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1. Introduction

The multi-objective optimization problem (MOP) is to optimize several objectives simultaneously over a common
feasible set. MOPs have broad applications in economics (Geiger and Sevaux [15]), finance (Chen et al. [6]), medical
science (Rosenthal and Borschbach [56], van der Horst et al. [58]), and machine learning (Wang et al. [59]). In this
paper, we consider the MOP in the form

min  f(x) := (fi(x),...,fu(x))
st c(x)=0(i€f), (1.1)
G() 2 0( eT),

where all functions f;, ¢;, ¢; are polynomials in x := (x1,...,x,) € R". The £ and 7 are disjoint finite label sets. Let K
denote the feasible set of (1.1). Generally, there does not exist a point such that all f;’s are minimized simultaneously.
People often look for a point such that some or all of the objectives cannot be further optimized. This leads to the fol-
lowing concepts (see Marler and Arora [43], Miettinen [45], and Jahn et al. [22]).

Definition 1.1. A point x* € K is said to be a Pareto point (PP) if there is no x € K such that fi(x) < fi(x") for all i =
1,...,mand fj(x) < f;(x") for at least one j. The point x" is said to be a weakly Pareto point (WPP) if there is no x € K
such that fi(x) < fi(x*) foralli=1,...,m.

In the literature, Pareto points (respectively (resp.), weakly Pareto points) are also referenced as Pareto optimi-
zers (resp., weakly Pareto optimizers) or Pareto solutions (resp., weakly Pareto solutions). A vector v := (v, ...,
vy) is called a Pareto value (resp., weakly Pareto value) for (1.1) if there exists a Pareto point (resp., weakly
Pareto point) x* such that v = f(x*). Pareto front is the set of objective values at Pareto points. Every Pareto point
is a weakly Pareto point, whereas the converse is not necessarily true. Detecting existence or nonexistence of
(weakly) Pareto points is a major task for MOPs. We refer to Bao and Mordukhovich [2], Bao and Mordukho-
vich [3], Kim et al. [27], Marler and Arora [43], Miettinen [45], and Jahn et al. [22] for related work about exis-
tence of PPs and WPPs.

Scalarization is a classical method for finding PPs or WPPs. It transforms a MOP into a single objective optimi-
zation problem. A frequently used scalarization is a nonnegative linear combination of objectives.
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Definition 1.2. The linear scalarization problem (LSP) for the MOP (1.1), with a nonzero weight w := (w+, ..., w,) >0,
is
min wy f1(X)+ -+ + Wy fr(x)

(1.2)
s.t. xe K.

For the LSP (1.2), the optimization remains unchanged if we normalize the nonzero weight w such that ;" w; =1,
w; > 0. For neatness of the paper, one can equivalently consider nonzero and nonnegative weights for LSPs. Every
minimizer of the LSP (1.2) is a weakly Pareto point for nonzero w > 0, and every minimizer is a Pareto point for
w> 0. Varying weights in (1.2) may give different (weakly) Pareto points. A nonzero weight w is said to be proper if
the LSP (1.2) is bounded below. Otherwise, the w is called improper. One wonders whether every Pareto point is a
minimizer of (1.2) for some weight w. However, this is sometimes not the case (see Fleming [14] and Zionts [60]).
For instance, Example 4.4 has infinitely many Pareto points, but only two of them can be obtained by solving LSPs.
Under some assumptions, LSPs may give all Pareto points (see Emmerich and Deutz [12]).

Another frequently used scalarization is the Chebyshev scalarization. It requires one to use the minimum
value of each objective.

Definition 1.3. The Chebyshev scalarization problem (CSP) for the MOP (1.1), with a nonzero weight w = (w;,
e, W) 20,18

min. g, W) —f) .
s.t. x €K,

where the minimum value f; := min,ex fi(x) > —oo.

Every minimizer of the CSP (1.3) is a weakly Pareto point. Interestingly, every weakly Pareto point is the mini-
mizer of a CSP for some weight (see Koski and Silvennoinen [28] and Miettinen [45]). However, the minimizer of
a CSP may not be a Pareto point. There also exist other scalarization methods, such as the e-constraint method
(Anagnostopoulos et al. [1], Matsatsinis and Delias [44]) and the lexicographic method (Clayton et al. [8], Jones
and Tamiz [26]). We refer to Cho et al. [7], Donoso and Fabregat [11], Marler and Arora [43], Miettinen [45], and
Ruiz-Canales and Rufian-Lizana [57] for different scalarizations.

There exists important work for MOPs given by polynomials. When all functions are linear, a semidefinite pro-
gramming method is given to obtain the set of Pareto points in Blanco et al. [5]. When the functions are convex
polynomials, Moment- sum of squares (SOS) relaxation methods are given to compute (weakly) Pareto points in
Jiao et al. [25], Jiao et al. [24], Jiao and Lee [23], Lee et al. [38], and Lee and Jiao [37], as well as some useful condi-
tions for existence of (weakly) Pareto points. Because the Pareto front is an image set of polynomial functions,
semidefinite relaxations can be used to approximate the Pareto front, as in the works Magron et al. [40] and
Magron et al. [41].

When the functions are nonconvex polynomials, nonemptiness and boundedness of Pareto solution sets are
shown in Liu et al. [39], under certain regularity conditions. When the objectives are polynomials and K is the
entire space R", some novel conditions are shown for existence of (weakly) Pareto points in Kim et al. [27]. The
following questions are of great interest for studying MOPs:

e What is a convenient description for the set of (weakly) Pareto values? How can we represent the Pareto front
in a geometrically clean way?

e For an LSP, how can we solve it efficiently for a Pareto point? When the constraint K is unbounded, how can
we find a proper weight such that the LSP is bounded? How can we detect nonexistence of proper weights?

e For a CSP, how can we solve it efficiently for a weakly Pareto point? How do we get the global minimum value
for each objective? If some minimum value is —oco, how can we get a weakly Pareto point?

e For a given point, how can we detect whether it is a (weakly) Pareto point? How can we get a (weakly) Pareto
point if LSPs/CSPs fail to give one? How do we detect nonexistence of (weakly) Pareto points?

1.1. Contributions
The above questions are the major topics of this paper. When MOPs are given by polynomials, there are special
properties for them. The following are our major contributions.

We study the convex geometry for (weakly) Pareto values. The epigraph set—that is, the set ¢/ as in (3.1)—is use-
ful for (weakly) Pareto values. We give a characterization for the Pareto front. When the objectives are convex, we
show that the set of weakly Pareto values can be expressed in terms of the boundary of a convex set. When the
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MOP is given by SOS convex polynomials, we show that ¢/ can be given by semidefinite representations. This is
shown in Section 3.

For solving LSPs and CSPs, or detecting nonexistence of (weakly) Pareto points, we often need to detect whether
an optimization problem is unbounded. There exist few works for detecting unboundedness in nonconvex optimi-
zation. We give a convex relaxation method for detecting unboundedness in polynomial optimization under some
genericity assumptions. To the best of the authors” knowledge, this is the first work that can achieve this goal. The
results are in the appendix.

We discuss how to solve LSPs in Section 4. Under a genericity assumption, we give a tight relaxation method for
solving LSPs and obtaining Pareto points. When the feasible set K is unbounded, we show how to find proper
weights such that the LSP is bounded below. We also show how to detect that the LSP is unbounded below for all
weights—that is, how to detect nonexistence of proper weights.

Section 5 studies how to solve CSPs. We first apply the tight relaxation method to compute global minimum
valuesf;,...,f, for the individual objectives. After that, we formulate the CSP equivalently as a polynomial optimi-
zation problem and then solve it by using Moment-SOS relaxations.

Section 6 discusses how to detect whether a given point is a (weakly) Pareto point or not. This can be done by
solving certain polynomial optimization. We also show how to detect existence or nonexistence of (weakly) Pareto
points. This requires one to solve some moment feasibility problems.

We make some conclusions and propose some open questions in Section 7. Section 2 reviews some basic results
for optimization with polynomials and moments.

2. Preliminary

2.1. Notation

The symbol N (resp., R, C) denotes the set of nonnegative integral (resp., real, complex) numbers. The R stands for
the nonnegative orthant—that is, the set of nonnegative vectors. For each label i, the ¢; denotes the vector of all zeros
excepts its ith entry being one, whereas e denotes the vector of all ones. For an integer k>0, denote [k]:=
{1,2,...,k}. For t € R, [] denotes the smallest integer greater than or equal to ¢. Denote by R[x] := R[x1,...,x,] the
ring of polynomials in x := (xy, ..., x,) with real coefficients. The R[x]; stands for the set of polynomials in R[x] with
degrees at most d. For a polynomial p, deg(p) denotes its total degree, j denotes its homogenization, and p""
denotes the homogeneous part of the highest degree. For a := (ay, ..., a,) € N", we denote x* := x{" --- x% and |a|
‘= a1+ - +a,. The power set of degree d is

N :={aeN"||a| < d}.

The vector of monomials in x and up to degree d is
[a=11 x ~x, 2§ xx - 2]

The superscript  denotes the transpose of a matrix/vector. The I stands for the N-by-N identity matrix. By
writing X >0 (resp., X > 0), we mean that X is a symmetric positive semidefinite (resp., positive definite)
matrix. For a set T, conv(T) denotes its convex hull, c/(T) denotes its closure, and int(T) denotes its interior,
under the Euclidean topology. The cardinality of Tis |T|. For a vector u, the ||u|| denotes its standard Euclidean
norm. For a function / in x, the Vi denotes its gradient vector in x. All computational results are shown with
four decimal digits.

