are passed through MobileNet and an IMU Net respectively
to obtain audio and IMU embeddings; 3) These embeddings are then concatenated and passed through the OOD detection
module to get an OOD score; 4) If the OOD score exceeds a specified threshold, the embedding features are sent to a classifier
for the final prediction; otherwise, directly classified as other sounds.

as the “OOD data” and the data used for building the system
are called “In-Distribution (ID) data”. Deep neural network
classifiers can give high-confidence predictions to OOD inputs
and lead to suboptimal results [8]-[10]. Therefore, OOD de-
tection is essential for ensuring the robustness and reliability of
machine learning and Al systems. In our preliminary work [7],
[11], we have shown that incorporating OOD detection tech-
niques improves cough detection performance by preventing
unreliable predictions on unfamiliar data. Additionally, OOD
detection facilitates better generalization by defining a model’s
operational boundaries, enables active learning by prioritizing
outliers for further training, and maintains trustworthiness by
acknowledging and handling uncertainties appropriately. Thus,
OOD detection is vital for the development of resilient, safe,
and reliable Al systems.

To design an effective and robust multimodal cough de-
tection system for real-world applications, we developed a
comprehensive data collection protocol for this study [7].
Using data gathered through this protocol, we constructed
an advanced multimodal cough and speech detection model
using audio and IMU signals, which include accelerometer,
gyroscope, and magnetometer data, thereby providing critical
information about motion and orientation. At the end, the
multimodal models demonstrated promising results, outper-
forming single-modal models in recognizing coughs, speech,
and other vocalizations. The incorporation of OOD detection
further enhanced the model’s robustness in identifying cough
and speech sounds amidst OOD inputs. However, the data used
in the previous work were highly unbalanced, and the analysis
was not as comprehensive, allowing an opportunity for further
improvement for this current study presented here.

In this paper, we present further optimization of our multi-
modal cough and speech detection system by enhancing both
the data component and model architecture. Experiments were
designed to analyze the impact of these optimizations on both
ID classification task and OOD detection performances. The
main contributions of this paper include:

o Adding the IMU modality significantly improves cough
detection performance, with these improvements being
more pronounced at lower audio frequencies. The use of
an enhanced balanced dataset and a weighted multi-loss
function further aids multimodal modeling, resulting in
an improved cough F1 score.

o The optimized multimodal model demonstrates stability
against the single-modal model’s sensitivity to window
sizes and audio frequencies. Even at lower frequencies,
the multimodal model remains stable with window sizes
ranging from 1 to 5 seconds.

o Incorporating OOD detection addresses the multimodal
model’s sensitivity to unknown OOD input. The final
system can maintain a cough F1 score above 0.7 at
750 Hz, even when half of the data are OOD. This
was a significant improvement over the F1 score of 0.6
obtained by a baseline, and it highlights the challenge and
opportunities associated with overcoming OOD detection
in this domain.

o Comprehensive analysis reveals the misclassified compo-
nents in our system, demonstrating that most misclas-
sifications involve non-verbal vocalization sounds. This
insight provides a direction for further improvement.

The structure of this paper is organized as follows: Section
Il reviews state of the practice for cough detection, OOD
detection, and our preliminary studies. Section III details
data collection, model architecture, evaluation metrics, and
experimental setup. Section IV presents results of four ex-
periments, including tests on audio frequency and window
size sensitivities, OOD data sensitivity, and misclassification
analysis, along with a thorough discussion of these results.
Finally, Section V concludes the work and suggests directions
for future research.

Il. RELATED WORK

Automatic cough detection has been researched extensively
[12]-[14] and the keys to improve accuracy include feature
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selection and modeling. Recently, there is more research using
machine learning and deep learning methodologies to identify
the most effective signal features and the most accurate detec-
tion methods [15], [16]. These studies have explored various
features, including Short-Time Fourier Transform (STFT),
Mel-frequency cepstral coefficients (MFCC), and Mel-scale
filter banks (MFB), alongside classifiers such as logistic re-
gression, feedforward artificial neural networks, support vector
machines, and random forests. To further optimize detection
algorithms, Lee et al. [17] further proposed advanced cough
detection systems by integrating data enhancement processes.
Moreover, other studies have addressed hardware device is-
sues, specifically cross-device discrepancies, by employing
ensemble classifiers [18], [19].

