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1. Introduction

The Nash equilibrium problem (NEP) is a kind of game for finding strategies for a group of players such that
each player’s objective is optimized, given other players’ strategies. Suppose there are N players, and the ith
player’s strategy is the variable x; € R" (the n,-dimensional real Euclidean space). We denote that

Xii= (X1, i), Xi=(X1,...,XN).
The total dimension of all players’ strategies is
n:=ny+ - +ny.
When the ith player’s strategy x; is being optimized, we use x_; to denote the subvector of all players’ strategies
except x—that is,
X_j:= (xlr ceey Xie1, Xig 1y e ,XN),

and write x = (x;,x_;) accordingly. When the writing x_; appears, the ith player’s strategy is being considered for
optimization, while the vector of all other players’ strategies is fixed to be x_;. In an NEP, the ith player’s best
strategy x; is the minimizer for the optimization problem

2111@“ filxi, x—5)

Fi(xfi) : S.t. gi,,-(xi) = 0(] S 51’), (11)
$ij(x) 2 0(j €1y,
for the given other players’ strategies x_;. In the above, f; is the ith player’s objective function, and g; ; are con-

straining functions in x;. The &; and Z; are disjoint labeling sets of finite cardinalities (possibly empty). The feasi-
ble set of the optimization F;(x_;) in (1.1) is

Xi={x;eR": g (x;))=0(j€&), g,(x)20(j€L)}. (1.2)

For NEPs, each set X; does not depend on x_;. This is different from generalized Nash equilibrium problems
(GNEPs), where each player’s feasible set depends on other players’ strategies. We say the strategy vector x is
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feasible if
x=(x1,...,xn) € X:= X X---X X},.
That is, each x; € X;. The NEP can be formulated as
find x"eR" such thateach x] is a minimizer of F;(x" ), (1.3)

where x* = (x},...,x}). A solution of (1.3) is called a Nash equilibrium (NE)." When the defining functions f; and g;;
are continuous, then the NEP is called a continuous Nash equilibrium problem. In this paper, we consider cases that
each f; is a polynomial in x and g; /'s are polynomials in x;. Such an NEP is called a Nash equilibrium problem of poly-
nomials (NEPP). The following is an example.

Example 1.1. Consider the two-player NEP with the individual optimization

mir; x1,1(x1,1 +Xp,1+ 4X2,2) + ZX% P
x1€R !

1st player :
2 2
st 1—(x1,1)" — (x1,2)" =0,
min  xp,1(x1,1 + 2x1,2 + X2,1) + X2,2(2%1,1 + X1,2 + X2,2)
2nd player : ¢ 2

st 1—(x21)" — (x22)* > 0.

In this NEP, each player’s objective is strictly convex with respect to its strategy because their Hessian matrices
with respect to their own strategies are positive definite. This NEP has only three NEs (see Section 3.3), which
are

1st NE: x} = (0,0), x, =(0,0);

1

2nd NE :x7 = (1,0), ¥, =—(-1, —2);
V5
1

3rd NE: x] =(-1,0), x;=—(1,2).

V5

NEPs are challenging problems to solve. Even for the special cases where each player’s objective function is mul-
tilinear in (x1,...,xn), and each feasible set is a simplex, finding an NE is Polynomial Parity Arguments on
Directed Graphs-complete (Daskalakis et al. [8]). The problem becomes more difficult when players” optimiza-
tion problems are nonconvex. This is because an NE x* = (x7, ..., X)) requires that each x; is a global minimizer of
Fi(x" ;). Indeed, finding a global minimizer of a single polynomial optimization problem is already NP-hard (Las-
serre [28]). For polynomial optimization problems, global optimizers can be computed efficiently by the
Moment-sum-of-squares (Moment-SOS) hierarchy of semidefinite relaxations (see Lasserre [26], Lasserre [28],
and Laurent [30] for related work). Moreover, for some NEPs, there may not exist any NE. Such NEPs are also
interesting and have important applications (e.g., NEPs in generative adversarial networks; Farnia and Ozdaglar
[12]). If an NE does not exist, how can we detect its nonexistence? This question is mostly open for general NEPs,
to the best of the author’s knowledge. However, under certain nonsingularity conditions, nonexistence of NEs
for NEPPs can be certified by the infeasibility of some semidefinite programs. For the above reasons, this paper
focuses on NEPPs.

NEPs are generalizations of finite games (Nash [33]), where each X is a finite set—that is, |X;| < co. In recent
years, there has been an increasing number of applications of NEPs in various fields, such as economics, environ-
mental protection, politics, supply chain management, machine learning, etc. We refer to Breton et al. [4], Con-
treras et al. [6], Farnia and Ozdaglar [12], Goodfellow et al. [14], Maskin [32], and Schofield and Sened [53] for
some recent applications of NEPs. In Section 5, we present some concrete applications of NEPs in environmental
pollution control and the electricity market. Moreover, we refer to surveys Aubin [3] and Young and Zamir [63]
for more general work on NEPs.

In this paper, our primary goal is to find NEs for NEPs. In the following, we review some previous work on solv-
ing NEPs. The NEP is called a zero-sum game if the sum of objective functions is identically equal to a constant.
Two-player zero-sum games are equivalent to saddle-point problems. We refer to Chen et al. [5] and Nedi¢ and Ozda-
glar [34] for algorithms of solving saddle-point problems under convexity assumptions and Nie et al. [48] for the
method of solving nonconvex polynomial saddle-point problems. For finite games, finding mixed-strategy solu-
tions is a special case of NEPs of polynomials; see Ahmadi and Zhang [2], Datta [9], Kontogiannis et al. [21], and
Young and Zamir [63] for some related approaches. There exists work on mixed-strategy solutions for continuous
games; see Dresher et al. [10], Parrilo [49], and Stein et al. [56] for mixed-strategy solutions to polynomial games
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and Adam et al. [1] and Kroupa and Votroubek [23] for the recently developed multiple oracle algorithms. For find-
ing pure strategy solutions for general continuous NEPs, we refer to techniques such as variational inequalities
(Giirkan and Pang [15] and Kulkarni and Shanbhag [24]), Nikaido-Isosoda functions (Krawczyk and Uryasev [22],
Uryas’ev and Rubinstein [58]), and manifold optimization tools (Ratliff et al. [52]). In most earlier work, convexity is
often assumed for each player’s optimization. Moreover, NEPs are special cases of GNEPs (Facchinei and Kanzow
[11]), where each player’s feasible set is dependent on other players’ strategies. For GNEPs given by polynomial
functions, the work Couzoudis and Renner [7] introduces a parametric SOS relaxation approach, and the Gauss-
Seidel method using Moment-SOS relaxations is studied in Nie et al. [47]. When the GNEPs are further assumed to
be convex, the semidefinite relaxation method is introduced in Nie and Tang [45]. At the moment, it is mostly an
open question to solve general NEPs, especially when the players” optimization problems are nonconvex.

1.1. Contributions

This paper focuses on Nash equilibrium problems that are given by polynomials. We formulate efficient polyno-
mial optimization for computing one or more Nash equilibria. The Moment-SOS hierarchy of semidefinite
relaxations is used to solve the appearing polynomial optimization problems. Our major results are:

e Under some genericity assumptions, we prove that our method can compute a Nash equilibrium if there exists
one, or it can detect nonexistence of NEs. Moreover, if there are only finitely many NEs, we show how to find all of
them. In the prior existing work, there do not exist similar methods that can achieve such computational goals.

e When the objective and constraining polynomials are generic (i.e., they have generic coefficients), we show
that the NEPP has only finitely many KKT points. For such generic NEPPs, our method can compute all NEs, if
they exist, or can detect their nonexistence.

e When the objective and constraining polynomials are not generic, our method can still be applied to compute
one or more NEs, or to detect their nonexistence. Even if there are infinitely many NEs, our method may still be
able to get an NE. In computational practice, there is no need to check whether the NEP is generic or not to imple-
ment our algorithms. In fact, our method is self-verifying, that in the actual implementation, the algorithm can
check whether the computed point is an NE and check whether the computed solution set is complete or not.

The paper is organized as follows. Some preliminaries about polynomial optimization are given in Section 2.
We give efficient polynomial optimization formulations in Section 3. We show how to solve polynomial optimi-
zation problems by the Moment-SOS hierarchy in Section 4. Numerical experiments and applications are given
in Section 5. Conclusions and discussions are proposed in Section 6. The finiteness of the KKT set for generic
NEPs is shown in the appendix.

2. Preliminaries
2.1. Notation
The symbol N [respectively (resp.), R, C] stands for the set of nonnegative integers (resp., real numbers, complex
numbers). For a positive integer k, denote the set [k] := {1,...,k}. For a real number ¢, [t] (resp., [t]) denotes the
smallest integer not smaller than ¢ (resp., the biggest integer not bigger than t). For the ith player’s strategy vari-
able x; € R", the x; ; denotes the jth entry of x;, j=1,...,n;. The R[x] (resp., C[x]) denotes the ring of polynomials
with real (resp., complex) coefficients in x. The R[x]; (resp., C[x];) denotes its subset of polynomials whose
degrees are not greater than d. For the ith player’s strategy vector x;, the notations R[x;], C[x;], R[x;];, C[x;], are
defined in the same way. For the ith player’s objective fi(x;, x_;), the notations V,f;, V> fi, respectively, denote its
gradient and Hessian with respect to x;.

In the following, we use the letter z to represent either x or x; for the convenience of discussion. Suppose z :=
(z1,...,z))and a:= (ay,...,q)) € N’; denote

%=z ezl al = and e ey
For an integer d > 0, denote the monomial power set
N, :={aeN:|a| <d}.

We use [z]; to denote the vector of all monomials in z and whose degree is at most d, ordered in the graded
alphabetical ordering. For example, if z = (z1,22), then

_ 2 2 .3 .2 2 .3
[z]3 = (1, 21,22, 27,2122, 25, 2, 2122, 2125, Z3) -

Throughout the paper, the word “generic” is used for a property if it holds for all points outside a set of Lebes-
gue measure zero in the space of input data. For a given multidegree (dy, .. .,dn) (resp., a degree d) in the variable
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x=(x1,...,xN) (resp., in variable x;), we say a polynomial p(x) (resp., g(x;)) is generic if the coefficient vector of p
(resp., q) is generic in the space of coefficients. For multidegrees ay,...,ay and degrees by 1,b1,2,...,b1,m,b2,1,
...,bN my, we say the NEPP is generic if for each 7 and j, the f;(x1, ..., xxn) is a generic polynomial with multidegree
a;, and the g; ;(x;) is a generic polynomial whose degree is b; ;.

