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Abstract. This paper studies Nash equilibrium problems that are given by polynomial 
functions. We formulate efficient polynomial optimization problems for computing Nash 
equilibria. The Moment-sum-of-squares relaxations are used to solve them. Under generic 
assumptions, the method can find a Nash equilibrium, if there is one. Moreover, it can find 
all Nash equilibria if there are finitely many ones of them. The method can also detect non
existence if there is no Nash equilibrium.
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1. Introduction
The Nash equilibrium problem (NEP) is a kind of game for finding strategies for a group of players such that 
each player’s objective is optimized, given other players’ strategies. Suppose there are N players, and the ith 
player’s strategy is the variable xi ∈ Rni (the ni-dimensional real Euclidean space). We denote that

xi :� (xi, 1, : : : , xi, ni ), x :� (x1, : : : , xN):

The total dimension of all players’ strategies is

n :� n1+ ⋯ +nN:

When the ith player’s strategy xi is being optimized, we use x�i to denote the subvector of all players’ strategies 
except xi—that is,

x�i :� (x1, : : : , xi�1, xi+1, : : : , xN), 

and write x � (xi, x�i) accordingly. When the writing x�i appears, the ith player’s strategy is being considered for 
optimization, while the vector of all other players’ strategies is fixed to be x�i. In an NEP, the ith player’s best 
strategy xi is the minimizer for the optimization problem

Fi(x�i) :

min
xi∈Rni

fi(xi, x�i)

s:t: gi, j(xi) � 0 ( j ∈ Ei),
gi, j(xi) ≥ 0 ( j ∈ I i),

8
>><

>>:

(1.1) 

for the given other players’ strategies x�i. In the above, fi is the ith player’s objective function, and gi, j are con
straining functions in xi. The Ei and I i are disjoint labeling sets of finite cardinalities (possibly empty). The feasi
ble set of the optimization Fi(x�i) in (1.1) is

Xi :� {xi ∈ Rni : gi, j(xi) � 0 ( j ∈ Ei), gi, j(xi) ≥ 0 ( j ∈ I i)}: (1.2) 

For NEPs, each set Xi does not depend on x�i. This is different from generalized Nash equilibrium problems 
(GNEPs), where each player’s feasible set depends on other players’ strategies. We say the strategy vector x is 
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feasible if
x � (x1, : : : , xN) ∈ X :� X1 ×⋯× Xn:

That is, each xi ∈ Xi. The NEP can be formulated as
find x∗ ∈ Rn such that each x∗

i is a minimizer of Fi(x∗
�i), (1.3) 

where x∗ � (x∗
1, : : : , x∗

N). A solution of (1.3) is called a Nash equilibrium (NE).1 When the defining functions fi and gi,j 
are continuous, then the NEP is called a continuous Nash equilibrium problem. In this paper, we consider cases that 
each fi is a polynomial in x and gi,j‘s are polynomials in xi. Such an NEP is called a Nash equilibrium problem of poly
nomials (NEPP). The following is an example.

Example 1.1. Consider the two-player NEP with the individual optimization

1st player :

min
x1∈R2

x1, 1(x1, 1 + x2, 1 + 4x2, 2) + 2x2
1, 2

s:t: 1 � (x1, 1)
2

� (x1, 2)
2

≥ 0,

8
<

:

2nd player :

min
x2∈R2

x2, 1(x1, 1 + 2x1, 2 + x2, 1) + x2, 2(2x1, 1 + x1, 2 + x2, 2)

s:t: 1 � (x2, 1)
2

� (x2, 2)
2

≥ 0:

8
<

:

In this NEP, each player’s objective is strictly convex with respect to its strategy because their Hessian matrices 
with respect to their own strategies are positive definite. This NEP has only three NEs (see Section 3.3), which 
are

1st NE : x∗
1 � (0, 0), x∗

2 � (0, 0);

2nd NE : x∗
1 � (1, 0), x∗

2 �
1
ffiffiffi
5

√ (�1, � 2);

3rd NE : x∗
1 � (�1, 0), x∗

2 �
1
ffiffiffi
5

√ (1, 2):

NEPs are challenging problems to solve. Even for the special cases where each player’s objective function is mul
tilinear in (x1, : : : , xN), and each feasible set is a simplex, finding an NE is Polynomial Parity Arguments on 
Directed Graphs-complete (Daskalakis et al. [8]). The problem becomes more difficult when players’ optimiza
tion problems are nonconvex. This is because an NE x∗ � (x∗

1, : : : , x∗
N) requires that each x∗

i is a global minimizer of 
Fi(x∗

�i). Indeed, finding a global minimizer of a single polynomial optimization problem is already NP-hard (Las
serre [28]). For polynomial optimization problems, global optimizers can be computed efficiently by the 
Moment-sum-of-squares (Moment-SOS) hierarchy of semidefinite relaxations (see Lasserre [26], Lasserre [28], 
and Laurent [30] for related work). Moreover, for some NEPs, there may not exist any NE. Such NEPs are also 
interesting and have important applications (e.g., NEPs in generative adversarial networks; Farnia and Ozdaglar 
[12]). If an NE does not exist, how can we detect its nonexistence? This question is mostly open for general NEPs, 
to the best of the author’s knowledge. However, under certain nonsingularity conditions, nonexistence of NEs 
for NEPPs can be certified by the infeasibility of some semidefinite programs. For the above reasons, this paper 
focuses on NEPPs.

NEPs are generalizations of finite games (Nash [33]), where each Xi is a finite set—that is, |Xi | < ∞. In recent 
years, there has been an increasing number of applications of NEPs in various fields, such as economics, environ
mental protection, politics, supply chain management, machine learning, etc. We refer to Breton et al. [4], Con
treras et al. [6], Farnia and Ozdaglar [12], Goodfellow et al. [14], Maskin [32], and Schofield and Sened [53] for 
some recent applications of NEPs. In Section 5, we present some concrete applications of NEPs in environmental 
pollution control and the electricity market. Moreover, we refer to surveys Aubin [3] and Young and Zamir [63] 
for more general work on NEPs.

In this paper, our primary goal is to find NEs for NEPs. In the following, we review some previous work on solv
ing NEPs. The NEP is called a zero-sum game if the sum of objective functions is identically equal to a constant. 
Two-player zero-sum games are equivalent to saddle-point problems. We refer to Chen et al. [5] and Nedić and Ozda
glar [34] for algorithms of solving saddle-point problems under convexity assumptions and Nie et al. [48] for the 
method of solving nonconvex polynomial saddle-point problems. For finite games, finding mixed-strategy solu
tions is a special case of NEPs of polynomials; see Ahmadi and Zhang [2], Datta [9], Kontogiannis et al. [21], and 
Young and Zamir [63] for some related approaches. There exists work on mixed-strategy solutions for continuous 
games; see Dresher et al. [10], Parrilo [49], and Stein et al. [56] for mixed-strategy solutions to polynomial games 
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and Adam et al. [1] and Kroupa and Votroubek [23] for the recently developed multiple oracle algorithms. For find
ing pure strategy solutions for general continuous NEPs, we refer to techniques such as variational inequalities 
(Gürkan and Pang [15] and Kulkarni and Shanbhag [24]), Nikaido-Isosoda functions (Krawczyk and Uryasev [22], 
Uryas’ev and Rubinstein [58]), and manifold optimization tools (Ratliff et al. [52]). In most earlier work, convexity is 
often assumed for each player’s optimization. Moreover, NEPs are special cases of GNEPs (Facchinei and Kanzow 
[11]), where each player’s feasible set is dependent on other players’ strategies. For GNEPs given by polynomial 
functions, the work Couzoudis and Renner [7] introduces a parametric SOS relaxation approach, and the Gauss- 
Seidel method using Moment-SOS relaxations is studied in Nie et al. [47]. When the GNEPs are further assumed to 
be convex, the semidefinite relaxation method is introduced in Nie and Tang [45]. At the moment, it is mostly an 
open question to solve general NEPs, especially when the players’ optimization problems are nonconvex.

1.1. Contributions
This paper focuses on Nash equilibrium problems that are given by polynomials. We formulate efficient polyno
mial optimization for computing one or more Nash equilibria. The Moment-SOS hierarchy of semidefinite 
relaxations is used to solve the appearing polynomial optimization problems. Our major results are: 

• Under some genericity assumptions, we prove that our method can compute a Nash equilibrium if there exists 
one, or it can detect nonexistence of NEs. Moreover, if there are only finitely many NEs, we show how to find all of 
them. In the prior existing work, there do not exist similar methods that can achieve such computational goals.

• When the objective and constraining polynomials are generic (i.e., they have generic coefficients), we show 
that the NEPP has only finitely many KKT points. For such generic NEPPs, our method can compute all NEs, if 
they exist, or can detect their nonexistence.

• When the objective and constraining polynomials are not generic, our method can still be applied to compute 
one or more NEs, or to detect their nonexistence. Even if there are infinitely many NEs, our method may still be 
able to get an NE. In computational practice, there is no need to check whether the NEP is generic or not to imple
ment our algorithms. In fact, our method is self-verifying, that in the actual implementation, the algorithm can 
check whether the computed point is an NE and check whether the computed solution set is complete or not.

The paper is organized as follows. Some preliminaries about polynomial optimization are given in Section 2. 
We give efficient polynomial optimization formulations in Section 3. We show how to solve polynomial optimi
zation problems by the Moment-SOS hierarchy in Section 4. Numerical experiments and applications are given 
in Section 5. Conclusions and discussions are proposed in Section 6. The finiteness of the KKT set for generic 
NEPs is shown in the appendix.

2. Preliminaries
2.1. Notation
The symbol N [respectively (resp.), R, C] stands for the set of nonnegative integers (resp., real numbers, complex 
numbers). For a positive integer k, denote the set [k] :� {1, : : : , k}. For a real number t, ⌈t⌉ (resp., ⌊t⌋) denotes the 
smallest integer not smaller than t (resp., the biggest integer not bigger than t). For the ith player’s strategy vari
able xi ∈ Rni , the xi, j denotes the jth entry of xi, j � 1, : : : , ni. The R[x] (resp., C[x]) denotes the ring of polynomials 
with real (resp., complex) coefficients in x. The R[x]d (resp., C[x]d) denotes its subset of polynomials whose 
degrees are not greater than d. For the ith player’s strategy vector xi, the notations R[xi], C[xi], R[xi]d, C[xi]d are 
defined in the same way. For the ith player’s objective fi(xi, x�i), the notations ∇xi fi, ∇2

xi
fi, respectively, denote its 

gradient and Hessian with respect to xi.
In the following, we use the letter z to represent either x or xi for the convenience of discussion. Suppose z :�

(z1, : : : , zl) and α :� (α1, : : : ,αl) ∈ Nl; denote

zα :� zα1
1 ⋯ zαl

l , |α | :� α1+ ⋯ +αl:

For an integer d > 0, denote the monomial power set

Nl
d :� {α ∈ Nl : |α | ≤ d}:

We use [z]d to denote the vector of all monomials in z and whose degree is at most d, ordered in the graded 
alphabetical ordering. For example, if z � (z1, z2), then

[z]3 � (1, z1, z2, z2
1, z1z2, z2

2, z3
1, z2

1z2, z1z2
2, z3

2):

Throughout the paper, the word “generic” is used for a property if it holds for all points outside a set of Lebes
gue measure zero in the space of input data. For a given multidegree (d1, : : : , dN) (resp., a degree d) in the variable 
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x � (x1, : : : , xN) (resp., in variable xi), we say a polynomial p(x) (resp., q(xi)) is generic if the coefficient vector of p 
(resp., q) is generic in the space of coefficients. For multidegrees a1, : : : , aN and degrees b1, 1, b1, 2, : : : , b1, m1 , b2, 1, 
: : : , bN, mN , we say the NEPP is generic if for each i and j, the fi(x1, : : : , xN) is a generic polynomial with multidegree 
ai, and the gi, j(xi) is a generic polynomial whose degree is bi, j.

2.2. Ideals and Positive Polynomials
Let F � Ror C. For a polynomial p ∈ F[z] and subsets I, J ⊆ F[z], define the product and Minkowski sum

p · I :� {pq : q ∈ I}, I + J :� {a + b : a ∈ I, b ∈ J}:

The subset I is an ideal if p · I ⊆ I for all p ∈ F[z] and I + I ⊆ I. For a tuple of polynomials q � (q1, : : : , qm), the set
Ideal[q] :� q1 ·F[z]+ ⋯ +qm ·F[z], 

is the ideal generated by q, which is the smallest ideal containing each qi.
We review basic concepts in polynomial optimization. A polynomial σ ∈ R[z] is said to be a sum of squares if 

σ � s2
1 + s2

2+ ⋯ +s2
t for some polynomials s1, : : : , st ∈ R[z]. The set of all SOS polynomials in z is denoted as Σ[z]. 

