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Abstract

Cells depend on precisely regulating barrier function within the vasculature to maintain
physiological stability and facilitate essential substance transport. Endothelial cells
achieve this through specialized adherens and tight junction protein complexes, which
govern paracellular permeability across vascular beds. Adherens junctions, anchored by
VE-cadherin and associated catenins to the actin cytoskeleton, mediate homophilic
adhesion crucial for barrier integrity. In contrast, tight junctions composed of occludin,
claudin, and junctional adhesion molecule A interact with Zonula Occludens proteins,
reinforcing intercellular connections essential for barrier selectivity.

Endothelial cell-cell junctions exhibit dynamic conformations during development,
maturation, and remodeling, regulated by local biochemical and mechanical cues.
These structural adaptations play pivotal roles in disease contexts such as chronic
inflammation, where junctional remodeling contributes to increased vascular
permeability observed in conditions from cancer to cardiovascular diseases. Conversely,
the brain microvasculature's specialized junctional arrangements pose challenges for
therapeutic drug delivery due to their unique molecular compositions and tight
organization.

This commentary explores the molecular mechanisms underlying endothelial cell-cell
junction conformations and their implications for vascular permeability. By highlighting
recent advances in quantifying junctional changes and understanding
mechanotransduction pathways, we elucidate how physical forces from cellular contacts
and hemodynamic flow influence junctional dynamics.

Introduction

The precise delivery of essential circulating components, such as nutrients, endocrine
signals, and therapeutic agents, to organ tissues is vital for maintaining physiological
balance and stability’. Endothelial cells play a central role in this process by lining the
vasculature and establishing a barrier that regulates the extravasation of substances
into underlying tissues'2. This barrier is primarily maintained by two protein complexes:
adherens and tight junctions, each characterized by specific constituent protein-protein
interactions®-5. Vascular endothelial (VE)-cadherin, a transmembrane protein, facilitates
homophilic adhesion between neighboring endothelial cells, initiating adherens junction
formation3. The cytoplasmic tail of VE-cadherin interacts with proteins such as a-, 8-,
and p120-catenin, as well as plakoglobin, anchoring adherens junctions to the actin
cytoskeleton®*.

Similarly, tight junctions exhibit complexity, with transmembrane proteins such as
occludin, claudin, and junctional adhesion molecule A facilitating intercellular adhesion?.
These proteins interact with intracellular counterparts like zonula occludens (ZO)-1/2/3
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to reinforce connections to the actin cytoskeleton. Baseline differences in the
organization of endothelial cell-cell junction (ECJ) components and protein expression
can vary based on the vascular bed. This is evident in freeze-fracture preparations,
where tight connections between endothelial cells in blood vessels outside the brain are
less associated with the Protoplasmic (P)-face compared to blood vessels of the brain,
where these connections are most prominently associated with the P-face’.

Additionally, occludin exhibits high gene and protein expression levels with a continuous
distribution in brain endothelial cells, whereas in endothelial cells of non-neural tissues,
its expression is much lower and shows a discontinuous pattern®. ECJs can also have
different conformations depending on the stage of adhesion: initial formation®-'2, stable
maturation ®'3-'8 and stimulated remodeling®'%-19-2", These conformations are
interchangeable, each uniquely characterized by specific local actin organization and
associated intracellular proteins. As a result, adherens and tight junctions are thought to
undergo conformational changes in response to various biochemical and mechanical
signals.

Persistent remodeling of ECJs under chronic inflammatory conditions is thought to
contribute to increased endothelial permeability seen in a spectrum of pathologies,
including cancer, cardiovascular disease, ischemic stroke, asthma, and arthritis’. On the
other hand, baseline differences in the expression of adherens and tight junction
proteins, along with their stable, well-organized arrangements within the brain
microvasculature, are believed to present challenges for targeted drug delivery to brain
tissues”822-24_ Understanding how adherens and tight junction conformations influence
endothelial permeability and the mechanisms governing their remodeling could inform
strategies for disease management and drug development.

The molecular composition and signaling of adherens and tight junctions3#25-27 along
with their heterogeneity throughout the vasculature tree?®-3! and their contribution to
paracellular permeability’-%32-38 have been extensively documented in previous
reviews. In this commentary, we will discuss the various ECJ conformations and how
changes in their structure affect barrier permeability. We will describe tools to quantify
these changes and their role in immune cell extravasation. Additionally, we will outline
the impact of contact and flow-derived forces on cell-cell junction conformations,
focusing on mechanotransduction and its influence on permeability function.

Endothelial Cell-cell Junction Conformations

ECJ proteins and baseline permeability exhibit significant diversity across different
vascular beds from various anatomical regions®#'. This heterogeneity has prompted a
comprehensive examination of adherens and tight junctions as regulators of paracellular
permeability®>-5. Researchers have extensively studied the morphology and molecular
composition of ECJs using freeze-fracture electron microscopy*?. These studies reveal
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that the number and complexity of junctional strands vary by cell type, which affects the
barrier properties of different tissues. Specifically, an increase in the number of
junctional strands correlates logarithmically with specific junctional resistance*3. These
finding challenges earlier descriptions of ECJs merely as fusions or seals of the outer
membrane leaflets of adjacent cells**~45. Instead, it suggests that ECJs contribute to
barrier function in a more complex manner, involving various regulatory proteins and
influenced by factors such as spatial arrangement and dynamic interactions3-543-45,

As a result, disruption of transmembrane or cytoplasmic proteins in adherens and tight
junctions affects permeability. Tissue-specific expression of claudin isoforms and the
effects of disease-causing tight junction protein mutations have significantly contributed
to our understanding of their role in barrier formation*46-48. For example, claudin-5-
deficient mice exhibit size-selective loosening of the blood-brain barrier, impairing its
ability to restrict molecules smaller than 800 Daltons*®. Intravenous injection of the
BV13 antibody, which targets mouse VE-cadherin and redistributes it away from
adherens junctions, caused a dose- and time-dependent increase in vascular
permeability in 10—12-week-old male mice*®. Knocking out B-catenin in mouse models
decreased endothelial cells' ability to maintain vascular integrity, leading to leakage and
hemorrhage®°.

