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Abstract— Asthma patients’ sleep quality is correlated with
how well their asthma symptoms are controlled. In this paper,
deep learning techniques are explored to improve forecasting
of forced expiratory volume in one second (FEV1) by using
audio data from participants and test whether auditory sleep
disturbances are correlated with poorer asthma outcomes.
These are applied to a representative data set of FEV1
collected from a commercially available sprirometer and audio
spectrograms collected overnight using a smartphone. A model
for detecting nonverbal vocalizations including coughs, sneezes,
sighs, snoring, throat clearing, sniffs, and breathing sounds
was trained and used to capture nightly sleep disturbances.
Our preliminary analysis found significant improvement in
FEV1 forecasting when using overnight nonverbal vocalization
detections as an additional feature for regression using
XGBoost over using only spirometry data.

Clinical relevance— This preliminary study establishes up to
30% improvement of FEV1 forecasting using features gener-
ated by deep learning techniques over only spirometry-based
features.

I. INTRODUCTION

Asthma is a chronic respiratory disease that affects the
airways in the lungs. It is characterized by inflammation
and narrowing of the airways which can make it difficult
to breathe. Symptoms of asthma may include coughing,
wheezing, shortness of breath, and chest tightness. These
symptoms can range from mild to severe and may occur
on a daily or intermittent basis. Asthma can be managed
through a combination of medications, such as inhaled
bronchodilators and corticosteroids [1], and lifestyle changes.
Asthma attacks, also known as asthma exacerbations or flare-
ups, can be triggered by a variety of factors, including
exposure to allergens [2] (such as pollen, pet dander, or
mold), exposure to irritants [3] (such as tobacco smoke or
pollution), respiratory infections, and physical activity[4].

Asthma is a long-term condition that cannot be cured, but
it can be controlled with proper treatment and management.
The main goals of treatment are to control symptoms,
prevent asthma attacks, and improve quality of life. Home-
monitoring of physiological parameters including sleep qual-
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ity, heart rate, respiratory rate, inhaler usage, and spirometry
measurements has been shown to correlate with pediatrician
based asthma assessment and control [5]. This indicates
that wearable devices may be used as a complementary
tool for monitoring asthma. Aside from direct monitoring,
telemedicine solutions may play a significant role in im-
proving adherence and enabling patients to achieve adequate
awareness of and control over their own symptoms [6].

The aim of our research is to use physiological and
environmental sensing modalities to draw inferences about
changes in lung function and asthma exacerbations. By us-
ing spirometry measurements, we tracked forced expiratory
volume in 1 second (FEV1), forced volume capacity (FVC),
forced expiratory volume in 6 seconds (FEV6), Forced mid-
expiratory flow (FEF 25-75), and the ratio FEVI/FVC.
This paper highlights our preliminary assessment in using
common commercial devices for monitoring asthma in ado-
lescents using FEV1 for one month’s worth of data using
features extracted from mel-spectrograms.

This paper provides a preliminary analysis of this data
and presents the feature selection for a machine learning
model, Extreme Gradient Boosting (XGBoost) to forecast
FEV1 and demonstrate improvement by measuring nightly
sleep disturbances, successfully replicating the correlation
levels reported earlier [7]. This promising result reinforces
the use of machine learning on wearable devices to pave the
way for using such continuous and quantitative monitoring
tools to support asthma management and control.
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Fig. 1. Tllustration of our prediction for FEV1 values using 1-day historic
values (Top), and the FEF 25-75 and normalized vocalization values used as
predictors (Bottom). We observe an improved on RMSE for the predictions
of over 30% when including our deep-learning based vocalization detector.



II. METHODOLOGY
A. Data Collection

The participant data in this paper was collected as part of
an on-going study under the NC State University Institutional
Review Board (IRB) approved protocol 16598. In this study,
we monitored adolescents that are between 11 years and
18 years old with poorly controlled or uncontrolled asthma
using several wearable and portable devices. In this paper,
we analyze representative data from one of the subjects. The
participant was engaged in this study for 4 months, and this
analysis was conducted on the first month’s worth of data,
comprised of over 160 hours of audio recorded at 16KHz and
30 days of spirometry measurements recorded daily. A more
comprehensive analysis will be performed once the study is
over and the data collection is completed.

