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Abstract
In this note we construct new nonplanar ancient (in fact, eternal) solutions to the curve
shortening flow in R3, built out of translating grim reapers laying in perpendicular planes.

1 Introduction

Ancient solutions to the mean curvature flow (MCF), which for curves is also called the curve
shortening flow (CSF), serve as models for singularities which may develop after a rescaling
process and are also the natural analogues of complete solutions to the heat equation in
submanifold geometry. There are many known examples of ancient CSF/MCF in R

n , many
of which are nonplanar, see for instance [2, 9]. The quality of nonplanarity is interesting
for instance because there are a number of recent results for the mean curvature in higher
codimension where one can constrict ancient solutions to some proper affine subspace of Rn

under some conditions, see for example [6, 8, 10]. In particular, a nonplanar curve shortening
flow inR3 takes up as much “room” as possible. The point of this note is to construct another
such example by, in short, attaching grim reapers in different planes along their ends. To
summarize the main properties of the construction:

Theorem 1.1 There exists a smooth noncompact curve shortening flow Mt , t ∈ (−∞, 0],
such that:

(1) Mt doesn’t lay in any affine plane for any t ∈ (−∞, 0].
(2) In the limit as t → −∞, Mt converges to three parallel lines, which pairwise are at most

distance
√
2π apart.

(3) Mt is a ramp, in the sense of Altschuler and Grayson (see Definition 2.1).

The properties listed above correspond to a construction of an ancient solution modeled
on combining two grim reapers translating with speed 1, but it will be evident that one can
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Fig. 1 A sketch of what the
ancient solution looks like. The
regions above are shaded just to
make the diagram appear less
“flat”, although coincidentially
these do essentially represent the
regions to which the area
estimate below (Lemma 2.1) is
applied. The arrows of course
indicate the tangent to the curve

use more grim reapers and additionally vary their widths with appropriate modifications
(including modifying item (2) above, where the number of asymptotic lines will increase).
The flows we construct will also clearly be extendable to an eternal solution, that is a solution
defined for t ∈ R although this is perhaps of lesser note; in the limit as t → ∞ it will converge
to a line.

The path we take, as is often the case in these types of constructions, is to first construct
approximating “old but not ancient” solutions (often referred to below as simply approxi-
mating solutions) Mi

t defined on (−Ti , 0] where Ti → ∞, take a limit of these via curvature
estimates, and show the limit is nonempty and furthermore nontrivial (in this case, nonpla-
nar). The approximate solutions are constructed by piecing two grim reapers together, where
more or less one lays in the xy-plane and the other lays in the yz-plane, interpolating in the
middle and, as we’ll discuss more below, bending the curves far from the origin to make
the use of the maximum principle on these noncompact curves simpler; since these regions
where we bend are farther and farther away from the origin for each i , in the limit they are
blown off to spatial infinity. The limit then, as we will show, is an “ancient trombone”—see
Fig. 1, which can arguably be thought of as a higher codimension analogue of the examples
in [3].