In this section, we will discuss the different conformations of cell-cell junctions (Table 1).
Given that adherens junctions are ubiquitously expressed along the vascular tree, we
will focus primarily on cadherin-containing junctions observed through microscopic
analyses®5'. We will indicate what is known about their local actin organization and
associated intracellular proteins at different stages of adhesion.

The initial formation of ECJs have a distinct conformation that differs from their mature
stable structure. This has been illustrated in studies involving the human materno-fetal
endothelial barrier where ECJs can display unique conformations linked to vascular
changes during pregnancy®?-%*. Developing vessels in the first trimester display an
'activated junctional phenotype,' primed for cell growth and proliferation®. Stimulated by
the predominant angiogenic growth factor, vascular endothelial growth factor (VEGF),
these vessels exhibit ECJs lacking plakoglobin, occludin, and claudin-1 at adherens and
tight junction sites compared to the 'stable junctional phenotype' of third-trimester
vessels®2%. In vitro studies using human placental endothelial cells in endothelial
conditioned growth supplement confirmed this 'activated junctional phenotype,' marked
by a more 'punctate’ morphology of occludin, reduced plakoglobin and B-catenin at
adherens junctions, and corresponding changes in F-actin organization®354,

Initial forming cell-cell junctions are thin and discontinuous, assuming a punctate
morphology®'"12 (Table 1). In subconfluent and migratory endothelial models, junction-
associated intermittent lamellipodia (JAIL) protrusions mediate the interaction between
endothelial cells, which retract and transform into filopodia-like bridges rich in VE-
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cadherin. The conformations of VE-cadherin along these bridges are heterogeneous,
with multiple punctate accumulations in an interrupted pattern’"'2. Non-muscle myosin ||
incorporates into these bridges, maturing them into stress fibers ''. Many proteins
associate with forming cell-cell junctions, mediating their function and connection to
actin, including VASP proteins, fascin, ARP 2/3 complex, a-catenin, and B-catenin®'2,

ECJs stabilize and mature after their initial formation, adopting a thick, continuous, and
linear morphology in highly confluent monolayers, endothelial cells under laminar flow,
or with increased cyclic AMP®'3-5 (Table 1). This stabilization is accompanied by actin
cytoskeleton remodeling. Actin filaments become shorter and more irregular,
colocalizing with linearly distributed VE-cadherin and forming peri-junction actin
bundles, where VE-cadherin aligns parallel to circumferentially organized actin
networks'31821_ Stable ECJs retain a-catenin and B-catenin, with plakoglobin
accumulating at maturing adherens junctions as endothelial cells near confluency® 8.

Reticular adherens junctions are a unique and stable ECJ conformation, identified as a
3-dimensional network formed by overlapping quiescent endothelial cells'® (Table 1).
Transcription factors yes-associated protein 1 and transcription regulator 1 (YAP/TAZ)
are required for these VE-cadherin reticular structures®®. Knockdown studies of p73 in
endothelial cells, recently identified as a regulator of YAP, confirmed its role in the
formation and maintenance of reticular junctions 6. Early tyrosine kinase SRC activation
also stimulates the formation of reticular junctions, enhancing endothelial barrier
function via phosphorylation of VE-cadherin at Y7317,

While VE-cadherin can be distributed into reticular structures, tight junction proteins like
Z0-1 do not appear in this conformation®. Unlike other ECJ conformations, reticular
junctions have little to no attachment to actin’®. Additionally, common endothelial cell
tension markers like phosphorylated myosin light chain (p-MLC) and vinculin are absent
in reticular structures, suggesting this ECJ conformation forms in regions under minimal
mechanical tension'®. Platelet endothelial cell adhesion molecule-1 (PECAM-1) is found
in specific regions within reticular junctions, contributing to their stability and regulating
their permeability through B-catenin'®.58, Several adherens junction proteins, including
a-catenin, B-catenin, and p120-catenin, are also distributed in reticular structures™®.

The versatility of endothelial cells stems from their unique ability to detect and respond
to diverse inputs, including mechanical and chemical signals, and to produce various
outputs accordingly. Thus, stable ECJ conformations can remodel in response to
environmental changes. For instance, the transmigration of small cell lung cancer cells
(NCI-H209) across human brain microvascular ECs (HBMECs) was accompanied by
changes in tight junction morphology®®. The increase in NCI-H209 cell transendothelial
migration coincided with alterations in cytoskeletal actin and ECJ conformations (e.g.,
Z0-1, occludin, and claudin-5). This led to the transformation of stable, continuous,
linear junctions into "discontinuous," "segmented," and "dotted" structures®®. Inhibition of
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Rho kinase with Y27632 prevented changes in local actin organization and ECJ
conformations, thereby impeding NCI-H209 transmigration.

During processes such as endothelial wound healing, cell migration, and inflammation,
continuous adherens junctions can transition into a remodeling, discontinuous structure
known as 'focal adherens junctions’ (FAJs)%1%:15.19-21 (Table 1). To study this transition,
researchers used time-lapse imaging of human umbilical vein endothelial cells
(HUVECSs) expressing a-catenin tagged with a photoswitchable fluorescent protein
called Dendra2?'. Dendra2 changes its fluorescence color when exposed to specific
wavelengths of light—a process referred to as “photoswitching”. In these experiments, a
segment of a stable junction was photoswitched from green to red fluorescence using a
405-nm confocal laser. Thrombin was then applied to induce FAJ formation, allowing
observation of whether the photoswitched a-catenin molecules were retained or
replaced during the transition from stable to remodeling FAJs?'. This approach revealed
that a significant fraction of the photoswitched a-catenin molecules remained associated
with the junctions, indicating that FAJs are formed by remodeling existing adherens
junctions. This remodeling involves molecular and physical changes, including the
recruitment of vinculin, actin-regulatory proteins such as VASP, zyxin, and TES, and the
binding of radial actin to cadherin complexes, all of which persists throughout the
transition202".

