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Abstract. This chapter reviews several Riemannian metrics and evolution equations in the

context of diffeomorphic shape analysis. After a short review of of various approaches at building

Riemannian spaces of shapes, with a special focus on the foundations of the large deformation

diffeomorphic metric mapping algorithm, the attention is turned to elastic metrics, and to growth

models that can be derived from it. In the latter context, a new class of metrics, involving the

optimization of a growth tensor, is introduced and some of its properties are studied.

1. Introduction: Shape spaces

Shape has long been an object of scientific study, especially in life sciences where it provided
a primary element in the differentiation between species. It was—in complement to behavioral
patterns—a central factor of the early justification of evolutionary theory, and was of course the
main subject of D’Arcy Thompson seminal work “On Growth and Forms” [63].

The construction of mathematical models of shape spaces, however, was more recent, and started
with David Kendall’s landmark paper introducing a shape space as a particular Riemannian man-
ifold [45], a construction motivated by the need to provide a formal mathematical framework for
statistical analyses of shape datasets. In Kendall’s model, shapes are represented as ordered col-
lections of distinct points with fixed cardinality. The manifold structure is obtained as a quotient
space through the action of rotations, translations and scaling and the metric as the projection of
the Euclidean metric to this quotient space. Kendall’s shape space has since been used in a large
variety of applications, with increasing numbers of available shape datasets and relevant associated
statistical questions (see the recent edition of Dryden and Mardia [22] for additional details and
references).

Kendall’s shape space is however limited by the need to provide a consistent ordering (or la-
beling) of the points constituting the shape, and by the requirement that they form a finite set.
Shape datasets are typically formed by unlabelled geometric objects, and using Kendall’s shape
space requires defining and indexing (often manually) collections of landmarks for each shape, re-
sulting in an intensive and sometimes imperfectly specified problem. Defining shape spaces whose
elements are curves or surfaces requires however more advanced mathematical tools, notably from
global analysis [60], and a recent description of various formulations of shape spaces in this general
context can be found in Bauer et al. [9]. In spite of the additional mathematical technicality, the
construction of these shape spaces follows the general principles leading to Kendall’s space: first
define a simple space of geometric objects as an open subset of a normed (or Fréchet) space, where
the finite-dimensional space of ordered distinct points is replaced, e.g., by a space of immersions (or
embeddings) from a fixed manifold M (the parameter space) to R

d, the ambient space. This space
(and its norm) is then quotiented by group actions to which shapes must be invariant, bringing in,
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in addition to previous actions of translations, rotations and scaling, the infinite-dimensional group
of reparametrizations, provided by diffeomorphisms of the parameter space. Another modification
to the finite-dimensional framework is that the Euclidean metric, as the base norm, which was a
natural choice when working with finite sets of points, now needs to be replaced with some invariant
Hilbert metric (if one wants a Riemannian structure at the end) on the space of immersions, for
which there are many choices, including the whole family of invariant Sobolev norms. The well-
posedness of various concepts in the resulting shape space, such as the non-degeneracy of the metric
or the existence of geodesics, indeed depends on this choice. A striking example is the fact that
the Riemannian distance between any pair of shapes may trivialize to zero for certain metrics, as
initially discovered in Michor and Mumford [50] in the case of curves and then extended to other
shapes spaces [11].

From the whole variety of shape spaces that can be built following this construction, a small
number actually leads to practical algorithms and numerical implementations, which is an essential
requirement when the goal is to analyze shape datasets. For curves, an important example is
associated with a class of first-order Sobolev metrics on the space of immersions. One can indeed
show that, after quotienting out rotations, translations and/or scalings, the resulting Riemannian
manifold is isomorphic to standard manifolds (such as the infinite dimensional sphere, and Stiefel
or Grassman manifolds) on which geodesic and geodesic distances can be explicitly computed. For
curves, the additional cost of adding reparametrization invariance remains manageable, using, e.g.,
dynamic programming methods. A first example of such metrics was provided in Younes [69, 70]
with further developments in Younes et al. [74]. A second example was then provided in Klassen
et al. [46] (see Srivastava and Klassen [61]), and the approach was later extended to a one-parameter
family including these two examples in Needham and Kurtek [58] and Younes [73], chapter 12 (see
also Bauer et al. [8]).

Shape spaces have also been built using a different angle, leveraging the action of the diffeomor-
phism group of Rd on a shape space. Diffeomorphisms of their ambient space indeed act transitively
on most shapes of interest assuming that one fixes their topology (taking an example, diffeomor-
phisms of R2 can be used to transform any C1 Jordan plane curve to any other). Using a metric
on the diffeomorphism group with suitable properties, one can, given two shapes, compute the dif-
feomorphism closest to the identity that transforms the first shape into the other, and the distance
between the identity and this optimal diffeomorphism also provides a distance between the consid-
ered shapes. (This construction will be described in detail in Section 2.) Formally, the considered
shape space is provided by all diffeomorphic transformation of a given template. This approach
can be seen as an application of Grenander’s metric pattern theory [30, 29] and as a mathematical
formulation of D’Arcy Thompson models [63]. It was introduced for shape spaces of images syn-
chronously in Dupuis et al. [23] (with a precursor in Christensen et al. [20]) and Trouvé [64, 65],
and for collections of labelled points in Miller et al. [53]. This formulation, very flexible, has later
been applied to various shape spaces, such as unlabelled point sets [25], curves and surfaces [67, 26],
vector or tensor fields [17, 18]. The reader may also refer to the recent survey in Bauer et al. [10]
that describes in details the two previous approaches in the case of curves and surfaces.

Note that the previous discussion does not include the many methods that provide shape features,
i.e., finite or infinite-dimensional descriptors that can be attached to a given shape, without neces-
sarily providing them with a clear mathematical structure (such as that of a Riemannian manifold)
which is one of the main concerns of the construction of shape spaces. Such methods were intro-
duced in computer vision, medical imaging, biology and are too numerous to cite exhaustively in this
chapter. Among the most important ones (a subjective statement), one can cite approaches using
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complex analysis and the (quasi-) conformal maps to represent surfaces [33, 34, 76, 77, 48], isometry-
invariant descriptors based on distance maps or Laplace-Beltrami eigenvectors [15, 16, 57, 59, 49],
or the shape context [12]. The rest of this chapter will however remain focused on shape space
approaches.

The construction of shape spaces as described above is based on purely geometric aspects. No
physical law, or biological mechanism is used to define the various components that constitute the
shape space. This non-committal approach is indeed justified, as shapes spaces are designed as
containers for families of shapes that are not related to each other by a natural process (e.g., there
is no physical process by which a finch’s beak can transform into the shape of another one). This
fact provides the technical advantage that the construction of shape metrics is not constrained
by the laws of nature and can therefore be selected so that they guarantee the existence, say, of
geodesics, provide nicely behaved gradient flows, etc... This will be illustrated in Section 2.

On the other hand, biological processes provide many examples in which shapes change with time,
in a process that is constrained by well specified laws. The goal of this chapter is to describe a few
among recent attempts at representing such processes as trajectories in the shape spaces above,
which, after small modifications or regularization, will be associated with evolution dynamics that
behave well enough to allow for long time analysis and optimal control formulations.

