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Abstract. The multi-objective optimization is to optimize several objective functions over 
a common feasible set. Because the objectives usually do not share a common optimizer, 
people often consider (weakly) Pareto points. This paper studies multi-objective optimiza
tion problems that are given by polynomial functions. First, we study the geometry for 
(weakly) Pareto values and represent Pareto front as the boundary of a convex set. Linear 
scalarization problems (LSPs) and Chebyshev scalarization problems (CSPs) are typical 
approaches for getting (weakly) Pareto points. For LSPs, we show how to use tight relaxa
tions to solve them and how to detect existence or nonexistence of proper weights. For 
CSPs, we show how to solve them by moment relaxations. Moreover, we show how to 
check whether a given point is a (weakly) Pareto point or not and how to detect existence 
or nonexistence of (weakly) Pareto points. We also study how to detect unboundedness of 
polynomial optimization, which is used to detect nonexistence of proper weights or 
(weakly) Pareto points.
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1. Introduction
The multi-objective optimization problem (MOP) is to optimize several objectives simultaneously over a common 
feasible set. MOPs have broad applications in economics (Geiger and Sevaux [15]), finance (Chen et al. [6]), medical 
science (Rosenthal and Borschbach [56], van der Horst et al. [58]), and machine learning (Wang et al. [59]). In this 
paper, we consider the MOP in the form

min f (x) :� (f1(x), : : : , fm(x))

s:t: ci(x) � 0 (i ∈ E),
cj(x) ≥ 0 (j ∈ I),

8
><

>:
(1.1) 

where all functions fi, ci, cj are polynomials in x :� (x1, : : : , xn) ∈ Rn. The E and I are disjoint finite label sets. Let K 
denote the feasible set of (1.1). Generally, there does not exist a point such that all fi’s are minimized simultaneously. 
People often look for a point such that some or all of the objectives cannot be further optimized. This leads to the fol
lowing concepts (see Marler and Arora [43], Miettinen [45], and Jahn et al. [22]).

Definition 1.1. A point x∗ ∈ K is said to be a Pareto point (PP) if there is no x ∈ K such that fi(x) ≤ fi(x∗) for all i �

1, : : : , m and fj(x) < fj(x∗) for at least one j. The point x∗ is said to be a weakly Pareto point (WPP) if there is no x ∈ K 
such that fi(x) < fi(x∗) for all i � 1, : : : , m.

In the literature, Pareto points (respectively (resp.), weakly Pareto points) are also referenced as Pareto optimi
zers (resp., weakly Pareto optimizers) or Pareto solutions (resp., weakly Pareto solutions). A vector v :� (v1, : : : , 
vm) is called a Pareto value (resp., weakly Pareto value) for (1.1) if there exists a Pareto point (resp., weakly 
Pareto point) x∗ such that v � f (x∗). Pareto front is the set of objective values at Pareto points. Every Pareto point 
is a weakly Pareto point, whereas the converse is not necessarily true. Detecting existence or nonexistence of 
(weakly) Pareto points is a major task for MOPs. We refer to Bao and Mordukhovich [2], Bao and Mordukho
vich [3], Kim et al. [27], Marler and Arora [43], Miettinen [45], and Jahn et al. [22] for related work about exis
tence of PPs and WPPs.

Scalarization is a classical method for finding PPs or WPPs. It transforms a MOP into a single objective optimi
zation problem. A frequently used scalarization is a nonnegative linear combination of objectives.
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Definition 1.2. The linear scalarization problem (LSP) for the MOP (1.1), with a nonzero weight w :� (w1, : : : , wm) ≥ 0, 
is

min w1 f1(x) + ⋯ + wm fm(x)

s:t: x ∈ K:
(1.2) 

For the LSP (1.2), the optimization remains unchanged if we normalize the nonzero weight w such that 
Pm

i�1 wi � 1, 
wi ≥ 0. For neatness of the paper, one can equivalently consider nonzero and nonnegative weights for LSPs. Every 
minimizer of the LSP (1.2) is a weakly Pareto point for nonzero w ≥ 0, and every minimizer is a Pareto point for 
w> 0. Varying weights in (1.2) may give different (weakly) Pareto points. A nonzero weight w is said to be proper if 
the LSP (1.2) is bounded below. Otherwise, the w is called improper. One wonders whether every Pareto point is a 
minimizer of (1.2) for some weight w. However, this is sometimes not the case (see Fleming [14] and Zionts [60]). 
For instance, Example 4.4 has infinitely many Pareto points, but only two of them can be obtained by solving LSPs. 
Under some assumptions, LSPs may give all Pareto points (see Emmerich and Deutz [12]).

Another frequently used scalarization is the Chebyshev scalarization. It requires one to use the minimum 
value of each objective.

Definition 1.3. The Chebyshev scalarization problem (CSP) for the MOP (1.1), with a nonzero weight w � (w1, 
: : : , wm) ≥ 0, is

min max
1 ≤ i ≤ m

wi(fi(x) � f ∗
i )

s:t: x ∈ K,
(1.3) 

where the minimum value f ∗
i :� minx∈K fi(x) > �∞.

Every minimizer of the CSP (1.3) is a weakly Pareto point. Interestingly, every weakly Pareto point is the mini
mizer of a CSP for some weight (see Koski and Silvennoinen [28] and Miettinen [45]). However, the minimizer of 
a CSP may not be a Pareto point. There also exist other scalarization methods, such as the ɛ-constraint method 
(Anagnostopoulos et al. [1], Matsatsinis and Delias [44]) and the lexicographic method (Clayton et al. [8], Jones 
and Tamiz [26]). We refer to Cho et al. [7], Donoso and Fabregat [11], Marler and Arora [43], Miettinen [45], and 
Ruı́z-Canales and Rufián-Lizana [57] for different scalarizations.

There exists important work for MOPs given by polynomials. When all functions are linear, a semidefinite pro
gramming method is given to obtain the set of Pareto points in Blanco et al. [5]. When the functions are convex 
polynomials, Moment- sum of squares (SOS) relaxation methods are given to compute (weakly) Pareto points in 
Jiao et al. [25], Jiao et al. [24], Jiao and Lee [23], Lee et al. [38], and Lee and Jiao [37], as well as some useful condi
tions for existence of (weakly) Pareto points. Because the Pareto front is an image set of polynomial functions, 
semidefinite relaxations can be used to approximate the Pareto front, as in the works Magron et al. [40] and 
Magron et al. [41].

When the functions are nonconvex polynomials, nonemptiness and boundedness of Pareto solution sets are 
shown in Liu et al. [39], under certain regularity conditions. When the objectives are polynomials and K is the 
entire space Rn, some novel conditions are shown for existence of (weakly) Pareto points in Kim et al. [27]. The 
following questions are of great interest for studying MOPs: 

• What is a convenient description for the set of (weakly) Pareto values? How can we represent the Pareto front 
in a geometrically clean way?

• For an LSP, how can we solve it efficiently for a Pareto point? When the constraint K is unbounded, how can 
we find a proper weight such that the LSP is bounded? How can we detect nonexistence of proper weights?

• For a CSP, how can we solve it efficiently for a weakly Pareto point? How do we get the global minimum value 
for each objective? If some minimum value is �∞, how can we get a weakly Pareto point?

• For a given point, how can we detect whether it is a (weakly) Pareto point? How can we get a (weakly) Pareto 
point if LSPs/CSPs fail to give one? How do we detect nonexistence of (weakly) Pareto points?

1.1. Contributions
The above questions are the major topics of this paper. When MOPs are given by polynomials, there are special 
properties for them. The following are our major contributions.

We study the convex geometry for (weakly) Pareto values. The epigraph set—that is, the set U as in (3.1)—is use
ful for (weakly) Pareto values. We give a characterization for the Pareto front. When the objectives are convex, we 
show that the set of weakly Pareto values can be expressed in terms of the boundary of a convex set. When the 
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MOP is given by SOS convex polynomials, we show that U can be given by semidefinite representations. This is 
shown in Section 3.

For solving LSPs and CSPs, or detecting nonexistence of (weakly) Pareto points, we often need to detect whether 
an optimization problem is unbounded. There exist few works for detecting unboundedness in nonconvex optimi
zation. We give a convex relaxation method for detecting unboundedness in polynomial optimization under some 
genericity assumptions. To the best of the authors’ knowledge, this is the first work that can achieve this goal. The 
results are in the appendix.

We discuss how to solve LSPs in Section 4. Under a genericity assumption, we give a tight relaxation method for 
solving LSPs and obtaining Pareto points. When the feasible set K is unbounded, we show how to find proper 
weights such that the LSP is bounded below. We also show how to detect that the LSP is unbounded below for all 
weights—that is, how to detect nonexistence of proper weights.

Section 5 studies how to solve CSPs. We first apply the tight relaxation method to compute global minimum 
values f ∗

1 , : : : , f ∗
m for the individual objectives. After that, we formulate the CSP equivalently as a polynomial optimi

zation problem and then solve it by using Moment-SOS relaxations.
Section 6 discusses how to detect whether a given point is a (weakly) Pareto point or not. This can be done by 

solving certain polynomial optimization. We also show how to detect existence or nonexistence of (weakly) Pareto 
points. This requires one to solve some moment feasibility problems.

We make some conclusions and propose some open questions in Section 7. Section 2 reviews some basic results 
for optimization with polynomials and moments.

2. Preliminary
2.1. Notation
The symbol N (resp., R, C) denotes the set of nonnegative integral (resp., real, complex) numbers. The Rn

+ stands for 
the nonnegative orthant—that is, the set of nonnegative vectors. For each label i, the ei denotes the vector of all zeros 
excepts its ith entry being one, whereas e denotes the vector of all ones. For an integer k> 0, denote [k] :�

{1, 2, : : : , k}: For t ∈ R, ⌈t⌉ denotes the smallest integer greater than or equal to t. Denote by R[x] :� R[x1, : : : , xn] the 
ring of polynomials in x :� (x1, : : : , xn) with real coefficients. The R[x]d stands for the set of polynomials in R[x] with 
degrees at most d. For a polynomial p, deg(p) denotes its total degree, p̃ denotes its homogenization, and phom 

denotes the homogeneous part of the highest degree. For α :� (α1, : : : ,αn) ∈ Nn, we denote xα :� xα1
1 ⋯ xαn

n and |α |

:� α1 + ⋯ +αn. The power set of degree d is

Nn
d :� {α ∈ Nn | |α | ≤ d}:

The vector of monomials in x and up to degree d is

[x]d :� [ 1 x1 ⋯ xn x2
1 x1x2 ⋯ xd

n ]
T
:

The superscript T denotes the transpose of a matrix/vector. The IN stands for the N-by-N identity matrix. By 
writing X�0 (resp., X ≻ 0), we mean that X is a symmetric positive semidefinite (resp., positive definite) 
matrix. For a set T, conv(T) denotes its convex hull, cl(T) denotes its closure, and int(T) denotes its interior, 
under the Euclidean topology. The cardinality of T is |T | . For a vector u, the ‖u‖ denotes its standard Euclidean 
norm. For a function h in x, the ∇h denotes its gradient vector in x. All computational results are shown with 
four decimal digits.