Besides a cough detection algorithm, techniques for im-
proving the robustness of the system, such as OOD detection,
can be used to improve the stability of the system. Recent
contributions have focused on detecting OOD data within the
field of computer vision [20]-[31]. Some methods utilize the
maximum value of the softmax function to distinguish OOD
inputs without modifying the underlying pre-trained model
architecture [20], [21], while others incorporate an additional
output to indicate the confidence of the results for identifying
OOD inputs [22]-[24]. Furthermore, generative models, such
as Variational Autoencoders (VAE) and diffusion probabilistic
models (DDPM), can be employed for OOD detection by
performing analyses in the latent space [25], [31].

Another approach to enhancing system robustness is the in-
corporation of multiple modalities, which has proven effective
in both computer vision and natural language processing. In
the domain of cough detection, M. Paha et al. [32] demon-
strated the utility of accelerometer signals for cough detection,
though it was found to be slightly less accurate than audio
signals. Lara Orlandic et al. [33] further advanced this field by
creating an audio-IMU dataset, illustrating the improvements
achieved through multimodal integration.

In our previous work [11], we demonstrated the effec-
tiveness of a robust pipeline that integrated cough and
speech detection algorithms with OOD detection, using Mel-
spectrogram inputs with various sampling frequencies and
window sizes. Furthermore, we showed an improvement in
the problem of detecting cough sounds during different daily
activities (standing, walking, running) by transitioning from a
single modality to a multimodal approach [7]. In this study, we
will focus on the optimization and analysis of the multimodal
cough detection system that incorporates OOD detection.

I1l. PROPOSED METHODS

We divide the system design problem into ID classification
problem and OOD detection problem. ID classification
problem is a three-class classification that aims to accurately
classify “cough”, “speech”, and other vocalization sounds
including sneezing, deep breathing, groaning, laughing and
speaking sounds from individuals around the subject. OOD
detection is employed to recognize unknown sounds in the
testing phase, simulating real-world scenarios. Our results
indicate that the system effectively detects cough sounds
amidst a variety of unknown sounds.

The primary challenge of this work comes from the limited
and unbalanced data. In this study, our objective is to improve
our robust multimodal cough detection system by optimizing
both the classification model and the OOD detection algorithm
by improving the quality of the data and developing a data-
adaptive system. Our optimization strategy includes enhancing
the dataset with an available online dataset, improving the
classification model by employing a multi weighted loss func-
tion that weights different class losses based on the difficulty
of detecting different classes and joins loss from both signal
modality and multimodality, and improving OOD detection by
refining the illness eigenvalues derived from the feature space
of the multimodal model.

A. Datasets

To deal with limited data, two datasets were combined
together for the system development. To better illustrate the
details of these two datasets, they are denoted as dataset A
and dataset B. We refer to the dataset collected for this study
as dataset A [7] and the online public multimodal dataset
collected by Lara Orlandic et al. [33] as dataset B.

Dataset A was built with data from a total of 13 participants
and this data collection process was approved by NC State
University IRB Protocol 25003 on April 13, 2023. Data from
12 participants were used in this study since the data from
the last participant did not include IMU data. The participants
were healthy individuals between 20 and 30 years old. In the
data collection process, each participant performed a series of
vocalizations under various activity levels. The participants sat
(~ 2 min), walked (~ 2 min), ran (~ 2 min), walked (~ 2 min)
and sat (~ 2 min) with 30-second resting intervals in each ac-
tivation transition. This activity cycle was repeated three times
and each time participants were required to perform different
vocalizations including pure coughing, talking, talking while
coughing, and other nonverbal vocalization sounds.

Audio was recorded by two chest-mounted microphones,
one facing away from the participant (out-microphone) and
one facing toward the participant (in-microphone). See the sen-
sor arrangement in Fig. 1. These microphones were repurposed
from commercially available Bluetooth earbuds (Tozo model
T10 [34]), with the speaker circuit disconnected. The move-
ment of the participants was tracked using the MetaMotionS rl
sensor, mounted on the chest, which captured 9-axis IMU data
(accelerometer, gyroscope, and magnetometer). IMU signals
were sampled at 100 Hz and audio signals were sampled at
16 kHz.

At the beginning of each recording, participants clapped
three times and this procedure is used for data synchronization

TABLE |: Summary of Datasets

D 00D

cough speech other

(~ 28.2%) (~ 12.9%)  (~ 59.6%) unlabeled sounds
Dataset A ~27 min ~81 min ~25 min ~340 min
Dataset B ~ 119 min ~350 min

“ The “other” class in Dataset A includes sneezing, deep breathing, groan-
ing, laughing and speaking sounds from individuals around the subject.
“The “other” class in Dataset B includes laughing, throat clearing, and
deep breathing.
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across different modalities. These three claps are distinctly
observable in both the audio and the IMU signals, producing
accurate synchronization. Then a low-pass FIR filter with
a 3 kHz cut-off frequency was applied to attenuate high-
frequency noise. This cutoff frequency was chosen based on
previous findings showing stable performance over 2 kHz
[11], ensuring the retention of low-frequency information to
maintain the model’s performance for edge-Al development,
which typically supports limited computational cost.