To take a limit, one uses that the approximate solutions are ramps in the sense of Altschuler
and Grayson [1], a notion that is discussed more below (see Definition 2.1). By the maximum
principle we can then get uniform curvature estimates. It will be easy to see that the limit
flow is nonempty but what might be less clear is that it is nonplanar; for instance it might be
feared that the limit is a stationary line (indeed, this is the asymptotic behavior one expects
as t → ∞), or a union of stationary lines if the “tips” of the approximate grim reapers don’t
move in fast enough. To deal with this, one tool we use is perhaps the lesser known fact that
flows of convex hypersurfaces are barriers to the curve shortening flow. Of course for general
hypersurfaces this does not hold true, considering for instance a round circle wrapped around
the neck of a catenoid. By using what we refer to as Angenent cylinders, taking products of
Angenent ovals and R, and constructing the initial data for the approximate solutions with
some care, one can ensure the limit doesn’t lay in a plane. This is roughly done by showing
that the two orthogonal approximate grim reapers don’t “twist” out of their initial planes (or
perhaps more correctly, one shows that they stay in thin slabs) too much for a very long time.
This rules out at least the limit laying in a plane, but it could still be that the limit is a union
of lines—where, geometrically speaking, this would be the case if the “tips” of the attached
grim reapers don’t move in quickly enough. Naively one would imagine trying to rule this
out by using grim planes as “outer barriers,” but it seems impossible to arrange them in a
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way which keeps them disjoint from the initial data. To get around this,s2 we use the detailed
asymptotics of grim reapers and an area estimate method using Gauss-Bonnet (one instance
where the ambient dimension n = 3 is used) to show that the tips move in quickly, and thus
showing that the ancient solution constructed is indeed a legitimate nonplanar ancient curve
shortening flow—i.e. not just a union of ancient planar CSFs laying in different planes.

One imagines that related compact constructions are possible, by “tying” up all the ends
using additional grim reapers (it’s easy to come up with plausible candidates). Such exam-
ples wouldn’t be ramps though, so modifications to our argument would be necessary.
Because our examples have simple blowdowns, one might imagine with some modifica-
tions/generalizations one may be able to use them to obtain “good” bounds for the constants
in the statement of Corollary 0.6 of [8], which give condimension bounds for ancient flows
in terms of their entropy.

2 Preliminaries

Before actually describing the approximate solutions in more detail, we first lay out the tools
we need to control these solutions, which naturally put constraints on how they should be
constructed. The first facts and notions we discuss are taken from section 2 of Altschuler and
Grayson’s paper [1]. The first definition is a natural generalization of graphicality in higher
condimension.

Definition 2.1 Let γ ⊂ R
3 be an embedded, arclength parameterized, curve with tangent

vector T . Then γ is said to be a ramp if 〈T , V 〉 ≥ 0 for some vector V .

The evolution equation for 〈T , V 〉 is given by the following, where κ is the geodesic
curvature and s is the arclength parameter.

∂

∂t
〈T , V 〉 = ∂2

∂s2
〈T , V 〉 + κ2〈T , V 〉. (2.1)

Even though there are noncompact maximum principles available, in the argument below we
will construct our approximate solutions in a way that ensures 〈T , V 〉 is very positive and
stays so for a long time by pseudolocality far away from the origin. Therefore, one may apply
the maximum principle as in the compact case to see that this quantity stays positive and in
particular its minimum doesn’t decrease. The following evolution equation gives that lower
bounds of 〈T , V 〉 along with initial upper bounds on κ give bounds on κ in later times.

∂

∂t

κ

〈T , V 〉 = ∂2

∂s2
κ

〈T , V 〉 + 2
2

〈T , V 〉
∂

∂s
〈T , V 〉 ∂

∂s

κ

〈T , V 〉 − κ

〈T , V 〉τ
2, (2.2)

where τ here is the torsion. Again, we will construct our approximating solutions in such
a way to ensure that, from (2.2), κ

〈T ,V 〉 must be non increasing by the classical maximum
principle (so without having to resort to noncompact ones).

In the construction, the following simple but important “area estimate” will be used to
essentially give a lower bound on the speed of the tips of the approximate solutions, and thus
ensuring that the limiting flow is not just a union of lines. Below, let {�̃t }t∈[0,∞) be a curve
shortening flow in R3 let �t be a compact piece of �̃t ∩ {y < 0}, let At , Bt ∈ {y = 0} be the
endpoints of �t and let �t be the line segment joining them to create, along with �t , a closed
piecewise smooth curve D(t):
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Lemma 2.1 Let A(t) denote the area of a minimal surface bounded by D(t), with D(t) as
above, t ∈ [0, T ). Then, if the interior angles at At , Bt are bounded by π + ε(t), we have

d A(t)

dt
≤ −π + ε(t).