2.2. Positive Polynomials
A subset I ⊆ R[x] is an ideal if I ·R[x] ⊆ I and I + I ⊆ I. For a tuple p � (p1, : : : , pk) of polynomials in R[x], Ideal(p)

denotes the smallest ideal containing all pi, which is the set p1 ·R[x] + ⋯ + pk ·R[x]: In computation, we often need 
to work with the truncation of degree 2k:

Ideal[p]2k :� p1 ·R[x]2k�deg(p1) + ⋯ + pk ·R[x]2k�deg(pk):

A polynomial σ is said to be a sum of squares if σ � s2
1 + ⋯ + s2

k for some polynomials s1, : : : , sk. Checking whether a 
polynomial is SOS can be done by solving a semidefinite program (SDP) (Lasserre [29]). If a polynomial is SOS, 
then it is nonnegative everywhere. The set of all SOS polynomials in x is denoted by Σ[x], and its dth truncation is 
Σ[x]d :� Σ[x] ∩ R[x]d: For a tuple q � (q1, : : : , qt) of polynomials, its quadratic module is

Qmod[q] :� Σ[x] + q1 ·Σ[x] + ⋯ + qt ·Σ[x]:
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The truncation of degree 2k for Qmod[q] is

Qmod[q]2k :� Σ[x]2k + q1 ·Σ[x]2k�deg(g1) + ⋯ + qt ·Σ[x]2k�deg(qt):

A subset A ⊆ R[x] is said to be archimedean if there exists σ ∈ A such that σ(x) ≥ 0 defines a compact set in Rn. If 
Ideal[p] + Qmod[q] is archimedean, then the set T :� {x ∈ Rn : p(x) � 0, q(x) ≥ 0} must be compact. The reverse is not 
necessarily true. However, if T is compact, the archimedeanness can be met by adding a redundant ball condition. 
When Ideal[p] + Qmod[q] is archimedean, every polynomial that is positive on T must belong to Ideal[p] + Qmod[q]. 
This conclusion is referenced as Putinar’s Positivstellensatz (Putinar [55]). Furthermore, if a polynomial is nonnega
tive on T, then it also belongs to Ideal[p] + Qmod[q], under some standard optimality conditions on its minimizers 
(see Nie [49]).

2.3. Localizing and Moment Matrices
Denote by RN

n
d the space of real sequences labeled by α ∈ Nn

d . A vector y :� (yα)α∈Nn
d 

is called a truncated multisequence 
(tms) of degree d. It gives a linear functional on R[x]d such as

X

α∈Nn
d

fαxα, y

* +

:�
X

α∈Nn
d

fαyα, (2.1) 

where each fα is a coefficient. The tms y is said to admit a Borel measure µ if yα �
R

xαdµ for all α ∈ Nn
d . If it exists, such 

µ is called a representing measure for y, and y is said to admit the measure µ. The support of µ is denoted as supp(µ). 
If the cardinality |supp(µ) | is finite, the measure µ is called finitely atomic. It is called r-atomic if |supp(µ) | � r.

In optimization, the support of µ is often constrained in a set K. For a degree d, denote the moment cone

Rd(K) :� y ∈ RN
n
d : ∃ µ, y �

Z

[x]ddµ, supp(µ) ⊆ K
� �

: (2.2) 

The dual cone of Rd(K) is the nonnegative polynomial cone

Pd(K) :� {p ∈ R[x]d : p(x) ≥ 0 ∀x ∈ K}: (2.3) 

The dual cone of Pd(K) is the closure of Rd(K). When K is compact, the moment cone Rd(K) is closed. We refer to 
Lasserre [32] and Laurent [35] for more details about moment cones.

Consider a polynomial q ∈ R[x]2k with deg(q) ≤ 2k. The kth localizing matrix of q, generated by a tms z ∈ RN
n
2k , is 

the symmetric matrix L(k)
q [z] such that

vec(a1)
T
(L(k)

q [z])vec(a2) � 〈qa1a2, z〉, (2.4) 

for all a1, a2 ∈ R[x]k�⌈deg(q)=2⌉. (The vec(ai) denotes the coefficient vector of ai.) When q� 1, L(k)
q [z] is called a moment 

matrix, and we denote

Mk[z] :� L(k)

1 [z]:

The columns and rows of L(k)
q [z], as well as Mk[z], are labeled by α ∈ Nn with 2 |α | ≤ 2k � deg(q).

Each y ∈ Rd(K) can be extended to a tms z ∈ R2t(K) such that y � z | d, where d ≤ 2t and z |d denotes the truncation 
of z with degree d:

z |d :� (zα)α∈Nn
d
: (2.5) 

When K is the feasible set of (1.1), a necessary condition for z ∈ R2t(K) is

L(t)
ci

[z] � 0 (i ∈ E), L(t)
cj

[z]�0 (j ∈ I), 

whereas they may not be sufficient (see Lasserre [32] and Laurent [35]). However, if z further satisfies

rank Mt�dc [z] � rank Mt[z], (2.6) 

then z admits an r-atomic measure supported in K, with r � rank Mt[z]. The above integer dc is the degree

dc :� max{⌈deg(ci)=2⌉ : i ∈ E ∪ I}: (2.7) 

This Condition (2.6) is called flat extension (see Curto and Fialkow [9], Curto and Fialkow [10], Henrion and 
Lasserre [18], and Laurent [34]). To get optimizers in computation, the flat truncation is more frequently used 
(see Nie [48]).
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Moment and localizing matrices are important tools for solving polynomial optimization (Fan et al. [13], Henrion 
and Lasserre [18], Lasserre [29], and Nie [46]). They are also useful in tensor decompositions (Nie [51], Nie and 
Zhang [53]). We refer to Lasserre [32], Lasserre [33], Laurent [35], and Laurent [36] for the books and surveys about 
polynomial and moment optimization.

3. Geometry of Pareto Values
Recall that a vector v :� (v1, : : : , vm) is a Pareto value (PV) if there exists a Pareto point x∗ such that v � f (x∗). Similarly, 
v is called a weakly Pareto value (WPV) if v � f (p) for a weakly Pareto point p. PVs and WPVs are closely related to 
the epigraph set

U :� {u � (u1, : : : , um) |ui ≥ fi(x), for some x ∈ K}: (3.1) 

The image of the set K under the objective vector f � (f1, : : : , fm) is

f (K) :� {(f1(x), : : : , fm(x)) : x ∈ K}:

Then, U � f (K) +Rm
+ and its convex hull conv(U) � conv(f (K)) +Rm

+ . If K is convex and each objective fi is convex, 
the set U is also convex. The converse is not necessarily true. When U is convex, every Pareto point is a minimizer of 
some LSP (see Emmerich and Deutz [12]). In this section, we study the geometry of PVs and discuss how to charac
terize PVs and WPVs through the set U.

3.1. Supporting Hyperplanes
For a nonzero vector w ∈ Rm and b ∈ R, the set

H � {u ∈ Rm : wTu � b}, 

is a supporting hyperplane for U if b � infu∈U wTu: The w is the normal of H. In particular, if there exists v ∈ U such 
that wTu ≥ wTv for all u ∈ U, then H is called a supporting hyperplane through v. Because U contains f (x) +Rn

+, the 
normal w must be nonnegative for H to be a supporting hyperplane.

In MOP, people often use different orderings to define various minimizers. We refer to Marler and Arora [43], 
Miettinen [45], and Jahn et al. [22] for general orderings in MOP. Here, we introduce the convenient lexicographical 
ordering, up to permutations. Let π be a permutation of (1, : : : , m). For a set T ⊆ Rm, construct the following chain of 
nesting subsets

T � T0 ⊇ T1 ⊇ ⋯ ⊇ Tm, 

such that: for each k � 1, : : : , m, Tk is the subset of vectors in Tk�1 whose π(k)th entry is the smallest. If Tm ≠ ∅, then 
each v ∈ Tm is called a π-minimal point of T. For u, v ∈ Tm, all the entries of u, v must be the same, so u� v, and, hence, 
Tm consists of a single point, if it is nonempty. In particular, if T is compact, then Tm ≠ ∅, and it consists of a single 
point.

PVs and WPVs are characterized in the following. Some of these results may already exist in the literature. For 
the convenience of readers, we summarize them together and give direct proofs.

Proposition 3.1. Let U be as in (3.1). For each v ∈ f (K), we have: 
i. The vector v is a WPV if and only if v lies on the boundary of U. Moreover, if v is an extreme point of conv(U), then v is a 

PV.
ii. Assume U is convex. If v is a WPV, then there exists a supporting hyperplane for U through v whose normal is 

nonnegative—that is, there exists 0 ≠ w ≥ 0 such that wTu ≥ wTv for all u ∈ U.
iii. Suppose H � {u : wTu � wTv} is a supporting hyperplane for U through v, with a normal vector 0 ≠ w ≥ 0. If w > 0, 

then v is a PV. For w with a zero entry, if u ∈ f (K) is a π-minimal point of H ∩ U, then u is a PV. If u ∈ f (K) is an extreme 
point of H ∩ U, then u is also a PV.

Proof. (i) If v lies on the boundary of U, then there is no p ∈ K such that f(p)< v, so v is a WPV. If v is an interior 
point of U, then there exist p ∈ K and q ≥ 0 such that f (p) + q < v, which denies that v is a WPV. This shows that v 
is a WPV if and only if v lie on the boundary of U.

Next, suppose v is an extreme point of conv(U). Suppose otherwise that v is not a PV; then, there exists p ∈ K 
such that f (p) ≤ v, f (p) ≠ v: This means that v � f (p) + q, for some 0 ≠ q ∈ Rm

+ . Hence, v � [f (p) + (f (p) + 2q)]=2, 
which implies v is not an extreme point of conv(U), a contradiction. So v is a PV.

(ii) If v is a WPV, then v lies on the boundary of U. Because U is convex, there is a supporting hyperplane for U 

through v—that is, there exists w ≠ 0 such that wTu ≥ wTv for all u ∈ U. The set U contains v +Rm
+ , so w ≥ 0.
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(iii) For the case w > 0, the conclusion is obvious. When w has zero entries, let I � {i ∈ [m] : wi > 0}. To prove 
u :� (u1, : : : , um) is a PV, suppose p ∈ K is such that f (p) ≤ u: Because u ∈ H ∩ U, wTf (p) ≤ wTu � wTv: Also, note 
that wTf (p) ≥ wTu because H is a supporting hyperplane. So, we must have wTf (p) � wTv and fi(p) � ui for all i ∈ I. 
Write that u � f (p) + q, for some q ∈ Rm

+ . Note that qi � 0 for all i ∈ I. Because u is a π-minimal point of H ∩ U and 
f (p) ≤ u, the vector f(p) is also a π-minimal point of H ∩ U. Hence, u � f (p), by the π-minimality. This means that 
u is a PV.

When u is an extreme point of H ∩ U, we can prove that u is a PV in the same way as for the item (i). w

We have the following remarks for Proposition 3.1. 
• Not every WPV lies on the boundary of conv(U). For instance, consider

min (x1, x2)

s:t: x1 ≥ 0, x2 ≥ 0, x2
1 + x2

2 � 1:

�

For each t ∈ (0, 1), the point (t,
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � t2

√
) is a WPP (also a PP), but it does not lie on the boundary of conv(U).

• If U is not convex, there may not exist a supporting hyperplane through a WPV. For instance, in the above 
MOP, for every t ∈ (0, 1), there is no supporting hyperplane for conv(U) through (t,

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � t2

√
).

• For the item (iii) of Proposition 3.1, if w has a zero entry, then v may not be a Pareto value. For instance, con
sider the unconstrained MOP

min (x1, x2
2):

For w � (0, 1) and v � (0, 0), the equation wTu � 0 gives a supporting hyperplane through (0, 0), but (0, 0) is not a 
Pareto value.

• If v is a PV, it may not be an extreme point of U or H ∩ U. For instance, consider the MOP

min (x1, x2)

s:t: x1 ≥ 0, x2 ≥ 0, x1 + x2 � 1:

�

The set U � {x1 ≥ 0, x2 ≥ 0, x1 + x2 ≥ 1}. Clearly, for every t ∈ (0, 1), the vector (t, 1 � t) is a PV, but it is not an extreme 
point of U. The hyperplane H � {x1 + x2 � 1} supports U at (t, 1 � t). However, (t, 1 � t) is not an extreme point of 
the intersection H ∩ U, for every t ∈ (0, 1).