This chapter is organized as follows. Section 2 provides a summary of the construction of shape
spaces through diffeomorphic action. Section 3 focuses on variations of this construction with
metrics that are inspired from elastic materials. Section 4 introduces a few examples of growth
models in the context of shape spaces. For an extensive introduction to mathematical models of
growth, the reader should refer to Goriely [28], which provides a splendid reference on the topic,
and in particular on “morphoelasticity.” The representation of shape growth described in Section 4
will, however, deviate to some extent from that described in this reference, and more generally from
the large literature exploring morphoelasticity, as models will be designed in the form of control
systems, with a control equation interpreted as a differential equation in shape space and growth
or atrophy directly associated with the control.

2. Shape spaces under diffeomorphic action

This section provides a summary of the construction of shape spaces based on the principles of
D’Arcy-Thompson’s theory of transformations [63] and Grenander’s metric pattern theory [29]. The
fundamental principles of the construction were laid in Dupuis et al. [23], Trouvé [64], Grenander
and Miller [31] and the reader may refer to Younes [73], Miller et al. [54], Bauer et al. [10] for more
recent accounts of the theory.

Shapes are modeled as embeddings from a fixed Riemannian manifold M into R
d, and therefore

have a with fixed topology (in practice, d = 2 or 3). Typically, M is a unit circle or sphere, or a
template shape of which one is computing deformations. Denote by Embp(M) the set of such Cp

embeddings, or simply Emb when p and M are fixed. Each element m ∈ Emb provides a shape
equipped with a parametrization. Objects of interest are shapes modulo parametrization (also called
“unparametrized shapes”) in which one identifies embeddings m and m̃ when they are related with
each other through a change of parametrization, i.e., m̃ = m ◦ ρ where ρ is a diffeomorphism of M .
In other terms, the shape space is defined as the quotient space of Emb through the right action of
the diffeomorphism group of M , and will be denoted as S . Elements of S will be denoted as [m],
for the equivalence class of m ∈ Emb.

Comparisons between shapes rely on the group of transformations acting on Emb or S , which
are modeled as diffeomorphisms of Rd. Denote by Diff p(Rd), or simply Diff p, the group of Cp
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diffeomorphisms of Rd and by Diff p
0(R

d), or simply Diff p
0, the subgroup of diffeomorphisms that

converge to the identity map, denoted idRd , at infinity (convergence being understood in the Cp

sense). If ϕ ∈ Diff p and m ∈ Emb, ϕ · m is simply ϕ ◦ m, and this action commutes with
reparametrization, so that one can define ϕ · [m] = [ϕ ·m] without ambiguity.

To compare two embeddings (or their associated shapes) m and m′, one considers the transfor-
mations ϕ ∈ Diff p

0 that relate them, i.e., such that m′ = ϕ ·m. One considers that m and m′ are
similar if one can find some ϕ relating them that is close to idRd . This closeness is itself evaluated
using a metric on Diff p

0, with a construction described below.
To provide a Riemannian metric, one needs an inner-product norm that evaluates the velocity

of time-dependent diffeomorphisms, or “diffeomorphic motions,” taking the form (x 7→ ∂tϕ(t, x))
where ϕ is a function of time and space such that (x 7→ ϕ(t, x)) is at all times an element of Diff p

0.
For a given time t, (x 7→ ∂tϕ(t, x)) is a Cp vector field on R

d and one therefore needs to provide a
norm over such vector fields. The norm of the velocity at time t should in principle depend on the
diffeomorphism at the same time, (x 7→ ϕ(t, x)), but, for reasons seen below, it will be desirable for
this norm to satisfy the invariance property that, when writing

ϕ(t+ δt, x) = ϕ(t, x) + δϕ(t, x) = (idRd + δϕ(t, ·) ◦ ϕ−1(t, ·)) ◦ ϕ(t.x),

the cost associated with δϕ is a fixed function of the deformation increment δϕ ◦ ϕ−1. Passing to
the limit, this means that the Riemannian norm of (x 7→ ∂tϕ(t, x)) at (x 7→ ϕ(t, x)) is equal to
the norm of (x 7→ ∂tϕ(t, x) ◦ ϕ−1(t, x)) at idRd . The vector field v(t, x) = ∂tϕ(t, x) ◦ ϕ−1(t, x) is
called the Eulerian velocity of the diffeomorphic motion x 7→ ϕ(t, x), and the diffeomorphic motion
is recovered from the Eulerian velocity by solving the ordinary differential equation

(1) ∂tϕ(t, x) = v(t, ϕ(t, x)).

To define our Riemannian metric on Diff p
0, it therefore suffices to specify a Hilbert norm on

vector fields. For this purpose, let V denote a Hilbert of vector fields on R
d that will assumed, in

order to recover elements of Diff p
0 after solving Eq. (1), to be continuously included in the space

Cp
0 (R

d,Rd) of Cp vector fields that vanish at infinity. This means that V ⊂ Cp
0 (R

d,Rd) and that,
for some constant c, one has (letting ‖ · ‖∞ denote the supremum norm)

p
∑

k=0

‖dkv‖∞ ≤ c‖v‖V .

To satisfy this assumption, V can be built as a Hilbert Sobolev space of high enough order. In
addition, since the continuous inclusion implies that V is a reproducing kernel Hilbert space (RKHS)
of vector fields, RKHS theory can be used to build a large variety of Hilbert spaces of interest that
satisfy the inclusion property [7, 42, 73]. One can then define the action functional of a diffeomorphic
motion ((t, x) ∈ [0, 1]× R

d 7→ ϕ(t, x) ∈ R
d) as

∫ 1

0

‖v(t, ·)‖2V dt

with ∂tϕ(t, x) = v(t, ϕ(t, x)). A geodesic diffeomorphic motion is an extremal of this action func-
tional and a minimizing geodesic motion minimizes the functional subject to fixed boundary condi-
tions at t = 0 and t = 1. In particular, the geodesic distance between two diffeomorphisms ϕ0 and
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ϕ1 is defined as

(2) dV (ϕ0, ϕ1) =

inf

{

(
∫ 1

0

‖v(t, ·)‖2V dt

)1/2

: ∂tϕ(t, x) = v(t, ϕ(t, x)), ϕ(0, ·) = ϕ0, ϕ(1, ·) = ϕ1

}

.

Note that the set over which the infimum is computed may be empty, in which case the distance
is infinite. If this set is not empty, then one says that ϕ1 is attainable from ϕ0. Diffeomorphisms
that are attainable from the identity form a subgroup of Diff p

0, denoted Diff V , and this subgroup is
complete for the geodesic distance [64, 73]. (Because not every diffeomorphism in Diff p

0 is attainable
from the identity, one is actually building a sub-Riemannian metric on this space. See Arguillère
et al. [3], Younes et al. [75].)

By construction, the distance is right-invariant, i.e.,

dV (ϕ0, ϕ1) = dV (idRd , ϕ1 ◦ ϕ
−1
0 ),

and this implies that it can be used to define a distance on S via

dS ([m0], [m1]) = inf {dV (idRd , ϕ) : [ϕ ·m0] = [m1]}

= inf {dV (idRd , ϕ) : ϕ ·m0 ∈ [m1]} .

The distance on S can itself be defined directly as

(3) dV ([m0], [ϕ1]) =

inf

{

(
∫ 1

0

‖v(t, ·)‖2V dt

)1/2

: ∂tm(t, ·) = v(t,m(t, ·),m(0, ·) = m0,m(1, ·) ∈ [m1]

}

.