Proof Note first that

d A(t)

dt
= −

∫
�t

κg

where κg is the geodesic curvature of the boundary curve, which is equal to the curvature
vector of �t dotted with the conormal of the minimal disk at the boundary. By Gauss-Bonnet
(minimality used here):

2π ≤
∫

�t

κg + π + ε(t)

and therefore

d A(t)

dt
= −

∫
�t

κg ≤ −π + ε(t).

�

To employ this area estimate, wewill need pretty tight control of the approximate solutions

we construct; the following lemmas and facts are involved in this control. To begin, the
following lemma says that we can use convex two dimensional mean curvature flows as
barriers for curve shortening flows:

Lemma 2.2 Let �t be a curve shortening flow and M2
t a convex solution to mean curvature

flow so that �t is initially disjoint from the convex region M bounds, and which in later times,
t ∈ [0, T ), T ≤ ∞, might only intersect in a bounded region. Then, in fact, they remain
disjoint for t ∈ [0, T ).

Proof Let P be any affine plane and note that P∩Mt , as long as it is not empty, is a subsolution
to CSF in P (moves faster than curvature), since the other curvatures in transverse directions
are positive by convexity—for a more general statement and detailed argument see Lemma
2.3 in [4]. So assume that there is a first time t when �t ∩ Mt �= ∅ and let p ∈ �t ∩ Mt . Let
P be the osculating plane of �t at p. Then the curvature vector of �t at p coincides with the
curvature (times the normal) of the projection of �t on P. Therefore, at p, projP (�t ) moves
slower then P ∩Mt , which contradicts the fact that t is the first time that �t and Mt intersect.

�

Now we discuss some already known solutions to the mean curvature flow which play

important role in our construction. As is certainly clear, grim reaper translators play a central
role in our construction. The grim reaper G of width π and speed 1 is given by the graph of
y = ln cos x , where x ranges between ±π

2 ; we say it has width π because it is asymptotic
to two parallel lines distance π apart (in this case, the lines x = ±π

2 ). Its flow Gt exists
for all time and translates downward with speed 1 along the y-axis, given by the graph
y = ln cos x − t . Closely related to grim planes (products of grim reapers with lines) are the
Angenent cylinders, whichwewill extensively use as barriers. TheAngenent cylinders At are
solutions of the form at × R, where at denotes the Angenent oval of width π , t ∈ (−∞, 0],
given explicitly by {cos x = et cosh y}. In the following lemma we summarize its relevant
properties.
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Lemma 2.3 Let At be the Angenent cylinder oriented so that at is in the xy plane with its
semi-major axis laying along the y-axis (see also section 2 of [5]).

(1) At is convex.
(2) As t → −∞, at converges to two opposite facing grim reapers of width π translating,

in opposite directions, along the y-axis.
(3) Denote by dS(At ) the distance of At from the boundary of the slab with sides x = ±π

2 .
Then dS(At ) < 2et , for any t ∈ (−∞, 0).

The following lemma will be used to control the contribution from the interior angles of
the surface on which we will apply the area estimate above (to the shaded regions in Fig. 1).
In practice, the lemma will apply because we’ll have uniform curvature bounds along the
flow which we can then scale to be bounds by 1.

Lemma 2.4 Suppose γ is a length parameterized curve whose curvature is bounded by 1
contained in the intersection of two orthogonal slabs of width ε > 0 which contains the
y-axis. Then |〈T , v〉| < 3

√
ε, where T is the unit tangent vector to γ and v is any unit vector

perpendicular to e2.