3.2. A Convex Representation
When the feasible set K is bounded, there always exist supporting hyperplanes for U. When K is unbounded, 
they may or may not exist. For, given v � (v1, : : : , vm) ∈ f (K), how do we determine whether there is a supporting 
hyperplane through it? For this purpose, we consider the linear optimization in w0 ∈ R and w � (w1, : : : , wm)

∈ Rm:
ω∗ :� max w0

s:t: 1 � eTw � 0, wi ≥ w0 (i ∈ [m]),
Xm

i�1
wi(fi(x) � vi) ≥ 0 on K:

8
>>><

>>>:

(3.2) 

Clearly, there is a supporting hyperplane through v if and only if the optimal value ω∗ ≥ 0. Let d be the maximum 
degree of objectives fi. The third constraint in (3.2) is equivalent to the membership

Xm

i�1
wi(fi(x) � vi) ∈ Pd(K), 

where Pd(K) is the nonnegative polynomial cone as in (2.3). The dual cone of Pd(K) is the closure cl(Rd(K)), where 
Rd(K) is the moment cone as in (2.2). The dual optimization of (3.2) can be shown to be

min t
s:t: t � 〈fi � vi, y〉 ≥ 0 (i ∈ [m]),

1 � mt �
Xm

i�1
〈fi � vi, y〉, y ∈ cl(Rd(K)):

8
>>><

>>>:

(3.3) 
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In the above, the vector y is a tms labeled as

y � (yα)α∈Nn
d
:

If (3.3) has a feasible point with t < 0, then there are no nonnegative supporting hyperplanes through v. Because 
each vi is a scalar, one can see that

〈fi � vi, y〉 � 〈fi, y〉 � vi〈1, y〉 � 〈fi, y〉 � viy0:

When t < 0 is feasible for (3.3), there also exists a feasible y ∈ Rd(K) with y0 > 0. One can scale such (t, y) so that 
y0 � 1. Hence, the existence of t< 0 in (3.3) is equivalent to

τ � mt′ �
Xm

i�1
(〈fi, y〉 � vi),

t′ ≥ 〈fi, y〉 � vi, i � 1, : : : , m,

τ > 0 > t′, y0 � 1, y ∈ Rd(K):

8
>>>>><

>>>>>:

The above is then equivalent to that
vi > 〈fi, y〉, i � 1, : : : , m,

y0 � 1, y ∈ Rd(K):

(

We define the set V containing all such v:

V :� v

v � (v1, : : : , vm)

vi > 〈fi, y〉, i � 1, : : : , m,

y0 � 1, y ∈ Rd(K)

�
�
�
�
�
�
�
�

9
>>=

>>;

:

8
>><

>>:

(3.4) 

Theorem 3.2. Assume K has nonempty interior. Then, the interior of the convex hull conv(U) is the set V as in (3.4). 
Moreover, when U is convex, a vector v ∈ f (K) is a weakly Pareto value if and only if v belongs to the boundary of the closure 
cl(V).

Proof. Because K has nonempty interior, the cone Rd(K) has nonempty interior. Hence, the strong duality holds 
between (3.2) and (3.3) because (3.3) has strictly feasible points. This is because one can select y from the interior 
of Rd(K), choose t sufficiently large to satisfy all the inequalities, and then scale such (t, y) for the equality to 
hold.

A point v lies in the interior of conv(U) if and only if there is no supporting hyperplane for U through it. The 
normal of every supporting hyperplane for U is nonnegative. Thus, v lies in the interior of conv(U) if and only if 
the optimal value ω∗ of (3.2) is negative or it is infeasible. By the strong duality between (3.2) and (3.3), this is 
equivalent to that v belongs to V.

When U is convex—that is, conv(U) � U—a vector v ∈ f (K) is a WPV if and only if v lies on the boundary of U, 
by Proposition 3.1. This is equivalent to that v lies on the boundary of cl(V) because the interior of U is V. w

A computational efficient description for the moment cone Rd(K) is usually not available. However, when the 
polynomials are SOS-convex, there exists a semidefinite representation for the set V in (3.4). Recall that a polyno
mial p ∈ R[x] is SOS-convex (see Helton and Nie [17]) if ∇2p � Q(x)

TQ(x) for some matrix polynomial Q(x).

Theorem 3.3. Assume E � ∅ and K has nonempty interior. If all fi and �cj (j ∈ I ) are SOS-convex polynomials, then the 
interior of U is equal to

V1 :� (v1, : : : , vm)

〈cj, y〉 ≥ 0 (j ∈ I),

vi > 〈fi, y〉 (i ∈ [m]),

Md0 [y]�0, y0 � 1,

y ∈ RN
n
2d0

�
�
�
�
�
�
�
�
�
�
�
�

9
>>>>>>=

>>>>>>;

,

8
>>>>>><

>>>>>>:

(3.5) 

where d0 :� max{⌈d=2⌉, ⌈deg(cj)=2⌉(j ∈ I)}. Moreover, a vector v ∈ f (K) is a weakly Pareto value if and only if it lies on the 
boundary of cl(V1).
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Proof. Clearly, if v belongs to V as in (3.4) for some y ∈ Rd(K), then it must belong to V1. Conversely, if (v, y) satis
fies (3.5), then let x̂ :� (ye1 , : : : , yen ) and ŷ :� [x̂]d. Under the SOS convexity assumption, the Jensen’s inequality (see 
Lasserre [31]) implies that

〈fi, y〉 ≥ fi(x̂) � 〈fi, ŷ〉, 0 ≥ 〈�cj, y〉 ≥ �cj(x̂) � 〈�cj, ŷ〉:

So, we have x̂ ∈ K and ŷ ∈ Rd(K); hence, v belongs to V1. The conclusion then follows from Theorem 3.2. w

Example 3.4. Consider the SOS-convex polynomials

f1 � (x1 � x2)
4

+ (x2 � x3)
4, f2 �

X3

i�1
x4

i + x2
1x2

2 + x2
1x2

3 + x2
2x2

3, 

and the ball constraint 1 ≥ ‖x‖
2. One can verify that

∇2f1 � 12

x1 � x2 0

x2 � x1 x2 � x3

0 x3 � x2

2

6
6
4

3

7
7
5

x1 � x2 0

x2 � x1 x2 � x3

0 x3 � x2

2

6
6
4

3

7
7
5

T

,

∇2f2 � 4

x1 x1 0

x2 0 x2

0 x3 x3

2

6
6
4

3

7
7
5

x1 x1 0

x2 0 x2

0 x3 x3

2

6
6
4

3

7
7
5

T

+
X3

i�1
AiAT

i , 

where each Ai is the diagonal matrix with the diagonal vector 
ffiffiffi
2

√
xi(e + (

ffiffiffi
2

√
� 1)ei). Note that y000 � 1. The inequal

ities in the set V1 as in (3.5) are

1 � y200 � y020 � y020 ≥ 0,

v1 >
X4

i�0

4

i

 !

(�1)
i
(y(4�i)e1+ie2 + y(4�i)e2+ie3 ),

v2 >
X3

i�1
y4ei + y220 + y022 + y202:

The moment matrix inequality M2[y]�0 reads as

y000 y100 y010 y001 y200 y110 y101 y020 y011 y002

y100 y200 y110 y101 y300 y210 y201 y120 y111 y102

y010 y110 y020 y011 y210 y120 y111 y030 y021 y012

y001 y101 y011 y002 y201 y111 y102 y021 y012 y003

y200 y300 y210 y201 y400 y310 y301 y220 y211 y202

y110 y210 y120 y111 y310 y220 y211 y130 y121 y112

y101 y201 y111 y102 y301 y211 y202 y121 y112 y103

y020 y120 y030 y021 y220 y130 y121 y040 y031 y022

y011 y111 y021 y012 y211 y121 y112 y031 y022 y013

y002 y102 y012 y003 y202 y112 y103 y022 y013 y004

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

�0:

We would like to remark that the Pareto front can be expressed as an image set of polynomial functions. Thus, 
semidefinite relaxations can be used to approximate the Pareto front. We refer to Magron et al. [40] and Magron 
et al. [41] for related work on this technique. In contrast, our work expresses the Pareto front in terms of the 
boundary of sets cl(V) in (3.4) or cl(V1) in (3.5). In comparison, the expression for the Pareto front via cl(V) or 
cl(V1) in our work is exact, but more for theoretical interest, whereas the expression in Magron et al. [40] is 
approximate, but more for computational interest.
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4. The Linear Scalarization
This section discusses how to solve linear scalarization problems, how to choose proper weights, and how to detect 
nonexistence of proper weights. For a weight w :� (w1, : : : , wm), denote the weighted sum

fw(x) :� w1 f1(x) + ⋯ + wm fm(x):

We consider the LSP

min fw(x) s:t: x ∈ K: (4.1) 

Recall that w ≠ 0 is a proper weight if (4.1) is bounded below. Equivalently, w is a proper weight if and only if w is 
the normal of a supporting hyperplane for the set U as in (3.1).

4.1. Tight Relaxations for LSPs
The Moment-SOS hierarchy of semidefinite relaxations Lasserre [29] can be applied to solve (4.1). When the feasible 
set K is unbounded, the Moment-SOS hierarchy may not converge. Here, we apply the tight relaxation method in 
Nie [52] to solve (4.1).

The Karush-Kuhn-Tucker (KKT) conditions for (4.1) are

∇fw(u) �
X

i∈E∪I

λi∇ci(u), λj ≥ 0, λjcj(u) � 0 (j ∈ I), 

where the λj’s are Lagrange multipliers. For convenience, we write such that

E ∪ I � {1, : : : , s}, c :� (c1(x), : : : , cs(x)),

ceq :� (ci)i∈E , cin :� (cj)j∈I :

The KKT conditions imply that

∇c1(x) ∇c2(x) ⋯ ∇cs(x)

c1(x) 0 ⋯ 0
0 c2(x) ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ cs(x)

2

6
6
4

3

7
7
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
C(x)

λ1

⋮
λs

" #

|ffl{zffl}
λ

�

∇fw(x)

0
⋮
0

2

6
6
6
4

3

7
7
7
5

: (4.2) 

The polynomial tuple c is said to be nonsingular if the matrix C(x) as above has full column rank for all complex 
x ∈ Cn (see Nie [52]). When c is nonsingular, there exists a matrix polynomial L(x) such that L(x)C(x) � Is. Then,

λ � L(x)
∇fw(x)

0

� �

:

For each i � 1, : : : , s, let λi(x) :� (L(x):, 1:n∇fw(x))i be the ith entry polynomial. Denote the polynomial sets

Φ :� {ci}i∈E ∪ {λj(x)cj}j∈I ∪ ∇fw �
X

i∈E∪I

λi(x)ci

( )

, (4.3) 

Ψ :� {cj, λj(x)}j∈I : (4.4) 

(If p is a vector of polynomials, then {p} denotes the set of entries of p.) If its minimum value is achieved at a KKT 
point, then (4.1) is equivalent to

min fw(x)

s:t: p(x) � 0 (p ∈Φ),
q(x) ≥ 0 (q ∈Ψ):

8
><

>:
(4.5) 
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Let k0 :� max{⌈deg(p)=2⌉ : p ∈Φ ∪Ψ}. For an integer k ≥ k0, the kth-order moment relaxation is

min 〈fw, y〉

s:t: L(k)
p [y] � 0 (p ∈Φ),

L(k)
q [y]�0 (q ∈Ψ),

Mk[y]�0,
y0 � 1, y ∈ RN

n
2k :

8
>>>>>>><

>>>>>>>:

(4.6) 

For k � k0, k0 + 1, : : : , the Relaxation (4.6) is a semidefinite program. The following is the algorithm for solving (4.5).

Algorithm 4.1 Formulate the sets Φ,Ψ as in (4.3) and (4.4). Let k :� k0. 
Step 1. Solve the Relaxation (4.6) for a minimizer y∗ and let t :� k0.
Step 2. If y∗ satisfies the rank condition

rank Mt[y∗] � rank Mt�k0 [y∗], (4.7) 

then extract r :� rankMt[y∗] minimizers for (4.5).
Step 3. If (4.7) fails to hold and t < k, let t :� t + 1 and then go to Step 2; otherwise, let k :� k + 1 and go to Step 1.

