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Abstract— Longitudinal and continuous monitoring of
cough is crucial for early and accurate diagnosis of res-
piratory diseases. While recent developments in wearables
offer a promise for daily assessment at-home remote symp-
tom monitoring with respect to more accurate and less
frequent assessment in the clinics, important practical
challenges exist such as maintaining user speech privacy
and potential poor audio quality and background noise
in uncontrolled real-world settings. This study addresses
these challenges by developing and optimizing a compact
multimodal cough detection system, enhanced with an
Out-of-Distribution (OOD) detection algorithm. The cough
sensing modalities include audio and Inertial Measurement
Unit (IMU) signals. We optimized this multimodal cough
detection system by training with an enhanced dataset
and employing a weighted multi-loss approach for the ID
classifier. For OOD detection, we improved the system by
reconstructing the training data components. Our prelimi-
nary results indicate the robustness of the system across
window sizes from 1 to 5 seconds and performs efficiently
at low audio frequencies, which can protect user privacy
due to illegibility or incomprehensibility at lower sampling
rates. Although we found that the multimodal model is
sensitive to OOD data, the final optimized robust mul-
timodal cough detection system outperforms the single-
modal model integrated with OOD detection. Specifically,
the optimized system maintains 90.08% accuracy and a
cough F1 score of 0.7548 at a 16 kHz audio frequency, and
87.3% accuracy and a cough F1 score of 0.7015 at 750 Hz,
even with half of the data being OOD during inference. The
misclassified components mainly originate from nonverbal
sounds, including sneezes and groans. These issues could
be further mitigated by acquiring more data on cough,
speech, and other nonverbal vocalizations. In general, we
observed that the Audio-IMU multimodal model incorpo-
rating OOD detection techniques significantly improved
cough detection performance and could provide a tangible
solution to real-world acoustic cough detection problems.
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I. INTRODUCTION

Respiratory diseases, such as asthma and chronic obstructive

pulmonary disease (COPD), impose a significant global burden

in terms of morbidity and mortality [1]. Cough is a primary

symptom of these chronic conditions, whose frequency is used

for both diagnosis and management [2]. However, accurate

quantification of cough frequency is challenging because it

often relies on patient recall, which tends to underestimate the

actual frequency of coughing [3]. This underestimation can

negatively impact clinical care and lead to undertreatment of

these chronic conditions. To improve the assessment of chronic

cough, continuous tracking of the type and frequency of cough

is essential. In-home wearable devices can facilitate long-

term remote symptom monitoring by incorporating machine

learning models to record and analyze biosignals [4], [5],

such as cough sounds. Typically, these models classify specific

sounds using only audio input, assuming the data are clean.

The reliability of these systems is heavily dependent on the

quality of the collected audio data, which may introduce

significant uncertainty during the activities of the daily life

in real world environments. Therefore, incorporating a robust

architecture to guard against this uncertainty and implementing

multimodality to enhance detection are important.

The integration of data acquired from multiple sensing

modalities offers several advantages for improving system

reliability and performance. Using data from diverse sources,

such as audio, visual, and textual information, machine learn-

ing (ML) models can achieve a more comprehensive under-

standing of the problem at hand. In clinical scenarios, bio-

signals, demographic information, and clinical knowledge are

commonly used together as additional source of information

for smart health systems [6]. In our prior work [7], an audio-

Inertial Measurement Unit (IMU) multimodal model has been

shown to improve the accuracy and robustness of cough

detection systems during physical activities; thereby, reducing

error rates and enhancing overall system resilience.

Another way to improve model robustness is to incorporate

the Out-of-Distribution (OOD) detection, which is a technique

employed to identify samples that deviate from the distribution

of the data used to construct the system. We call these samples
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Fig. 1: Overview of the Robust Multimodal Cough Detection System Pipeline. 1) The data are collected by chest-mounted

wearable sensors; 2) The filtered audio signal and IMU signals are passed through MobileNet and an IMU Net respectively

to obtain audio and IMU embeddings; 3) These embeddings are then concatenated and passed through the OOD detection

module to get an OOD score; 4) If the OOD score exceeds a specified threshold, the embedding features are sent to a classifier

for the final prediction; otherwise, directly classified as other sounds.

as the “OOD data” and the data used for building the system

are called “In-Distribution (ID) data”. Deep neural network

classifiers can give high-confidence predictions to OOD inputs

and lead to suboptimal results [8]–[10]. Therefore, OOD de-

tection is essential for ensuring the robustness and reliability of

machine learning and AI systems. In our preliminary work [7],

[11], we have shown that incorporating OOD detection tech-

niques improves cough detection performance by preventing

unreliable predictions on unfamiliar data. Additionally, OOD

detection facilitates better generalization by defining a model’s

operational boundaries, enables active learning by prioritizing

outliers for further training, and maintains trustworthiness by

acknowledging and handling uncertainties appropriately. Thus,

OOD detection is vital for the development of resilient, safe,

and reliable AI systems.

To design an effective and robust multimodal cough de-

tection system for real-world applications, we developed a

comprehensive data collection protocol for this study [7].