For a degree k, we denote the truncation
Σ[z]2k :� Σ[z] ∩ R[z]2k:

For a tuple g � (g1, : : : , gt) of polynomials in z, its quadratic module is the set
Qmod[g] :� Σ[z] + g1 ·Σ[z]+ ⋯ +gt ·Σ[z]:

Similarly, we denote the truncation of Qmod(g)

Qmod[g]2k :� Σ[z]2k + g1 ·Σ[z]2k�deg(g1)+ ⋯ +gt ·Σ[z]2k�deg(gt):

The tuple g determines the basic closed semialgebraic set

S(g) :� {z ∈ Rl : g(z) ≥ 0}: (2.1) 

For a tuple h � (h1, : : : , hs) of polynomials in R[z], its real zero set is

Z(h) :� {u ∈ Rl : h1(u) �⋯� hs(u) � 0}:

The set Ideal[h] + Qmod[g] is said to be archimedean if there exists ρ ∈ Ideal[h] + Qmod[g] such that the set S(ρ)

is compact. If Ideal[h] + Qmod[g] is archimedean, then Z(h) ∩ S(g) must be compact. Conversely, if Z(h) ∩ S(g)

is compact—say, Z(h) ∩ S(g) is contained in the ball R � ‖z‖
2

≥ 0—then Ideal[h] + Qmod[g, R � ‖z‖
2
] is archime

dean and Z(h) ∩ S(g) � Z(h) ∩ S(g, R � ‖z‖
2
). Clearly, if f ∈ Ideal[h] + Qmod[g], then f ≥ 0 on Z(h) ∩ S(g). The 

reverse is not necessarily true. However, when Ideal[h] + Qmod[g] is archimedean, if f > 0 on Z(h) ∩ S(g), then 
f ∈ Ideal[h] + Qmod[g]. This conclusion is referenced as Putinar’s [50] Positivestellensatz. Interestingly, if f ≥ 0 
on Z(h) ∩ S(g), we also have f ∈ Ideal[h] + Qmod[g], under some standard optimality conditions (Nie [40]).

2.3. Localizing and Moment Matrices
Let RN

l
2k denote the space of all real vectors that are labeled by α ∈ Nl

2k. Each y ∈ RN
l
2k is labeled as

y � (yα)α∈Nl
2k

:

Such y is called a truncated multisequence (tms) of degree 2k. For a polynomial f �
P
α∈Nl

2k
fαzα ∈ R[z]2k, define the 

operation

〈f , y〉 �
X

α∈Nl
2k

fαyα: (2.2) 

The operation 〈f , y〉 is a bilinear function in (f, y). For a polynomial q ∈ R[z] with deg(q) ≤ 2k and the integer
t � k � ⌈deg(q)=2⌉, 

the outer product q · [z]t([z]t)
T is a symmetric matrix polynomial in z, with length n + t

t

� �

. We write the expan
sion as

q · [z]t([z]t)
T

�
X

α∈Nl
2k

zαQα, 
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for some symmetric matrices Qα. Then, we define the matrix function

L(k)
q [y] :�

X

α∈Nl
2k

yαQα: (2.3) 

It is called the kth localizing matrix of q and generated by y. For given q, L(d)
q [y] is linear in y. Clearly, if q(u) ≥ 0 

and y � [u]2k, then
L(k)

q [y] � q(u)[u]t[u]
T
t ≽ 0:

For instance, if l � k � 2 and q(z) � 1 � z1 � z1z2, then

L(2)
q [y] �

y00 � y10 � y11 y10 � y20 � y21 y01 � y11 � y12

y10 � y20 � y21 y20 � y30 � y31 y11 � y21 � y22

y01 � y11 � y12 y11 � y21 � y22 y02 � y12 � y13

2

6
4

3

7
5:

When q is the constant one polynomial, the localizing matrix L(k)

1 [y] reduces to a moment matrix, which we denote as

Mk[y] :� L(k)

1 [y]: (2.4) 

For instance, for n � 2 and y ∈ RN
2
4 , we have M0[y] � [y00],

M1[y] �

y00 y10 y01

y10 y20 y11

y01 y11 y02

2

4

3

5, M2[y] �

y00 y10 y01 y20 y11 y02

y10 y20 y11 y30 y21 y12

y01 y11 y02 y21 y12 y03

y20 y30 y21 y40 y31 y22

y11 y21 y12 y31 y22 y13

y02 y12 y03 y22 y13 y04

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

:

Localizing and moment matrices are basic tools to formulate semidefinite relaxations for polynomial optimiza
tion problems. They are important tools for solving polynomial, matrix, and tensor optimization problems (Hil
lar and Nie [20], Nie [35], Nie [36], Nie [41], Nie and Zhang [46]).

2.4. Optimality Conditions for NEPs
Consider the ith player’s individual optimization problem Fi(x�i) in (1.1), for given x�i. Suppose Ei ∪ I i � [mi] for 
some mi ∈ N. For convenience, we write the constraining functions as

gi(xi) :� (gi, 1(xi), : : : , gi, mi (xi)):

Suppose x � (x1, : : : , xN) is an NE. Under linear independence constraint qualification condition (LICQC) at xi— 
that is, the set of gradients for active constraining functions are linearly independent—there exist Lagrange mul
tipliers λi, j such that

Xmi

j�1
λi, j∇xi gi, j(xi) � ∇xi fi(x),

0 ≤ λi, j ⊥ gi, j(xi) ≥ 0 ( j ∈ I i):

8
>><

>>:

(2.5) 

In the above, λi, j ⊥ gi, j(xi) means that λi, j · gi, j(xi) � 0. The system (2.5) is called the KKT conditions for the optimi
zation Fi(x�i). We say a point x ∈ Rn is a KKT point if there exist vectors of Lagrange multipliers λ1, : : : ,λN such 
that (2.5) holds. For the NE x, if the LICQC of Fi(x�i) holds at xi for every i ∈ [N], then x must be a KKT point. 
Moreover, if each player’s optimization problem is convex—that is, the fi(xi, x�i) is convex in xi for all x�i ∈ X1 ×

⋯× Xi�1 × Xi+1 ×⋯× XN—and every Xi is a convex set, then all KKT points are NEs (Facchinei and Kanzow [11, 
theorem 4.6]).

Example 2.1. Consider the two-player NEP in Example 1.1. Each individual optimization is strictly convex, 
because Hessian matrices ∇2

x1
f1 and ∇2

x2
f2 are positive definite. The constraints are the convex ball conditions. The 

KKT system is
2x1, 1 + x2, 1 + 4x2, 2 � �2λ1x1, 1, 4x1, 2 � �2λ1x1, 2,
x1, 1 + 2x1, 2 + 2x2, 1 � �2λ2x2, 1, 2x1, 1 + x1, 2 + 2x2, 2 � �2λ2x2, 2,
λ1(1 � (x1, 1)

2
� (x1, 2)

2
) � 0,λ2(1 � (x2, 1)

2
� (x2, 2)

2
) � 0,

1 � (x1, 1)
2

� (x1, 2)
2

≥ 0, 1 � (x2, 1)
2

� (x2, 2)
2

≥ 0,
λ1 ≥ 0,λ2 ≥ 0:

8
>>>>>>><

>>>>>>>:

(2.6) 
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By solving the above directly, one can show that this NEP has only three KKT points, together with Lagrange 
multipliers as follows:

Nash equilibrium Lagrange multiplier
x∗

1 � (0, 0), x∗
2 � (0, 0), λ∗

1 � λ∗
2 � 0;

x∗
1 � (1, 0), x∗

2 �
1
ffiffiffi
5

√ (�1, � 2), λ∗
1 �

9
ffiffiffi
5

√

10 � 1, λ∗
2 �

ffiffiffi
5

√

2 � 1;

x∗
1 � (�1, 0), x∗

2 �
1
ffiffiffi
5

√ (1, 2), λ∗
1 �

9
ffiffiffi
5

√

10 � 1, λ∗
2 �

ffiffiffi
5

√

2 � 1:

All these KKT points are NEs because the NEP is convex. Furthermore, because for each i � 1, 2, the LICQC of 
Fi(x�i) holds for all x ∈ X, these NEs are all solutions to the NEP. This is very different from a single convex opti
mization problem, where the set of minimizers, if it is nonempty, must be a singleton or have an infinite cardinal
ity if the objective function is convex, and the minimizer has to be unique if the objective function is further 
assumed to be strictly convex.

However, the KKT point may not be an NE of the NEP when there is no convexity assumed. This is because 
the KKT Condition (2.5) is typically not sufficient for xi to be a minimizer of Fi(x�i), which makes nonconvex 
NEPs quite difficult to solve. In this paper, we mainly focus on finding NEs for nonconvex NEPs of polynomials.

3. Polynomial Optimization Formulations
In this section, we show how to formulate efficient polynomial optimization problems for solving the NEPP 
(1.3). We first introduce the polynomial expressions for Lagrange multipliers in Section 3.1. Then, in Section 3.2, 
polynomial optimization problems are formulated for finding NEs, and an algorithm to solve nonconvex NEPs 
is proposed. Convex NEPs of polynomials are studied in Section 3.3. Last, we further extend our approach to 
find more NEs in Section 3.4.

3.1. Optimality Conditions and Lagrange Multiplier Expressions
For the NEP (1.3), if x is an NE where the LICQC is satisfied, then it must be a KKT point—that is, x satisfies (2.5) 
for all i ∈ [N]. Therefore, every NE must satisfy the following equation system:

∇xi gi, 1(xi) ∇xi gi, 2(xi) ⋯ ∇xi gi, mi (xi)

gi, 1(xi) 0 ⋯ 0
0 gi, 2(xi) ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ gi, mi (xi)

2

6
6
6
4

3

7
7
7
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Gi(xi)

λi, 1

λi, 2

⋮
λi, mi

2

6
4

3

7
5

|fflfflffl{zfflfflffl}
λi

�

∇xi fi(x)

0
⋮
0

2

6
4

3

7
5

|fflfflfflfflffl{zfflfflfflfflffl}
f̂ i(x)

: (3.1) 

If there exists a matrix polynomial Hi(xi) such that
Hi(xi)Gi(xi) � Imi , (3.2) 

then we can express λi as

λi � Hi(xi)Gi(xi)λi � Hi(xi)f̂ i(x):

Interestingly, the matrix polynomial Hi(xi) satisfying (3.2) exists under the nonsingularity condition on gi. The 
polynomial tuple gi is said to be nonsingular if Gi(xi) has full column rank for all xi ∈ Cni (Nie [42]). It is a generic 
condition (Nie and Ranestad [44, proposition 2.1]). We remark that if gi is nonsingular, then the LICQC holds at 
every minimizer of (1.1), so there must exist λi, j satisfying (2.5), and we can express λi, j as

λi, j � λi, j(x) :� (Hi(xi)f̂ i(x))j, (3.3) 

for all NEs. For example, we consider the following two cases: 
• For the constraint {xi ∈ Rni :

Pni
j�1 xi, j ≤ 1, xi ≥ 0}, the constraining polynomials are

gi, 0 � 1 �
Xni

j�1
xi, j, gi, 1 � xi, 1, : : : , gi, ni � xi, ni :

Nie and Tang: Nash Equilibrium Problems of Polynomials 
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If we let

Hi(xi) �

1 � xi, 1 �xi, 2 : : : �xi, ni 1 : : : 1
�xi, 1 1 � xi, 2 : : : �xi, ni 1 : : : 1

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
�xi, 1 �xi, 2 : : : 1 � xi, ni 1 : : : 1
�xi, 1 �xi, 2 : : : �xi, ni 1 : : : 1

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

, 

then one may check that the (3.2) holds. The Lagrange multipliers λi, j can be accordingly represented as

λi, 0 � �xT
i ∇xi fi, λi, j �

∂fi

∂xi, j
� xT

i ∇xi fi, j � 1, : : : , ni: (3.4) 

• For the sphere constraint 1 � xT
i xi � 0 or the ball constraint 1 � xT

i xi ≥ 0, the constraining polynomial is 
gi, 1 � 1 � xT

i xi. If we let

Hi(xi) � �
1
2 xi, 1 �

1
2 xi, 2 : : : �

1
2 xi, ni 1

� �

, 

then one may check that the (3.2) holds. The Lagrange multiplier can be accordingly expressed as

λi, 1 � �
1
2 xT

i ∇xi fi: (3.5) 

For general nonsingular constraining tuple, one may find Hi(xi) satisfying (3.2) by solving linear equations. 
We refer to Nie [42] for more details on getting the polynomial expressions of Lagrange multipliers. 