The Rank Condition (4.7) is called flat truncation. It is a sufficient (and almost necessary) condition for checking 
convergence of the Moment-SOS hierarchy (Nie [48]). Algorithm 4.1 can be implemented in GloptiPoly 3 (Henrion 
et al. [19]). The following is the convergence property for the hierarchy of Relaxations (4.6), which follows from Nie 
et al. [54, theorem 4.4].

Theorem 4.2. Assume c is nonsingular and the LSP (4.1) has a minimizer for the weight w. Then, for all k large enough, 
the optimal value of the Relaxation (4.6) is equal to that of (4.1). Moreover, under either one of the following conditions 

i. The set Ideal[Φ] + Qmod[Ψ] is archimedean, or
ii. The real zero set of polynomials in Φ is finite,

if each minimizer of (4.1) is an isolated critical point, then all minimizers of the Relaxation (4.6) must satisfy (4.7), when k 
is big enough. Therefore, Algorithm 4.1 must terminate within finitely many loops.

Example 4.3. Consider the objectives

f1 �
X5

i�1
x4

i + x2
1x2 + x1x2

2 � 3x1x2x3 + x3x4x5 + x3
3,

f2 �
X5

i�1
x2

i � x1x2
2 � x2x2

3 + x3x2
4 + x4x2

5, 

and the constraint x2
1 + ⋯ + x2

5 ≥ 1. The feasible set is unbounded. A list of some weights and the corresponding 
Pareto points are given in Table 1.1

It is worthy to note that

Ideal[ceq] ⊆ Ideal[Φ], Qmod[cin] ⊆ Qmod[Ψ]:

Hence, if Ideal[cin] + Qmod[cin] is archimedean, then the condition (i) in Theorem 4.2 holds. Therefore, if the archi
medeanness is met for the constraints in (1.1), then the condition (i) must hold.

It is possible that fw(x) is unbounded below on K for some weight w. For instance, fw(x) is unbounded below 
for w � (0, 1) in Example 4.3. We refer to the appendix for how to detect unboundedness. Moreover, we remark 
that not every Pareto point is the minimizer of a LSP, as shown in the following.

Table 1. Some Pareto points for Example 4.3.

Weight w Pareto point

(0:5, 0:5) (�0:3371, 0:4659, �0:7504, �0:2807, �0:1655)

(0:25, 0:75) (�0:0986, 0:3316, �0:6802, �0:5493, �0:3405)

(0:75, 0:25) (�0:7711, 0:9015, �1:1818, �0:5752, �0:5114)
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Example 4.4. Consider the MOP with

f1 � �x3
1 � x3

2 + (x3 � x4)
2, f2 � x2

1 � x2
2 + (x3 + x4)

2, 

and the constraints 0 ≤ x1, x2 ≤ 1. The LSP is
min w1 f1(x) + w2 f2(x)

s:t: 0 ≤ x1, x2 ≤ 1:

�

For w1 ≥ w2, the minimizer is (1, 1, 0, 0). For w1 < w2, the minimizer is (0, 1, 0, 0). So, the LSP can only give two Pareto 
points, by exploring all possibilities of weights. However, each (x1, 1, 0, 0), with 0 ≤ x1 ≤ 1, is a Pareto point.

4.2. Existence and Choices of Proper Weights
When K is compact, the LSP (4.1) is bounded below for all weights. When K is unbounded, (4.1) may be unbounded 
below for some w and has no minimizers. To find a (weakly) Pareto point, we look for a nonzero weight w ≥ 0 such 
that (4.1) is bounded below—that is, w is a proper weight. The set of all proper weights is denoted as

W :� {0 ≠ w ∈ Rm
+ : fw(x) is bounded below on K}: (4.8) 

Clearly, the proper weight set W is a convex cone.
Note that a nonzero weight w ∈ W if and only if there exists a scalar γ ∈ R such that fw(x) � γ ∈ Pd(K). So,

W � {0 ≠ w ∈ Rm
+ : fw(x) ∈ Pd(K) +R}: (4.9) 

The cone Pd(K) can be approximated by the sum of the ideal Ideal[ceq] and the quadratic module Qmod[cin]. Thus, 
we have the following.

Proposition 4.5. It holds that

{0 ≠ w ∈ Rm
+ : fw(x) ∈ Ideal[ceq] + Qmod[cin] + R} ⊆ W: (4.10) 

When Ideal[ceq] + Qmod[cin] is archimedean (K is bounded for this case), the containment in (4.10) is an equality. 
This is because if fw(x) is bounded below on K, then fw(x) � γ ∈ Ideal[ceq] + Qmod[cin] for γ small enough. When K is 
unbounded, the sum Ideal[ceq] + Qmod[cin] cannot be archimedean, and the containment in (4.10) is typically not an 
equality. For instance, for K � R3, f1 � x2

1x2
2(x2

1 + x2
2), f2 � x6

3 � 3x2
1x2

2x2
3, we have (1, 1) ∈ W , but f(1, 1) ∉ Σ[x] +R. For 

this case, Ideal[ceq] � {0}, Qmod[cin] � Σ[x], and f(1, 1) is the Motzkin polynomial that is nonnegative, but not SOS.
Among all proper weights w ≥ 0 normalized as eTw � 1, the smallest possibility of the minimum value of (4.1) is 

equal to the smallest one of f ∗
1 , : : : , f ∗

m, where f ∗
i is the minimum value of fi(x) on K. Some of f ∗

i may be �∞. For the 
choice w � ei, the minimum value of (4.1) is f ∗

i . Beyond them, people are also interested in w such that the minimum 
value of (4.1) is maximum. We discuss how to find such w in the following.

Assume d is the maximum degree of f1, : : : , fm. For the minimum value of fw(x) on K to be maximum, we consider 
the optimization

max γ
s:t: 1 � eTw � 0, w1 ≥ 0, : : : , wm ≥ 0,

Xm

i�1
wi fi � γ ∈ Pd(K):

8
>>><

>>>:

(4.11) 

The dual cone of Pd(K) is cl(Rd(K)). (When K is compact, the moment cone Rd(K) is closed.)
The dual optimization of (4.11) is

min µ

s:t: µ � 〈fi, y〉 ≥ 0 (i � 1, : : : , m),
y0 � 1, y ∈ cl(Rd(K)):

8
><

>:
(4.12) 

The kth-order SOS relaxation for (4.11) is
max γ

s:t: w1 + ⋯ wm � 1, w1 ≥ 0, : : : , wm ≥ 0,
Xm

i�1
wi fi � γ ∈ Ideal[ceq]2k + Qmod[cin]2k:

8
>>><

>>>:

(4.13) 
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The dual optimization of (4.13) is the kth-order moment relaxation for (4.12):

min µ

s:t: µ � 〈fi, y〉 ≥ 0 (i � 1, : : : , m),
L(k)

ci [y] � 0 (i ∈ E),
L(k)

cj [y]� 0 (j ∈ I),
Mk[y]� 0,
y0 � 1, y ∈ RN

n
2k :

8
>>>>>>>>><

>>>>>>>>>:

(4.14) 

As k increases, the above gives a hierarchy of Moment-SOS relaxations for solving (4.11). When the sum Ideal[ceq] +

Qmod[cin] is archimedean, the convergence of the hierarchy was shown in Lasserre [30] and Nie [50].

Example 4.6. Consider the objectives

f1 � (x1
2 + x2 + x3)

2
+ (x2

2 + x3 + x4)
2

� 3 x1x2x3x4,

f2 �
X4

i�1
x4

i � (x1 � x2)(x2 � x3)(x3 � x4)(x4 � x1),

f3 � 3
X4

i�1
x3

i + x2
1(x2

2 � x3
2) + x2

2(x3
2 � x4

2) + x2
3(x4

2 � x1
2) , 

and the constraints x1x2 ≥ 1, x2x3 ≥ 1, x3x4 ≥ 1, x1 ≥ 0. Each fi is unbounded below on the feasible set K. The optimi
zation (4.11) can be solved by the Moment-SOS hierarchy of (4.13)–(4.14). The computed optimal weight w∗ and 
Pareto point x∗ are, respectively,

w∗ � (0:5769, 0:2229, 0:2003), x∗ � (1:0105,0:9897,1:0105,0:9897):

The maximum of the minimum value of fw(x) on K is γ∗ � 11:9435.

4.3. Nonexistence of Proper Weights
When the feasible set K is unbounded, there may not exist a weight w ≥ 0 such that fw(x) is bounded below on K. 
We discuss how to detect nonexistence of proper weights.

Recall that d is the maximum degree of fi and ˜fw (x̃) :� xd
0 fw(x=x0). When K is closed at ∞, the Optimization (4.11) 

is equivalent to

max γ
s:t: w1 + ⋯ wm � 1, (w1, : : : , wm) ≥ 0,

˜fw � γxd
0 ∈ Pd(K̃):

8
><

>:
(4.15) 

The dual optimization of (4.15) is

min µ

s:t: µ � 〈xd
0 fi(x=x0), ỹ〉 ≥ 0 (i � 1, : : : , m),

〈xd
0, ỹ〉 � 1, ỹ ∈ Rd(K̃):

8
><

>:
(4.16) 

When (4.16) is unbounded below, the Problem (4.15) must be infeasible, and, hence, there is no proper weight. This 
is the case if (4.16) has a decreasing ray ∆ỹ:

�1 ≥ 〈xd
0 fi(x=x0), ∆ỹ〉 (i � 1, : : : , m),

〈xd
0, ∆ỹ〉 � 0, ∆ỹ ∈ Rd(K̃):

8
<

:
(4.17) 

Let f (d)
i denote the homogeneous part of degree d for fi—that is,

f (d)
i � xd

0 fi(x=x0) |x0�0:
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The equality 〈xd
0, ∆ỹ〉 � 0 implies that every representing measure for ∆ỹ must be supported in the hyperplane 

x0 � 0. Therefore, (4.17) can be reduced to

�1 ≥ 〈f (d)
i , ∆y〉 (i � 1, : : : , m), ∆y ∈ Rd(K◦), (4.18) 

where K◦ is the set, as in (A.3). We remark that if deg(fi) < d, then f (d)
i � 0 and, hence, 〈f (d)

i , ∆y〉 � 0, which implies 
that (4.17) is infeasible. Therefore, the decreasing ray ∆ỹ as in (4.17) exists only if all fi have the same degree. The fol
lowing is the nonexistence theorem of proper weights. Like before, the closeness of K at infinity can be weakened.

Theorem 4.7. Assume (4.18) has a feasible point ∆y � λ1[z1]d + ⋯ +λr[zr]d, with λ1, : : : ,λr > 0 and z1, : : : , zr ∈ K◦. If 
each (0, zi) lies on cl(K̃ ∩ {x0 > 0}), then the LSP (4.1) is unbounded below for all nonzero w ≥ 0 and, hence, W � ∅.

Proof. For each w ≥ 0 with eTw � 1, it holds that

�1 ≥
Xm

i�1
wif (d)

i , ∆y

* +

� 〈 ˜fw , ∆y〉, ∆y ∈ Rd(K◦):

Because ∆y � λ1[z1]d + ⋯ +λr[zr]d, there exists at least one i such that

�1=r ≥ 〈 ˜fw ,λi[zi]d〉:

By Theorem A.1(ii), fw(x) is unbounded below on K because (0, zi) lies in the closure of K̃ ∩ {x0 > 0} and λi > 0. A 
nonzero weight w ≥ 0 is proper if and only if w=(eTw) is proper. Hence, no proper weights exist, and W � ∅. w

The Moment System (4.18) is in the form (A.15). Algorithm A.4 can be applied to get a feasible point for (4.18). This 
can be done by solving a hierarchy of moment relaxations like (A.17). The convergence is shown in Theorem A.5.

