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ABSTRACT With dynamically evolving indoor environments, class-incremental learning (CIL) plays a
crucial role in enabling indoor localization systems to adapt to new indoor areas. However, CIL poses
additional challenges such as catastrophic forgetting, where patterns from previously learned paths are
overwritten by data from new paths, and high data storage demands on the edge server, which must
retain extensive localization data, resulting in high memory and power consumption overheads. To address
these challenges, an effective solution must support CIL with indoor paths while mitigating catastrophic
forgetting and reducing storage overheads on the edge server. To the best of our knowledge, CIELO
is the first framework to address these challenges in the domain of indoor localization. It introduces a
novel CIL approach that integrates an innovative representation memory management (RMM) policy with
crowdsourcing to enable high-accuracy localization while significantly reducing catastrophic forgetting and
data storage requirements. Through extensive experimental evaluations conducted across multiple real-world
paths and devices, our results demonstrate that CIELO improves indoor localization accuracy by up to 29.4 x
with up to 60 newly introduced classes (locations) across paths, reduces data storage by up to 1.75x, and
power consumption by up to 1.69x on the edge server, compared to state-of-the-art solutions.

INDEX TERMS Continual learning, class-incremental learning, catastrophic forgetting, indoor localization,
Wi-Fi fingerprinting.

I. INTRODUCTION

Indoor localization systems are being adopted across a wide
range of applications, including augmented and virtual reality
(AR/VR), smart home automation, asset tracking, and indoor
navigation [1]. This widespread adoption is fueling the rapid
growth of the indoor localization market, which is projected
to reach USD 83.1 billion by 2030, as demand rises for
precise positioning solutions across diverse sectors [2].

To aid with indoor localization across environments
where global positioning system (GPS) signals are absent
(e.g., buildings, urban areas, underground mines), industries
are exploring a range of wireless radio frequency (RF)
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technologies (¢.g., Wi-Fi, Bluetooth, and Ultra-Wideband
(UWB)) [3], [4], [5], channel characteristics (e.g., channel
state information (CSI), received signal strength (RSS) [6])
and other localization techniques (e.g., trilateration, dead
reckoning, fingerprinting [7]). Out of these, Wi-Fi RSS-
based fingerprinting has emerged as a prominent choice
for smartphone-based indoor localization for users [8]. This
can be largely attributed to the widespread availability of
Wi-Fi in indoor locales and its seamless integration with
modern mobile devices [9]. RSS fingerprinting involves
capturing signal strength values from multiple Wi-Fi1 access
points (APs) to create unique ‘‘fingerprints” associated
with specific locations or reference points (RPs) within an
indoor environment. These fingerprints are then trained using
machine learning (ML) models to predict a device’s location
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by learning patterns in the RSS data, making the approach
suitable for real-time deployment in mobile devices.

Wi-Fi RSS fingerprinting-based indoor localization sys-
tems typically operate in two phases: oftline and online [7].
During the offline phase, RSS fingerprints are collected at
various RPs, and an ML model is trained to learn location-
specific patterns. In the online phase, the trained ML model
1s deployed on mobile devices, where it predicts the device’s
location in real-time using RSS values collected at unknown
RPs. Despite the theoretical simplicity and effectiveness of
this approach, indoor environments are inherently dynamic,
which introduces noise into fingerprints, 1.e., RSS fingerprint
measurements are prone to variations caused by factors
such as obstacles, human movement, and environmental
phenomena such as multipath fading effects. Such variations
degrade the performance of static ML models, which struggle
to adapt to continuous changes in the environment, limiting
their accuracy in dynamic scenarios.

Moreover, extending a deployed ML model to localize new
paths (those not included in offline training) or to adapt to
layout changes presents several challenges. The model relies
on pre-stored RSS fingerprints for training, and incorporating
new path data requires: 1) expanding this fingerprint database
to accommodate new RP data, which increases storage
requirements, and 2) retraining the ML model which adds
computational and time overheads. Adapting to the vagaries
of dynamic environments requires continuous updates to the
fingerprint database and ML model, a process that remains an
open challenge for robust and efficient indoor localization.

Continual learning (CL) represents a promising solution
for this problem, offering the capability to update an ML
model dynamically with new data while retaining previously
learned knowledge [10]. Unlike conventional ML models,
which are designed to work with static data distributions,
CL focuses on adapting to dynamic and evolving data distri-
butions. By integrating crowdsourcing into this process, new
indoor localization data can be gathered from mobile users
over time. This data contributes to updating a centralized ML
model, referred to as the global model (GM), which enables
the system to continuously learn and adapt to new RPs or
locations not covered during the initial offline training phase,
significantly enhancing its applicability to evolving paths and
new environments.