The study used iOS device (Apple, Cupertino, CA, USA)
for sleep acoustics data and the Spirobank Smart spirometer
(Medical International Research (MIR), New Berlin, WI,
USA) for FEV1. The iOS Device was an iPhone 8 which
hosted commercially available and custom made apps for
the wearable devices, and it was also used to record forced
cough sounds, overnight audio and survey responses. The
spirometer captured FEV1, FEVI/FVC, FEV6 and FEF
25-75 indexes. The relevant part of the protocol involved
participants performing daily a spirometer test, recording a
few instances of forced cough, and setting the phone for
overnight recording of audio mel-spectrogram features (no
raw audio due to privacy concerns). The spectrograms were
continuously recorded throughout the night using a windows
size of 2048 samples with a hop length of 512 samples.

B. Problem Statement

For this study, we determined the impact of features
from overnight audio recordings on the prediction of lung
function, specifically the FEV1 index. First, we determine
features, z;, to use by determining the significance and
strength of correlations depending on the size of the lag
between the forecasted FEV1 value, ¢;, and the point used
as an input to the forecasting model, described effectively as
U = 9($t7179€t72)-

A binary classification model, f, was trained to detect
non-verbal vocalizations, returning 1 if a detection is made
on the audio and 0 otherwise. Each night during the study, a
set of audio spectrograms was recorded, denoted as S! where
t indicates the day in the study and 7 indicates a spectrogram
in the set recorded that day. The number of detections for a
given day can be described as ¢; = 25\21 F(SE), where N,
denotes the number of samples recorded on a given day. The
normalized number of detections for each night were used
as features for the forecasting and can be described as
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where M is the number of days in the study used to train
the forecasting model.

The forecasting model with vocalization features included
can be described as 4 = g(x¢—1,2+—2,¢—1). The RMSE
error for each model on the forecasting tasks are calculated,
and the percent improvement of the RMSE error of the
vocalization-enhanced model over the forecasting model is
reported in addition to a RMSE score normalized by the
standard deviation of the FEV 1 values for a given day.

C. Datasets for Non-Verbal Vocalization

The datasets used are enumerated in Table I. All audio
data was resampled to 16KHz, and the data was split in
a 7:1:2 ratio between training, validation, and testing data
while also ensuring that datasets that identified individual
speakers did not share them across the subsets. Audio data
from the participant was not used for training the model.

For robustness, a number of data augmentations were
used during training but not during validation or testing.
Adopting a similar strategy as the one presented by Xu et al.
[16], we used time shifting, polarity inversion, pitch shifting,
background noise augmentation, and mixup augmentation,
each with 50% probability of being used, to increase the
variability and number of training samples.

D. Training of Non-Verbal Vocalization Model

A model, developed in PyTorch, was trained to detect audi-
tory night time disturbances in the form of coughs and other
nonverbal vocalizations. The model used a dense convolu-
tional layer to convert the single channel mel-spectrogram
input to a 3 channel image for the purpose of being used
as an input to a pre-trained image model, leveraging the
performance of CV models trained on a much larger dataset
than what is typically used for audio. The image model
was used to extract features that were fed to a simple
neural network composed of a linear layer with a rectified
linear unit activation and another linear layer to perform the
classification.

The pre-trained image model, the number of neurons used
in the linear layer, and the learning rate was selected using
the Hyperband based hyperparameter optimization pipeline
provided by the Ray library. The hyperparameter ranges and
options are listed in Table II. The final model used 2048
neurons on the linear layer, an EfficientNetV2L image pre-
trained model, and an initial learning rate of le-4. In all
trials, the Adam optimizer was used for training.

TABLE I
DATASETS FOR NON-VERBAL VOCALIZATION TRAINING.

Dataset Purpose
Coughvid[8] positive samples of cough
Flusense[9] positive samples of cough
ESC 50[10] positive and negatl'veT ?ampl‘es of
nonverbal vocalizations

ESTI[11] background audio augmentation
AIR[12] room impulse response augmentation
DEMANDI13] background audio augmentation

g negative samples of nonverbal vocalizations
Musan[14] and background augmentation
VocalSound[15]  positive samples of nonverbal vocalizations
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The hyperparameter search was performed on the training
and validation subsets. After the model was selected, the
best configuration was trained on the training and validation
sets and then evaluated on the test set to determine its
performance characteristics on unseen data. Afterwards, the
model was trained on the entire dataset and used for detecting
sleep disturbances on the study participant data.

The model selected by the hyperparameter pipeline was
trained for 15 epochs. The test performances are: Accuracy
(0.96), Precision (0.92), Recall (0.95) and F1 Score (0.93).