Example 4.8. Consider the objectives

f1 � �
X5

i�1
x3

i

 !

� x4
2 + x4

4 � x1x2x3 � x3x4x5,

f2 �
X5

i�1
xi

 !3

�
X4

i�1
x4

i + x1x2x3x4 + x2x3x4x5,

f3 � x4
1 � x4

2 + x4
3 + x4

4 � x1x2x3 � x3x4x5,

f4 � �(x1x2)
2

+ (x2x3)
2

+ (x3x4)
2

+ (x4x5)
2, 

and the constraints x2
1 ≥ 1, : : : , x2

5 ≥ 1. By Algorithm A.4, we get that ∆y � λ[u]4 is feasible for (4.18) with

u � (�0:7014, � 0:7049,0:0533, � 0:0428, 0:0803), λ � 4:1146:

The set C as in (A.12) is empty. By Lemma A.2, the point (0, u) lies on the closure of K̃ ∩ {x0 > 0}. Therefore, the 
LSP (4.1) is unbounded below for all nonzero weights w ≥ 0 by Theorem 4.7.

We remark that when no proper weights exist, the System (4.18) is still possibly infeasible. For instance, this is 
the case for

K � R1, f1 � x3
1 + x1, f2 � �x3

1:

There is no nonzero (w1, w2) ≥ 0 such that fw(x) is bounded below on R1. However, there is no ∆y such that

�1 ≥ 〈x3
1, ∆y〉, � 1 ≥ 〈�x3

1, ∆y〉, ∆y ∈ R3({x2
1 � 1}):

Moreover, when no proper weights exist, Pareto points may still exist. For instance, this is the case for

min (x1, x2)

s:t: x1 + x3
2 ≥ 0:

�

For every t, (t3, �t) is a Pareto point, but there is no nonzero w � (w1, w2) ≥ 0 such that w1x1 + w2x2 is bounded 
below on x1 + x3

2 ≥ 0.
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5. The Chebyshev Scalarization
The Chebyshev scalarization problem is

min
x∈K

max
1 ≤ i ≤ m

wi(fi(x) � f ∗
i ) , (5.1) 

for a nonzero weight w :� (w1, : : : , wm) ≥ 0. In the above, each f ∗
i is the minimum value of fi on K. In this section, we 

assume all f ∗
i > �∞. If one of them is �∞, we refer to Subsection 6.2 for how to get PPs and WPPs.

Each minimizer of (5.1) is a weakly Pareto point. Conversely, every weakly Pareto point is a minimizer of the 
CSP (5.1) for some weight, provided each f ∗

i > �∞. This is because if x∗ is a weakly Pareto point, then there exist 
weights wi ≥ 0 such that all wi(fi(x∗) � f ∗

i ) are equal, because fi(x∗) � f ∗
i ≥ 0 for each i. Then, x∗ is the minimizer for 

that CSP. Observe that f ∗
i equals the minimum value of the LSP (4.1) for the weight w � ei. Algorithm 4.1 can be 

applied to compute f ∗
i .

After all f ∗
i are obtained, one can solve the CSP (5.1) for a weakly Pareto point. With the new variable xn+1, the 

CSP (5.1) is equivalent to

min xn+1

s:t: xn+1 � wi(fi(x) � f ∗
i ) ≥ 0 (i � 1, : : : , m),

ci(x) � 0 (i ∈ E),
cj(x) ≥ 0 (j ∈ I):

8
>>><

>>>:

(5.2) 

To get convergent Moment-SOS relaxations, we typically need archimedeanness for constraining polynomials. The 
feasible set of (5.2) is unbounded. To fix this issue, one can select a feasible point ξ ∈ K and let

B0 :� max
1 ≤ i ≤ m

wi(fi(ξ) � f ∗
i )

� �
:

Then, (5.2) is equivalent to

min xn+1

s:t: xn+1 � wi(fi(x) � f ∗
i ) ≥ 0 (i � 1, : : : , m),

B0 � xn+1 ≥ 0, xn+1 ≥ 0,
ci(x) � 0 (i ∈ E),
cj(x) ≥ 0 (j ∈ I):

8
>>>>>><

>>>>>>:

(5.3) 

For convenience, denote the set

G :� {cj}j∈I ∪ {xn+1, B0 � xn+1} ∪ {xn+1 � wi(fi � f ∗
i )}

m
i�1: (5.4) 

The kth-order moment relaxation for (5.3) is

min 〈xn+1, y〉

s:t: L(k)
ci [y] � 0 (i ∈ E),

L(k)
p [y]� 0 (p ∈ G),

Mk[y]� 0,
y0 � 1, y ∈ RN

n+1
2k :

8
>>>>>>><

>>>>>>>:

(5.5) 

Let d0 be the degree

d0 :� max{⌈d=2⌉, ⌈deg(ci)=2⌉ (i ∈ E ∪ I )}: (5.6) 

Suppose y∗ is a minimizer of (5.5). If there exists t ∈ [d0, k] such that

rank Mt[y∗] � rank Mt�d0 [y∗], (5.7) 

then we can get rank Mt[y∗] minimizers for (5.1) (see Henrion and Lasserre [18] and Nie [48]). The following is 
about the convergence of the hierarchy of (5.5).

Theorem 5.1. Assume Ideal[ceq] + Qmod[cin] is archimedean. Suppose y(k) is a minimizer of the Moment Relaxation (5.5) for 
the order k. If the CSP (5.1) has finitely many minimizers, then for t big enough, every accumulation point of {y(k) |2t}

∞
k�d0 

must 
satisfy (5.7).
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Proof. Because Ideal[ceq] + Qmod[cin] is archimedean, there exists a scalar N such that N � xTx ∈ Ideal[ceq] +

Qmod[cin]: Note that

B2
0 � x2

n+1 � (B0 � xn+1)
2

+ 2xn+1 ·
(B0 � xn+1)

2

B0
+ 2(B0 � xn+1)

x2
n+1
B0

:

Therefore, we get that

N � xTx + B2
0 � x2

n+1 ∈ Ideal[ceq] + Qmod[G]:

This means that Ideal[ceq] + Qmod[G] is archimedean. When the CSP (5.1) has finitely many minimizers, the con
clusion is implied by theorem 3.3 of Nie [48]. w

When Ideal[ceq] + Qmod[cin] is not archimedean (this is the case if K is unbounded), the homogenization 
method in Subsection 4.2 can be similarly applied. Moreover, the method in Mai et al. [42] can also be applied 
to solve (5.1).

Example 5.2. Consider the objectives

f1 �
X4

i�1
x2

i � (x1x2 + x3x4)(x1x3 + x2x4),

f2 �
X4

i�1
x4

i + x1x2x3 + x2x3x4 + x1x2x3x4,

f3 �
X4

i�1
x6

i + (x2
1 � x2

2 + 1)(x2
2 � x2

3 + 1)(x2
3 � x2

4 + 1) , 

and the constraint x1x2 ≤ 1, x2x3 ≤ 1, x3x4 ≤ 1, x1x4 ≤ 1. The minimum values f ∗
1 , f ∗

2 , f ∗
3 are 0:0000, �0:0710, 0:6029, 

respectively. A list of some weights and corresponding weakly Pareto points are in Table 2. Indeed, they are all 
Pareto points, confirmed by solving the Optimization (6.1).

6. Existence and Nonexistence of PPs and WPPs
This section discusses how to check whether a given point is a (weakly) Pareto point and how to detect existence or 
nonexistence of (weakly) Pareto points.

6.1. Detection of PPs and WPPs
For a given point x∗ ∈ K, how can we detect whether it is a Pareto point or not? To this end, consider the optimization

min fe(x) :� f1(x) + ⋯ + fm(x)

s:t: fi(x∗) � fi(x) ≥ 0 (i � 1, : : : , m),
x ∈ K:

8
><

>:
(6.1) 

This is a kind of lexicographic method (see Marler and Arora [43]). Let z∗ be a minimizer of (6.1), if it exists. Then, x∗

is a Pareto point if and only if the minimum value of (6.1) is equal to fe(x∗). Moreover, if x∗ is not a Pareto point, the 
minimizer z∗ must be a Pareto point because all the weights are positive. A Pareto point may be obtained by solving 
(6.1) for given x∗ ∈ K, provided (6.1) has a minimizer.

Let F be the feasible set of (6.1) and

F :� {cj}j∈I ∪ {fi(x∗) � fi(x))}
m
i�1: (6.2) 

Table 2. Some Pareto points for Example 5.2.

Weight w Pareto point

(1, 1, 1) (0:000, 0:000, 0:000, 0:4503)

(1, 2, 2) (�0:0024, � 0:0979, � 0:0635, � 0:5248)

(1, 2, 3) (�0:0029, � 0:1228, � 0:0700, � 0:5648)

Nie and Yang: The Multi-Objective Polynomial Optimization 
Mathematics of Operations Research, 2024, vol. 49, no. 4, pp. 2723–2748, © 2024 INFORMS 2737 



For a degree k ≥ d=2, the kth-order moment relaxation for (6.1) is

min 〈fe, y〉

s:t: L(k)
ci [y] � 0 (i ∈ E),

L(k)
q [y]�0 (q ∈ F ),

Mk[y]�0,
y0 � 1, y ∈ RN

n
2k :

8
>>>>>>><

>>>>>>>:

(6.3) 

Recall that d0 is the degree as in (5.6). Suppose y∗ is a minimizer of (6.3). If there exists t ∈ [d0, k] such that

rank Mt[y∗] � rank Mt�d0 [y∗], (6.4) 

then we can get r :� rank Mt[y∗] minimizers for (6.1). Recall that ceq is the tuple of equality constraining polyno
mials. The following result follows from theorem 3.3 of Nie [48].

Theorem 6.1. Assume Ideal[ceq] + Qmod[F ] is archimedean. Suppose y(k) is a minimizer of the Relaxation (6.3) for the 
order k. If (6.1) has only finitely many minimizers, then for t big enough, every accumulation point of {y(k) |2t}

∞
k�1 must sat

isfy (6.4).

When Ideal[ceq] + Qmod[F ] is not archimedean, the hierarchy of relaxations (6.3) may not converge. For such a 
case, we refer to the homogenization method in Subsection 4.2 or the method in Mai et al. [42].

Example 6.2. (i) Consider the objectives

f1 � x2
1(x1 � 2)

2
+ (x1 � x2)

2
+ (x2 � x3)

2
+ (x3 � x4)

2,

f2 � �x2
1 � x2

2 � x2
3 � x2

4 + x1x2 + x2x3 + x3x4, 

and the constraint x ≥ 0. We first solve the CSP (5.1) with w1 � w2 � 1 and get the weakly Pareto point x∗ � (0, 0, 0, 0). 
It is not a Pareto point. By solving (6.1), we get the Pareto point (2:000, 2:001, 2:001, 2:001).

(ii) Consider the objectives

f1 � x3
1 � x2

1x2 � x2, f2 � x3
2 � x1x2

2 � x1, 

and the constraint x1x2 ≤ 1. The LSP (4.1) is unbounded below for all weights wi, which is confirmed by a feasible 
point for (4.18). But we are still able to find a Pareto point by solving (6.1) for some given x∗. For instance, for 
x∗ � (�1, �0:5), solving (6.1) gives the Pareto point (1:0000,1:0000).