CL scenarios are often categorized based on how the
input and output distributions evolve. For instance, some
approaches adapt to changes in input data distributions with-
out expanding the outputs (not introducing new RPs), while
others require the system to handle entirely new outputs,
such as additional RPs [11]. Among these, Class-Incremental
Learning (CIL) is considered the most challenging [12],
as it requires the GM to predict an ever-growing set of
outputs, such as new RPs, without explicitly knowing which
part of the data belongs to previous or new distributions.
Implementing CIL for indoor localization introduces two
major challenges: catastrophic forgetting and data storage
overheads. Catastrophic forgetting arises when continual
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updates to the GM result in the loss of knowledge from
previously learned RPs [13], [14], [17]. As new RPs are
introduced, the GM may become biased towards these new
locations, effectively “forgetting” earlier learned RPs and
causing a decline in localization accuracy. A naive solution
would involve storing data for all previously learned RPs and
periodically retraining the GM on all of this data. However,
this approach is impractical due to the high data storage and
computational costs associated with it.

To illustrate the impact of catastrophic forgetting, we con-
ducted an experiment using a four-layer deep neural network
(DNN) as the GM for Wi-Fi RSS fingerprinting-based
indoor localization in a real building. Initially, the DNN was
trained offline on RSS fingerprints from 30 RPs (0 to 30).
Subsequently, it was updated with data from 10 additional
RPs (31 to 40) crowdsourced from users’ mobile devices.
Fig. 1 presents the results of this experiment. In Fig. 1(a),
the DNN is trained exclusively on the initial 30 RPs
and it performed well when tested on these same RPs,
demonstrating accurate classification. However, the DNN
failed to accurately classify the new RPs, misinterpreting
them as existing classes, as the new RPs were not a part of
the 1nitial training data. In Fig. 1(b), the DNN was retrained
exclusively with data from the 10 new RPs, resulting in
improved classification accuracy only for the new RPs but
a marked decline in performance for the original 30 RPs.
This outcome suggests that the DNN replaced its prior
knowledge of the initial 30 RPs with information about the
newly added 10 RPs, a clear demonstration of catastrophic
forgetting. These results highlight the pressing need for
a method that can effectively integrate new RPs while
preserving knowledge of previously learned RPs, without
retraining the GM on the entire dataset repeatedly.

e Old RP Prediction @ New RP Prediction
41 41
361 51 36 opee 000t0000000000,500 e

g 31 ' & 31 oo
0@ [ 4
< 26 - 5 26 //
&2 &2 e
y o -
T 161 - 16 -
2 s o
f1nn F11 s
6 6 $1id

1 6 11 16 21 26 31 36 41
Actual RPs

-=- Ideal Prediction Line

1 6 11 16 21 26 31 36 41
Actual RPs

(a) (b)
FIGURE 1. lllustration of catastrophic forgetting using a four-layer DNN.
(a) DNN predictions after training on initial 30 RPs (0 to 30). (b) DNN
predictions after retraining exclusively on 10 new RPs (31 to 40).

To address these important challenges, we propose CIELO
(Class-Incremental Learning for Indoor Localization), which
to the best of our knowledge, is the first framework to
introduce CIL for indoor localization. CIELO is designed to
address the unique challenges of this domain, incorporating
an innovative CIL approach to continually update the GM
with new RPs while retaining prior knowledge, with low data
storage overheads. To achieve efficient on-device inference,
CIELO leverages an edge server for periodic model updates
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and storage management, ensuring real-time localization.
Our key contributions in this work are:

« We propose a novel CIL framework that incrementally
learns new RPs while preserving accuracy on previously
learned RPs, enabling the GM to learn new indoor paths.

« We present a novel representation memory management
(RMM) policy to mitigate catastrophic forgetting while
capping data storage requirements.

« We optimized CIELO for resource-limited mobile
devices and low edge server overheads.

« We conduct comprehensive real-world evaluations using
data collected from multiple mobile devices and indoor
environments, benchmarking CIEL.O against state-of-
the-art methods.

