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Abstract— Asthma patients’ sleep quality is correlated with
how well their asthma symptoms are controlled. In this paper,
deep learning techniques are explored to improve forecasting
of forced expiratory volume in one second (FEV1) by using
audio data from participants and test whether auditory sleep
disturbances are correlated with poorer asthma outcomes.
These are applied to a representative data set of FEV1
collected from a commercially available sprirometer and audio
spectrograms collected overnight using a smartphone. A model
for detecting nonverbal vocalizations including coughs, sneezes,
sighs, snoring, throat clearing, sniffs, and breathing sounds
was trained and used to capture nightly sleep disturbances.
Our preliminary analysis found significant improvement in
FEV1 forecasting when using overnight nonverbal vocalization
detections as an additional feature for regression using
XGBoost over using only spirometry data.

Clinical relevance— This preliminary study establishes up to
30% improvement of FEV1 forecasting using features gener-
ated by deep learning techniques over only spirometry-based
features.

I. INTRODUCTION

Asthma is a chronic respiratory disease that affects the

airways in the lungs. It is characterized by inflammation

and narrowing of the airways which can make it difficult

to breathe. Symptoms of asthma may include coughing,

wheezing, shortness of breath, and chest tightness. These

symptoms can range from mild to severe and may occur

on a daily or intermittent basis. Asthma can be managed

through a combination of medications, such as inhaled

bronchodilators and corticosteroids [1], and lifestyle changes.

Asthma attacks, also known as asthma exacerbations or flare-

ups, can be triggered by a variety of factors, including

exposure to allergens [2] (such as pollen, pet dander, or

mold), exposure to irritants [3] (such as tobacco smoke or

pollution), respiratory infections, and physical activity[4].

Asthma is a long-term condition that cannot be cured, but

it can be controlled with proper treatment and management.

The main goals of treatment are to control symptoms,

prevent asthma attacks, and improve quality of life. Home-

monitoring of physiological parameters including sleep qual-
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ity, heart rate, respiratory rate, inhaler usage, and spirometry

measurements has been shown to correlate with pediatrician

based asthma assessment and control [5]. This indicates

that wearable devices may be used as a complementary

tool for monitoring asthma. Aside from direct monitoring,

telemedicine solutions may play a significant role in im-

proving adherence and enabling patients to achieve adequate

awareness of and control over their own symptoms [6].

The aim of our research is to use physiological and

environmental sensing modalities to draw inferences about

changes in lung function and asthma exacerbations. By us-

ing spirometry measurements, we tracked forced expiratory

volume in 1 second (FEV1), forced volume capacity (FVC),

forced expiratory volume in 6 seconds (FEV6), Forced mid-

expiratory flow (FEF 25-75), and the ratio FEV1/FVC.

This paper highlights our preliminary assessment in using

common commercial devices for monitoring asthma in ado-

lescents using FEV1 for one month’s worth of data using

features extracted from mel-spectrograms.

This paper provides a preliminary analysis of this data

and presents the feature selection for a machine learning

model, Extreme Gradient Boosting (XGBoost) to forecast

FEV1 and demonstrate improvement by measuring nightly

sleep disturbances, successfully replicating the correlation

levels reported earlier [7]. This promising result reinforces

the use of machine learning on wearable devices to pave the

way for using such continuous and quantitative monitoring

tools to support asthma management and control.

Fig. 1. Illustration of our prediction for FEV1 values using 1-day historic
values (Top), and the FEF 25-75 and normalized vocalization values used as
predictors (Bottom). We observe an improved on RMSE for the predictions
of over 30% when including our deep-learning based vocalization detector.
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II. METHODOLOGY

A. Data Collection

The participant data in this paper was collected as part of

an on-going study under the NC State University Institutional

Review Board (IRB) approved protocol 16598. In this study,

we monitored adolescents that are between 11 years and

18 years old with poorly controlled or uncontrolled asthma

using several wearable and portable devices. In this paper,

we analyze representative data from one of the subjects. The

participant was engaged in this study for 4 months, and this

analysis was conducted on the first month’s worth of data,

comprised of over 160 hours of audio recorded at 16KHz and

30 days of spirometry measurements recorded daily. A more

comprehensive analysis will be performed once the study is

over and the data collection is completed.