We can similarly detect whether a given point x∗ ∈ K is a weakly Pareto point or not. Consider the optimization

min max
1 ≤ i ≤ m

(fi(x) � fi(x∗))

s:t: fi(x∗) � fi(x) ≥ 0 (i � 1, : : : , m),
ci(x) � 0 (i ∈ E),
cj(x) ≥ 0 (j ∈ I):

8
>>>><

>>>>:

(6.5) 

Let z∗ be a minimizer of (6.5), if it exists. Then, x∗ is a weakly Pareto point if and only if the optimal value of (6.5) 
is equal to zero. Moreover, if x∗ is not a weakly Pareto point, then one can show that z∗ is a weakly Pareto point. 
By introducing the new variable xn+1, the Optimization (6.5) is equivalent to

min xn+1

s:t: xn+1 � fi(x) + fi(x∗) ≥ 0 (i � 1, : : : , m),
fi(x∗) � fi(x) ≥ 0 (i � 1, : : : , m),
ci(x) � 0 (i ∈ E),
cj(x) ≥ 0 (j ∈ I ):

8
>>>>>><

>>>>>>:

(6.6) 

The optimal value of (6.6) is always less than or equal to zero. A similar hierarchy of moment relaxations like 
(5.5) can be applied to solve (6.6), and a similar convergence result like Theorem 5.1 holds. When the feasible set 
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of (6.5) is unbounded, the Moment-SOS hierarchy may not converge. For such a case, we refer to the homogeni
zation method in Subsection 4.2 or the method in Mai et al. [42].

6.2. Existence of PPs and WPPs
When K is unbounded, we discuss how to detect existence of PPs and WPPs. Consider the min-max optimization

min
x∈K

max
1 ≤ i ≤ m

fi(x): (6.7) 

The following is the existence result. See Subsection 3.1 for π-minimal points.

Theorem 6.3. The Min-Max Optimization (6.7) has the following properties: 
i. If (6.7) is unbounded below, then there is no weakly Pareto point, and, hence, there is no Pareto point. If (6.7) is bounded 

below, then every minimizer of (6.7) (if it exists) is a weakly Pareto point.
ii. Let S be the set of minimizers of (6.7). For each x∗ ∈ S, if f (x∗) is a π-minimal point of the image f(S) for a permutation π 

of (1, : : : , m), then x∗ is a Pareto point. In particular, if S is compact, then there exists a Pareto point.

Proof. (i) If (6.7) is unbounded below, then for every x ∈ K, there exists z ∈ K such that

max
1 ≤ i ≤ m

fi(z) < min
1 ≤ i ≤ m

fi(x):

This implies f (z) < f (x); hence, there is no weakly Pareto point.
Suppose (6.7) is bounded below and it has a minimizer, say, x∗. Then, x∗ must be a weakly Pareto point. If, oth

erwise, there is z ∈ K such that f (z) < f (x∗), then

max
i

fi(z) < max
i

fi(x∗), 

which contradicts that x∗ is a minimizer.
(ii) Suppose f (x∗) is a π-minimal point of f(S). Let z ∈ K be a point such that f (z) ≤ f (x∗). Because x∗ is a mini

mizer of (6.7), one can see that

max
1 ≤ i ≤ m

fi(x∗) ≤ max
1 ≤ i ≤ m

fi(z) ≤ max
1 ≤ i ≤ m

fi(x∗):

This implies that z is also a minimizer of (6.7), so z ∈ S. Because f (x∗) is π-minimal among f(S), f (x∗) ≤ f (z), so 
f (x∗) � f (z), and, hence, x∗ is a Pareto point. When S is compact, the set S must have a π-minimal point, for every 
permutation π of (1, : : : , m), and, hence, (1.1) has a Pareto point, by Proposition 3.1. w

Each optimizer x∗ of (6.7) is a weakly Pareto point. One can solve (6.1) to check whether x∗ is a Pareto point or not. 
If it is not, each minimizer of (6.1) is a Pareto point. We remark that (6.7) can be reformulated as polynomial optimi
zation. By introducing the new variable xn+1, the Optimization (6.7) is equivalent to

min xn+1

s:t: xn+1 ≥ fi(x) (i ∈ [m]),
x ∈ K:

8
><

>:
(6.8) 

The Moment-SOS hierarchy can be applied to solve it. When the set K is unbounded, the feasible set of (6.8) is also 
unbounded. The Moment-SOS hierarchy may not converge. For such a case, we refer to the homogenization 
method in Subsection 4.2 or the method in Mai et al. [42].

Once a minimizer x∗ for (6.8) is obtained, we can solve (6.1) to detect whether it is a Pareto point or not. If it is not, 
we may get a Pareto point by solving (6.1).

Example 6.4. Consider the MOP with objectives

f1 � x3
1 + x3

2 � x3
3 + x2

3x2
4, f2 � x3

2 + x3
3 � x3

4 + x2
4x2

1,

f3 � x3
3 + x3

4 � x3
1 + x2

1x2
2, f4 � x3

4 + x3
1 � x3

2 + x2
2x2

3, 

and with the exterior constraint x3
1 + x3

2 + x3
3 + x3

4 ≥ 1. All f1, f2, f3, f4 are unbounded below on K. The CSP (5.1) does 
not exist because each f ∗

i � �∞. However, solving (6.8) gives the Pareto point (0:6300,0:6300, 0:6300, 0:6300):
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6.3. Nonexistence of WPPs
We discuss how to detect nonexistence of weakly Pareto points, when K is unbounded. Recall that di :� deg(fi). 
Observe that (6.7) is unbounded below if and only if the following optimization is unbounded below:

min xn+1

s:t: �(�xn+1)
di � fi(x) ≥ 0 (i ∈ [m]), x ∈ K:

�

(6.9) 

Let K1 be the feasible set of (6.9), and let its homogenization be (note x̃ :� (x0, x)):

K̃1 :� (x0, x, xn+1)

�(�xn+1)
di � f̃i(x̃) ≥ 0 (i ∈ [m]),

c̃i(x̃) � 0 (i ∈ E),
c̃j(x̃) ≥ 0 (j ∈ I ),

‖x̃‖
2

+ ‖xn+1‖
2

� 1, x0 ≥ 0

�
�
�
�
�
�
�
�
�
�
�

9
>>>>>=

>>>>>;

:

8
>>>>><

>>>>>:

(6.10) 

When K1 is closed at ∞, xn+1 ≥ γ on K1 if and only if xn+1 � γx0 ≥ 0 on K̃1—that is, xn+1 � γx0 ∈ P1(K̃1). So, we con
sider the linear conic optimization

max γ s:t: xn+1 � γx0 ∈ P1(K̃1): (6.11) 
The Optimization (6.7) is unbounded below if and only if (6.11) is infeasible, when K1 is closed at ∞. The dual opti
mization of (6.11) is

min 〈xn+1, y̌〉 s:t: 〈x0, y̌〉 � 1, y̌ ∈ R1(K̃1): (6.12) 

Note that (6.12) is feasible if K is nonempty. So, it is unbounded below if there is a decreasing ray ∆y̌:

〈xn+1, ∆y̌〉 � �1, 〈x0, ∆y̌〉 � 0, ∆y̌ ∈ R1(K̃1): (6.13) 

Because x0 ≥ 0 on K̃1, the equality 〈x0, ∆y̌〉 � 0 implies that every representing measure for ∆y̌ is supported in 
x0 � 0. Therefore, (6.13) is equivalent to

〈xn+1, ∆ỹ〉 � �1, ∆ỹ ∈ R1(K◦
1), (6.14) 

where K◦
1 is the linear section x0 � 0 of K̃1:

K◦
1 :� (x, xn+1)

�(�xn+1)
di � f hom

i (x) ≥ 0 (i ∈ [m]),
chom

i (x) � 0 (i ∈ E),
chom

j (x) ≥ 0 (j ∈ I ),

‖x‖
2

+ x2
n+1 � 1

�
�
�
�
�
�
�
�
�
�
�

9
>>>>>=

>>>>>;

:

8
>>>>><

>>>>>:

(6.15) 

The following is the theorem for nonexistence of WPPs.

Theorem 6.5. Suppose ∆ỹ � λv, with λ > 0 and v ∈ K◦
1, is a feasible point for (6.14). If the point (0, v) ∈ cl(K̃1 ∩ {x0 > 0}), 

then (6.9) and (6.7) must be unbounded below, and, hence, there are no weakly Pareto points.

Proof. The unboundedness of (6.9) is implied by the item (ii) of Theorem A.1, for the case that ghom :� xn+1 and K◦

is replaced by K◦
1. Note that (6.7) is unbounded below if and only if (6.9) is unbounded below. So, (6.7) is also 

unbounded below. By Theorem 6.3, there are no weakly Pareto points. w

The tms ∆ỹ � λv satisfying (6.14) can be obtained by Algorithm A.4 with a minor variation. The only difference is 
to choose a generic R ∈ int(Σ[x, xn+1]2d1 ) and then solve the hierarchy of moment relaxations:

min 〈R, z〉

s:t: 〈xn+1, z〉 � �1,
L(k)

‖(x, xn+1)‖
2
�1

[z] � 0,

L(k)

chom
i

[z] � 0 (i ∈ E),

L(k)

chom
j

[z]�0 (j ∈ I ),

L(k)

hi
[z]�0 (i ∈ [m]),

Mk[z]�0, z ∈ RN
n+1
2k :

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

(6.16) 
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In the above, each hi :� �(�x0)
di � f hom

i (x). The convergence property for the hierarchy of (6.16) is similar to that for 
Theorem A.5.

Example 6.6. Consider the MOP with objectives

f1 � (x1x2 + x3x4)(x1x4 + x2x3) + x2
1 + x2

2 + x2
3 + x2

4,

f2 � x3
1x2

2 + x3
2x2

3 + x3
3x2

4 + x3
4x2

1,

f3 � x4
1 � x4

2 + x4
3 � x4

4 + x1x2x4 + x1x3x4,

f4 � (x1 � x2)(x3 � x4)
2

+ (x1 � x3)(x2 � x4)
2

+ (x1 � x4)(x2 � x3)
2

+ x1x2 + x2x3 + x3x4, 

and with the constraints x1x2x3 ≥ 1, x2x3x4 ≥ 1. Solving the Moment Relaxation (6.16) gives the feasible point ∆ỹ �

3:3597[v]5 with

v � (v1, v2, v3, v4, v5) � (�0:2761, 0:8737, 0:0000, �0:2680, �0:2976):

The set K1 is not closed at infinity, but (0, v) still belongs to cl(K̃1 ∩ {x0 > 0}). This is implied by Lemma A.2
because ∆x � (0, 0, �1, 0, 0)

T satisfies the Condition (A.13). By Theorem 6.5, there is no weakly Pareto point.

6.4. Nonexistence of PPs
When there are no weakly Pareto points, there must exist no Pareto points. So, Theorem 6.5 is also applicable to 
detect nonexistence of Pareto points. However, a Pareto point may not exist while weakly Pareto points exist. This 
section discusses how to detect nonexistence of Pareto points for this case.