2.2. ldeals and Positive Polynomials
Let F = Ror C. For a polynomial p € F[z] and subsets I,] C F|[z], define the product and Minkowski sum

p-l:={pg:qel}, I1+]={a+b:aclbe]}.
The subset I is an ideal if p-I1 C I for all p € F[z] and I + I C I. For a tuple of polynomials g = (g1, . ..,qm), the set
Ideal[q] := g1 - Flz]+ -+ +q, - Fz],
is the ideal generated by g, which is the smallest ideal containing each g;.
We review basic concepts in polynomial optimization. A polynomial ¢ € R[z] is said to be a sum of squares if

0 =2 + 53+ -+ +s? for some polynomials sy, ...,s; € R[z]. The set of all SOS polynomials in z is denoted as X[z].
For a degree k, we denote the truncation

Zlz]y = Elz] N Rz]y.

For a tuple g = (g1, . ..,8:) of polynomials in z, its quadratic module is the set

Qmod[g] := Z[z] + g1 - Z[z]+ -+ +g¢ - Z[z].
Similarly, we denote the truncation of Qmod(g)

Qmod|[gla := Zlzlok + 81+ Elzloi—degen) T = +8¢ * ElZ]ak—deg(en)-
The tuple g determines the basic closed semialgebraic set
S(g) == {ze R : g(z) > 0}. (2.1)
For a tuple h = (hy, ..., hs) of polynomials in R|[z], its real zero set is
Z(h) = {u € R': hy(u) == hs(u) = 0}.

The set Ideal[l1] + Qmod[g] is said to be archimedean if there exists p € Ideal[l1] + Qmod|[g] such that the set S(p)
is compact. If Ideal[/1] + Qmod[g] is archimedean, then Z(h) N S(g) must be compact. Conversely, if Z(h) N S(g)
is compact—say, Z(h) N S(g) is contained in the ball R — |IzI[> > 0—then Ideal[h] + Qmod|[g, R — |IzI[*] is archime-
dean and Z(h) NS(g) = Z(h) N S(g, R — lIzI1%). Clearly, if f € Ideal[h] + Qmod[g], then f >0 on Z(h) N S(g). The
reverse is not necessarily true. However, when Ideal[] + Qmod|[g] is archimedean, if />0 on Z(h) N S(g), then
f eldeal[l] + Qmod[g]. This conclusion is referenced as Putinar’s [50] Positivestellensatz. Interestingly, if f >0
on Z(h) N S(g), we also have f € Ideal[l] + Qmod[g], under some standard optimality conditions (Nie [40]).

2.3. chalizing and Moment Matrices I
Let R™ denote the space of all real vectors that are labeled by a € N,. Each y € R is labeled as

y= (ya)aeNIZk'

Such vy is called a truncated multisequence (tms) of degree 2k. For a polynomial f = ZHGNIZkfaz“ € R[z],;, define the
operation

Fo) =" fava. (22)

aeN’Zk
The operation (f,y) is a bilinear function in (f, ). For a polynomial q € R[z] with deg(g) < 2k and the integer
t=k—[deg(q)/2],

the outer product g - [z),([z],)" is a symmetric matrix polynomial in z, with length (n ;r t) . We write the expan-
sion as

q- [21([z])" = Z 2°Qu,

I
a€eN,,



Downloaded from informs.org by [2607:720:1901::1ed] on 24 August 2023, at 16:28 . For personal use only, all rights reserved.

Nie and Tang: Nash Equilibrium Problems of Polynomials
Mathematics of Operations Research, Articles in Advance, pp. 1-26, © 2023 INFORMS 5

for some symmetric matrices Q,. Then, we define the matrix function

Lék) [y] = Z yaQa- (23)

1
aEN,,

It is called the kth localizing matrix of q and generated by y. For given g, L{(f) [y] is linear in y. Clearly, if g(u) >0
and y = [u]y, then .
LOy] = qu)[ul [u]] = 0.

For instance, if | =k =2 and g(z) =1 — z; — 212, then
Yoo — Y10 — Y11 Yio —Y20 — Y21 Yo1 — VY11 — Y12
L'(12) [y] = Yo — Y20 — Y21 Y20 — Y30 — Y31 Yi1 — Y21 — Y22
Yor — Y11 — VY12 Y11 — Y21 — Y22 Yo2 — Y12 — Y13

When g is the constant one polynomial, the localizing matrix L(lk) [y] reduces to a moment matrix, which we denote as

Mily] = LP[y]. 24)
For instance, forn=2and y € RY, we have M, [v] = [vool,
Yoo Y10 Yo1 Y20 Y11 Yo2]
Yio Y20 Y11 Y30 Y21 Y1z

Yoo Y10 Yor Yo1 Y11 Yoz Y21 Y12 Yos
Milyl= |vio v20 yu1|, Mlyl= b !
Y20 Y30 Y21 Yao VY31 Y22
Yor Y11 Yoz

Y11 Y21 Yi2 Y31 Y2 Y13
LYo2 Y12 Yo3 Y22 Y13 Yos
Localizing and moment matrices are basic tools to formulate semidefinite relaxations for polynomial optimiza-

tion problems. They are important tools for solving polynomial, matrix, and tensor optimization problems (Hil-
lar and Nie [20], Nie [35], Nie [36], Nie [41], Nie and Zhang [46]).

2.4. Optimality Conditions for NEPs
Consider the ith player’s individual optimization problem F;(x_;) in (1.1), for given x_;. Suppose &; U Z; = [m;] for
some m; € N. For convenience, we write the constraining functions as

gi(xi) = (gi,l(xi)/ . ~rgi,mi(xi))~
Suppose x = (x1,...,xy) is an NE. Under linear independence constraint qualification condition (LICQC) at x—
that is, the set of gradients for active constraining functions are linearly independent—there exist Lagrange mul-
tipliers A; ; such that

Vg () = Vafi0),
JZ:; Sk f (2.5)

0< Ai,j J_gi,j(xi) > 0(] (S Il)
In the above, A;; 1 g; i(x;) means that A; ;- g; ;(x;) = 0. The system (2.5) is called the KKT conditions for the optimi-
zation F;(x_;). We say a point x € R" is a KKT point if there exist vectors of Lagrange multipliers A4,..., Ay such
that (2.5) holds. For the NE x, if the LICQC of F;(x_;) holds at x; for every i € [N], then x must be a KKT point.
Moreover, if each player’s optimization problem is convex—that is, the f;(x;,x_;) is convex in x; for all x_; € X; X

X Xj_1 X Xjpq XX Xy—and every X; is a convex set, then all KKT points are NEs (Facchinei and Kanzow [11,
theorem 4.6]).

Example 2.1. Consider the two-player NEP in Example 1.1. Each individual optimization is strictly convex,
because Hessian matrices Vil fi and V2 _f> are positive definite. The constraints are the convex ball conditions. The

KKT system is
2x1,1 +Xp,1 +4x2,0 = —2A1x1,1,4%1,2 = —2A1X1,2,

X1,1+ 2x1,2 + 2x2,1 = —2/\2x2,1,2x1,1 +X1,2+ 2X2,2 = —2/\2)(2,2,
M1 = (ep1)* = (r1,2)%) = 0,A2(1 — (x2,1)* — (x2,2)°) =0, (2.6)
T—(x1,1)" = (x1,2)* 20,1 — (x2,1)* — (x2,2)* =0,

A1>0,A,>0.
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By solving the above directly, one can show that this NEP has only three KKT points, together with Lagrange
multipliers as follows:

Nash equilibrium Lagrange multiplier
xi = (0/ 0)/ x; = (0, 0), A; = A; = O;
1 ._9V5 ._V5
x; =(1,0), x;:%(—L—z), Alzw—ll )\2:7_1;
* * 1 * 9% * \/5
X1 :(_1/0)/ xzz%(l,Z), Al :W_l’ /\2=7_1.

All these KKT points are NEs because the NEP is convex. Furthermore, because for each i=1, 2, the LICQC of
F;(x_;) holds for all x € X, these NEs are all solutions to the NEP. This is very different from a single convex opti-
mization problem, where the set of minimizers, if it is nonempty, must be a singleton or have an infinite cardinal-
ity if the objective function is convex, and the minimizer has to be unique if the objective function is further
assumed to be strictly convex.

However, the KKT point may not be an NE of the NEP when there is no convexity assumed. This is because
the KKT Condition (2.5) is typically not sufficient for x; to be a minimizer of F;(x_;), which makes nonconvex
NEPs quite difficult to solve. In this paper, we mainly focus on finding NEs for nonconvex NEPs of polynomials.

3. Polynomial Optimization Formulations

In this section, we show how to formulate efficient polynomial optimization problems for solving the NEPP
(1.3). We first introduce the polynomial expressions for Lagrange multipliers in Section 3.1. Then, in Section 3.2,
polynomial optimization problems are formulated for finding NEs, and an algorithm to solve nonconvex NEPs
is proposed. Convex NEPs of polynomials are studied in Section 3.3. Last, we further extend our approach to
find more NEs in Section 3.4.

3.1. Optimality Conditions and Lagrange Multiplier Expressions
For the NEP (1.3), if x is an NE where the LICQC is satisfied, then it must be a KKT point—that is, x satisfies (2.5)
for all i € [N]. Therefore, every NE must satisfy the following equation system:

Vi&i1(xi) Vigiolxi) - Vigim(x:)

0 gio(x) - 0 Sl = : . (3.1)
0 0 e ) ] L :
G A fi
If there exists a matrix polynomial H;(x;) such that
H;(x:)Gi(x;) = L, (32)

then we can express A; as
Ai = Hi(x:)Gi(x;)A; = Hi(xi)f;’(x)'

Interestingly, the matrix polynomial H;(x;) satisfying (3.2) exists under the nonsingularity condition on g;. The
polynomial tuple g; is said to be nonsingular if G;(x;) has full column rank for all x; € C" (Nie [42]). It is a generic
condition (Nie and Ranestad [44, proposition 2.1]). We remark that if g; is nonsingular, then the LICQC holds at
every minimizer of (1.1), so there must exist A; ; satisfying (2.5), and we can express A; ; as

Aip= Ay (%) = (Hi(x)f (), (33)

for all NEs. For example, we consider the following two cases:
e For the constraint {x; € R" : 2;11 x;; < 1,x; > 0}, the constraining polynomials are

nl
gio=1- E Xijjr &1 = Xi1s s Siym = Xiony-
j=1
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If we let
1—-x1 —x2 ... —xp, 1 .01
X1 1—=x0 ... —xip, 1 ... 1
Hi(x;) = : : : A
—Xi1 —Xi2 ... 1—=x, 1 ... 1
—Xi1 —Xi2 ... —Xin, 1 ... 1

then one may check that the (3.2) holds. The Lagrange multipliers A; ; can be accordingly represented as

dfi ,
Ajo=—x{Vyfi, Ay =a£—vax.ﬁ, i=1,...,n. (34)
L]

e For the sphere constraint 1—x'x; =0 or the ball constraint 1 —xx; >0, the constraining polynomial is
gi1=1—xIx. Ifwelet
1 1 1
Hi(xi) = —§x1‘,1 —Ex,',z .. —EXT‘,H{ 11,
then one may check that the (3.2) holds. The Lagrange multiplier can be accordingly expressed as

1
A1 = ~5 V. fi. (3.5)

For general nonsingular constraining tuple, one may find H;(x;) satisfying (3.2) by solving linear equations.
We refer to Nie [42] for more details on getting the polynomial expressions of Lagrange multipliers.