Proof Considering such a curve γ , fix a point p on it and suppose there is a unit vector v

(replacing v with −v if necessary) for which 〈T (p), v〉 > 3
√

ε. Without loss of generality,
v = e1, coresponding to the y coordinate. By integration and using the curvature bound, at
all points less than distance

√
ε further along the curve we have 〈T , e1〉 > 2

√
ε. Integrating

again then, we get that following along γ distance
√

ε from p implies there is a point q ∈ γ

with 〈q, e1〉 − 〈p, e1〉 > 2ε >
√
2ε, and hence must be a point which lays outside the slab

intersection, giving a contradiction. �


3 The construction

As discussed in the introduction we begin by constructing the approximate solutions. In their
description below, note that there are arbitrary choices made; one probably expects these
choices do not have a discernible effect on the limit ancient flow.We first focus on discussing
how to construct approximate solutions which are ramps in the sense discussed in section 2
and in particular satisfy (uniform) bounds on κ/〈T , V 〉 for an appropriately chosen vector
V—which is what gives us curvature estimates. Then we discuss how to arrange the initial
data appropriately, in particular the parameter R we introduce below, to get a nontrivial
ancient flow.

First, we give a preliminary definition of the initial data for the approximate solutions,
which will then be modified accordingly. Consider the grim reaper {Gt }t∈(−∞,∞) in the xy-
plane moving with speed 1 in the direction of e2, and let (±xR, 0) be the intersection of G−R

and the x-axis. Now we define PR = (G−R − (xR, 0)) ∩ {(x, y)|x ≤ 0} (the first set is a
translation of the grim reaper) and let

QR =
(
ROT y

π/2 ◦ Rotπ
)

(PR)

where Rotπ is a rotation by π in the xy-plane around the origin and ROT y
π/2 is a counter-

clockwise rotation by angle π/2 inR3 around the y-axis so that QR ⊂ {(x, y, z)|x = 0, y ≤
R, z ≥ 0}. Then our preliminary version of the initial data for the approximating solutions
(parameterized by R) is taken to be the curve �R = PR ∪ QR , or in other words two grim
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reapers with one of their ends cut off and spliced onto the other roughly as indicated in Fig. 1
in the introduction.

Our goal of controlling 〈T , V 〉 and κ/〈T , V 〉 appropriately on the initial data of course
depends on a good choice of vector V , which we discuss next, and which leads naturally to
how to refine the preliminary initial data for the approximate solutions.

Note that G−R , since its a time slice of a translator, satisfies κ = −〈ν, e2〉 = 〈T , e1〉;
indeed this is a key reason why one might imagine being able to control κ/〈T , V 〉 for some
choice of V . From this note that on PR and QR respectively we have

PR : κ = 〈T , e1〉 > 0, QR : κ = 〈T ,−e3〉 < 0.

With this in mind, consider the vector e =
√
2
2 e1 +

√
2
2 e3. Then, on PR

〈T , e〉 =
√
2

2
〈T , e1〉 =

√
2

2
κ > 0,

and on QR

〈T , e〉 =
√
2

2
〈T , e3〉 = −

√
2

2
κ > 0.

From these calculations, we see that�R almost satisfies being a rampwith V = e, although
we need to be careful at the point I where we attached PR and QR . At I , �R is not smooth
as the left and right limits of T differ although only by e−R up to a scale factor. Naturally
one would wish to mollify about the point I , but one might worry that control on κ/〈T , V 〉
could be lost, so we take a more geometric route. Note that one may slightly bend QR

slightly along the vector e1 − e3 near I , and that any amount of bending will make the curve
enter the quarterspace {(x, y, z) | x > 0, z < 0}. Similarly we may slightly bend PR into
{(x, y, z) | x < 0, z > 0}. From the direction of the bending we see that the lower bound on
〈T , V 〉will be preserved, and by bending slightly enough we may arrange that κ/〈T , V 〉 ≤ 2
holds. After a (slight) bending, we may consider a slight “upward” translation Q̃R of QR in
the yz plane and a slight translation P̃R of PR in the xy plane (note this doesn’t affect the
above inequalities) so that the ends of the bent curves match, and so that the resulting curve
is smooth with

〈T , V 〉 > 0,
κ

〈T , V 〉 ≤ 2.

