

1 Junctions at the Crossroads: The Impact of Mechanical Cues on Endothelial Cell-Cell
2 Junction Conformations and Vascular Permeability
3
4

5 Ken D. Brandon¹, William E. Frank⁵, and Kimberly M. Stroka^{1,2,3,4#}

6
7 1) Fischell Department of Bioengineering, University of Maryland, College Park, MD
8 20742, USA

9 2) Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of
10 Maryland – Baltimore, MD 21201, USA

11 3) Biophysics Program, University of Maryland, College Park, MD 20742, USA

12 4) Center for Stem Cell Biology and Regenerative Medicine, University of Maryland –
13 Baltimore, MD, 21201, USA

14 5) Department of Biology, University of Puerto Rico in Ponce, 00732, Puerto Rico

15

16 # Corresponding Author:

17 Kimberly M. Stroka

18 3110 A. James Clark Hall

19 Fischell Department of Bioengineering

20 University of Maryland, College Park

21 8278 Paint Branch Drive

22 College Park, MD 20742

23 TEL: 301-314-1813

24 FAX: 301-405-9953

25 EMAIL: kstroka@umd.edu

26 **Keywords:** endothelium; cell-cell junction conformations; permeability; matrix stiffness;
27 shear stress; cyclic strain.

28 **Abbreviations:** VE-cadherin, vascular endothelial-cadherin; ZO, zonula occludens;
29 ECJ, endothelial cell-cell junction; P-face, protoplasmic-face; VEGF, vascular
30 endothelial growth factor; JAIL, junction-associated intermediate lamellipodia; YAP, yes-
31 associated protein 1; TAZ, transcription regulator 1; p-MLC, phosphorylated myosin light
32 chain; PECAM-1, platelet endothelial cell adhesion molecule-1; HBMEC, human brain

33 microvascular endothelial cell; FAJ, focal adherens junction; HUVEC, human umbilical
34 vein endothelial cell; TNF, tumor necrosis factor- α ; JAnaP, Junction Analyzer Program;
35 TEM, transendothelial migration; TNBC, triple negative breast cancer; iBMEC, induced
36 brain microvascular endothelial-like cells derived from human induced pluripotent stem
37 cells; IL, interleukin; *N. meningitidis*, *Neisseria meningitidis*; mBCFSB, meningeal blood-
38 cerebrospinal fluid barrier; TEER, transendothelial electrical resistance; BAEC, bovine
39 aortic endothelial cell; hiPSC, human induced pluripotent stem cell; PAEC, porcine
40 aortic endothelial cells; MLCK, myosin light chain kinase; ROCK, Rho-associated
41 protein kinase; HLMEC, human lung microvascular endothelial cell; FAK, focal adhesion
42 kinase; HAEC, human aortic endothelial cell; HRMEC human retinal microvascular
43 endothelial cell.

44

45 **Abstract**

46
47 Cells depend on precisely regulating barrier function within the vasculature to maintain
48 physiological stability and facilitate essential substance transport. Endothelial cells
49 achieve this through specialized adherens and tight junction protein complexes, which
50 govern paracellular permeability across vascular beds. Adherens junctions, anchored by
51 VE-cadherin and associated catenins to the actin cytoskeleton, mediate homophilic
52 adhesion crucial for barrier integrity. In contrast, tight junctions composed of occludin,
53 claudin, and junctional adhesion molecule A interact with Zonula Occludens proteins,
54 reinforcing intercellular connections essential for barrier selectivity.

55
56 Endothelial cell-cell junctions exhibit dynamic conformations during development,
57 maturation, and remodeling, regulated by local biochemical and mechanical cues.
58 These structural adaptations play pivotal roles in disease contexts such as chronic
59 inflammation, where junctional remodeling contributes to increased vascular
60 permeability observed in conditions from cancer to cardiovascular diseases. Conversely,
61 the brain microvasculature's specialized junctional arrangements pose challenges for
62 therapeutic drug delivery due to their unique molecular compositions and tight
63 organization.

64
65 This commentary explores the molecular mechanisms underlying endothelial cell-cell
66 junction conformations and their implications for vascular permeability. By highlighting
67 recent advances in quantifying junctional changes and understanding
68 mechanotransduction pathways, we elucidate how physical forces from cellular contacts
69 and hemodynamic flow influence junctional dynamics.

70
71 **Introduction**

72
73 The precise delivery of essential circulating components, such as nutrients, endocrine
74 signals, and therapeutic agents, to organ tissues is vital for maintaining physiological
75 balance and stability¹. Endothelial cells play a central role in this process by lining the
76 vasculature and establishing a barrier that regulates the extravasation of substances
77 into underlying tissues^{1,2}. This barrier is primarily maintained by two protein complexes:
78 adherens and tight junctions, each characterized by specific constituent protein-protein
79 interactions^{3–5}. Vascular endothelial (VE)-cadherin, a transmembrane protein, facilitates
80 homophilic adhesion between neighboring endothelial cells, initiating adherens junction
81 formation³. The cytoplasmic tail of VE-cadherin interacts with proteins such as α-, β-,
82 and p120-catenin, as well as plakoglobin, anchoring adherens junctions to the actin
83 cytoskeleton^{3,6}.

84
85 Similarly, tight junctions exhibit complexity, with transmembrane proteins such as
86 occludin, claudin, and junctional adhesion molecule A facilitating intercellular adhesion³.
87 These proteins interact with intracellular counterparts like zonula occludens (ZO)-1/2/3

88 to reinforce connections to the actin cytoskeleton. Baseline differences in the
89 organization of endothelial cell-cell junction (ECJ) components and protein expression
90 can vary based on the vascular bed. This is evident in freeze-fracture preparations,
91 where tight connections between endothelial cells in blood vessels outside the brain are
92 less associated with the Protoplasmic (P)-face compared to blood vessels of the brain,
93 where these connections are most prominently associated with the P-face⁷.

94
95 Additionally, occludin exhibits high gene and protein expression levels with a continuous
96 distribution in brain endothelial cells, whereas in endothelial cells of non-neuronal tissues,
97 its expression is much lower and shows a discontinuous pattern⁸. ECJs can also have
98 different conformations depending on the stage of adhesion: initial formation^{9–12}, stable
99 maturation^{9,13–18}, and stimulated remodeling^{9,10,19–21}. These conformations are
100 interchangeable, each uniquely characterized by specific local actin organization and
101 associated intracellular proteins. As a result, adherens and tight junctions are thought to
102 undergo conformational changes in response to various biochemical and mechanical
103 signals.

104
105 Persistent remodeling of ECJs under chronic inflammatory conditions is thought to
106 contribute to increased endothelial permeability seen in a spectrum of pathologies,
107 including cancer, cardiovascular disease, ischemic stroke, asthma, and arthritis¹. On the
108 other hand, baseline differences in the expression of adherens and tight junction
109 proteins, along with their stable, well-organized arrangements within the brain
110 microvasculature, are believed to present challenges for targeted drug delivery to brain
111 tissues^{7,8,22–24}. Understanding how adherens and tight junction conformations influence
112 endothelial permeability and the mechanisms governing their remodeling could inform
113 strategies for disease management and drug development.

114
115 The molecular composition and signaling of adherens and tight junctions^{3,4,25–27}, along
116 with their heterogeneity throughout the vasculature tree^{28–31} and their contribution to
117 paracellular permeability^{1,2,32–38}, have been extensively documented in previous
118 reviews. In this commentary, we will discuss the various ECJ conformations and how
119 changes in their structure affect barrier permeability. We will describe tools to quantify
120 these changes and their role in immune cell extravasation. Additionally, we will outline
121 the impact of contact and flow-derived forces on cell-cell junction conformations,
122 focusing on mechanotransduction and its influence on permeability function.

123 124 **Endothelial Cell-cell Junction Conformations**

125
126 ECJ proteins and baseline permeability exhibit significant diversity across different
127 vascular beds from various anatomical regions^{39–41}. This heterogeneity has prompted a
128 comprehensive examination of adherens and tight junctions as regulators of paracellular
129 permeability^{3–5}. Researchers have extensively studied the morphology and molecular
130 composition of ECJs using freeze-fracture electron microscopy⁴². These studies reveal

131 that the number and complexity of junctional strands vary by cell type, which affects the
132 barrier properties of different tissues. Specifically, an increase in the number of
133 junctional strands correlates logarithmically with specific junctional resistance⁴³. These
134 finding challenges earlier descriptions of ECJs merely as fusions or seals of the outer
135 membrane leaflets of adjacent cells^{43–45}. Instead, it suggests that ECJs contribute to
136 barrier function in a more complex manner, involving various regulatory proteins and
137 influenced by factors such as spatial arrangement and dynamic interactions^{3–5,43–45}.

138

139 As a result, disruption of transmembrane or cytoplasmic proteins in adherens and tight
140 junctions affects permeability. Tissue-specific expression of claudin isoforms and the
141 effects of disease-causing tight junction protein mutations have significantly contributed
142 to our understanding of their role in barrier formation^{4,46–48}. For example, claudin-5-
143 deficient mice exhibit size-selective loosening of the blood-brain barrier, impairing its
144 ability to restrict molecules smaller than 800 Daltons⁴⁸. Intravenous injection of the
145 BV13 antibody, which targets mouse VE-cadherin and redistributes it away from
146 adherens junctions, caused a dose- and time-dependent increase in vascular
147 permeability in 10–12-week-old male mice⁴⁹. Knocking out β -catenin in mouse models
148 decreased endothelial cells' ability to maintain vascular integrity, leading to leakage and
149 hemorrhage⁵⁰.

150

151 In this section, we will discuss the different conformations of cell-cell junctions (Table 1).
152 Given that adherens junctions are ubiquitously expressed along the vascular tree, we
153 will focus primarily on cadherin-containing junctions observed through microscopic
154 analyses^{3,51}. We will indicate what is known about their local actin organization and
155 associated intracellular proteins at different stages of adhesion.

156

157 The initial formation of ECJs have a distinct conformation that differs from their mature
158 stable structure. This has been illustrated in studies involving the human materno-fetal
159 endothelial barrier where ECJs can display unique conformations linked to vascular
160 changes during pregnancy^{52–54}. Developing vessels in the first trimester display an
161 'activated junctional phenotype,' primed for cell growth and proliferation⁵². Stimulated by
162 the predominant angiogenic growth factor, vascular endothelial growth factor (VEGF),
163 these vessels exhibit ECJs lacking plakoglobin, occludin, and claudin-1 at adherens and
164 tight junction sites compared to the 'stable junctional phenotype' of third-trimester
165 vessels^{52,54}. *In vitro* studies using human placental endothelial cells in endothelial
166 conditioned growth supplement confirmed this 'activated junctional phenotype,' marked
167 by a more 'punctate' morphology of occludin, reduced plakoglobin and β -catenin at
168 adherens junctions, and corresponding changes in F-actin organization^{53,54}.