2.2. Positive Polynomials

A subset I CR[x] is an ideal if I-R[x] €I and I +ICI. For a tuple p = (p1, . ..,px) of polynomials in R[x], Ideal(p)
denotes the smallest ideal containing all p;, which is the set p1 - R[x] + -+ +p - R[x]. In computation, we often need
to work with the truncation of degree 2k:

Ideﬂl[?]zzc =pr IR[X]Zkfdeg(]yl) +o Pk IR[x]zkfdeg(pk)'

A polynomial ¢ is said to be a sum of squares if 0 = s7 + - +s? for some polynomials sy, ..., s¢. Checking whether a
polynomial is SOS can be done by solving a semidefinite program (SDP) (Lasserre [29]). If a polynomial is SOS,
then it is nonnegative everywhere. The set of all SOS polynomials in x is denoted by X[x], and its dth truncation is
Z[x]; := X[x] N R[x],. For a tuple g = (41, .. .,q:) of polynomials, its quadratic module is

Qmod|[q] := Z[x] +q1 - Z[x] + - +g¢- Z[x].
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The truncation of degree 2k for Qmod[q] is
Qmod[qly := E[x]o + g1 - Z[x]ok—degier) T+ + ¢ - Z[xX]or—deg(qn)-

A subset A CR[x] is said to be archimedean if there exists o € A such that o(x) > 0 defines a compact set in R". If
Ideal[p] + Qmod|q] is archimedean, then the set T := {x € R" : p(x) = 0, g(x) > 0} must be compact. The reverse is not
necessarily true. However, if T is compact, the archimedeanness can be met by adding a redundant ball condition.
When Ideal[p] + Qmod|[q] is archimedean, every polynomial that is positive on T must belong to Ideal[p] + Qmod|q].
This conclusion is referenced as Putinar’s Positivstellensatz (Putinar [55]). Furthermore, if a polynomial is nonnega-
tive on T, then it also belongs to Ideal[p] + Qmod[q], under some standard optimality conditions on its minimizers
(see Nie [49]).

2.3. Localizing and Moment Matrices
Denote by R" the space of real sequences labeled by a € NJj. A vector y := (y,) aeryy is called a truncated multisequence
(tms) of degree d. It gives a linear functional on R[x]; such as

<Zfax“,y> = falas 2.1)

n n
aeNj a€eNy

where each f, is a coefficient. The tms y is said to admit a Borel measure y if y, = [x*dpu for all & € NJj. If it exists, such
u is called a representing measure for y, and y is said to admit the measure . The support of u is denoted as supp(u).
If the cardinality [supp(u)] is finite, the measure y is called finitely atomic. It is called r-atomic if [supp(u)| =r.

In optimization, the support of y is often constrained in a set K. For a degree d, denote the moment cone

R4(K) = {y eRY: Iy, y= / [x],dp, supp(u) K} (2.2)

The dual cone of %,(K) is the nonnegative polynomial cone
24K):={peR[x];: p(x) >0 VxeK}. (2.3)

The dual cone of 24(K) is the closure of %,(K). When K is compact, the moment cone %4(K) is closed. We refer to
Lasserre [32] and Laurent [35] for more details about moment cones.

Consider a polynomial g € R[x], with deg(q) < 2k. The kth localizing matrix of g, generated by a tms z € R, is
the symmetric matrix L,;k) [z] such that

vec(m)" (LY [z])vec(az) = (qaraz, z), (2.4)

for all a1, a7 € R[x]i_[geg(g)/21- (The vec(a;) denotes the coefficient vector of ;) When g=1, Lgk) [z] is called a moment
matrix, and we denote

Milz] := L[],

The columns and rows of L,(ik) [z], as well as M[z], are labeled by @ € N" with 2|a| < 2k — deg(q).
Each y € 2,;(K) can be extended to a tms z € #»(K) such thaty = z|;, where d < 2t and z|; denotes the truncation
of z with degree d:

214 = (za)uery. (25)
When K is the feasible set of (1.1), a necessary condition for z € #2(K) is
LOz]=0(i€é), LV[z]=0(€T),
whereas they may not be sufficient (see Lasserre [32] and Laurent [35]). However, if z further satisfies
rank M;_4 [z] = rank M;[z], (2.6)
then z admits an r-atomic measure supported in K, with r = rank M,[z]. The above integer d, is the degree
d. := max{[deg(c;)/2]:i€ EUT}. (2.7)

This Condition (2.6) is called flat extension (see Curto and Fialkow [9], Curto and Fialkow [10], Henrion and
Lasserre [18], and Laurent [34]). To get optimizers in computation, the flat truncation is more frequently used
(see Nie [48]).
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Moment and localizing matrices are important tools for solving polynomial optimization (Fan et al. [13], Henrion
and Lasserre [18], Lasserre [29], and Nie [46]). They are also useful in tensor decompositions (Nie [51], Nie and
Zhang [53]). We refer to Lasserre [32], Lasserre [33], Laurent [35], and Laurent [36] for the books and surveys about
polynomial and moment optimization.

3. Geometry of Pareto Values

Recall that a vector v := (vy, . ..,v,,) is a Pareto value (PV) if there exists a Pareto point x* such that v = f(x*). Similarly,
vis called a weakly Pareto value (WPV) if v = f(p) for a weakly Pareto point p. PVs and WPVs are closely related to
the epigraph set

U:={u=u,... uy)|u;=fi(x), forsome xeK}. 3.1)
The image of the set K under the objective vector f = (f1, ..., fu) is

FK) :={(fi(x),...,fu(x)): x€K}.

Then, U = f(K) + R and its convex hull conv(l/) = conv(f(K)) + R'. If K is convex and each objective f; is convex,
the set I/ is also convex. The converse is not necessarily true. When I{ is convex, every Pareto point is a minimizer of
some LSP (see Emmerich and Deutz [12]). In this section, we study the geometry of PVs and discuss how to charac-
terize PVs and WPVs through the set /.

3.1. Supporting Hyperplanes
For a nonzero vector w € R™ and b € R, the set

H={ueR":w'u="0},

is a supporting hyperplane for i/ if b = inf,; w” u. The w is the normal of H. In particular, if there exists v € i/ such
that w’u > w'v for all u € U, then H is called a supporting hyperplane through v. Because U contains f(x) + R}, the
normal w must be nonnegative for H to be a supporting hyperplane.

In MOP, people often use different orderings to define various minimizers. We refer to Marler and Arora [43],
Miettinen [45], and Jahn et al. [22] for general orderings in MOP. Here, we introduce the convenient lexicographical
ordering, up to permutations. Let 7 be a permutation of (1, ...,m). For a set T € R", construct the following chain of
nesting subsets

T=Tyg2T12---2T,,

such that: for each k=1, ...,m, T is the subset of vectors in Ty_; whose rt(k)th entry is the smallest. If T, # 0, then
each v € T, is called a w-minimal point of T. For u,v € T}, all the entries of 1, v must be the same, so =7, and, hence,
T,, consists of a single point, if it is nonempty. In particular, if T is compact, then T,, # 0, and it consists of a single
point.

PVs and WPVs are characterized in the following. Some of these results may already exist in the literature. For
the convenience of readers, we summarize them together and give direct proofs.

Proposition 3.1. Let U be as in (3.1). For each v € f(K), we have:

i. The vector v is a WPV if and only if v lies on the boundary of U. Moreover, if v is an extreme point of conv(U), then v is a
PV.

ii. Assume U is convex. If v is a WPV, then there exists a supporting hyperplane for U through v whose normal is
nonnegative—that is, there exists 0 # w > 0 such that w'u > w'o for all u € U.

iii. Suppose H = {u: wTu = w'v} is a supporting hyperplane for U through v, with a normal vector 0 # w > 0. If w>0,
then v is a PV. For w with a zero entry, if u € f(K) is a m-minimal point of H U, then u is a PV. If u € f(K) is an extreme
point of H N U, then u is alsoa PV.

Proof. (1) If v lies on the boundary of ¥/, then there is no p € K such that f(p) <v, so v is a WPV. If v is an interior
point of U, then there exist p € K and q > 0 such that f(p) + g < v, which denies that v is a WPV. This shows that v
is a WPV if and only if v lie on the boundary of /.

Next, suppose v is an extreme point of conv(l{). Suppose otherwise that v is not a PV; then, there exists p € K
such that f(p) < v,f(p) # v. This means that v =f(p) + g, for some 0 # g€ RY. Hence, v=[f(p) + (f(p) +29)]/2,
which implies v is not an extreme point of conv(l(), a contradiction. So v is a PV.

(i) If v is a WPV, then v lies on the boundary of /. Because U is convex, there is a supporting hyperplane for ¢/
through v—that is, there exists w # 0 such that wTu > wTv for all u € Y. The set U contains v + R, sow > 0.
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(iii) For the case w> 0, the conclusion is obvious. When w has zero entries, let I = {i € [m] : w; > 0}. To prove
u:=(uy,...,u,) is a PV, suppose p € K is such that f(p) < u. Because u € HNU, w'f(p) < w'u =wTv. Also, note
that w’f(p) > w’u because H is a supporting hyperplane. So, we must have w’f(p) = w’v and fi(p) = u; for all i € I.
Write that 1 = f(p) + g, for some g € R'. Note that ;=0 for all i € I. Because u is a 7-minimal point of H N/ and
f(p) < u, the vector f(p) is also a T-minimal point of H N . Hence, u = f(p), by the -minimality. This means that
uisaPV.

When u is an extreme point of H N, we can prove that u is a PV in the same way as for the item (i). O

We have the following remarks for Proposition 3.1.
e Not every WPV lies on the boundary of conv(l{). For instance, consider

{ min  (x1, x2)

st x120,x0>0,x3+x3=1.

For each t € (0,1), the point (¢, V1 — #2) is a WPP (also a PP), but it does not lie on the boundary of conv(l/).

e If U/ is not convex, there may not exist a supporting hyperplane through a WPV. For instance, in the above
MOP, for every t € (0,1), there is no supporting hyperplane for conv(l/) through (¢, V1 — #2).

e For the item (iii) of Proposition 3.1, if w has a zero entry, then v may not be a Pareto value. For instance, con-
sider the unconstrained MOP

min (xq, x%).