By abusing notation, we still use �R to denote the modified smooth curve. Note, since the
deformation above can be taken to be of the order of e−R , for any �R we may arrange it to
be close in Hausdorff distance to PR ∪ QR of the order of e−R . Now at this point the initial
data for the approximate solutions are well-controlled ramps (with V = e), and we have to
ensure that they do stay ramps into the future, which has some complications due to their
noncompactness. Because the terms involved tend to zero at the ends of �R , there appear to
be issues with applying a noncompact maximum principle though (at least the well known
ones).

Instead, we bend/flare out the ends of �R (and relabel back), so that it is asymptotic to two
lines �1 and �2 which satisfy 〈T , V 〉 = 1 on them. By continuity and geometric reasoning we
can also arrange that 〈T , V 〉 > 0 is preserved where the bending occurs. To set notation for
the sequel we may arrange furthermore that �R above is left unperturbed within the ball of
radius Rbend >> R, where we can choose Rbend to be as large as we wish. Considering the
evolution (�R)t of �R under the flow, by pseudolocality [7], we may arrange that 1−〈T , V 〉
and κ/〈T , V 〉 is as small as we wish sufficiently far from the origin, the distance one must go
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depending on t . This gives that κ/〈T , V 〉 ≤ 2 (with the bending done gradually) is preserved
along the flow by the standard parabolic maximum principle. In particular, the flow of �R is
smooth for all time.

With these (�R)t in hand we recall that to construct a nontrivial (in the sense as discussed
in the introduction) ancient flow, it will suffice to produce a sequence Mi

t of flows such that

(1) the flows Mi
t are defined on time intervals [−Ti , 0] with Ti → ∞.

(2) |κ| < C , for a uniform constant C independent of time, on the Mi
t .

(3) There is a uniform ball B(0, R) and time t so that Mi
t ∩ B(0, R) are all connected curves

and “far” from being planar in that there is a uniform positive lower bound in Hausdorff
distance from them to any plane intersected with B(0, R).

Of course, item (2) implies (1); as we’ll obviously construct the Mi
t in terms of the (�R)t the

main point will be to check that we may arrange item (3) for a sequence with Ti → ∞.
We claim, that if we pick Ri = 10i , then the following is true

(a) there is some R > 0 for which ∂B(0, R) ∩ (�Ri )10i−1000 consists of two points (corre-
sponding to the two asymptotic lines essentially, by taking RBend sufficiently large which
we may), and

(b) B(0, 100) ∩ (�Ri )10i−1000 is distance less than 1/10 to the concatenation of two curves
laying in the xy and yz planes, which have points distance at least 9/10 away from the
line {y = 0} (of course these are essentially the evolutions of PR and QR).

Item (b) shows that (�Ri )10i−1000 is nonplanar, and (a) shows that it is connected. The second
statement (b) will be evident from the proof of (a), because of our use of barriers.

To see (a), we consider the compact pieces of (�Ri )t ∩ {±y > 0} and let (pt1, p
t
2) and

(qt1, q
t
2) be the corresponding endpoints (note that these are in fact three distinct points). Let

now D1,i
t and D2,i

t be the two piecewise smooth curves formed by the two compact pieces
of the curve along with two line segments joining the endpoints (essentially, the boundaries
of the orange shaded regions in Fig. 1).

To control the interior angles at the corner points we will use Lemma 2.2 with Angenent
cylinders as barriers for (�Ri )t by arranging them to form boundaries of slabs for use in
Lemma 2.4 as indicated in Fig. 2 ; by combining it with Lemma 2.3 (which controls how
quickly the slab intersection will widen) we can ensure the function ε(t) in Lemma 2.1 to
be bounded by 2e−(Ri−t)/2; in particular it is integrable. More specifically, to control each
corner point we use 6 Angenent cylinders At−Ri , with 2 “threaded” through the PRi and
QRi , and the other four placed opposingly, so that they “enclose” PRi and QRi . Because the
ends of the �Ri are flared clearly these can be arranged to be disjoint from the initial data,
and by Lemma 2.2 they will remain disjoint for all later times. Because the initial areas of
the minimal disks bounded by D1,i

t and D2,i
t are up to a uniform additive constant πRi , by

integrating the estimate of Lemma 2.1 we find that at t = 10i −1000 the area of the minimal
disk enclosed by D1,i

t and D2,i
t is bounded by a constant independent of i .