169

170 Initial forming cell-cell junctions are thin and discontinuous, assuming a punctate
171 morphology^{9,11,12} (Table 1). In subconfluent and migratory endothelial models, junction-
172 associated intermittent lamellipodia (JAIL) protrusions mediate the interaction between
173 endothelial cells, which retract and transform into filopodia-like bridges rich in VE-

174 cadherin¹¹. The conformations of VE-cadherin along these bridges are heterogeneous,
175 with multiple punctate accumulations in an interrupted pattern^{11,12}. Non-muscle myosin II
176 incorporates into these bridges, maturing them into stress fibers¹¹. Many proteins
177 associate with forming cell-cell junctions, mediating their function and connection to
178 actin, including VASP proteins, fascin, ARP 2/3 complex, α -catenin, and β -catenin⁹⁻¹².
179

180 ECJs stabilize and mature after their initial formation, adopting a thick, continuous, and
181 linear morphology in highly confluent monolayers, endothelial cells under laminar flow,
182 or with increased cyclic AMP^{9,13-15} (Table 1). This stabilization is accompanied by actin
183 cytoskeleton remodeling. Actin filaments become shorter and more irregular,
184 colocalizing with linearly distributed VE-cadherin and forming peri-junction actin
185 bundles, where VE-cadherin aligns parallel to circumferentially organized actin
186 networks^{13,18,21}. Stable ECJs retain α -catenin and β -catenin, with plakoglobin
187 accumulating at maturing adherens junctions as endothelial cells near confluence^{9,18}.
188

189 Reticular adherens junctions are a unique and stable ECJ conformation, identified as a
190 3-dimensional network formed by overlapping quiescent endothelial cells¹⁶ (Table 1).
191 Transcription factors yes-associated protein 1 and transcription regulator 1 (YAP/TAZ)
192 are required for these VE-cadherin reticular structures⁵⁵. Knockdown studies of p73 in
193 endothelial cells, recently identified as a regulator of YAP, confirmed its role in the
194 formation and maintenance of reticular junctions⁵⁶. Early tyrosine kinase SRC activation
195 also stimulates the formation of reticular junctions, enhancing endothelial barrier
196 function via phosphorylation of VE-cadherin at Y731⁵⁷.
197

198 While VE-cadherin can be distributed into reticular structures, tight junction proteins like
199 ZO-1 do not appear in this conformation¹⁶. Unlike other ECJ conformations, reticular
200 junctions have little to no attachment to actin¹⁶. Additionally, common endothelial cell
201 tension markers like phosphorylated myosin light chain (p-MLC) and vinculin are absent
202 in reticular structures, suggesting this ECJ conformation forms in regions under minimal
203 mechanical tension¹⁶. Platelet endothelial cell adhesion molecule-1 (PECAM-1) is found
204 in specific regions within reticular junctions, contributing to their stability and regulating
205 their permeability through β -catenin^{16,58}. Several adherens junction proteins, including
206 α -catenin, β -catenin, and p120-catenin, are also distributed in reticular structures¹⁶.
207

208 The versatility of endothelial cells stems from their unique ability to detect and respond
209 to diverse inputs, including mechanical and chemical signals, and to produce various
210 outputs accordingly. Thus, stable ECJ conformations can remodel in response to
211 environmental changes. For instance, the transmigration of small cell lung cancer cells
212 (NCI-H209) across human brain microvascular ECs (HBMECs) was accompanied by
213 changes in tight junction morphology⁵⁹. The increase in NCI-H209 cell transendothelial
214 migration coincided with alterations in cytoskeletal actin and ECJ conformations (e.g.,
215 ZO-1, occludin, and claudin-5). This led to the transformation of stable, continuous,
216 linear junctions into "discontinuous," "segmented," and "dotted" structures⁵⁹. Inhibition of

217 Rho kinase with Y27632 prevented changes in local actin organization and ECJ
218 conformations, thereby impeding NCI-H209 transmigration.
219

220 During processes such as endothelial wound healing, cell migration, and inflammation,
221 continuous adherens junctions can transition into a remodeling, discontinuous structure
222 known as 'focal adherens junctions' (FAJs)^{9,10,15,19–21} (Table 1). To study this transition,
223 researchers used time-lapse imaging of human umbilical vein endothelial cells
224 (HUVECs) expressing α -catenin tagged with a photoswitchable fluorescent protein
225 called Dendra2²¹. Dendra2 changes its fluorescence color when exposed to specific
226 wavelengths of light—a process referred to as "photoswitching". In these experiments, a
227 segment of a stable junction was photoswitched from green to red fluorescence using a
228 405-nm confocal laser. Thrombin was then applied to induce FAJ formation, allowing
229 observation of whether the photoswitched α -catenin molecules were retained or
230 replaced during the transition from stable to remodeling FAJs²¹. This approach revealed
231 that a significant fraction of the photoswitched α -catenin molecules remained associated
232 with the junctions, indicating that FAJs are formed by remodeling existing adherens
233 junctions. This remodeling involves molecular and physical changes, including the
234 recruitment of vinculin, actin-regulatory proteins such as VASP, zyxin, and TES, and the
235 binding of radial actin to cadherin complexes, all of which persists throughout the
236 transition^{20,21}.

237

238 Tumor necrosis factor (TNF), a well-established activator of Rho, exerts significant
239 effects on endothelial cells during both early and late phases of stimulation¹⁰. Early
240 exposure to TNF induces changes in the actin cytoskeleton of HUVECs, promoting the
241 formation of stress fibers^{10,60}. In contrast, prolonged TNF exposure triggers Rho-
242 independent remodeling of ECJs, leading to increased permeability. In TNF-treated
243 endothelial cells, VE-cadherin, α -catenin, and β -catenin complexes exhibit a
244 discontinuous pattern, characterized by breaks within regions of stable linear
245 junctions⁶¹. These breaks manifest as short linear structures that branch off from
246 continuous ECJs, often attaching to the ends of stress fibers rather than to cortical F-
247 actin⁶¹.

248

249 In summary, ECJs exhibit diverse conformations across various vascular contexts,
250 influenced by physiological and pathological stimuli^{59,62–67}. From stable to remodeling
251 forms like FAJs, these junctional structures undergo dynamic molecular and physical
252 changes involving actomyosin cytoskeleton remodeling and recruitment of specific
253 intracellular proteins. Understanding these variations provides insights into how
254 endothelial barriers respond to mechanical and biochemical cues, essential for
255 maintaining vascular integrity and adapting to physiological demands.

256

257 **Quantitative Evaluation of Cell-cell Junction Conformations**

258

259 Each cell type responds uniquely even to the same physiological stimulus, exhibiting
260 distinct characteristics^{68–70}. Various stimuli can disrupt junction architecture to varying
261 extents, ranging from minor changes in protein composition to complete loss of
262 adhesive homophilic transmembrane contacts and associated cytoplasmic proteins⁷¹.
263 Despite observed alterations in the structural presentation of ECJs, the precise
264 regulatory mechanisms governing these changes remain elusive. Understanding the
265 conditions under which these regulatory processes occur, particularly across different
266 vascular beds, requires further investigation. A significant challenge in studying ECJs
267 comprehensively is the current limitations of tools and methodologies used for
268 quantification, which often struggle to identify and analyze the nuanced conformations
269 of these junctions effectively.
270

271 Software tools like ImageJ are commonly used to measure various characteristics of
272 ECJs, such as junction gap width and linearity^{21,62,72}. To assess junction gap width,
273 indicative of potential barrier dysfunction, a manual line is drawn perpendicular to the
274 widest gap visible in a fluorescent image of a junction (Fig. 1A). The software then
275 generates a pixel intensity profile for this designated area. Linearity is evaluated by
276 manually measuring the lengths of adherens junctions that display both linear and non-
277 linear staining patterns using the line tool. Typically, the percentage of linear junctions is
278 determined by comparing the length of linear junctions to the total junction coverage.
279

280 Existing tools predominantly rely on analyzing immunostaining intensity in images, but
281 they often overlook critical features such as junction shape, fragmentation, and
282 continuity—essential aspects that can significantly affect function and are observable
283 through microscopic examination. Moreover, these tools require manual input, leading
284 to time-consuming analyses and potential bias from users. These inherent challenges in
285 quantifying ECJs have historically hindered systematic studies of mammalian cells,
286 exacerbated by issues like cytoplasmic noise and irregular cell edges⁷³. As a result,
287 qualitative assessments based on the presence of junctional proteins at cell-cell
288 interfaces have dominated the literature. Recently, efforts to address these limitations
289 have led to the development of two semi-automatic programs: the Junction Mapper
290 Program by Brezovjakova et al. and the Junction Analyzer Program (JAnaP) developed
291 by our laboratory^{65,71}.
292

293 Junction Mapper and JAnaP both start their analysis by creating a skeleton outline of
294 cell edges based on pixels at junction contact points identified through fluorescent
295 labeling. Junction Mapper autonomously determines these edges, allowing manual
296 adjustments by users if needed. In contrast, JAnaP requires users to mark waypoints
297 along the cell edge, after which the program automatically connects these markers at
298 cell-cell interfaces. These skeletal outlines serve as the basis for calculating various
299 parameters to quantify ECJs.
300

301 Junction Mapper provides primary parameters such as junction area, contour, and
302 straight-line length, alongside secondary parameters that standardize the primary
303 metrics based on junction size or contour interface (Fig. 1B). On the other hand, JAnaP
304 automates the calculation of diverse cell morphology parameters including area,
305 perimeter, circularity, and solidity. Additionally, JAnaP quantitatively categorizes different
306 junction types—such as continuous, perpendicular, and punctate—showing their
307 distribution along the entire cell edge (Fig. 1C).

308

309 Each program offers distinct advantages. Junction Mapper's primary parameters allow
310 for assessing junction shrinkage, structural changes, and continuity based on marker
311 intensity within cell-cell contact zones, a feature less emphasized in JAnaP. However,
312 Junction Mapper faces challenges in accurately outlining the contour of zig-zag
313 junctions at interfaces, which are characteristic of activated or remodeling junction
314 configurations. In contrast, JAnaP excels in calculating detailed tip-to-tip distances for
315 each junction feature along the cell edge, making it particularly valuable for evaluating
316 disruptions that result in zig-zag patterns.