For w = (0,1) and v = (0,0), the equation w’u = 0 gives a supporting hyperplane through (0, 0), but (0, 0) is not a
Pareto value.
e Ifvisa PV, it may not be an extreme point of I or H N . For instance, consider the MOP

{ min (x1, x3)

st. x120,x>0,x1+x=1.

Thesettd = {x1 >0, x =0, x1 +x2 > 1}. Clearly, for every t € (0, 1), the vector (t,1 — t) is a PV, but it is not an extreme
point of Y. The hyperplane H = {x1 + x, = 1} supports U at (t,1 —t). However, (t,1 —t) is not an extreme point of
the intersection H N, for every t € (0,1).

3.2. A Convex Representation
When the feasible set K is bounded, there always exist supporting hyperplanes for /. When K is unbounded,
they may or may not exist. For, given v = (vy,...,v,) € f(K), how do we determine whether there is a supporting
hyperplane through it? For this purpose, we consider the linear optimization in wy € R and w = (wy, ..., wy,)
eR™
@' :=max Wp
st. 1—elw=0,w;>wy(i€[m]),

" (3.2)
Zwi(fi(x) —7;))=0 on K.
i=1

Clearly, there is a supporting hyperplane through v if and only if the optimal value w* > 0. Let 4 be the maximum
degree of objectives f;. The third constraint in (3.2) is equivalent to the membership

S wi(fi(x) —v) € 24(K),
i=1

where 2,(K) is the nonnegative polynomial cone as in (2.3). The dual cone of #,(K) is the closure cl(%,(K)), where
R4(K) is the moment cone as in (2.2). The dual optimization of (3.2) can be shown to be
min ¢
st t—={fi—vi,y)=0(ie[m]),

N (3.3)
L=mt=> (fi—vi,y), y € d(Z4(K)).
i=1
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In the above, the vector i is a tms labeled as
y= (y a)aGNZ :

If (3.3) has a feasible point with t <0, then there are no nonnegative supporting hyperplanes through v. Because
each v; is a scalar, one can see that

<fi - vir]/> = <f1/y> - vi<1/y> = <f1ry> — OiYo-

When t <0 is feasible for (3.3), there also exists a feasible y € Z,;(K) with vy > 0. One can scale such (¢, y) so that
Yo = 1. Hence, the existence of t <0 in (3.3) is equivalent to

T=mt" — Z((fir]ﬁ — i),
-1

t'={fy) —v,i=1,...,m,
t>0>t,y0=1,y€ Ri(K).

The above is then equivalent to that
{vi >(fiy),i=1,...,m,
Yo =1,y € Z4(K).
We define the set V' containing all such :
v=(01,...,0m)
Vi=<o|v>(,y),i=1,...,m, . (3.4)
Yo=1,y € %a(K)

Theorem 3.2. Assume K has nonempty interior. Then, the interior of the convex hull conv() is the set V as in (3.4).
Moreover, when U is convex, a vector v € f(K) is a weakly Pareto value if and only if v belongs to the boundary of the closure
(V).

Proof. Because K has nonempty interior, the cone #4(K) has nonempty interior. Hence, the strong duality holds
between (3.2) and (3.3) because (3.3) has strictly feasible points. This is because one can select i from the interior
of 24(K), choose t sufficiently large to satisfy all the inequalities, and then scale such (t, y) for the equality to
hold.

A point v lies in the interior of conv(Z{) if and only if there is no supporting hyperplane for ¢/ through it. The
normal of every supporting hyperplane for I/ is nonnegative. Thus, v lies in the interior of conv(l() if and only if
the optimal value w* of (3.2) is negative or it is infeasible. By the strong duality between (3.2) and (3.3), this is
equivalent to that v belongs to V.

When U is convex—that is, conv(i) = U{—a vector v € f(K) is a WPV if and only if v lies on the boundary of ¥/,
by Proposition 3.1. This is equivalent to that v lies on the boundary of cl(V) because the interior of I/ is V. O

A computational efficient description for the moment cone %,(K) is usually not available. However, when the
polynomials are SOS-convex, there exists a semidefinite representation for the set V in (3.4). Recall that a polyno-
mial p € R[x] is SOS-convex (see Helton and Nie [17]) if Vzp = Q(x)" Q(x) for some matrix polynomial Q(x).

Theorem 3.3. Assume & = () and K has nonempty interior. If all f; and —c; (j € ) are SOS-convex polynomials, then the
interior of U is equal to

<Cf’y> Z O(]GI),
v; > <f71y> (l € [m])/
Vl = (vll v ,Um) ’ (35)
Mdo [y] t 0/ ]/0 = 1r
y I RN;dO

where dy := max{[d/2],[deg(c;)/21(j € Z)}. Moreover, a vector v € f(K) is a weakly Pareto value if and only if it lies on the
boundary of cl(V1).
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Proof. Clearly, if v belongs to V as in (3.4) for some y € %,;(K), then it must belong to V. Conversely, if (v, y) satis-
fies (3.5), then let £ := (v,,,...,y.,) and § := [£],;. Under the SOS convexity assumption, the Jensen’s inequality (see
Lasserre [31]) implies that

<f11y> Zfz(f) = <fi/yA>r 0> <_Cj/y> = _C](-f) = <_eryA>'
So, we have ¥ € K and j € Z,(K); hence, v belongs to V;. The conclusion then follows from Theorem 3.2. O

Example 3.4. Consider the SOS-convex polynomials

3
A= —x)+—x), h= Zx? + X305 + X325 + 1523,
i=1

and the ball constraint 1 > ||x|[*. One can verify that

X1 — Xp 0 X1 — Xp 0
V21=12 Xp —X1 Xp— X3 Xo —X1 X2 —X3 ’

0 X3 — Xo 0 X3 — Xo

T
X1 X1 0 X1 x10

3
V22=4 X 0 X X 0 X2 +ZAiA,‘Tr
i=1
0 X3 X3 0 X3 X3

where each A; is the diagonal matrix with the diagonal vector V2x;(e + (V2 — 1)e;). Note that yop = 1. The inequal-
ities in the set V as in (3.5) are

1 — Y200 — Yo20 — Yo20 = 0,

1 /4 4
1> Z ( . ) (=1 (Yaiper +ier + Yaipesties)s
i=0 \ !

3
Uy > Zy@,. + Y220 + Y022 + Y202-
i=1

The moment matrix inequality M,[y] > 0 reads as

[Yooo Y100 Yoo Yoor Y200 Y110 Yior Yoo Yoir Yooz ]
Y100 Y200 Y110 Yio1 Y300 Y210 Y201 Y120 Y111 Yio2
Yoo Y110 Yoo Yo11 Y210 Yiz0 Y111 Yoso Yo21  Yoiz
Yoor Yior Your Yooz VY201 Yiun Yioe Yo21 Yoz Yoos
Y200 Y300 Y210 Y201 Y400 Y310 Y301 Y220 Y211 Y202
Y110 Y210 Y120 Y111 Y310 Y220 Y211 Yiso Y121 Y112
Yior Y201 Y111 Y102 Y301 Y211 Y202 Y121 Y112 Y103
Yo20 Y120 Yozo Yo21 Y220 Y130 Y121 Yoso Yo31 Yoo
Yoi1 Yinn Yo2zr Yoz Y211 Y121 Y11z Yos1 Yoz Yoi3

LYoo2 Y102 Yoi1z Yooz Y202 VYi12 Y103 Yoz Yo13 Yoos

We would like to remark that the Pareto front can be expressed as an image set of polynomial functions. Thus,
semidefinite relaxations can be used to approximate the Pareto front. We refer to Magron et al. [40] and Magron
et al. [41] for related work on this technique. In contrast, our work expresses the Pareto front in terms of the
boundary of sets cl/(V) in (3.4) or c/(V1) in (3.5). In comparison, the expression for the Pareto front via c/(V) or
cl(V1) in our work is exact, but more for theoretical interest, whereas the expression in Magron et al. [40] is
approximate, but more for computational interest.
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4. The Linear Scalarization
This section discusses how to solve linear scalarization problems, how to choose proper weights, and how to detect
nonexistence of proper weights. For a weight w := (wy, ..., w,), denote the weighted sum

fo(X) :=wi fi(x) + -+ + Wy fru ().
We consider the LSP

min f,(x) st xeK (4.1)

Recall that w # 0 is a proper weight if (4.1) is bounded below. Equivalently, w is a proper weight if and only if w is
the normal of a supporting hyperplane for the set ¢f as in (3.1).

4.1. Tight Relaxations for LSPs
The Moment-SOS hierarchy of semidefinite relaxations Lasserre [29] can be applied to solve (4.1). When the feasible
set K is unbounded, the Moment-SOS hierarchy may not converge. Here, we apply the tight relaxation method in
Nie [52] to solve (4.1).

The Karush-Kuhn-Tucker (KKT) conditions for (4.1) are

Vfw(u) = Z AiVei(u), A]' >0, A]'C]'(M) = 0(] €T),

i€€UT
where the A/s are Lagrange multipliers. For convenience, we write such that
EUT ={1,...,s}, c:=(c1(x),...,cs(x)),
Ceq = (Ci)icer  Cin = (C))jez-

The KKT conditions imply that

Vei(x) Ve(x) -+ Veg(x) Vfw (x )
c1(x) 0 0 A 0
0 o) 0 : = . . (42)
0 O b CS (x) \AH 0
C(x)

The polynomial tuple c is said to be nonsingular if the matrix C(x) as above has full column rank for all complex
x € C" (see Nie [52]). When c is nonsingular, there exists a matrix polynomial L(x) such that L(x)C(x) = L. Then,

\Y
A=L(x) [ fw(x)] )
0
Foreachi=1,...,s,let Ai(x) := (L(x), 1., Vfw(x)), be the ith entry polynomial. Denote the polynomial sets
@ :={citiee U {Aj(X)ci}ier Y {Vfw - Z /\i(x)cz}, (4.3)
ie€UT
V.= {Cj, /\](X)}]ez (44:)

(If p is a vector of polynomials, then {p} denotes the set of entries of p.) If its minimum value is achieved at a KKT
point, then (4.1) is equivalent to

min f,(x)
st plx)=0(ped), (4.5)
q(x) >0(q € W).
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Let ko := max{[deg(p)/2]: p € @ U W}. For an integer k > ko, the kth-order moment relaxation is

min {fu,y)

st LYyl =0(pe®),
L[yl =0(g € W), (46)
Mily] =0,
yo=1,yeRM:,

Fork =ko, ko +1,..., the Relaxation (4.6) is a semidefinite program. The following is the algorithm for solving (4.5).