This provides an optimal control problem in S where the control is the time-dependent vector
field v, and the state equation the ODE ∂tm(t, ·) = v(t,m(t, ·)). The optimal trajectory transforms
the initial m0 into an embedding that is a reparametrization of m1 and provides a minimizing
geodesic in S . If the Sobolev inclusion discussed above holds for p ≥ 1 at least, the variational

problems described in Eq. (2) and Eq. (3) are well defined. The condition that
∫ 1

0
‖v(t, ·)‖2V dt < ∞

implies that solutions to the state equations (∂tϕ = v ◦ ϕ or ∂tm = v ◦ m) exist and are unique
(given initial conditions) over the full unit time interval, ensuring that the optimal control problem
is well specified. Moreover, as soon as ϕ1 (resp. [m1]) is attainable from ϕ0 (resp. [m0]), an
optimal solution to the considered problem always exists. Finally, under very mild assumptions on
initial conditions, solutions of the geodesic equations exist and are uniquely specified by their initial
position and velocity, i.e., m(0, ·) and ∂tm(0, ·) for dS . The geodesic equation is the Euler-Lagrange
equation associated with the variational problem, satisfied by stationary points of Eq. (2) or Eq. (3)
(equivalently, they are the equations provided by Pontryagin’s maximum principle). In the case
considered here, they are special instances of the geodesic equations for right-invariant Riemannian
metrics on Lie groups, as described in Arnold [4, 5] and are often referred to as Euler-Arnold
equations [6] or Euler-Poincaré equations [24, 35].

In practice, one does not solve this problem exactly, but relaxes the endpoint condition m(1, ·) ∈
[m1] by adding a penalty term, therefore minimizing

(4)

∫ 1

0

‖v(t, ·)‖2V dt+ U([m(1, ·)], [m1])
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Figure 1. Four time points of a geodesic evolution in shape space. Note that
shapes in this example have multiple components. Contour coloring match across
time points and track the evolution of the curve initial parametrization.

subject to ∂tm(t, ·) = v(t,m(t, ·)). In many of the applications, the function U takes the form

U([m0], [m1]) = ‖J[m0] − J[m1]‖
2
H

where [m] 7→ J[m] is a mapping from S into a (much larger) Hilbert space H. These “chordal
metrics” use representations of embedded curves or surfaces as measures, currents or varifold. For
simplicity the presentation below will ignore this relaxation step (which is however necessary to
make the computation numerically feasible) and work as if the endpoint conditions are exact. The
reader is referred to Bauer et al. [10] or Charon et al. [19], and to the references within, for more
information on chordal metrics.

A two-dimensional example of geodesic is presented in Fig. 1. These geodesics provide the
non-linear equivalent of a linear interpolation in Euclidean space.

3. Hybrid models

3.1. Description. The previous framework can be slightly extended to allow the norm used in the
shape space to depend on the shape itself, replacing the control cost in Eq. (3) by

∫ 1

0

‖v(t, ·)‖2[m(t,·)]dt,

so that the cost depends on both control and state. This still provides a sub-Riemannian distance in
shape space, and the problem remains well specified as soon as one ensures that the shape-dependent
norms still control the norm on V , so that an inequality ensuring

‖v‖V ≤ C‖v‖[m]

holds for all m ∈ S and v ∈ V (where the upper-bound may be infinite). Typical applications
of this construction use a “weak norm” v 7→ JvK[m] (which, by itself would not guarantee the
existence of solutions to the state equation), possibly motivated by material or biological constraints,
“regularized” by the norm on V , therefore taking

(5) ‖v‖2[m] = κ‖v‖2V + JvK2[m]

for some κ > 0.
The following section discusses several possible choice for JvK[m] in Eq. (5), in which the shape is

considered as an elastic material and the norm corresponds to the elastic energy associated with an
infinitesimal displacement along v (the reader may refer to, e.g., Ciarlet [21], Gonzalez and Stuart
[27] for more details on elasticity concepts that are used below). The concept of “hybrid” metrics
in Eq. (5) was suggested in Younes [72]. A similar approach for spaces of images (combined with
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a “metamorphosis” metric [52, 66]) was introduced in Berkels et al. [13], and metrics formed as
discrete iterations of small elastic deformations were also studied in Wirth et al. [68].

3.2. Elastic metrics.

3.2.1. Three-dimensional case. The energy of a hyper-elastic material Ω subject to a deformation
ϕ takes the form (letting IdRd denote the identity matrix in R

d)

E =

∫

ϕ(Ω)

G(x, ϕ(x))dx

where
G(x, ϕ) = W

(

x, dϕT dϕ− IdR3

)

for a function W : Ω × Sym+ → [0,+∞) (where Sym+ is the set of 3 by 3 positive semi-definite
matrices) such that W (x, S) = 0 if and only if S = 0. The matrix C = dϕT dϕ is the Cauchy-Green
strain tensor, which is such that uTCu = |dϕu|2, and W measures the deviation of this tensor from
the identity matrix.

A second-order expansion of G, near ϕ = idR3 takes the form (using the fact that ∂2W (x, 0) = 0)

(6) G(x, ϕ) '
1

2
∂2
2W (x, 0)(dv + dvT , dv + dvT )

where v = ϕ− idR3 . Here ∂2W (x, 0) and ∂2
2W (x, 0) are the first and second derivative with respect

to the second variable of W , therefore a positive semi-definite symmetric bilinear form on Sym (the
space of 3 by 3 symmetric matrices).

This can be used to define an elastic metric on 3D vector fields. Here, Ω is considered as
an “unparametrized shape,” taking the role of [m] in the previous sections. Using the previous
notation, this corresponds to taking the manifold M to be an open subset of R3 (e.g., an open ball),
m an embedding of M into R

3 and identifying Ω = m(M) to [m]. The hybrid norm will therefore
be denoted

‖v‖2Ω = κ‖v‖2V + JvK2Ω
and the rest of the discussion focuses on JvKΩ. Based on Eq. (6), one is led to define a 3D elastic
metric on vector fields as any norm taking the form

JvK2Ω =

∫

Ω

B(x, ε(x))dx

where ε(x) = (dv(x) + dv(x)T )/2 is known as the infinitesimal strain tensor of the deformation
and B(x, ·) is a positive semi-definite quadratic form on Sym, typically referred to as the elastic
tensor. Generically, B(x, ·) can be represented as a 6× 6 symmetric positive semi-definite matrix,
that is with 21 parameters in total at each x. In a majority of applications however, model symmetry
assumptions significantly reduce the complexity of this elasticity tensor. In particular, in the case
of a uniform and isotropic material, B(x, ·) is independent of the position and takes the specific
form

(7) B(x, ε) = B(ε) =
λ

2
trace(ε)2 + µ trace(ε2)

which is the linearization of the energy of a Saint Venant-Kirchhoff material. In that case,
the elasticity tensor is only described by the two parameters λ and µ which are called the Lamé
coefficients of the material.