317

318 In summary, both Junction Mapper and JAnaP represent significant advancements in
319 objectively quantifying junctional changes, addressing longstanding challenges in cell
320 junction research. Each program offers distinct analytical strengths: Junction Mapper
321 provides a comprehensive array of parameters to characterize junctional alterations
322 induced by diverse stimuli, generating specific profiles. In contrast, JAnaP quantifies
323 junctions based on conformations commonly described qualitatively in the literature.
324 This makes JAnaP particularly valuable for quantifying junction parameters that
325 complement qualitative observations, thereby enhancing established studies.

326

327 These semi-automated analytical techniques are relatively recent developments,
328 introduced within the past five years, and have seen limited application in existing
329 literature. Consequently, the following discussion primarily involves qualitative
330 observations of ECJ conformations. Among the relevant studies that have employed
331 these semi-automatic tools, we focus on their findings regarding the effects of
332 inflammatory and mechanical challenges on junctional integrity.

333

334 **Cell-Cell Junction Conformations and Transendothelial Migration**

335

336 Transendothelial migration (TEM) of various cell types is a critical aspect of both normal
337 and pathological processes. The barrier properties of the endothelium are central to
338 regulating this migration. In particular, the impact of ECJ forms can alter the rate of
339 TEM in cells crossing the endothelial barrier via the paracellular route. For example, the
340 transmigration of triple negative breast cancer (TNBC) cells, MDA-MB-231, across the
341 brain microvascular endothelial-like cells derived from human induced pluripotent stem
342 cells (iBMEC-like cells), increased with interleukin (IL)-1 β pretreatment⁷⁴. To analyze
343 junction integrity using JAnaP, confocal images of iBMEC-like cells stained for both ZO-

344 1 and claudin-5 were captured after 6 hours of IL-1 β treatment. IL-1 β reduced the
345 percentage of continuous coverage (from ~96% to ~82%, p<0.001) and increased the
346 percentage of punctate (from ~1% to ~7%, p<0.001) and perpendicular (from ~1% to
347 ~2%, p<0.01) regions within the cell–cell junctions for claudin-5, but not ZO-1 despite a
348 downregulation of mRNA expression⁷⁴. IL-1 β neutralizing antibodies reduced the
349 transmigration of TNBC cells. These findings suggest that the increased TEM induced
350 by IL-1 β is mediated by the changes in claudin-5 from a more stable cell-cell junction
351 conformation to a more activated or remodeled conformation.

352
353 IL-1 β has also been shown to activate endothelial cells by prompting the expression of
354 various receptors on the endothelial surface, stimulating the release of cytokines and
355 inducing a procoagulant endothelial phenotype that influences permeability⁷⁵. An
356 investigation by Burns et al. revealed that IL-1 β pretreatment of HUVEC monolayers
357 increased the percent TEM of neutrophils (65.8 ± 5.4 vs 0.1 ± 0.1 , p<0.05)⁷⁶. Of the
358 fraction of neutrophils traversing the endothelial monolayer, over 75% cross at tricellular
359 junctions—points of intersection between three endothelial cells—compared to less than
360 25% at bicellular junctions (between adjacent endothelial cells)⁷⁶. Similarly, Dias et al.
361 observed a comparable trend with T-cells, which predominantly passed paracellularly
362 (around 79.4%) through primary mouse brain microvascular endothelial cells, with more
363 than 60% passing through tricellular junctions⁷⁷. Notably, junctions at tricellular regions
364 have been observed to exhibit a discontinuous conformation both *in vitro* and *ex vivo*^{78–}
365 ⁸⁰. This pattern suggests that the inclination for neutrophil and T-cell TEM at tricellular
366 junctions (with a discontinuous form), as opposed to bicellular junctions (with an intact
367 structure), might arise from a path of least resistance⁷⁶.

368
369 Quantifying the percentage of ECJ coverage has shown that reductions in total junction
370 coverage can impact the rate of paracellular transport across the endothelial barrier. An
371 illustration of this can be seen with gram-negative bacterium, *Neisseria meningitidis*. *N.*
372 *meningitidis* is the leading cause of bacterial meningitis worldwide and requires the
373 traversal of the meningeal blood-cerebrospinal fluid barrier (mBCFSB), composed in
374 part by brain endothelial cells^{81,82}. An *in-vitro* model of bacteria traversing the mBCFSB
375 suggested a transcellular route for *N. meningitidis* as bacteria transmigrated the barrier
376 within 24-hours post-infection, as barrier integrity, measured by transendothelial
377 electrical resistance (TEER), was still near control levels⁸³.

378
379 Interestingly, the rates of bacterial transmigration across brain endothelial cells
380 increased significantly between 24-hour and 30-hours post infection, accelerating well
381 beyond the rate of transmigration during the first 24-hours⁸³. Analysis with JAnaP
382 revealed that occludin coverage at cell junctions significantly decreased from
383 approximately 75% to 45% between 24- and 30-hours post-infection, indicating that *N.*
384 *meningitidis* likely traverses the brain endothelium through a paracellular pathway when
385 it is accessible. These observations collectively highlight the critical role of junctional
386 integrity and conformation in facilitating TEM, emphasizing how specific molecular and

387 structural changes within ECJs can significantly impact the rate and pathway of cellular
388 and microbial transmigration.

389

390 **Forces on Cell-cell Junction, Expression, Conformations, and Permeability**

391

392 Mechanotransduction is the intricate process by which endothelial cells sense and
393 convert biomechanical forces into intracellular signals, influencing cellular positioning
394 and behavior⁸⁴. ECJs have been found to play a crucial role in this process by sensing
395 and transmitting mechanical signals, which can be disrupted in conditions affecting
396 vascular mechanics, impacting both normal physiology and disease outcomes^{85,86}. For
397 instance, shear stress promotes the maturation of the vascular barrier by enhancing
398 junction linearity and stability⁸⁷. VE-cadherin, located at cell-cell junctions, experiences
399 significant myosin-dependent tension under normal conditions, which rapidly decreases
400 (<30 seconds) in response to shear stress, reducing overall cell-cell tension⁸⁸.

401

402 Our laboratory previously reviewed various mechanical forces affecting endothelial cell
403 behavior⁸⁵. Here, the subsequent discussion focuses on both qualitative and
404 quantitative analyses of how ECJs structurally respond to mechanical cues and their
405 implications for vascular permeability (summarized in Table 2).

406

407 **CYCLIC STRAIN**

408

409 The impact of cyclic strain on ECJs varies depending on the type of endothelial cell. For
410 instance, physiological levels of cyclic strain (5% strain for 12 or 24 hours) decreased
411 mRNA expression of occludin in HUVECs but increased its mRNA expression in bovine
412 aortic endothelial cells (BAECs)^{68,70}. Additionally, in unstrained BAECs, occludin
413 localization at junction sites was low, but exposure to physiological levels of cyclic strain
414 increased its junction coverage⁷⁰. ZO-1 showed a discontinuous and jagged pattern at
415 the cell edge in unstrained endothelial cells, which gradually matured into a more stable
416 conformation with continuous, well-defined junctions upon application of cyclic strain⁷⁰.

417

418 Tight junction assembly is highly regulated and involves various signaling pathways,
419 including the activity of protein kinase C^{89,90}. Inhibition of protein kinase C with rottlerin
420 ablated the endothelial cell's response to cyclic strain, causing ZO-1 proteins to revert to
421 a more activated or remodeled conformation (Fig. 2)⁷⁰. The study also showed that
422 unstrained BAECs were more permeable to 40 kDa FITC-dextran than strained cells,
423 suggesting that the effects of cyclic strain, which stabilize ZO-1 conformation, improve
424 barrier function (Table 2).

425

426 In a 3D-vessel-on-chip model using a fluidic circuit, human induced pluripotent stem cell
427 (hiPSC)-derived endothelial cells fluorescently labeled for VE-cadherin displayed a
428 continuous morphology under pressure-induced circumferential strain⁹¹. At 0 mbar, the
429 VE-cadherin maintained a linear orientation, which persisted up to 100 mbar of internal

430 pressure⁹¹. However, at 150 mbar (~2% strain), VE-cadherin exhibited an activated or
431 remodeling junction orientation, observed as a zigzag pattern (Table 2)⁹¹. These zigzag
432 discontinuous patterns at 150 mbar could potentially influence the permeability of the
433 endothelium, though this effect was not directly measured in this new model.

434

435 Although limited studies have investigated the response of junction structures and
436 conformations to cyclic strain, these few studies provide valuable insights into the
437 dynamic regulation of ECJs under this mechanical stress. This aspect remains
438 understudied, highlighting the need for further research to fully understand these
439 mechanisms and how they vary across endothelial cell types.

440

441 MATRIX STIFFNESS

442

443 In endothelial cells, substrate stiffness plays a crucial role in various physiological and
444 pathological conditions, including aging, atherosclerosis, solid tumors, and
445 neurodegenerative disorders. Extensive research across *in-vitro*, *ex-ovo*, and *in-vivo*
446 studies has demonstrated that changes in substrate stiffness significantly influence
447 vascular permeability^{6,92}. These alterations in permeability often coincide with changes
448 in junction conformations, reflecting endothelial cell adaptive responses to their
449 mechanical microenvironment. For instance, elevated levels of matrix stiffness (15 kPa
450 and 194 kPa) have been shown to promote continuous ZO-1 coverage at junctions in
451 iBMEC-like cells⁹³. This increase in ZO-1 coverage correlated with a notable nine-fold
452 reduction in FITC-avidin permeability in a localized permeability assay conducted on
453 stiffer substrates. In contrast, on a more compliant substrate (1 kPa), where ZO-1 and
454 Claudin-5 were more discontinuous, the permeability was higher (Table 2)⁹³.

455 Interestingly, this reduction was most pronounced at tricellular junctions within the
456 monolayer.

457

458 BAECs and HUVECs cultured on compliant matrices (e.g., 0.2 kPa) typically develop
459 continuous adherens junctions and tight junctions along their cell peripheries⁹⁴. In
460 contrast, stiffer matrices (e.g., 10 kPa) induce a punctate morphology of these junctions.
461 This change in junction protein structure due to matrix stiffness correlates directly with
462 increased permeability, as demonstrated by enhanced passage of 40-kDa FITC dextran
463 molecules (Fig. 2)⁹⁴. On softer substrates (6 kPa), primary porcine aortic endothelial
464 cells (PAECs) exhibit thick reticular adherens junctions⁹². Conversely, when PAECs are
465 cultured on stiffer substrates (29 kPa), these reticular structures become thinner and are
466 lost. Moreover, PAEC monolayers exposed to stiffened substrates and inflammatory
467 cytokines demonstrate enhanced vinculin accumulation at adherens junctions,
468 increased tension, and elevated permeability⁹².