ITII. RESULTS AND DISCUSSION

First, we identified which variables to use for forecasting
by performing a correlation analysis between the FEV1
values at time t; and the tested variable values 1 day or
two days prior, and the vocalizations from the day prior. A
Spearman correlation test was used with o < 0.1 as the
threshold to keep or exclude features. Table III enumerates
the spirometry and vocalization features used, their Spear-
man coefficients and p-values. To perform the forecasting,
we used a XGBoost model to regress on the spirometry
data and the overnight disturbance detections and forecast
future FEV1 values. Figure 1 illustrates the leave-one-out
predictions obtained for the FEF 25-75 model with a 2-day
history and vocalization.

Combinations of all spirometry features with and without
added 1 day vocalization features were used to train XG-
Boost models using Leave-One-Out cross-Validation where
a single days’ worth of spirometry measurements are left
out. Using Random Search, we found that an XGBoost
Model with 1500 estimators, a maximum depth of 2, and

TABLE I
HYPERPARAMETER RANGES AND OPTIONS

Hyperparameter Range/Options

DenseNet, ResNet101,
EfficientNet B4, EfficientNet B7,
EfficientNet V2M, EfficientNet V2L
1024-8096
1075-10—2

Image Model

Linear Layer Size
Learning Rate
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Fig. 2. Top Performing Forecasts Using Two Days of Features.
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Fig. 3. Improvement of model using FEF 25-75 with 2-Day history when

using vocalization features for various cross-validation fold sizes (blue). The
normalized RMSE of the model with vocalization is also shown (red).

a 0.625 subsampling ratio had the best performance across
feature choices. The best performances were observed when
considering 2 days of historical values. The top 5 performing
XGBoost models using a 2-day history are shown in Figure
2. Overall, FEF 25-75 with vocalization features provides
the best performance compared to all other combinations
of spirometry and vocalization features. Figure 3 shows
XGBoost performance using FEF 25-75 and vocalization
features across cross-validation using different size folds.
The cross-validation windows were generated by using a
sliding window of the specified size to determine which
days to use for testing (e.g., a fold size of 1 corresponds
to a leave-one-out cross-validation). The downward trend in
percent improvement was expected due to the limited amount
of data (i.e., larger fold sizes reduced the amount of data
available for training), and the temporal correlation observed
(i.e., larger folds resulted in less correlated training and test
sets). This also applied to the normalized RMSE score.

To assess of the impact of the variability of the vocaliza-
tion features, multiple iterations of the non-verbal vocaliza-
tion model were trained using different combinations of data
augmentations and used to generate vocalization features
for the XGBoost model. Section II-C lists the different
type of data augmentation. Figure 4 depicts the distribution
of the percent improvement of using vocalization features
in addition to spirometry features compared to just using
spirometry features for various fold sizes. We observed that
vocalization features improve forecasting model performance

TABLE III
SPEARMAN VALUES FOR SPTROMETRY PARAMETERS

Feature | 1 Day | 2 Days
p P p Sp

FEV1 0.541 1.26e — 4 0.357 0.028
FEV6 0.099 0.517 0.131 0.427
FvC 0.142 0.353 0.160 0.330
FEF 25 0.598 1.41e—5 0.403  0.010
FEF 75 0.331 0.027 0.169 0.303
FEF 25-75 0.538 1.37e — 4 0.333 0.038
Vocalizations | -0.690 0.059 -0.011 0.972

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on October 31,2025 at 21:46:56 UTC from IEEE Xplore. Restrictions apply.



plt——1E
i

g
=
g 20
[ 15
8
5 10 -
z
- 5
o
@
2 0
0]
o

=B

-10

Fold Size 1 Fold Size 2 Fold Size 3 Fold Size 4 Fold Size 5

Fig. 4.  Aggregated cross-validation performances for various window

Sizes. Percentage of improvements of the model with vocalization are shown
on the y-axis. This shows the variability of the impact of the model.

overall.

IV. DISCUSSION AND CONCLUSION

We demonstrate improvement on FEV1 forecasting over
our baseline methods using features generated by deep
learning techniques. Future work will incorporate additional
modalities from data recorded in the study and report results
on more participants. We also aim to demonstrate model re-
liability by incorporating interpretability through uncertainty
modeling and out of distribution detection.

Privacy remains a major concern for participants, and
minors justifiably receive additional protections in medical
studies. For this reason, we chose to only record spectro-
grams of the overnight audio, and this introduces its own
challenges. This makes it difficult to verify how well the
models perform on each participant, and, while forced cough
data can be helpful for this assessment, forced coughs are not
truly representative of the sound of spontaneous coughs and
their context of occurrence.
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