Throughout the paper, we assume that every constraining polynomial tuple g; is nonsingular. This is a generic
assumption. So, all A; ; can be expressed as polynomials, as in (3.3). Then, each Nash equilibrium satisfies the fol-
lowing polynomial system:

m;

Vi filx) — Z/\i,j(x)vx,-gi,j(xi) =0(@i €[N]),
= (3.6)
8ij(xi)) =0 € [N],j€ &), Aij(x)g:,j(x;)) =0 (i € [N],j € Ty),

8ii(x)20(j€Ty), Ay j(x) 20 (i €[N],j€ L))

3.2. An Algorithm for Finding an NE

For the NEP of Polynomials (1.3), let A; j(x) be polynomial Lagrange multiplier expressions as in (3.3) for each i €
[N] and j € [m;]. Then, every NE must satisfy the polynomial system (3.6). Choose a generic positive definite
matrix

®c R(n+1)x(n+1)_
Then, all NEs are feasible points for the following optimization problem:

min [x]] - ©- [x];

SE Vi) — SO0V, () = 0( € [N]),
j=1

8i,j(xi)) =0(j € &,i€[N]), (3.7)
Aij(x)8i,i(xi)) = 0(j € Z;,i € [N]),

gi,i(xi) > 0(j € Z;,i € [N]),

Aij(x) 2 0(j € Z;,i € [N]).

In the above, the vector [x]; := (1,x1,xy, .. .,xn)T e R™!. Note that x e R" is a KKT point for the NEP if and only if

it is feasible for (3.7). It is important to observe that if (3.7) is infeasible, then there are no NEs. If (3.7) is feasible,
then it must have a minimizer, because its objective is a positive definite quadratic function. Moreover, for a
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generic © € ROHDX0+D the minimizer of (3.7) is unique (see Theorem 4.2). Note that (3.7) is a polynomial optimi-
zation problem, which can be solved by the Moment-SOS semidefinite relaxations (see Section 4).
Assume that u := (u1,...,uy) is an optimizer of (3.7). Then, u is an NE if and only if each u; is a minimizer of
F;(11_;). To this end, for each player, consider the optimization problem:
w; = min fi(xi,u_,') —fl-(ul-,u_,')
s.t. g,-,]-(xi) =0 (] S 51'), (38)
gi,j(xi) > 0(] € Il)

If all the optimal values w; >0, then u is a Nash equilibrium. If one of them is negative—say, w; < 0—then u is
not an NE. For such a case, let U; be a set of some optimizers of (3.8); then, u violates the following inequalities

filxi, x2i) < filv,x_;) (vel,). (3.9)

However, every Nash equilibrium must satisfy (3.9).
When u is not an NE, we aim at finding a new candidate by posing the inequalities in (3.9). Therefore, we con-
sider the following optimization problem:

min [x]] - ©- [x];

s.t. Vyfi(x) — Zl/\i,j(x)vxfgi,j(xi) =0(i € [N]),
=
ij(xi) =0(j € &,i € [N]), (3.10)
A j(0)8:,(xi) = 0(j € Zy,i € [N]),
8i,j(xi) 2 0(j € Z;,i € [N]),
Aij(x) 2 0(j € Z;,i € [N]),
fi(v,x_;) — filxi,x_;) = 0(v € K;,i € [N]).
In the above, each K; is a set of some optimizers of (3.8). We solve (3.10) again for a minimizer—say, 7. If il is ver-

ified to be an NE, then we are done. If it is not, we can add more inequalities like (3.9) to exclude both u and 1.
Repeating this procedure, we get the following algorithm for computing an NE.

Algorithm 3.1 For the NEP given as in (1.1) and (1.3), do the following

Step 0. Initialize IC; := 0 for all i and € := 0. Choose a generic positive definite matrix © of length n+1.

Step 1. Solve the Polynomial Optimization Problem (3.10). If it is infeasible, then output that there is no NE and stop; oth-
erwise, solve it for an optimizer u.

Step 2. Foreachi=1,...,N, solve the Optimization (3.8). If all w; > 0, then output the NE u and stop. If one of w; is nega-
tive, then go to the next step.

Step 3. For each i with w; < 0, obtain a set U; of some (may not all) optimizers of (3.8); then, update the set K; := IC; U U,.
Let £ := € +1, then go to Step 1.

In Step 0, we can set ® = RTR for a randomly generated matrix R of length 1+ 1. The objective in (3.10) is a pos-
itive definite quadratic function, so it has a minimizer if (3.10) is feasible. The case is slightly different for (3.8). If
the feasible set X; is compact or fi(x;,u_;) is coercive for the given u_;, then (3.8) has a minimizer. If X; is
unbounded and f;(x;, u_;) is not coercive, it may be difficult to compute the optimal value w;. In applications, we
are mostly interested in cases that (3.8) has a minimizer, for the existence of an NE. We discuss how to solve the
optimization problems in Algorithm 3.1 by the Moment-SOS hierarchy of semidefinite relaxations in Section 4.

The following is the convergence theorem for Algorithm 3.1.

Theorem 3.2. Assume each constraining polynomial tuple g; is nonsingular and let A; (x) be polynomial expressions of
Lagrange multipliers as in (3.3). Let G be the feasible set of (3.7) and G* be the set of all NEs. If the complement G\G" is a
finite set—that is, the cardinality " := |G\G"| < co—then Algorithm 3.1 must terminate within at most €* loops.

Proof. Under the nonsingularity assumption of polynomial tuples g; the Lagrange multipliers A;; can be
expressed as polynomials A; j(x) as in (3.3). For each u that is a feasible point of (3.7), every NE must satisfy the
constraint

filui, x i) — filxi, x_;) > 0.
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Therefore, every NE must also be a feasible point of (3.10). Because the matrix © is positive definite, the optimiza-
tion (3.10) must have a minimizer, unless it is infeasible. When Algorithm 3.1 goes to a newer loop—say, from
the (th to the (£ + 1)th—the optimizer u for (3.10) in the ¢th loop is no longer feasible for (3.10) in the (¢ + 1)th
loop. This means that the feasible set of (3.10) must lose at least one point after each loop, unless an NE is met.
Also, note that the feasible set of (3.10) is contained in G. If G\G" is a finite set, Algorithm 3.1 must terminate after
some loops. The number of loops is at most £*. O

As shown in the appendix, when the NEP is given by generic polynomials, the NEP has finitely many KKT
points (see Theorem A.1). For such cases, |G\G'| < |G| <co, and finite termination of Algorithm 3.1 is
guaranteed.

Theorem 3.3. Let d; ; > 0, a;; > 0 be degrees, for all i € [N],j € [m;]. If each g; ; is a generic polynomial in x; of degree d; ;
and each f; is a generic polynomial in x whose degree in x; is a;j, then Algorithm 3.1 terminates within finitely many
loops—that is, it either finds an NE if any exist or detects the nonexistence of NEs.

Proof. The conclusion follows directly from Theorems 3.2 and A.1. O

When there exist infinitely many KKT points that are not NEs, Algorithm 3.1 can still be applied to compute
an NE if one exists or to detect the nonexistence of NEs if they do not exist. See Example 5.2(ii) for such a case.
However, for such NEPPs, the convergence property of Algorithm 3.1 is not fully understood.

3.3. Convex NEPs

The NEP is said to be convex if for every i € [N], the fi(x;,x_;) is convex in x; for all x_; € X_; := Hje[N]\{i}Xj, the
i,j(x;) is linear for each j € £;, and is concave for every j € Z;. For convex NEPs, every KKT point must be an NE
because the KKT conditions are sufficient for global optimality.

Moreover, for convex NEPPs, when every constraining tuple g; is nonsingular, the LICQC holds for all x € X,
and a point is an NE if and only if it satisfies the KKT conditions. Note that the Lagrange multipliers can be
expressed by polynomials as in (3.3) when nonsingularity is assumed. For such cases, the solution set for (2.5) is
exactly the set of NEs. Therefore, if we solve the Polynomial Optimization Problem (3.10) with £C; =0 for all i €
[N] (i.e., the Polynomial Optimization (3.7)), then every minimizer, if the feasible set is nonempty, must be an
NE. On the other hand, if (3.10) is infeasible, then we immediately know the NEs do not exist. This shows that,
for convex NEPPs, Algorithm 3.1 must terminate at the initial loop.

Corollary 3.4. Assume each g; is a nonsingular tuple of polynomials. Suppose each g; (x;) (j € &;) is linear, each g; j(x;)
(j € Z;) is concave, and each fi(x;,x_;) is convex in x; for all x_; € X_;. Then, Algorithm 3.1 must terminate at the first loop
with € = 0, returning an NE or reporting that there is no NE.

Example 3.5. Consider the convex NEP in Example 1.1. In this NEP, both players have ball constraints, so their
Lagrange multipliers can be expressed by polynomials as in (3.5). We ran Algorithm 3.1 for solving this NEP?
and found the NE x* = (x}, x;) with

x7 = (—1.0000,0.0000), x; =(0.4472,0.8944),
in the initial loop. It took around 0.88 second.

3.4. More Nash Equilibria
Algorithm 3.1 aims at finding a single NE. In some applications, people may be interested in more NEs. More-
over, when there is a unique NE, people are also interested in a certificate for uniqueness.

In this subsection, we study how to find more NEs or check the completeness of solution sets. Assume that x*
is a Nash equilibrium produced by Algorithm 3.1—that is, x* is also a minimizer of (3.10). Then, all KKT points x
satisfying [x]{@[x]l < [x*]lTG)[x*]1 are excluded from the feasible set of (3.10) by the constraints

fi(uirxfi) _fl‘(xi/xfi) >0 (Vu € ICZ'/ Vie [N])
If x* is an isolated NE (e.g., this is the case if there are finitely many NEs), there exists a scalar 6 > 0 such that

[x]{©[x]; > [x']{O[x']; +5, (3.11)
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for all other NEs x. For such a 6, we can try to find a different NE by solving the following optimization problem

mxin [x]{@)[x]l

SEVefi0)— 3 (00800 =0 € [N]),
j=1

8i,j(xi) =0(j € &;,ie[N]),

Aij(%)gi,j(xi) =0(j € Z;,i € [N]), (3.12)
8ij(xi) > 0(j€Z;,i € [N]),

Aij(x) 20(j € Z;,i € [N]),

fitv,x_) — filxi,x ;) 2 0(v € K, i € [N]),

[x]{®lx]; = [¥]]©[x]; +6.