Algorithm 4.1 Formulate the sets ®,\V as in (4.3) and (4.4). Let k := k.
Step 1. Solve the Relaxation (4.6) for a minimizer y* and let t := k.
Step 2. If y* satisfies the rank condition

rank M;[y*] = rank M;_i, [y"], 4.7)

then extract r := rankM,[y*| minimizers for (4.5).
Step 3. If (4.7) fails to hold and t <k, let t := t + 1 and then go to Step 2; otherwise, let k := k + 1 and go to Step 1.

The Rank Condition (4.7) is called flat truncation. It is a sufficient (and almost necessary) condition for checking
convergence of the Moment-SOS hierarchy (Nie [48]). Algorithm 4.1 can be implemented in GloptiPoly 3 (Henrion
et al. [19]). The following is the convergence property for the hierarchy of Relaxations (4.6), which follows from Nie
et al. [54, theorem 4.4].

Theorem 4.2. Assume c is nonsingular and the LSP (4.1) has a minimizer for the weight w. Then, for all k large enough,
the optimal value of the Relaxation (4.6) is equal to that of (4.1). Moreover, under either one of the following conditions

i. The set Ideal[ D] + Qmod[WV] is archimedean, or

ii. The real zero set of polynomials in @ is finite,
if each minimizer of (4.1) is an isolated critical point, then all minimizers of the Relaxation (4.6) must satisfy (4.7), when k
is big enough. Therefore, Algorithm 4.1 must terminate within finitely many loops.

Example 4.3. Consider the objectives

5
fi= E xf + x%xz + xlxﬁ — 3X1X2X3 + X3X4X5 + xg,
i=1
5
= E xl.2 — xlxg — xzxé + xsxi + x4x§,
i=1

and the constraint x? + -+ +x2 > 1. The feasible set is unbounded. A list of some weights and the corresponding
Pareto points are given in Table 1.!
It is worthy to note that

Ideal[cey] € Ideal[®@], Qmod|[c;,] € Qmod[W].

Hence, if Ideal[c;,, ] + Qmod|c;,] is archimedean, then the condition (i) in Theorem 4.2 holds. Therefore, if the archi-
medeanness is met for the constraints in (1.1), then the condition (i) must hold.

It is possible that f;,(x) is unbounded below on K for some weight w. For instance, f;,(x) is unbounded below
for w = (0,1) in Example 4.3. We refer to the appendix for how to detect unboundedness. Moreover, we remark
that not every Pareto point is the minimizer of a LSP, as shown in the following.

Table 1. Some Pareto points for Example 4.3.

Weight w Pareto point
(0.5,0.5) (—0.3371,0.4659, —0.7504, —0.2807, —0.1655)
(0.25,0.75) (—0.0986,0.3316, —0.6802, —0.5493, —0.3405)

(0.75,0.25) (—0.7711,0.9015, —1.1818, —0.5752, —0.5114)
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Example 4.4. Consider the MOP with
fiz -+ —x), fr=x2 23+ (x5 +x5),
and the constraints 0 < x1,x, < 1. The LSP is

{ min w1f1 (X) + ZUsz(x)

st. 0<xg,x <1

For wq > w,, the minimizer is (1,1,0,0). For wy < w,, the minimizer is (0,1,0,0). So, the LSP can only give two Pareto
points, by exploring all possibilities of weights. However, each (x1,1,0,0), with 0 < x; < 1, is a Pareto point.

4.2. Existence and Choices of Proper Weights

When K is compact, the LSP (4.1) is bounded below for all weights. When K is unbounded, (4.1) may be unbounded
below for some w and has no minimizers. To find a (weakly) Pareto point, we look for a nonzero weight w > 0 such
that (4.1) is bounded below—that is, w is a proper weight. The set of all proper weights is denoted as

W:={0+weR":f,(x) is bounded below on K}. (4.8)

Clearly, the proper weight set 1 is a convex cone.
Note that a nonzero weight w € W if and only if there exists a scalar € R such that f,,(x) — y € 2,4(K). So,

W={0%weR": f,(x) € 24(K) + R}. (4.9)

The cone Z4(K) can be approximated by the sum of the ideal Ideal[c,;] and the quadratic module Qmod|[c;,]. Thus,
we have the following.

Proposition 4.5. It holds that
{0 #w e RY : fuo(x) € Ideal[c,q] + Qmod][cin] + R} € WV. (4.10)

When Ideal[c.;| + Qmod|ci,] is archimedean (K is bounded for this case), the containment in (4.10) is an equality.
This is because if f,,(x) is bounded below on K, then f,(x) — ) € Ideal[c.;] + Qmod|c;,] for y small enough. When K is
unbounded, the sum Ideal[c.,] + Qmod|c;,] cannot be archimedean, and the containment in (4.10) is typically not an
equality. For instance, for K =R, f; = x2x3(x3 +x3), fo = x§ — 3x3x3x2, we have (1,1) € W, but f; ;) ¢ Z[x] + R. For
this case, Ideal[c.;] = {0}, Qmod|c;,] = L[x], and f(1 1) is the Motzkin polynomial that is nonnegative, but not SOS.

Among all proper weights w > 0 normalized as e’w = 1, the smallest possibility of the minimum value of (4.1) is
equal to the smallest one of f, ..., f;, where f; is the minimum value of fi(x) on K. Some of f; may be —oo. For the
choice w =¢;, the minimum value of (4.1) is f;. Beyond them, people are also interested in w such that the minimum
value of (4.1) is maximum. We discuss how to find such w in the following.

Assume d is the maximum degree of f1, ..., f,. For the minimum value of f,,(x) on K to be maximum, we consider
the optimization

max Y
st 1—eTw=0,w; >0,...,w, =0,
" 4.11)
> wifi—y € 24K).
i=1
The dual cone of 2,4(K) is cI(Z#4(K)). (When K is compact, the moment cone %,(K) is closed.)
The dual optimization of (4.11) is
min u
st u—<{fiyy=0@G=1,...,m), 4.12)
Yo =1, y € cl(#a(K)).
The kth-order SOS relaxation for (4.11) is
max Y
st wi+ - wy =1, w =>0,...,w, >0,
1 m 1 m (4.13)

Zw,ﬁ — v € Ideal[ceqlp + Qmod([ci ]y

i=1
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The dual optimization of (4.13) is the kth-order moment relaxation for (4.12):
min u
st u—{fyy=03G=1,...,m),
LPyl=0(i€g),
LYyl =0( € D),
Mily] =0,
yo=1,yeR%,

(4.14)

As k increases, the above gives a hierarchy of Moment-SOS relaxations for solving (4.11). When the sum Ideal[c,;] +
Qmod|[c;,] is archimedean, the convergence of the hierarchy was shown in Lasserre [30] and Nie [50].

Example 4.6. Consider the objectives

fi = (12 + 20+ 23)° + (0% + x5 + x4)” — 3120023,

4
fo= Zx? — (1 — x2)(x2 — x3)(x3 — x4) (x4 — X1),

i=1

4
f3=3)> ) +x3(x> — x3%) + 23 (x5" — x4%) + 3 (xs” — x:17),
i=1

and the constraints x1x, > 1,x2x3 > 1,x3x4 > 1,x1 2 0. Each f; is unbounded below on the feasible set K. The optimi-
zation (4.11) can be solved by the Moment-SOS hierarchy of (4.13)—(4.14). The computed optimal weight w* and
Pareto point x* are, respectively,

w* =(0.5769,0.2229,0.2003), x* = (1.0105,0.9897,1.0105,0.9897).

The maximum of the minimum value of f,,(x) on Kis y* = 11.9435.

4.3. Nonexistence of Proper Weights
When the feasible set K is unbounded, there may not exist a weight w > 0 such that f,,(x) is bounded below on K.
We discuss how to detect nonexistence of proper weights.

Recall that 4 is the maximum degree of f; and f;, (%) := x8£,,(x/x)- When K is closed at co, the Optimization (4.11)
is equivalent to

max y
S.t. wy+ - wy =1, (wy,...,wy) =0, (4.15)
fo —yxde 24K).
The dual optimization of (4.15) is
min u
st pw—(xAfilx/x0), 7)) =03G=1,...,m), (4.16)
4,7y =1, 7 € 24K).

When (4.16) is unbounded below, the Problem (4.15) must be infeasible, and, hence, there is no proper weight. This

is the case if (4.16) has a decreasing ray Aj:
—1> (i fi(x/x0), A7) (i=1,...,m),
B (4.17)
(xd, A7) =0, Ajj € Z4(K).

Let fi(d) denote the homogeneous part of degree d for f—that is,

£ = 3 i(x/%0) | xp=0-
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The equality (x, A7) =0 implies that every representing measure for Aj must be supported in the hyperplane
X0 = 0. Therefore, (4.17) can be reduced to

1> (D Ay (i=1,...,m), AyeR(K"), (4.18)

where K° is the set, as in (A.3). We remark that if deg(f;) < d, then fi(d) =0 and, hence, i(d), Ay) = 0, which implies
that (4.17) is infeasible. Therefore, the decreasing ray Aj as in (4.17) exists only if all f; have the same degree. The fol-
lowing is the nonexistence theorem of proper weights. Like before, the closeness of K at infinity can be weakened.