Il. RELATED WORK

Wi-Fi fingerprinting-based indoor localization has gained
significant attention, with research conferences like IEEE
IPIN [19] and competitions hosted by companies such as
Microsoft [21], driving innovation and advancing the field.
Traditional ML methods such as KNN [22], HMM [23],
and GPC [24] effectively address RSS fluctuations caused
by factors such as human interference and signal shadow-
ing [25]. Building on these, deep learning frameworks like
DNNLOC [26], CNNLOC [27], and ANVIL [28] leverage
neural networks to improve feature extraction and localiza-
tion accuracy. However, these models are inherently static
and lack the ability to dynamically adapt to environmental
changes. These advancements demonstrate progress but
highlight the need for more adaptive solutions in dynamic
environments,

Federated learning (FL) has emerged as an effective
solution to address the limitations of traditional indoor
localization solutions, by learning to aggregate and adapt to
noisy information contributed by users. Early FL. frameworks
like KRUM [29] employed Multi-Layer Perceptrons (MLPs)
and Euclidean distance-based filtering to enable localization.
FEDLOC [30] improved upon KRUM by adopting a DNN
as the GM and using the popular FedAvg (a technique to
update the GM), enhancing resilience to RSS fluctuations
but also introducing biases from noisy local data updates
from users. FEDHIL [15] further refined this approach
with domain-specific aggregation to reduce the impact of
noisy updates, improving robustness. However, FEDHIL,
like other FL. frameworks, remains limited in its ability to
handle new RPs or classes incrementally. To address this,
CL techniques have been explored across various domains
to enhance FL. by enabling models to learn sequentially.
However, a key challenge of CL is its reliance on full
retraining, which our work aims to overcome in the context of
CIL.

Among the different CL. paradigms, CIL is particularly
relevant for indoor localization, as it requires a GM to
integrate newly mapped RPs into an expanding localization
space. This setting is widely studied in domains like object
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recognition and language modeling, where it is critical for
models to classify new categories without prior knowledge
of task boundaries [13], [14]. A major challenge in CIL is
catastrophic forgetting. To address this, several approaches
have been explored in domains outside of indoor localiza-
tion. Elastic Weight Consolidation (EWC) [16] constrains
updates to GM weights critical for earlier tasks, helping
mitigate forgetting. However, EWC requires computationally
intensive weight importance matrices, making it impractical
for resource-limited devices. Progressive Neural Networks
(PNNs) [31] create new branches for each task, isolating
knowledge and preventing interference, but it results in
significant memory and computational demands. Iearning
Without Forgetting (LwF) [18] preserves outputs from earlier
tasks to enable incremental learning, but its reliance on
consistent task-specific outputs often fails in dynamic and
non-I1ID (non-independent and identically distributed) envi-
ronments, conditions commonly encountered in Wi-Fi RSS
fingerprinting. Other methods, such as Generative Replay
(GR) [32], generate synthetic data to simulate previous tasks,
reducing the need for storing large datasets. However, GR’s
reliance on computationally intensive generative models
makes it challenging for resource-limited devices. Incremen-
tal Classifier and Representation Learning (iCaRL) [20] uses
a similarity-based sample selection approach to retain a small
subset of (representative) data, offering memory efficiency.
But iCaRL struggles to handle evolving data distributions in
dynamic environments.

In summary, the methods EWC [16], PNNs [31], LwF [18],
GR [32], and 1CaRL [20] represent diverse approaches
that attempt to mitigate catastrophic forgetting to some
extent; however, it remains an open challenge, particularly
in dynamic environments where new classes are intro-
duced incrementally. Moreover, these approaches often rely
on significant data storage or computationally intensive
resources, limiting their applicability to indoor localization
systems. To address these challenges, we present CIELO, the
first Class-Incremental Learning (CIL) framework designed
specifically for indoor localization. CIELO integrates CL
principles with resource-efficient strategies, enabling it to
handle evolving environments and new RPs while maintain-
ing robust performance.

IIl. CONTINUAL LEARNING: OVERVIEW

CL enables the GM to adapt to new data, overcoming the
limitations of conventional training methods that assume
simultaneous access to the entire dataset [10], [33]. This
makes it relevant in dynamic environments where data
evolves over time. CL scenarios are typically categorized
into three types [12] based on how mput (x) and output (y)
distributions evolve over time:

1) Domain-Incremental Learning (DIL):

Here for f (x) = y, x evolves but y remains fixed [34],
[35]. The GM adapts to changes in input distributions such as
RSS fluctuations, but as y remains fixed, it does not support
learning new classes.
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2) Task-Incremental Learning (TIL):

Here, f;(x) = 1y, where both x and y evolve, and
the task identity (¢) is provided. This knowledge enables
the GM to apply task-specific adaptations, such as using
separate classifiers or specialized modules for each task [36].
However, the reliance on ¢ limits its applicability in scenarios
where such information is unavailable.