The duration of audio recordings for each category is
detailed in Tab. I. We categorize sounds into several classes:
participant-generated sounds such as ‘“cough”, “speech”,
“sneeze”, “deep breath”, “groan” and “laugh”; “speech (far)”,
which represent speech from individuals around the subject;
and “unlabeled sounds”, indicating unlabeled environmental
noises; including periods of silence. All participant-generated
sounds except for “cough” and “speech” are treated as “other”
class in ID data, and all “unlabeled sounds” are treated as OOD
data. For the classification task, this is an imbalanced dataset
as shown in Tab. I with the majority of the sounds falling into
the “speech” category, followed by “cough” and “other”. To
address this imbalance, we combined dataset A with an online
available dataset B [33] to create an enhanced dataset.

Dataset B was acquired by Lara Orlandic et al. [33] and
this dataset was selected due to its similar format to dataset A.
Both datasets have identical audio and IMU sampling rates,
16 kHz and 100 Hz respectively, and were collected under
comparable conditions. Dataset B comprises data from 20
healthy subjects aged 26.5 + 6.5 years, with data from 15
subjects available online. This dataset includes nearly 4 hours
of biosignal data, featuring 4,300 annotated cough events. It
combines acoustic signals from dual microphones, one facing
the body and the other outward, with kinematic data from
tri-axial accelerometers and gyroscopes. These multimodal
biosignals encompass a variety of non-cough-related sounds
and physical movements to simulate realistic environmental
conditions. Each recording lasts approximately 10 seconds,
during which subjects were asked to produce either a cough
sound or one of three sounds that could produce similar audio
or chest motion artifacts as a cough: laughing, throat clearing,
and deep breathing.

Based on our observation, magnetometer signals do not
exhibit a specific relationship with different sounds, and
dataset B does not have magnetometer signals; therefore, only
accelerometer and gyroscope signals were used as the IMU
modality.

B. Data Preparation

To construct a high-quality and well-performing deep learn-
ing model, the quality of the dataset is crucial. Tab. I shows
that compared to dataset B, the total recording time of dataset
A is approximately four times less. To ensure that the dis-
tribution of the enhanced dataset closely matches dataset A,
different methods were employed to extract data samples. For
dataset A, a sliding window with a 0.5-second hop size was
used to extract data points, while in dataset B, each event
was extracted only once, based on the middle point of each

event. In both datasets, the label of each data sample is
assigned as the label corresponding to the middle time point.
Consequently, the number of data points extracted from dataset
A is on the same level as that from dataset B. Moreover, this
strategy maintains a consistent total number of samples across
different window sizes. The final component details can be
found in the Supplement material, Table I.

In this work, all labeled data from nine subjects in dataset
A and all data from dataset B were utilized for training. The
labeled data from the remaining three subjects in dataset A
were used to test the model performance in the ID classifica-
tion task, and the data from unlabeled sounds from the same
three subjects in dataset A were used as OOD inputs for OOD
detection task testing.

To further balance the training dataset, data from Dataset B
were merged into the “cough” and “other” classes of dataset
A after balancing dataset B. Specifically, N samples were
randomly selected from the “other” class in Dataset B, where
N corresponds to the number of “cough” events in Dataset
B. To simulate real-world scenarios, no data enhancement or
augmentation was performed on the validation dataset.

To evaluate the improvement brought by the enhanced
dataset, we compared the model built using solely dataset A
with the model built using the enhanced dataset. The results
in Section IV-A highlight the importance of both the quantity
and quality of the dataset.

C. Architecture

The multimodal model incorporates Efficient Convolutional
Neural Network (CNN), MobileNet [35]-[37] alongside a
CNN-based IMUNet. MobileNet, pretrained on ImageNet [38]
and AudioSet [39], is utilized to extract features from the audio
modality, serving as the backbone for the single modality [40].
The multimodal model is constructed by combining MobileNet
for audio embeddings with a simple 4-layer CNN model for
IMU embeddings. For the training strategy, we leverage the
pretrained weights of MobileNet for audio feature extraction,
while IMUNet and all other network components are trained
from scratch. To enhance the model’s robustness against out-
of-distribution (OOD) inputs, a Virtual-logit Matching (ViM)
OOD detector [30] is integrated. Further details on the mul-
timodal model architecture are provided in the Supplement.
(source code will be made public after the paper is accepted.)