Using data gathered through this protocol, we constructed

an advanced multimodal cough and speech detection model

using audio and IMU signals, which include accelerometer,

gyroscope, and magnetometer data, thereby providing critical

information about motion and orientation. At the end, the

multimodal models demonstrated promising results, outper-

forming single-modal models in recognizing coughs, speech,

and other vocalizations. The incorporation of OOD detection

further enhanced the model’s robustness in identifying cough

and speech sounds amidst OOD inputs. However, the data used

in the previous work were highly unbalanced, and the analysis

was not as comprehensive, allowing an opportunity for further

improvement for this current study presented here.

In this paper, we present further optimization of our multi-

modal cough and speech detection system by enhancing both

the data component and model architecture. Experiments were

designed to analyze the impact of these optimizations on both

ID classification task and OOD detection performances. The

main contributions of this paper include:

• Adding the IMU modality significantly improves cough

detection performance, with these improvements being

more pronounced at lower audio frequencies. The use of

an enhanced balanced dataset and a weighted multi-loss

function further aids multimodal modeling, resulting in

an improved cough F1 score.

• The optimized multimodal model demonstrates stability

against the single-modal model’s sensitivity to window

sizes and audio frequencies. Even at lower frequencies,

the multimodal model remains stable with window sizes

ranging from 1 to 5 seconds.

• Incorporating OOD detection addresses the multimodal

model’s sensitivity to unknown OOD input. The final

system can maintain a cough F1 score above 0.7 at

750 Hz, even when half of the data are OOD. This

was a significant improvement over the F1 score of 0.6

obtained by a baseline, and it highlights the challenge and

opportunities associated with overcoming OOD detection

in this domain.

• Comprehensive analysis reveals the misclassified compo-

nents in our system, demonstrating that most misclas-

sifications involve non-verbal vocalization sounds. This

insight provides a direction for further improvement.

The structure of this paper is organized as follows: Section

II reviews state of the practice for cough detection, OOD

detection, and our preliminary studies. Section III details

data collection, model architecture, evaluation metrics, and

experimental setup. Section IV presents results of four ex-

periments, including tests on audio frequency and window

size sensitivities, OOD data sensitivity, and misclassification

analysis, along with a thorough discussion of these results.

Finally, Section V concludes the work and suggests directions

for future research.

II. RELATED WORK

Automatic cough detection has been researched extensively

[12]–[14] and the keys to improve accuracy include feature
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selection and modeling. Recently, there is more research using

machine learning and deep learning methodologies to identify

the most effective signal features and the most accurate detec-

tion methods [15], [16]. These studies have explored various

features, including Short-Time Fourier Transform (STFT),

Mel-frequency cepstral coefficients (MFCC), and Mel-scale

filter banks (MFB), alongside classifiers such as logistic re-

gression, feedforward artificial neural networks, support vector

machines, and random forests. To further optimize detection

algorithms, Lee et al. [17] further proposed advanced cough

detection systems by integrating data enhancement processes.

Moreover, other studies have addressed hardware device is-

sues, specifically cross-device discrepancies, by employing

ensemble classifiers [18], [19].
Besides a cough detection algorithm, techniques for im-

proving the robustness of the system, such as OOD detection,

can be used to improve the stability of the system. Recent

contributions have focused on detecting OOD data within the

field of computer vision [20]–[31]. Some methods utilize the

maximum value of the softmax function to distinguish OOD

inputs without modifying the underlying pre-trained model

architecture [20], [21], while others incorporate an additional

output to indicate the confidence of the results for identifying

OOD inputs [22]–[24]. Furthermore, generative models, such

as Variational Autoencoders (VAE) and diffusion probabilistic

models (DDPM), can be employed for OOD detection by

performing analyses in the latent space [25], [31].
Another approach to enhancing system robustness is the in-

corporation of multiple modalities, which has proven effective

in both computer vision and natural language processing. In

the domain of cough detection, M. Paha et al. [32] demon-

strated the utility of accelerometer signals for cough detection,

though it was found to be slightly less accurate than audio

signals. Lara Orlandic et al. [33] further advanced this field by

creating an audio-IMU dataset, illustrating the improvements

achieved through multimodal integration.
In our previous work [11], we demonstrated the effec-

tiveness of a robust pipeline that integrated cough and

speech detection algorithms with OOD detection, using Mel-

spectrogram inputs with various sampling frequencies and

window sizes. Furthermore, we showed an improvement in

the problem of detecting cough sounds during different daily

activities (standing, walking, running) by transitioning from a

single modality to a multimodal approach [7]. In this study, we

will focus on the optimization and analysis of the multimodal

cough detection system that incorporates OOD detection.

III. PROPOSED METHODS

We divide the system design problem into ID classification
problem and OOD detection problem. ID classification

problem is a three-class classification that aims to accurately

classify “cough”, “speech”, and other vocalization sounds

including sneezing, deep breathing, groaning, laughing and

speaking sounds from individuals around the subject. OOD

detection is employed to recognize unknown sounds in the

testing phase, simulating real-world scenarios. Our results

indicate that the system effectively detects cough sounds

amidst a variety of unknown sounds.