We consider the Optimization (6.1) with x∗ ∈ K. A Pareto point exists if and only if (6.1) is bounded below and has 
a minimizer for some x∗ ∈ K. The “if” implication is clear. When x∗ itself is a Pareto point, then x∗ must be a mini
mizer for (6.1). This explains the “only if” implication. Let K(x∗) be the feasible set of (6.1) determined by x∗, and let 
K̃(x∗) be the homogenization of K(x∗) similarly as in (A.2). Suppose K(x∗) is closed at ∞. Then, (6.1) is bounded 
below if and only if f̃e(x̃) � γxd

0 ∈ Pd(K̃(x∗)) for some γ. We consider the linear conic optimization

max γ s:t: f̃e(x̃) � γxd
0 ∈ Pd(K̃(x∗)): (6.17) 

Pareto points do not exist if (6.1) is unbounded below for all x∗ ∈ K. This is equivalent to that (6.17) is infeasible for 
all x∗ ∈ K. The dual optimization of (6.17) is

min 〈f̃e , ỹ〉 s:t: 〈xd
0, ỹ〉 � 1, ỹ ∈ Rd(K̃(x∗)): (6.18) 

By weak duality, (6.17) is infeasible if (6.18) is unbounded below. The Problem (6.18) is feasible for all x∗ ∈ K. There
fore, (6.18) is unbounded below if there is a decreasing ray ∆ỹ:

〈f̃e , ∆ỹ〉 � �1, 〈xd
0, ∆ỹ〉 � 0, ∆ỹ ∈ Rd(K̃(x∗)): (6.19) 

Because x0 ≥ 0 on K̃(x∗), 〈xd
0, ∆y̌〉 � 0 if and only if every representing measure for ∆y̌ is supported in the hyperplane 

x0 � 0. Hence, the existence of ∆ỹ satisfying (6.19) is equivalent to the existence of ∆y̌ satisfying

〈f hom
e , ∆y̌〉 � �1, ∆y̌ ∈ Rd(K̃∗

0), (6.20) 

where f hom
e (x) :� f̃e(0, x) and K∗

0 is the section x0 � 0 of K(x∗):

K∗
0 :� x

chom
j (x) � 0 (j ∈ E),

chom
j (x) ≥ 0 (j ∈ I),

�f hom
i (x) ≥ 0 (i ∈ [m]),

xTx � 1:

�
�
�
�
�
�
�
�
�
�

9
>>>>=

>>>>;

:

8
>>>><

>>>>:

(6.21) 

It is important to observe that K∗
0 and (6.20) do not depend on x∗. If there exists ∆y̌ satisfying (6.20), then (6.1) is 

unbounded below for all x∗ ∈ K, and, hence, there are no Pareto points. This implies the following theorem.
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Theorem 6.7. Suppose K(x∗) is closed at infinity for all x∗ ∈ K. If there is ∆y̌ satisfying (6.20), then (6.1) is unbounded 
below for all x∗ ∈ K, and, hence, Pareto points do not exist.

Theorem 6.7 only shows nonexistence of Pareto points, but it does not imply nonexistence of weakly Pareto 
points. For instance, consider the MOP

min (x1, x2)

s:t: x1 ≥ 0:

�

The tms ∆ỹ :� [(0, �1)]1 satisfies (6.20), so there are no Pareto points. But each (0, x2) is a weakly Pareto point. The 
existence of ∆ỹ satisfying (6.20) can be checked by applying Algorithm A.4 similarly, with the polynomial g1 :� f hom

e 
and the set K∗

0. The properties are summarized in Theorems A.1 and A.5.

Example 6.8. Consider the objectives

f1 � x4
1 + x4

3 + (x1x2)
2

+ (x2x3)
2

+ (x3x4)
2

+ x1x2x3x4,

f2 � x4
1 + x4

2 + x4
3 + x4

4 � 2x4
2 � x3

1x2 � x3
3x4, 

and the constraint x1x2x3x4 ≥ 0. Because f1(0, t, 0, 0) � 0 is the minimum value, the point (0, t, 0, 0) is a weakly Pareto 
point for all t ∈ R. Because all the polynomials are homogeneous, K(x∗) is closed at infinity for all x∗ ∈ K. By Algo
rithm A.4, we get ∆ỹ � 1:0023[u]4 satisfying (6.20), for u � (0:0000, �0:9994,0:0000,0:0339). Hence, there is no 
Pareto point.

7. Conclusions and Discussions
This paper studies multi-objective optimization given by polynomials. We characterize the convex geometry for 
(weakly) Pareto values and give convex representations for them. For LSPs, we show how to use tight relaxations 
to solve them, how to find proper weights, and how to detect nonexistence of proper weights. For CSPs, we show 
how to solve them by moment relaxations. Furthermore, we show how to check whether a given point is a 
(weakly) Pareto point and how to detect existence or nonexistence of (weakly) Pareto points. To detect nonexis
tence of proper weights and (weakly) Pareto points, we also show how to detect unboundedness of polynomial 
optimization.

There are some open questions for studying these topics. To detect nonexistence of (weakly) Pareto points, or to 
detect nonexistence of proper weights, we need to check unboundedness of polynomial optimization. This is dis
cussed in the appendix. A feasible point for the System (A.8) is only a sufficient condition for unboundedness of the 
Optimization (A.1), but it may not be necessary.

Question 7.1. When (A.8) is infeasible, what is a computationally convenient certificate for unboundedness of (A.1)?

Another important question is to detect nonexistence of proper weights. This is discussed in Subsection 4.3. We 
have seen that (4.18) is sufficient for the proper weight set W � ∅, but it may not be necessary.

Question 7.2. When (4.18) does not have a feasible point, how can we detect nonexistence of proper weights?

In Subsections 6.3 and 6.4, we discussed how to detect nonexistence of (weakly) Pareto points. Under certain con
ditions, we have shown that (6.14) implies nonexistence of weakly Pareto points and (6.20) implies nonexistence of 
Pareto points. However, they may not be necessary for nonexistence.

Question 7.3. Beyond (6.14) and (6.20), what are computationally convenient certificates for nonexistence of (weakly) 
Pareto points?

The above questions are mostly open, to the best of the authors’ knowledge. They are interesting future work.

Appendix. Unboundedness in Polynomial Optimization
This section discusses how to detect unboundedness of a polynomial optimization problem. This question is very important for 
detecting nonexistence of proper weights and (weakly) Pareto points in Sections 4 and 6.

For a polynomial g(x) of degree d, consider the optimization

inf g(x) s:t: x ∈ K: (A.1) 

The feasible set K is the same as for (1.1). When K is unbounded, (A.1) may be unbounded below—that is, there exists a sequence 
{uk} ⊆ K such that g(uk) → �∞. We discuss how to detect unboundedness of (A.1). Equivalently, the Problem (A.1) is unbounded 
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below if and only if

inf{g(x) |x ∈ K} � �∞:

The homogenization of the set K is (x̃ :� (x0, x) is the homogenizing variable)

K̃ :� x̃
c̃i(x̃) � 0 (i ∈ E),
c̃j(x̃) ≥ 0 (j ∈ I ),
x̃Tx̃ � 1, x0 ≥ 0

�
�
�
�
�
�
�

9
>=

>;
,

8
><

>:
(A.2) 

where c̃i(x̃) � xdeg(ci)
0 ci(x=x0) is the homogenization of ci(x). The ball constraint x̃Tx̃ � 1 is added to make the set K̃ compact. The 

constraint x0 ≥ 0 ensures that g̃(x̃) � γxdeg(g)

0 ≥ 0 on K̃ implies that g(x) � γ ≥ 0 on K. The set K is said to be closed at ∞ (see Nie 
[47]) if

K̃ � cl({x̃ ∈ K̃ : x0 > 0}):

The closeness of K at ∞ is a genericity condition, as shown in Guo et al. [16]. When K is closed at ∞, the polynomial g(x) � γ is 
nonnegative on K if and only if its homogenization g̃(x̃) � γxdeg(g)

0 is nonnegative on K̃.
The intersection of K̃ and x0 � 0 is

K◦ :� x ∈ Rn
chom

i (x) � 0 (i ∈ E),
chom

j (x) ≥ 0 (j ∈ I ),
xTx � 1,

�
�
�
�
�
�
�

9
>=

>;
,

8
><

>:
(A.3) 

where each chom
i (x) � c̃i(0, x).

A.1. A Certificate for Unboundedness
The Optimization (A.1) is bounded below if and only if g has a lower bound γ on K—that is, g � γ ∈ Pd(K). So, we consider the 
optimization

max γ

s:t: g � γ ∈ Pd(K):

�

(A.4) 

To check infeasibility of (A.4), we use the homogenization trick in Nie [47]. When K is closed at ∞, a polynomial p ≥ 0 on K if and 
only if its homogenization p̃ ≥ 0 on K̃ (see Huang et al. [20] and Nie [47]). So, the membership g � γ ∈ Pd(K) is equivalent to 
g̃ � γxd

0 ∈ Pd(K̃), and, hence, (A.4) is the same as

max γ

s:t: g̃ � γxd
0 ∈ Pd(K̃):

�

(A.5) 

The dual optimization of (A.5) is

min 〈g̃, y〉

s:t: 〈xd
0, y〉 � 1, y ∈ Rd(K̃):

�

(A.6) 

If (A.6) is unbounded below, then (A.5) must be infeasible, which implies that (A.4) is infeasible and (A.1) is unbounded below, 
when K is closed at ∞.

When K ≠ ∅, the Linear Conic Optimization (A.6) has a feasible point. It is unbounded below if there is a decreasing ray ∆y:

〈g̃, ∆y〉 � �1, 〈xd
0, ∆y〉 � 0, ∆y ∈ Rd(K̃): (A.7) 

If ν is a representing measure for ∆y and is supported in K̃, then

0 � 〈xd
0, ∆y〉 �

Z

xd
0dν, 

implies that supp(ν) ⊆ K̃ ∩ {x0 � 0}: Thus, (A.7) is equivalent to

〈ghom, z〉 � �1, z ∈ Rd(K◦), (A.8) 

where K◦ is the set as in (A.3). Let d1 be the degree

d1 :� ⌈d=2⌉: (A.9) 

To check whether (A.8) is feasible or not, we select a generic R ∈ int(Σ[x]2d1 ) and consider the linear moment optimization

min 〈R, z〉

s:t: 〈ghom, z〉 � �1, z ∈ R2d1 (K◦):

�

(A.10) 

The following shows how to detect unboundedness of (A.1).
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Theorem A.1. Let K̃, K◦ be the sets as in (A.2)–(A.3). 
i. Suppose (A.8) is feasible. If R ∈ int(Σ[x]2d1 ) is generic, then (A.10) has a unique optimizer z∗ and z∗ � λ[u]2d1 , with u ∈ K◦ and λ > 0.
ii. Suppose z :� λ[u]d, with u ∈ K◦ and λ > 0, is a feasible point for (A.8). If the point (0, u) ∈ cl(K̃ ∩ {x0 > 0}), then (A.1) is unbounded 

below.

Proof. (i) Because R is generic in the interior int(Σ[x]2d1 ), there exists ɛ > 0 such that

R � ɛ‖[x]d0 ‖
2

∈ Σ[x]2d1 :

Hence, for all z ∈ R2d0 (K◦), it holds that

〈R, z〉 ≥ ɛ〈‖[x]d1 ‖
2, z〉 ≥ ɛ · trace(Md1 [z]):

Because (A.8) is feasible, the Optimization (A.10) is also feasible—say, z(0) is a feasible point. Then, (A.10) is equivalent to

min 〈R, z〉

s:t: trace(Md1 [z]) ≤
1
ɛ

〈R, z(0)〉,

〈f hom, z〉 � �1,
z ∈ R2d1 (K◦):

8
>>>>><

>>>>>:

(A.11) 

The feasible set of (A.11) is compact, so it has an optimizer—say, z∗. When R is generic, the optimizer z∗ must be unique, 
and it is an extreme point of the feasible set of (A.10). Because (A.10) has only a single equality constraint, the optimizer z∗

must lie in an extreme ray of the cone R2d1 (K◦). This means that z∗ � λ[u]2d1 for a point u ∈ K◦ and a scalar λ > 0 (note z∗ is 
nonzero).

(ii) Because (0, u) ∈ cl(K̃ ∩ {x0 > 0}), there is a sequence

{(tk , uk)}
∞
k�1 ⊆ K̃ ∩ {x0 > 0}, 

such that limk→∞(tk, uk) � (0, u). Note that each tk > 0 and

�1 � 〈ghom,λ[u]d〉 � λghom(u) � lim
k→∞
λg̃(tk, uk):

Thus, for k big enough, λg̃(tk, uk) ≤ �1=2 and

λg̃(tk, uk) � λ · (tk)
dg(uk=tk) ≤ �1=2:

This implies that g(uk=tk) ≤ �1=(2λ(tk)
d
) for all k big enough, so g(uk=tk) → �∞ as k → ∞. Because each uk=tk ∈ K, g is 

unbounded below on K. w

In computational practice, the generic polynomial R ∈ int(Σ[x]2d1 ) can be chosen as [x]
T
d1

ATA[x]d1 , for some randomly gener
ated square matrix A.