D. Experiment Setup

We evaluated our system using a cross-subject setting,
wherein the data used for training and testing originate from
different subjects. This configuration presents a greater chal-
lenge compared to an in-subject setting, where the training and
testing data are derived from the same subjects. This conclu-
sion is drawn from our preliminary investigations. Specifically,
we randomly selected three subjects from dataset A as the
leave-out test sets, while the data from the nine remaining
subjects in dataset A were utilized as training sets.Dataset A
was specifically chosen for testing due to its alignment with
our experimental objectives. To establish statistical reliability,
we performed 6 independent experimental iterations for each
model, with 4 following a standard systematic cross-validation
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procedure and 2 for more consistent and robust results. The
two additional iterations utilized sets selected to enhance stable
results as a high performance (~ 94.7% accuracy) observed
in the original 4-folds, which can lead to internal bias in
the model. The results from each fold can be found in the
source code provided in Section III.C and the supplementary
material Section V. This evaluation framework enables a more
consistent comparison of model generalization across different
subject populations.

Besides, to evaluate the stability of the system, we con-
ducted tests using varying sampling rates (f) and window sizes
(7). When modifying the sampling rates, only the sampling
rate of the audio modality was altered, while the IMU main-
tained the same rate. This approach takes into consideration
the higher risk of user information leakage associated with
audio data, whereas IMU data is considered to be more
secure. Consequently, we maintained the IMU sampling rate
to optimize performance, while reducing the audio sampling
rate to enhance user privacy.

For the training of each model, we employed a batch size
of 32 and the Adam optimizer. The learning rates were set
at 3 x 10~* for the audio modality and 2 x 10~* for the
IMU modality. These learning rates were determined to be
optimal through multiple hyperparameter search iterations. To
ensure effective training, we also implemented a warm-up
phase followed by learning rate decay. Each model was trained
for 30 epochs, and the model that achieved the highest cough
F-1 score was preserved, as our primary focus in this system
is cough detection.

For OOD detection, we set the dimensionality D to 512
to extract the principal subspace and the residuals. Given
that data components can influence the significance of the
eigenvalues for each class, we also evaluated the impact of
using only cough and speech data in the training set in
Section IV-C. These classes were selected due to their distinct
identifiability compared to other classes, and this distinction
has proven beneficial for OOD detection.

E. Evaluation Metrics

For the ID classification problem, we employed classic
classification metrics to evaluate the model’s performance,
including accuracy, mean Precision (mP), cough FI, and
speech F1 [41]. Accuracy measures the overall correctness
of the model by calculating the ratio of correctly predicted
instances to the total instances. mP provides an average mea-
sure of precision across all classes, ignoring the bias caused
by the imbalance issue. The F1 scores for cough and speech
are particularly crucial as they offer a balanced measure of
precision and recall, reflecting the model’s effectiveness in
identifying these specific classes.

For the OOD detection problem, we utilized the Area Under
the Receiver Operating Characteristic Curve (AUROC), FPR95
and Detection Error [42] by treating ID as positive class and
OOD as negative class. AUROC is essential for evaluating
the trade-off between true positive and false positive rates
across various thresholds, providing a comprehensive measure
of the model’s discriminatory power. FPR95 assesses the false

TABLE II: Comparison on ID 3-Class Classification at f =
16 kHz and 7 = 1.5 s

Modality  Loss Acc mP cough_fl  speech_fl
el ineledoss 09110 09215 0.8606 0.9644
smngle SINGIe-IOSS 10,0221 4£0.0250  +£0.0211  +0.0100
- weighted 09077 09233  0.8667 0.9609
smgie single-loss ~ +0.0253  +0.0224  £0.0242  +0.0101
» - 0.9124 09315  0.8665 0.9644
mutlt mull=loss 100203 4£0.0214  £0.0241  £0.0093
» weighted  0.9140 09247  0.8668 0.9649
muitt multi-loss  £0.0205  +£0.0228  +0.0253  +0.0085

“Rows 1 and 3 present baseline models configured according to the
settings established in our prior work [7], with slight improvements
achieved through hyperparameter tuning.

positive rate when the true positive rate is fixed at 95%,
offering insights into the model’s performance under specific
conditions and lower is better. Detection Error quantifies the
proportion of instances where the model incorrectly identifies
OOD samples.