The primary challenge of this work comes from the limited

and unbalanced data. In this study, our objective is to improve

our robust multimodal cough detection system by optimizing

both the classification model and the OOD detection algorithm

by improving the quality of the data and developing a data-

adaptive system. Our optimization strategy includes enhancing

the dataset with an available online dataset, improving the

classification model by employing a multi weighted loss func-

tion that weights different class losses based on the difficulty

of detecting different classes and joins loss from both signal

modality and multimodality, and improving OOD detection by

refining the illness eigenvalues derived from the feature space

of the multimodal model.

A. Datasets
To deal with limited data, two datasets were combined

together for the system development. To better illustrate the

details of these two datasets, they are denoted as dataset A

and dataset B. We refer to the dataset collected for this study

as dataset A [7] and the online public multimodal dataset

collected by Lara Orlandic et al. [33] as dataset B.

Dataset A was built with data from a total of 13 participants

and this data collection process was approved by NC State

University IRB Protocol 25003 on April 13, 2023. Data from

12 participants were used in this study since the data from

the last participant did not include IMU data. The participants

were healthy individuals between 20 and 30 years old. In the

data collection process, each participant performed a series of

vocalizations under various activity levels. The participants sat

(∼ 2 min), walked (∼ 2 min), ran (∼ 2 min), walked (∼ 2 min)

and sat (∼ 2 min) with 30-second resting intervals in each ac-

tivation transition. This activity cycle was repeated three times

and each time participants were required to perform different

vocalizations including pure coughing, talking, talking while

coughing, and other nonverbal vocalization sounds.

Audio was recorded by two chest-mounted microphones,

one facing away from the participant (out-microphone) and

one facing toward the participant (in-microphone). See the sen-

sor arrangement in Fig. 1. These microphones were repurposed

from commercially available Bluetooth earbuds (Tozo model

T10 [34]), with the speaker circuit disconnected. The move-

ment of the participants was tracked using the MetaMotionS r1

sensor, mounted on the chest, which captured 9-axis IMU data

(accelerometer, gyroscope, and magnetometer). IMU signals

were sampled at 100 Hz and audio signals were sampled at

16 kHz.

At the beginning of each recording, participants clapped

three times and this procedure is used for data synchronization

TABLE I: Summary of Datasets

ID OOD

cough
(∼ 28.2%)

speech
(∼ 12.9%)

other *

(∼ 59.6%)
unlabeled sounds

Dataset A ∼27 min ∼81 min ∼25 min ∼340 min

Dataset B ∼ 119 min ∼350 min

* The “other” class in Dataset A includes sneezing, deep breathing, groan-
ing, laughing and speaking sounds from individuals around the subject.
* The “other” class in Dataset B includes laughing, throat clearing, and
deep breathing.
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across different modalities. These three claps are distinctly

observable in both the audio and the IMU signals, producing

accurate synchronization. Then a low-pass FIR filter with

a 3 kHz cut-off frequency was applied to attenuate high-

frequency noise. This cutoff frequency was chosen based on

previous findings showing stable performance over 2 kHz

[11], ensuring the retention of low-frequency information to

maintain the model’s performance for edge-AI development,

which typically supports limited computational cost.

The duration of audio recordings for each category is

detailed in Tab. I. We categorize sounds into several classes:

participant-generated sounds such as “cough”, “speech”,

“sneeze”, “deep breath”, “groan” and “laugh”; “speech (far)”,

which represent speech from individuals around the subject;

and “unlabeled sounds”, indicating unlabeled environmental

noises; including periods of silence. All participant-generated

sounds except for “cough” and “speech” are treated as “other”

class in ID data, and all “unlabeled sounds” are treated as OOD

data. For the classification task, this is an imbalanced dataset

as shown in Tab. I with the majority of the sounds falling into

the “speech” category, followed by “cough” and “other”. To

address this imbalance, we combined dataset A with an online

available dataset B [33] to create an enhanced dataset.

Dataset B was acquired by Lara Orlandic et al. [33] and

this dataset was selected due to its similar format to dataset A.

Both datasets have identical audio and IMU sampling rates,

16 kHz and 100 Hz respectively, and were collected under

comparable conditions. Dataset B comprises data from 20

healthy subjects aged 26.5 ± 6.5 years, with data from 15

subjects available online. This dataset includes nearly 4 hours

of biosignal data, featuring 4,300 annotated cough events. It

combines acoustic signals from dual microphones, one facing

the body and the other outward, with kinematic data from

tri-axial accelerometers and gyroscopes. These multimodal

biosignals encompass a variety of non-cough-related sounds

and physical movements to simulate realistic environmental

conditions. Each recording lasts approximately 10 seconds,

during which subjects were asked to produce either a cough

sound or one of three sounds that could produce similar audio

or chest motion artifacts as a cough: laughing, throat clearing,

and deep breathing.