Throughout the paper, we assume that every constraining polynomial tuple gi is nonsingular. This is a generic 
assumption. So, all λi, j can be expressed as polynomials, as in (3.3). Then, each Nash equilibrium satisfies the fol
lowing polynomial system:

∇xi fi(x) �
Xmi

j�1
λi, j(x)∇xi gi, j(xi) � 0 (i ∈ [N]),

gi, j(xi) � 0 (i ∈ [N], j ∈ Ei), λi, j(x)gi, j(xi) � 0 (i ∈ [N], j ∈ I i),
gi, j(xi) ≥ 0 ( j ∈ I i), λi, j(x) ≥ 0 (i ∈ [N], j ∈ I i):

8
>>>><

>>>>:

(3.6) 

3.2. An Algorithm for Finding an NE
For the NEP of Polynomials (1.3), let λi, j(x) be polynomial Lagrange multiplier expressions as in (3.3) for each i ∈

[N] and j ∈ [mi]. Then, every NE must satisfy the polynomial system (3.6). Choose a generic positive definite 
matrix

Θ ∈ R(n+1)×(n+1):

Then, all NEs are feasible points for the following optimization problem:

min
x

[x]
T
1 ·Θ · [x]1

s:t: ∇xi fi(x) �
Xmi

j�1
λi, j(x)∇xi gi, j(xi) � 0 (i ∈ [N]),

gi, j(xi) � 0 ( j ∈ Ei, i ∈ [N]),
λi, j(x)gi, j(xi) � 0 ( j ∈ I i, i ∈ [N]),
gi, j(xi) ≥ 0 ( j ∈ I i, i ∈ [N]),
λi, j(x) ≥ 0 ( j ∈ I i, i ∈ [N]):

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

(3.7) 

In the above, the vector [x]1 :� (1, x1, x2, : : : , xn)
T

∈ Rn+1. Note that x ∈ Rn is a KKT point for the NEP if and only if 
it is feasible for (3.7). It is important to observe that if (3.7) is infeasible, then there are no NEs. If (3.7) is feasible, 
then it must have a minimizer, because its objective is a positive definite quadratic function. Moreover, for a 
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generic Θ ∈ R(n+1)×(n+1), the minimizer of (3.7) is unique (see Theorem 4.2). Note that (3.7) is a polynomial optimi
zation problem, which can be solved by the Moment-SOS semidefinite relaxations (see Section 4).

Assume that u :� (u1, : : : , uN) is an optimizer of (3.7). Then, u is an NE if and only if each ui is a minimizer of 
Fi(u�i). To this end, for each player, consider the optimization problem:

ωi :� min fi(xi, u�i) � fi(ui, u�i)

s:t: gi, j(xi) � 0 ( j ∈ Ei),
gi, j(xi) ≥ 0 ( j ∈ I i):

8
<

:
(3.8) 

If all the optimal values ωi ≥ 0, then u is a Nash equilibrium. If one of them is negative—say, ωi < 0—then u is 
not an NE. For such a case, let Ui be a set of some optimizers of (3.8); then, u violates the following inequalities

fi(xi, x�i) ≤ fi(v, x�i) (v ∈ Ui): (3.9) 

However, every Nash equilibrium must satisfy (3.9).
When u is not an NE, we aim at finding a new candidate by posing the inequalities in (3.9). Therefore, we con

sider the following optimization problem:

min
x

[x]
T
1 ·Θ · [x]1

s:t: ∇xi fi(x) �
Xmi

j�1
λi, j(x)∇xi gi, j(xi) � 0 (i ∈ [N]),

gi, j(xi) � 0 ( j ∈ Ei, i ∈ [N]),
λi, j(x)gi, j(xi) � 0 ( j ∈ I i, i ∈ [N]),
gi, j(xi) ≥ 0 ( j ∈ I i, i ∈ [N]),
λi, j(x) ≥ 0 ( j ∈ I i, i ∈ [N]),
fi(v, x�i) � fi(xi, x�i) ≥ 0 (v ∈ Ki, i ∈ [N]):

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

(3.10) 

In the above, each Ki is a set of some optimizers of (3.8). We solve (3.10) again for a minimizer—say, û. If û is ver
ified to be an NE, then we are done. If it is not, we can add more inequalities like (3.9) to exclude both u and û. 
Repeating this procedure, we get the following algorithm for computing an NE.

Algorithm 3.1 For the NEP given as in (1.1) and (1.3), do the following 
Step 0. Initialize Ki :� ∅ for all i and ℓ :� 0. Choose a generic positive definite matrix Θ of length n+ 1.
Step 1. Solve the Polynomial Optimization Problem (3.10). If it is infeasible, then output that there is no NE and stop; oth

erwise, solve it for an optimizer u.
Step 2. For each i � 1, : : : , N, solve the Optimization (3.8). If all ωi ≥ 0, then output the NE u and stop. If one of ωi is nega

tive, then go to the next step.
Step 3. For each i with ωi < 0, obtain a set Ui of some (may not all) optimizers of (3.8); then, update the set Ki :� Ki ∪ Ui. 

Let ℓ :� ℓ+ 1, then go to Step 1.

In Step 0, we can set Θ � RTR for a randomly generated matrix R of length n + 1. The objective in (3.10) is a pos
itive definite quadratic function, so it has a minimizer if (3.10) is feasible. The case is slightly different for (3.8). If 
the feasible set Xi is compact or fi(xi, u�i) is coercive for the given u�i, then (3.8) has a minimizer. If Xi is 
unbounded and fi(xi, u�i) is not coercive, it may be difficult to compute the optimal value ωi. In applications, we 
are mostly interested in cases that (3.8) has a minimizer, for the existence of an NE. We discuss how to solve the 
optimization problems in Algorithm 3.1 by the Moment-SOS hierarchy of semidefinite relaxations in Section 4.

The following is the convergence theorem for Algorithm 3.1.

Theorem 3.2. Assume each constraining polynomial tuple gi is nonsingular and let λi, j(x) be polynomial expressions of 
Lagrange multipliers as in (3.3). Let G be the feasible set of (3.7) and G∗ be the set of all NEs. If the complement G\G∗ is a 
finite set—that is, the cardinality ℓ∗ :� |G\G∗ | < ∞—then Algorithm 3.1 must terminate within at most ℓ∗ loops.

Proof. Under the nonsingularity assumption of polynomial tuples gi, the Lagrange multipliers λi, j can be 
expressed as polynomials λi, j(x) as in (3.3). For each u that is a feasible point of (3.7), every NE must satisfy the 
constraint

fi(ui, x�i) � fi(xi, x�i) ≥ 0:

Nie and Tang: Nash Equilibrium Problems of Polynomials 
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Therefore, every NE must also be a feasible point of (3.10). Because the matrix Θ is positive definite, the optimiza
tion (3.10) must have a minimizer, unless it is infeasible. When Algorithm 3.1 goes to a newer loop—say, from 
the ℓth to the (ℓ+ 1)th—the optimizer u for (3.10) in the ℓth loop is no longer feasible for (3.10) in the (ℓ+ 1)th 
loop. This means that the feasible set of (3.10) must lose at least one point after each loop, unless an NE is met. 
Also, note that the feasible set of (3.10) is contained in G. If G\G∗ is a finite set, Algorithm 3.1 must terminate after 
some loops. The number of loops is at most ℓ∗. w

As shown in the appendix, when the NEP is given by generic polynomials, the NEP has finitely many KKT 
points (see Theorem A.1). For such cases, |G\G∗ | ≤ |G | < ∞, and finite termination of Algorithm 3.1 is 
guaranteed.

Theorem 3.3. Let di, j > 0, ai, j > 0 be degrees, for all i ∈ [N], j ∈ [mi]. If each gi, j is a generic polynomial in xi of degree di, j 
and each fi is a generic polynomial in x whose degree in xj is ai, j, then Algorithm 3.1 terminates within finitely many 
loops—that is, it either finds an NE if any exist or detects the nonexistence of NEs.

Proof. The conclusion follows directly from Theorems 3.2 and A.1. w

When there exist infinitely many KKT points that are not NEs, Algorithm 3.1 can still be applied to compute 
an NE if one exists or to detect the nonexistence of NEs if they do not exist. See Example 5.2(ii) for such a case. 
However, for such NEPPs, the convergence property of Algorithm 3.1 is not fully understood.

3.3. Convex NEPs
The NEP is said to be convex if for every i ∈ [N], the fi(xi, x�i) is convex in xi for all x�i ∈ X�i :�

Q
j∈[N]\{i}Xj, the 

gi, j(xi) is linear for each j ∈ Ei, and is concave for every j ∈ I i. For convex NEPs, every KKT point must be an NE 
because the KKT conditions are sufficient for global optimality.

Moreover, for convex NEPPs, when every constraining tuple gi is nonsingular, the LICQC holds for all x ∈ X, 
and a point is an NE if and only if it satisfies the KKT conditions. Note that the Lagrange multipliers can be 
expressed by polynomials as in (3.3) when nonsingularity is assumed. For such cases, the solution set for (2.5) is 
exactly the set of NEs. Therefore, if we solve the Polynomial Optimization Problem (3.10) with Ki � ∅ for all i ∈

[N] (i.e., the Polynomial Optimization (3.7)), then every minimizer, if the feasible set is nonempty, must be an 
NE. On the other hand, if (3.10) is infeasible, then we immediately know the NEs do not exist. This shows that, 
for convex NEPPs, Algorithm 3.1 must terminate at the initial loop.

Corollary 3.4. Assume each gi is a nonsingular tuple of polynomials. Suppose each gi, j(xi) (j ∈ Ei) is linear, each gi, j(xi)

(j ∈ I i) is concave, and each fi(xi, x�i) is convex in xi for all x�i ∈ X�i. Then, Algorithm 3.1 must terminate at the first loop 
with ℓ � 0, returning an NE or reporting that there is no NE.

Example 3.5. Consider the convex NEP in Example 1.1. In this NEP, both players have ball constraints, so their 
Lagrange multipliers can be expressed by polynomials as in (3.5). We ran Algorithm 3.1 for solving this NEP2

and found the NE x∗ � (x∗
1, x∗

2) with

x∗
1 � (�1:0000, 0:0000), x∗

2 � (0:4472, 0:8944), 

in the initial loop. It took around 0.88 second.

3.4. More Nash Equilibria
Algorithm 3.1 aims at finding a single NE. In some applications, people may be interested in more NEs. More
over, when there is a unique NE, people are also interested in a certificate for uniqueness.

In this subsection, we study how to find more NEs or check the completeness of solution sets. Assume that x∗

is a Nash equilibrium produced by Algorithm 3.1—that is, x∗ is also a minimizer of (3.10). Then, all KKT points x 
satisfying [x]

T
1Θ[x]1 < [x∗]

T
1Θ[x∗]1 are excluded from the feasible set of (3.10) by the constraints

fi(ui, x�i) � fi(xi, x�i) ≥ 0 (∀u ∈ Ki, ∀i ∈ [N]):

If x∗ is an isolated NE (e.g., this is the case if there are finitely many NEs), there exists a scalar δ > 0 such that

[x]
T
1Θ[x]1 ≥ [x∗]

T
1Θ[x∗]1 + δ, (3.11) 
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for all other NEs x. For such a δ, we can try to find a different NE by solving the following optimization problem

min
x

[x]
T
1Θ[x]1

s:t: ∇xi fi(x) �
Xmi

j�1
λi, j(x)∇xi gi, j(xi) � 0 (i ∈ [N]),

gi, j(xi) � 0 ( j ∈ Ei, i ∈ [N]),
λi, j(x)gi, j(xi) � 0 ( j ∈ I i, i ∈ [N]),
gi, j(xi) ≥ 0 ( j ∈ I i, i ∈ [N]),
λi, j(x) ≥ 0 ( j ∈ I i, i ∈ [N]),
fi(v, x�i) � fi(xi, x�i) ≥ 0 (v ∈ Ki, i ∈ [N]),

[x]
T
1Θ[x]1 ≥ [x∗]

T
1Θ[x∗]1 + δ:

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

(3.12) 

When an optimizer of (3.12) is computed, we can check whether it is an NE or not by solving (3.8) for all i ∈ [N]. 
If it is, we get a new NE that is different from x∗. If it is not, we update the set Ki as in Step 3 of Algorithm 3.1. 
Repeating the above process, we are able to get more Nash equilibria.