Furthermore, we assessed the overall performance using
standard classification metrics by treating OOD inputs as
the third (other) class. This approach simulates real-world
scenarios where the primary concern is the accurate detection
of cough and speech sounds under the presence of known noise
and unknown OOD sounds.

IV. EXPERIMENTS

We set up four experiments to comprehensively evaluate our
system. Section IV-A tests the improvements achieved through
weighted multi-loss functions and data enhancement. Section
IV-B examines the system’s sensitivity to different sampling
rates (f) and window sizes (7). Section IV-C evaluates the
performance of OOD detection. Section IV-D conducts error
analyses. Finally, Section IV-E discusses all the results and
proposes directions for future work.

A. Classification Optimization with Weighted Multi-loss
and Data Enhancement

The optimization for ID classification task include weighted
multi-loss and data enhancement techniques. Tab. II presents
a comparison between the standard cross-entropy loss and the
weighted loss. The weighted loss assigns a penalty of 10 for
incorrectly detecting a cough, whereas the penalty for other
errors is set to 1.

From the single modality analysis, it is evident that the
weighted loss marginally enhances cough detection, thereby
improving the mean Precision (mP). However, due to the
imbalanced evaluation data, there is a slight decline in overall
accuracy. From the multimodality analysis, the weighted loss
slightly improves the performance of detecting both cough and
speech, resulting in increased accuracy while sacrificing the
performance of other class detections, leading to a decrease in
the mP.

Compared to single and multi modalities, the multi modality
overall enhances cough detection. The application of weighted
loss further aids in this improvement, though its impact is more
obvious in the single modality.
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We maintained the weighted loss functions and further
optimized the model by implementing data enhancement. In
Fig. 2, we present a comparative analysis of the single-
modal model against the multimodal models, with and without
data enhancement, across various audio sampling rates. The
multimodal model trained with enhanced data is denoted as
“Multimodal+.”

We observe that overall, multimodal models outperform
the single-modal model, particularly in cough detection. This
improvement is more pronounced at lower f. Additionally, the
multimodal model trained with enhanced data further enhances
cough recognition performance.

B. Sensitivity to Sampling Rates and Window Sizes

This experiment is designed to evaluate the sensitivity of
three models (single-modal, multimodal, and multimodal+)
across varying f and 7. We tested f ranging from 500 Hz
to 16 kHz and 7 ranging from 0.5 to 5 s.Results for 500 Hz
and 16 kHz are presented in Fig. 2, with the full set of results
available in the supplementary materials.

From Fig. 2, performance declines as the f decreases for
both single-modal and multimodal models. A significant drop
is observed for the single-modal model at approximately 1
kHz and a slight increase in the drop rate is observed for
multimodal models. Our preliminary analysis [11] indicates
that 750 Hz is the highest f capable of preserving the content
of speech accurately being recognized for user privacy protec-
tion. Additionally, lower f contributes to saving computational
resources, making it more suitable for resource-constrained
systems. At 750 Hz, the multimodal models maintain an
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Fig. 2: Comparison of single-modal and multimodal models
on classification task for ID samples using accuracy, mean
precision, cough F1, and speech FI metrics. Average results
from six runs are presented. “Multimodal+” represents the
multimodal model trained with data enhancement. (7 = 5 s)

accuracy of approximately 0.875 and a cough FI score of
around 0.825.
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Fig. 3: Comparison of single-modal and multimodal models
across varying sampling rates (f) and window sizes (7):
Means and corresponding standard deviations over Six runs.
“Multimodal+” denotes the multimodal model trained with
data enhancement.

From Fig. 3, it is evident that the overall performance
remains reliable within a 7 range of 1-2 s across various f
for all three models. Even at 750 Hz, multimodal models
achieve an accuracy and mean precision of approximately
0.88. However, for 7 between 3-5 s, there is a notable decline
in the performance of single-modal model, particularly in
accurately detecting coughs. When the 7 is reduced to less than
1 s, performance significantly decreases, as this duration is
insufficient to represent a single cough event. This inadequacy
also results in a decrease in the F1 score for speech detection.