Theorem 4.7. Assume (4.18) has a feasible point Ay = Mlzilg+ - +Adlzely, with A, ., A, >0and zq,...,z, € K°. If
each (0,z;) lies on cl(K N {xo > 0}), then the LSP (4.1) is unbounded below for all nonzero w > 0 and, hence, W = 0.

Proof. For each w > 0 with e’w = 1, it holds that
1> <Zwifi(d),Ay> = (fu, AY), Ay € R4(K°).
=1

Because Ay = Aq[z1];+ -+ +A[z],, there exists at least one i such that
~1/r 2 (fw, Ailzi1a)-

By Theorem A.1(ii), f,,(x) is unbounded below on K because (0,z;) lies in the closure of K N {x; >0} and A; > 0. A
nonzero weight w > 0 is proper if and only if w/(e"w) is proper. Hence, no proper weights exist, and W=0. O

The Moment System (4.18) is in the form (A.15). Algorithm A.4 can be applied to get a feasible point for (4.18). This
can be done by solving a hierarchy of moment relaxations like (A.17). The convergence is shown in Theorem A.5.

Example 4.8. Consider the objectives

5
_ 3 4, .4
fi=— X7 | — Xy + Xy — X1XX3 — X3X4X5,
=1

3
5 4
fr= (Zm) - E:xj1 + X1X2X3X4 + X2X3X4X5,
=1 =1
f3= x‘f — xé + x§ + xi — X1X2X3 — X3X4X5,

2 2
fi = —(12)” + (1223)” + (x3%4)” + (ax5)°,

and the constraints x? > 1,...,x% > 1. By Algorithm A .4, we get that Ay = A[u], is feasible for (4.18) with
u=(—0.7014, —0.7049,0.0533, — 0.0428,0.0803), A =4.1146.

The set C as in (A.12) is empty. By Lemma A.2, the point (0, u) lies on the closure of K N {xo > 0}. Therefore, the
LSP (4.1) is unbounded below for all nonzero weights w > 0 by Theorem 4.7.

We remark that when no proper weights exist, the System (4.18) is still possibly infeasible. For instance, this is
the case for

K= Rl, f1 = X% + X1, fz = —X%.
There is no nonzero (wj, w,) > 0 such that f,,(x) is bounded below on R!. However, there is no Ay such that
—1>(xj,Ay), —1>(-x3},Ay), Aye#({x]=1}).
Moreover, when no proper weights exist, Pareto points may still exist. For instance, this is the case for

min  (x1,x2)
st x1+x>0.

For every t, (3, —t) is a Pareto point, but there is no nonzero w = (wy,w>) > 0 such that w;x; +w2x, is bounded
below on x; + x5 > 0.
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5. The Chebyshev Scalarization
The Chebyshev scalarization problem is

min max - wi(fi(x) — ), (5.1)
for a nonzero weight w := (wy, ..., w,) > 0. In the above, each f;" is the minimum value of f; on K. In this section, we
assume all f/ > —oo. If one of them is —co, we refer to Subsection 6.2 for how to get PPs and WPPs.

Each minimizer of (5.1) is a weakly Pareto point. Conversely, every weakly Pareto point is a minimizer of the
CSP (5.1) for some weight, provided each f; > —co. This is because if x* is a weakly Pareto point, then there exist
weights w; > 0 such that all w;(f;(x*) — f;) are equal, because f;(x*) — f; > 0 for each i. Then, x* is the minimizer for
that CSP. Observe that f; equals the minimum value of the LSP (4.1) for the weight w=e¢;. Algorithm 4.1 can be
applied to compute f;'.

After all f; are obtained, one can solve the CSP (5.1) for a weakly Pareto point. With the new variable x,,.1, the
CSP (5.1) is equivalent to

min  Xp41
st Xy —wi(fi(x) —f7)=0(=1,...,m),
ci(x)=0(i€f),
ci(x)20(j € 2).

(.2)

To get convergent Moment-SOS relaxations, we typically need archimedeanness for constraining polynomials. The
feasible set of (5.2) is unbounded. To fix this issue, one can select a feasible point £ € K and let

Bo:= max (wilfi(&) = £7))-

Then, (5.2) is equivalent to

min - Xp41
st xpp —wi(fi(x) —f)=0@G=1,...,m),
Bo —x411 20, x441 20, (5.3)

Ci(x) =0 (l € (‘:),
C]'(.'X) > 0(] € I)

For convenience, denote the set
G:= {Cj}jez U {241, Bo = Xua1} U {xws1 — wilfi = YL (54)
The kth-order moment relaxation for (5.3) is

min <xn+1r]/)
st. LPyl=0(¢€9),

Lyl =0 (p €Q), (5.5)
Milyl =
v=1Lye RN&H
Let dy be the degree
do := max{[d/2],[deg(c;)/2](i € EU I)}. (5.6)

Suppose y* is a minimizer of (5.5). If there exists t € [dy, k] such that
rank M[y*] = rank M;_4 [y"], (5.7)

then we can get rank M;[y*] minimizers for (5.1) (see Henrion and Lasserre [18] and Nie [48]). The following is
about the convergence of the hierarchy of (5.5).

Theorem 5.1. Assume Ideal[c,q] + Qmod[cyy] is archimedean. Suppose y® is a minimizer of the Moment Relaxation (5.5) for
the order k. If the CSP (5.1) has finitely many minimizers, then for t big enough, every accumulation point of {y® |} —4, Mmust
satisfy (5.7).
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Table 2. Some Pareto points for Example 5.2.

Weight w Pareto point

(1,1,1) (0.000,0.000,0.000,0.4503)
1,22 (—0.0024, —0.0979, — 0.0635, — 0.5248)
1,2,3) (—0.0029, —0.1228, —0.0700, — 0.5648)

Proof. Because Ideal[c.;] + Qmod|c;;| is archimedean, there exists a scalar N such that N —xTxEIdeal[cgq] +
Qmod|[c;,]. Note that

2

B _ 2
(Bo — Xu+1) +2(B, _xn+1)%~
0

> 2 2
By — xp,1 = (Bo — Xng1)” + 221 - B
0

Therefore, we get that
N —xTx+ B% — xﬁﬂ € Ideal[c.;] + Qmod[G].

This means that Ideal[c,;] + Qmod[G] is archimedean. When the CSP (5.1) has finitely many minimizers, the con-
clusion is implied by theorem 3.3 of Nie [48]. O

When Ideal[ce;] + Qmod|[ci,] is not archimedean (this is the case if K is unbounded), the homogenization
method in Subsection 4.2 can be similarly applied. Moreover, the method in Mai et al. [42] can also be applied
to solve (5.1).

Example 5.2. Consider the objectives

4

A= lez — (x1x2 + x3x4)(X1X3 + X2X4),
i=1

4

f2 = E x? + X1X2X3 + X2X3X4 + X1X2X3Xy,
i=1

4
fi=> W+ -G+ D0 -G+ 1)G - +1),
i=1
and the constraint x1x, < 1,xx3 < 1,x3x4 < 1,x1x4 < 1. The minimum values f7,f;,f5 are 0.0000, —0.0710,0.6029,
respectively. A list of some weights and corresponding weakly Pareto points are in Table 2. Indeed, they are all
Pareto points, confirmed by solving the Optimization (6.1).

6. Existence and Nonexistence of PPs and WPPs
This section discusses how to check whether a given point is a (weakly) Pareto point and how to detect existence or
nonexistence of (weakly) Pareto points.

6.1. Detection of PPs and WPPs
For a given point x* € K, how can we detect whether it is a Pareto point or not? To this end, consider the optimization

min  fo(x) :=f1(x) + -+ +fu(x)
st filx)—fi(x)=20(@G=1,...,m), (6.1)
x€K.

This is a kind of lexicographic method (see Marler and Arora [43]). Let z* be a minimizer of (6.1), if it exists. Then, x*
is a Pareto point if and only if the minimum value of (6.1) is equal to f.(x"). Moreover, if x* is not a Pareto point, the
minimizer z* must be a Pareto point because all the weights are positive. A Pareto point may be obtained by solving
(6.1) for given x* € K, provided (6.1) has a minimizer.

Let F be the feasible set of (6.1) and

Fo= {Cj}jeI U {fi(x") — fit))HLs- (6.2)
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For a degree k > d /2, the kth-order moment relaxation for (6.1) is

min (f.,y)
st. LOyl=0(i€®),
LPlyl=0(q € F), (63)
Mily] =0,
yo=1,yeR%,

Recall that dj is the degree as in (5.6). Suppose y* is a minimizer of (6.3). If there exists ¢ € [dy, k] such that

rank M;[y*] = rank M;_g4 [y'], (6.4)
then we can get r := rank M,;[y*] minimizers for (6.1). Recall that ¢, is the tuple of equality constraining polyno-
mials. The following result follows from theorem 3.3 of Nie [48].

Theorem 6.1. Assume Ideal[c,] + Qmod|F] is archimedean. Suppose y¥ is a minimizer of the Relaxation (6.3) for the
order k. If (6.1) has only finitely many minimizers, then for t big enough, every accumulation point of {y® |y }io, must sat-

isfy (6.4).
When Ideal[c.q] + Qmod[F] is not archimedean, the hierarchy of relaxations (6.3) may not converge. For such a
case, we refer to the homogenization method in Subsection 4.2 or the method in Mai et al. [42].