3) Class-Incremental Learning (CIL):

Here for f(x) = {y1, y1, ... yn} both x and y evolve,
but task identity ¢ is not provided. The GM must handle an
expanding output space (e.g£., any number of new RPs) while
retaining its ability to map x to y for previously learned RPs.
This is the most challenging type of CL problem, as the GM
must balance integrating new knowledge while preserving
older one, for arbitrarily large numbers of new RPs [37].

A. CIL IN INDOOR LOCALIZATION

In CIL for indoor localization, a GM designed for the
problem must learn new classes incrementally and expand
its capabilities as new classes become available. Unlike
traditional ML models, which are trained on a fixed number
of classes, CIL systems dynamically update the GM as new
classes are introduced by users. In the context of Wi-Fi RSS
fingerprinting-based indoor localization, adding a new class
corresponds to introducing a new RP to the GM. Each RP is
treated as a unique ““class” in the classification task, and CIL
allows the GM to incorporate these new RPs during the online
phase.

During the oftline phase, the GM 1is initially trained with
RSS fingerprints collected from a predefined set of RPs
(crowdsourced from users initially), denoted as C,;; on an
edge server. This GM is distributed to the user’s mobile
devices to enable them to perform indoor localization. When
new RPs (Cpey) are introduced in the online phase (e.g., after
crowdsourcing them from users traversing new locations), the
GM’s architecture must be updated to include the additional
classes. This requires modifying the output layer of the GM to
accommodate the expanded set of classes. The GM’s output
layer typically uses a softmax function, which converts RSS
values (logits) into probabilities for each class. The logits (Z)
for the C,;; are calculated as shown in (1):

Zotg = Woig * H + Bojg (D

where Z,i; 1S a vector containing the logits for Cpig, Woig 18
the weight matrix of the output (classification) layer, H is
the feature vector produced by the final hidden layer of the
GM summarizing the RSS fingerprint input, and B, is the
bias vector corresponding to the C,;; classes. The softmax
function is then applied to convert Z,j; into probabilities (¥;)
for class i, as shown in (2):

Vo= L) i 2. Gl @

Colg

2. exp(Z)

J=1
When G, 1s introduced, the GM’s output layer must
be expanded to include the additional classes. This involves
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updating the W,z and B,; of the output layer to accommo-
date C,.y, as shown in (3):

Wold, new — [WOZda Wnew]; Bold, new — [BOZda Bnew] (3)

where Wy, and By, are the weight matrix and bias vector of
Crew- Wold, new 18 this updated output layer and the new logits
(Zyew) are computed as shown in (4):

Zpew = Wold,new * H 4 Bold,new 4)

where Z,., now contains logits for both the previously
learned classes and the newly added ones. This process
enables the gm to classify rss fingerprints from both
the original rps and the newly introduced rps, thereby
dynamically expanding its localization classes. However,
simply expanding the gm’s output layer in this manner
introduces challenges, such as catastrophic forgetting.

B. CATASTROPHIC FORGETTING

A significant challenge in CIL, especially in dynamic envi-
ronments like indoor localization, is catastrophic forgetting.
This challenge arises when new RPs are introduced, requiring
the GM to update its representation layers (such as output
layer) to capture the unique signal patterns of these new
RPs. However, without access to historical data, these updates
often overwrite previously learned representations. This leads
to a shift in the GM’s weights, favoring the new RPs at
the expense of carlier ones. As a result, the GM exhibits
bias toward newly added classes (new RPs), while ‘“for-
getting” previously learned classes. This bias compromises
localization accuracy for prior locations, as shown earlier
in Fig. 1. The gradual loss of earlier knowledge as new
classes are introduced further highlights the limitations of
conventional CIL methods [38]. This challenge underscores
the fundamental trade-off between stability and plasticity
in continual learning. Plasticity enables the model to adapt
to new RPs, but excessive plasticity causes forgetting of
past knowledge. Conversely, stability helps retain earlier
knowledge, but excessive stability may hinder the integration
of new RPs. Striking an optimal balance between these two
is crucial for ensuring consistent and accurate localization
performance across all RPs, both old and new. To overcome
this limitation and facilitate seamless learning of new classes,
we propose a new CIL method, which is described next.