In comparison to single-modal model, multimodal models
demonstrate greater stability across varying f and 7. This
increased stability can be attributed to the compensatory effect
of the information derived from the IMU modality, which
addresses the deficiencies in the audio modality. Additionally,
multimodal models that have been trained with enhanced data
exhibit enhanced robustness across different 7. This robustness
is particularly evident at higher f, where all information
from the audio modality is preserved. This may be due to
the discrepancy in feature distribution between dataset A and
dataset B, which arises from the process of downsampling.
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C. OOD Detection Analysis

To maintain consistency with our preliminary work, we have
chosen 7 as 1.5 s for the OOD detection task analysis. Since
only dataset A is used as the evaluation set, we exclusively
utilize the training data from dataset A for feature extraction
in the OOD detection process. We also evaluated the OOD
detection performance using the training data from dataset B,
and the results were comparable to those obtained using only
the training data from dataset A. Therefore, we present results
based solely on the training data from dataset A. This approach
not only ensures consistency but also reduces computational
costs. Furthermore, this method provides a fair comparison
with the single-modal model, as only dataset A training data
is used in the single-modal OOD detection procedure.

Fig. 4 shows the comparison of single-modal and multi-
modal models across varying proportions of OOD data. The x-
axis represents OOD data proportion ranging from 0% to 50%,
where n% indicates the number of OOD samples introduced
in the test set. This quantity is given by:

The # of OOD Samples
n%

= -100%. 1
The # of Samples in the Test Data & b

The incorporation of OOD detection does not impact the
results when there is no OOD data involved at higher f. At
750 Hz, there is a decrease in accuracy by approximately 0.01
in the absence of OOD input. With the increase of OOD data
involved, the models with OOD detection remain robust, and
the multimodal model with OOD detection surpasses the one
without the OOD detection at 10% OOD data presence. The
involvement of OOD detection primarily increases the accu-
racy of cough detection due to the OOD detection threshold
being selected based on optimal cough detection performance.
We also observe that the speech F1 score improves at higher
f but decreases at lower f.

Compared to the single-modal model, the multimodal model
is more sensitive to OOD input at 16 kHz without the OOD de-
tection. However, with the incorporation of the OOD detection
algorithm, the multimodal model becomes stable and surpasses
the single-modal model that also incorporates OOD detection.
At 16 kHz, the multimodal model slightly outperforms the
single-modal model, achieving 89.58% accuracy and a cough
F1 score of 0.7548 with 50% of the data being OOD. At 750
Hz, the robust single-modal model shows lower performance
in terms of speech F1 score, resulting in reduced accuracy.
This will be discussed in detail in Section IV-D. Conversely,
the multimodal model achieves 87.29% accuracy and a cough
F1 score of 0.7009, sacrificing a bit of speech F1. Overall, the
robust multimodal model outperforms the single-modal model
in both scenarios, with and without the OOD detection.

Tab.IIl shows the comparison of OOD detection perfor-
mance using OOD metrics with 50% OOD data. “Multi-
modal+*” represents the Multimodal+ model with only cough
and speech sounds as ID training data. From the table, we
observe that after removing the imprecise and unclear class
“other,” the OOD performance improves, especially at lower
f. At higher f, higher AUROC and lower FPR95 indicate that
using only cough and speech can enhance overall performance
but requires a strict threshold. At lower f, all metrics improve.
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Fig. 4: Comparison of single-modal and multimodal models
across varying proportions of OOD Data. Average results over
six runs. The solid line represents performance without the
OOD detection algorithm, while the dashed line represents
performance with OOD detection algorithm implemented.

Specifically in the cough detection task, the optimized “Mul-
timodal+*” further improves accuracy to 90.08% at 16 kHz,
and to 87.30% at 750 Hz.

TABLE lll: Comparison of OOD Performance with Different
Training Data Components. * indicates that eigenvalues for
ViM score computation are extracted using only cough and
speech inputs.

Model Frequency AUROC?T  Detection Error] FPR95|
Sinelemodal 16 KHZ 0.7572 0.5060 0.8710
gle-modal - 950 Hy 0.7295 0.5261 0.9093
Multimodals 16 KHZ 0.8410 0.4150 0.7802
ui 750 Hz 0.7653 0.4752 0.9011
. 16 kHz 0.8604 0.4653 0.8832
Multimodal+* 755 ) 0.8658 0.4019 0.7541

D. Misclassified Component Analysis

In this section, we analyzed the errors in the robust mul-
timodal cough detection system to seek ways to improve its
performance. To better understand the misclassified samples,
we visualized the prediction results using confusion matrices
and box plots of a representative set, a single experimental run
that yielded overall performance metrics closest to the average,
as shown in Fig. 5a and Fig. 5b, respectively.