To provide another example, consider the case of a partially isotropic and laminar model, intro-
duced in Hsieh et al. [37, 38, 39] under the assumption that Ω can be parametrized by a foliation.
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More precisely, assume that there exist two surfaces Mbottom and Mtop (bottom and top layers) in-
cluded in ∂Ω and a diffeomorphism Φ : [0, 1]×Mbottom → Ω such that Φ({0}×Mbottom) = Mbottom

and Φ({1} ×Mbottom) = Mtop. Let Ms = Φ({s} ×Mbottom), s ∈ [0, 1], denote “the layer at level
s,” S the transverse vector field S = ∂sΦ and N a unit vector field normal to all Ms. One then
introduces the following elasticity tensor:

B(x, ε) =λtan

(

trace(ε)−NT εN
)2

+ µtan

(

trace(ε2)− 2NT ε2N + (NT εN)2
)

(8)

+ µtsv (S
T εS)2 + 2µang

(

ST ε2S − (NT εS)2
)

,

The first two terms in this expression define an isotropic model on each layer. The third term
measures a transversal string, evaluated along S. The last term measures an angular strain, that
vanishes when S is normal to the layers. Here, the coefficients λtan, µtan, µtsv, µang must be constant
on each layer ms (they may depend on s). Note that, if τ1, τ2 are two orthonormal vectors fields
that are tangent to the layers so that (τ1, τ2, N) forms at all points an orthonormal frame, then

trace(ε)−NT εN = τT1 ετ1 + τT2 ετ2

and

trace(ε2)− 2NT ε2N + (NT εN)2 = (τT1 ετ1)
2 + (τT2 ετ2)

2 + 2(τT1 ετ2)
2

so that the first two terms only involve deformations tangent to the layers.
Importantly, the space of such “layered structures” is stable by diffeomorphic action. Indeed,

given Ω and Φ as above, and ϕ a diffeomorphism of R3, one defines the transformed structure by:

ϕ · (Ω, Φ) = (ϕ(Ω), ϕ ◦ Φ ◦ ϕ−1).

In particular, S transforms through ϕ as ϕ · S = (dϕS) ◦ ϕ−1.

Returning to the general case, one must emphasize the fact that the action functional
∫ 1

0

∫

Ω(t)

B(x, ε(x))dxdt

with ∂tϕ(t, x) = v(t, ϕ(t, x)) and Ω(t) = ϕ(t, ·)(Ω0) is not the energy of a deforming elastic material,
in the sense given to it in elasticity theory. In contrast, it may be understood as a sum of infinitesimal
elastic energies, for a volume that slowly deforms, and at each time step, remodels its structure to
reach an equilibrium state without—up to reorientation—changing its elasticity properties.

3.2.2. Elastic metrics on surfaces. The definition of elastic metrics on surfaces can be inferred
using a pattern similar to the 3D derivation. Let M be a surface in R

3 and consider a one-to-
one immersion ϕ : M → R

3 (one can, in this discussion, think of ϕ as the restriction to M of
a diffeomorphism of R3). To define a hyperelastic energy, assume (restricting M if needed and
introducing partitions of unity) that two vector fields τ1, τ2 are chosen on M such that they form
at each point an orthonormal frame, and let ν = τ1 × τ2. Let F (x) denote the 3 × 2 matrix
[dϕ τ1, dϕ τ2](x), where the 3D columns are expressed in the canonical basis of R3, and consider
energies of the form

∫

M

W (x, F (x))dvolM (x).

Material independence requires that W is invariant when F is multiplied on the right by a 2D
rotation matrix, and this implies that W only depends on FFT . To obtain the expression of



SHAPE SPACES: FROM GEOMETRY TO BIOLOGICAL PLAUSIBILITY 9

the metric, we let ϕ(x) = x + v(x) and make a first order expansion in v of FFT with F =
[τ1 + dvτ1, τ2 + dvτ2] yielding

FFT ' πM + πMdvT + dvπM

where πM = τ1τ
T
1 + τ2τ

T
2 is the orthogonal projection on the tangent plane to M at x. The

Riemannian elastic metric should therefore be taken as a quadratic form of ηM := (πMdvT +
dvπM)/2. Expressing this operator in the basis (τ1, τ2, ν), one sees that it depends on the five
quantities a11 = τT1 dvτ1, a22 = τT2 dvτ2, a12 + a21 = τT1 dvτ2 + τT2 dvτ1, a13 = νT dvτ1 and a23 =
νT dvτ2, yielding 15 free parameters for the “elastic norm” JvKM. (Like in the previous section, an
identification is made between the unparametrized surface M = m(M) and the equivalence class
[m].)

The norm is isotropic if it satisfies JRvKM = JvKM for any 3D rotation that leaves ν invariant.

This implies that the matrix a =

(

a11 (a12 + a21)/2
(a12 + a21)/2 a22

)

is transformed by a 2D rotation

as a 7→ RTaR and the vector b =

(

νT dvτ1
νT dvτ2

)

as b 7→ bR. Using usual invariance arguments,

this requires that the squared norm must be a (quadratic) function of trace(a), trace(a2) and |b|2,
yielding

(9) JvK2M =

∫

M

β(x, ηM)dvol(x)

with

(10) β(x, ηM) = λtantrace(a)
2 + µtantrace(a

2) + µtsv|b|
2.

The three different terms of this metric can be also interpreted as penalties on the changes of local
area, metric tensor and normal vector respectively, as pointed out in Jermyn et al. [41] (see also
their intrinsic expressions derived in Appendix A). Jermyn et al. [41] focuses on the special case
λtan = 1/16, µtan = 0, µtsv = 1, which can be shown to be isometric to a Euclidean metric under a
“square root normal transform.”

To consider another example, let λtan = 0 and µtan = µtsv = 1. Then

β(x, ηM) = a211 + a222 +
1

2
(a12 + a21)

2 + a213 + a223

= a211 + a222 + a212 + a221 + a213 + a223 −
1

2
(a12 − a21)

2

= trace(dvdvT )−
1

2
(a12 − a21)

2(11)

The first term, trace(dvdvT ), corresponds to the H1 metric on M, used e.g., in Younes [72]. This
metric, without the correction term 1

2 (a12 − a21)
2 is not an elastic metric. It belongs however to

a larger class of metrics, studied in Su et al. [62], where the correction term is added to Eq. (10)
with a fourth parameter.

Such elastic metrics can be used in combination with the LDDMM metric through the hybrid
setup described above. As an illustration, Fig. 2 provides a comparison of the geodesic trajectories
between two surfaces, obtained with the pure LDDMM model and a hybrid model using the elastic
term given by Eq. (11).

The norm in Eq. (9) can also be obtained as a limit of the laminar elastic model of the previous
section and the energy in Eq. (8), which is shown in Appendix A by also providing an intrinsic
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Figure 2. Comparison between geodesics between surfaces using a pure LDDMM
and a hybrid LDDMM/elastic metric. First column: Four time points of an LD-
DMM geodesic (t = 0, t = 0.3, t = 0.7 and t = 1). Second column: same time
points for the hybrid geodesic. One can note a difference in the intermediate shapes,
and (as indicated by the triangulation) higher local contraction associated with the
LDDMM metric. The hybrid metric uses the expression provided in Eq. (11).

expression of the elastic norm. This in part justifies the terminology of elastic metrics given to this
framework in the related literature.

3.2.3. Elastic metrics on curves. If M is a 3D curve, the same analysis shows that elastic metrics
should depend on the products τT dvτ , νT1 dvτ and νT2 dvτ , where τ is a unit tangent on M and
(τ, ν1, ν2) is a continuous positively oriented frame defined along the curve. Denote ∂sv = dvτ for



SHAPE SPACES: FROM GEOMETRY TO BIOLOGICAL PLAUSIBILITY 11

Figure 3. Four time points of a geodesic evolution in shape space for a hybrid
metric. The initial and final shapes are the same as those in Fig. 1, but one can
note, in particular, that the elliptical shapes are better conserved during the mo-
tion.

the derivative with respect to arc length, as introduced, e.g., in Michor and Mumford [51]. The
metric must also be invariant to rotations of the normal frame (ν1, ν2) and changes of orientation
on M, which requires the metric to take the form

(12) JvK2M =

∫

M

β(x, ∂sv)dvol(x)

with
β(x, ∂sv) = µtan(τ

T∂sv)
2 + µtsv((ν

T
1 ∂sv)

2 + (νT2 ∂sv)
2).