Based on our observation, magnetometer signals do not

exhibit a specific relationship with different sounds, and

dataset B does not have magnetometer signals; therefore, only

accelerometer and gyroscope signals were used as the IMU

modality.

B. Data Preparation

To construct a high-quality and well-performing deep learn-

ing model, the quality of the dataset is crucial. Tab. I shows

that compared to dataset B, the total recording time of dataset

A is approximately four times less. To ensure that the dis-

tribution of the enhanced dataset closely matches dataset A,

different methods were employed to extract data samples. For

dataset A, a sliding window with a 0.5-second hop size was

used to extract data points, while in dataset B, each event

was extracted only once, based on the middle point of each

event. In both datasets, the label of each data sample is

assigned as the label corresponding to the middle time point.

Consequently, the number of data points extracted from dataset

A is on the same level as that from dataset B. Moreover, this

strategy maintains a consistent total number of samples across

different window sizes. The final component details can be

found in the Supplement material, Table I.

In this work, all labeled data from nine subjects in dataset

A and all data from dataset B were utilized for training. The

labeled data from the remaining three subjects in dataset A

were used to test the model performance in the ID classifica-

tion task, and the data from unlabeled sounds from the same

three subjects in dataset A were used as OOD inputs for OOD

detection task testing.

To further balance the training dataset, data from Dataset B

were merged into the “cough” and “other” classes of dataset

A after balancing dataset B. Specifically, N samples were

randomly selected from the “other” class in Dataset B, where

N corresponds to the number of “cough” events in Dataset

B. To simulate real-world scenarios, no data enhancement or

augmentation was performed on the validation dataset.

To evaluate the improvement brought by the enhanced

dataset, we compared the model built using solely dataset A

with the model built using the enhanced dataset. The results

in Section IV-A highlight the importance of both the quantity

and quality of the dataset.

C. Architecture
The multimodal model incorporates Efficient Convolutional

Neural Network (CNN), MobileNet [35]–[37] alongside a

CNN-based IMUNet. MobileNet, pretrained on ImageNet [38]

and AudioSet [39], is utilized to extract features from the audio

modality, serving as the backbone for the single modality [40].

The multimodal model is constructed by combining MobileNet

for audio embeddings with a simple 4-layer CNN model for

IMU embeddings. For the training strategy, we leverage the

pretrained weights of MobileNet for audio feature extraction,

while IMUNet and all other network components are trained

from scratch. To enhance the model’s robustness against out-

of-distribution (OOD) inputs, a Virtual-logit Matching (ViM)

OOD detector [30] is integrated. Further details on the mul-

timodal model architecture are provided in the Supplement.

(source code will be made public after the paper is accepted.)

D. Experiment Setup
We evaluated our system using a cross-subject setting,

wherein the data used for training and testing originate from

different subjects. This configuration presents a greater chal-

lenge compared to an in-subject setting, where the training and

testing data are derived from the same subjects. This conclu-

sion is drawn from our preliminary investigations. Specifically,

we randomly selected three subjects from dataset A as the

leave-out test sets, while the data from the nine remaining

subjects in dataset A were utilized as training sets.Dataset A

was specifically chosen for testing due to its alignment with

our experimental objectives. To establish statistical reliability,

we performed 6 independent experimental iterations for each

model, with 4 following a standard systematic cross-validation
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procedure and 2 for more consistent and robust results. The

two additional iterations utilized sets selected to enhance stable

results as a high performance (∼ 94.7% accuracy) observed

in the original 4-folds, which can lead to internal bias in

the model. The results from each fold can be found in the

source code provided in Section III.C and the supplementary

material Section V. This evaluation framework enables a more

consistent comparison of model generalization across different

subject populations.

Besides, to evaluate the stability of the system, we con-

ducted tests using varying sampling rates (f ) and window sizes

(τ ). When modifying the sampling rates, only the sampling

rate of the audio modality was altered, while the IMU main-

tained the same rate. This approach takes into consideration

the higher risk of user information leakage associated with

audio data, whereas IMU data is considered to be more

secure. Consequently, we maintained the IMU sampling rate

to optimize performance, while reducing the audio sampling

rate to enhance user privacy.

For the training of each model, we employed a batch size

of 32 and the Adam optimizer. The learning rates were set

at 3 × 10−4 for the audio modality and 2 × 10−4 for the

IMU modality. These learning rates were determined to be

optimal through multiple hyperparameter search iterations. To

ensure effective training, we also implemented a warm-up

phase followed by learning rate decay. Each model was trained

for 30 epochs, and the model that achieved the highest cough

F-1 score was preserved, as our primary focus in this system

is cough detection.

For OOD detection, we set the dimensionality D to 512

to extract the principal subspace and the residuals. Given

that data components can influence the significance of the

eigenvalues for each class, we also evaluated the impact of

using only cough and speech data in the training set in

Section IV-C. These classes were selected due to their distinct

identifiability compared to other classes, and this distinction

has proven beneficial for OOD detection.