Example 6.2. (i) Consider the objectives
2 2 2 2
fi =30 =2+ (1 — 02)* + (2 — x3)" + (x5 — x4)°,
fo= —x% — x% — x§ — xi + X1Xp + XoX3 + X3Xy4,

and the constraint x > 0. We first solve the CSP (5.1) with w1 = w, = 1 and get the weakly Pareto point x* = (0,0,0,0).
It is not a Pareto point. By solving (6.1), we get the Pareto point (2.000,2.001,2.001,2.001).
(ii) Consider the objectives

) 2 _ 3 2
fi=x] —xix2 — X2, fo=2x —x1%, — X1,

and the constraint x;x, < 1. The LSP (4.1) is unbounded below for all weights w;, which is confirmed by a feasible
point for (4.18). But we are still able to find a Pareto point by solving (6.1) for some given x*. For instance, for
x* = (-1, —0.5), solving (6.1) gives the Pareto point (1.0000,1.0000).

We can similarly detect whether a given point x* € K is a weakly Pareto point or not. Consider the optimization

min  max (f(x) — fi(x"))
1<i<m
st filx)—fi(x)20(@{=1,...,m), 65)
ci(x) =0(i€&),
ci(x)>0(j € ).
Let z* be a minimizer of (6.5), if it exists. Then, x* is a weakly Pareto point if and only if the optimal value of (6.5)

is equal to zero. Moreover, if x* is not a weakly Pareto point, then one can show that z* is a weakly Pareto point.
By introducing the new variable x,,;, the Optimization (6.5) is equivalent to

min  X;4q
st Xy —filx) +fi(x) =00 =1,...,m),
filx) —fi(x)=0(=1,...,m), (6.6)
ci(x)=0(€f),
ci(x) 20( €1).

The optimal value of (6.6) is always less than or equal to zero. A similar hierarchy of moment relaxations like
(5.5) can be applied to solve (6.6), and a similar convergence result like Theorem 5.1 holds. When the feasible set
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of (6.5) is unbounded, the Moment-SOS hierarchy may not converge. For such a case, we refer to the homogeni-
zation method in Subsection 4.2 or the method in Mai et al. [42].

6.2. Existence of PPs and WPPs
When K is unbounded, we discuss how to detect existence of PPs and WPPs. Consider the min-max optimization

min max fi(x). (6.7)

xeK 1<i<m
The following is the existence result. See Subsection 3.1 for -minimal points.

Theorem 6.3. The Min-Max Optimization (6.7) has the following properties:

i. If (6.7) is unbounded below, then there is no weakly Pareto point, and, hence, there is no Pareto point. If (6.7) is bounded
below, then every minimizer of (6.7) (if it exists) is a weakly Pareto point.

ii. Let S be the set of minimizers of (6.7). For each x* € S, if f(x*) is a t-minimal point of the image f(S) for a permutation 1t
of (1,...,m), then x* is a Pareto point. In particular, if S is compact, then there exists a Pareto point.

Proof. (i) If (6.7) is unbounded below, then for every x € K, there exists z € K such that

2%, fle) < min, f).
This implies f(z) < f(x); hence, there is no weakly Pareto point.

Suppose (6.7) is bounded below and it has a minimizer, say, x*. Then, x* must be a weakly Pareto point. If, oth-
erwise, there is z € K such that f(z) < f(x*), then

max fiz) < max fi(x"),

which contradicts that x* is a minimizer.
(ii) Suppose f(x*) is a m-minimal point of f(S). Let z € K be a point such that f(z) < f(x*). Because x* is a mini-
mizer of (6.7), one can see that
max fit) < max fi(2) < max, i)
This implies that z is also a minimizer of (6.7), so z € S. Because f(x") is m-minimal among £(S), f(x*) < f(z), so
f(x*) =f(z), and, hence, x* is a Pareto point. When S is compact, the set S must have a m-minimal point, for every
permutation 7 of (1, ...,m), and, hence, (1.1) has a Pareto point, by Proposition 3.1. O

Each optimizer x* of (6.7) is a weakly Pareto point. One can solve (6.1) to check whether x* is a Pareto point or not.
If it is not, each minimizer of (6.1) is a Pareto point. We remark that (6.7) can be reformulated as polynomial optimi-
zation. By introducing the new variable x,,,1, the Optimization (6.7) is equivalent to

min X4
st Xy 2 fi(x) (i € [m]), (6.8)
xeK.

The Moment-SOS hierarchy can be applied to solve it. When the set K is unbounded, the feasible set of (6.8) is also
unbounded. The Moment-SOS hierarchy may not converge. For such a case, we refer to the homogenization
method in Subsection 4.2 or the method in Mai et al. [42].

Once a minimizer x* for (6.8) is obtained, we can solve (6.1) to detect whether it is a Pareto point or not. If it is not,
we may get a Pareto point by solving (6.1).

Example 6.4. Consider the MOP with objectives
_3,.3 .3,.22  _ 3,.3 .3 20
fi =] +x — x5 +x5x5, fo = x5 + x5 — X5+ XX,
_3,.3 .3,.22 ¢ _ .3 ,.3 .3, .20
fa=x3+x; —x] +x9x5, fa = X3 + a7 — x5 + x50,

and with the exterior constraint x5 + x3 + x5 + x; > 1. All f1,f>,f3,f+ are unbounded below on K. The CSP (5.1) does
not exist because each f; = —co. However, solving (6.8) gives the Pareto point (0.6300,0.6300,0.6300, 0.6300).
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6.3. Nonexistence of WPPs
We discuss how to detect nonexistence of weakly Pareto points, when K is unbounded. Recall that d; := deg(f;).
Observe that (6.7) is unbounded below if and only if the following optimization is unbounded below:

{ min X1 69)
st —(—xp1)" —fi(x) 2 0(i € [m]), x € K. ‘
Let K; be the feasible set of (6.9), and let its homogenization be (note ¥ := (x, x)):
~(=x)" —fi(®) 2 0(i € [m]),
. G(x)=0@€¢),
Ky == ¢ (x0,%,X041) : (6.10)

G >0(eT),
IR + [l = 1, x0 2 0

When K; is closed at oo, x,,41 > on K if and only if x,.1 — yx9 >0 on Ki—that is, x,41 — YXo € P1 (K4). So, we con-
sider the linear conic optimization
max y S.t. Xpp1 —YX0 € 21(K7). (6.11)

The Optimization (6.7) is unbounded below if and only if (6.11) is infeasible, when K; is closed at co. The dual opti-
mization of (6.11) is

min (X1, 7) s.t (x0,7) =1, 7 € Z1(Ky). (6.12)
Note that (6.12) is feasible if K is nonempty. So, it is unbounded below if there is a decreasing ray Aj:
(Xns1,AY) = =1, (x0,AY) =0, Ay € #1(Ky). (6.13)
Because xy >0 on K, the equality (xo, Aj) =0 implies that every representing measure for Ay is supported in
xg = 0. Therefore, (6.13) is equivalent to
(onst, A7) = —1, A € R1(KS), (6.14)
where K3 is the linear section xy = 0 of Ki:
~(=2)" = () 2 0 (1 € [m]),
clomx)=0(i € €),

K3 =< (x,x141) C;’om(x) >0(eT), . (6.15)

2
[xll” + x50y =1
The following is the theorem for nonexistence of WPPs.

Theorem 6.5. Suppose Ajj = Av, with A > 0 and v € K3, is a feasible point for (6.14). If the point (0,v) € cl(Ky N {xo > 0}),
then (6.9) and (6.7) must be unbounded below, and, hence, there are no weakly Pareto points.

Proof. The unboundedness of (6.9) is implied by the item (ii) of Theorem A.1, for the case that gh‘”” = x,41 and K°
is replaced by K3. Note that (6.7) is unbounded below if and only if (6.9) is unbounded below. So, (6.7) is also
unbounded below. By Theorem 6.3, there are no weakly Pareto points. O

The tms Ay = Av satisfying (6.14) can be obtained by Algorithm A .4 with a minor variation. The only difference is
to choose a generic R € int(Z[x, x,41],4 ) and then solve the hierarchy of moment relaxations:

min (R, z)
st (xp41,2) = —1,
(k) B
Lll(x,x,,+1)||2_1[z] =0,
® 11—
Lawlz]=0(€€), .
LS{; [z]=0( eT),
i
Li(f) [z] =0(i € [m]),
M[z] =0, ze RN
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In the above, each J; := —(—xg)" — flom(x). The convergence property for the hierarchy of (6.16) is similar to that for
Theorem A.5.

Example 6.6. Consider the MOP with objectives
f1 = (x1x2 + x3%4) (14 + X2%x3) + x% + x% + x% + xﬁ,
fo= x?x% + x%x% + xgxﬁ + xix%,
f3= x‘l1 - x‘é + xgl — xi + X1X2X4 + X1X3X4,
fo= (1 — x2)(x3 — x4)” + (11 — x3)(02 — x4)°

+ (x1 — X4)(Xz — X3)2 + X1X2 + X2X3 + X3X4,

and with the constraints x1x2x3 > 1, x2x3x4 > 1. Solving the Moment Relaxation (6.16) gives the feasible point Ay =
3.3597[v]; with

v = (v1,02,03,04,05) = (—0.2761,0.8737,0.0000, —0.2680, —0.2976).

The set K; is not closed at infinity, but (0,v) still belongs to c/(K; N {xo > 0}). This is implied by Lemma A.2
because Ax = (0,0, —1,0,0)" satisfies the Condition (A.13). By Theorem 6.5, there is no weakly Pareto point.

6.4. Nonexistence of PPs
When there are no weakly Pareto points, there must exist no Pareto points. So, Theorem 6.5 is also applicable to
detect nonexistence of Pareto points. However, a Pareto point may not exist while weakly Pareto points exist. This
section discusses how to detect nonexistence of Pareto points for this case.