The special case of planar curves has been extensively discussed. In this case, letting ν denote
the unit normal, the metric has two parameters, with

β(x, ∂sv) = µtan(τ
T∂sv)

2 + µtsv(ν
T∂s)

2.

When µtan = µtsv = 1, one gets β(x, ∂sv) = |∂sv|
2. The resulting metric was introduced in Younes

[69, 70] and shown to be isometric to a flat metric using a square root transform. This metric
was called “H1

0” in Mumford and Michor [56] and further studied in Younes et al. [74]. The case
µtan = 1, µtsv = 1/4 was considered in Mio et al. [55], Srivastava and Klassen [61], and a similar
square root transform was seen to provide an isometry with a flat space in this case also. This
isometry was extended to the general case in Younes [71, 73] and in Needham and Kurtek [58]
(another isometry was also introduced in Bauer et al. [8]). The reader is referred to the cited
references for more details on the exact expression of the isometry. Figure 3 provdes an example of
geodesic evolution for a hybrid metric, to be compared with Fig. 1.

4. Growth models

4.1. Introduction. The previous section described various metrics in shape space that are built
as a regularized linearized elastic energy. Optimal paths (i.e., geodesics) associated with these
metrics prefer different trajectories from those associated with the “standard” spaces discussed in
Section 2, and tend to inherit some of the properties suggested by the elastic intuition. However,
not all trajectories of interest need to be geodesics for some metric or satisfy a least-action principle.
In particular, including external actions, with in particular possible mechanisms describing growth1,
will provide shape analysis methods with additional capability of modeling transformations typically
observed in biology or medicine.

1Following common terminology, we consider growth as a general shape change mechanism, also including atrophy,

as a “negative growth.”
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A leading model for shape change in the framework of elasticity theory introduces the notion
of morpho-elasticity in which shapes are subject to the action of a “growth tensor,” which partly
accounts for the derivative of the deformation, dϕ (see Goriely [28] for an extensive introduction to
the subject and for references). Letting G denote the growth tensor, one writes dϕ = AG, where
A completes the growth tensor to provide a valid differential dϕ, in a way that would minimize the
elastic energy (so that one applies the elastic cost to ATA − IdRd rather than to dϕT dϕ − IdRd).
This approach does not necessarily lead to the trivial solution A = IdRd because the growth tensor
G is not necessarily “compatible”, i.e., there may not always exist a transformation ϕ such that
dϕT dϕ = GTG.

Considering small deformations, i.e., linearizing dϕ = AG for ϕ and G close to the identity, and
writing ϕ = idRd + v, A = IdRd + a and G = IdRd + g, one gets, simply, dv = a+ g. So, for a given
tensor g, the vector field v must minimize an expression of the form

(13)

∫

Ω

B
(

x, (dv + dvT − g − gT )/2
)

dx

where B was discussed in Section 3.2.1. There is no loss of generality in assuming that g is
symmetric, which will be done in the following. The minimum of Eq. (13) is not always zero, i.e.,

the equation dv+dvT

2 = g does not always have a solution. A necessary condition (which is sufficient
when Ω is simply connected) is that ∇ × (g × ∇g) = 0 (row-wise curl application, followed by
column-wise; see, e.g., Gonzalez and Stuart [27]).

4.2. Riemannian viewpoint. Returning to the Riemannian situation discussed in shape spaces,
the metric was defined as ‖v‖2Ω = κ‖v‖2V + JvK2Ω with JvK2Ω given by the right-hand side of Eq. (13)
with g = 0. One can apply the same approach here, letting

JvK2Ω = inf
g

∫

Ω

B
(

x, (dv + dvT )/2− g
)

dx.

Obviously, this definition has little interest unless one restricts the space of growth tensors under
consideration (otherwise, JvK2Ω = 0 since one can take g = (dv + dvT )/2). Letting G(Ω) denote a
set of tensor fields (x 7→ g(x) ∈ Sym(Rd)), one can define

JvK2Ω = inf
g∈G(Ω)

∫

Ω

B(x, (dv + dvT )/2− g)dx

which is not trivial in general. If G(Ω) forms a vector space, then JvK[Ω] is a semi-norm on V .
Note that one can also switch the focus to the growth tensor and define, for g ∈ G(Ω),

‖g‖2Ω = min
v∈V

(

κ‖v‖2V +

∫

Ω

B
(

x, (dv + dvT )/2− g
)

dx

)

,

which defines a norm on growth tensors. The introduction of the regularization by the V norm
ensures that the minimum is attained at a unique v ∈ V , that one can denote vg,Ω, which depends
linearly on g and is such that κ‖vg,Ω‖

2
V ≤ ‖g‖2Ω. One can therefore consider evolution equations in

the form
{

∂tϕ(t, x) = vg(t),Ω(t)(ϕ(t, x))

Ω(t) = ϕ(t,Ω(0))

which are well posed (starting with ϕ(0, ·) = idR3) as long as
∫ 1

0

‖g(t)‖2Ω(t)dt < ∞.
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This framework therefore provides two formally equivalent optimal control problems. In the first
one, one minimizes, with respect to v(·)

(14)

∫ 1

0

‖v(t)‖2Ω(t)dt,

subject to ϕ(1,Ω0) = Ω1, ϕ(0, ·) = idR3 , ∂tϕ(t, ·) = v(t, ϕ(t, ·), Ω(t) = ϕ(t,Ω0). In the second one,
one minimizes, with respect to g(·)

(15)

∫ 1

0

‖g(t)‖2Ω(t)dt,

subject to ϕ(1,Ω0) = Ω1, ϕ(0, ·) = idR3 , ∂tϕ(t, ·) = vg(t)(ϕ(t, ·)), g(t) ∈ G(Ω(t)), Ω(t) = ϕ(t,Ω0).
Both problems are, in addition, equivalent to minimizing, with respect to both v(·) and g(·),

(16) κ

∫ 1

0

‖v(t)‖2V dt+

∫ 1

0

∫

Ω(t)

B
(

x, (dv(t, x) + dv(t, x)T )/2− g(t, x)
)

dx

subject to ϕ(1,Ω0) = Ω1, ϕ(0, ·) = idR3 , ∂tϕ(t, ·) = v(t, ϕ(t, ·)), g(t) ∈ G(Ω(t)), Ω(t) = ϕ(t,Ω0).
When G(Ω) is a vector space, the minimum value of these optimal control problems with given

Ω0 and Ω1 is symmetric in Ω0 and Ω1 and its square root satisfies the triangular inequality. This
minimum is always larger to that obtained with B = 0 and therefore cannot be zero unless Ω0 = Ω1.
(Note that the minimum can be infinite if the problem is unfeasible.) Under suitable assumptions,
solutions of this optimal control problem always exist. A precise statement of this result and a
sketch of its proof are provided in the appendix.