The study used iOS device (Apple, Cupertino, CA, USA)

for sleep acoustics data and the Spirobank Smart spirometer

(Medical International Research (MIR), New Berlin, WI,

USA) for FEV1. The iOS Device was an iPhone 8 which

hosted commercially available and custom made apps for

the wearable devices, and it was also used to record forced

cough sounds, overnight audio and survey responses. The

spirometer captured FEV1, FEV1/FVC, FEV6 and FEF

25-75 indexes. The relevant part of the protocol involved

participants performing daily a spirometer test, recording a

few instances of forced cough, and setting the phone for

overnight recording of audio mel-spectrogram features (no

raw audio due to privacy concerns). The spectrograms were

continuously recorded throughout the night using a windows

size of 2048 samples with a hop length of 512 samples.

B. Problem Statement

For this study, we determined the impact of features

from overnight audio recordings on the prediction of lung

function, specifically the FEV1 index. First, we determine

features, xt, to use by determining the significance and

strength of correlations depending on the size of the lag

between the forecasted FEV1 value, ŷt, and the point used

as an input to the forecasting model, described effectively as

ŷt = g(xt−1, xt−2).
A binary classification model, f , was trained to detect

non-verbal vocalizations, returning 1 if a detection is made

on the audio and 0 otherwise. Each night during the study, a

set of audio spectrograms was recorded, denoted as St
i where

t indicates the day in the study and i indicates a spectrogram

in the set recorded that day. The number of detections for a

given day can be described as ct =
∑Nt

i=1 f(S
t
i ), where Nt

denotes the number of samples recorded on a given day. The

normalized number of detections for each night were used

as features for the forecasting and can be described as

c̄t =
ct − 1

M

∑M
k=1 ck√

1
M

∑M
k=1

(
ck − 1

M

∑M
j=1 cj

)2
,

where M is the number of days in the study used to train

the forecasting model.

The forecasting model with vocalization features included

can be described as ŷt = g(xt−1, xt−2, c̄t−1). The RMSE

error for each model on the forecasting tasks are calculated,

and the percent improvement of the RMSE error of the

vocalization-enhanced model over the forecasting model is

reported in addition to a RMSE score normalized by the

standard deviation of the FEV 1 values for a given day.

C. Datasets for Non-Verbal Vocalization

The datasets used are enumerated in Table I. All audio

data was resampled to 16KHz, and the data was split in

a 7:1:2 ratio between training, validation, and testing data

while also ensuring that datasets that identified individual

speakers did not share them across the subsets. Audio data

from the participant was not used for training the model.

For robustness, a number of data augmentations were

used during training but not during validation or testing.

Adopting a similar strategy as the one presented by Xu et al.

[16], we used time shifting, polarity inversion, pitch shifting,

background noise augmentation, and mixup augmentation,

each with 50% probability of being used, to increase the

variability and number of training samples.

D. Training of Non-Verbal Vocalization Model

A model, developed in PyTorch, was trained to detect audi-

tory night time disturbances in the form of coughs and other

nonverbal vocalizations. The model used a dense convolu-

tional layer to convert the single channel mel-spectrogram

input to a 3 channel image for the purpose of being used

as an input to a pre-trained image model, leveraging the

performance of CV models trained on a much larger dataset

than what is typically used for audio. The image model

was used to extract features that were fed to a simple

neural network composed of a linear layer with a rectified

linear unit activation and another linear layer to perform the

classification.

The pre-trained image model, the number of neurons used

in the linear layer, and the learning rate was selected using

the Hyperband based hyperparameter optimization pipeline

provided by the Ray library. The hyperparameter ranges and

options are listed in Table II. The final model used 2048

neurons on the linear layer, an EfficientNetV2L image pre-

trained model, and an initial learning rate of 1e-4. In all

trials, the Adam optimizer was used for training.

TABLE I

DATASETS FOR NON-VERBAL VOCALIZATION TRAINING.

Dataset Purpose

Coughvid[8] positive samples of cough
Flusense[9] positive samples of cough

ESC 50[10]
positive and negative samples of

nonverbal vocalizations
ESTI[11] background audio augmentation
AIR[12] room impulse response augmentation
DEMAND[13] background audio augmentation

Musan[14]
negative samples of nonverbal vocalizations

and background augmentation
VocalSound[15] positive samples of nonverbal vocalizations
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The hyperparameter search was performed on the training

and validation subsets. After the model was selected, the

best configuration was trained on the training and validation

sets and then evaluated on the test set to determine its

performance characteristics on unseen data. Afterwards, the

model was trained on the entire dataset and used for detecting

sleep disturbances on the study participant data.