Tumor necrosis factor (TNF), a well-established activator of Rho, exerts significant
effects on endothelial cells during both early and late phases of stimulation®. Early
exposure to TNF induces changes in the actin cytoskeleton of HUVECs, promoting the
formation of stress fibers'?6°, In contrast, prolonged TNF exposure triggers Rho-
independent remodeling of ECJs, leading to increased permeability. In TNF-treated
endothelial cells, VE-cadherin, a-catenin, and 3-catenin complexes exhibit a
discontinuous pattern, characterized by breaks within regions of stable linear
junctions®’. These breaks manifest as short linear structures that branch off from
continuous ECJs, often attaching to the ends of stress fibers rather than to cortical F-
actin®’,

In summary, ECJs exhibit diverse conformations across various vascular contexts,
influenced by physiological and pathological stimuli®®%2-67, From stable to remodeling
forms like FAJs, these junctional structures undergo dynamic molecular and physical
changes involving actomyosin cytoskeleton remodeling and recruitment of specific
intracellular proteins. Understanding these variations provides insights into how
endothelial barriers respond to mechanical and biochemical cues, essential for
maintaining vascular integrity and adapting to physiological demands.

Quantitative Evaluation of Cell-cell Junction Conformations
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Each cell type responds uniquely even to the same physiological stimulus, exhibiting
distinct characteristics®®-7°. Various stimuli can disrupt junction architecture to varying
extents, ranging from minor changes in protein composition to complete loss of
adhesive homophilic transmembrane contacts and associated cytoplasmic proteins”.
Despite observed alterations in the structural presentation of ECJs, the precise
regulatory mechanisms governing these changes remain elusive. Understanding the
conditions under which these regulatory processes occur, particularly across different
vascular beds, requires further investigation. A significant challenge in studying ECJs
comprehensively is the current limitations of tools and methodologies used for
quantification, which often struggle to identify and analyze the nuanced conformations
of these junctions effectively.

Software tools like Imaged are commonly used to measure various characteristics of
ECJs, such as junction gap width and linearity?'6272, To assess junction gap width,
indicative of potential barrier dysfunction, a manual line is drawn perpendicular to the
widest gap visible in a fluorescent image of a junction (Fig. 1A). The software then
generates a pixel intensity profile for this designated area. Linearity is evaluated by
manually measuring the lengths of adherens junctions that display both linear and non-
linear staining patterns using the line tool. Typically, the percentage of linear junctions is
determined by comparing the length of linear junctions to the total junction coverage.

Existing tools predominantly rely on analyzing immunostaining intensity in images, but
they often overlook critical features such as junction shape, fragmentation, and
continuity—essential aspects that can significantly affect function and are observable
through microscopic examination. Moreover, these tools require manual input, leading
to time-consuming analyses and potential bias from users. These inherent challenges in
quantifying ECJs have historically hindered systematic studies of mammalian cells,
exacerbated by issues like cytoplasmic noise and irregular cell edges’. As a result,
qualitative assessments based on the presence of junctional proteins at cell-cell
interfaces have dominated the literature. Recently, efforts to address these limitations
have led to the development of two semi-automatic programs: the Junction Mapper
Program by Brezovjakova et al. and the Junction Analyzer Program (JAnaP) developed
by our laboratory®57".

Junction Mapper and JAnaP both start their analysis by creating a skeleton outline of
cell edges based on pixels at junction contact points identified through fluorescent
labeling. Junction Mapper autonomously determines these edges, allowing manual
adjustments by users if needed. In contrast, JAnaP requires users to mark waypoints
along the cell edge, after which the program automatically connects these markers at
cell-cell interfaces. These skeletal outlines serve as the basis for calculating various
parameters to quantify ECJs.
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Junction Mapper provides primary parameters such as junction area, contour, and
straight-line length, alongside secondary parameters that standardize the primary
metrics based on junction size or contour interface (Fig. 1B). On the other hand, JAnaP
automates the calculation of diverse cell morphology parameters including area,
perimeter, circularity, and solidity. Additionally, JAnaP quantitatively categorizes different
junction types—such as continuous, perpendicular, and punctate—showing their
distribution along the entire cell edge (Fig. 1C).

Each program offers distinct advantages. Junction Mapper's primary parameters allow
for assessing junction shrinkage, structural changes, and continuity based on marker
intensity within cell-cell contact zones, a feature less emphasized in JAnaP. However,
Junction Mapper faces challenges in accurately outlining the contour of zig-zag
junctions at interfaces, which are characteristic of activated or remodeling junction
configurations. In contrast, JAnaP excels in calculating detailed tip-to-tip distances for
each junction feature along the cell edge, making it particularly valuable for evaluating
disruptions that result in zig-zag patterns.

In summary, both Junction Mapper and JAnaP represent significant advancements in
objectively quantifying junctional changes, addressing longstanding challenges in cell
junction research. Each program offers distinct analytical strengths: Junction Mapper
provides a comprehensive array of parameters to characterize junctional alterations
induced by diverse stimuli, generating specific profiles. In contrast, JAnaP quantifies
junctions based on conformations commonly described qualitatively in the literature.
This makes JAnaP particularly valuable for quantifying junction parameters that
complement qualitative observations, thereby enhancing established studies.