A concern in computation is how to choose the constant δ > 0 for (3.12). We want a value δ > 0 such that (3.11) 
holds for all unknown NEs. To this end, we consider the following maximization problem:

max
x

[x]
T
1Θ[x]1

s:t: ∇xi fi(x) �
Xmi

j�1
λi, j(x)∇xi gi, j(xi) � 0 (i ∈ [N]),

gi, j(xi) � 0 ( j ∈ Ei, i ∈ [N]),
λi, j(x)gi, j(xi) � 0 ( j ∈ I i, i ∈ [N]),
gi, j(xi) ≥ 0 ( j ∈ I i, i ∈ [N]),
λi, j(x) ≥ 0 ( j ∈ I i, i ∈ [N]),
fi(v, x�i) � fi(xi, x�i) ≥ 0 (v ∈ Ki, i ∈ [N]),

[x]
T
1Θ[x]1 ≤ [x∗]

T
1Θ[x∗]1 + δ:

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

(3.13) 

Interestingly, if x∗ is also a maximizer of (3.13)—that is, the maximum of (3.13) equals [x∗]
TΘ[x∗]1—then the feasi

ble set of (3.12) contains all NEs except x∗, under some general assumptions.

Proposition 3.6. Assume Θ is a generic positive definite matrix, and x∗ is a minimizer of (3.10). 
i. If x∗ is also a maximizer of (3.13), then there is no other Nash equilibrium u satisfying [u]

T
1Θ[u]1 ≤ [x∗]

T
1Θ[x∗]1 + δ.

ii. If x∗ is an isolated KKT point, then there exists δ > 0 such that x∗ is also a maximizer of (3.13).

Proof. Note that every NE is a feasible point of (3.10). 
i. If x∗ is also a maximizer of (3.13), then the objective [x]

T
1Θ[x]1 achieves a constant value in the feasible set of 

(3.13). If u is a Nash equilibrium with [u]
T
1Θ[u]1 ≤ [x∗]

T
1Θ[x∗]1 + δ, then

[u]
T
1Θ[u]1 � [x∗]

T
1Θ[x∗]1:

This means that u is also a minimizer of (3.10). When Θ is a generic positive definite matrix, the Optimization 
(3.10) has a unique optimizer, so u � x∗. 

ii. Because Θ is positive definite, there exists ɛ > 0 such that

[x]
T
1Θ[x]1 ≥ ɛ(1 + ‖x‖)

2, 
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for all x. Let C �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

([x∗]
T
1Θ[x∗]1)=ɛ

q

; then, the following set

T :� y � [x]2|
∇xi fi(x) �

Xmi

j�1
λi, j(x)∇xi gi, j(xi) � 0 (i ∈ [N]),

gi, j(xi) � 0 ( j ∈ Ei, i ∈ [N]),
λi, j(x)gi, j(xi) � 0 ( j ∈ I i, i ∈ [N]),

gi, j(xi) ≥ 0 ( j ∈ I i, i ∈ [N]),
λi, j(x) ≥ 0 ( j ∈ I i, i ∈ [N]),

fi(v, x�i) � fi(xi, x�i) ≥ 0 (v ∈ Ki, i ∈ [N]),
‖x‖ ≤ C

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>;

is compact. Note that [x∗]2 ∈ T. Let θ be the vector such that

[x]
T
1Θ[x]1 � θTy, 

for all y � [x]2. Because x∗ is an isolated KKT point, the y∗ :� [x∗]2 is also an isolated point of T. Then, its subset
T1 :� T\{y∗}, 

is also a compact set. Because x∗ is a minimizer of (3.10), the hyperplane H :� {θTy � θTy∗} is a supporting hyper
plane for the set T. Because Θ is generic, the Optimization (3.10) has a unique minimizer, which implies that y∗ is 
the unique minimizer of the linear function θTy on T. So, H does not intersect T1, and their distance is positive. 
There exists a scalar τ > 0 such that

[x]
T
1Θ[x]1 � θTy ≥ θTy∗ + τ � [x∗]

T
1Θ[x∗]1 + τ, 

for all y � [x]2 ∈ T1. Then, for the choice δ :� τ=2, the point x∗ is the only feasible point for (3.13). Hence, x∗ is also 
a maximizer of (3.13). w

Proposition 3.6 shows the existence of δ > 0 such that (3.10) and (3.13) have the same optimal value. However, 
it does not give a concrete lower bound for δ. In computational practice, we can first give a priori value for δ. If it 
does not work, we can decrease δ to a smaller value (e.g., let δ :� δ=5). By repeating this, the Optimization (3.13) 
will eventually have x∗ as a maximizer. The following is the algorithm for finding an NE that is different from x∗.

Algorithm 3.7 For the given NEP (1.3) and a computed NE x∗, let Θ be the positive definite matrix for computing x∗. 
Step 0. Give an initial value for δ (say, 0.1).
Step 1. Solve the Maximization Problem (3.13). If its optimal value η equals υ :� [x∗]

T
1Θ[x∗]1, then go to Step 2. If η is big

ger than υ, then let δ :� δ=5 and repeat this step.
Step 2. Solve the Optimization Problem (3.12). If it is infeasible, then output there are no additional NEs and stop; other

wise, solve (3.12) for a minimizer u.
Step 3. For each i � 1, : : : , N, solve the Optimization (3.8) for the optimal value ωi. If all ωi ≥ 0, stop and output the new 

NE u. If one of ωi is negative, then go to Step 4.
Step 4. For each i ∈ [N], update the set Ki :� Ki ∪ Ui, and then go back to Step 2.

When x∗ is not an isolated KKT point, there may not exist a satisfactory δ > 0 for Step 1. For such a case, more 
investigation is required to verify the completeness of the solution set or to find other NEs. However, for generic 
NEPs, there are finitely many KKT points (see Theorem A.1 in the appendix). The following is the convergence 
result for Algorithm 3.7.

Theorem 3.8. Under the same assumptions in Theorem 3.2, if Θ is a generic positive definite matrix and x∗ is an isolated 
KKT point, then Algorithm 3.7 must terminate after finitely many steps, either returning an NE that is different from x∗ or 
reporting the nonexistence of other NEs.

Proof. Under the given assumptions, Proposition 3.6(ii) shows the existence of δ > 0 satisfactory for Step 1 of 
Algorithm 3.7. Again, by Proposition 3.6(i), the feasible set of (3.12) contains all NEs except x∗. The finite termina
tion of Algorithm 3.7 can be proved in the same way as for Theorem 3.2. w
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Once a new NE is obtained, we can repeatedly apply Algorithm 3.7 to compute more NEs, if they exist. In par
ticular, if there are finitely many NEs, then we enumerate them as

(x(1), : : : , x(s)):

Without loss of generality, we assume

[x(1)]
T
1Θ[x(1)]1 <⋯< [x(s)]

T
1Θ[x(s)]1, 

because Θ is generic. If the first r NEs—say, x(1), : : : , x(r)—are obtained, there exists δ > 0 such that

[x( j)]T
1Θ[x( j)]1 > [x(r)]

T
1Θ[x(r)]1 + δ, 

for all j � r + 1, : : : , s. Therefore, if we apply Algorithm 3.7 with x∗ � x(r), the next Nash equilibrium x(r+1) can be 
obtained, if it exists. So, we have the following conclusion.

Corollary 3.9. Under the assumptions of Theorem 3.8, if there are finitely many Nash equilibria, then all of them can be 
found by applying Algorithm 3.7 repeatedly.

Remark 3.10. Under the assumption of Theorem 3.3, the NEP has finitely many KKT points. For such cases, 
Algorithm 3.7 can find all NEs and certify the completeness of solutions set within finitely many steps, by Corol
lary 3.9.

4. Solve Polynomial Optimization Problems
In this section, we discuss how to solve occurring polynomial optimization problems in Algorithms 3.1 and 3.7. 
For the NEP, we assume the constraining polynomial tuples gi are all nonsingular. Therefore, the Lagrange mul
tipliers λi, j can be expressed as polynomial functions λi, j(x) as in (3.3) for all Nash equilibria. We apply the 
Moment-SOS hierarchy of semidefinite relaxations (Henrion and Lasserre [17], Lasserre [26], Lasserre [28], Laur
ent [30]) for solving these polynomial optimization problems. New convergence results for solving these polyno
mial optimization problems are given due to the usage of polynomial expressions for Lagrange multipliers.

For the variable z, such that z � x or z � xi for some i ∈ [N], denote by l the dimension of z. Consider the polyno
mial optimization problem in the variable z:

ϑ∗ :� min
z∈Rl
θ(z)

s:t: p(z) � 0 (∀p ∈Φ),
q(z) ≥ 0 (∀q ∈Ψ):

8
>><

>>:

(4.1) 

In the above, Φ and Ψ are sets of equality- and inequality-constraining polynomials, respectively. Denote the 
degree

d0 :� max{⌈deg(p)=2⌉ : p ∈ {θ} ∪ Φ ∪Ψ}: (4.2) 

For a degree k ≥ d0, recall that the set Ideal[Φ]2k + Qmod[Ψ]2k is introduced in Section 2.2. The kth-order SOS 
relaxation for (4.1) is

ϑ(k)
sos :� max γ

s:t: θ� γ ∈ Ideal[Φ]2k + Qmod[Ψ]2k:

�

(4.3) 

The dual problem of (4.3) is the kth-order moment relaxation

ϑ(k)
mom :� min

y
〈θ, y〉

s:t: y0 � 1, L(k)
p [y] � 0 (p ∈ Φ),

Mk[y] ≽ 0, L(k)
q [y] ≽ 0 (q ∈ Ψ),

y ∈ RN
l
2k ,

8
>>>>><

>>>>>:

(4.4) 

where the moment matrix Mk[y] and localizing matrices L(k)
p [y], L(k)

q [y] are given by (2.3) and (2.4). Both (4.3) and 
(4.4) are semidefinite programs, and the primal-dual pair is called the Moment-SOS relaxations for the Polyno
mial Optimization Problem (4.1). If z ∈ Rl is a feasible point of (4.1), then [z]k ∈ Rl

2k must be a feasible point of 
(4.4). Thus, (4.1) has an empty feasible set if (4.4) is infeasible. When (4.4) has a nonempty feasible set, it is clear 
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that ϑ(k)
mom ≤ ϑ(k)

sos ≤ ϑ∗ for all k, and both ϑ(k)
mom and ϑ(k)

sos are monotonically increasing. The following is the Moment- 
SOS algorithm for solving (4.1).

Algorithm 4.1 For the Polynomial Optimization Problem (4.1), let d0 be the degree given by (4.2). 
Step 0. Initialize k :� d0.
Step 1. Solve the Moment Relaxation (4.4). If it is infeasible, then the Polynomial Optimization Problem (4.1) is infeasible 

and stop; otherwise, solve (4.4) for the minimum value ϑ(k)
mom and a minimizer y(k).

Step 2. Let t :� d0. If y∗ satisfies the rank condition
rank Mt[y∗] � rank Mt�d0 [y∗], (4.5) 

then extract a set Ui of r :� rank Mt[y∗] minimizers for (4.1) and stop.
Step 3. If (4.5) fails to hold and t < k, let t :� t + 1 and then go to Step 2; otherwise, let k :� k + 1 and go to Step 1.

Algorithm 4.1 is known as the Moment-SOS hierarchy of semidefinite relaxations (Lasserre [26]). We say the 
Moment-SOS hierarchy has asymptotic convergence if ϑ(k)

sos → ϑ∗ as k → ∞, and we say it has finite convergence if 
ϑ(k)

sos � ϑ∗ for all k that is large enough. For a general polynomial optimization problem, if Ideal[Φ] + Qmod[Ψ] is 
archimedean, then ϑ(k)

mom → ϑ∗ as k → ∞ (Lasserre [26]). In Step 2, the Rank Condition (4.5) is called flat truncation 
(Nie [37]). It is a sufficient (and almost necessary) condition to check the finite convergence of moment relaxa
tions. When (4.5) holds, the method in Henrion and Lasserre [17] can be used to extract r minimizers for (4.1). 
This method and Algorithm 4.1 are implemented in the software GloptiPoly 3 (Henrion et al. [19]). In the fol
lowing subsections, we study the convergence result of Algorithm 4.1 when it is applied for solving (3.8), (3.10), 
(3.12), and (3.13).