E. Evaluation Metrics

For the ID classification problem, we employed classic

classification metrics to evaluate the model’s performance,

including accuracy, mean Precision (mP), cough F1, and

speech F1 [41]. Accuracy measures the overall correctness

of the model by calculating the ratio of correctly predicted

instances to the total instances. mP provides an average mea-

sure of precision across all classes, ignoring the bias caused

by the imbalance issue. The F1 scores for cough and speech

are particularly crucial as they offer a balanced measure of

precision and recall, reflecting the model’s effectiveness in

identifying these specific classes.

For the OOD detection problem, we utilized the Area Under

the Receiver Operating Characteristic Curve (AUROC), FPR95

and Detection Error [42] by treating ID as positive class and

OOD as negative class. AUROC is essential for evaluating

the trade-off between true positive and false positive rates

across various thresholds, providing a comprehensive measure

of the model’s discriminatory power. FPR95 assesses the false

TABLE II: Comparison on ID 3-Class Classification at f =
16 kHz and τ = 1.5 s

Modality Loss Acc mP cough f1 speech f1

single single-loss
0.9110
±0.0221

0.9215
±0.0250

0.8606
±0.0211

0.9644
±0.0100

single
weighted
single-loss

0.9077
±0.0253

0.9233
±0.0224

0.8667
±0.0242

0.9609
±0.0101

multi multi-loss
0.9124
±0.0203

0.9315
±0.0214

0.8665
±0.0241

0.9644
±0.0093

multi
weighted
multi-loss

0.9140
±0.0205

0.9247
±0.0228

0.8668
±0.0253

0.9649
±0.0085

* Rows 1 and 3 present baseline models configured according to the
settings established in our prior work [7], with slight improvements
achieved through hyperparameter tuning.

positive rate when the true positive rate is fixed at 95%,

offering insights into the model’s performance under specific

conditions and lower is better. Detection Error quantifies the

proportion of instances where the model incorrectly identifies

OOD samples.

Furthermore, we assessed the overall performance using

standard classification metrics by treating OOD inputs as

the third (other) class. This approach simulates real-world

scenarios where the primary concern is the accurate detection

of cough and speech sounds under the presence of known noise

and unknown OOD sounds.

IV. EXPERIMENTS

We set up four experiments to comprehensively evaluate our

system. Section IV-A tests the improvements achieved through

weighted multi-loss functions and data enhancement. Section

IV-B examines the system’s sensitivity to different sampling

rates (f ) and window sizes (τ ). Section IV-C evaluates the

performance of OOD detection. Section IV-D conducts error

analyses. Finally, Section IV-E discusses all the results and

proposes directions for future work.

A. Classification Optimization with Weighted Multi-loss
and Data Enhancement

The optimization for ID classification task include weighted

multi-loss and data enhancement techniques. Tab. II presents

a comparison between the standard cross-entropy loss and the

weighted loss. The weighted loss assigns a penalty of 10 for

incorrectly detecting a cough, whereas the penalty for other

errors is set to 1.

From the single modality analysis, it is evident that the

weighted loss marginally enhances cough detection, thereby

improving the mean Precision (mP). However, due to the

imbalanced evaluation data, there is a slight decline in overall

accuracy. From the multimodality analysis, the weighted loss

slightly improves the performance of detecting both cough and

speech, resulting in increased accuracy while sacrificing the

performance of other class detections, leading to a decrease in

the mP.

Compared to single and multi modalities, the multi modality

overall enhances cough detection. The application of weighted

loss further aids in this improvement, though its impact is more

obvious in the single modality.
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We maintained the weighted loss functions and further

optimized the model by implementing data enhancement. In

Fig. 2, we present a comparative analysis of the single-

modal model against the multimodal models, with and without

data enhancement, across various audio sampling rates. The

multimodal model trained with enhanced data is denoted as

“Multimodal+.”

We observe that overall, multimodal models outperform

the single-modal model, particularly in cough detection. This

improvement is more pronounced at lower f . Additionally, the

multimodal model trained with enhanced data further enhances

cough recognition performance.

B. Sensitivity to Sampling Rates and Window Sizes
This experiment is designed to evaluate the sensitivity of

three models (single-modal, multimodal, and multimodal+)

across varying f and τ . We tested f ranging from 500 Hz

to 16 kHz and τ ranging from 0.5 to 5 s.Results for 500 Hz

and 16 kHz are presented in Fig. 2, with the full set of results

available in the supplementary materials.

From Fig. 2, performance declines as the f decreases for

both single-modal and multimodal models. A significant drop

is observed for the single-modal model at approximately 1

kHz and a slight increase in the drop rate is observed for

multimodal models. Our preliminary analysis [11] indicates

that 750 Hz is the highest f capable of preserving the content

of speech accurately being recognized for user privacy protec-

tion. Additionally, lower f contributes to saving computational

resources, making it more suitable for resource-constrained

systems. At 750 Hz, the multimodal models maintain an

Fig. 2: Comparison of single-modal and multimodal models

on classification task for ID samples using accuracy, mean

precision, cough F1, and speech F1 metrics. Average results

from six runs are presented. “Multimodal+” represents the

multimodal model trained with data enhancement. (τ = 5 s)

accuracy of approximately 0.875 and a cough F1 score of

around 0.825.