The model selected by the hyperparameter pipeline was

trained for 15 epochs. The test performances are: Accuracy

(0.96), Precision (0.92), Recall (0.95) and F1 Score (0.93).

III. RESULTS AND DISCUSSION

First, we identified which variables to use for forecasting

by performing a correlation analysis between the FEV1

values at time t; and the tested variable values 1 day or

two days prior, and the vocalizations from the day prior. A

Spearman correlation test was used with α < 0.1 as the

threshold to keep or exclude features. Table III enumerates

the spirometry and vocalization features used, their Spear-

man coefficients and p-values. To perform the forecasting,

we used a XGBoost model to regress on the spirometry

data and the overnight disturbance detections and forecast

future FEV1 values. Figure 1 illustrates the leave-one-out

predictions obtained for the FEF 25-75 model with a 2-day

history and vocalization.

Combinations of all spirometry features with and without

added 1 day vocalization features were used to train XG-

Boost models using Leave-One-Out cross-Validation where

a single days’ worth of spirometry measurements are left

out. Using Random Search, we found that an XGBoost

Model with 1500 estimators, a maximum depth of 2, and

TABLE II

HYPERPARAMETER RANGES AND OPTIONS

Hyperparameter Range/Options

Image Model
DenseNet, ResNet101,

EfficientNet B4, EfficientNet B7,
EfficientNet V2M, EfficientNet V2L

Linear Layer Size 1024-8096
Learning Rate 10−5-10−2

Fig. 2. Top Performing Forecasts Using Two Days of Features.

Fig. 3. Improvement of model using FEF 25-75 with 2-Day history when
using vocalization features for various cross-validation fold sizes (blue). The
normalized RMSE of the model with vocalization is also shown (red).

a 0.625 subsampling ratio had the best performance across

feature choices. The best performances were observed when

considering 2 days of historical values. The top 5 performing

XGBoost models using a 2-day history are shown in Figure

2. Overall, FEF 25-75 with vocalization features provides

the best performance compared to all other combinations

of spirometry and vocalization features. Figure 3 shows

XGBoost performance using FEF 25-75 and vocalization

features across cross-validation using different size folds.

The cross-validation windows were generated by using a

sliding window of the specified size to determine which

days to use for testing (e.g., a fold size of 1 corresponds

to a leave-one-out cross-validation). The downward trend in

percent improvement was expected due to the limited amount

of data (i.e., larger fold sizes reduced the amount of data

available for training), and the temporal correlation observed

(i.e., larger folds resulted in less correlated training and test

sets). This also applied to the normalized RMSE score.

To assess of the impact of the variability of the vocaliza-

tion features, multiple iterations of the non-verbal vocaliza-

tion model were trained using different combinations of data

augmentations and used to generate vocalization features

for the XGBoost model. Section II-C lists the different

type of data augmentation. Figure 4 depicts the distribution

of the percent improvement of using vocalization features

in addition to spirometry features compared to just using

spirometry features for various fold sizes. We observed that

vocalization features improve forecasting model performance

TABLE III

SPEARMAN VALUES FOR SPIROMETRY PARAMETERS

Feature 1 Day 2 Days

ρ p ρ SP
FEV1 0.541 1.26e− 4 0.357 0.028
FEV6 0.099 0.517 0.131 0.427
FVC 0.142 0.353 0.160 0.330
FEF 25 0.598 1.41e− 5 0.403 0.010
FEF 75 0.331 0.027 0.169 0.303
FEF 25-75 0.538 1.37e− 4 0.333 0.038
Vocalizations -0.690 0.059 -0.011 0.972
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Fig. 4. Aggregated cross-validation performances for various window
Sizes. Percentage of improvements of the model with vocalization are shown
on the y-axis. This shows the variability of the impact of the model.

overall.

IV. DISCUSSION AND CONCLUSION

We demonstrate improvement on FEV1 forecasting over

our baseline methods using features generated by deep

learning techniques. Future work will incorporate additional

modalities from data recorded in the study and report results

on more participants. We also aim to demonstrate model re-

liability by incorporating interpretability through uncertainty

modeling and out of distribution detection.

Privacy remains a major concern for participants, and

minors justifiably receive additional protections in medical

studies. For this reason, we chose to only record spectro-

grams of the overnight audio, and this introduces its own

challenges. This makes it difficult to verify how well the

models perform on each participant, and, while forced cough

data can be helpful for this assessment, forced coughs are not

truly representative of the sound of spontaneous coughs and

their context of occurrence.
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