4.3. Growth as an internal force. Some additional notation is needed here. Denote the topo-
logical dual of a Hilbert space H, with inner product

〈

· , ·
〉

H
, by H∗ and if µ ∈ H∗ is a linear form

and if h ∈ H, denote their pairing by
(

µ
∣

∣h
)

(i.e., µ(h)). Riesz’s representation theorem gives an
isometric correspondence between H and H∗ with, denoting by KH : H∗ → H the operator that
associates to a linear form µ the unique vector h ∈ H such that

(

µ
∣

∣ h̃
)

=
〈

h , h̃
〉

H
for all h̃ ∈ H,

‖h‖2H =
(

K−1
H h

∣

∣h
)

. This construction will be applied to H = V .
Introduce the (finite-dimensional) linear operator β(x) operating on symmetric 3×3 matrices such

that B(x, S) =
〈

S , β(x)S
〉

(with
〈

S , S′
〉

= trace(SS′)), and define, for a tensor field x 7→ S(x),

βΩ(S) =

∫

Ω

β(x)S(x)dx.

Defining dv = (dv + dvT )/2, one has
∫

Ω

B
(

x, (dv + dvT )/2− g
)

dx =
(

d
∗βΩdv

∣

∣ v
)

− 2
(

d
∗βΩg

∣

∣ v
)

+
(

βΩg
∣

∣ g
)

.

Letting jg,Ω = d
∗βΩg, one has

(17) vg,Ω = (κK−1
V + d

∗βΩd)
−1jg,Ω.

This relation provide an alternative way of modeling the growth process. One can indeed,
following Hsieh et al. [39], directly define a “yank” (derivative of a force) j as a control, with
vj = (κK−1

V + d
∗βΩd)

−1j and use the running cost
∫ 1

0

(

j(t)
∣

∣ vj(t)
)

dt
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with ∂tϕj(t, x) = vj(t)(ϕj(t, x)). One can then show that the finiteness of the cost implies that the
ODE has solutions over all time interval. One can also prove that optimal control j always exist in
this case.

Note that this problem is different from the one described in equations Eqs. (14) to (16). In that
case, one has

‖g‖2Ω =
(

βΩg
∣

∣ g
)

−
(

jg
∣

∣ vg
)

,

showing that the geodesics for the ‖ · ‖Ω metric (which remain to be explored) are likely to behave
differently than those studied in Hsieh et al. [39].

4.4. A simple example. Assume that the growth tensor is scalar, i.e., g(x) = ρ(x)IdR3 and that
g(x) = 0 on ∂Ω, to avoid keeping track of boundary terms. Also assume that the elastic energy on
Ω is homogeneous and isotropic (Eq. (7)), which implies that B(x, g(x)) is proportional to ρ(x)2,
the proportionality constant being, using the Lamé coefficients, equal to 3(3λ/2 + µ). Letting
ξ = 3λ/2 + µ and using the bilinearity of B(x, ·) and the fact that trace(dv) = trace(dvT ) = ∇ · v,
a direct computation yields:

B
(

x, (dv + dvT )/2− g
)

= B(x, (dv + dvT )/2)− 2ξρ(x)∇ · v(x) + 3ξρ(x)2

Integrating by parts, one has
∫

Ω

ρ(x)∇ · v(x)dx = −

∫

Ω

∇ρ(x)T v(x)dx

so that, using the previous notation,

jg,Ω = −ξ∇ρ.

One therefore finds that

‖ρIdR3‖2Ω = 3

∫

Ω

ρ(x)2dx−

∫

Ω

∇ρ(x)T (κK−1
V + d

∗βΩd)
−1∇ρ(x)dx.

Similarly, the minimum in ρ of B
(

x, (dv(x) + dv(x)T )/2− ρ(x)IdR3)

)

is attained at ρ = ∇ · v/3
and

‖v‖2Ω = κ‖v‖2V +

∫

Ω

B
(

x, (dv(x) + dv(x)T )/2−∇ · v(x)/3
)

dx

4.5. Growth due to external action. Shape variations resulting from a growth tensor as de-
scribed above may be caused by external effects (e.g., impact of a disease) and do not need to follow
a least-action principle such as described in the previous paragraph. More likely, the growth tensor
will follow its own course, according to a process influenced by elements that are independent of
the material properties of the deforming shape. The growth tensor evolution cannot be completely
independent of the shape, however, since it must be supported by the time dependent domain Ω(t).
It is also possible that changes in the geometry of the shape impact how growth behaves.

All this results in evolution systems with coupled evolution equations, typically involving moving
domains. In Bressan and Lewicka [14], a scalar growth is assumed, with the relationship ∇ · v = ρ,
consistent with Section 4.4. The growth function depends on another function, u, representing
the “concentration of morphogen”, so that ρ = α ◦ u for a fixed function α. This morphogen
concentration follows a partial differential equation (PDE), namely ∆u = w − u, with Neumann’s
boundary conditions, where w itself is a density advected by the motion, i.e., satisfying ∂tw +∇ ·
(vw) = 0, which provides the coupling between growth and shape change. Initial conditions are
the initial domain Ω0 and the initial value of w, w0. One can then show that, when starting with
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a domain Ω0 with smooth enough boundary and with a smooth enough density w0, a solution to
the growth system exists over some finite interval [0, T ] for some (small enough) T .

In Hsieh et al. [39] and Hsieh et al. [38], the additional regularization term ‖v‖V described in
this chapter is added, using the formulation in Eq. (17)

(κK−1
V + d

∗βΩd)v = j,

where j is the modeled control (as seen in our simple example of Section 4.4, j has an interpretation
similar to that of −∇ρ). Hsieh et al. [39] models j as a function j(ϕ, θ), for some time-independent
parameter θ, providing coupled equations

{

∂tϕ(t, x) = v(t, ϕ(t, x))

(κK−1
V + d

∗βΩd)v(t, ·) = j(ϕ(t, ·), θ)

The system is shown to have a unique solution t 7→ ϕ(t, ·) over arbitrary large time intervals, for
any fixed θ, provided that j(ϕ, θ) is Lipschitz in ϕ for the (1,∞) norm. Denoting this solution by
ϕ(t, ·; θ), this property allows for the specification of optimization problems over the parameter θ
involving the transformation ϕ(1, ·; θ).

A more complex system is introduced in Hsieh et al. [38] in which j is itself modeled based on
a solution of a “reaction-diffusion-convection” equation on the moving domain Ω. Ignoring a few
technicalities, j is given by j = ∇(Q(p)) where Q is a fixed function and p satisfies

∂tp = ∇ · (Sϕ∇p− pv) +R(p)

where R, the reaction function, is fixed, and Sϕ, the diffusion matrix, is allowed to evolve with the
transformation ϕ. One can then formulate suitable conditions under which the system

(18)











∂tϕ(t, x) = v(t, ϕ(t, x))

(κK−1
V + d

∗βΩd)v(t, ·) = ∇(Q(p))

∂tp = ∇ · (Sϕ∇p− pv) +R(p)

has solutions over arbitrary time intervals for a given initialization p0 = p(0, . . . ). The determination
of this initial condition for an optimal behavior at time 1 is tackled in Hsieh [36], where the existence
of solutions of the optimization problem is shown. Figure 4 provides an example of growth process
obtained as solution of this system.