469

470 The cell contractility pathway is a well-established mechanism linking matrix stiffness,
471 ECJs, and endothelial permeability. Studies employing techniques like traction force
472 microscopy have shown that endothelial cell contractility increases in response to stiffer

473 matrices^{72,95}. This heightened contractile response is often associated with activation of
474 myosin light chain kinase (MLCK) and subsequent p-MLC. These actions generate
475 centripetal forces, widening and disrupting junctions, thereby promoting the TEM of
476 immune cells, particularly neutrophils, via a paracellular route^{92,96,97}.

477
478 RhoA, another potent activator of the cell contractility pathway, targets the actin
479 cytoskeleton through effectors such as Rho-associated protein kinase (ROCK)⁹⁸.
480 ROCK's mechanism involves inhibiting myosin light chain phosphatase, leading to
481 increased p-MLC downstream⁹⁸. While myosin light chain kinase (MLCK) plays a more
482 significant role in endothelial cell hyperpermeability than ROCK, mild inhibition of ROCK
483 has been shown to restore impaired endothelial cell monolayers cultured on stiffer
484 matrices^{72,99}. Inhibiting ROCK reduces permeability and leukocyte transmigration by
485 mitigating the stiffness-dependent increase in adherens junction width (destabilization),
486 highlighting the critical role of junction conformation in regulating permeability⁷².

487
488 The influence of matrix stiffness on junction conformation extends from large vessels to
489 smaller ones. Human lung microvascular endothelial cells (HLMECs) demonstrate
490 distinct responses when cultured on matrices with varying stiffness levels. Cells on low
491 (150 Pa) and high (35 kPa) stiffness matrices exhibit disrupted and discontinuous VE-
492 cadherin junctions, correlating with increased permeability (Table 2)¹⁰⁰. Conversely, cells
493 cultured on an intermediate stiffness (4 kPa) show fewer discontinuities and higher
494 TEER measurements¹⁰⁰. This study underscores the delicate balance between cellular
495 contractility and relaxation responses, crucial for optimal junction formation and stability,
496 thereby ensuring the integrity of the endothelial barrier (Fig. 2).

497
498 HBMECs typically reside in a microenvironment characterized by a soft, hyaluronic acid-
499 rich extracellular matrix with low stiffness (0.1-1 kPa)¹⁰¹. In diseased states, alterations
500 in the crosslinking of extracellular matrix proteins often increase matrix stiffness,
501 promoting disease progression¹⁰². HBMECs cultured on hyaluronic/gelatin films with
502 varying Extralink concentrations (0.2%, 0.8%, 1.2%, and 2%) exhibited stiffness
503 measurements of 0.85 kPa, 1.1 kPa, 1.5 kPa, and 3.8 kPa, respectively⁶⁶. HBMECs
504 cultured on films with 1.1 kPa stiffness displayed the highest percentage of stable
505 continuous, initially forming punctate, and activated perpendicular ZO-1 conformations
506 simultaneously⁶⁶. However, these changes in conformation were modest and did not
507 correlate with alterations in cancer cell transmigration speed or incorporation⁶⁶. This
508 lack of correlation is likely due to the stiffness range still being within healthy
509 physiological limits.

510
511 In addition to the cell contractility pathway, other mechanisms contribute to matrix-
512 induced changes in ECJ conformations and permeability. A study using HUVECs
513 cultured on collagen-1-coated polyacrylamide hydrogels demonstrated that matrix
514 stiffness directly influences focal adhesion kinase (FAK)-mediated regulation of
515 permeability⁶. Increased matrix stiffness heightened FAK activity, leading to modulation

516 of ECJ width without altering total VE-cadherin protein levels. Instead, FAK activation
517 induced junctional disruption by phosphorylating VE-cadherin, facilitated by Src
518 translocation to cell junctions, thereby reducing β -catenin presentation at the
519 intercellular cleft and causing discontinuities⁶. These changes correlated with increased
520 endothelial permeability, which was mitigated by FAK inhibition. This study suggests that
521 matrix stiffness contributes to heightened permeability through increased FAK activity
522 and junctional disruption.

523
524 In summary, the endothelial monolayer's response to matrix stiffness activates various
525 signaling cascades that influence ECJ conformation and vascular barrier integrity.
526 These insights illuminate the mechanobiological principles governing vascular function
527 and offer potential for developing therapeutic strategies targeting these pathways¹⁰³.

528
529 **SHEAR STRESS**
530

531 The maturation of initially forming ECJs can be modulated by shear stress within the
532 physiological range, which may vary depending on the endothelial cell type⁸⁵. Long-term
533 culturing of endothelial cells under physiological laminar flow promotes junctional
534 conformations typical of mature endothelium. For instance, VE-cadherin in human aortic
535 endothelial cells (HAECS) and HUVECs exhibits a mature linear pattern at 6 dyn/cm²,
536 while ZO-1 in HBMECs shows a similar pattern at 10-20 dyn/cm², with actin localized to
537 the cell perimeter^{104,105}. Conversely, in the absence of flow (static controls) or under
538 abnormally high shear stress (e.g., 40 dyn/cm² in HBMECs), ZO-1 translocates to the
539 cytoplasm, resulting in a discontinuous junction pattern (Table 2)¹⁰⁵. This indicates that
540 homeostatic shear flow is optimal for junction stability and barrier function.

541
542 A study using primary human retinal microvascular endothelial cells (HRMECs) further
543 supports this, showing ZO-1 with the most stable linear conformation at 5 dyn/cm² shear
544 stress¹⁰⁶. As shear stress levels increased (>10 dyn/cm²) or decreased (<1.5 dyn/cm²),
545 ZO-1 distribution at junctions decreased, resulting in a discontinuous pattern (Table 2,
546 Fig. 2). Variations in shear stress are widely recognized as significant contributors to
547 changes in endothelial permeability, influencing the development of atherosclerotic
548 plaques in cardiovascular disease^{107,108}. The emergence of plaques in areas with
549 disturbed flow patterns, such as branched and curved regions, raises questions about
550 the impact of these biomechanical cues on endothelial behavior, junction stability, and
551 subsequent permeability.

552
553 In adherens junctions, VE-cadherin staining at endothelial cell borders *in vivo* varied
554 significantly depending on the type of flow conditions. In the descending thoracic aorta,
555 where laminar pulsatile flow exhibited a predominant net forward component, VE-
556 cadherin staining was notably stronger compared to the curved aortic arch, where flow
557 near the wall was fluctuating and reciprocating with minimal net forward flow¹⁰⁹. Using
558 flow chambers to simulate these conditions *in vitro*, BAEC monolayers exposed to

559 pulsatile flow (12 ± 4 dyn/cm 2 at 1 Hz) or reciprocating flow (0.5 ± 4 dyn/cm 2 at 1 Hz) for
560 6 hours showed discontinuous VE-cadherin staining along cell borders, contrasting with
561 the continuous VE-cadherin distribution observed in static controls¹⁰⁹. Extending
562 pulsatile flow exposure to 24, 48, or 72 hours restored the more stable continuous VE-
563 cadherin conformation, whereas staining remained intermittent with prolonged
564 reciprocating flow exposure under similar conditions.

565

566 Proatherogenic multidirectional or disturbed flow conditions have been associated with
567 promoting endothelial hyperpermeability. In an experiment, PAECs were cultured in a
568 multi-well plate placed on an orbital platform shaker¹⁰⁷. This setup exposed PAECs at
569 the center to multidirectional flow and those at the edge to unidirectional flow. Cells
570 exposed to multidirectional flow had a higher percentage of leaky VE-cadherin tricellular
571 junctions compared to cells under unidirectional flow (~27% vs ~15%), which are known
572 to exhibit a discontinuous conformation (Table 2)^{78-80,107}. Additionally, cells under
573 multidirectional flow showed approximately a two-fold increase in the passage of FITC-
574 avidin through their tricellular junctions compared to their unidirectional flow-stimulated
575 counterparts (Fig. 2)¹⁰⁷.

576

577 This was also observed in a cerebral bifurcation 3D in-vitro model, where brain
578 hCMEC/D3 endothelial cells exposed to disturbed flow conditions for 18 hours
579 underwent changes in local actin organization, forming stress fibers and displaying
580 more discontinuous ZO-1 conformations compared to cells under fully developed
581 unidirectional flow¹¹⁰. The disturbed flow-conditioned cells had a permeability coefficient
582 of approximately 3×10^{-6} cm/s (for 4 kDa FITC dextran), whereas the fully developed
583 flow-conditioned cells had a permeability coefficient of around 0.5×10^{-6} cm/s (Table 2)¹¹⁰.

584

585 In summary, the data discussed demonstrate that different shear stress conditions
586 significantly influence endothelial cell junction conformation and permeability.
587 Physiological shear stress promotes stable, continuous junctions, while disturbed or
588 high shear stress leads to discontinuous junction patterns and increased permeability.
589 These findings highlight the importance of biomechanical forces in regulating
590 endothelial barrier function and underscore the need for further research to fully
591 understand the mechanisms driving these changes in a more quantitative manner.

592

593 **Conclusions and Future Directions**

594

595 Understanding the conformational dynamics of ECJs and their implications in various
596 physiological and pathological contexts underscores their pivotal role in regulating
597 vascular permeability. The diversity in ECJ protein composition and baseline
598 permeability across different vascular beds highlights the intricate nature of ECJ-
599 permeability relationships. The adoption of semi-automatic programs such as Junction
600 Mapper and JAnaP for more comprehensive ECJ quantification promises to advance
601 vascular mechanobiology significantly. These tools will be instrumental as we continue

602 to uncover the mechanistic roles of mechanical forces in modulating ECJ conformations
603 and vascular permeability.

604
605 A critical challenge moving forward is the development of robust in-vitro experimental
606 models that can effectively explore the impact of mechanical stimuli on ECJ
607 conformations and permeability. It is essential to create in-vitro setups capable of
608 directly measuring permeability immediately following the application of mechanical
609 signals. A recent noteworthy innovation in this realm is the microfluidic electrochemical
610 assay pioneered by Jeremy F. Wong and Craig A. Simmons¹¹¹. This approach integrates
611 mechanical cues, particularly shear stress, and enables direct measurement of
612 permeability, marking a significant advancement in studying ECJ responses to
613 biomechanical stimuli.