4.1. The Optimization for All Players
We discuss the convergence of Algorithm 4.1 for solving (3.10), (3.12), and (3.13).

First, we consider (3.10). Let

z :� x, θ(x) :� [x]
T
1Θ[x]1, (4.6) 

and we denote the polynomial tuples

Φi :�

(

∇xi fi(x) �
Xmi

j�1
λi, j(x)∇xi gi, j(xi)

)

∪ {gi, j(xi) : j ∈ Ei} ∪ {λi, j(x) · gi, j(xi) : j ∈ I i}, (4.7) 

Ψi :� {gi, j(xi) : j ∈ I i} ∪ {λi, j(x) : j ∈ I i} ∪ {fi(v, x�i) � fi(xi, x�i) : v ∈ Ki}: (4.8) 

In the above, for a vector p � (p1, : : : , ps) of polynomials, the set {p} stands for {p1, : : : , ps}, for notational conve
nience. Denote the unions

Φ :�
[N

i�1
Φi, Ψ :�

[N

i�1
Ψi: (4.9) 

They are both finite sets of polynomials. Then, the Optimization (3.10) can be written as (4.1), and we may apply 
Algorithm 4.1 for solving it. Recall that ei is the vector in Rn such that its ith entry is one and all other entries are 
zero. For a tms y ∈ RN

n
2k , the yei means the entry of y labelled by ei. For example, when n � 4, then ye2 � y0100. Let 

y(k) be a minimizer of the kth-order Moment Relaxation (4.4) for (3.10), and denote

u(k) :� (y(k)
e1

, y(k)
e2

, : : : , y(k)
en

): (4.10) 

Then, u(k) is a minimizer of (3.10) if u(k) is feasible for (3.10) and 〈θ, y(k)〉 � θ(u(k)). Moreover, we have the follow
ing convergence result for solving (3.10):

Theorem 4.2. For the polynomial optimization Problem (3.10), assume Θ is a generic positive definite matrix. Let z :� x, 
and let θ,Ψ,Φ be given as in (4.6)–(4.9). Suppose Ideal[Φ] + Qmod[Ψ] is archimedean. 

i. If the Optimization (3.10) is infeasible, then the moment relaxation (4.4) must be infeasible when the order k is big 
enough.

ii. Suppose the Optimization (3.10) is feasible. Let u(k) be given as in (4.10). Then, u(k) converges to the unique minimizer of 
(3.10). In particular, if the real zero set of Φ is finite, then u(k) is the unique minimizer of (3.10), and (4.5) holds at y(k) with the 
rank equal to 1 when k is sufficiently large.
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Proof.
i. If (3.10) is infeasible, the constant polynomial �1 can be viewed as a positive polynomial on the feasible set of 

(3.10). Because Ideal[Φ] + Qmod[Ψ] is archimedean, we have �1 ∈ Ideal[Φ]2k + Qmod[Ψ]2k, for k big enough, by 
Putinar’s [50] Positivstellensatz. For such a big k, the SOS Relaxation (4.3) is unbounded from above; hence, the 
Moment Relaxation (4.4) must be infeasible.

ii. When the Optimization (3.10) is feasible, it must have minimizers. Let K be the feasible set of (3.10), and
R2(K) :� cone({[u]2 : u ∈ K}):

In the above, the cone means the conic hull. Consider the moment optimization problem
min

w
〈θ, w〉

s:t: w0 � 1, w ∈ R2(K):

(

(4.11) 

If the matrix Θ is a generic positive definite matrix, then the function θ is generic in Σn, 2. By Nie [39, proposition 
5.2], the Moment Optimization Problem (4.11) has a unique minimizer. When (4.11) has minimizers, its minimum 
value equals ϑ∗. Suppose (3.10) has two distinct minimizers—say, x(1) and x(2). Then, [x(1)]2 and [x(2)]2 are two 
distinct minimizers of (4.11), a contradiction to the uniqueness of the minimizer for (4.11). Therefore, (3.10) must 
have a unique minimizer x∗ when Θ is generic.

The convergence of u(k) to x∗ is shown in Schweighofer [54] or Nie [37, theorem 3.3]. For the special case that 
Φ(x) � 0 has finitely many real solutions, the point u(k) must equal x∗, when k is large enough. This is shown in 
Lasserre et al. [29] (also see Nie [38]). w

The archimedeanness of Ideal[Φ] + Qmod[Ψ] is essentially requiring that the feasible set of (3.10) is compact. 
If the real zero set of Φ is compact, then Ideal[Φ] + Qmod[Ψ] must be archimedean. In particular, if the NEPP 
has finitely many real KKT points, then Ideal[Φ] + Qmod[Ψ] is archimedean. Interestingly, when the objective 
and constraining polynomials are generic, there are finitely many KKT points. See Theorem A.1 in the appendix. 
In fact, as shown in the proof of Theorem A.1, the zero set of Φ is finite for generic NEPPs, and, hence, Algorithm 
4.1 has finite convergence. Moreover, by Theorem 4.2, when Θ is generic and the minimizer y(k) for (4.4) is 
obtained, one may let u(k) be given as in (4.10) and directly check whether u(k) is the unique minimizer or not, 
instead of checking the Flat Truncation (4.5).

The other Minimization Problem (3.12) can be solved in the same way by Algorithm 4.1. The convergence 
property is the same. For the cleanness of the paper, we omit the details.

For the Maximization (3.13), we let z :� x and

θ(x) :� �[x]
T
1Θ[x]1: (4.12) 

Recall that the polynomial tuples Φi and Ψi are given by (4.7) and (4.8). Denote the set of polynomials

Φ :�
[N

i�1
Φi, Ψ :�

[N

i�1
Ψi ∪ {[x∗]

T
1Θ[x∗]1 + δ� [x]

T
1Θ[x]1}: (4.13) 

Then, (3.13) can be equivalently written as (4.1). Similarly, Algorithm 4.1 can be used to solve (3.13). The Optimi
zation (3.13) is always feasible because x∗ is a feasible point. Therefore, the Moment Relaxation (4.4) is also feasi
ble, and there is no need to check its feasibility in Step 1 of Algorithm 4.1. Because the minimum value ϑ(k)

mom is a 
lower bound of ϑ∗, if ϑ(k)

mom ≥ �[x∗]
T
1Θ[x∗]1, then

ϑ(k)
mom � ϑ∗ � �[x∗]

T
1Θ[x∗]1, 

and x∗ is a maximizer of (3.13). When ϑk < �[x∗]
T
1Θ[x∗]1, the Flat Truncation Condition (4.5) can be applied for 

checking the finite convergence of the Moment-SOS hierarchy. Under some classical optimality conditions, we 
have ϑ(k)

mom � ϑ∗ when k is large enough (Nie [40]). Moreover, if the real zero set of Φ is finite, then the Moment- 
SOS hierarchy has finite convergence, and (4.5) holds (Nie [38]). We would like to remark that when the NEP is 
given by generic polynomials, the complex zero set of Φ is finite (see Theorem A.1); thus, Algorithm 4.1 has finite 
convergence.

4.2. Checking Nash Equilibria
Suppose u is a minimizer of (3.10). To check whether u � (ui, u�i) is an NE or not, we need to solve the Individual 
Optimization (3.8) for all i ∈ [N].
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For the given u ∈ Rn and i ∈ [N], (3.8) is a polynomial optimization problem in the variable xi. If (3.8) is 
unbounded from below, then u cannot be an NE, and the point v for precluding u can be obtained by adding a 
suitable extra ball constraint. In the following, we suppose that the minimum of (3.8) is attainable. Because we 
assume that the polynomial tuple gi(xi) is nonsingular, polynomial expressions for Lagrange multiplier expres
sions exist and can be applied to solve (3.8). Let λi(x) be the Lagrange multiplier expressions in (3.3). Note that 
the nonsingularity of gi implies that the LICQC holds at every xi ∈ Xi. Every minimizer of (3.8) must be a KKT 
point of (3.8). Therefore, (3.8) is equivalent to the following polynomial optimization problem:

ωi :� min
xi∈Rni

fi(xi, u�i) � fi(ui, u�i)

s:t: ∇xi fi(xi, u�i) �
Xmi

j�1
λi, j(xi, u�i)∇xi gi, j(xi) � 0,

gi, j(xi, u�i) � 0 ( j ∈ Ei),
gi, j(xi, u�i)λi, j(xi, u�i) � 0 ( j ∈ I i),
gi, j(xi, u�i) ≥ 0 ( j ∈ I i),
λi, j(xi, u�i) ≥ 0 ( j ∈ I i):

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

(4.14) 

We introduce the convergence result of Algorithm 4.1 for solving (4.14). Let

z :� xi, θ(xi) :� fi(xi, u�i) � fi(ui, u�i), (4.15) 

Φ :� {gi, j(xi) : j ∈ Ei} ∪ {λi, j(xi, u�i) · gi, j(xi) : j ∈ I i} ∪

(

∇xi fi(xi, u�i) �
Xmi

j�1
λi, j(xi, u�i)∇xi gi, j(xi)

)

, (4.16) 

Ψ :� {gi, j(xi) : j ∈ I i} ∪ {λi, j(xi, u�i) : j ∈ I i}: (4.17) 

Like earlier cases, the set {p} stands for {p1, : : : , ps}, when p � (p1, : : : , ps) is a vector of polynomials. Then, the 
(4.14) can be rewritten as (4.1), and the Moment-SOS relaxations of (4.14) are given by (4.3) and (4.4). We would 
like to remark that the Optimization (4.14) is always feasible because ui is in its feasible set. Thus, the Moment 
Relaxation (4.4) for (4.14) is also feasible, and there is no need to check the feasibility for (4.4) in the first step of 
Algorithm 4.1. Moreover, the minimum ϑ(k)

mom of (4.4) is a lower bound for ωi, and ωi ≤ 0. If ϑ(k)
mom ≥ 0 for some 

k ≥ d0, then ωi must be 0, and we can stop Algorithm 4.1 immediately because this implies that ui is the minimizer 
for Fi(u�i). If ϑ(k)

mom < 0, we need to apply the Flat Truncation (4.5) to certify whether the finite convergence for the 
Moment-SOS hierarchy is achieved or not. The following theorem concerns the finite convergence of Algorithm 
4.1 for solving (4.14). Its proof follows from Nie et al. [48, theorem 4.4].

Theorem 4.3. Assume the ith player’s constraining polynomial tuple gi is nonsingular and its Optimization (3.8) has a 
minimizer for the given u�i. Let z :� xi, and let θ,Ψ,Φ be given as in (4.15)–(4.17). Assume either one of the following con
ditions holds: 

i. The set Ideal[Φ] + Qmod[Ψ] is archimedean,
ii. The real zero set of polynomials in Hi(u) is finite.
If each minimizer of (4.14) is an isolated critical point, then all minimizers of (4.4) must satisfy the flat truncation (4.5), 

for all k big enough. Therefore, Algorithm 4.1 must terminate within finitely many loops.

We remark that if Ideal[gi, j : j ∈ Ei] + Qmod[gi, j : j ∈ I i] is archimedean, then Ideal[Φ] + Qmod[Ψ] is also archi
medean. Therefore, if the archimedeanness holds for the ith player’s optimization (1.1), then condition (i) in The
orem 4.3 is satisfied.

5. Numerical Experiments
This section reports numerical experiments for solving NEPs by Algorithms 3.1 and 3.7. For all polynomial opti
mization problems appearing in the algorithms, we apply the software GloptiPoly 3 (Henrion et al. [19]) to for
mulate Moment-SOS semidefinite relaxations and use SeDuMi (Sturm [57]) for solving these semidefinite 
programs. The computation is implemented in an Alienware Aurora R8 desktop, with an IntelVR Core(TM) 
i7-9700 CPU at 3.00 GHz×8 and 16 GB of RAM, in a Windows 10 operating system.

For ball and simplex constraints, the Lagrange multiplier expressions are given by (3.4) and (3.5), respectively. 
Polynomial expressions of Lagrange multipliers for other types of constraints are given in the descriptions of 
each example. In Step 2 of Algorithm 3.1 and Step 3 of Algorithm 3.7, if the optimal value ωi ≥ 0 for all players, 
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then the point u is an NE. In numerical computation, we cannot have ωi ≥ 0 exactly, due to round-off errors. 
Therefore, we use the parameter

ω∗ :� min
i�1, : : : ,N

ωi, 

to measure the accuracy of the computed NE. Typically, if ω∗ is small—say, ω∗ ≥ �10�6—then we regard the 
computed solution as an NE.