IV. CIELO FRAMEWORK

The CIELO framework begins with the oftline phase,
as illustrated in Fig. 2. During this phase, RSS fingerprints
are labeled for various RPs. The collected data is stored in
the edge server as a representation memory (RM), which
initially contains data for C,j; (the original RPs). This Cyy
dataset 1s also used to train the GM during the oftline phase.
Once the GM is trained on Cyy, the trained GM is deployed
on user mobile devices (smartphones), where it is used to
infer a user’s location during the online phase. In the online
phase, when a user encounters a new RP during the online
phase, the system transitions into the CIL phase. At this
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FIGURE 2. Overview of the CIELO framework for class incremental learning in Wi-Fi RSS fingerprinting-based indoor localization.

stage, the user uploads the RSS fingerprints collected at
the new RP (C.y) to the edge server. The edge server
processes this new data by combining it with samples from
the existing RM (Cyyq) to create a balanced training dataset
that includes both old and new RPs (C,ig + Cyew). The GM
18 then retrained on this updated dataset to incorporate the
new RPs. However, directly merging Cyjg + Cyey introduces
several challenges: 1) It increases the risk of catastrophic
forgetting, where the GM loses knowledge of previously
learned RPs as it learns the new ones; 2) As more new RPs
are added, the RM becomes bulky and large, leading to higher
storage requirements and increased GM retraining overheads.
These challenges necessitate a strategic memory management
policy to effectively manage the RM.

CIELO addresses these challenges with a novel represen-
tation memory management (RMM) policy, which operates
via two key processes: Memory Update and Memory Opti-
mization. These processes ensure that the RM retains only
the most diverse and representative data samples, preserving
critical features from previous RPs while minimizing storage
and computational overheads. By doing so, CIELO enables
CIL with minimal data storage (RMM footprint) while
effectively mitigating the catastrophic forgetting challenge,
making it highly suitable for dynamic indoor localization
systems.

A. REPRESENTATION MEMORY MANAGEMENT (RMM)

The RMM policy is a critical component of the CIELO
framework that ensures effective handling of data while mit-
igating the challenges of catastrophic forgetting and storage
overhead. As shown in Fig. 3, RMM operates by evaluating
and managing the RM through two main processes: memory
update and memory optimization. These processes work in
tandem to retain only the most diverse and representative data
samples, enabling the GM to integrate new RPs seamlessly
while preserving knowledge of previously learned ones. The
RMM evaluates RSS fingerprints using two measures—
Confidence Measure and Sensitivity Measure—to determine
the importance of each fingerprint. This evaluation helps
prioritize data samples for retention in the RM, ensuring that
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the memory remains compact while maintaining its relevance
to both previously learned and newly added RPs.

1) MEMORY UPDATE

The memory update process is responsible for selecting
new RSS fingerprint samples for inclusion in the RM.
This selection is based on the importance of the samples,
as determined by the confidence measure and sensitivity
measure metrics, which ensure an optimal balance between
plasticity and stability and operate as follows:

a: CONFIDENCE MEASURE

The confidence measure evaluates how well the GM can
classify a given RSS fingerprint based on its class activations.
For each sample (x), the GM generates class activations
(shown in green in Fig. 3), which represent the probabilities
assigned to each class. The key metric used in this measure is
the confidence score (CS), defined as the difference between
the highest and second-highest class activations. Samples
with low CS are prioritized for inclusion in the RM, as they
indicate uncertainty in classification and are likely to be
critical for improving the GM’s performance. The CS is
computed using (5):

CS(x) = p1(x) — pa(x) ®

where p1(x) and p»(x) are the top two predicted probabilities
for RSS fingerprint sample x. By retaining the least confident
samples, the RM ensures that CIELO focuses on refining its
learning for uncertain RPs, improving its ability to classify
new RPs correctly.

b: SENSITIVITY MEASURE

The sensitivity measure assesses the impact of each sample
(x) on the GM’s parameters (such as weights) by introducing
small perturbations to the GM. This perturbation is calculated
using the Frobenius norm of the weight difference between
the baseline GM weights—before training on new RPs
and the updated GM weights—after training on new RPs.
The Frobenius norm determines the magnitude of the
perturbation, ensuring that larger changes in the GM’s
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weights result in proportionally larger perturbations,
as described in (6):

Woerturbed = W + |[W — WP % N (0, 1) (6)

The perturbed GM is then evaluated to observe changes in
its class activations. Samples that cause significant changes
in the activations are identified as highly sensitive, indicating
their importance for maintaining the GM’s stability and
eeneralization capabilities. In (6), W represents the updated
GM weights after training on new RP, W’ represents the
baseline GM weights before training on new RP, |W — W?|
18 the Frobenius norm of the weight difference, and N (0, 1) is
noise from a standard normal distribution, which introduces
variability to simulate diverse perturbations, ensuring robust-
ness and preventing deterministic bias in sensitivity analysis.
The Frobenius norm ||W — W?||p is computed as:

IW = Wl = \/ZZ (Wi —wray? @)
i

The sensitivity of a sample (x) is evaluated using the
distillation loss, measured as the Kullback-Leibler (KL)
divergence between the GM’s predictions before and after
applying the perturbation, as described in (8):

SS(x) = KL(fear (O fperturvea G (X)) )

The KI. divergence measures how much one probability
distribution diverges from another. In our problem context,
it reflects how sensitive the GM’s predictions are to changes
in the weights caused by the perturbation. A higher KL
divergence indicates that the sample significantly influences
the GM’s predictions, marking it as highly sensitive. Samples
with the highest sensitivity SS(x) are prioritized for inclusion
in the RM because they play a crucial role in preserving
the GM’s stability across both old and new data. High-
sensitivity samples prevent the GM from converging to local
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minima, which optimize for learning new data at the cost of
forgetting patterns learned from old data. Instead, they act as
stabilizers, anchoring the GM closer to the global minima,
where performance is balanced across both old and RPs. This
ensures robust learning, preventing catastrophic forgetting
while integrating new knowledge effectively.

By leveraging confidence and sensitivity scores, CIELO
ensures that the RM is populated with the most critical and
informative samples. Selecting the k least confident samples
ensures that uncertain samples, which can benefit most from
retention, are prioritized, enhancing plasticity by refining the
model’s adaptation to new RPs and addressing data storage
challenges by reducing the need to store all data. At the same
time, selecting the k most sensitive samples helps mitigate
catastrophic forgetting by retaining key samples that stabilize
the GM and maintain its ability to generalize across both old
and new RPs. This dual k£ sample selection strategy optimizes
memory usage while ensuring robust CIL for evolving indoor
localization tasks.

2) MEMORY OPTIMIZATION

The memory optimization process addresses the challenge
with the RM growing excessively large as more RPs are
added. This process ensures that the memory remains
compact and efficient by eliminating redundant or less
informative samples while retaining diversity and represen-
tativeness in the data. CIELO defines a memory budget
(Mp), which specifies the maximum size of the RM. This
budget is critical to ensure efficient memory utilization,
particularly in resource-limited environments. It prevents
excessive memory usage while maintaining enough impactful
samples to support the GM’s generalization across both
old and new RPs. When the memory buffer reaches Mp,
CIELO prioritizes the removal of high-confidence, low-
sensitivity samples per RP, as these are well-learned and
contribute less to further learning. Retaining too many
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high-confidence samples can also lead to overfitting, where
the GM becomes overly specialized to specific instances
and struggles to generalize to new or unseen data. However,
to avoid catastrophic forgetting, CIELLO guarantees that
at least one sample per RP is retained, even if it is a
high-confidence sample. This safeguard ensures that no
RP is completely removed, preserving the GM’s ability to
generalize across all RPs. By periodically pruning less critical
samples while adhering to M, CIELO balances memory
efficiency and generalization, supporting robust CIL without
exceeding storage constraints.

V. EXPERIMENTAL RESULTS

A. EXPERIMENTAL SETUP

To evaluate the proposed CIELO framework, experiments
were conducted in two buildings with distinct layouts:
Building 1, containing 60 RPs and up to 193 visible APs,
and Building 2, containing 90 RPs and up to 78 visible APs.
Each RP was spaced at a 1-meter interval to ensure adequate
eranularity for precise indoor localization. RSS values were
standardized to a range between O dBm (strongest signal) and
-100 dBm (weakest signal), maintaining consistency across
varying signal strengths.

Testing was performed using two mobile devices carried
by users: HTC Ul1 and Samsung Galaxy S7. Self-device
testing involved training and testing using data collected from
the same device, while cross-device testing assessed the GM
generalizability by training on data from one device and
testing on the data from another device. During the oftline
phase, the initial GM was trained using data from 30% of
the RPs in each building. The remaining 70% of RPs were
incrementally introduced during the CIL phase. At each RP,
six RSS fingerprints were collected for training and one RSS
fingerprint was reserved for testing.