614
615 This technology differs from traditional methods that use fluorescent tracers by
616 employing an electroactive tracer and integrating electrodes in the lower channel.
617 Similar to a Transwell insert, a porous membrane separates upper and lower channels
618 where endothelial cells are cultured. This configuration allows researchers to observe
619 real-time diffusive or convective transport of the electroactive tracer through the
620 monolayer, a capability lacking in traditional Transwell systems. Concurrently, TEER
621 facilitates real-time monitoring of barrier function, though interpreting results has
622 historically posed challenges. This technological advancement is crucial as it offers
623 insights into how mechanical cues, such as shear stress, immediately influence
624 endothelial barrier function and permeability. It fosters a deeper understanding of the
625 dynamic changes in vascular function.

626
627 In contrast, cyclic strain stimulation and permeability analysis are typically conducted
628 sequentially in conventional approaches. Endothelial cells undergo cyclic strain,
629 followed by disruption of their protein complexes through trypsinization. Subsequently,
630 they are re-seeded onto membranes for permeability studies using conventional
631 Transwell systems⁷⁰. This approach introduces delays in permeability measurements
632 and introduces confounding variables as endothelial cells need to re-adhere to form a
633 new monolayer on the Transwell membrane. Moreover, TEER and Transwell assays
634 provide bulk quantitative permeability measurements, thereby not allowing for localized
635 permeability differences within the monolayer (e.g., bicellular, tricellular junctions) to be
636 discerned. Dubrovskyi et al. developed an alternative method that utilizes the culture
637 surface itself as the permeable detection surface¹¹². They achieved this by biotinyling
638 the substrate (e.g., fibronectin, collagen, or gelatin) with EZ-link NHS-LC-LC-Biotin and
639 using a fluorescently labeled avidin ligand tracer.

640
641 This method involves identifying permeable regions locally as a ligand binds to
642 receptors beneath the cell monolayer. By coating flexible-bottomed culture plates with
643 biotinylated gelatin, researchers measured permeability in human pulmonary artery
644 endothelial cells exposed to cyclic strain. This approach has also been adapted to

645 assess permeability in response to various mechanical stimuli, such as shear
646 stress^{113,114} and matrix stiffness⁹³. Consequently, studies enabling immediate analysis of
647 permeability following mechanical stimulation could offer valuable insights into the
648 complex interplay among mechanical forces, endothelial cell junctions, and permeability.
649 Such insights would illuminate the pivotal role of these interactions in vascular
650 physiology and pathophysiology.

651

652 Another major challenge is the concurrent implementation of various mechanical cues,
653 as they do *in vivo*, to elicit a complex EC response. For instance, Zhao et al.
654 investigated the combined effects of cyclic strain and shear stress on bovine aortic ECs,
655 revealing that the two stimuli can lead to increased cell alignment (with respect to the
656 flow/shear stress direction) and aspect ratio (the ratio between the cell's long and short
657 axis), demonstrating a synergistic relationship¹¹⁵. However, human coronary artery ECs
658 (HAECS) responded differently, showing no significant effects on cell aspect ratio¹¹⁶. In
659 HAECS showed an increased but not synergistic effect on ICAM-I expression¹¹⁶. In
660 contrast, HUVECs subjected to shear stress exhibited downregulated ICAM-I
661 expression when cyclic strain signals were added, indicating an antagonistic
662 relationship¹¹⁷. Understanding the impact of multiple mechanical cues is crucial because
663 they interact in complex ways to influence EC behavior, and these interactions can vary
664 depending on the specific EC type and context. Thus, investigating how ECJ
665 conformations and vascular permeability are affected by the interplay of multiple
666 mechanical cues represents a largely unexplored area with the potential to provide
667 fundamental insights and innovative approaches for modulating the vascular endothelial
668 barrier.

669

670 Another significant challenge lies in concurrently applying multiple mechanical cues,
671 mirroring physiological conditions *in vivo*, to elicit a complex endothelial cell response.
672 For example, Zhao et al. explored the combined effects of cyclic strain and shear stress
673 on BAECs, demonstrating that these stimuli synergistically increase cell alignment with
674 the flow direction and aspect ratio, highlighting a synergistic relationship¹¹⁵. However,
675 HAECS responded differently, showing no significant changes in cell aspect ratio¹¹⁶.
676 Instead, the combined effects of cyclic strain and shear stress increased ICAM-I
677 expression¹¹⁶. When subjected to shear stress alone, HUVECs exhibited reduced
678 ICAM-I expression, which was reversed when cyclic strain was added, suggesting an
679 antagonistic interaction¹¹⁷. Understanding these complex interactions is crucial because
680 they profoundly influence endothelial cell behavior, with outcomes varying depending on
681 the cell type and specific conditions. Therefore, investigating how ECJ conformations
682 and vascular permeability respond to the interplay of multiple mechanical cues remains
683 a largely unexplored area that holds promise for uncovering fundamental insights and
684 innovative strategies to modulate vascular endothelial barriers.

685

686 **Acknowledgements**

687

688 This work was supported by an NSF CAREER Award #1944121 (to KMS), a Clark
 689 Doctoral Fellowship (to KDB), and an NIH grant #HL092604 (supporting WEF). The
 690 opinions, findings, and conclusions, or recommendations expressed are those of the
 691 author(s) and do not necessarily reflect the views of the National Science Foundation.
 692 The content is solely the responsibility of the authors and does not necessarily
 693 represent the official views of the National Institutes of Health.

694

695 **Table Legends**

696

697 **Table 1.** Overview of different VE-cadherin conformations in endothelial cells, including
 698 descriptive changes in local actin organization and associated intracellular proteins.
 699 Unique *in-vitro* models that allowed for the observation of these conformations are also
 700 described. Actin fibers are depicted in red, while VE-cadherin is marked in green.

701

702 **Table 2.** Summary outlining the responses of endothelial cell-cell junctions to various
 703 mechanical stimuli (first column) and describing alterations in vascular barrier
 704 permeability (fourth column).

705

706 **Table 2**

Mechanical Stress	Cell Type	Cell-cell Junction Conformation	Permeability	Reference
Cyclic Strain (0%, 24 hrs.)	BAECs	Discontinuous ZO-1 & Occludin	Increased [2.5 fold] (40 kDa FITC-dextran)	Collins et al., 2006
Cyclic Strain (5 %, 24 hrs.)	BAECs	Linear, Continuous ZO-1 & Occludin	Constant (40 kDa FITC-dextran)	Collins et al., 2006
Cyclic Strain (<100 mbar, 24 hrs.)	hiPSC-derived endothelial cells	Linear, Continuous VE-cadherin	n/a	Graaf et al., 2022
Cyclic Strain (>150 mbar, 24 hrs.)	hiPSC-derived endothelial cells	Discontinuous VE-cadherin	n/a	Graaf et al., 2022
Matrix Stiffness (>15 kPa)	iBMEC-like cells	↑ Linear, Continuous ZO-1, Claudin-5	Low (<200ng/mL FITC-avidin)	Yan et al., 2023
Matrix Stiffness (1 kPa)	iBMEC-like cells	↑ Discontinuous ZO-1, Claudin-5	High (~900ng/mL FITC-avidin)	Yan et al., 2023
Matrix Stiffness (0.2 kPa)	BAECs, HUVECs	Continuous VE-cadherin	Low (40 kDa FITC-dextran)	Bordeleau et al., 2023
Matrix Stiffness (10 kPa)	BAECs, HUVECs	Discontinuous "Punctate" VE-cadherin	Increased [~3 fold] (40 kDa FITC-dextran)	Bordeleau et al., 2023

Matrix Stiffness (6 kPa)	PAECs	Thick Reticular Adherens Junctions	Mild (TMR-dextran)	Urbano et al., 2017
Matrix Stiffness (29 kPa)	PAECs	Loss and thinning of Reticular Structure	Increased (TMR-dextran)	Urbano et al., 2017
Matrix Stiffness (150 Pa)	HLMECs	↑ Discontinuous VE-cadherin	Increased (TEER < 25 Ω×cm ²)	Mammoto et al., 2013
Matrix Stiffness (4 kPa)	HLMECs	Continuous VE-cadherin	Low (TEER > 100 Ω×cm ²)	Mammoto et al., 2013
Matrix Stiffness (35 kPa)	HLMECs	Discontinuous VE-cadherin	Intermediate (TEER ~60 Ω×cm ²)	Mammoto et al., 2013
Matrix Stiffness (2.5 kPa)	HUVECs	Thin Continuous VE-cadherin	Intermediate (40 kDa FITC-dextran)	Wang et al., 2019
Matrix Stiffness (10 kPa)	HUVECs	↑ VE-cadherin Disruption & Width	Increased [~2-fold] (40 kDa FITC-dextran)	Wang et al., 2019
Shear Stress (6 dyn/cm ² , 48 hrs.)	HAECs, HUVECs	Linear, Continuous VE-cadherin	n/a	Silvani et al., 2021
Shear Stress (10-20 dyn/cm ² , 96 hrs.)	HBMECs	Linear, Continuous ZO-1	n/a	Garcia-Polite et al., 2017
Shear Stress (40 dyn/cm ² , 96 hrs.)	HBMECs	Discontinuous ZO-1	n/a	Garcia-Polite et al., 2017
Shear Stress (5 dyn/cm ² , 24-48 hrs.)	HRMECs	Linear, Continuous ZO-1	n/a	Molins et al., 2019
Shear Stress (<1.5 or >10 dyn/cm ² , 24-48 hrs.)	HRMECs	Discontinuous ZO-1	n/a	Molins et al., 2019
Shear Stress (Unidirectional flow, 7- days)	PAECs	↔ Discontinuous VE-cadherin	Intermediate (FITC-avidin)	Ghim et al., 2022
Shear Stress (Multidirectional flow, 7- days)	PAECs	↑ Discontinuous VE-cadherin	High [~2 fold ↑] (FITC-avidin)	Ghim et al., 2022
Shear Stress (Disturbed flow, 18 hrs.)	hCMEC/D3	Discontinuous ZO-1	Permeability Coefficient 3x10 ⁻⁶ cm/s (4 kDa FITC dextran)	Bouhrira et al., 2021
Shear Stress (Fully developed flow, 18 hrs.)	hCMEC/D3	Continuous ZO-1	Permeability Coefficient 0.5x10 ⁻⁶ cm/s (4 kDa FITC dextran)	Bouhrira et al., 2021

707

708 **Figure Legends**

709

710 **Fig. 1. Computational Tools for Quantitative Assessment of Diverse Cell-Cell**

711 **Junctions.** A comparison of prominent software tools used for cell-cell junction analysis,
712 highlighting their key features. The red "x" does not necessarily indicate an inability to
713 perform a task but rather evaluates the feasibility and common utilization, or lack
714 thereof, in the literature.