These semi-automated analytical techniques are relatively recent developments,
introduced within the past five years, and have seen limited application in existing
literature. Consequently, the following discussion primarily involves qualitative
observations of ECJ conformations. Among the relevant studies that have employed
these semi-automatic tools, we focus on their findings regarding the effects of
inflammatory and mechanical challenges on junctional integrity.

Cell-Cell Junction Conformations and Transendothelial Migration

Transendothelial migration (TEM) of various cell types is a critical aspect of both normal
and pathological processes. The barrier properties of the endothelium are central to
regulating this migration. In particularly, the impact of ECJ forms can alter the rate of
TEM in cells crossing the endothelial barrier via the paracellular route. For example, the
transmigration of triple negative breast cancer (TNBC) cells, MDA-MB-231, across the
brain microvascular endothelial-like cells derived from human induced pluripotent stem
cells (iIBMEC-like cells), increased with interleukin (IL)-1B pretreatment’*. To analyze
junction integrity using JAnaP, confocal images of iBMEC-like cells stained for both ZO-
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1 and claudin-5 were captured after 6 hours of IL-1( treatment. IL-1B reduced the
percentage of continuous coverage (from ~96% to ~82%, p<0.001) and increased the
percentage of punctate (from ~1% to ~7%, p<0.001) and perpendicular (from ~1% to
~2%, p<0.01) regions within the cell—cell junctions for claudin-5, but not ZO-1 despite a
downregulation of mMRNA expression’. IL-1B neutralizing antibodies reduced the
transmigration of TNBC cells. These findings suggest that the increased TEM induced
by IL-18 is mediated by the changes in claudin-5 from a more stable cell-cell junction
conformation to a more activated or remodeled conformation.

IL-1B has also been shown to activate endothelial cells by prompting the expression of
various receptors on the endothelial surface, stimulating the release of cytokines and
inducing a procoagulant endothelial phenotype that influences permeability’>. An
investigation by Burns et al. revealed that IL-18 pretreatment of HUVEC monolayers
increased the percent TEM of neutrophils (65.8 + 5.4 vs 0.1 £ 0.1, p<0.05)"6. Of the
fraction of neutrophils traversing the endothelial monolayer, over 75% cross at tricellular
junctions—points of intersection between three endothelial cells—compared to less than
25% at bicellular junctions (between adjacent endothelial cells)’®. Similarly, Dias et al.
observed a comparable trend with T-cells, which predominantly passed paracellularly
(around 79.4%) through primary mouse brain microvascular endothelial cells, with more
than 60% passing through tricellular junctions’’. Notably, junctions at tricellular regions
have been observed to exhibit a discontinuous conformation both in vitro and ex vivo’®-
80 This pattern suggests that the inclination for neutrophil and T-cell TEM at tricellular
junctions (with a discontinuous form), as opposed to bicellular junctions (with an intact
structure), might arise from a path of least resistance’®.

Quantifying the percentage of ECJ coverage has shown that reductions in total junction
coverage can impact the rate of paracellular transport across the endothelial barrier. An
illustration of this can be seen with gram-negative bacterium, Neisseria meningitidis. N.
meningitidis is the leading cause of bacterial meningitis worldwide and requires the
traversal of the meningeal blood-cerebrospinal fluid barrier (MBCFSB), composed in
part by brain endothelial cells®'82. An in-vitro model of bacteria traversing the mBCFSB
suggested a transcellular route for N. meningitidis as bacteria transmigrated the barrier
within 24-hours post-infection, as barrier integrity, measured by transendothelial
electrical resistance (TEER), was still near control levels®3.

Interestingly, the rates of bacterial transmigration across brain endothelial cells
increased significantly between 24-hour and 30-hours post infection, accelerating well
beyond the rate of transmigration during the first 24-hours®3. Analysis with JAnaP
revealed that occludin coverage at cell junctions significantly decreased from
approximately 75% to 45% between 24- and 30-hours post-infection, indicating that N.
meningitidis likely traverses the brain endothelium through a paracellular pathway when
it is accessible. These observations collectively highlight the critical role of junctional
integrity and conformation in facilitating TEM, emphasizing how specific molecular and
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structural changes within ECJs can significantly impact the rate and pathway of cellular
and microbial transmigration.

Forces on Cell-cell Junction, Expression, Conformations, and Permeability

Mechanotransduction is the intricate process by which endothelial cells sense and
convert biomechanical forces into intracellular signals, influencing cellular positioning
and behavior®*. ECJs have been found to play a crucial role in this process by sensing
and transmitting mechanical signals, which can be disrupted in conditions affecting
vascular mechanics, impacting both normal physiology and disease outcomes®-8. For
instance, shear stress promotes the maturation of the vascular barrier by enhancing
junction linearity and stability®”. VE-cadherin, located at cell-cell junctions, experiences
significant myosin-dependent tension under normal conditions, which rapidly decreases
(<30 seconds) in response to shear stress, reducing overall cell-cell tension®®.

Our laboratory previously reviewed various mechanical forces affecting endothelial cell
behavior®. Here, the subsequent discussion focuses on both qualitative and
quantitative analyses of how ECJs structurally respond to mechanical cues and their
implications for vascular permeability (summarized in Table 2).

CYCLIC STRAIN

The impact of cyclic strain on ECJs varies depending on the type of endothelial cell. For
instance, physiological levels of cyclic strain (5% strain for 12 or 24 hours) decreased
MRNA expression of occludin in HUVECs but increased its mRNA expression in bovine
aortic endothelial cells (BAECs)®870. Additionally, in unstrained BAECs, occludin
localization at junction sites was low, but exposure to physiological levels of cyclic strain
increased its junction coverage’®. ZO-1 showed a discontinuous and jagged pattern at
the cell edge in unstrained endothelial cells, which gradually matured into a more stable
conformation with continuous, well-defined junctions upon application of cyclic strain®.