When an optimizer of (3.12) is computed, we can check whether it is an NE or not by solving (3.8) for all i € [N].
If it is, we get a new NE that is different from x*. If it is not, we update the set K; as in Step 3 of Algorithm 3.1.
Repeating the above process, we are able to get more Nash equilibria.

A concern in computation is how to choose the constant 6 > 0 for (3.12). We want a value 6 > 0 such that (3.11)
holds for all unknown NEs. To this end, we consider the following maximization problem:

max [x]]@]x];

SE Va0 = 3O 0Vags, () = 0( € [N]),
j=1

8ii(x) =0(j€&;,i€[N]),

/\i,]'(JC)g,',j(Xi) = O(] € Ii,i S [N]), (313)
8i,j(xi) 20(j€Z;,i €[N]),

Aij(x) 20(j € Z;,i € [N]),

filv,x_;) — filxi,x_;) > 0(v € K;,i € [N]),

[x]{O[x]; < [x']{®[x']; +6.

Interestingly, if x* is also a maximizer of (3.13)—that is, the maximum of (3.13) equals [x*]©[x*];—then the feasi-
ble set of (3.12) contains all NEs except x*, under some general assumptions.

Proposition 3.6. Assume © is a generic positive definite matrix, and x* is a minimizer of (3.10).
i. Ifx* is also a maximizer of (3.13), then there is no other Nash equilibrium u satisfying [u]f@[u]l < [x*]f@[x*]l +0.
ii. If x* is an isolated KKT point, then there exists 6 > 0 such that x* is also a maximizer of (3.13).

Proof. Note that every NE is a feasible point of (3.10).
i. If x* is also a maximizer of (3.13), then the objective [x]lTG)[x]1 achieves a constant value in the feasible set of
(3.13). If u is a Nash equilibrium with [u]f@[u]l < [x*]f@[x*]l + 0, then

[u]1©[ul; =[x ]} ©[x];.
This means that u is also a minimizer of (3.10). When © is a generic positive definite matrix, the Optimization
(3.10) has a unique optimizer, so u = x".

ii. Because © is positive definite, there exists € > 0 such that

[x]1 ©[x]; > (1 +|x]])?,
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forall x. Let C = 4/ ([x*]f@[x*]l) /€; then, the following set

Vo) — S 4 0Vagi 060 = 0 € [N,

=1
8ij(xi) =0(j € &;,i€[N]),
A j(x)g1,1(x;) = 0(j € Z;,i € [N]),
8i,j(x;)) 2 0(j € Z;,i € [N]),
Aij(x) > 0(j€Z;,i€[N]),
filv,x) — filx;,x ;) 2 0(v € Ky, i € [N]),
lIxll<C

is compact. Note that [x*], € T. Let 0 be the vector such that
[x]{©[x], = 6"y,
for all y = [x],. Because x* is an isolated KKT point, the y* := [x*], is also an isolated point of T. Then, its subset
Ty = T\{y '+

is also a compact set. Because x* is a minimizer of (3.10), the hyperplane H := {0"y = 0 y*} is a supporting hyper-
plane for the set T. Because © is generic, the Optimization (3.10) has a unique minimizer, which implies that y* is

the unique minimizer of the linear function 6"y on T. So, H does not intersect T;, and their distance is positive.
There exists a scalar 7 > 0 such that

[x]{@[x]l = QTy > QT]/* +17= [x*]{@[x*]l +1,

for all y = [x], € T1. Then, for the choice 6 := 7/2, the point x* is the only feasible point for (3.13). Hence, x* is also
a maximizer of (3.13). O

Proposition 3.6 shows the existence of 6 > 0 such that (3.10) and (3.13) have the same optimal value. However,
it does not give a concrete lower bound for 6. In computational practice, we can first give a priori value for 0. If it
does not work, we can decrease 6 to a smaller value (e.g., let 6 := 6/5). By repeating this, the Optimization (3.13)
will eventually have x* as a maximizer. The following is the algorithm for finding an NE that is different from x*.

Algorithm 3.7 For the given NEP (1.3) and a computed NE x*, let © be the positive definite matrix for computing x*.

Step 0. Give an initial value for 6 (say, 0.1).

Step 1. Solve the Maximization Problem (3.13). If its optimal value 1 equals v := [x*]T©[x"];, then go to Step 2. If 1 is big-
ger than v, then let 6 := 6/5 and repeat this step.

Step 2. Solve the Optimization Problem (3.12). If it is infeasible, then output there are no additional NEs and stop; other-
wise, solve (3.12) for a minimizer u.

Step 3. For eachi=1,...,N, solve the Optimization (3.8) for the optimal value w;. If all w; >0, stop and output the new
NE u. If one of w; is negative, then go to Step 4.

Step 4. For each i € [N], update the set IC; := K; U U;, and then go back to Step 2.

When x* is not an isolated KKT point, there may not exist a satisfactory 0 > 0 for Step 1. For such a case, more
investigation is required to verify the completeness of the solution set or to find other NEs. However, for generic
NEPs, there are finitely many KKT points (see Theorem A.1 in the appendix). The following is the convergence
result for Algorithm 3.7.

Theorem 3.8. Under the same assumptions in Theorem 3.2, if © is a generic positive definite matrix and x* is an isolated
KKT point, then Algorithm 3.7 must terminate after finitely many steps, either returning an NE that is different from x* or
reporting the nonexistence of other NEs.

Proof. Under the given assumptions, Proposition 3.6(ii) shows the existence of 6 > 0 satisfactory for Step 1 of
Algorithm 3.7. Again, by Proposition 3.6(i), the feasible set of (3.12) contains all NEs except x*. The finite termina-
tion of Algorithm 3.7 can be proved in the same way as for Theorem 3.2. O
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Once a new NE is obtained, we can repeatedly apply Algorithm 3.7 to compute more NEs, if they exist. In par-
ticular, if there are finitely many NEs, then we enumerate them as

(D, ..., 29,
Without loss of generality, we assume
(VRO ], << O,

because © is generic. If the first r NEs—say, 1@, ..., x—are obtained, there exists 6 > 0 such that
[x]elx]; > <] e[x"]; +0,

for all j=r+1,...,s. Therefore, if we apply Algorithm 3.7 with x* = x), the next Nash equilibrium x"*! can be
obtained, if it exists. So, we have the following conclusion.

Corollary 3.9. Under the assumptions of Theorem 3.8, if there are finitely many Nash equilibria, then all of them can be
found by applying Algorithm 3.7 repeatedly.

Remark 3.10. Under the assumption of Theorem 3.3, the NEP has finitely many KKT points. For such cases,
Algorithm 3.7 can find all NEs and certify the completeness of solutions set within finitely many steps, by Corol-
lary 3.9.

4. Solve Polynomial Optimization Problems
In this section, we discuss how to solve occurring polynomial optimization problems in Algorithms 3.1 and 3.7.
For the NEP, we assume the constraining polynomial tuples g; are all nonsingular. Therefore, the Lagrange mul-
tipliers A;; can be expressed as polynomial functions A;;(x) as in (3.3) for all Nash equilibria. We apply the
Moment-SOS hierarchy of semidefinite relaxations (Henrion and Lasserre [17], Lasserre [26], Lasserre [28], Laur-
ent [30]) for solving these polynomial optimization problems. New convergence results for solving these polyno-
mial optimization problems are given due to the usage of polynomial expressions for Lagrange multipliers.
For the variable z, such that z=x or z =x; for some i € [N], denote by I the dimension of z. Consider the polyno-
mial optimization problem in the variable z:
9 := min 0(z)
zeR!
s.t. p(z) =0(Vped), (4.1)
q(z) = 0(Vg e V).

In the above, ® and W are sets of equality- and inequality-constraining polynomials, respectively. Denote the
degree
do := max{[deg(p)/2]: pe {0} UD U V}. (4.2)

For a degree k > dy, recall that the set Ideal[®],; + Qmod[W],, is introduced in Section 2.2. The kth-order SOS
relaxation for (4.1) is

‘952 = max Yy 4.3)
s.t. 0 —yeldeal[®], + Qmod[W],;.
The dual problem of (4.3) is the kth-order moment relaxation
Shion =min (0,)
st.oyo=1,1L7"y]=0(pea) (4.4)
Myl =0, L[y] = 0 (g € W),
RS RN/Zk,

where the moment matrix M[y] and localizing matrices L;,k) [v], L;k) [y] are given by (2.3) and (2.4). Both (4.3) and
(4.4) are semidefinite programs, and the primal-dual pair is called the Moment-SOS relaxations for the Polyno-
mial Optimization Problem (4.1). If z € R’ is a feasible point of (4.1), then [z]; € Rlzk must be a feasible point of
(4.4). Thus, (4.1) has an empty feasible set if (4.4) is infeasible. When (4.4) has a nonempty feasible set, it is clear
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that 8% < 9% < 9* for all k, and both 8% and 8%

mom — 7 S0S mom S0S

SOS algorithm for solving (4.1).

are monotonically increasing. The following is the Moment-

Algorithm 4.1 For the Polynomial Optimization Problem (4.1), let dy be the degree given by (4.2).

Step 0. Initialize k := dy.

Step 1. Solve the Moment Relaxation (4.4). If it is infeasible, then the Polynomial Optimization Problem (4.1) is infeasible
and stop; otherwise, solve (4.4) for the minimum value 9 and a minimizer y®.

Step 2. Let t :=dy. If y* satisfies the rank condition

rank M;[y*] = rank M;_4,[y*], 4.5)

then extract a set U, of v := rank M,[y"| minimizers for (4.1) and stop.
Step 3. If (4.5) fails to hold and t <k, let t := t + 1 and then go to Step 2; otherwise, let k := k + 1 and go to Step 1.

Algorithm 4.1 is known as the Moment-SOS hierarchy of semidefinite relaxations (Lasserre [26]). We say the

Moment-SOS hierarchy has asymptotic convergence if 9% — 9% as k — oo, and we say it has finite convergence if

9% = 9" for all k that is large enough. For a general polynomial optimization problem, if Ideal[®] + Qmod[W] is

S0S

archimedean, then ngm — 9" as k — oo (Lasserre [26]). In Step 2, the Rank Condition (4.5) is called flat truncation
(Nie [37]). It is a sufficient (and almost necessary) condition to check the finite convergence of moment relaxa-
tions. When (4.5) holds, the method in Henrion and Lasserre [17] can be used to extract » minimizers for (4.1).
This method and Algorithm 4.1 are implemented in the software GloptiPoly 3 (Henrion et al. [19]). In the fol-
lowing subsections, we study the convergence result of Algorithm 4.1 when it is applied for solving (3.8), (3.10),

(3.12), and (3.13).