715

716 **Fig. 2. Impact of Contact-Derived and Flow-Derived Stresses on Cell-Cell**
717 **Junction Conformations and Permeability.** Shear Stress | The flow rate and direction
718 (uni-directional vs. multi-directional) modulate cell-cell junction conformation and
719 tricellular junction leakiness. Cyclic Strain | The effect of physiological strain on cell-cell
720 junctions and permeability is dependent on PKC. Matrix Stiffness | Elevated stiffness
721 levels correlate with changes in cell-cell junction conformations and barrier integrity,
722 varying across different endothelial cell types.

723

724 **References**

725

- 726 1. Claesson-Welsh L, Dejana E, McDonald DM. Permeability of the Endothelial Barrier: Identifying
727 and Reconciling Controversies. *Trends Mol Med.* 2021;27(4):314-331.
728 doi:10.1016/J.MOLMED.2020.11.006
- 729 2. Claesson-Welsh L. Vascular permeability - The essentials. *Ups J Med Sci.* 2015;120(3):135-143.
730 doi:10.3109/03009734.2015.1064501
- 731 3. Bazzoni G, Dejana E. Endothelial cell-to-cell junctions: Molecular organization and role in vascular
732 homeostasis. *Physiol Rev.* 2004;84(3):869-901.
733 doi:10.1152/PHYSREV.00035.2003/ASSET/IMAGES/LARGE/Z9J0030403181006.JPG
- 734 4. Dejana E. Endothelial cell-cell junctions: Happy together. *Nat Rev Mol Cell Biol.* 2004;5(4):261-
735 270. doi:10.1038/nrm1357
- 736 5. Dejana E, Orsenigo F, Molendini C, Baluk P, McDonald DM. Organization and signaling of
737 endothelial cell-to-cell junctions in various regions of the blood and lymphatic vascular trees. *Cell*
738 *Tissue Res.* 2009;335(1):17-25. doi:10.1007/s00441-008-0694-5
- 739 6. Wang W, Lolis EM, Bordeleau F, Reinhart-King CA. Matrix stiffness regulates vascular integrity
740 through focal adhesion kinase activity. *FASEB Journal.* 2019;33(1):1199-1208.
741 doi:10.1096/fj.201800841R
- 742 7. Wolburg H, Lippoldt A. Tight junctions of the blood-brain barrier: development, composition and
743 regulation. *Vascul Pharmacol.* 2002;38(6):323-337. doi:10.1016/S1537-1891(02)00200-8
- 744 8. Hirase T, Staddon JM, Saitou M, et al. Occludin as a possible determinant of tight junction
745 permeability in endothelial cells. *J Cell Sci.* 1997;110 (Pt 14)(14):1603-1613.
746 doi:10.1242/JCS.110.14.1603
- 747 9. Lampugnani MG, Corada M, Caveda L, et al. The Molecular Organization of Endothelial Cell to Cell
748 Junctions: Differential Association of Plakoglobin, β -catenin, and α -catenin with Vascular

749 10. Endothelial Cadherin (VE-cadherin). Accessed June 17, 2024. <http://rupress.org/jcb/article-pdf/129/1/203/1478477/203.pdf>

750 11. McKenzie JAG, Ridley AJ. Roles of Rho/ROCK and MLCK in TNF- α -Induced Changes in Endothelial Morphology and Permeability. *J Cell Physiol*. 2007;213:221-228. doi:10.1002/jcp.21114

751 12. Hoelzle MK, Svitkina T. A Highlights from MBoC Selection: The cytoskeletal mechanisms of cell-cell junction formation in endothelial cells. *Mol Biol Cell*. 2012;23(2):310. doi:10.1091/MBC.E11-08-0719

752 13. Taha AA, Taha M, Seebach J, Schnittler HJ. ARP2/3-mediated junction-associated lamellipodia control VE-cadherin-based cell junction dynamics and maintain monolayer integrity. *Mol Biol Cell*. 2014;25(2):245. doi:10.1091/MBC.E13-07-0404

753 14. Seebach J, Donnert G, Kronstein R, et al. Regulation of endothelial barrier function during flow-induced conversion to an arterial phenotype. Published online 2007. doi:10.1016/j.cardiores.2007.04.017

754 15. van der Stoel MM, Kotini MP, Schoon RM, Affolter M, Belting HG, Huvaneers S. Vinculin strengthens the endothelial barrier during vascular development. *Vascular Biology*. 2022;5(1). doi:10.1530/vb-22-0012

755 16. Lee MJ, Thangada S, Claffey KP, et al. Vascular Endothelial Cell Adherens Junction Assembly and Morphogenesis Induced by Sphingosine-1-Phosphate. *Cell*. 1999;99(3):301-312. doi:10.1016/S0092-8674(00)81661-X

756 17. Fernández-Martín L, Marcos-Ramiro B, Bigarella CL, et al. Crosstalk between reticular adherens junctions and platelet endothelial cell adhesion molecule-1 regulates endothelial barrier function. *Arterioscler Thromb Vasc Biol*. 2012;32(8):90-102. doi:10.1161/ATVBAHA.112.252080

757 18. Daniel AE, Timmerman I, Kovacevic I, et al. Plasminogen Activator Inhibitor-1 Controls Vascular Integrity by Regulating VE-Cadherin Trafficking. Published online 2015. doi:10.1371/journal.pone.0145684

758 19. Noda K, Zhang J, Fukuhsra S, Kunimoto S, Yoshimura M, Mochizuki N. Vascular Endothelial-Cadherin Stabilizes at Cell-Cell Junctions by Anchoring to Circumferential Actin Bundles through-and-Catenins in Cyclic AMP-Epac-Rap1 Signal-activated Endothelial Cells. *Mol Biol Cell*. 2010;21:584-596. doi:10.1091/mbc.E09

759 20. Yuan D, He P. Vascular remodeling alters adhesion protein and cytoskeleton reactions to inflammatory stimuli resulting in enhanced permeability increases in rat venules. *J Appl Physiol*. 2012;113:1110-1120. doi:10.1152/japplphysiol.00102.2012.-Vascular

760 21. Oldenburg J, Van Der Krog G, Twiss F, et al. VASP, zyxin and TES are tension-dependent members of Focal Adherens Junctions independent of the α -catenin-vinculin module. *Sci Rep*. 2015;5. doi:10.1038/srep17225

761 22. Huvaneers S, Oldenburg J, Spanjaard E, et al. Vinculin associates with endothelial VE-cadherin junctions to control force-dependent remodeling. *Journal of Cell Biology*. 2012;196(5):641-652. doi:10.1083/jcb.201108120

787 22. A L, C A, F G, K G, P C. Tight junctions at the blood-brain barrier: physiological architecture and
788 disease-associated dysregulation. *Fluids Barriers CNS*. 2012;9:23.

789 23. Dong X. Current strategies for brain drug delivery. *Theranostics*. 2018;8(6):1481-1493.
790 doi:10.7150/thno.21254

791 24. Pardridge WM. The blood-brain barrier: Bottleneck in brain drug development.
792 *Neurotherapeutics*. 2005;2(1):3-14. doi:10.1007/bf03206638

793 25. Nyqvist D, Giampietro C, Dejana E. Deciphering the functional role of endothelial junctions by
794 using in vivo models. *EMBO Rep*. 2008;9(8):742-747. doi:10.1038/embor.2008.123

795 26. Dejana E, Orsenigo F. Endothelial adherens junctions at a glance. *J Cell Sci*. 2013;126:2545-2549.
796 doi:10.1242/jcs.124529

797 27. Lampugnani MG. Endothelial cell-to-cell junctions: Adhesion and signaling in physiology and
798 pathology. *Cold Spring Harb Perspect Med*. 2012;2(10):1-14. doi:10.1101/cshperspect.a006528

799 28. Dejana E, Orsenigo F, Molendini C, Baluk P, McDonald DM. Organization and signaling of
800 endothelial cell-to-cell junctions in various regions of the blood and lymphatic vascular trees. *Cell*
801 *Tissue Res*. 2009;335(1):17-25. doi:10.1007/s00441-008-0694-5

802 29. Aird WC. Endothelial cell heterogeneity. *Cold Spring Harb Perspect Med*. 2012;2(1):1-13.
803 doi:10.1101/cshperspect.a006429

804 30. Aird WC. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms.
805 *Circ Res*. 2007;100(2):158-173. doi:10.1161/01.RES.0000255691.76142.4a

806 31. Aird WC. Phenotypic Heterogeneity of the Endothelium II. Representative Vascular Beds. *Circ Res*.
807 2007;100(2):174-190. doi:10.1161/01.RES.0000255690.03436.ae

808 32. Reglero-Real N, Colom B, Bodkin JV, Nourshargh S. Endothelial Cell Junctional Adhesion
809 Molecules: Role and Regulation of Expression in Inflammation. *Arterioscler Thromb Vasc Biol*.
810 2016;36(10):2048-2057. doi:10.1161/ATVBAHA.116.307610

811 33. Komarova, Y., Kruse, K., Mehta, D., and Malik A. Protein interactions at endothelial junctions and
812 signaling mechanisms regulating endothelial permeability. *Circ Res*. 2017;120(1).
813 doi:10.1161/j.physiol.2017.03.040

814 34. Park-Windhol C, D'Amore PA. Disorders of Vascular Permeability. *Annual Review of Pathology: Mechanisms of Disease*. 2016;11:251-281. doi:10.1146/annurev-pathol-012615-044506

815 35. Komarova Y, Malik AB. Regulation of Endothelial Permeability via Paracellular and Transcellular
816 Transport Pathways. *Annu Rev Physiol*. 2010;72(1):463-493. doi:10.1146/annurev-physiol-021909-
817 135833

818 36. Wettschureck N, Strilic B, Offermanns S. Passing the Vascular Barrier: Endothelial Signaling
819 Processes Controlling Extravasation. *Physiol Rev*. 2019;99(3):1467-1525.
820 doi:10.1152/physrev.00037.2018

822 37. Mehta D, Malik AB. Signaling Mechanisms Regulating Endothelial Permeability. *Physiol Rev.* 2006;86:279-367. doi:10.1152/physrev.00012.2005.