Example 5.1. For the convex NEP in Example 1.1, Algorithm 3.1 found the NE
x∗

1 � (�1:0000, 0:0000), x∗
2 � (0:4472, 0:8944), 

in the first loop, as shown in Example 3.5. The accuracy parameter is ω∗ � �7:9793 · 10�9. Then, we ran Algorithm 
3.7 and found two more NEs, which are

x∗
1 � (�0:0000, 0:0000), x∗

2 � (0:0000, 0:0000), ω∗ � �1:4147 · 10�10;

x∗
1 � (1:0000, � 0:0000), x∗

2 � (�0:4472, � 0:8944), ω∗ � �1:7829 · 10�8:

Moreover, Algorithm 3.7 certified that these three NEs are all solutions to this NEP. It took around 1.40 seconds 
to find these two additional NEs and certify the completeness of the solution set.

In the following example, we show that our algorithm can find NEs for NEPs that have infinitely many KKT 
points.

Example 5.2.
i. Consider the convex NEP

1st player :

min
x1∈R2

(x1, 1 + x1, 2 � x2, 1 � x2, 2)
2,

s:t: 1 � (x1, 1)
2

� (x1, 2)
2

≥ 0,

8
<

:

2nd player :
min
x2∈R2

(x2, 1 � x1, 1)
2

+ (1 � x2, 2)
2

s:t: 1 � x2, 1 � x2, 2 ≥ 0, x2, 1 ≥ 0, x2, 2 ≥ 0,

8
<

:

then one may check that for each α ∈ [0, 1=2], x1 � (2α, 1 � 2α), x2 � (α, 1 � α) is an NE. Applying Algorithm 3.1, 
we got the NE:

x∗
1 � (0:9247, 0:0753), x∗

2 � (0:4624, 0:5376), ω∗ � �2:1940 · 10�8:

The computation took about 0.19 second. 
ii. Consider the NEP

1st player :
min
x1∈R2

�x2, 1(x1, 1)
2

� x2, 2x1, 1 + x2, 2 �
1
2

� �

x1, 2

s:t: 1 � (x1, 1)
2

� (x1, 2)
2

≥ 0,

8
><

>:

2nd player :
min
x2∈R2

x1, 2x2, 1 + x2, 2 � 1
2

� �2

s:t: 1 � x2, 1 � x2, 2 ≥ 0, x2, 1 ≥ 0, x2, 2 ≥ 0:

8
<

:

One may check that for each α ∈ � 1
4 , 0

� �
, the x1 � (α, 0), x2 � � 1

4α , 1
2

� �
is a KKT point that is not an NE. Applying 

Algorithm 3.1, we got the NE

x∗
1 � (1:0000, � 0:0000), x∗

2 � (0:4259, 0:5000), ω∗ � �6:2187 · 10�9:

The computation took about 0.33 second.

Example 5.3. In this example, we consider NEPs with box constraints such that every xi ∈ R1. For each i ∈ [N], 
the ith player’s feasible set is given by

1 + xi ≥ 0, 1 � xi ≥ 0:

Nie and Tang: Nash Equilibrium Problems of Polynomials 
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Then, the associated Lagrange multipliers can be expressed as

λi, 1 �
1
2

∂fi
∂xi

· (1 � xi), λi, 2 � λi, 1 �
∂fi
∂xi

:

i. Consider the two-player zero-sum game with box constraints in Parrilo [49, example 3.1] (see also Kroupa and 
Votroubek [23, example 1]), where the objective functions are

f1(x1, x2) � (x1)
2

� 2x1(x2)
2

+ x2, f2(x1, x2) � �f2(x1, x2):

Applying Algorithm 3.1, we got the NE:

x∗
1 � 0:3969, x∗

2 � 0:6300, ω∗ � �2:9179 · 10�11, 

in the initial loop. It took around 0.54 second.
ii. Consider the two-player game with box constraints in Stein et al. [56, example 2.3] (see also Kroupa and 

Votroubek [23, example 2]), where the objective functions are

f1(x1, x2) � 2(x1)
3

+ 3(x1x2)
2

� 2x1x2 + x1 � 3(x2)
3,

f2(x1, x2) � 4(x2)
3

� 2(x1x2)
2

+ (x1)
2

� (x1)
2x2 � 4x2:

Applying Algorithm 3.1, we detected nonexistence of NEs in the third loop.3 It took around 0.85 second. 
iii. Consider the generalization of separable network games in Kroupa and Votroubek [23, example 5]. The 

objective functions are

f1(x1, x2, x3) � 2(x1)
2

+ 2x1(x2)
2

� 5x1x2 + 4x1x3 + x2 + 2x3,
f2(x1, x2, x3) � 2(x2)

2
� 2x1(x2)

2
+ 5x1x2 � 5x2x3 + 2x2(x3)

2
� x2 + 2(x1)

2,
f3(x1, x2, x3) � �2x2(x3)

2
� 4x1x3 + 5x2x3 � 2x3 � 4(x1)

2
� 2(x2)

2
:

Applying Algorithm 3.1, we detected nonexistence of NEs in the second loop. It took around 0.90 second.
For all NEPs in the following examples except Example 5.7, our method found all NEs with certified complete

ness of solution sets. In the following, we only report the numerical result of finding all solutions, unless specifi
cally mentioned, for the neatness of this paper.

Example 5.4. Consider the two-player NEP

1st player :
min
x1∈R3

X3

j�1
x1, j(x1, j � j · x2, j)

s:t: 1 � x1, 1x1, 2 ≥ 0, 1 � x1, 2x1, 3 ≥ 0, x1, 1 ≥ 0,

8
>><

>>:

2nd player :

min
x2∈R3

Y3

j�1
x2, j +

X

1≤k≤3
1≤i<j≤3

x1, ix1, jx2, k +
X

1≤j<k≤3
1≤i≤3

x1, ix2, jx2, k

s:t: 1 � (x2, 1)
2

� (x2, 2)
2

� 0:

8
>>><

>>>:

The first player’s optimization is nonconvex, with an unbounded feasible set. The Lagrange multipliers for the 
first player’s optimization are

λ1, 1 � (1 � x1, 1x1, 2)
∂f1

∂x1, 1
, λ1, 2 � �x1, 1

∂f1
∂x1, 2

, λ1, 3 � x1, 1
∂f1

∂x1, 1
� x1, 2

∂f1
∂x1, 2

:

Applying Algorithm 3.7, we got four NEs:
x∗

1 � (0:3198, 0:6396, � 0:6396), x∗
2 � (0:6396, 0:6396, � 0:4264);

x∗
1 � (0:0000, 0:3895, 0:5842), x∗

2 � (�0:8346, 0:3895, 0:3895);

x∗
1 � (0:2934, � 0:5578, 0:8803), x∗

2 � (0:5869, � 0:5578, 0:5869);

x∗
1 � (0:0000, � 0:5774, � 0:8660), x∗

2 � (�0:5774, � 0:5774, � 0:5774):
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Their accuracy parameters are, respectively,

�7:1879 · 10�8, � 3:5040 · 10�7, � 4:3732 · 10�7, � 6:4360 · 10�7:

It took about 30 seconds.
However, if the second player’s objective becomes

�
Y3

j�1
x2, j +

X

1≤j<k≤3
1≤i≤3

x1, ix2, jx2, k �
X

1≤k≤3
1≤i<j≤3

x1, ix1, jx2, k, 

then there is no NE, which was detected by Algorithm 3.1. It took around 16 seconds.

Example 5.5. Consider the three-player NEP

1st player :
min
x1∈R2

(2x1, 1 � x1, 2 + 3)x1, 1x2, 1 + [(2x1, 2)
2

+ (x3, 2)
2
]x1, 2

s:t: 1 � xT
1 x1 ≥ 0,

8
<

:

2nd player :
min
x2∈R2

[(x2, 1)
2

� x1, 2]x2, 1 + [(x2, 2)
2

+ 2x3, 2 + x1, 2x3, 1]x2, 2

s:t: xT
2 x2 � 1 � 0, x2, 1 ≥ 0, x2, 2 ≥ 0,

8
<

:

3rd player :
min
x3∈R2

(x1, 1x1, 2 � 1)x3, 1 � [3(x3, 2)
2

+ 1]x3, 2 + 2[x3, 1 + x3, 2]x3, 1x3, 2

s:t: 1 � (x3, 1)
2

≥ 0, 1 � (x3, 2)
2

≥ 0:

8
<

:

The Lagrange multipliers can be represented as

λ2, 1 �
1
2 (xT

2 ∇x2 f2), λ2, 2 �
∂f2

x2, 1
� 2x2, 1λ2, 1, λ2, 3 �

∂f2
x2, 2

� 2x2, 2λ2, 1,

λ3, 1 � �
x3, 1

2
∂f3

∂x3, 1
, λ3, 2 � �

x3, 2

2
∂f3

∂x3, 2
:

Applying Algorithm 3.7, we got the unique NE

x∗
1 � (�0:3558, � 0:9346), x∗

2 � (1:0000, 0:0000), x∗
3 � (�0:3331, 1:0000):

The accuracy parameter is �9:2310 · 10�9: It took around 9 seconds.
Nonetheless, if the third player’s objective becomes �f1(x) � f2(x), then the NEP becomes a zero-sum game, 

and there is no NE, which was detected by Algorithm 3.1. It took around 3 seconds.

Example 5.6. Consider the two-player NEP

1st player :
min
x1∈R2

2x1, 1x1, 2 + 3x1, 1(x2, 1)
2

+ 3(x1, 2)
2x2, 2

s:t: (x1, 1)
2

+ (x1, 2)
2

� 1 ≥ 0, 2 � (x1, 1)
2

� (x1, 2)
2

≥ 0,

8
<

:

2nd player :
min
x2∈R2

(x2, 1)
3

+ (x2, 2)
3

+ x1, 1(x2, 1)
2

+ x1, 2(x2, 2)
2

+ x1, 1x1, 2(x2, 1 + x2, 2)

s:t: (x2, 1)
2

+ (x2, 2)
2

� 1 ≥ 0, 2 � (x2, 1)
2

+ (x2, 2)
2

≥ 0:

8
<

:

The Lagrange multipliers can be represented as (i � 1, 2):

λi, 1 �
1
2 ∇xi f T

i xi(2 � xT
i xi), λi, 2 �

1
4 ∇xi f T

i xi(1 � xT
i xi):

By Algorithm 3.7, we got the unique NE

x∗
1 � (�1:3339, 0:4698), x∗

2 � (�1:4118, 0:0820), 

with the accuracy parameter �3:5186 · 10�8: It took around 5 seconds.
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Example 5.7. Consider the NEP

1st player :

min
x1∈Rn1

X

1≤i≤j≤n1

x1, ix1, j(x2, i + x2, j)

s:t: 1 � (x2
1, 1+ ⋯ +x2

1, n1
) � 0,

8
><

>:

2nd player :

min
x2∈Rn2

X

1≤i≤j≤n2

x2, ix2, j(x1, i + x1, j)

s:t: 1 � (x2
2, 1+ ⋯ +x2

2, n2
) � 0,

8
><

>:

where n1 � n2. We ran Algorithm 3.7 for cases n1 � n2 � 3, 4, 5, 6. The computational results are shown in Table 1. 
In the table, n1 is the dimension for variables x1 and x2, x∗

1 and x∗
2 are computed solutions to the NEP, and w∗ is 

the accuracy parameter. All time consumptions are displayed in seconds, Because of the relatively large amount 
of computational time, we only compute one NE for each case above.

We would like to remark that our method can also be applied to solve unconstrained NEPs, where all individ
ual optimization problems have no constraints, or, equivalently, the feasible set Xi for (1.1) is the entire space Rni . 
For unconstrained NEPs, the KKT System (2.5) becomes

∇xi fi(x∗) � 0, i � 1, : : : , N, 

and Algorithms 3.1 and 3.7 can be implemented in the same way.