4.1. The Optimization for All Players
We discuss the convergence of Algorithm 4.1 for solving (3.10), (3.12), and (3.13).
First, we consider (3.10). Let

z:=x, 6O(x):=[x]T O[], (4.6)
and we denote the polynomial tuples
;= {szfi(x) - X:Ai,j(x)vx,gi,j(xi)} UA{gij(xi) :je &Y U{A(x) i j(xi) :j€Ti}, (4.7)
=1
;= {gi,j(xi) ] S Ii} U {/\,‘/]‘(X) ] € Ii} U {fi(U, x,i) —f,-(x,-, x,i) 1 VE K:z} (4.8)

In the above, for a vector p = (py,...,ps) of polynomials, the set {p} stands for {p;,...,ps}, for notational conve-
nience. Denote the unions

N N
®:= U(Di/ W= U\I/ (4.9)
i=1 i=1

They are both finite sets of polynomials. Then, the Optimization (3.10) can be written as (4.1), and we may apply
Algorithm 4.1 for solving it. Recall that e; is the vector in R" such that its ith entry is one and all other entries are
zero. For a tms y € RN, the Yo, means the entry of y labelled by e¢;. For example, when n =4, then v., = yo100. Let
y® be a minimizer of the kth-order Moment Relaxation (4.4) for (3.10), and denote

U = (Y, o). (4.10)

Then, u® is a minimizer of (3.10) if u® is feasible for (3.10) and (0,y®) = O(uX). Moreover, we have the follow-
ing convergence result for solving (3.10):

Theorem 4.2. For the polynomial optimization Problem (3.10), assume © is a generic positive definite matrix. Let z := x,
and let 6,V, D be given as in (4.6)—(4.9). Suppose Ideal[P] + Qmod[V] is archimedean.

i. If the Optimization (3.10) is infeasible, then the moment relaxation (4.4) must be infeasible when the order k is big
enough.

ii.gSuppose the Optimization (3.10) is feasible. Let u™® be given as in (4.10). Then, u™ converges to the unique minimizer of
(3.10). In particular, if the real zero set of @ is finite, then u® is the unique minimizer of (3.10), and (4.5) holds at y® with the
rank equal to 1 when k is sufficiently large.
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Proof.

i. If (3.10) is infeasible, the constant polynomial —1 can be viewed as a positive polynomial on the feasible set of
(3.10). Because Ideal[®] + Qmod[V] is archimedean, we have —1 € Ideal[®],, + Qmod[W],, for k big enough, by
Putinar’s [50] Positivstellensatz. For such a big k, the SOS Relaxation (4.3) is unbounded from above; hence, the
Moment Relaxation (4.4) must be infeasible.

ii. When the Optimization (3.10) is feasible, it must have minimizers. Let K be the feasible set of (3.10), and

Ro(K) := cone({[u], : u € K}).
In the above, the cone means the conic hull. Consider the moment optimization problem

min (0, w)
w (4.11)
s.t. wy =1, w e Ryo(K).

If the matrix © is a generic positive definite matrix, then the function 0 is generic in L, ». By Nie [39, proposition
5.2], the Moment Optimization Problem (4.11) has a unique minimizer. When (4.11) has minimizers, its minimum
value equals 9*. Suppose (3.10) has two distinct minimizers—say, x!) and x?. Then, [xV], and [x?], are two
distinct minimizers of (4.11), a contradiction to the uniqueness of the minimizer for (4.11). Therefore, (3.10) must
have a unique minimizer x* when © is generic.

The convergence of u® to x* is shown in Schweighofer [54] or Nie [37, theorem 3.3]. For the special case that
®(x) = 0 has finitely many real solutions, the point ¥’ must equal x*, when k is large enough. This is shown in
Lasserre et al. [29] (also see Nie [38]). O

The archimedeanness of Ideal[®] + Qmod[\V] is essentially requiring that the feasible set of (3.10) is compact.
If the real zero set of ® is compact, then Ideal[®] + Qmod[W] must be archimedean. In particular, if the NEPP
has finitely many real KKT points, then Ideal[®] + Qmod[W] is archimedean. Interestingly, when the objective
and constraining polynomials are generic, there are finitely many KKT points. See Theorem A.1 in the appendix.
In fact, as shown in the proof of Theorem A.1, the zero set of ® is finite for generic NEPPs, and, hence, Algorithm
4.1 has finite convergence. Moreover, by Theorem 4.2, when © is generic and the minimizer y(k) for (4.4) is
obtained, one may let u® be given as in (4.10) and directly check whether u® is the unique minimizer or not,
instead of checking the Flat Truncation (4.5).

The other Minimization Problem (3.12) can be solved in the same way by Algorithm 4.1. The convergence
property is the same. For the cleanness of the paper, we omit the details.

For the Maximization (3.13), we let z := x and

0(x) := —[x]] O[x];. (4.12)
Recall that the polynomial tuples ®; and W; are given by (4.7) and (4.8). Denote the set of polynomials

®:= LNJ‘I’ff W= LNJ‘I’z‘ U{[x']1®[x"]; +6 — [x];O[x]; }. (4.13)
i=1 i=1

Then, (3.13) can be equivalently written as (4.1). Similarly, Algorithm 4.1 can be used to solve (3.13). The Optimi-
zation (3.13) is always feasible because x* is a feasible point. Therefore, the Moment Relaxation (4.4) is also feasi-
ble, and there is no need to check its feasibility in Step 1 of Algorithm 4.1. Because the minimum value 8% is a
lower bound of 9, if 8% > —[x*]f@[x*]l, then

mom —
o =9 = —[xl{Ox"];,

mom

and x* is a maximizer of (3.13). When 9 < —[x*]f@[x*]l, the Flat Truncation Condition (4.5) can be applied for
checking the finite convergence of the Moment-SOS hierarchy. Under some classical optimality conditions, we

have 9% =9 when k is large enough (Nie [40]). Moreover, if the real zero set of @ is finite, then the Moment-
SOS hierarchy has finite convergence, and (4.5) holds (Nie [38]). We would like to remark that when the NEP is
given by generic polynomials, the complex zero set of ® is finite (see Theorem A.1); thus, Algorithm 4.1 has finite

convergence.

4.2. Checking Nash Equilibria
Suppose u is a minimizer of (3.10). To check whether u = (1, u_;) is an NE or not, we need to solve the Individual
Optimization (3.8) for all i € [N].



Downloaded from informs.org by [2607:720:1901::1ed] on 24 August 2023, at 16:28 . For personal use only, all rights reserved.

Nie and Tang: Nash Equilibrium Problems of Polynomials
Mathematics of Operations Research, Articles in Advance, pp. 1-26, © 2023 INFORMS 15

For the given u € R" and i€ [N], (3.8) is a polynomial optimization problem in the variable x;. If (3.8) is
unbounded from below, then u cannot be an NE, and the point v for precluding u can be obtained by adding a
suitable extra ball constraint. In the following, we suppose that the minimum of (3.8) is attainable. Because we
assume that the polynomial tuple g;(x;) is nonsingular, polynomial expressions for Lagrange multiplier expres-
sions exist and can be applied to solve (3.8). Let A;(x) be the Lagrange multiplier expressions in (3.3). Note that
the nonsingularity of g; implies that the LICQC holds at every x; € X;. Every minimizer of (3.8) must be a KKT
point of (3.8). Therefore, (3.8) is equivalent to the following polynomial optimization problem:

wi=min  fi(x;, u_;) — fiui, u_;)
x;eRM

i
s.it. Vifilxi,u_;)— Z/\i,j(xi/ufi)vx,gi,j(xi) =0,
=1

8ij(xi,u-) =0(j € &), (4.14)
Sij(xi, u_i)A; j(xi,u_;) =0(j € Ly),
8ij(xi,u-i) 2 0(j € Ly),
Af,]-(xi,u,i) > 0(] € Il)
We introduce the convergence result of Algorithm 4.1 for solving (4.14). Let
z:=x;, O(x) = filxi, u_g) — fiwi, u_y), (4.15)
D= {g;(x;)):j€ &Y U{A;j(xi,uy) - gij(xi) 1 j€Li} U {vxfi(xi/ui) - Z/\i,j(xi,ui)Vx,gi,j(xi)}, (4.16)
=1

V= {gi,j(xl-) ] S Il} U {)\i,]-(x,-,u,,-) ] S Iz} (417)

Like earlier cases, the set {p} stands for {pi,...,ps}, when p =(p1,...,ps) is a vector of polynomials. Then, the
(4.14) can be rewritten as (4.1), and the Moment-SOS relaxations of (4.14) are given by (4.3) and (4.4). We would
like to remark that the Optimization (4.14) is always feasible because u; is in its feasible set. Thus, the Moment
Relaxation (4.4) for (4.14) is also feasible, and there is no need to check the feasibility for (4.4) in the first step of
Algorithm 4.1. Moreover, the minimum 9% = of (4.4) is a lower bound for w;, and w; <0. If 8% >0 for some
k > dy, then w; must be 0, and we can stop Algorithm 4.1 immediately because this implies that u; is the minimizer
for Fi(u_;). If 9% <0, we need to apply the Flat Truncation (4.5) to certify whether the finite convergence for the
Moment-SOS hierarchy is achieved or not. The following theorem concerns the finite convergence of Algorithm

4.1 for solving (4.14). Its proof follows from Nie et al. [48, theorem 4.4].

Theorem 4.3. Assume the ith player’s constraining polynomial tuple g; is nonsingular and its Optimization (3.8) has a
minimizer for the given u_;. Let z := x;, and let 0,\V, D be given as in (4.15)—(4.17). Assume either one of the following con-
ditions holds:

i. The set Ideal[®@] + Qmod[ V] is archimedean,

ii. The real zero set of polynomials in H;(ut) is finite.

If each minimizer of (4.14) is an isolated critical point, then all minimizers of (4.4) must satisfy the flat truncation (4.5),
for all k big enough. Therefore, Algorithm 4.1 must terminate within finitely many loops.

We remark that if Ideal[g; ;: j € £;] + Qmod|g; ; : j € Z;] is archimedean, then Ideal[®] + Qmod[W] is also archi-
medean. Therefore, if the archimedeanness holds for the ith player’s optimization (1.1), then condition (i) in The-
orem 4.3 is satisfied.