823

824 38. Muller WA. Mechanisms of Leukocyte Transendothelial Migration. *Annu Rev Pathol.* 2011;6:323-344. doi:10.1146/annurev-pathol-011110-130224.Mechanisms

825

826 39. Aird WC. Endothelial cell heterogeneity. *Cold Spring Harb Perspect Med.* 2012;2(1):1-13. doi:10.1101/cshperspect.a006429

827

828 40. Aird WC. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. *Circ Res.* 2007;100(2):158-173. doi:10.1161/01.RES.0000255691.76142.4a

829

830 41. Aird WC. Phenotypic Heterogeneity of the Endothelium II. Representative Vascular Beds. *Circ Res.* 2007;100(2):174-190. doi:10.1161/01.RES.0000255690.03436.ae

831

832 42. Förster C. Tight junctions and the modulation of barrier function in disease. *Histochem Cell Biol.* 2008;130(1):55-70. doi:10.1007/s00418-008-0424-9

833

834 43. Claude P. *Morphological Factors Influencing Transepithelial Permeability" A Model for the Resistance of the Zonula Occludens.* Vol 39.; 1978.

835

836 44. Clayburgh DR, Shen L, Turner JR. A porous defense: The leaky epithelial barrier in intestinal disease. *Laboratory Investigation.* 2004;84(3):282-291. doi:10.1038/labinvest.3700050

837

838 45. Gumbiner B. Structure, biochemistry, and assembly of epithelial tight junctions. *American Journal of Physiology.* Published online 1987;C749-C758.

839

840 46. Anderson JM, Van Itallie CM. Physiology and function of the tight junction. *Cold Spring Harb Perspect Biol.* 2009;1(2). doi:10.1101/cshperspect.a002584

841

842 47. Morita K, Sasaki H, Furuse M, Tsukita S. *Endothelial Claudin: Claudin-5/TMVCF Constitutes Tight Junction Strands in Endothelial Cells.* Vol 147.; 1999. <http://www.jcb.org>

843

844 48. Nitta T, Hata M, Gotoh S, et al. Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. *Journal of Cell Biology.* 2003;161(3):653-660. doi:10.1083/JCB.200302070

845

846 49. Corada M, Mariotti M, Thurston G, et al. Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo (endotheliumpermeabilityadherens junction). *Medical Sciences.* 1999;96:9815-9820. Accessed May 15, 2024. www.pnas.org.

847

848

849 50. Cattelino A, Liebner S, Gallini R, et al. The conditional inactivation of the-catenin gene in endothelial cells causes a defective vascular pattern and increased vascular fragility. *J Cell Biol.* 2003;162(6):1111-1122. doi:10.1083/jcb.200212157

850

851

852 51. Lampugnani MG, Dejana E. *Adherens Junctions in Endothelial Cells Regulate Vessel Maintenance and Angiogenesis.* Vol 120.; 2007.

853

854 52. Leach L, Babawale MO, Anderson M, Lammiman M. Vasculogenesis, angiogenesis and the molecular organisation of endothelial junctions in the early human placenta. *J Vasc Res.* 2002;39(3):246-259. doi:10.1159/000063690

855

856

857 53. Dye JF, Leach L, Clark P, Firth JA. Cyclic AMP and acidic fibroblast growth factor have opposing
858 effects on tight and adherens junctions in microvascular endothelial cells in vitro. *Microvasc Res.*
859 2001;62(2):94-113. doi:10.1006/mvre.2001.2333

860 54. Leach L. The phenotype of the human materno-fetal endothelial barrier: Molecular occupancy of
861 paracellular junctions dictate permeability and angiogenic plasticity. *J Anat.* 2002;200(6):599-606.
862 doi:10.1046/j.1469-7580.2002.00062.x

863 55. Neto F, Klaus-Bergmann A, Ong YT, et al. YAP and TAZ regulate adherens junction dynamics and
864 endothelial cell distribution during vascular development. *Elife.* 2018;7:1-30.
865 doi:10.7554/elife.31037

866 56. Maeso-Alonso L, Alonso-Olivares H, Martínez-García N, et al. p73 is required for vessel integrity
867 controlling endothelial junctional dynamics through Angiomotin. 2022;79:535.
868 doi:10.1007/s00018-022-04560-3

869 57. Klomp JE, Shaaya M, Matsche J, Chew TL, Malik AB, Karginov Correspondence A V. Time-Variant
870 SRC Kinase Activation Determines Endothelial Permeability Response. *Cell Chem Biol.*
871 2019;26:1081-1094.e6. doi:10.1016/j.chembiol.2019.04.007

872 58. Wilson CW, Ye W. Regulation of vascular endothelial junction stability and remodeling through
873 Rap1-Rasip1 signaling. *Cell Adh Migr.* 2014;8(2):76-83. doi:10.4161/cam.28115

874 59. Li B, Zhao WD, Tan ZM, Fang WG, Zhu L, Chen YH. Involvement of Rho/ROCK signalling in small
875 cell lung cancer migration through human brain microvascular endothelial cells. *FEBS Lett.*
876 2006;580(17):4252-4260. doi:10.1016/j.febslet.2006.06.056

877 60. Stroka KM, Vaitkus JA, Aranda-espinoza H. Endothelial cells undergo morphological ,
878 biomechanical , and dynamic changes in response to tumor necrosis factor- a. Published online
879 2012:939-947. doi:10.1007/s00249-012-0851-3

880 61. Millán J, Cain RJ, Reglero-Real N, et al. *Adherens Junctions Connect Stress Fibres between
881 Adjacent Endothelial Cells.*; 2010. doi:10.1186/1741-7007-8-11

882 62. Onken MD, Mooren OL, Mukherjee S, Shahani ST, Li J, Cooper JA. Endothelial monolayers and
883 transendothelial migration depend on mechanical properties of the substrate. *Cytoskeleton.*
884 2014;71(12):695-706. doi:10.1002/CM.21203

885 63. Inglut CT, Gray K, Vig S, et al. Photodynamic Priming Modulates Endothelial Cell–Cell Junction
886 Phenotype for Light-activated Remote Control of Drug Delivery. *IEEE Journal of Selected Topics in
887 Quantum Electronics.* 2020;27(4):1-1. doi:10.1109/jstqe.2020.3024014

888 64. Gray KM, Jung JW, Inglut CT, Huang HC, Stroka KM. Quantitatively relating brain endothelial cell–
889 cell junction phenotype to global and local barrier properties under varied culture conditions via
890 the Junction Analyzer Program. *Fluids Barriers CNS.* 2020;17:16. doi:10.1186/s12987-020-0177-y

891 65. Gray KM, Katz DB, Brown EG, Stroka KM. Quantitative Phenotyping of Cell–Cell Junctions to
892 Evaluate ZO-1 Presentation in Brain Endothelial Cells. *Ann Biomed Eng.* 2019;47(7):1675-1687.
893 doi:10.1007/s10439-019-02266-5

894 66. Pranda MA, Gray KM, DeCastro AJL, Dawson GM, Jung JW, Stroka KM. Tumor Cell
895 Mechanosensing During Incorporation into the Brain Microvascular Endothelium. *Cell Mol*
896 *Bioeng*. 2019;12(5):455-480. doi:10.1007/s12195-019-00591-2

897 67. Andrews AM, Ramirez SH, Lutton EM, Merkel SF, Razmpour R. Mechanical Injury Induces Brain
898 Endothelial-Derived Microvesicle Release: Implications for Cerebral Vascular Injury during
899 Traumatic Brain Injury. *Frontiers in Cellular Neuroscience* / www.frontiersin.org. 2016;10:43.
900 doi:10.3389/fncel.2016.00043

901 68. Huang J, Ge S, Luo D, et al. The endothelium permeability after bioresorbable scaffolds
902 implantation caused by the heterogeneous expression of tight junction proteins. *Mater Today Bio*.
903 Published online 2022. doi:10.1016/j.mtbiol.2022.100410

904 69. Garcia-Flores AE, Gross CM, Zemskov EA, et al. Loss of SOX18/CLAUDIN5 disrupts the pulmonary
905 endothelial barrier in ventilator-induced lung injury. *Front Physiol*. 2022;13(December):1-13.
906 doi:10.3389/fphys.2022.1066515

907 70. Collins NT, Cummins PM, Colgan OC, et al. Cyclic strain-mediated regulation of vascular
908 endothelial occludin and ZO-1: Influence on intercellular tight junction assembly and function.
909 *Arterioscler Thromb Vasc Biol*. 2006;26(1):62-68. doi:10.1161/01.ATV.0000194097.92824.b3

910 71. Brezovjakova H, Tomlinson C, Mohd-Naim N, et al. Junction mapper is a novel computer vision
911 tool to decipher cell-cell contact phenotypes. *eLife*. 2019;8. doi:10.7554/eLife.45413

912 72. Huynh J, Nishimura N, Rana K, et al. Age-related intimal stiffening enhances endothelial
913 permeability and leukocyte transmigration. *Sci Transl Med*. 2011;3(112):1-10.
914 doi:10.1126/scitranslmed.3002761

915 73. Held C, Palmisano R, Häberle L, Hensel M, Wittenberg T. Comparison of parameter-adapted
916 segmentation methods for fluorescence micrographs. *Cytometry Part A*. 2011;79 A(11):933-945.
917 doi:10.1002/cyto.a.21122

918 74. Motallebnejad P, Rajesh V V, Azarin SM. Evaluating the Role of IL-1 β in Transmigration of Triple
919 Negative Breast Cancer Cells Across the Brain Endothelium. doi:10.1007/s12195-021-00710-y

920 75. Puhlmann M, Weinreich DM, Farma JM, Carroll NM, Turner EM, Alexander HR. Interleukin-1 β
921 induced vascular permeability is dependent on induction of endothelial tissue factor (TF) activity.
922 *J Transl Med*. 2005;3:1-7. doi:10.1186/1479-5876-3-37

923 76. Burns AR, Walker DC, Evelyn S, et al. Neutrophil transendothelial migration is independent of
924 tight junctions and occurs preferentially at tricellular corners. *J Immunol*. 1997;159(6):2893-
925 2903. doi:<https://doi.org/10.4049/jimmunol.159.6.2893> Related

926 77. Dias MC, Quesada AO, Soldati S, et al. Brain endothelial tricellular junctions as novel sites for T
927 cell diapedesis across the blood-brain barrier. *J Cell Sci*. 2021;134(8). doi:10.1242/jcs.253880

928 78. Burns AR, Walker DC, Evelyn S, et al. Neutrophil transendothelial migration is independent of
929 tight junctions and occurs preferentially at tricellular corners. *J Immunol*. 1997;159(6):2893-
930 2903. doi:<https://doi.org/10.4049/jimmunol.159.6.2893> Related

931 79. Burns AR, Bowden RA, Macdonell SD, et al. Analysis of tight junctions during neutrophil
932 transendothelial migration. *J Cell Sci.* 2000;113:45-57.