In Fig. 5a, we present the ratio of the number of data points
to the corresponding class to highlight the sounds that are more
prone to misclassification. We observe that at 16 kHz, “sneeze”
is the most challenging class for the system to recognize,
with 60% of these sounds being misclassified as “cough” in
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W. OOD Detection
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(b) Error Analysis Using Boxplots for OOD Scores Across All Classes: Results from a representative set

Fig. 5: Error Analysis Using Confusion Matrices (a) and Boxplots (b).

the system without the OOD detection. At 750 Hz, “sneeze,”
“groan,” and “laugh” are frequently misclassified. Even with
OOD detection, 60% of “sneeze” and 26% of “laugh” sounds
are classified as “cough,” while 42% of “groan” sounds are
classified as “speech.” Additionally, we observe that at 16 kHz,
there is a loss of 19% of “cough” and 3% of “speech” sounds
after implementing OOD detection. At 750 Hz, there is a loss
of 11% of “cough” and 3% of “speech” sounds following the
use of OOD detection.

Fig. 5b illustrates the OOD scores (ViM scores) for each
specific class to further explain the misclassified components
identified in Fig. 5a. The red dashed lines in Fig. 5b indicate
the thresholds that produce the best cough F1 score, which
are used to identify the critical class in our system, “cough.”
At 16 kHz, there is a small overlap between the OOD scores
of “cough” and “sneeze,” leading to the misclassification of
sneeze as cough. At 750 Hz, the OOD score distribution for
“cough” remains similar to that at 16 kHz, while the OOD
scores for other sounds slightly increase and become more
dispersed. These higher OOD scores result in misclassifica-

tions as either cough or speech sounds.

E. Discussion

In this study, we focus on developing a robust cough
detection system for wearable devices that can efficiently
detect cough sounds with minimal energy consumption. We
optimized the multimodal model proposed in the preliminary
work [7] and compared it with a single-modal model across
various sampling rates and window sizes. Additionally, we
employed OOD detection techniques to enhance robustness to
unknown OOD inputs.

Considering the uncertainties present in real-world sce-
narios, we developed and evaluated our system using data
collected from customized wearable devices (dataset A). Due
to the significant imbalance in dataset A, we incorporated an
online dataset B [33] to construct a higher quality dataset for
system development. To ensure realistic results, only dataset
A was used for testing. To further optimize the model, we
employed a multi-loss approach, integrating information from
both multimodal and pure audio modalities, which contain
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sound information that could better represent each class. We
also applied weights to the multi-loss to emphasize the sig-
nificant but challenging-to-predict class, “cough”. Moreover,
we refined the OOD detection algorithm by reconstructing the
components of the training set.

We set up the robust cough detection system design as
ID classification task and OOD detection task. For ID clas-
sification, we switched from a binary classification of cough
and speech detection to a three-class classification by adding
an “other” class. This class includes nonverbal vocalization
sounds and speech sounds from people around the subject.
Involving more classes in the model development enhances
the model’s robustness against non-cough and non-speech
sounds. For the OOD detection task, we classified unknown
sounds, such as environmental noises and silence, as OOD,
while all sounds belonging to ID classes were classified as
ID. The combination of three-class classification and OOD
detection supports the model’s stability under varied inputs.
We conducted four experiments to compare and evaluate our
systems under variance circumstances.

In the first experiment, we observed an improvement in
cough detection by adding the IMU modality and training
with a weighted loss, as shown in Tab. II. We maintained
the same IMU frequency and tested model performance under
varying audio frequencies (f), as illustrated in Fig. 2. The
plot indicates that the improvement due to the IMU modality
is more pronounced at lower f. This is reasonable because we
observed significant spikes in the accelerometer and gyroscope
signals during most cough sounds, along with fluctuations
for speech and other sounds. Therefore, the information from
the IMU modality compensates for the missing information
caused by reduced frequency. Fig. 2 also demonstrates the
improvement resulting from incorporating more cough data.
This provides evidence that the model can be further improved
by acquiring additional data.

In the second experiment, we compared model performance
over varying window sizes (7) at f as 16 kHz, 750 Hz, and 500
Hz. 750 Hz is noteworthy as it effectively protects user privacy
[11] is noteworthy as it effectively protects user privacy [11],
while the 500 Hz rate is notable due to its lower consumption
cost, which is advantageous for Edge Al development. In Fig.
3, we observe that the single-modal model is more sensitive
to 7 across different f, with the best results achieved using
a 7 of 1-2 s. In contrast, multimodal models demonstrate
greater robustness with larger 7, suggesting their ability to
learn important features even within extensive 7. For both
models, there is a significant performance drop with 7 smaller
than 1 s, indicating that at least 1 s is necessary to capture the
complete information of a cough. Additionally, we observe
an improvement in cough detection for the multimodal model
when trained with more data, consistent with the findings from
the first experiment.