5. Numerical Experiments
This section reports numerical experiments for solving NEPs by Algorithms 3.1 and 3.7. For all polynomial opti-
mization problems appearing in the algorithms, we apply the software GloptiPoly 3 (Henrion et al. [19]) to for-
mulate Moment-SOS semidefinite relaxations and use SeDuMi (Sturm [57]) for solving these semidefinite
programs. The computation is implemented in an Alienware Aurora R8 desktop, with an Intel® Core(TM)
i7-9700 CPU at 3.00 GHzx8 and 16 GB of RAM, in a Windows 10 operating system.

For ball and simplex constraints, the Lagrange multiplier expressions are given by (3.4) and (3.5), respectively.
Polynomial expressions of Lagrange multipliers for other types of constraints are given in the descriptions of
each example. In Step 2 of Algorithm 3.1 and Step 3 of Algorithm 3.7, if the optimal value w; > 0 for all players,
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then the point u is an NE. In numerical computation, we cannot have w; > 0 exactly, due to round-off errors.
Therefore, we use the parameter

0 := min w;,

i=1,...,

to measure the accuracy of the computed NE. Typically, if " is small—say, @* > —10 °—then we regard the
computed solution as an NE.

Example 5.1. For the convex NEP in Example 1.1, Algorithm 3.1 found the NE
x7 = (—=1.0000,0.0000), x5 = (0.4472,0.8944),

in the first loop, as shown in Example 3.5. The accuracy parameter is @ = —7.9793-10"°. Then, we ran Algorithm
3.7 and found two more NEs, which are

x; = (—0.0000,0.0000), x; = (0.0000,0.0000), w'=—1.4147-107"9;

x; = (1.0000, — 0.0000), x5 = (—0.4472, —0.8944), w*=-1.7829-107".
Moreover, Algorithm 3.7 certified that these three NEs are all solutions to this NEP. It took around 1.40 seconds
to find these two additional NEs and certify the completeness of the solution set.

In the following example, we show that our algorithm can find NEs for NEPs that have infinitely many KKT
points.

Example 5.2.
i. Consider the convex NEP

. 2
min (xl,l +X1,2 —X2,1 — xz,z) ’
xleRz

st 1= (1) — (x,2° 20,

1st player :

. 2 2
min (2,1 —x1,1)" + (1 — x2,2)
2nd player : { xR
st. 1—x21—2x2,22>0,%,1>0, x222>0,

then one may check that for each a €[0,1/2], x; = 2a,1 —2a), x, = (@, 1 — a) is an NE. Applying Algorithm 3.1,
we got the NE:

x; = (0.9247,0.0753), x;, = (0.4624,0.5376), " = —2.1940-10"®.

The computation took about 0.19 second.
ii. Consider the NEP

. 2 1
min —x2,1(x1,1)" — X2,2%1,1 + (xz,z — E) X1,2
1st player : ¢ xeR

st 1T—(x11)° — (1,27 20,

. 1\2
1’1’111’} X1,2X2,1 + (Xz/z — i)
2nd player : { xeR

st 1—x1—x2220,x2120, x0202>0.

One may check that for each a € [—1,0), the x1 = (,0), x» = (— 4, 3) is a KKT point that is not an NE. Applying
Algorithm 3.1, we got the NE

x; = (1.0000, — 0.0000), x5 = (0.4259,0.5000), w* = —6.2187-107.
The computation took about 0.33 second.

Example 5.3. In this example, we consider NEPs with box constraints such that every x; € R!. For each i € [N],
the ith player’s feasible set is given by

1+x;,>20, 1—x;>0.
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Then, the associated Lagrange multipliers can be expressed as

Ry L
Ai,l—za_xi (1—x), /\1,2—/\1,1—8—%-

i. Consider the two-player zero-sum game with box constraints in Parrilo [49, example 3.1] (see also Kroupa and
Votroubek [23, example 1]), where the objective functions are

filrn,x2) = (01)* = 201 (02)* + %2, fa(xr, x2) = —folx1, X2).

Applying Algorithm 3.1, we got the NE:
x; = 0.3969, x; = 0.6300, w* = —2.9179-107",

in the initial loop. It took around 0.54 second.
ii. Consider the two-player game with box constraints in Stein et al. [56, example 2.3] (see also Kroupa and
Votroubek [23, example 2]), where the objective functions are

filxr, x2) = 2(01)° + 3(x1x2)* — 2312 + X1 — 3(x2)°,
folx1,%2) = 4(x2)° — 2(x122)" + (x1)" — (x1)°x2 — 40,

Applying Algorithm 3.1, we detected nonexistence of NEs in the third loop.” It took around 0.85 second.
iii. Consider the generalization of separable network games in Kroupa and Votroubek [23, example 5]. The
objective functions are

fi(xn, x2,x3) = 2(x1) + 2x1(x2)* — 5x1x + 4x103 + X + 243,
folxr, %2, %3) = 2(x2) — 21 (x2)* + 5x1%2 — 52223 + 222(x3) — %2 + 2(x1)?,
f3(x1, %2, x3) = —2%(x3)" — d1X3 + 5xax3 — 223 — 4(x1) — 2(x2)°.
Applying Algorithm 3.1, we detected nonexistence of NEs in the second loop. It took around 0.90 second.
For all NEPs in the following examples except Example 5.7, our method found all NEs with certified complete-

ness of solution sets. In the following, we only report the numerical result of finding all solutions, unless specifi-
cally mentioned, for the neatness of this paper.

Example 5.4. Consider the two-player NEP
3
min x1i(x1 i —7-x0
1st player : ¢ xeRr® ; 1,07 — - X2,7)
st 1—x11%1,220,1—x10x13>0, x1,1 >0,

3
min sz,j+ E X1,iX1,jX2,k + E X1,iX2,jX2, k
Jj=1

3
neR 1<i<j<3 1<i<3
1<k<3 1<j<k<3

st. 1-— (xz,l)2 - (xz,2)2 =0.

2nd player :

The first player’s optimization is nonconvex, with an unbounded feasible set. The Lagrange multipliers for the
first player’s optimization are

ofi
3XL1’
Applying Algorithm 3.7, we got four NEs:
x] = (0.3198,0.6396, — 0.6396), x5 = (0.6396,0.6396, — 0.4264);
x; = (0.0000,0.3895,0.5842), x5 = (—0.8346,0.3895, 0.3895);
2
2

1 ofi
M3 =x1,15—

A12 = —x1,1 —X1,2 .
! ! 8X1,1 ! Bxl,z

A1 = (1 —x1,12x1,2)

1
89(1/2 !

x; = (0.2934, — 0.5578,0.8803), x5 = (0.5869, — 0.5578,0.5869);
x; = (0.0000, — 0.5774, — 0.8660), x5 =(—0.5774, — 0.5774, — 0.5774).
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Their accuracy parameters are, respectively,
—7.1879-107%, —3.5040-107, —4.3732-1077, — 6.4360 - 10~".

It took about 30 seconds.
However, if the second player’s objective becomes

3
—sz,j+ Z X1,iX2,jX2,k — Z X1,iX1,jX2, ks
j=1

1<i<3 1<i<j<3
1<j<k<3 1<k<3

then there is no NE, which was detected by Algorithm 3.1. It took around 16 seconds.
Example 5.5. Consider the three-player NEP

min (21,1 — X1,2 + 3)x1,1%00,1 + [(2%1,2)° + (x32)°]x1,2
1st player : { xeR
st 1—xlx1 >0,

. 2 2

min [(xp,1)" = x1,2]x2,1 + [(42,2)" + 2x3,2 + x1,2%3,1]x2,
2nd player : { x€R

s.t. xng —1=0,x,120, x22>0,

. 2

min (x1,1x1,2 — Dxs,1 — [3(x3,2)" + 1]xs,2 + 2[x3,1 + X3,2]x3,1x3,2
3rd player : ¢ <R

st 1—(x31)>0,1—(x32)°>0.

The Lagrange multipliers can be represented as

1 0 0
Ag1 = 5 (G Vnh), Aya= % _ 2x7,1A2,1, Aoz = P _ 2x22M,1,
X2,1 X2,2
x3,1 dfs PUR dfs

Az1=——— 325 ——— .
’ 2 8x3,1’ ’ 2 8x3,2

Applying Algorithm 3.7, we got the unique NE
x7 = (—0.3558, —0.9346), x; = (1.0000,0.0000), x3 = (—0.3331,1.0000).

The accuracy parameter is —9.2310-10~°. It took around 9 seconds.
Nonetheless, if the third player’s objective becomes —f1(x) — fo(x), then the NEP becomes a zero-sum game,
and there is no NE, which was detected by Algorithm 3.1. It took around 3 seconds.

Example 5.6. Consider the two-player NEP

min 2x1 1%1,2 + 3%1,1(x2,1)” + 3(x1,2)*x2,2
1st player : ¢ xeRr? , ) , ,
s.t. (xlll) + (X]/Q) -1>0,2—- (xl,l) - (x1,2) >0,

. 3 3 2 2
mir (2,1)” 4 (x2,2)” + x1,1(x2,1)" + x1,2(x2,2)" + x1,1%1,2(X2,1 + X2,2)
2nd player : { xeR

st (021)7 + (22" = 120,2— (x2,1)" + (x2)" 2 0.
The Lagrange multipliers can be represented as (i=1, 2):
Ly o1 T g 1 T
A1 = vaf,» xi(2—x;x;), Aijp= vafi xi(1 — x; x;).

By Algorithm 3.7, we got the unique NE

x| = (—1.3339,0.4698), x} = (—1.4118,0.0820),

with the accuracy parameter —3.5186 - 10~®. It took around 5seconds.
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Example 5.7. Consider the NEP

min Z x1,i%1,j(X2,1 + X2,7)

x1€R™M

1st player : Isisjsm
2 2y —
s.t. 1-— (x1,1+ o +x1,n1) - O’
min Y g (xn,i + x1,)
X —
2nd player: { 1sisj<n,

st 1— (g + - +x3,)=0,

where 1, =n,. We ran Algorithm 3.7 for cases n; = n, = 3,4,5,6. The computational results are shown in Table 1.
In the table, 1, is the dimension for variables x; and x,, x] and x} are computed solutions to the NEP, and w" is
the accuracy parameter. All time consumptions are displayed in seconds, Because of the relatively large amount
of computational time, we only compute one NE for each case above.

We would like to remark that our method can also be applied to solve unconstrained NEPs, where all individ-
ual optimization problems have no constraints, or, equivalently, the feasible set X; for (1.1) is the entire space R™.
For unconstrained NEPs, the KKT System (2.5) becomes

Vifilx')=0, i=1,...,N,
and Algorithms 3.1 and 3.7 can be implemented in the same way.