The performance of CIELO was assessed using the
Euclidean distance (ED) method as defined in (9):

ED= \/(Xpred - X)true)2 + (Ypred - Y[rue)z + (Zpred - Z[rue)2
€)

ED is used to measure the distance between pre-
dicted location (Xpreq , Ypred » Zprea) and ground-truth location
Xirues Yiruer Zirue), offering a direct and interpretable metric
for evaluating localization accuracy, where smaller distance
values indicate better performance. It serves as a reliable
measure to assess and compare CIELO’s performance across
different scenarios.

The GM used in CIELO is a Multi-layer Perceptron (MLP)
with RelLU activations in each layer. We explored CIL for
indoor localization across two separate scenarios in two
different buildings. For Building 1, the GM consists of two
hidden layers: the first hidden layer has 144 neurons, and the
second hidden layer has 67 neurons. For Building 2, the first
hidden layer has 58 neurons, and the second hidden layer has
27 neurons. The number of output layer neurons varies as
a function of the changing number of RPs to be predicted
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over time. The GM resulted in a maximum of 77,541
total parameters for Building 1 and a maximum of 14,801
parameters for Building 2. These MLP architectures were
empirically designed to balance complexity and deployment
feasibility, incorporating insights from state-of-the-art indoor
localization methods. Offline training employed the Adam
optimizer with a 0.01 learning rate using sparse categorical
cross-entropy loss, while incremental retraining employed a
learning rate of 0.1.

B. SENSITIVITY ANALYSIS: DETERMINING SAMPLE
SELECTION SIZE (k)

In our CIL framework, selecting the number of samples per
class (k) to preserve in the RM is crucial for balancing
memory usage and localization performance. To determine
the optimal k, we experimented with saving 0 to 6 samples per
class in the RM and analyzed localization accuracy. As shown
in Fig. 4, increasing k reduces localization error by providing
the GM with a broader representation of signal variations,
enhancing generalization. However, improvements diminish
beyond £ = 4. Retaining 5 or 6 samples slightly
improves accuracy but requires higher memory overheads.
Choosing £ = 4 strikes a balance between memory usage
and performance, offering significant accuracy gains while
keeping memory manageable. Beyond £k = 4, additional
samples yield marginal accuracy improvements that do not
justify the increased resource usage. For instance, Building
1 benefits slightly from £ = 5 or k = 6, but the trade-off
makes £ = 4 more practical.

o I Building 1
S 4.0 Building 2
® g 3.5 i
N9 30
8= 25
o .£
S=20

=
o015
SE 10 "E:
sw ol T

0.5 . T
c3 s = = - A
0 1 2 3 4 5 6

Number of Samples Saved per Class

FIGURE 4. Mean localization error with increasing number of samples per
class.

C. SENSITIVITY ANALYSIS: DETERMINING MEMORY
BUDGET (M)

The memory buffer size (Mp) directly impacts the trade-off
between memory storage in RM and GM performance in CIL.
To evaluate its impact, we conducted experiments with My,
allocations set to 0%, 25%, 50%, 75%, and 100% of the total
memory required to store all samples for a given floor plan,
analyzing their effect on mean localization error across the
two buildings and testing devices.

As shown in Fig. 5, increasing M), improves accuracy,
with the highest error at 0% due to the absence of
representative data for earlier RPs. In Building 1, mean
error drops significantly at 25% allocation, with diminishing
returns beyond this point. This reflects CIELO’S memory
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optimization strategy, where retaining only the most impact-
ful and diverse samples enhances performance. In Building 2,
a more gradual improvement in error reduction suggests that
the environment may require a larger memory allocation to
adequately represent the signal diversity. However, increasing
Myp beyond a certain point risks redundancy and inefficiency.
At 100% allocation for instance, the error is slightly
higher compared to 25%-75% due to overfitting caused by
retaining redundant high-confidence, low-sensitivity samples
that do not contribute meaningfully to generalization. These
redundant samples can cause the GM to become overly
specialized, reducing its ability to generalize to new or
unseen data. This issue is more evident in Building 2, which
undergoes more retraining cycles due to its larger number of
RPs. Allocating 25% of memory, paired with 4 samples per
class, strikes a balance by preventing overfitting, optimizing
RM use with 75% reduction in data storage, and maintaining
high localization accuracy.

g - gg I = Building 1
n o.
-1 ‘ﬂ-) 5.0 Building 2
ﬁ = 4.5
=24.0
T = 3.5
830
-~ 2.5
c = 2.0
o
] 1.5
(1] t 1.0 I I I I
=%os
0% 25% 50% 75% 100%