In the third experiment, we tested the model’s robustness to
different proportions of OOD data during inference time and
incorporated the ViM OOD detection algorithm to enhance this
robustness. From Fig. 4, we observe that the multimodal model
is more sensitive to OOD data without the OOD detection.
However, when combined with the OOD detection algorithm,

the multimodal model becomes stable and achieves the best
overall results. This sensitivity may be due to the additional
uncertainty introduced by IMU signals. For example, during
silent periods, it is easier to distinguish using the audio
modality, but the IMU signals may resemble those of cough or
speech due to significant subject movement. We also observe
a degradation in speech F1 scores in the single modal OOD
model, primarily due to the decrease in speech recall from 0.89
to 0.76 when varying the OOD threshold from 0% to 50%.
This performance drop can be attributed to two main factors:
the OOD threshold being optimized for cough detection F1
scores rather than speech, and the inherent spectral similarity
between speech and certain OOD classes (such as “speech-
far” and “laugh”) as shown in Fig. 2 of the Supplementary
Material. The spectral overlap becomes more pronounced at
lower frequencies, leading to increased misclassification by the
OOD detection algorithm. To further optimize OOD detection,
we removed the “other” class during the fitting of eigenvalues
for ViM. Tab. III shows that after removing the “other” class,
OOD detection performance improves significantly, especially
at lower f, while the cough recognition improves slightly. We
hypothesize that this improvement is due to the unclear fea-
tures in the “other” class caused by its multiple components,
such as sneezes, groans, etc., indicating that data quality is
also crucial for effective OOD detection.

Then, we analyzed the misclassified components of the best
system we developed, which is the multimodal model trained
with enhanced data integrated with ViM OOD detection using
only cough and speech sounds. This analysis is illustrated in
Figs. 5a and 5b. From these figures, we observe that the classes
most prone to misclassification are nonverbal vocalization,
including sneezes, groans, and laughs and instances from the
minor classes within ”Other” are predominantly misclassified
as either OOD as we excluded “Other” in ID eigenvalue
extraction. To address this, we could incorporate more specific
class data by training a large-scale model using publicly
available online data for nonverbal vocalizations, as well as
by collecting additional data on our own.

Fig. 5b clearly shows a gap between the means of the OOD
score distribution for cough and speech. We use the best cough
F1 score to select the threshold lead to the drop in speech
detection performance, as seen in Fig. 4. However, we observe
promising performance in speech detection without the OOD
detection. Therefore, it is possible to improve speech detection
by using an adaptive threshold based on the different classes
predicted by the classifier.

V. CONCLUSION AND FUTURE WORK

This paper presents our most recent efforts towards develop-
ment of a robust cough detection system by integrating audio
and IMU signals with an out-of-distribution (OOD) detection
technique. This sensor system is suitable for integration into
wearable devices thanks to its miniaturized size and low-cost
computation, potentially facilitating at-home remote symptom
monitoring of cough. We optimized the multimodal cough
detection system by training with enhanced data and employ-
ing a weighted multi-loss approach for the ID classifier. We
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optimized OOD detection by only using the essential and high-
quality classes (cough and speech). The results demonstrate
the robustness of this system across window sizes from 1 to 5
seconds and performs efficiently at a lower audio frequency of
750 Hz. This is the highest down-sampling rate that muffles
the speech causing it to be incomprehensible to protect user
privacy. Specifically, with a 1.5-second window size, the
system achieved 91.63% accuracy and a cough F1 score of
0.8754 at a 16 kHz audio frequency, and 87.72% accuracy and
a cough FI1 score of 0.8406 at 750 Hz on our self-collected
dataset. Furthermore, while the multimodal model is sensitive
to OOD input, the final optimized robust system demonstrated
resilience to OOD data, achieving 90.08% accuracy and a
cough F1 score of 0.7548 at a 16 kHz audio frequency, and
87.3% accuracy and a cough F1 score of 0.7015 at 750 Hz,
even when half of the data was OOD during inference.

Future improvements will prioritize acquiring higher quality
data, as data quality is crucial for developing both ID classifier
and OOD detection, which relies on features extracted from the
training data. Moreover, using online or self-collected datasets
to enhance nonverbal vocalization detection is significant due
to the high risk of misclassification of non-verbal sounds,
especially at lower audio frequencies. We are also planning to
expand our population to incorporate participants with various
health conditions. Finally, incorporating additional modalities,
such as heart rate and respiratory rate detection, electrocardio-
gram and other health symptoms of participants, can further
enhance model performance. Besides system improvements,
because this study was performed in healthy patients, this
system will need to be further validated in patients with asthma
and COPD.
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