Example 5.8. Consider the unconstrained NEP

S X1:X1 (X110 +FX0 + X2 5
min Z(xl,i)4+ Z 1,i%1,j(%1, & + X2, + X3,7)
i=1

2
1st player : O<isj<ksm (1)
s.t. x; € R™,
)
. Xo,iX2,i(Xo, k + X3,i + X1,;)
min Z(xzi)4 + Z == — :
2nd player : =1 0<i<j<k<ny (n2)

s.t. x, e R™,
n3
) x3,iX3,i(X3,k + X1, + X2,7)
min Y (x) D
3rd player : i=1 0<i<j<k<ns (113)

s.t. x3 € R™,

where x1,0 =xp,0 =30 =1, and n; =1, =n3. We implement Algorithm 3.7 for the cases n; =n, =n3=2,3,4,5,6.

For all cases, we computed an NE successfully and obtained that x] = x; = x3 (up to round-off errors). There is a

unique NE for each case. The computational results are reported in Table 2. The time is displayed in seconds.
The following are some examples of NEPs from applications.

Example 5.9. Consider the environmental pollution control problem for three countries for the case autarky (Bre-
ton et al. [4]). Let x;1(i = 1,2,3) denote the (gross) emissions from the ith country. The revenue of the ith country
depends on x; ;—for example, a typical one is x; (b,- - %x,-,l). The variable x; , represents the investment by the
ith country to local environmental projects. The net emission in country i is x; 1 — y,x; 2, which is always nonneg-
ative and must be kept below or equal to a certain prescribed level E; > 0 under an environmental constraint.
The damage cost of the ith country is assumed to be d;(x;1 —yx;2)+ Z#ic,-, jXi2xj,1. For given parameters
bi,cij,di, v, Ei, the ith (i=1, 2, 3) country’s optimization problem is

Table 1. Computational results for Example 5.7.

n xX] X5 " Time
3 (—0.5774, — 0.5774, — 0.5774) (—0.5774, — 0.5774, — 0.5774) ~1.0689-1077 1.31

4 (0.8381, 0.5024, —0.0328, —0.2098) (—0.1791, —0.0683, 0.4066, 0.8933) —1.4459-107° 62.85

5 (0.8466, 0.4407, 0.1744, —0.0101, —0.2418) (—0.1944, —0.0512, 0.1238, 0.3370, 0.9114) —2.7551-107° 682.67

6 (0.8026, 0.4724, 0.1799, 0.1799, —0.0637, —0.2527) (—0.1979, —0.0772, 0.1091, 0.1091, 0.4040, 0.8762) —7.0354-107° 18,079.99
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Table 2. The computational results for Example 5.8.

nq X] =X =5 " Time

2 (—0.8410, — 0.7125) —8.8291-107° 0.34

3 (—0.6743, —0.6157, —0.5236) —6.6507-107° 1.58

4 (—0.5950, —0.5606, —0.5097, —0.4363) -1.0577-107° 16.86

5 (—0.5476, —0.5247, —0.4919, —0.4472, —0.3860) —4.4438-107° 177.63

6 (=0.5157, —0.4992, —0.4762, —0.4457, —0.4060, —0.3534) —3.7536-10~° 1,379.27
( Xi, 2)

: 1
min —Xx;1 (b, — Ex,-ll) + L+ (x,, )/ixi,z) + Z Ci,jXi,2Xj,1
x€R? J#i

st Xi220,x1<b, 0<x;1— ViXi2 < E;.

We consider the general cases that b; # E;. The Lagrange multipliers can be expressed as

1 2) df;
Aig= W < f Xi, 2(Xz 1— Vixi,2) - —J;’l(b,' - xi,l)(xi,l - Vixi,2)>/

af; df;
Ai,3=b_i<(bixi,l)(yjzl+/\i,4)xi,2<&f/ -, 14>>

df;
Aipg=Ai3—Aja— (936]-(1 ,

df;
A1 = yifz-f' yidiz — YA

We solve the NEP for the following typical parameters:

b1 = 1.5, bz = 2, b3 = 1.8, C1,2 = 0.2, 1,3 = 0.3, 2,1 = 0.4,

€23 = 0.2, C3,1 = 0.5, C3 2 = 0.1, dl = 0.8, dz = 1.2, d3 = 1.0,
Ey=3,  Ey=4,  E3=2,  y,=07, y,=05  y,=009.

By Algorithm 3.7, we got the unique NE
= (0.7000,0.1600), x5 = (0.8000,0.1600), x5 = (0.8000,0.4700),

with the accuracy parameter —1.1059 - 10~°. Tt took about 10seconds.

Example 5.10. Consider the NEP of the electricity market problem (Contreras et al. [6]). There are three generat-
ing companies, and the ith company possesses s; generating units. For the ith company, the power generation of
his jth generating unit is denoted by x; ;. Assume 0 <x;; < E, i Where the nonzero parameter E;; represents its
maximum capacity, and the cost of this generating unit is cl (i, ]) +d, jx;;, where c; ,d; ; are parameters. The

electricity price is given by

3 s
o(x):=b—a (ZZx,',]) .

=1 j=1

The aim of each company is to maximize its profits—that is, to solve the following optimization problem:

) Si 1 Si
min ) <§Cirf(xi,f)2 + dz‘,fxw) — () (Z’%’) :
=1

ith player: ¢ x€R" ‘4=
st. 0< Xi, j < Ei,j (] € [Si]).

The Lagrange multipliers associated to the constraints g; o; 1 := E; j — x;; > 0, g; 2 := x; ; > 0 can be represented as

= i + /\1',2]'_1. (] € [Si])'

i
=-—X;j/Eij, Aigj
x,-,j / J / 59(1‘,]‘

Aioj1 = —5
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For the following parameters
s =1, a=1, b =10,
1,1 =04, ¢,1=035 00,=035 c31=046, c32=05  c33=0.J5
di1=2, dy1=175 =1, ds1 =225, d3»=3, d33=3,
Ei1=2, Ey1 =25 Ey»=067 E31=12, E3»=18 E33=1.6,
we ran Algorithm 3.7 and found the unique NE
x; =1.7184, x5 =(1.8413,0.6700), x; = (1.2000,0.0823,0.0823).

The accuracy parameter is —5.1183 - 10~". It took about 8 seconds.

6. Conclusions and Discussions

This paper studies Nash equilibrium problems that are given by polynomial functions. Algorithms 3.1 and 3.7
are proposed for computing one or all NEs. The Moment-SOS hierarchy of semidefinite relaxations is used to
solve the appearing polynomial optimization problems. Under generic assumptions, we can compute a Nash
equilibrium if it exists and detect its nonexistence if there is none. Moreover, we can get all Nash equilibria if
there are finitely many ones of them.

In Nie and Tang [45], a semidefinite relaxation method using rational and parametric Lagrange multiplier
expressions is proposed for solving convex GNEPs. Under some general conditions, the method in Nie and Tang
[45] is guaranteed to find one GNE or detect nonexistence of GNEs. The NEPs considered in this work are special
cases of GNEPs, because they can be viewed as GNEPs where every player’s feasible set is independent of other
players’ strategies. Moreover, for convex NEPs, Algorithm 3.1 reduces to Nie and Tang [45, algorithm 5.3] and
terminates at Step 2 in the first loop, as shown in Corollary 3.4. In contrast, this paper mainly focuses on solving
nonconvex NEPs, and the main difficulty of problems in the scope of this paper is brought by nonconvexity.
Major differences between contributions in this paper and those in Nie and Tang [45] are as follows:

e In this paper, we primarily focus on nonconvex NEPs of polynomials. One of our main contributions in this
work is that we proposed an algorithm that finds NEs for nonconvex NEPs, if they exist. Note when there is no con-
vexity being assumed, every block x; of the NE x* is the global minimizer for F;(x*;), which is usually nonconvex.
For nonconvex NEPs, the KKT conditions are typically not sufficient for global optimality; thus, the updating
scheme K; := K; U U; in Step 3 of Algorithm 3.1 is applied to preclude KKT points that are not NEs. Therefore, we
usually need to solve a sequence of polynomial optimization problems to get NEs. In comparison, Nie and Tang
[45] concerns GNEPs where every player solves a convex optimization problem. Therefore, once a KKT point is
obtained with some constraint qualification conditions being satisfied, this KKT point must be a GNE. So, there is
no need to preclude any KKT point, and we usually only need to solve one polynomial optimization problem for a
GNE. Indeed, convex NEPs are studied in Section 3.3, which is the intersection of problems considered in this work
and in Nie and Tang [45]. One can easily see that it is way more difficult to solve NEPs without any convexity
assumption from our discussion in Sections 3.2 and 3.3.

e The goal of the method in Nie and Tang [45] is to find just one GNE, and it cannot check whether the com-
puted GNE is unique or not. In comparison, Algorithm 3.7 proposed in Section 3.4 aims to find more NEs. Further-
more, when there are finitely many NEs, Algorithm 3.7 can find all NEs and check the completeness of the
computed solution set, under some general conditions. We would like to remark that there is no other numerical
method that can achieve such computational goals for general NEPs given by polynomials, to the best of the
authors” knowledge.

e Algorithms 3.1 and 3.7 assume that all constraining polynomial tuples g; are nonsingular, so that there exist
polynomial expressions for Lagrange multipliers. When the NEP is given by generic polynomials, nonsingularity is
satisfied for all i € [N]. However, polynomial Lagrange multiplier expressions typically do not exist for GNEPs. For
such cases, one may consider the corresponding Lagrange multipliers as new variables, but this is often computa-
tionally expensive, especially when there are a lot of constraints. In Nie and Tang [45], rational and parametric
Lagrange multiplier expressions are studied for solving convex GNEPs. For NEPs, when constraints are singular,
rational and parametric Lagrange multiplier expressions can also be applied to find NEs. Nonetheless, convergence
results in Theorem 3.2 and Corollary 3.9 may no longer hold, because there may exist NEs that are not KKT points
when polynomial expressions for Lagrange multipliers do not exist.

There is much interesting future work to do. If there are only finitely many KKT points that are not NEs, Algo-
rithm 3.1 must terminate within finitely many loops. This is shown in Theorem 3.2. For generic NEPPs, the finite-
ness of KKT points is shown in Theorem A.1. However, the convergence property of Algorithm 3.1 is not known
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when there are infinitely many KKT points. In Example 5.2(ii), there are infinitely many KKT points that are not
NEs, but Algorithm 3.1 is still able to get an NE in a few loops. If there are infinitely many KKT points that are
not NEs, does Algorithm 3.1 still converge to find an NE? This question is mostly open to the authors.