Tight junction assembly is highly regulated and involves various signaling pathways,
including the activity of protein kinase C 8%, Inhibition of protein kinase C with rottlerin
ablated the endothelial cell's response to cyclic strain, causing ZO-1 proteins to revert to
a more activated or remodeled conformation (Fig. 2) 7°. The study also showed that
unstrained BAECs were more permeable to 40 kDa FITC-dextran than strained cells,
suggesting that the effects of cyclic strain, which stabilize ZO-1 conformation, improve
barrier function (Table 2).

In a 3D-vessel-on-chip model using a fluidic circuit, human induced pluripotent stem cell
(hiPSC)-derived endothelial cells fluorescently labeled for VE-cadherin displayed a
continuous morphology under pressure-induced circumferential strain®'. At 0 mbar, the
VE-cadherin maintained a linear orientation, which persisted up to 100 mbar of internal
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pressure®'. However, at 150 mbar (~2% strain), VE-cadherin exhibited an activated or
remodeling junction orientation, observed as a zigzag pattern (Table 2)°'. These zigzag
discontinuous patterns at 150 mbar could potentially influence the permeability of the
endothelium, though this effect was not directly measured in this new model.

Although limited studies have investigated the response of junction structures and
conformations to cyclic strain, these few studies provide valuable insights into the
dynamic regulation of ECJs under this mechanical stress. This aspect remains
understudied, highlighting the need for further research to fully understand these
mechanisms and how they vary across endothelial cell types.

MATRIX STIFFNESS

In endothelial cells, substrate stiffness plays a crucial role in various physiological and
pathological conditions, including aging, atherosclerosis, solid tumors, and
neurodegenerative disorders. Extensive research across in-vitro, ex-ovo, and in-vivo
studies has demonstrated that changes in substrate stiffness significantly influence
vascular permeability®°2. These alterations in permeability often coincide with changes
in junction conformations, reflecting endothelial cell adaptive responses to their
mechanical microenvironment. For instance, elevated levels of matrix stiffness (15 kPa
and 194 kPa) have been shown to promote continuous ZO-1 coverage at junctions in
iIBMEC-like cells®. This increase in ZO-1 coverage correlated with a notable nine-fold
reduction in FITC-avidin permeability in a localized permeability assay conducted on
stiffer substrates. In contrast, on a more compliant substrate (1 kPa), where ZO-1 and
Claudin-5 were more discontinuous, the permeability was higher (Table 2)%3,
Interestingly, this reduction was most pronounced at tricellular junctions within the
monolayer.

BAECs and HUVECs cultured on compliant matrices (e.g., 0.2 kPa) typically develop
continuous adherens junctions and tight junctions along their cell peripheries®. In
contrast, stiffer matrices (e.g., 10 kPa) induce a punctate morphology of these junctions.
This change in junction protein structure due to matrix stiffness correlates directly with
increased permeability, as demonstrated by enhanced passage of 40-kDa FITC dextran
molecules (Fig. 2)%. On softer substrates (6 kPa), primary porcine aortic endothelial
cells (PAECs) exhibit thick reticular adherens junctions®. Conversely, when PAECs are
cultured on stiffer substrates (29 kPa), these reticular structures become thinner and are
lost. Moreover, PAEC monolayers exposed to stiffened substrates and inflammatory
cytokines demonstrate enhanced vinculin accumulation at adherens junctions,
increased tension, and elevated permeability®2.

The cell contractility pathway is a well-established mechanism linking matrix stiffness,
ECJs, and endothelial permeability. Studies employing techniques like traction force
microscopy have shown that endothelial cell contractility increases in response to stiffer
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matrices 729, This heightened contractile response is often associated with activation of
myosin light chain kinase (MLCK) and subsequent p-MLC. These actions generate
centripetal forces, widening and disrupting junctions, thereby promoting the TEM of
immune cells, particularly neutrophils, via a paracellular route®29.97,

RhoA, another potent activator of the cell contractility pathway, targets the actin
cytoskeleton through effectors such as Rho-associated protein kinase (ROCK)®%.
ROCK's mechanism involves inhibiting myosin light chain phosphatase, leading to
increased p-MLC downstream®. While myosin light chain kinase (MLCK) plays a more
significant role in endothelial cell hyperpermeability than ROCK, mild inhibition of ROCK
has been shown to restore impaired endothelial cell monolayers cultured on stiffer
matrices’>%°. Inhibiting ROCK reduces permeability and leukocyte transmigration by
mitigating the stiffness-dependent increase in adherens junction width (destabilization),
highlighting the critical role of junction conformation in regulating permeability”2.

The influence of matrix stiffness on junction conformation extends from large vessels to
smaller ones. Human lung microvascular endothelial cells (HLMECs) demonstrate
distinct responses when cultured on matrices with varying stiffness levels. Cells on low
(150 Pa) and high (35 kPa) stiffness matrices exhibit disrupted and discontinuous VE-
cadherin junctions, correlating with increased permeability (Table 2)'%. Conversely, cells
cultured on an intermediate stiffness (4 kPa) show fewer discontinuities and higher
TEER measurements'. This study underscores the delicate balance between cellular
contractility and relaxation responses, crucial for optimal junction formation and stability,
thereby ensuring the integrity of the endothelial barrier (Fig. 2).

HBMECs typically reside in a microenvironment characterized by a soft, hyaluronic acid-
rich extracellular matrix with low stiffness (0.1-1 kPa)'°'. In diseased states, alterations
in the crosslinking of extracellular matrix proteins often increase matrix stiffness,
promoting disease progression'®?. HBMECs cultured on hyaluronic/gelatin films with
varying Extralink concentrations (0.2%, 0.8%, 1.2%, and 2%) exhibited stiffness
measurements of 0.85 kPa, 1.1 kPa, 1.5 kPa, and 3.8 kPa, respectively®. HBMECs
cultured on films with 1.1 kPa stiffness displayed the highest percentage of stable
continuous, initially forming punctate, and activated perpendicular ZO-1 conformations
simultaneously®®. However, these changes in conformation were modest and did not
correlate with alterations in cancer cell transmigration speed or incorporation®. This
lack of correlation is likely due to the stiffness range still being within healthy
physiological limits.