4.6. Constraints, deformation modules and other growth models. Specific behavior can be
enforced in a deformation process by constraining the values of the vector field at given locations
in the shape. Theoretical bases for constrained and sub-Riemannian versions of LDDMM were
introduced in Arguillère et al. [3], Arguillere et al. [2], Arguillere and Trélat [1], and a survey of
such methods is provided in Younes et al. [75]. Among such approaches, deformation modules
[32, 47] offer a generic framework in which various types of behaviors can be defined by combining
suitable constraints in a modular manner. Referring to the publications above for more details,
the example of “implicit elastic modules” is closely related to this chapter’s discussion. For such
modules, the vector field v is obtained as a minimizer of

v 7→ λ‖v‖2V +

m
∑

k=1

|εv(xk)− Sk(hk)|
2

where εv = (dv + dvT )/2, x1, . . . , xN are control points that are attached to (and move together
with) the evolving shape, and h 7→ Sk(h) are symmetric matrices, parametrized by a control h,
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Figure 4. Growth model from Hsieh [36] applied to a 3D volume. Dots are colored
proportionally to the magnitude of p in Eq. (18). Rows 1 to 4 provide two views
of the evolving shapes at times t = 0, t = 0.33, t = 0.67 and t = 1.0. (Images
generated from code developed by Dai-Ni Hsieh.)
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inducing a desired behavior (e.g., dilation) near the control points. This norm therefore introduces
a finite set of (soft) constraints on the strain tensor.

A different approach at modeling growth can be found in Kaltenmark [44], Kaltenmark and
Trouvé [43]. In this work, a growing shape at a given time t is defined as a transformation qt of a
co-dimension-one foliation X, which encodes the full growth process. During the evolution, only the
restriction of qt to the set Xt formed by leaves at time s ≤ t of the foliation is relevant to describe
the growing shape. The value of qt(x) remains constant until t is reaches the foliation index of x,
so that the function q0 encodes all future initializations of the growth process. This process can be
constructed through an evolution equation in the form ∂tqt = v(t, qt), and an example is developed
in Kaltenmark and Trouvé [43] to model animal horn growth.

5. Conclusion

Starting from the notion of shape spaces built along the principles of Grenander’s metric pattern
theory and the action of diffeomorphism groups, this chapter surveyed a few recent efforts to
incorporate physical constraints in the modelling of trajectories in such spaces. It first discussed
the class of hybrid models that consist in combining the original shape space metric induced by the
deformation group with other more physically-informed metrics, in particular those derived from
linear elasticity theory. A second general approach is to further constrain shape evolution via the
introduction of a growth model underlying the morphological transformation.

One of the main motivation behind all of these works is to advance the ability of shape space
frameworks to model physical or biological processes, while still preserving the advantages of the
geometric shape space metric setting. Indeed, this enables the formulation of the dynamics of those
processes as control systems and provides adequate regularization norms to ensure existence and
smoothness of solutions in many cases. Furthermore, by considering the associated optimal control
problems, those same models can often lead to natural and well-posed approaches for tackling the
inverse problem of e.g. determining the causes/sources of morphological changes based on some ob-
served shape evolution. The ideas provided by the present chapter are examples of emerging efforts
toward cross-fertilization between the fields of shape analysis, mathematical biology, biomedical
engineering and material science.
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Appendix A. Elastic surface metric as the limit of the laminar model
(Section 3.2.2)

Given an oriented surface M0 in R
3, and its unit normal vector field denoted ν0, one can

generate a foliated 3D volume as the set of points Φ(s, x0) = x0 + sδν0(x0), x0 ∈ M0, s ∈ [0, 1],
and Φ is a diffeomorphism for small enough δ > 0. In this case, the unit normal N to the layer
Ms = Φ({s}×M0) at the point x = Φ(x0, s) ∈ Ω is also N(x) = ν0(x0). It coincides, up to a factor
δ, with S = ∂sΦ and satisfies dNN = 0. Let v0 : M0 → R

3 be a vector field on M0, and define its
extension v to Ω by v(Φ(s, x0)) = v0(x0), so that v satisfies dvN = 0. See Fig. 5 for an illustration.
Let σ0 = dν0 denote the shape operator on the surface M0 and similarly σs the shape operator of
layer Ms i.e. the restriction of dN to the tangent space of Ms. Recall that the shape operator on
a surface is a symmetric operator.
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Figure 5. Cross-sectional schematic representation of the thin-shell layered elastic
domain with the deformation field v in blue.

Write v = vT + vNN where vT ∈ R
3 is tangent to the layers and vN is scalar. If τ , τ̃ are vectors

tangent to the layers, we have

(19) τ̃T dvτ = τ̃T dvT τ + (∇vTNτ)(τ̃TN) + vN τ̃T dNτ = τ̃T dvT τ + vN τ̃T dNτ

In particular, letting εT = (dvT + dvTT )/2, and for {τ1, τ2} an orthonormal basis of the tangent
plane to Ms at x, one has:

τT1 ετ1 + τT2 ετ2 = τT1 dvT τ1 + τT2 dvT τ2 + vN [τT1 dNτ1 + τT2 dNτ2].

With the sum of the first two terms, one recognizes the divergence of vT on the surface Ms which
will be denoted by ∇Ms

· vT . Similarly, the term within brackets is the divergence of the shape
operator on Ms which equals −2HMs

where HMs
is the mean curvature of Ms. Therefore, one

deduces that, on Ms:

τT1 ετ1 + τT2 ετ2 = ∇Ms
· vT − 2vNHMs

.

Moreover, as dvN = 0, it follows that NT εN = 0 and thus, on Ms:

trace(ε) = τT1 ετ1 + τT2 ετ2 +NT εN = ∇Ms
· vT − 2vNHMs

.

Similarly, looking at the second term in Eq. (8) and using Eq. (19), one has:

(τT1 ετ1)
2 + (τT2 ετ2)

2 + 2(τT1 ετ2)
2

= (τT1 dvT τ1 + vNτT1 σsτ1)
2 + (τT2 dvT τ2 + vNτT2 σsτ2)

2 + 2(τT1 εT τ2 + vNτT1 σsτ2)
2

= (τT1 dvT τ1)
2 + (τT2 dvT τ2)

2 + 2(τT1 εT τ2)
2

+ v2N
[

(τT1 σsτ1)
2 + (τT2 σsτ2)

2 + 2(τT1 σsτ2)
2
]

+ 2vN
[

(τT1 dvT τ1)(τ
T
1 σsτ1) + (τT2 dvT τ2)(τ

T
2 σsτ2) + 2(τT1 εT τ2)(τ

T
1 σsτ2)

]

.

In this computation, one uses the fact that the operator dN restricted to the to the tangent space
to Ms at x (i.e. the space spanned by τ1 and τ2) coincides with σs. Now, by symmetry, one
has τT1 dvT τ1 = τT1 εT τ1 and τT2 dvT τ2 = τT2 εT τ2. Moreover, recalling that for any 2 × 2 symmetric
tensors ω and ω̃, one has trace(ωω̃) = ω1,1ω̃1,1 + ω2,2ω̃2,2 + 2ω1,2ω̃1,2, one gets:

(τT1 ετ1)
2 + (τT2 ετ2)

2 + 2(τT1 ετ2)
2 = trace(ε2T ) + v2N trace(σ2

s) + 2vN trace(εTσs)

= trace((εT + vNσs)
2).

Now, using the symmetry of ε and the fact that NT εN = 0:

(20) NT ε2N = |εN |2 = (τT1 εN)2 + (τT2 εN)2.
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If τ is tangent to the layers, one has τT dvN = 0 and

τT dvTN = NT dvτ = NT dvT τ + (∇vTNτ)(NTN) + vNNT dNτ

= NT dvT τ +∇vTNτ.(21)

Moreover, since NT vT = 0, it follows that NT dvT τ = −vTT dNτ . Using this together with Eq. (20),
Eq. (21), and with the fact that dN is symmetric, one deduces that:

NT ε2N − (NT εN)2 = ((−dNT vT +∇vN )T τ1)
2 + ((−dNT vT +∇vN )T τ2)

2

= | − σsvT +∇Ms
vN |2

where ∇Ms
is the gradient operator on Ms.