It is important to compute NEs efficiently for large-scale NEPs. Even for unconstrained NEPs, the kth-order
moment relaxation for (3.7) is a semidefinite program with O(1n?") variables. Algorithm 3.1 may not be computa-
tionally practical for solving large-scale NEPs. Sparse polynomial optimization problems are studied in Lasserre
[27], Nie and Demmel [43], Waki et al. [59], Wang et al. [60], Wang et al. [61], and Wang et al. [62]. Recently, the
software TSS0S (Magron and Wang [31]) that implements the term and correlative sparse Moment-SOS relaxa-
tions is developed. In Algorithms 3.1 and 3.7, polynomial optimization problems are formulated to find NEs,
and one may implement sparse Moment-SOS relaxations for solving these polynomial optimization problems.
However, even for the NEPP where each player’s optimization problem F;(x_;) is sparse, the Polynomial Optimi-
zation Problem (3.7) may not be sparse. This is because both the polynomial expressions of Lagrange multipliers
and the KKT system may consist of dense polynomials (see Qu and Tang [51] for more details). Therefore, how
to exploit sparsity to find NEs efficiently for large-scale NEPs is important for future work.

Nonconvex NEPs may or may not have NEs, even if all feasible sets are compact. For each i € [N], let 5; be the
set of Borel probability measures supported in X;. Define the measure function

Cilpy, - py) :=/ / filoxr, .. xn)dpy - dpy.
J X XN

The mixed-strategy extension for the NEP (1.3) is to find (u3, ..., uy) € By X---x By such that
Vi oo b 5 i i) S Tip, o iy M i i) (6.1)

holds for all i € [N] and for all y, € B;. Such a (uj,...,uy) is called a mixed-strategy solution, and it always exists
(Glicksberg [13]). Mixed-strategy solutions to finite games are studied in Ahmadi and Zhang [2], Aubin [3], Das-
kalakis et al. [8], Kontogiannis et al. [21], Nash [33], and Young and Zamir [63]. The mixed-strategy extensions of
general continuous NEPs are typically difficult to solve because it is a computational challenge to do operations
with measures. However, when the functions are polynomials, the mixed-strategy extension can be equivalently
expressed in terms of moment variables. We discuss how this can be done in the following.

For the NEPP (1.3), let a; ; be the degree of f; in x; and let

bj =max{ay,...,an,}.

Let T?”) be the Nth-order tensor such that for all u; = [x;] pand j € [N],

,,,,,

ki,... kn

Denote the set X := {[x;],, : x; € Xi}. Let conv(X;) be the convex hull of X;. For a probability measure y, € B;, if
uj = [x, [x]-]b]dyi, then we have u; € conv(X’;) (see Henrion et al. [18], Lasserre [28], and Laurent [30]). Because f; is
a polynomial, for every (i, ..., 1y) € By X---X By, there exists (u1, ..., un) € conv(Xx7) X---x conv(Xy) such that

/ oo [ filxn, e an)dpy Ay = TO(u, . uy). (6.2)
X1 XN

Conversely, for each (u1,...,uyn) € conv(X7) X---X conv(Xy), there exist probability measures y,, ..., i such that
each u, € B;, and (6.2) holds. Therefore, the mixed-strategy extension of the NEPP (1.3) is equivalent to its convex
moment relaxation: Find a tuple

(11, ..., uy) € conv(Xq) X---X conv(Xy),
such that foreachi=1,...,N,
T(i)(u’{, e U U U, UN) 2 T(i)(u], Uy,

for all u; € conv(X;). Moreover, if each 1] is an extreme point of conv(X;), then one can get an NE for the original
NEPP from (uj,...,uy). We refer to Laraki and Lasserre [25] for moment game problems and Dresher et al. [10],
Parrilo [49], and Stein et al. [56] for more details on mixed-strategy solutions to polynomial games.
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Appendix. Finiteness of KKT Points for Generic NEPPs
The finiteness of KKT points implies that Algorithms 3.1 and 3.7 have finite termination. In the following, we discuss the
finiteness of KKT points for generic NEPPs.

After the enumeration of all possibilities of active inequality constraints, we can generally consider the case that (1.1)
only has equality constraints. Consequently, the length m; of the ith player’s constraining polynomials can be assumed
less than or equal to n;, the dimension of its strategy x;. To prove the finiteness, we can ignore the sign conditions A;; >0
for Lagrange multipliers. Then, the KKT system for all players is

S A Ve () = Vafix) (€N,
=1
ij(x) =0 (i €[N],j € [mi]).

When the objectives f; are generic polynomials in x and each g;; is a generic polynomial in x; we show that (A.1) has
finitely many complex solutions.

(A1)

Theorem A.1. Let d;; >0, a;; >0 be degrees for all i € [N] and j € [m;]. If each g;; is a generic polynomial in x; of degree d; ;, and
each f; is a generic polynomial in x, whose degree in x; is a;j, then the KKT System (A.1) has finitely many complex solutions, and,
hence, the NEP has finitely many KKT points.
Proof. For each player i=1,...,N, denote

biz=a; —1+di+ - +dim —my,

Xi= (xi,o,xi,l, . ~/xi,n,v)/ X:=(X1,...,XN).

The homogenization of g;; is g; j» a form in X;. Let P" be the n; dimensional projective space over the complex field. Con-
sider the projective varieties

Ui = {(’fl,. . .,’.X'VN) €PM x...x P Igi(ffi) = O}, i=1,...,N,
U :=UiN--NUY.
When all g;; are generic polynomials in x;, the codimension of ; is m; (see Harris [16]), so U has the codimension

my+ - +my.
The ith player’s objective f; is a polynomial in x = (x4, ...,xn); we denote the multihomogenization of f;(x;, x_;) as

~ N
f.(xi,x25) =filxr/x1,0, ..., XN /%N,0) - <H (%‘,0)““’) .
=1

It is a multihomogenous polynomial in x. For each i, consider the determinantal variety (the V,, denotes the gradient
with respect to x;)

Wi = {x € C"| rank[ V. fi(x) Vygi1(xi) - V. im, (x:) ] < }.

Its multihomogenization is
Wii= (x| rank|Vof () Vg, () = Vg, ,, Gl <mi}.
The matrix in the above can be explicitly written as

Do i) 05,31 04,3, ()
Ji(x;,x_;) == ‘9%-,27.(1‘(9() 3x",zgf',1(xi) axi,zgi:m;(xi)

De, fi®) I, T &) o O By )

The (m; +1)-by-(m; + 1) minors of the matrix J; are homogeneous in X; of degree b;. They are homogeneous in x; of degree
a;j, for j #i. By Nie and Ranestad [44, proposition 2.1], when g; ; are generic polynomials in x;, the right m; columns of J;
are linearly independent for all x; € ;. That is, for every x € U;, there must exist a nonzero m;-by-m; minor from the right
m; columns of J;. In the following, we consider fixed generic polynomials g; ;.
First, we show that &/ N W; have the codimension 7y + ny+ -+ +my. Let V be the projective variety consisting of all
equivalent classes of the vectors
(@)= [T @ [Xaler® - ®[Tn] (A2)

1,2 a, N’

for equivalent classes of x €. In the above, ® denotes the Kronecker product; [u]’;”'" denotes the vector of all monomials

in u of degrees equal to d. In other words, [u]}"" is the subvector of [u], for monomials of the highest degree d. Note that

U is birational to V (consider the natural embedding ¢ :U, —V such that ¢(x¥) =m(x)). So, & and V have the same
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codimension (Shafarevich [55]). For each subset I C [111] of cardinality m1;, we use det;J; to denote the m;-by-1m; minor of J;
for the submatrix whose row indices are in I and whose columns are the right-hand-side m; columns. Then,

V~V1 = U X1 where

IC€[n], [1]=my

Xy :={x :rank J1(x) < my, det;]J1(x) # 0}.

For each I, we have X € &} if and only if the (m; + 1)-by-(m; +1) minors of J;, corresponding to the row indices I U {¢}
with €€ [n1]\I, are equal to zeros. There are totally n; — m; such minors. Vanishing of these (1 + 1)-by-(i; + 1) minors of
J1 gives ny —my linear equations in the vector my(x) as in (A.2). The coefficients of these linear equations are linearly
parameterized by coefficients of f;. Therefore, when f; has generic coefficients, the set

Vi={m(x):x e Xrnif},
is the intersection of V with hyperplanes given by n; —m; generic linear equations. Because X} NI/ is birational to Y, they

have the same codimension, so the codimension of X; N/ is ny + my+ --- +my. This conclusion is true for all the above sub-
sets I. Because

unwi= |J  xiny,

Ic[m], [T|=m

the codimension of U N I/N\fl is equal to ny +mo+ - +my.
Second, we repeat the above argument to show that

U N W) N Wy,

has codimension n; +ny +mz+ --- +my. Let V' be the projective variety consisting of all equivalent classes of the vectors

my(¥) = [T @ [Xa])" ® [Xa @ - @[N] (A3)

ax, N’

for equivalent classes of X €/ N 17\71. Note that U N 17\/1 is birational to V'. They have the same codimension. Similarly, we
have

W, = U X} where
IC[n2], |1]=my
X7 :=A{x :rank Jo(x) < myp, detif»(x) # 0}.

When f, has generic coefficients, the set
V= {m@):XeX;nUN Wi}

is the intersection of V' with n, —m, generic hyperplanes of codimension one. Because X7 NI/ N 17\/1 is birational to ),
they have the same dimension, so the codimension of X;NU N W is 1y +ny + mz+ --- +my. This conclusion is true for all
Y. Last, because

UOW10W2= U X}mUﬂVVl,
IC[na], |1|=my

we know U N I7V1 N Wz has the codimension 1y + 15 + mz+ -+ +my.
Similarly, by repeating the above, we can eventually show that

un Wl N WZ N---N WN,

has codimension n; +ny+ - +ny. This implies that the KKT System (A.1) has codimension n; +#ny+ - +ny—that is, the
dimension of the solution set of (A.1) is zero. So, there are finitely many complex KKT points. O

Endnotes

! In some literature, this is also called a pure strateqy Nash equilibrium, in contrast to mixed-strategy Nash equilibria, which are probability mea-
sures supported on the feasible strategy sets. We refer to Section 6 for more details on mixed-strategy NEs; also see Dresher et al. [10], Kroupa
and Votroubek [23], Nash [33], Parrilo [49], Stein et al. [56], and Young and Zamir [63].

2 See Section 4 for how to solve polynomial optimization problems and Section 5 for computational information.

3 We remark that for this NEP, as well as the NEP in Example 5.3(iii), though a (pure strategy) NE does not exist, there exist mixed-strategy
solutions. See Kroupa and Votroubek [23] and Stein et al. [56] for more details.
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