In addition to the cell contractility pathway, other mechanisms contribute to matrix-
induced changes in ECJ conformations and permeability. A study using HUVECs
cultured on collagen-1-coated polyacrylamide hydrogels demonstrated that matrix
stiffness directly influences focal adhesion kinase (FAK)-mediated regulation of
permeability®. Increased matrix stiffness heightened FAK activity, leading to modulation
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of ECJ width without altering total VE-cadherin protein levels. Instead, FAK activation
induced junctional disruption by phosphorylating VE-cadherin, facilitated by Src
translocation to cell junctions, thereby reducing 3-catenin presentation at the
intercellular cleft and causing discontinuities®. These changes correlated with increased
endothelial permeability, which was mitigated by FAK inhibition. This study suggests that
matrix stiffness contributes to heightened permeability through increased FAK activity
and junctional disruption.

In summary, the endothelial monolayer's response to matrix stiffness activates various
signaling cascades that influence ECJ conformation and vascular barrier integrity.
These insights illuminate the mechanobiological principles governing vascular function
and offer potential for developing therapeutic strategies targeting these pathways'3.

SHEAR STRESS

The maturation of initially forming ECJs can be modulated by shear stress within the
physiological range, which may vary depending on the endothelial cell type®. Long-term
culturing of endothelial cells under physiological laminar flow promotes junctional
conformations typical of mature endothelium. For instance, VE-cadherin in human aortic
endothelial cells (HAECs) and HUVECs exhibits a mature linear pattern at 6 dyn/cm?,
while ZO-1 in HBMECs shows a similar pattern at 10-20 dyn/cm?, with actin localized to
the cell perimeter'®4105,_ Conversely, in the absence of flow (static controls) or under
abnormally high shear stress (e.g., 40 dyn/cm? in HBMECs), ZO-1 translocates to the
cytoplasm, resulting in a discontinuous junction pattern (Table 2)'%. This indicates that
homeostatic shear flow is optimal for junction stability and barrier function.

A study using primary human retinal microvascular endothelial cells (HRMECs) further
supports this, showing ZO-1 with the most stable linear conformation at 5 dyn/cm? shear
stress'%. As shear stress levels increased (>10 dyn/cm?) or decreased (<1.5 dyn/cm?),
Z0-1 distribution at junctions decreased, resulting in a discontinuous pattern (Table 2,
Fig. 2). Variations in shear stress are widely recognized as significant contributors to
changes in endothelial permeability, influencing the development of atherosclerotic
plaques in cardiovascular disease'?”-1%8, The emergence of plaques in areas with
disturbed flow patterns, such as branched and curved regions, raises questions about
the impact of these biomechanical cues on endothelial behavior, junction stability, and
subsequent permeability.

In adherens junctions, VE-cadherin staining at endothelial cell borders in vivo varied
significantly depending on the type of flow conditions. In the descending thoracic aorta,
where laminar pulsatile flow exhibited a predominant net forward component, VE-
cadherin staining was notably stronger compared to the curved aortic arch, where flow
near the wall was fluctuating and reciprocating with minimal net forward flow'%°. Using
flow chambers to simulate these conditions in vitro, BAEC monolayers exposed to
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pulsatile flow (12 + 4 dyn/cm? at 1 Hz) or reciprocating flow (0.5 + 4 dyn/cm? at 1 Hz) for
6 hours showed discontinuous VE-cadherin staining along cell borders, contrasting with
the continuous VE-cadherin distribution observed in static controls'®. Extending
pulsatile flow exposure to 24, 48, or 72 hours restored the more stable continuous VE-
cadherin conformation, whereas staining remained intermittent with prolonged
reciprocating flow exposure under similar conditions.

Proatherogenic multidirectional or disturbed flow conditions have been associated with
promoting endothelial hyperpermeability. In an experiment, PAECs were cultured in a
multi-well plate placed on an orbital platform shaker'’. This setup exposed PAECs at
the center to multidirectional flow and those at the edge to unidirectional flow. Cells
exposed to multidirectional flow had a higher percentage of leaky VE-cadherin tricellular
junctions compared to cells under unidirectional flow (~27% vs ~15%), which are known
to exhibit a discontinuous conformation (Table 2)78-80.107_ Additionally, cells under
multidirectional flow showed approximately a two-fold increase in the passage of FITC-
avidin through their tricellular junctions compared to their unidirectional flow-stimulated
counterparts (Fig. 2)'%".

This was also observed in a cerebral bifurcation 3D in-vitro model, where brain
hCMEC/D3 endothelial cells exposed to disturbed flow conditions for 18 hours
underwent changes in local actin organization, forming stress fibers and displaying
more discontinuous ZO-1 conformations compared to cells under fully developed
unidirectional flow'°. The disturbed flow-conditioned cells had a permeability coefficient
of approximately 3x10° cm/s (for 4 kDa FITC dextran), whereas the fully developed
flow-conditioned cells had a permeability coefficient of around 0.5x10-¢ cm/s (Table 2)'"°.

In summary, the data discussed demonstrate that different shear stress conditions
significantly influence endothelial cell junction conformation and permeability.
Physiological shear stress promotes stable, continuous junctions, while disturbed or
high shear stress leads to discontinuous junction patterns and increased permeability.
These findings highlight the importance of biomechanical forces in regulating
endothelial barrier function and underscore the need for further research to fully
understand the mechanisms driving these changes in a more quantitative manner.