933 80. Walker DC, MacKenzie A, Hosford S. The Structure of the Tricellular Region of Endothelial Tight
934 Junctions of Pulmonary Capillaries Analyzed by Freeze-Fracture. *Microvasc Res.* 1994;48(3):259-
935 281. doi:<https://doi.org/10.1006/mvre.1994.1054>

936 81. Jafri RZ, Ali A, Messonnier NE, et al. Global epidemiology of invasive meningococcal disease.
937 *Popul Health Metr.* 2013;11(1):1-9. doi:10.1186/1478-7954-11-17/FIGURES/2

938 82. Coureuil M, Lécuyer H, Bourdoulous S, Nassif X. A journey into the brain: insight into how
939 bacterial pathogens cross blood-brain barriers. *Nature Reviews Microbiology* 2017 15:3.
940 2017;15(3):149-159. doi:10.1038/nrmicro.2016.178

941 83. Endres LM, Jungblut M, Divyapicigil M, et al. Development of a multicellular in vitro model of the
942 meningeal blood-CSF barrier to study *Neisseria meningitidis* infection. doi:10.1186/s12987-022-
943 00379-z

944 84. Hoefer IE, Den Adel B, Daemen MJAP. Biomechanical factors as triggers of vascular growth.
945 *Cardiovasc Res.* 2013;99(2):276-283. doi:10.1093/cvr/cvt089

946 85. Gray KM, Stroka KM. Vascular endothelial cell mechanosensing: New insights gained from
947 biomimetic microfluidic models. *Semin Cell Dev Biol.* Published online 2017.
948 doi:10.1016/j.semcdb.2017.06.002

949 86. Yap AS, Duszyc K, Viasnoff V. Mechanosensing and mechanotransduction at cell –cell junctions.
950 *Cold Spring Harb Perspect Biol.* 2018;10(8). doi:10.1101/cshperspect.a028761

951 87. Lagendijk AK, Gomez GA, Baek S, et al. Live imaging molecular changes in junctional tension upon
952 VE-cadherin in zebrafish. doi:10.1038/s41467-017-01325-6

953 88. Conway DE, Breckenridge MT, Hinde E, Gratton E, Chen CS, Schwartz MA. Fluid shear stress on
954 endothelial cells modulates mechanical tension across VE-cadherin and PECAM-1. *Current
955 Biology.* 2013;23(11):1024-1030. doi:10.1016/j.cub.2013.04.049

956 89. Rosson D, O'brien TG, Kampherstein JA, et al. Protein Kinase C- \pm Activity Modulates
957 Transepithelial Permeability and Cell Junctions in the LLC-PK1 Epithelial Cell Line*. *J Biol Chem.*
958 1997;272:14950-14953. doi:10.1074/jbc.272.23.14950

959 90. Balda MS, Gonzfilez-Mariscal L, Contreras RG, et al. Membrane Biology Assembly and Sealing of
960 Tight Junctions: Possible Participation of G-proteins, Phospholipase C, Protein Kinase C and
961 Calmodulin. *J Membrane Biol.* 1991;122:002226319100093.

962 91. de Graaf MNS, Vivas A, Kasi DG, et al. Multiplexed fluidic circuit board for controlled perfusion of
963 3D blood vessels-on-a-chip. *Lab Chip.* 2022;23(1):168. doi:10.1039/D2LC00686C

964 92. Urbano RL, Furia C, Basehore S, Clyne AM. Stiff Substrates Increase Inflammation-Induced
965 Endothelial Monolayer Tension and Permeability. *Biophys J.* 2017;113(3):645-655.
966 doi:10.1016/j.bpj.2017.06.033

967 93. Yan L, Dwiggins CW, Moriarty RA, et al. Matrix stiffness regulates the tight junction phenotypes
968 and local barrier properties in tricellular regions in an iPSC-derived BBB model. *Acta Biomater.*
969 2023;167:109-120. doi:10.1016/j.actbio.2023.06.003

970 94. Bordeleau F, Mason BN, Lollis EM, et al. Matrix stiffening promotes a tumor vasculature
971 phenotype. *Proc Natl Acad Sci U S A.* 2017;114(3):492-497. doi:10.1073/pnas.1613855114

972 95. Bastounis EE, Yeh YT, Theriot JA. Subendothelial stiffness alters endothelial cell traction force
973 generation while exerting a minimal effect on the transcriptome. *Sci Rep.* 2019;9(1):1-16.
974 doi:10.1038/s41598-019-54336-2

975 96. Stroka KM, Aranda-Espinoza H. Endothelial cell substrate stiffness influences neutrophil
976 transmigration via myosin light chain kinase-dependent cell contraction. *Blood.*
977 2011;118(6):1632-1640. doi:10.1182/blood-2010-11-321125

978 97. Sun C, Wu MH, Yuan SY. Nonmuscle myosin light-chain kinase deficiency attenuates
979 atherosclerosis in apolipoprotein e-deficient mice via reduced endothelial barrier dysfunction and
980 monocyte migration. *Circulation.* 2011;124(1):48-57. doi:10.1161/CIRCULATIONAHA.110.988915

981 98. Burridge K, Wennerberg K. Rho and Rac Take Center Stage. *Cell.* 2004;116(2):167-179.
982 doi:10.1016/S0092-8674(04)00003-0

983 99. Kazakova OA, Khapchaev AY, Shirinsky VP. MLCK and ROCK mutualism in endothelial barrier
984 dysfunction: Joint Work of MLCK and ROCK in Endothelium. *Biochimie.* 2020;168:83-91.
985 doi:10.1016/j.biochi.2019.10.010

986 100. Mammoto A, Mammoto T, Kanapathipillai M, et al. Control of lung vascular permeability and
987 endotoxin-induced pulmonary oedema by changes in extracellular matrix mechanics. *Nat
988 Commun.* 2013;4. doi:10.1038/ncomms2774

989 101. Mouw JK, Ou G, Weaver VM. Extracellular matrix assembly: a multiscale deconstruction. *Nat Rev
990 Mol Cell Biol.* 2014;15(12):771. doi:10.1038/NRM3902

991 102. Cox TR, Erler JT. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic
992 diseases and cancer. *Dis Model Mech.* 2011;4(2):165-178. doi:10.1242/DMM.004077

993 103. Carey SP, D'Alfonso TM, Shin SJ, Reinhart-King CA. Mechanobiology of tumor invasion:
994 Engineering meets oncology. *Crit Rev Oncol Hematol.* 2012;83(2):170-183.
995 doi:10.1016/j.critrevonc.2011.11.005

996 104. Silvani G, Romanov V, Cox CD, Martinac B. Biomechanical Characterization of Endothelial Cells
997 Exposed to Shear Stress Using Acoustic Force Spectroscopy. *Front Bioeng Biotechnol.*
998 2021;9:612151. doi:10.3389/FBIOE.2021.612151/BIBTEX

999 105. Garcia-Polite F, Martorell J, Del Rey-Puech P, et al. Pulsatility and high shear stress deteriorate
1000 barrier phenotype in brain microvascular endothelium. *Journal of Cerebral Blood Flow and
1001 Metabolism.* 2017;37(7):2614-2625. doi:10.1177/0271678X16672482

1002 106. Molins B, Mora A, Romero-Vázquez S, et al. Shear stress modulates inner blood retinal barrier
1003 phenotype. *Exp Eye Res.* 2019;187(January):107751. doi:10.1016/j.exer.2019.107751

1004 107. Ghim M, Yang S wook, David KRZ, Eustaquio J, Warboys CM, Weinberg PD. NO Synthesis but Not
1005 Apoptosis , Mitosis or Inflammation Can Explain Correlations between Flow Directionality and
1006 Paracellular Permeability of Cultured Endothelium. Published online 2022.

1007 108. Staughton TJ, Lever MJ, Weinberg PD. Effect of altered flow on the pattern of permeability around
1008 rabbit aortic branches. *Am J Physiol Heart Circ Physiol.* 2001;281(1 50-1):53-59.
1009 doi:10.1152/ajpheart.2001.281.1.h53

1010 109. Miao H, Hu YL, Shiu YT, et al. Effects of flow patterns on the localization and expression of VE-
1011 cadherin at vascular endothelial cell junctions: In vivo and in vitro investigations. *J Vasc Res.*
1012 2005;42(1):77-89. doi:10.1159/000083094

1013 110. Bouhrira N, DeOre BJ, Galie PA, Peter Galie CA. Implementation and characterization of a
1014 physiologically relevant flow waveform in a 3D microfluidic model of the blood-brain barrier.
1015 *Biotechnol Bioeng.* 2021;118:2411-2421. doi:10.1002/bit.27719

1016 111. Wong JF, Simmons CA. Microfluidic assay for the on-chip electrochemical measurement of cell
1017 monolayer permeability. *Lab Chip.* 2019;19(6):1060-1070. doi:10.1039/C8LC01321G

1018 112. Dubrovskyi O, Birukova AA, Birukov KG. Measurement of local permeability at subcellular level in
1019 cell models of agonist-and ventilator-induced lung injury. *Laboratory Investigation.*
1020 2013;93(2):254-263. doi:10.1038/labinvest.2012.159

1021 113. Gao F, Sun H, Li X, He P. Leveraging avidin-biotin interaction to quantify permeability property of
1022 microvessels-on-a-chip networks. *Am J Physiol Heart Circ Physiol.* 2022;322(1):H71-H86.
1023 doi:10.1152/AJPHEART.00478.2021

1024 114. Shirakura K, Baluk P, Nottebaum AF, et al. Shear stress control of vascular leaks and atheromas
1025 through Tie2 activation by VE-PTP sequestration. *EMBO Mol Med.* 2023;15(4).
1026 doi:10.15252/emmm.202216128

1027 115. Zhao S, Suciu A, Ziegler T, et al. Synergistic effects of fluid shear stress and cyclic circumferential
1028 stretch on vascular endothelial cell morphology and cytoskeleton. *Arterioscler Thromb Vasc Biol.*
1029 1995;15(10):1781-1786. doi:10.1161/01.ATV.15.10.1781

1030 116. Meza D, Musmacker B, Steadman E, Stransky T, Rubenstein DA, Yin W. Endothelial Cell
1031 Biomechanical Responses are Dependent on Both Fluid Shear Stress and Tensile Strain. *Cell Mol*
1032 *Bioeng.* 2019;12(4):311-325. doi:10.1007/s12195-019-00585-0

1033 117. Breen LT, McHugh PE, Murphy BP. Multi-axial mechanical stimulation of HUVECs demonstrates
1034 that combined loading is not equivalent to the superposition of individual wall shear stress and
1035 tensile hoop stress components. *J Biomech Eng.* 2009;131(8):1-10. doi:10.1115/1.3127248

1036

1037