We consider the Optimization (6.1) with x* € K. A Pareto point exists if and only if (6.1) is bounded below and has
a minimizer for some x* € K. The “if” implication is clear. When x* itself is a Pareto point, then x* must be a mini-
mizer for (6.1). This explains the “only if” implication. Let K(x*) be the feasible set of (6.1) determined by x*, and let
K(x*) be the homogenization of K(x*) similarly as in (A.2). Suppose K(x*) is closed at co. Then, (6.1) is bounded
below if and only if fg (%) — yxi € 24(K(x")) for some y. We consider the linear conic optimization

max ) s.k ﬁ,(a?) - yxg € 24(K(x)). (6.17)

Pareto points do not exist if (6.1) is unbounded below for all x* € K. This is equivalent to that (6.17) is infeasible for
all x* € K. The dual optimization of (6.17) is

min (f,,7) st (7)) =1, 7€ R(K(x)). (6.18)

By weak duality, (6.17) is infeasible if (6.18) is unbounded below. The Problem (6.18) is feasible for all x* € K. There-
fore, (6.18) is unbounded below if there is a decreasing ray Ay:

(o, A7) = —1,(x, AY =0, Ay € Ry(K(x")). (6.19)

Because x > 0 on K(x*), (x4, Ay = 0 if and only if every representing measure for Aj is supported in the hyperplane
xo = 0. Hence, the existence of Ay satisfying (6.19) is equivalent to the existence of Aj satisfying

(from, Ayy=—1, A € 24(Kp), (6.20)
where f°"(x) := ﬁ,(O, x) and Kj is the section xp = 0 of K(x*):
cj"(x) =0(j € &),
cJ"(x) 20(j € ),

—flem(x) > 0(i € [m]),

xTx=1.

K= (6.21)

It is important to observe that Kj and (6.20) do not depend on x*. If there exists Ay satisfying (6.20), then (6.1) is
unbounded below for all x* € K, and, hence, there are no Pareto points. This implies the following theorem.
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Theorem 6.7. Suppose K(x*) is closed at infinity for all x* € K. If there is Ay satisfying (6.20), then (6.1) is unbounded
below for all x* € K, and, hence, Pareto points do not exist.

Theorem 6.7 only shows nonexistence of Pareto points, but it does not imply nonexistence of weakly Pareto
points. For instance, consider the MOP

{min (xl,xz)

s.t. x1>0.

The tms Aj := [(0, —1)], satisfies (6.20), so there are no Pareto points. But each (0, x») is a weakly Pareto point. The
existence of Aj satisfying (6.20) can be checked by applying Algorithm A 4 similarly, with the polynomial g; := f/o
and the set Kj,. The properties are summarized in Theorems A.1 and A.5.

Example 6.8. Consider the objectives
_ A 4 2 2 2
fi =27 + x5+ (x1202)” + (x2x3)" + (x3x4)” + X1002374,
for=x]+25+x3 +x] — 225 — 3% — X34,

and the constraint xx,x3x4 > 0. Because f1(0, £,0,0) = 0 is the minimum value, the point (0,¢,0,0) is a weakly Pareto
point for all t € R. Because all the polynomials are homogeneous, K(x*) is closed at infinity for all x* € K. By Algo-
rithm A4, we get Ay =1.0023[u], satisfying (6.20), for u = (0.0000, —0.9994,0.0000,0.0339). Hence, there is no
Pareto point.

7. Conclusions and Discussions

This paper studies multi-objective optimization given by polynomials. We characterize the convex geometry for
(weakly) Pareto values and give convex representations for them. For LSPs, we show how to use tight relaxations
to solve them, how to find proper weights, and how to detect nonexistence of proper weights. For CSPs, we show
how to solve them by moment relaxations. Furthermore, we show how to check whether a given point is a
(weakly) Pareto point and how to detect existence or nonexistence of (weakly) Pareto points. To detect nonexis-
tence of proper weights and (weakly) Pareto points, we also show how to detect unboundedness of polynomial
optimization.

There are some open questions for studying these topics. To detect nonexistence of (weakly) Pareto points, or to
detect nonexistence of proper weights, we need to check unboundedness of polynomial optimization. This is dis-
cussed in the appendix. A feasible point for the System (A.8) is only a sufficient condition for unboundedness of the
Optimization (A.1), but it may not be necessary.

Question 7.1. When (A.8) is infeasible, what is a computationally convenient certificate for unboundedness of (A.1)?

Another important question is to detect nonexistence of proper weights. This is discussed in Subsection 4.3. We
have seen that (4.18) is sufficient for the proper weight set W = (), but it may not be necessary.

Question 7.2. When (4.18) does not have a feasible point, how can we detect nonexistence of proper weights?

In Subsections 6.3 and 6.4, we discussed how to detect nonexistence of (weakly) Pareto points. Under certain con-
ditions, we have shown that (6.14) implies nonexistence of weakly Pareto points and (6.20) implies nonexistence of
Pareto points. However, they may not be necessary for nonexistence.

Question 7.3. Beyond (6.14) and (6.20), what are computationally convenient certificates for nonexistence of (weakly)
Pareto points?

The above questions are mostly open, to the best of the authors” knowledge. They are interesting future work.

Appendix. Unboundedness in Polynomial Optimization
This section discusses how to detect unboundedness of a polynomial optimization problem. This question is very important for
detecting nonexistence of proper weights and (weakly) Pareto points in Sections 4 and 6.

For a polynomial g(x) of degree d, consider the optimization

inf g(x) s.t. xek (A1)

The feasible set K is the same as for (1.1). When K is unbounded, (A.1) may be unbounded below—that is, there exists a sequence
{uy} € K such that g(i) — —oo. We discuss how to detect unboundedness of (A.1). Equivalently, the Problem (A.1) is unbounded
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below if and only if
inf{g(x)|x € K} = —c0.
The homogenization of the set K is (¥ := (xo, x) is the homogenizing variable)
¢i(x)=0(@€f),
K:i={x|¢®=0(G€I), 3, (A.2)
¥x=1,%20
where ¢;(X) = xgeg(c")c,-(x /xo) is the homogenization of ¢;(x). The ball constraint %#Tx =1 is added to make the set K compact. The
constraint xy > 0 ensures that (¥) — ngeg(g) >0 on K implies that g(x) — >0 on K. The set K is said to be closed at co (see Nie
[47)) if
K=c({x €eK: x> 0}).
The closeness of K at o is a genericity condition, as shown in Guo et al. [16]. When K is closed at co, the polynomial g(x) — is

nonnegative on K if and only if its homogenization g (X) — nyEg(g) is nonnegative on K.
The intersection of K and xg = 0 is

comx)=0(i€8),
K :={xeR" | (x)20(G €T), o, (A3)
Mx=1,

where each /" (x) = &;(0, x).

A.1. A Certificate for Unboundedness
The Optimization (A.1) is bounded below if and only if ¢ has a lower bound y on K—that is, § — y € 24(K). So, we consider the
optimization

{ max Yy (A4)

s.t. g—ye@d(K)
To check infeasibility of (A.4), we use the homogenization trick in Nie [47]. When K is closed at co, a polynomial p > 0 on Kif and

only if its horyogenization p 20 on K (see Huang et al. [20] and Nie [47]). So, the membership g —y € Z,;(K) is equivalent to
3- yxg € 2,(K), and, hence, (A.4) is the same as

max y A5
{ st §—yxde24K). (A.5)
The dual optimization of (A.5) is
min  (g,y)
- A.
{ st y) =1,y € #4(K). (A6)

If (A.6) is unbounded below, then (A.5) must be infeasible, which implies that (A.4) is infeasible and (A.1) is unbounded below,
when Kis closed at co.
When K # 0, the Linear Conic Optimization (A.6) has a feasible point. It is unbounded below if there is a decreasing ray Ay:

@, Ay)=—1,(x,Ayy =0, Ay e 24(K). (A7)
If v is a representing measure for Ay and is supported in K, then

0=(x,Ay) = /xgdv,

implies that supp(v) € K N {x = 0}. Thus, (A.7) is equivalent to

"2y =-1, ze (K, (A8)
where K° is the set as in (A.3). Let d; be the degree
di :=[d/2]. (A.9)
To check whether (A.8) is feasible or not, we select a generic R € int(X[x],,, ) and consider the linear moment optimization
min (R,z)
; (A.10)
st (g7,2) = —1, 2 € Iy (K°).

The following shows how to detect unboundedness of (A.1).
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Theorem A.1. Let K, K° be the sets as in (A.2)—(A.3).
i. Suppose (A.8) is feasible. If R € int(X[x]yy, ) is generic, then (A.10) has a unique optimizer z* and z* = Aulyy,, with u € K® and A > 0.
ii. Suppose z := Alu],, withu € K° and A > 0, is a feasible point for (A.8). If the point (0,u) € c/(K N {xo > 0}), then (A.1) is unbounded
below.

Proof. (i) Because R is generic in the interior int(X[x],,, ), there exists € > 0 such that
R —él[[x], | € Z[x]a,
Hence, for all z € #,4,(K?), it holds that
(R,2) 2 e(|l[x]4,II?,2) > € - trace(My, [2]).

Because (A.8) is feasible, the Optimization (A.10) is also feasible—say, z”) is a feasible point. Then, (A.10) is equivalent to
min (R,z)
1
s.t. trace(My [z]) < - (R,z,

<fhomlz> — 71,
2 € By, (K°).

(A.11)

The feasible set of (A.11) is compact, so it has an optimizer—say, z*. When R is generic, the optimizer z* must be unique,
and it is an extreme point of the feasible set of (A.10). Because (A.10) has only a single equality constraint, the optimizer z*
must lie in an extreme ray of the cone %4, (K°). This means that z* = A[u],,, for a point u € K° and a scalar A > 0 (note z* is
nonzero).

(ii) Because (0, u) € cI(K N {xo > 0}), there is a sequence

{(te u) by K N {xo >0},
such that limy_, ., (t, ux) = (0, 1). Note that each t, > 0 and
—-1= (gh””’,/\[u]d) = /\gh””’(u) = klim AG (f, u).

Thus, for k big enough, AZ(t, ux) < —1/2and

Ag (e, 1) = A~ (8) g (/1) < —1/2.