Fig. 3: Comparison of single-modal and multimodal models

across varying sampling rates (f ) and window sizes (τ ):

Means and corresponding standard deviations over six runs.

“Multimodal+” denotes the multimodal model trained with

data enhancement.

From Fig. 3, it is evident that the overall performance

remains reliable within a τ range of 1-2 s across various f
for all three models. Even at 750 Hz, multimodal models

achieve an accuracy and mean precision of approximately

0.88. However, for τ between 3-5 s, there is a notable decline

in the performance of single-modal model, particularly in

accurately detecting coughs. When the τ is reduced to less than

1 s, performance significantly decreases, as this duration is

insufficient to represent a single cough event. This inadequacy

also results in a decrease in the F1 score for speech detection.

In comparison to single-modal model, multimodal models

demonstrate greater stability across varying f and τ . This

increased stability can be attributed to the compensatory effect

of the information derived from the IMU modality, which

addresses the deficiencies in the audio modality. Additionally,

multimodal models that have been trained with enhanced data

exhibit enhanced robustness across different τ . This robustness

is particularly evident at higher f , where all information

from the audio modality is preserved. This may be due to

the discrepancy in feature distribution between dataset A and

dataset B, which arises from the process of downsampling.
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C. OOD Detection Analysis

To maintain consistency with our preliminary work, we have

chosen τ as 1.5 s for the OOD detection task analysis. Since

only dataset A is used as the evaluation set, we exclusively

utilize the training data from dataset A for feature extraction

in the OOD detection process. We also evaluated the OOD

detection performance using the training data from dataset B,

and the results were comparable to those obtained using only

the training data from dataset A. Therefore, we present results

based solely on the training data from dataset A. This approach

not only ensures consistency but also reduces computational

costs. Furthermore, this method provides a fair comparison

with the single-modal model, as only dataset A training data

is used in the single-modal OOD detection procedure.

Fig. 4 shows the comparison of single-modal and multi-

modal models across varying proportions of OOD data. The x-

axis represents OOD data proportion ranging from 0% to 50%,

where n% indicates the number of OOD samples introduced

in the test set. This quantity is given by:

n% =
The # of OOD Samples

The # of Samples in the Test Data
· 100%. (1)

The incorporation of OOD detection does not impact the

results when there is no OOD data involved at higher f . At

750 Hz, there is a decrease in accuracy by approximately 0.01

in the absence of OOD input. With the increase of OOD data

involved, the models with OOD detection remain robust, and

the multimodal model with OOD detection surpasses the one

without the OOD detection at 10% OOD data presence. The

involvement of OOD detection primarily increases the accu-

racy of cough detection due to the OOD detection threshold

being selected based on optimal cough detection performance.

We also observe that the speech F1 score improves at higher

f but decreases at lower f .

Compared to the single-modal model, the multimodal model

is more sensitive to OOD input at 16 kHz without the OOD de-

tection. However, with the incorporation of the OOD detection

algorithm, the multimodal model becomes stable and surpasses

the single-modal model that also incorporates OOD detection.

At 16 kHz, the multimodal model slightly outperforms the

single-modal model, achieving 89.58% accuracy and a cough

F1 score of 0.7548 with 50% of the data being OOD. At 750

Hz, the robust single-modal model shows lower performance

in terms of speech F1 score, resulting in reduced accuracy.

This will be discussed in detail in Section IV-D. Conversely,

the multimodal model achieves 87.29% accuracy and a cough

F1 score of 0.7009, sacrificing a bit of speech F1. Overall, the

robust multimodal model outperforms the single-modal model

in both scenarios, with and without the OOD detection.

Tab.III shows the comparison of OOD detection perfor-

mance using OOD metrics with 50% OOD data. “Multi-

modal+*” represents the Multimodal+ model with only cough

and speech sounds as ID training data. From the table, we

observe that after removing the imprecise and unclear class

“other,” the OOD performance improves, especially at lower

f . At higher f , higher AUROC and lower FPR95 indicate that

using only cough and speech can enhance overall performance

but requires a strict threshold. At lower f , all metrics improve.

Fig. 4: Comparison of single-modal and multimodal models

across varying proportions of OOD Data. Average results over

six runs. The solid line represents performance without the

OOD detection algorithm, while the dashed line represents

performance with OOD detection algorithm implemented.

Specifically in the cough detection task, the optimized “Mul-

timodal+*” further improves accuracy to 90.08% at 16 kHz,

and to 87.30% at 750 Hz.

TABLE III: Comparison of OOD Performance with Different

Training Data Components. * indicates that eigenvalues for

ViM score computation are extracted using only cough and

speech inputs.