We now claim that this area estimate implies that at t = 10i − 1000 the minimal disks
bounded by D1,i

t and D2,i
t are both contained in B(0, R) for some large uniform choice

of R. To see this we will show that the curves D1,i
t and D2,i

t have a canonical tubular
neighborhood for t ∈ [0, 10i −1000] of uniform size (i.e. independent of t and i). Intersecting
this neighborhood with the minimal disks bounded by D1,i

t and D2,i
t we find that there is

a uniform c, such that c Length(D1,i
t ) and c Length(D1,i

t ) are bounded by the areas of the
minimal disks bounded by D1,i

t and D2,i
t respectively, giving the desired bound.

To see that this is true, first note by considering Angenent cylinders translated so that they
are centered by/closer to the “tips” of the initial data, we can arrange for any δ > 0 that D1,i

t
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Fig. 2 A side view of the configuration of the barriers, looking along the y-axis. Here the red “L” represents
the initial data (the initial data can’t lay precisely in the planes, but we can arrange it to be as close as we
wish), the orange dots indicate approximately where the points (p1, p2) and (q1, q2) would be (drawn as one
expects, that two of the points are the same or at least very close to each other), and the blue and green lines
indicate the R factors of the Angenent cylinders. Note each of the orange points lay in a slab intersection
defined by these cylinders

and D2,i
t are both contained in slabs of width δ for t ∈ [0, 10i − 1000] for i large enough,

potentially changing 10i − 1000 by a uniform additive constant. By the curvature bounds
on the (�Ri )t , this implies arguing exactly as in Lemma 2.4 that D1,i

t and D2,i
t are graphical

over the xy and yz planes respectively, with bounded curvature away from the (projections
of the) corner points pt1, p

t
2, q

t
1, q

t
2. Denote the projections of their boundaries onto these

planes by σ
1,i
t , σ 2,i

t .
From our discussion on the choice of V , note that the �Ri are also simultaneously ramps

with respect to the vectors ae1 + be3 for any a, b ≥ 0 and that this will be preserved under
the flow (although we see if initially we chose in defining V to have a or b to be zero this
would not lead to curvature bounds—this is not a concern here though). This gives that on
σ
1,i
t we have 〈T , e1〉 ≥ 0 and on σ

2,i
t we have 〈T , e3〉 ≥ 0 (so are ramps in these planes).

Clearly to show D1,i
t and D2,i

t have tubular neighborhoods it suffices to show σ
1,i
t , σ 2,i

t do.
Now we see that σ 1,i

t , σ 2,i
t are contained individually in slabs of width little more than π in

their respective planes. Also by the curvature bounds we see the only way these curves don’t
have uniform tubular neighborhoods are if for each ε > 0 there is an i and corresponding ti
for which on σ

1,i
ti or σ

2,i
ti we have two sheets (that is, locally graphical regions) which are

distance less than ε apart. Then, there are two such sheets with tangent vectors pointing in
opposite directions, so by the conditions 〈T , e1〉 > 0 and 〈T , e3〉 > 0 there must be a point
in between these two sheets along the curve with large curvature depending on ε. Taking ε

small enough violates the curvature bounds along the (�Ri )t , giving us what we want.
Time translating the flows (�Ri )t by−Ti = 10i −1000 gives us the “old-but-not-ancient”

solutions Mi
t with properties (1)-(3), completing the construction.
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