This implies that g(uy/t) < —1/ (2A(t)") for all k big enough, so g(uy/ty) = —co as k — oo. Because each uy/ty €K, g is
unbounded below on K. [

In computational practice, the generic polynomial R € int(X[x],4 ) can be chosen as [x];lATA[x]dl, for some randomly gener-
ated square matrix A.

We remark that the closeness of K at oo is a generic condition, as shown in Guo et al. [16]. In Theorem A.1(ii), we use the
relaxed condition (0, 1) € cl(K N {xo > 0}) instead of the closeness at co. For the relaxed condition, we give a sufficient condition
in Lemma A.2 to check whether it is satisfied.

Lemma A.2. Let K, K° be the sets as in (A.2) and (A.3) and z := A[u],, with u € K° and A > 0, be a feasible point for (A.8). If there exist
Ax € R" and &g > 0 such that

M +tAx) >0 Ve (0,00), VieC:={ie EUT|"(u) =0}, (A12)
then (0,u) € cl(K N {xg > 0}).
Proof. The constraint polynomial &(xo, x) can be rewritten as
&i(x0, %) = " (x) + xohi(x0, %),

for some polynomial /;(xo, x). When i € C, it satisfies the Condition (A.12). When i ¢ C, it holds that /"' (u) > 0. Therefore, there
are M>0and 0 < 6 < g such that

c?”’"(u +tAx)>0 and hi(xg,x) > —M,

forall 6> xg,t>0andi € & U L. Let {};, be a sequence such that limy_,«, t = 0and 6 > t; > 0 for all k. For each k, we define

S (com(u+ tkAx)} )
Sei= mm(_,{fi >0,
2k M ie€uT
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Foralli € £ UZ,itholds that
Ci(sk,u+tpAx) = C?"’"(u + 1 AX) + sihi(sg, 1 + FAx)

chom (y + tAx)

> oMy + tAx) +
> ¢/ (u + tAx) M

(=M)

> =" (1 + b Ax)

o NIm

\%

For convenience, we denote
il = (sg, u + BAX) /||(sp, u + B AX)]|.
Each ¢; is homogeneous, so &;(iix) > 0 by above inequalities. It implies ii; € K. The construction of sequences ensures

lim s = klim t=0.

k—oc0

Thus, limy_,e @i = (0,1). So, it shows that (0,u) € cI(K N {xy > 0}). O

The Sufficient Condition (A.12) in Lemma A.2 requires that Ax is an increasing direction for ¢/*"(x) at x=u for i € C. It can be
checked numerically by gradients and Hessian matrices. We denote Cy = {i € C|Vc!"(u) = 0} and C; = {i € C| V" (1) # 0}. The
direction Ax satisfies the condition in (A.12) if it satisfies

AXTV2om () Ax >0 VieCo,
T (A.13)
velor(u) Ax >0 Vie(;.
It can be formulated as the following quadratic optimization problem
max 4
Ax,a
st AXTVE"(u)Ax >a  Vie(, (A14)

ch-"””(u)TAx >a Vie(,

lAx|? < 1.
There exists a direction Ax satisfying (A.13) if and only if the Problem (A.14) has the maximum a* > 0. The Problem (A.14) can be
solved as a polynomial optimization problem.
Example A.3. Consider the following optimization problem

min  g(x) := x2 +x3 + x5 + x1x2%3
{ st c(x) i= a2x3(x? + x3) + 2§ — 3xqxsx3 — 1= 0.

Note that gh"’” = x1X,x3 and a feasible point of (A.8) is the tms 3\/§[u]6, foru=(1,1, -1)/ /3. One can check that V™" (1) = 0 and

eTV2com(y)e > 0 for e=(1,1,1)". It demonstrates (0,u) lies on the closure cI(K N {xy > 0}), so this optimization problem is
unbounded below.
When (A.6) is unbounded below, it is not necessary that (A.6) has a decreasing ray—that is, the System (A.8) may be infeasible.
That is, (A.8) is sufficient for unboundedness of (A.1), but it may not be necessary. For instance, consider the optimization
min - g(x) := x1200x3 + 303 (xF + x3) + x5 — 3x2xdx3
st X2 +x3—2x2=0,xx >0.
3

It is unbounded below, because g(t,t, —t) = —t
(A.8) is infeasible. This is because

— —oo as t — +oo and (t,t, —t) is feasible for all t > 0. However, the Certificate

om _ .2.20.2 .2 6 2.2.2
gh =x7x5(x7 +x5) + x5 — 3x7X5%3,

is the Motzkin polynomial, and (¢""",z) > 0 for all z € 2,;(K°). When (A.8) fails to be feasible, the question of detecting unbound-
edness of (A.1) is mostly open.

A.2. Solving Linear Moment Systems
Semidefinite relaxations can be applied to solve (A.8) and (A.10). For more generality, we consider the moment system

a; >2(gi,z) (i=1,...,m), zeR(K°), (A.15)
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for given polynomials g1, ...,gm € R[x]; and given scalars ay, . ..,a,, € R. It is worthy to note that in (A.8) and (A.10), the equality
is equivalent to the inequality like the above, due to the conic membership condition.
Select a generic R € int(X[x]yy, ) and consider the moment optimization
min (R,z)
s.t. a;—{gi,z) = 0(i € [m]), (A.16)
Z € Ry, (KO)

Letd, := max{dy,d.}, whered.isasin (2.7). For k = d,,d, + 1, ..., we solve the hierarchy of semidefinite relaxations

min (R,z)
st a;—(g,2)20(i=1,...,m),
LY [z]1=0(G€¢),

Cftam
LY [2]=0( e 1), (A17)

Jrom
oy
7

L% lz1=0,

M[z] =0, z € RN,

Suppose z® is a minimizer of (A.17) for a relaxation order k. If there is an integer f € [d., k] such that the Rank Condition (2.6)
holds, then the truncation z* | 5; has a r-atomic representing measure supported in K°—that is,

zZ® l2e = Aq[ug Jop + - + A (1],

for scalars Ay,...,A, >0, distinct points uy,...,u, € K° and r = rank M,[z®]. Then, the truncation z®|; is a feasible point for
(A.15).

Algorithm A.4 Let k := d,. Do the following loop:
Step 1. Solve the Semidefinite Relaxation (A.17) for a minimizer z¥).
Step 2. Check if there exists t € [d., k] such that (2.6) holds. If it does, then the truncation z® |, isa feasible point for (A.8).
Step 3. If (2.6) fails for all t € [d., k], let k := k + 1 and go to Step 1.

Algorithm A .4 can be implemented in the software GloptiPoly 3 (Henrion et al. [19]). The following is the convergence prop-
erty for the hierarchy of Relaxations (A.17).

Theorem A.5. Assume the System (A.15) is feasible and R € int(X[x],y, ) is generic. Then, we have:
i. The Optimization (A.16) has a unique minimizer z* and

z = Mlurlpg, + -+ Arlur]og, (A.18)

forscalars Ay, ..., A, > 0, distinct points uy, . ..,u, € K®and r < m.
ii. Foreach fixed t > dy, the sequence {z® |5 }2 ;. is bounded, and every accumulation point z** of {z® |2, },2,, satisfies z* = 2% |5q,.

Proof. (i) As in the proof for item (i) of Theorem A.1, the trace of M, [z] can be bounded by a constant. Similarly, it implies that
(A.16) has a minimizer z*. The minimizer z* is unique because the objective (R, z) is linear in z and has generic coefficients. The
membership z* € #,4 (K°) implies that z* has a decomposition like (A.18). We only need to show thatr < m. Consider the follow-
ing linear program in (7, ..., T,):

min TlR(u1)+ +TyR(ur)
st =12 1gilw),i=1,...,m, (A.19)
=1

71 >0,...,7,>0.

Note that (A.17) and (A.19) have the same optimal value. Because it is a linear program, (A.19) has a minimizer " = (13,. .., T})
of at most m nonzero entries (see Bertsimas and Tsitsiklis [4]). This implies that the number 7 in (A.18) can be chosen to be at
most 1.
(i) Because R lies in the interior of X[x]y;,, there is € > 0 such that R — € € L[x],,, . Then, the constraint M[z] = 0 implies that
(R,z) —€(z)y =(R—¢€,z) 2 0.

So, we get that (z), < (R, z)/e. The optimal value of (A.17) is always less than or equal to that of (A.10). Therefore, the sequence
{(z%), }Z‘;dz is bounded. Moreover, the constraint Li’?ﬁl [z] = 0 implies that
(Z)Za = (Z)Zel+2a + o+ (Z)Ze,,+2a 2 max((z)2e1 s (Z)Zen+2a)/

for all monomial powers a. The diagonal entries of the positive semidefinite moment matrix My[z] are precisely the entries (z),5
for powers B. This implies that the sequence {(z("))zﬁ},‘:idZ is bounded for all powers . Therefore, for each fixed t > d, the
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sequence of each diagonal entry of M;[z¥] is bounded, and so is the truncated sequence {z* | }ied, Let Hy be the set of feasible
points z in (A.17) for the relaxation order k, except the first m inequalities. Denote the truncation:

Gy = {Z|2t : ZEHk}.

Then, G1 € Gy, for all k. Because there is a sphere constraint xTx = 1, the quadratic module for the set K° is archimedean, so (see
proposition 3.3 of Nie [50])

A (K°) = ﬂ G-

k=d,

If z** is an accumulation point of {z® l2t oo 5, thenz™ € Gy for all k, and, hence, z** € %,;(K°). Note that the truncation z* |, is also
a minimizer of (A.16). Because the minimizer is unique, we must have z* = z"|53,. O

The Optimization (A.16) is a linear conic optimization problem with the moment cone. It can also be viewed as a generalized
moment problem. When the constraining set is compact, we refer to Lasserre [30] and Nie [50] for how to solve it; when the set is
unbounded, we refer to the recent works Huang et al. [20] and Huang et al. [21].

Endnote

' Throughout the paper, all computational results are displayed with four decimal digits.
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