Model Frequency AUROC↑ Detection Error↓ FPR95↓

Single-modal
16 kHz 0.7572 0.5060 0.8710
750 Hz 0.7295 0.5261 0.9093

Multimodal+
16 kHz 0.8410 0.4150 0.7802
750 Hz 0.7653 0.4752 0.9011

Multimodal+*
16 kHz 0.8604 0.4653 0.8832
750 Hz 0.8658 0.4019 0.7541

D. Misclassified Component Analysis

In this section, we analyzed the errors in the robust mul-

timodal cough detection system to seek ways to improve its

performance. To better understand the misclassified samples,

we visualized the prediction results using confusion matrices

and box plots of a representative set, a single experimental run

that yielded overall performance metrics closest to the average,

as shown in Fig. 5a and Fig. 5b, respectively.

In Fig. 5a, we present the ratio of the number of data points

to the corresponding class to highlight the sounds that are more

prone to misclassification. We observe that at 16 kHz, “sneeze”

is the most challenging class for the system to recognize,

with 60% of these sounds being misclassified as “cough” in
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(a) Error Analysis for OOD Detection Using Confusion Matrix: Each value represents the ratio of data relative to the total Number in the
true class. Results derived from a representative set.

(b) Error Analysis Using Boxplots for OOD Scores Across All Classes: Results from a representative set

Fig. 5: Error Analysis Using Confusion Matrices (a) and Boxplots (b).

the system without the OOD detection. At 750 Hz, “sneeze,”

“groan,” and “laugh” are frequently misclassified. Even with

OOD detection, 60% of “sneeze” and 26% of “laugh” sounds

are classified as “cough,” while 42% of “groan” sounds are

classified as “speech.” Additionally, we observe that at 16 kHz,

there is a loss of 19% of “cough” and 3% of “speech” sounds

after implementing OOD detection. At 750 Hz, there is a loss

of 11% of “cough” and 3% of “speech” sounds following the

use of OOD detection.

Fig. 5b illustrates the OOD scores (ViM scores) for each

specific class to further explain the misclassified components

identified in Fig. 5a. The red dashed lines in Fig. 5b indicate

the thresholds that produce the best cough F1 score, which

are used to identify the critical class in our system, “cough.”

At 16 kHz, there is a small overlap between the OOD scores

of “cough” and “sneeze,” leading to the misclassification of

sneeze as cough. At 750 Hz, the OOD score distribution for

“cough” remains similar to that at 16 kHz, while the OOD

scores for other sounds slightly increase and become more

dispersed. These higher OOD scores result in misclassifica-

tions as either cough or speech sounds.

E. Discussion

In this study, we focus on developing a robust cough

detection system for wearable devices that can efficiently

detect cough sounds with minimal energy consumption. We

optimized the multimodal model proposed in the preliminary

work [7] and compared it with a single-modal model across

various sampling rates and window sizes. Additionally, we

employed OOD detection techniques to enhance robustness to

unknown OOD inputs.

Considering the uncertainties present in real-world sce-

narios, we developed and evaluated our system using data

collected from customized wearable devices (dataset A). Due

to the significant imbalance in dataset A, we incorporated an

online dataset B [33] to construct a higher quality dataset for

system development. To ensure realistic results, only dataset

A was used for testing. To further optimize the model, we

employed a multi-loss approach, integrating information from

both multimodal and pure audio modalities, which contain
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sound information that could better represent each class. We

also applied weights to the multi-loss to emphasize the sig-

nificant but challenging-to-predict class, “cough”. Moreover,

we refined the OOD detection algorithm by reconstructing the

components of the training set.

We set up the robust cough detection system design as

ID classification task and OOD detection task. For ID clas-

sification, we switched from a binary classification of cough

and speech detection to a three-class classification by adding

an “other” class. This class includes nonverbal vocalization

sounds and speech sounds from people around the subject.

Involving more classes in the model development enhances

the model’s robustness against non-cough and non-speech

sounds. For the OOD detection task, we classified unknown

sounds, such as environmental noises and silence, as OOD,

while all sounds belonging to ID classes were classified as

ID. The combination of three-class classification and OOD

detection supports the model’s stability under varied inputs.

We conducted four experiments to compare and evaluate our

systems under variance circumstances.

In the first experiment, we observed an improvement in

cough detection by adding the IMU modality and training

with a weighted loss, as shown in Tab. II. We maintained

the same IMU frequency and tested model performance under

varying audio frequencies (f ), as illustrated in Fig. 2. The

plot indicates that the improvement due to the IMU modality

is more pronounced at lower f . This is reasonable because we

observed significant spikes in the accelerometer and gyroscope

signals during most cough sounds, along with fluctuations

for speech and other sounds. Therefore, the information from

the IMU modality compensates for the missing information

caused by reduced frequency. Fig. 2 also demonstrates the

improvement resulting from incorporating more cough data.

This provides evidence that the model can be further improved

by acquiring additional data.

In the second experiment, we compared model performance

over varying window sizes (τ ) at f as 16 kHz, 750 Hz, and 500

Hz. 750 Hz is noteworthy as it effectively protects user privacy

[11] is noteworthy as it effectively protects user privacy [11],

while the 500 Hz rate is notable due to its lower consumption

cost, which is advantageous for Edge AI development. In Fig.