Conclusions and Future Directions

Understanding the conformational dynamics of ECJs and their implications in various
physiological and pathological contexts underscores their pivotal role in regulating
vascular permeability. The diversity in ECJ protein composition and baseline
permeability across different vascular beds highlights the intricate nature of ECJ-
permeability relationships. The adoption of semi-automatic programs such as Junction
Mapper and JAnaP for more comprehensive ECJ quantification promises to advance
vascular mechanobiology significantly. These tools will be instrumental as we continue
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to uncover the mechanistic roles of mechanical forces in modulating ECJ conformations
and vascular permeability.

A critical challenge moving forward is the development of robust in-vitro experimental
models that can effectively explore the impact of mechanical stimuli on ECJ
conformations and permeability. It is essential to create in-vitro setups capable of
directly measuring permeability immediately following the application of mechanical
signals. A recent noteworthy innovation in this realm is the microfluidic electrochemical
assay pioneered by Jeremy F. Wong and Craig A. Simmons'"". This approach integrates
mechanical cues, particularly shear stress, and enables direct measurement of
permeability, marking a significant advancement in studying ECJ responses to
biomechanical stimuli.

This technology differs from traditional methods that use fluorescent tracers by
employing an electroactive tracer and integrating electrodes in the lower channel.
Similar to a Transwell insert, a porous membrane separates upper and lower channels
where endothelial cells are cultured. This configuration allows researchers to observe
real-time diffusive or convective transport of the electroactive tracer through the
monolayer, a capability lacking in traditional Transwell systems. Concurrently, TEER
facilitates real-time monitoring of barrier function, though interpreting results has
historically posed challenges. This technological advancement is crucial as it offers
insights into how mechanical cues, such as shear stress, immediately influence
endothelial barrier function and permeability. It fosters a deeper understanding of the
dynamic changes in vascular function.

In contrast, cyclic strain stimulation and permeability analysis are typically conducted
sequentially in conventional approaches. Endothelial cells undergo cyclic strain,
followed by disruption of their protein complexes through trypsinization. Subsequently,
they are re-seeded onto membranes for permeability studies using conventional
Transwell systems’®. This approach introduces delays in permeability measurements
and introduces confounding variables as endothelial cells need to re-adhere to form a
new monolayer on the Transwell membrane. Moreover, TEER and Transwell assays
provide bulk quantitative permeability measurements, thereby not allowing for localized
permeability differences within the monolayer (e.g., bicellular, tricellular junctions) to be
discerned. Dubrovskyi et al. developed an alternative method that utilizes the culture
surface itself as the permeable detection surface''2. They achieved this by biotinylating
the substrate (e.g., fibronectin, collagen, or gelatin) with EZ-link NHS-LC-LC-Biotin and
using a fluorescently labeled avidin ligand tracer.

This method involves identifying permeable regions locally as a ligand binds to
receptors beneath the cell monolayer. By coating flexible-bottomed culture plates with
biotinylated gelatin, researchers measured permeability in human pulmonary artery
endothelial cells exposed to cyclic strain. This approach has also been adapted to
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assess permeability in response to various mechanical stimuli, such as shear
stress''3114 and matrix stiffness®. Consequently, studies enabling immediate analysis of
permeability following mechanical stimulation could offer valuable insights into the
complex interplay among mechanical forces, endothelial cell junctions, and permeability.
Such insights would illuminate the pivotal role of these interactions in vascular
physiology and pathophysiology.

Another major challenge is the concurrent implementation of various mechanical cues,
as they do in vivo, to elicit a complex EC response. For instance, Zhao et al.
investigated the combined effects of cyclic strain and shear stress on bovine aortic ECs,
revealing that the two stimuli can lead to increased cell alignment (with respect to the
flow/shear stress direction) and aspect ratio (the ratio between the cell’s long and short
axis), demonstrating a synergistic relationship''®. However, human coronary artery ECs
(HAECs) responded differently, showing no significant effects on cell aspect ratio''®.
HAECs showed an increased but not synergistic effect on ICAM-I expression’'®. In
contrast, HUVECs subjected to shear stress exhibited downregulated ICAM-|
expression when cyclic strain signals were added, indicating an antagonistic
relationship™’. Understanding the impact of multiple mechanical cues is crucial because
they interact in complex ways to influence EC behavior, and these interactions can vary
depending on the specific EC type and context. Thus, investigating how ECJ
conformations and vascular permeability are affected by the interplay of multiple
mechanical cues represents a largely unexplored area with the potential to provide
fundamental insights and innovative approaches for modulating the vascular endothelial
barrier.

Another significant challenge lies in concurrently applying multiple mechanical cues,
mirroring physiological conditions in vivo, to elicit a complex endothelial cell response.
For example, Zhao et al. explored the combined effects of cyclic strain and shear stress
on BAECs, demonstrating that these stimuli synergistically increase cell alignment with
the flow direction and aspect ratio, highlighting a synergistic relationship'®. However,
HAECs responded differently, showing no significant changes in cell aspect ratio®.
Instead, the combined effects of cyclic strain and shear stress increased ICAM-I
expression''8. When subjected to shear stress alone, HUVECs exhibited reduced
ICAM-| expression, which was reversed when cyclic strain was added, suggesting an
antagonistic interaction'”. Understanding these complex interactions is crucial because
they profoundly influence endothelial cell behavior, with outcomes varying depending on
the cell type and specific conditions. Therefore, investigating how ECJ conformations
and vascular permeability respond to the interplay of multiple mechanical cues remains
a largely unexplored area that holds promise for uncovering fundamental insights and
innovative strategies to modulate vascular endothelial barriers.
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Table Legends

Table 1. Overview of different VE-cadherin conformations in endothelial cells, including
descriptive changes in local actin organization and associated intracellular proteins.
Unique in-vitro models that allowed for the observation of these conformations are also
described. Actin fibers are depicted in red, while VE-cadherin is marked in green.