Example 5.8. Consider the unconstrained NEP

1st player :
min

Xn1

i�1
(x1, i)

4
+

X

0≤i≤j≤k≤n1

x1, ix1, j(x1, k + x2, i + x3, j)

(n1)
2

s:t: x1 ∈ Rn1 ,

8
><

>:

2nd player :
min

Xn2

i�1
(x2, i)

4
+

X

0≤i≤j≤k≤n2

x2, ix2, j(x2, k + x3, i + x1, j)

(n2)
2

s:t: x2 ∈ Rn2 ,

8
><

>:

3rd player :
min

Xn3

i�1
(x3, i)

4
+

X

0≤i≤j≤k≤n3

x3, ix3, j(x3, k + x1, i + x2, j)

(n3)
2

s:t: x3 ∈ Rn3 ,

8
><

>:

where x1, 0 � x2, 0 � x3, 0 � 1, and n1 � n2 � n3. We implement Algorithm 3.7 for the cases n1 � n2 � n3 � 2, 3, 4, 5, 6. 
For all cases, we computed an NE successfully and obtained that x∗

1 � x∗
2 � x∗

3 (up to round-off errors). There is a 
unique NE for each case. The computational results are reported in Table 2. The time is displayed in seconds.

The following are some examples of NEPs from applications.

Example 5.9. Consider the environmental pollution control problem for three countries for the case autarky (Bre
ton et al. [4]). Let xi, 1(i � 1, 2, 3) denote the (gross) emissions from the ith country. The revenue of the ith country 
depends on xi, 1—for example, a typical one is xi, 1 bi � 1

2 xi, 1
� �

. The variable xi, 2 represents the investment by the 
ith country to local environmental projects. The net emission in country i is xi, 1 � γixi, 2, which is always nonneg
ative and must be kept below or equal to a certain prescribed level Ei > 0 under an environmental constraint. 
The damage cost of the ith country is assumed to be di(xi, 1 � γxi, 2) +

P
j≠ici, jxi, 2xj, 1: For given parameters 

bi, ci, j, di,γi, Ei, the ith (i � 1, 2, 3) country’s optimization problem is

Table 1. Computational results for Example 5.7.

n1 x∗
1 x∗

2 ω∗ Time

3 (�0:5774, � 0:5774, � 0:5774) (�0:5774, � 0:5774, � 0:5774) �1:0689 · 10�7 1.31
4 (0.8381, 0.5024, �0.0328, �0.2098) (�0.1791, �0.0683, 0.4066, 0.8933) �1:4459 · 10�9 62.85
5 (0.8466, 0.4407, 0.1744, �0.0101, �0.2418) (�0.1944, �0.0512, 0.1238, 0.3370, 0.9114) �2:7551 · 10�9 682.67
6 (0.8026, 0.4724, 0.1799, 0.1799, �0.0637, �0.2527) (�0.1979, �0.0772, 0.1091, 0.1091, 0.4040, 0.8762) �7:0354 · 10�9 18,079.99
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min
xi∈R2

�xi, 1 bi � 1
2 xi, 1

� �
+

(xi, 2)
2

2 + di(xi, 1 � γixi, 2) +
X

j≠i
ci, jxi, 2xj, 1

s:t: xi, 2 ≥ 0, xi, 1 ≤ bi, 0 ≤ xi, 1 � γixi, 2 ≤ Ei:

8
><

>:

We consider the general cases that bi ≠ Ei. The Lagrange multipliers can be expressed as

λi, 4 �
1

(bi � Ei)Ei

∂fi
∂xi, 2

xi, 2(xi, 1 � γixi, 2) �
∂fi

∂xi, 1
(bi � xi, 1)(xi, 1 � γixi, 2)

� �

,

λi, 3 �
1
bi

(bi � xi, 1)
∂fi

∂xi, 1
+λi, 4

� �

� xi, 2
∂fi

∂xi, 2
� γiλi, 4

� �� �

,

λi, 2 � λi, 3 �λi, 4 �
∂fi

∂xi, 1
,

λi, 1 �
∂fi

∂xi, 2
+ γiλi, 3 � γiλi, 4:

We solve the NEP for the following typical parameters:

b1 � 1:5, b2 � 2, b3 � 1:8, c1, 2 � 0:2, c1, 3 � 0:3, c2, 1 � 0:4,
c2, 3 � 0:2, c3, 1 � 0:5, c3, 2 � 0:1, d1 � 0:8, d2 � 1:2, d3 � 1:0,
E1 � 3, E2 � 4, E3 � 2, γ1 � 0:7, γ2 � 0:5, γ3 � 0:9:

By Algorithm 3.7, we got the unique NE
x∗

1 � (0:7000, 0:1600), x∗
2 � (0:8000, 0:1600), x∗

3 � (0:8000, 0:4700), 

with the accuracy parameter �1:1059 · 10�9. It took about 10 seconds.

Example 5.10. Consider the NEP of the electricity market problem (Contreras et al. [6]). There are three generat
ing companies, and the ith company possesses si generating units. For the ith company, the power generation of 
his jth generating unit is denoted by xi, j. Assume 0 ≤ xi, j ≤ Ei, j, where the nonzero parameter Ei, j represents its 
maximum capacity, and the cost of this generating unit is 1

2 ci, j(xi, j)
2

+ di, jxi, j, where ci, j, di, j are parameters. The 
electricity price is given by

φ(x) :� b � a

 
X3

i�1

Xsi

j�1
xi, j

!

:

The aim of each company is to maximize its profits—that is, to solve the following optimization problem:

ith player :
min
xi∈Rsi

Xsi

j�1

 
1
2 ci, j(xi, j)

2
+ di, jxi, j

!

� φ(x)

 
Xsi

j�1
xi, j

!

:

s:t: 0 ≤ xi, j ≤ Ei, j ( j ∈ [si]):

8
>><

>>:

The Lagrange multipliers associated to the constraints gi, 2j�1 :� Ei, j � xi, j ≥ 0, gi, 2j :� xi, j ≥ 0 can be represented as

λi, 2j�1 � �
∂fi

∂xi, j
· xi, j=Ei, j, λi, 2j �

∂fi
∂xi, j

+λi, 2j�1: ( j ∈ [si]):

Table 2. The computational results for Example 5.8.

n1 x∗
1 � x∗

2 � x∗
3 ω∗ Time

2 (�0:8410, � 0:7125) �8:8291 · 10�9 0.34
3 (�0:6743, � 0:6157, � 0:5236) �6:6507 · 10�9 1.58
4 (�0.5950, �0.5606, �0.5097, �0.4363) �1:0577 · 10�9 16.86
5 (�0.5476, �0.5247, �0.4919, �0.4472, �0.3860) �4:4438 · 10�9 177.63
6 (�0.5157, �0.4992, �0.4762, �0.4457, �0.4060, �0.3534) �3:7536 · 10�9 1,379.27
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For the following parameters
si � i, a � 1, b � 10,
c1, 1 � 0:4, c2, 1 � 0:35, c2, 2 � 0:35, c3, 1 � 0:46, c3, 2 � 0:5, c3, 3 � 0:5,
d1, 1 � 2, d2, 1 � 1:75, d2, 2 � 1, d3, 1 � 2:25, d3, 2 � 3, d3, 3 � 3,
E1, 1 � 2, E2, 1 � 2:5, E2, 2 � 0:67, E3, 1 � 1:2, E3, 2 � 1:8, E3, 3 � 1:6, 

we ran Algorithm 3.7 and found the unique NE
x∗

1 � 1:7184, x∗
2 � (1:8413, 0:6700), x∗

3 � (1:2000, 0:0823, 0:0823):

The accuracy parameter is �5:1183 · 10�7. It took about 8 seconds.

6. Conclusions and Discussions
This paper studies Nash equilibrium problems that are given by polynomial functions. Algorithms 3.1 and 3.7
are proposed for computing one or all NEs. The Moment-SOS hierarchy of semidefinite relaxations is used to 
solve the appearing polynomial optimization problems. Under generic assumptions, we can compute a Nash 
equilibrium if it exists and detect its nonexistence if there is none. Moreover, we can get all Nash equilibria if 
there are finitely many ones of them.

In Nie and Tang [45], a semidefinite relaxation method using rational and parametric Lagrange multiplier 
expressions is proposed for solving convex GNEPs. Under some general conditions, the method in Nie and Tang 
[45] is guaranteed to find one GNE or detect nonexistence of GNEs. The NEPs considered in this work are special 
cases of GNEPs, because they can be viewed as GNEPs where every player’s feasible set is independent of other 
players’ strategies. Moreover, for convex NEPs, Algorithm 3.1 reduces to Nie and Tang [45, algorithm 5.3] and 
terminates at Step 2 in the first loop, as shown in Corollary 3.4. In contrast, this paper mainly focuses on solving 
nonconvex NEPs, and the main difficulty of problems in the scope of this paper is brought by nonconvexity. 
Major differences between contributions in this paper and those in Nie and Tang [45] are as follows: 

• In this paper, we primarily focus on nonconvex NEPs of polynomials. One of our main contributions in this 
work is that we proposed an algorithm that finds NEs for nonconvex NEPs, if they exist. Note when there is no con
vexity being assumed, every block x∗

i of the NE x∗ is the global minimizer for Fi(x∗
�i), which is usually nonconvex. 

For nonconvex NEPs, the KKT conditions are typically not sufficient for global optimality; thus, the updating 
scheme Ki :� Ki ∪ U i in Step 3 of Algorithm 3.1 is applied to preclude KKT points that are not NEs. Therefore, we 
usually need to solve a sequence of polynomial optimization problems to get NEs. In comparison, Nie and Tang 
[45] concerns GNEPs where every player solves a convex optimization problem. Therefore, once a KKT point is 
obtained with some constraint qualification conditions being satisfied, this KKT point must be a GNE. So, there is 
no need to preclude any KKT point, and we usually only need to solve one polynomial optimization problem for a 
GNE. Indeed, convex NEPs are studied in Section 3.3, which is the intersection of problems considered in this work 
and in Nie and Tang [45]. One can easily see that it is way more difficult to solve NEPs without any convexity 
assumption from our discussion in Sections 3.2 and 3.3.

• The goal of the method in Nie and Tang [45] is to find just one GNE, and it cannot check whether the com
puted GNE is unique or not. In comparison, Algorithm 3.7 proposed in Section 3.4 aims to find more NEs. Further
more, when there are finitely many NEs, Algorithm 3.7 can find all NEs and check the completeness of the 
computed solution set, under some general conditions. We would like to remark that there is no other numerical 
method that can achieve such computational goals for general NEPs given by polynomials, to the best of the 
authors’ knowledge.

• Algorithms 3.1 and 3.7 assume that all constraining polynomial tuples gi are nonsingular, so that there exist 
polynomial expressions for Lagrange multipliers. When the NEP is given by generic polynomials, nonsingularity is 
satisfied for all i ∈ [N]. However, polynomial Lagrange multiplier expressions typically do not exist for GNEPs. For 
such cases, one may consider the corresponding Lagrange multipliers as new variables, but this is often computa
tionally expensive, especially when there are a lot of constraints. In Nie and Tang [45], rational and parametric 
Lagrange multiplier expressions are studied for solving convex GNEPs. For NEPs, when constraints are singular, 
rational and parametric Lagrange multiplier expressions can also be applied to find NEs. Nonetheless, convergence 
results in Theorem 3.2 and Corollary 3.9 may no longer hold, because there may exist NEs that are not KKT points 
when polynomial expressions for Lagrange multipliers do not exist.

There is much interesting future work to do. If there are only finitely many KKT points that are not NEs, Algo
rithm 3.1 must terminate within finitely many loops. This is shown in Theorem 3.2. For generic NEPPs, the finite
ness of KKT points is shown in Theorem A.1. However, the convergence property of Algorithm 3.1 is not known 
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when there are infinitely many KKT points. In Example 5.2(ii), there are infinitely many KKT points that are not 
NEs, but Algorithm 3.1 is still able to get an NE in a few loops. If there are infinitely many KKT points that are 
not NEs, does Algorithm 3.1 still converge to find an NE? This question is mostly open to the authors.

It is important to compute NEs efficiently for large-scale NEPs. Even for unconstrained NEPs, the kth-order 
moment relaxation for (3.7) is a semidefinite program with O(n2k) variables. Algorithm 3.1 may not be computa
tionally practical for solving large-scale NEPs. Sparse polynomial optimization problems are studied in Lasserre 
[27], Nie and Demmel [43], Waki et al. [59], Wang et al. [60], Wang et al. [61], and Wang et al. [62]. Recently, the 
software TSSOS (Magron and Wang [31]) that implements the term and correlative sparse Moment-SOS relaxa
tions is developed. In Algorithms 3.1 and 3.7, polynomial optimization problems are formulated to find NEs, 
and one may implement sparse Moment-SOS relaxations for solving these polynomial optimization problems. 
However, even for the NEPP where each player’s optimization problem Fi(x�i) is sparse, the Polynomial Optimi
zation Problem (3.7) may not be sparse. This is because both the polynomial expressions of Lagrange multipliers 
and the KKT system may consist of dense polynomials (see Qu and Tang [51] for more details). Therefore, how 
to exploit sparsity to find NEs efficiently for large-scale NEPs is important for future work.