We remark that the closeness of K at ∞ is a generic condition, as shown in Guo et al. [16]. In Theorem A.1(ii), we use the 
relaxed condition (0, u) ∈ cl(K̃ ∩ {x0 > 0}) instead of the closeness at ∞. For the relaxed condition, we give a sufficient condition 
in Lemma A.2 to check whether it is satisfied.

Lemma A.2. Let K̃, K◦ be the sets as in (A.2) and (A.3) and z :� λ[u]d, with u ∈ K◦ and λ > 0, be a feasible point for (A.8). If there exist 
∆x ∈ Rn and δ0 > 0 such that

chom
i (u + t∆x) > 0 ∀t ∈ (0,δ0), ∀i ∈ C :� {i ∈ E ∪ I |chom

i (u) � 0}, (A.12) 

then (0, u) ∈ cl(K̃ ∩ {x0 > 0}).

Proof. The constraint polynomial c̃i(x0, x) can be rewritten as

c̃i(x0, x) � chom
i (x) + x0hi(x0, x), 

for some polynomial hi(x0, x). When i ∈ C, it satisfies the Condition (A.12). When i ∉ C, it holds that chom
i (u) > 0. Therefore, there 

are M> 0 and 0 < δ < δ0 such that

chom
i (u + t∆x) > 0 and hi(x0, x) > �M, 

for all δ > x0, t > 0 and i ∈ E ∪ I . Let {tk}
∞
k�1 be a sequence such that limk→∞ tk � 0 and δ > tk > 0 for all k. For each k, we define

sk :� min δ

2k
, chom

i (u + tk∆x)

2M

� �

i∈E∪I

� �

> 0:
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For all i ∈ E ∪ I , it holds that

c̃i(sk, u + tk∆x) � chom
i (u + tk∆x) + skhi(sk, u + tk∆x)

≥ chom
i (u + tk∆x) +

chom
i (u + tk∆x)

2M (�M)

≥
1
2 chom

i (u + tk∆x)

> 0:

For convenience, we denote

ũk :� (sk, u + tk∆x)=‖(sk, u + tk∆x)‖:

Each c̃i is homogeneous, so c̃i(ũk) > 0 by above inequalities. It implies ũk ∈ K̃. The construction of sequences ensures

lim
k→∞

sk � lim
k→∞

tk � 0:

Thus, limk→∞ ũk � (0, u). So, it shows that (0, u) ∈ cl(K̃ ∩ {x0 > 0}). w

The Sufficient Condition (A.12) in Lemma A.2 requires that ∆x is an increasing direction for chom
i (x) at x � u for i ∈ C. It can be 

checked numerically by gradients and Hessian matrices. We denote C0 � {i ∈ C |∇chom
i (u) � 0} and C1 � {i ∈ C |∇chom

i (u) ≠ 0}. The 
direction ∆x satisfies the condition in (A.12) if it satisfies

∆xT∇2chom
i (u)∆x > 0 ∀i ∈ C0,

∇chom
i (u)

T
∆x > 0 ∀i ∈ C1:

(

(A.13) 

It can be formulated as the following quadratic optimization problem
max
∆x, a

a

s:t: ∆xT∇2chom
i (u)∆x ≥ a ∀i ∈ C0,

∇chom
i (u)

T
∆x ≥ a ∀i ∈ C1,

‖∆x‖
2

≤ 1:

8
>>>>><

>>>>>:

(A.14) 

There exists a direction ∆x satisfying (A.13) if and only if the Problem (A.14) has the maximum a∗ > 0. The Problem (A.14) can be 
solved as a polynomial optimization problem.

Example A.3. Consider the following optimization problem

min g(x) :� x2
1 + x2

2 + x2
3 + x1x2x3

s:t: c(x) :� x2
1x2

2(x2
1 + x2

2) + x6
3 � 3x2

1x2
2x2

3 � 1 � 0:

(

Note that ghom � x1x2x3 and a feasible point of (A.8) is the tms 3
ffiffiffi
3

√
[u]6, for u � (1, 1, �1)=

ffiffiffi
3

√
. One can check that ∇chom(u) � 0 and 

eT∇2chom(u)e > 0 for e � (1, 1, 1)
T. It demonstrates (0, u) lies on the closure cl(K̃ ∩ {x0 > 0}), so this optimization problem is 

unbounded below.
When (A.6) is unbounded below, it is not necessary that (A.6) has a decreasing ray—that is, the System (A.8) may be infeasible. 

That is, (A.8) is sufficient for unboundedness of (A.1), but it may not be necessary. For instance, consider the optimization

min g(x) :� x1x2x3 + x2
1x2

2(x2
1 + x2

2) + x6
3 � 3x2

1x2
2x2

3

s:t: x2
1 + x2

2 � 2x2
3 � 0, x1x2 ≥ 0:

(

It is unbounded below, because g(t, t, �t) � �t3 → �∞ as t → +∞ and (t, t, �t) is feasible for all t ≥ 0. However, the Certificate 
(A.8) is infeasible. This is because

ghom � x2
1x2

2(x2
1 + x2

2) + x6
3 � 3x2

1x2
2x2

3, 

is the Motzkin polynomial, and 〈ghom, z〉 ≥ 0 for all z ∈ Rd(K◦). When (A.8) fails to be feasible, the question of detecting unbound
edness of (A.1) is mostly open.

A.2. Solving Linear Moment Systems
Semidefinite relaxations can be applied to solve (A.8) and (A.10). For more generality, we consider the moment system

ai ≥ 〈gi, z〉 (i � 1, : : : , m), z ∈ Rd(K◦), (A.15) 
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for given polynomials g1, : : : , gm ∈ R[x]d and given scalars a1, : : : , am ∈ R. It is worthy to note that in (A.8) and (A.10), the equality 
is equivalent to the inequality like the above, due to the conic membership condition.

Select a generic R ∈ int(Σ[x]2d1 ) and consider the moment optimization

min 〈R, z〉

s:t: ai � 〈gi, z〉 ≥ 0 (i ∈ [m]),
z ∈ R2d1 (K◦):

8
><

>:
(A.16) 

Let d2 :� max{d1, dc}, where dc is as in (2.7). For k � d2, d2 + 1, : : : , we solve the hierarchy of semidefinite relaxations

min 〈R, z〉

s:t: ai � 〈gi, z〉 ≥ 0 (i � 1, : : : , m),
L(k)

chom
i

[z] � 0 (i ∈ E),

L(k)

chom
j

[z]�0 (j ∈ I ),

L(k)

xTx�1[z] � 0,
Mk[z]�0, z ∈ RN

n
2k :

8
>>>>>>>>>>><

>>>>>>>>>>>:

(A.17) 

Suppose z(k) is a minimizer of (A.17) for a relaxation order k. If there is an integer t ∈ [dc, k] such that the Rank Condition (2.6) 
holds, then the truncation z(k) |2t has a r-atomic representing measure supported in K◦—that is,

z(k) |2t � λ1[u1]2t + ⋯ +λr[ur]2t, 

for scalars λ1, : : : ,λr > 0, distinct points u1, : : : , ur ∈ K◦ and r � rank Mt[z(k)]. Then, the truncation z(k) |d is a feasible point for 
(A.15).

Algorithm A.4 Let k :� d2. Do the following loop: 
Step 1. Solve the Semidefinite Relaxation (A.17) for a minimizer z(k).
Step 2. Check if there exists t ∈ [dc, k] such that (2.6) holds. If it does, then the truncation z(k) |d is a feasible point for (A.8).
Step 3. If (2.6) fails for all t ∈ [dc, k], let k :� k + 1 and go to Step 1.

Algorithm A.4 can be implemented in the software GloptiPoly 3 (Henrion et al. [19]). The following is the convergence prop
erty for the hierarchy of Relaxations (A.17).

Theorem A.5. Assume the System (A.15) is feasible and R ∈ int(Σ[x]2d1 ) is generic. Then, we have: 
i. The Optimization (A.16) has a unique minimizer z∗ and

z∗ � λ1[u1]2d1 + ⋯ +λr[ur]2d1 (A.18) 

for scalars λ1, : : : ,λr > 0, distinct points u1, : : : , ur ∈ K◦ and r ≤ m.
ii. For each fixed t ≥ d1, the sequence {z(k) |2t}

∞
k�d2 

is bounded, and every accumulation point z∗∗ of {z(k) |2t}
∞
k�d2 

satisfies z∗ � z∗∗ |2d1 .

Proof. (i) As in the proof for item (i) of Theorem A.1, the trace of Md1 [z] can be bounded by a constant. Similarly, it implies that 
(A.16) has a minimizer z∗. The minimizer z∗ is unique because the objective 〈R, z〉 is linear in z and has generic coefficients. The 
membership z∗ ∈ R2d1 (K◦) implies that z∗ has a decomposition like (A.18). We only need to show that r ≤ m. Consider the follow
ing linear program in (τ1, : : : ,τr):

min τ1R(u1) + ⋯ +τrR(ur)

s:t: �1 ≥
Xr

j�1
τjgi(uj), i � 1, : : : , m,

τ1 ≥ 0, : : : ,τr ≥ 0:

8
>>><

>>>:

(A.19) 

Note that (A.17) and (A.19) have the same optimal value. Because it is a linear program, (A.19) has a minimizer τ∗ � (τ∗
1, : : : ,τ∗

r)

of at most m nonzero entries (see Bertsimas and Tsitsiklis [4]). This implies that the number r in (A.18) can be chosen to be at 
most m.

(ii) Because R lies in the interior of Σ[x]2d1 , there is ɛ > 0 such that R � ɛ ∈ Σ[x]2d1 . Then, the constraint Mk[z]�0 implies that

〈R, z〉 � ɛ(z)0 � 〈R � ɛ, z〉 ≥ 0:

So, we get that (z)0 ≤ 〈R, z〉=ɛ. The optimal value of (A.17) is always less than or equal to that of (A.10). Therefore, the sequence 
{(z(k))0}

∞
k�d2 

is bounded. Moreover, the constraint L(k)

xTx�1[z] � 0 implies that

(z)2α � (z)2e1+2α+ ⋯ + (z)2en+2α ≥ max((z)2e1+2α, : : : , (z)2en+2α), 

for all monomial powers α. The diagonal entries of the positive semidefinite moment matrix Mk[z] are precisely the entries (z)2β 
for powers β. This implies that the sequence {(z(k))2β}

∞
k�d2 

is bounded for all powers β. Therefore, for each fixed t ≥ d1, the 
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sequence of each diagonal entry of Mt[z(k)] is bounded, and so is the truncated sequence {z(k) |2t}
∞
k�d2

. Let Hk be the set of feasible 
points z in (A.17) for the relaxation order k, except the first m inequalities. Denote the truncation:

Gk :� {z |2t : z ∈ Hk}:

Then, Gk+1 ⊆ Gk for all k. Because there is a sphere constraint xTx � 1, the quadratic module for the set K◦ is archimedean, so (see 
proposition 3.3 of Nie [50])

R2t(K◦) �
\∞

k�d2

Gk:

If z∗∗ is an accumulation point of {z(k) |2t}
∞
k�d2

, then z∗∗ ∈ Gk for all k, and, hence, z∗∗ ∈ R2t(K◦). Note that the truncation z∗∗ |2d1 is also 
a minimizer of (A.16). Because the minimizer is unique, we must have z∗ � z∗∗ |2d1 . w

The Optimization (A.16) is a linear conic optimization problem with the moment cone. It can also be viewed as a generalized 
moment problem. When the constraining set is compact, we refer to Lasserre [30] and Nie [50] for how to solve it; when the set is 
unbounded, we refer to the recent works Huang et al. [20] and Huang et al. [21].

Endnote
1 Throughout the paper, all computational results are displayed with four decimal digits.
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