Table 2. Summary outlining the responses of endothelial cell-cell junctions to various
mechanical stimuli (first column) and describing alterations in vascular barrier
permeability (fourth column).

Table 2
Mechanical Cell-cell Junction -
- rm ili Referen
Stress Cell Type Conformation Permeability eterence
Increased [2.5
Cyclic Strain (0%, BAECs Discontinuous ZO-1 & fold]
24 hrs.) Occludin (40 kDA FITC- Collins et al., 2006
dextran)
. . . . Constant
Cyclic Strain (5 %, Linear, Continuous .
24 hrs.) BAECs 70-1 & Occludin (40 KDAFITC- Collins et al., 2006
dextran)
. . hiPSC-
Cyclic Strain ; . .
derived Linear, Continuous
(<10(r)1:rs1b)ar, 24 endothelial VE.cadherin n/a Graaf et al., 2022
) cells
. . hiPSC-
Cyclic Strain ; . .
derived Discontinuous VE-
(>150hr:1$bar, 24 endothelial cadherin n/a Graaf et al., 2022
] cells
Matrix Stiffness ~ iBMEC-like 1 Linear, Continuous (<200n'-;’n"]"|_ FITC.  Yan et al. 2023
(>15 kPa) cells Z0-1, Claudin-5 a\%idin) N
Matrix Stiffness (1 iBMEC-like 1 Discontinuous ZO-1,  High (~900ng/mL
kPa) cells Claudin-5 FITC-avidin) Yan etal., 2023
Matrix Stiffness BAECs, Continuous VE- (40 kIII_)(,)AWFITC- Bordeleau et al.,
(0.2 kPa) HUVECs cadherin dextran) 2023
o Discontinuous Increased [~3 fold]
Matrix Stiffness BAECs, " " Bordeleau et al.,
(10 kPa) HUVECS Punctate" VE- (40 kDA FITC- 2023

cadherin

dextran)
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Matrix Stiffness (6 PAECs Thick Reticular Mild (TMR- Urbano et al.,
kPa) Adherens Junctions dextran) 2017
Matrix Stiffness PAECs Loss and thinning of Increased (TMR- Urbano et al.,
(29 kPa) Reticular Structure dextran) 2017
Matrix Stiffness HLMECs 1 Discontinuous VE- Increased (TEER Mammoto et al.,
(150 Pa) cadherin < 25 QXcm?) 2013
L
Matrix Stiffness (4 HLMECs Continuou_s VE- (TEEF({)V: 100 Mammoto et al.,
kPa) cadherin 9 2013
QXcm?)
Matrix Stiffness HLMEGC Discontinuous VE- In_lt_t-:I‘ErIrEns(ilgBe Mammoto et al.,
S . (
(35 kPa) cadherin 5 2013
QXcm?)
o . . Intermediate
Matrix Stiffness HUVECs Thin Contlnupus VE- (40 kDA FITC- Wang et al., 2019
(2.5 kPa) cadherin
dextran)
o . Increased [~2-fold]
Matrix Stiffness 1 VE-cadherin
(10 kPa) HUVECs Disruption & Width (40 KDAFITC- Wang et al., 2019
dextran)
Shear Stress . .
HAECs Linear, Continuous . ,
2 ’ ’
(6 dymgrr)] , 48 HUVECS VE.cadherin n/a Silvani et al., 2021
Shear Stress . . . .
(10-20 dyn/cm?, HBMECs L|near,ZC(;>n1t|nuous n/a Garclla-;(ﬂl;e et
96 hrs.) ) al,
Shear Stress . .
(40 dyn/cm?, 96 HBMECs Discontinuous ZO-1 n/a Garclla-;(;) 1“;6 et
hrs.) al
Shear Stress . .
(5 dyn/cm?, 24-48  HRMECs L'”ear’zcg_’}“”uous n/a Molins et al., 2019
hrs.)
Shear Stress
(jﬁ/?:::zm HRMECs Discontinuous ZO-1 n/a Molins et al., 2019
24-48 hrs.)
Shear Stress . . .
(Unidirectional paECs < Discontinuous VE-Intermediate 5y o4 o1 0009
flow, 7- days) cadherin (FITC-avidin)
Shear Stress . : .
S 1 Discontinuous VE- High [~2 fold 1] .
(l}?g\l;sd;r_eg;sg)al PAECs cadherin (FITC-avidin) Ghim et al., 2022
Permeability
Shear Stress L .
. . . Coefficient 3x10 Bouhrira et al.,
(Dlsturtr)ﬁg ;‘Iow, 18 hCMEC/D3 Discontinuous ZO-1 cmis (4 kDA FITC 2021
) dextran)
Shear Stress Permeability
(Fully developed . ) Coefficient 0.5x10 Bouhrira et al.,
flow, hCMEC/D3 Continuous ZO-1 6 cmis (4 kDA 2021
18 hrs.) FITC dextran)

Figure Legends

Fig. 1. Computational Tools for Quantitative Assessment of Diverse Cell-Cell
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Junctions. A comparison of prominent software tools used for cell-cell junction analysis,
highlighting their key features. The red "x" does not necessarily indicate an inability to
perform a task but rather evaluates the feasibility and common utilization, or lack
thereof, in the literature.

Fig. 2. Impact of Contact-Derived and Flow-Derived Stresses on Cell-Cell
Junction Conformations and Permeability. Shear Stress | The flow rate and direction
(uni-directional vs. multi-directional) modulate cell-cell junction conformation and
tricellular junction leakiness. Cyclic Strain | The effect of physiological strain on cell-cell
junctions and permeability is dependent on PKC. Matrix Stiffness | Elevated stiffness
levels correlate with changes in cell-cell junction conformations and barrier integrity,
varying across different endothelial cell types.
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