Nonconvex NEPs may or may not have NEs, even if all feasible sets are compact. For each i ∈ [N], let Bi be the 
set of Borel probability measures supported in Xi. Define the measure function

Γi(µ1, : : : , µN) :�

Z

X1

⋯
Z

XN

fi(x1, : : : , xN)dµ1 ⋯ dµN:

The mixed-strategy extension for the NEP (1.3) is to find (µ∗
1, : : : , µ∗

N) ∈ B1 ×⋯× BN such that

Γi(µ
∗
1, : : : , µ∗

i�1, µ∗
i , µ∗

i+1, µ∗
N) ≤ Γi(µ

∗
1, : : : , µ∗

i�1, µi, µ∗
i+1, µ∗

N) (6.1) 

holds for all i ∈ [N] and for all µi ∈ Bi. Such a (µ∗
1, : : : , µ∗

N) is called a mixed-strategy solution, and it always exists 
(Glicksberg [13]). Mixed-strategy solutions to finite games are studied in Ahmadi and Zhang [2], Aubin [3], Das
kalakis et al. [8], Kontogiannis et al. [21], Nash [33], and Young and Zamir [63]. The mixed-strategy extensions of 
general continuous NEPs are typically difficult to solve because it is a computational challenge to do operations 
with measures. However, when the functions are polynomials, the mixed-strategy extension can be equivalently 
expressed in terms of moment variables. We discuss how this can be done in the following.

For the NEPP (1.3), let ai, j be the degree of fi in xj and let

bj � max{a1, j, : : : , aN, j}:

Let T(i) be the Nth-order tensor such that for all uj � [xj]bj and j ∈ [N],

fi(x) � T(i)(u1, : : : , uN) :�
X

k1, : : : ,kN

T(i)
k1, : : : , kN

(u1)k1
: : : (uN)kN

:

Denote the set X i :� {[xi]bi : xi ∈ Xi}: Let conv(X i) be the convex hull of X i. For a probability measure µi ∈ Bi, if 
uj �

R
Xi [xj]bj dµi, then we have uj ∈ conv(X i) (see Henrion et al. [18], Lasserre [28], and Laurent [30]). Because fi is 

a polynomial, for every (µ1, : : : , µN) ∈ B1 ×⋯× BN, there exists (u1, : : : , uN) ∈ conv(X1) ×⋯× conv(XN) such that
Z

X1

⋯
Z

XN

fi(x1, : : : , xN)dµ1: : : dµN � T(i)(u1, : : : , uN): (6.2) 

Conversely, for each (u1, : : : , uN) ∈ conv(X1) ×⋯× conv(XN), there exist probability measures µ1, : : : , µN such that 
each µi ∈ Bi, and (6.2) holds. Therefore, the mixed-strategy extension of the NEPP (1.3) is equivalent to its convex 
moment relaxation: Find a tuple

(u∗
1, : : : , u∗

N) ∈ conv(X 1) ×⋯× conv(XN), 

such that for each i � 1, : : : , N,

T(i)(u∗
1, : : : , u∗

i�1, ui, u∗
i+1, : : : , u∗

N) ≥ T(i)(u∗
1, : : : , u∗

N), 

for all ui ∈ conv(X i). Moreover, if each u∗
i is an extreme point of conv(X i), then one can get an NE for the original 

NEPP from (u∗
1, : : : , u∗

N). We refer to Laraki and Lasserre [25] for moment game problems and Dresher et al. [10], 
Parrilo [49], and Stein et al. [56] for more details on mixed-strategy solutions to polynomial games.
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Appendix. Finiteness of KKT Points for Generic NEPPs
The finiteness of KKT points implies that Algorithms 3.1 and 3.7 have finite termination. In the following, we discuss the 
finiteness of KKT points for generic NEPPs.

After the enumeration of all possibilities of active inequality constraints, we can generally consider the case that (1.1) 
only has equality constraints. Consequently, the length mi of the ith player’s constraining polynomials can be assumed 
less than or equal to ni, the dimension of its strategy xi. To prove the finiteness, we can ignore the sign conditions λi, j ≥ 0 
for Lagrange multipliers. Then, the KKT system for all players is

Xmi

j�1
λi, j∇xi gi, j(xi) � ∇xi fi(x) (i ∈ [N]),

gi, j(xi) � 0 (i ∈ [N], j ∈ [mi]):

8
><

>:
(A.1) 

When the objectives fi are generic polynomials in x and each gi, j is a generic polynomial in xi, we show that (A.1) has 
finitely many complex solutions.

Theorem A.1. Let di, j > 0, ai, j > 0 be degrees for all i ∈ [N] and j ∈ [mi]. If each gi, j is a generic polynomial in xi of degree di, j, and 
each fi is a generic polynomial in x, whose degree in xj is ai, j, then the KKT System (A.1) has finitely many complex solutions, and, 
hence, the NEP has finitely many KKT points.

Proof. For each player i � 1, : : : , N, denote
bi :� ai, i � 1 + di, 1+ ⋯ +di, mi � mi,
exi :� (xi, 0, xi, 1, : : : , xi, ni ), ex :� (ex1, : : : ,exN):

The homogenization of gi, j is egi, j, a form in exi. Let Pni be the ni dimensional projective space over the complex field. Con
sider the projective varieties

U i :� {(ex1, : : : ,exN) ∈ Pn1 ×⋯× PnN : egi(exi) � 0}, i � 1, : : : , N,
U :� U1 ∩⋯∩ UN:

When all gi, j are generic polynomials in xi, the codimension of U i is mi (see Harris [16]), so U has the codimension 
m1+ ⋯ +mN.

The ith player’s objective fi is a polynomial in x � (x1, : : : , xN); we denote the multihomogenization of fi(xi, x�i) as

ef i(exi,ex�i) :� fi(x1=x1, 0, : : : , xN=xN, 0) ·

 
YN

j�1
(xi, 0)

ai, j

!

:

It is a multihomogenous polynomial in ex. For each i, consider the determinantal variety (the ∇xi denotes the gradient 
with respect to xi)

Wi :� {x ∈ Cn | rank[∇xi fi(x) ∇xi gi, 1(xi) ⋯ ∇xi gi, mi (xi) ] ≤ mi }:

Its multihomogenization is

eWi :� {ex | rank[∇xi
ef i(ex) ∇xiegi, 1(exi) ⋯ ∇xiegi, mi

(exi)] ≤ mi }:

The matrix in the above can be explicitly written as

Ji(exi,ex�i) :�

∂xi, 1
ef i(ex) ∂xi, 1egi, 1(exi) ⋯ ∂xi, 1egi, mi

(exi)

∂xi, 2
ef i(ex) ∂xi, 2egi, 1(exi) ⋯ ∂xi, 2egi, mi

(exi)

⋮ ⋮ ⋱ ⋮
∂xi, ni

ef i(ex) ∂xi, ni
egi, 1(exi) ⋯ ∂xi, ni

egi, mi
(exi)

2

6
6
6
6
6
4

3

7
7
7
7
7
5

:

The (mi + 1)-by-(mi + 1) minors of the matrix Ji are homogeneous in exi of degree bi. They are homogeneous in exj of degree 
ai, j, for j ≠ i. By Nie and Ranestad [44, proposition 2.1], when gi, j are generic polynomials in xi, the right mi columns of Ji 
are linearly independent for all exi ∈ U i. That is, for every ex ∈ U i, there must exist a nonzero mi-by-mi minor from the right 
mi columns of Ji. In the following, we consider fixed generic polynomials gi, j.

First, we show that U ∩ eW1 have the codimension n1 + m2+ ⋯ +mN. Let V be the projective variety consisting of all 
equivalent classes of the vectors

m1(ex) :� [ex1]
hom
b1

⊗ [ex2]
hom
a1,2

⊗ ⋯ ⊗[exN]
hom
a1,N

, (A.2) 

for equivalent classes of ex ∈ U. In the above, ⊗ denotes the Kronecker product; [u]
hom
d denotes the vector of all monomials 

in u of degrees equal to d. In other words, [u]
hom
d is the subvector of [u]d for monomials of the highest degree d. Note that 

U is birational to V (consider the natural embedding φ : U, → V such that φ(ex) � m1(ex)). So, U and V have the same 
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codimension (Shafarevich [55]). For each subset I ⊆ [n1] of cardinality m1, we use detIJ1 to denote the m1-by-m1 minor of J1 
for the submatrix whose row indices are in I and whose columns are the right-hand-side m1 columns. Then,

eW1 �
[

I⊆[n1], | I | �m1

X I where

X I :� {ex : rank J1(x) ≤ m1, detIJ1(x) ≠ 0}:

For each I, we have ex ∈ X I if and only if the (m1 + 1)-by-(m1 + 1) minors of J1, corresponding to the row indices I ∪ {ℓ}
with ℓ ∈ [n1]\I, are equal to zeros. There are totally n1 � m1 such minors. Vanishing of these (m1 + 1)-by-(m1 + 1) minors of 
J1 gives n1 � m1 linear equations in the vector m1(ex) as in (A.2). The coefficients of these linear equations are linearly 
parameterized by coefficients of f1. Therefore, when f1 has generic coefficients, the set

YI :� {m1(ex) : ex ∈ X I ∩ U}, 

is the intersection of V with hyperplanes given by n1 � m1 generic linear equations. Because X I ∩ U is birational to YI, they 
have the same codimension, so the codimension of X I ∩ U is n1 + m2+ ⋯ +mN. This conclusion is true for all the above sub
sets I. Because

U ∩ eW1 �
[

I⊆[n1], | I | �m1

X I ∩ U, 

the codimension of U ∩ eW1 is equal to n1 + m2+ ⋯ +mN.
Second, we repeat the above argument to show that

(U ∩ eW1) ∩ eW2, 

has codimension n1 + n2 + m3+ ⋯ +mN. Let V′ be the projective variety consisting of all equivalent classes of the vectors

m2(ex) :� [ex1]
hom
a2,1

⊗ [ex2]
hom
b2

⊗ [ex3]
hom
a2,3

⊗ ⋯ ⊗[exN]
hom
a2,N

, (A.3) 

for equivalent classes of ex ∈ U ∩ eW1. Note that U ∩ eW1 is birational to V′. They have the same codimension. Similarly, we 
have

eW2 �
[

I⊆[n2], | I | �m2

X ′
I where

X ′
I :� {ex : rank J2(x) ≤ m2, detIJ2(x) ≠ 0}:

When f2 has generic coefficients, the set

Y′
I :� {m2(ex) : ex ∈ X ′

I ∩ U ∩ eW1}

is the intersection of V′ with n2 � m2 generic hyperplanes of codimension one. Because X ′
I ∩ U ∩ eW1 is birational to Y′

I , 
they have the same dimension, so the codimension of X ′

I ∩ U ∩ eW1 is n1 + n2 + m3+ ⋯ +mN. This conclusion is true for all 
Y′

I . Last, because

U ∩ eW1 ∩ eW2 �
[

I⊆[n2], | I | �m2

X ′
I ∩ U ∩ eW1, 

we know U ∩ eW1 ∩ eW2 has the codimension n1 + n2 + m3+ ⋯ +mN.
Similarly, by repeating the above, we can eventually show that

U ∩ eW1 ∩ eW2 ∩⋯∩ eWN, 

has codimension n1 + n2+ ⋯ +nN. This implies that the KKT System (A.1) has codimension n1 + n2+ ⋯ +nN—that is, the 
dimension of the solution set of (A.1) is zero. So, there are finitely many complex KKT points. w

Endnotes
1 In some literature, this is also called a pure strategy Nash equilibrium, in contrast to mixed-strategy Nash equilibria, which are probability mea
sures supported on the feasible strategy sets. We refer to Section 6 for more details on mixed-strategy NEs; also see Dresher et al. [10], Kroupa 
and Votroubek [23], Nash [33], Parrilo [49], Stein et al. [56], and Young and Zamir [63].
2 See Section 4 for how to solve polynomial optimization problems and Section 5 for computational information.
3 We remark that for this NEP, as well as the NEP in Example 5.3(iii), though a (pure strategy) NE does not exist, there exist mixed-strategy 
solutions. See Kroupa and Votroubek [23] and Stein et al. [56] for more details.
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