Based on all the above expressions, one can finally rewrite Eq. (8) at x = Φ(x0, s) as

B(x, ε) =λtan (∇Ms
· vT − 2HMs

vN )
2
+ µtan trace((εT + vNσs)

2)(22)

+ 2µang |−σsvT +∇Ms
vN |

2
,

and using by a change of variables in the integral expression of the energy, one further has:

1

δ

∫

Ω

B(x, ε)dx =
1

δ

∫ 1

0

∫

M0

B(x0 + sδν0, ε)|JΦ(s, x0)|dvolm0(x0)ds

where |JΦ(s, x0)| denotes the Jacobian determinant of Φ at (s, x0). As ∂sΦ(s, x0) = δν0(x0) and
dx0

Φ(s, x0) = Id + sδdν0(x0), one gets dx0
Φ(0, x0) = Id where Id denotes here the identity on the

tangent space to m0 at x0. Therefore, |JΦ(0, x0)| = δ for all x0 ∈ m0. Consequently, taking the
limit δ → 0 in the above and using the continuity of B and JΦ leads to the following expression of
the elastic metric on the surface M0:

JvK2M0
=

∫

m0

B(x0, ε)dvolm0
(x0)

with B given by Eq. (22) (with s = 0). Furthermore, it can be easily checked, based on their
expressions in the frame (τ1, τ2, N), that the three terms in B(x0, ε) correspond precisely, up to
multiplicative constants, to the ones of Eq. (10) thus showing that the elastic metric in Eq. (9) can
be also recovered as the thin shell limit of the 3D laminar model introduced in Section 3.2.1.

Appendix B. Existence of optimal paths (Section 4.2)

Considering the minimization problem introduced in Eqs. (14) to (16), this section proves that,
under suitable assumptions, optimal solutions exist. These assumptions are as follows.

(1) Let p ≥ 1. The Hilbert space V is continuously embedded in the Banach space Cp
0 (R

3,R3)
of p times continuously differentiable vector fields that vanish (with their first p derivatives) at
infinity, with the norm

‖v‖p,∞ =

p
∑

k=0

max{|dkv(x)| :, x ∈ R
3}.

(2) V is also continuously embedded in H1(R3,R3), the Sobolev space of square-integrable func-
tions with square-integrable first derivatives.

(3) The mapping x 7→ B(x, ·) from R
3 to the set of positive semi-definite quadratic forms is

continuous in x. In particular, |B(x, ·)| is bounded on compact subsets of R3.
(4) There exists a constant c such that B(x, S) ≥ c|S|2 for all S ∈ Sym and all x ∈ R

3.
(5) The sets G(Ω), defined over compact subsets of Ω ⊂ R

3, satisfy the following conditions.
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(5)-i If Ω ⊂ Ω̃, then G(Ω) ⊂ G(Ω̃).
(5)-ii Define, for δ > 0, Ωδ = {x : dist(x,Ω) ≤ δ}. Then

⋂

δ>0 G(Ω
δ) = G(Ω).

(5)-iii G(Ω) is a strongly closed convex subset of HSym := L2(R3,Sym(R3)).

For example the sets G(Ω) = {g IdR3 : g ∈ L2(Ω)} satisfy condition (5).

Making these assumptions, let vn(·) ∈ L2([0, 1], V ) and gn ∈ L2([0, 1], HSym) be minimizing
sequences for the considered problem. To shorten notation, let εn = (dvn + dvTn )/2. Because vn is
bounded in L2([0, 1], V ), one can replace it by a subsequence that converges weakly to some v in
that space, and using arguments developed in Dupuis et al. [23], Trouvé [64], Younes [73], the flows
ϕn associated with vn converge uniformly in time and uniformly on compact sets in space to the
flow ϕ associated with v. From weak convergence and weak lower semicontinuity of the norm, one
has

∫ 1

0

‖v‖2V dt ≤ lim inf

∫ 1

0

‖vn‖
2
V dt

and from the convergence of the flows, one has ϕ(1,Ω0) = Ω1 because this holds for each ϕn.
Based on the assumptions made on B, one has, for all x ∈ R

3 and t ∈ [0, 1]:

c|gn(t, x)|
2 ≤ B(x, gn(t, x)) ≤

(

B(x, εn(t, x)− gn(t, x))
1/2 +B(x, εn(t, x))

1/2
)2

≤ 2 (B(x, εn(t, x)− gn(t, x)) +B(x, εn(t, x)))

Because of the convergence of ϕn, there exists a compact set Ω̄ ⊂ R
d that contains all the Ωn(t),

n ∈ N, t ∈ [0, 1]. This implies that there exist constants C,C ′ such that, for all n ∈ N (using the
boundedness of B(x, ·) on compact sets):

∫ 1

0

∫

Ωn(t)

B(x, εn(t, x))dxdt ≤ C

∫ 1

0

∫

Ωn(t)

|εn(t, x)|
2dxdt ≤ C ′

∫ 1

0

‖vn(t)‖
2
H1dt.

By the continuous embedding of V into H1, ‖vn(t)‖H1 is bounded up to a multiplicative constant
by ‖vn(t)‖V , which implies that the above term is bounded independently of n. The same holds
for:

∫ 1

0

∫

Ωn(t)

B(x, εn − gn)dxdt =
1

4

∫ 1

0

∫

Ωn(t)

B(x, dvn + dvTn − 2gn)dxdt

as (vn, gn) is a minimizing sequence for the functional in Eq. (16). This implies that the sequence
∫ 1

0
‖gn‖

2
HSym

dt is bounded and that one can assume, using a subsequence if needed, that gn ⇀ g in

L2([0, 1], HSym).
It remains to prove that g(t) ∈ G(Ω(t)) to show that (v, g) provides a solution of the minimization

problem. Fixing δ > 0, one can restrict the minimizing sequence to those large enough n for which
max{|ϕn(t, x)− ϕ(t, x)|, t ∈ [0, 1], x ∈ Ω̄} < δ, so that Ωn(t) ⊂ Ωδ(t) for all n and t.

Let

Γ(Ω(·), δ) = {g̃(·) : g̃(t) ∈ G(Ωδ(t)), for a.e t ∈ [0, 1]},

so that gn ∈ Γ(Ω(·), δ). This is a convex set, which follows directly from our hypotheses on the sets
G(Ω), and it is closed in L2([0, 1], HSym). Indeed, if g̃n ∈ Γ(Ω(·), δ) converges to g̃ ∈ L2([0, 1], HSym),
then a subsequence converges for almost all t ∈ [0, 1] and since each G(Ωδ(t)) is closed in HSym, it
results that g̃(t) ∈ G(Ωδ(t)) for almost all t. Now, as strongly closed convex sets are also weakly
closed in L2([0, 1], HSym) (see, Hytönen et al. [40]), one deduces from gn ⇀ g that g ∈ Γ(Ω(·), δ).
Since this is true for all δ > 0, one has, taking a sequence δn → 0, that g(t) ∈ G(Ω(t)) for almost
all t ∈ [0, 1].
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This concludes the proof that (v, g) is a minimizer of Eq. (16).
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