3, we observe that the single-modal model is more sensitive

to τ across different f , with the best results achieved using

a τ of 1-2 s. In contrast, multimodal models demonstrate

greater robustness with larger τ , suggesting their ability to

learn important features even within extensive τ . For both

models, there is a significant performance drop with τ smaller

than 1 s, indicating that at least 1 s is necessary to capture the

complete information of a cough. Additionally, we observe

an improvement in cough detection for the multimodal model

when trained with more data, consistent with the findings from

the first experiment.

In the third experiment, we tested the model’s robustness to

different proportions of OOD data during inference time and

incorporated the ViM OOD detection algorithm to enhance this

robustness. From Fig. 4, we observe that the multimodal model

is more sensitive to OOD data without the OOD detection.

However, when combined with the OOD detection algorithm,

the multimodal model becomes stable and achieves the best

overall results. This sensitivity may be due to the additional

uncertainty introduced by IMU signals. For example, during

silent periods, it is easier to distinguish using the audio

modality, but the IMU signals may resemble those of cough or

speech due to significant subject movement. We also observe

a degradation in speech F1 scores in the single modal OOD

model, primarily due to the decrease in speech recall from 0.89

to 0.76 when varying the OOD threshold from 0% to 50%.

This performance drop can be attributed to two main factors:

the OOD threshold being optimized for cough detection F1

scores rather than speech, and the inherent spectral similarity

between speech and certain OOD classes (such as “speech-

far” and “laugh”) as shown in Fig. 2 of the Supplementary

Material. The spectral overlap becomes more pronounced at

lower frequencies, leading to increased misclassification by the

OOD detection algorithm. To further optimize OOD detection,

we removed the “other” class during the fitting of eigenvalues

for ViM. Tab. III shows that after removing the “other” class,

OOD detection performance improves significantly, especially

at lower f , while the cough recognition improves slightly. We

hypothesize that this improvement is due to the unclear fea-

tures in the “other” class caused by its multiple components,

such as sneezes, groans, etc., indicating that data quality is

also crucial for effective OOD detection.

Then, we analyzed the misclassified components of the best

system we developed, which is the multimodal model trained

with enhanced data integrated with ViM OOD detection using

only cough and speech sounds. This analysis is illustrated in

Figs. 5a and 5b. From these figures, we observe that the classes

most prone to misclassification are nonverbal vocalization,

including sneezes, groans, and laughs and instances from the

minor classes within ”Other” are predominantly misclassified

as either OOD as we excluded “Other” in ID eigenvalue

extraction. To address this, we could incorporate more specific

class data by training a large-scale model using publicly

available online data for nonverbal vocalizations, as well as

by collecting additional data on our own.

Fig. 5b clearly shows a gap between the means of the OOD

score distribution for cough and speech. We use the best cough

F1 score to select the threshold lead to the drop in speech

detection performance, as seen in Fig. 4. However, we observe

promising performance in speech detection without the OOD

detection. Therefore, it is possible to improve speech detection

by using an adaptive threshold based on the different classes

predicted by the classifier.

V. CONCLUSION AND FUTURE WORK

This paper presents our most recent efforts towards develop-

ment of a robust cough detection system by integrating audio

and IMU signals with an out-of-distribution (OOD) detection

technique. This sensor system is suitable for integration into

wearable devices thanks to its miniaturized size and low-cost

computation, potentially facilitating at-home remote symptom

monitoring of cough. We optimized the multimodal cough

detection system by training with enhanced data and employ-

ing a weighted multi-loss approach for the ID classifier. We
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optimized OOD detection by only using the essential and high-

quality classes (cough and speech). The results demonstrate

the robustness of this system across window sizes from 1 to 5

seconds and performs efficiently at a lower audio frequency of

750 Hz. This is the highest down-sampling rate that muffles

the speech causing it to be incomprehensible to protect user

privacy. Specifically, with a 1.5-second window size, the

system achieved 91.63% accuracy and a cough F1 score of

0.8754 at a 16 kHz audio frequency, and 87.72% accuracy and

a cough F1 score of 0.8406 at 750 Hz on our self-collected

dataset. Furthermore, while the multimodal model is sensitive

to OOD input, the final optimized robust system demonstrated

resilience to OOD data, achieving 90.08% accuracy and a

cough F1 score of 0.7548 at a 16 kHz audio frequency, and

87.3% accuracy and a cough F1 score of 0.7015 at 750 Hz,

even when half of the data was OOD during inference.

Future improvements will prioritize acquiring higher quality

data, as data quality is crucial for developing both ID classifier

and OOD detection, which relies on features extracted from the

training data. Moreover, using online or self-collected datasets

to enhance nonverbal vocalization detection is significant due

to the high risk of misclassification of non-verbal sounds,

especially at lower audio frequencies. We are also planning to

expand our population to incorporate participants with various

health conditions. Finally, incorporating additional modalities,

such as heart rate and respiratory rate detection, electrocardio-

gram and other health symptoms of participants, can further

enhance model performance. Besides system improvements,

because this study was performed in healthy patients, this

system will need to be further validated in patients with asthma

and COPD.
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