% of Memory Buffer Size Allocated for Storing Samples

FIGURE 5. Mean localization error with increasing My,

D. COMPARISON WITH STATE-OF-THE-ART

To evaluate CIELO’s performance against state-of-the-art
CIL and indoor localization frameworks, we conducted a
comparative study involving Elastic Weight Consolidation
(EWC) [16], Incremental Classifier and Representation
Learning (iCaRL) [20], and Learning Without Forgetting
(LwF) [18], which represent diverse state-of-the-art CIL
strategies from prior work. For fair comparison, all baselines
were initialized with the same GM, ensuring identical starting
knowledge and eliminating biases from initialization, model
capacity, or pre-training. Thus, performance differences stem
solely from the CIL strategies used. We also compared
FEDHIL [15], which supported distributed and crowdsourced
learning for indoor localization. The results of this study
are shown in Fig. 6 (for Building 1) and Fig. 7 (for
Building 2). The experiments were performed across the two
buildings on paths with different layouts, using Samsung
Galaxy S7 and HTC U11 devices to assess both self and
cross-device testing. Mean localization error was measured
as a function of the cumulative number of RPs learned
by the GM to determine forgetting rate, with new RPs
mtroduced in increments of 5. Across all configurations in
Building 1 and Building 2, for self-device and cross-device
testing, CIELO consistently outperformed other frameworks,
achieving lower mean localization errors as more RPs were
learned. CIELO’s RMM policy allows dynamic sample
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selection based on confidence and sensitivity, enabling it
to integrate new RPs effectively while retaining accuracy,
demonstrating strong resilience to catastrophic forgetting.
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FIGURE 6. Comparison of mean localization errors across different
state-of-the-art frameworks under both self and cross-device testing for
Building 1.

In Building 1, as shown in Fig. 6, with self-device testing
(87), CIELO maintained significantly lower localization
errors compared to other methods, which showed a larger
increase in error as new RPs were learned. In cross-device
testing (training on S7, testing on HTC), CIELO exhibited
strong generalization, maintaining consistent accuracy on a
different device. In contrast, EWC [16], iCaRL [20], and
LwF [18] struggled with higher errors, indicating challenges
with non-IID data and incremental adaptation.
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FIGURE 7. Comparison of mean localization error across different
state-of-the-art frameworks under both self and cross-device testing for
Building 2.
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In Building 2, as shown in Fig. 7, with its higher number
of RPs, CIELO’s advantage persisted, as it maintained a
steady, low-error trajectory while other frameworks displayed
progressively higher mean localization errors. These results
highlight CIELO’s robust RMM policy, making it an
effective solution for real-world indoor localization tasks with
class-incremental learning requirements.

The results from Fig. 6 and 7 are more concisely
summarized in Fig. 8. CIELO achieved a mean localization
error of (.32 meters and a worst-case error of 0.4 meters,
representing up to 29.4x improvement over state-of-the-
art methods. In comparison, 1CaRL., the next best method,
showed a mean error of .77 meters, while EWC [16], LwF

SF 10
2o
8%
W= 10°-
5L
-
ch _

© 1071
8L
E w

102 + t } - :
CIELO ICARL EWC LWF FEDHIL
[20] [16] [18] [15]

FIGURE 8. Comparison of CIELO against the state-of-the-art.

[18], and FEDHIL [15] demonstrated mean errors up to
9.75 meters and worst-case errors as high as 12.54 meters.
The poor performance of these baselines can be attributed
to their inherent limitations. EWC’s rigid weight constraints
restrict adaptation to new RPs, while 1CaRI’s similarity-
based sample retention fails to capture the diversity needed
for generalization. LwF struggles with inconsistent task
outputs in non-IID environments, as it uses TIL-based
training, and FEDHIL lacks an efficient mechanism for
incremental learning. CIELO’s ability to mitigate these chal-
lenges through strategic RM optimization and prioritization
of impactful samples establishes it as a robust and efficient
solution for CIL in dynamic indoor environments.

E. IMPACT OF NEW CLASS INCREMENT SIZE ON
PERFORMANCE

To assess adaptability to varying class increments and
retraining efficiency, we evaluated mean localization error
and retraining loss for increments of 2, 5, and 10 new
RPs, again comparing CIELO with the frameworks from
iCaRL [20], LwF [18], EWC [16], and FEDHIL [15]. The
results are shown in Fig. 9. Across all methods, larger class
increments (5 and 10 RPs) resulted in lower localization
errors compared to smaller increments (2 RPs). This trend
reflects the advantage of fewer retraining cycles with larger
increments, which reduce disruptions to previously learned
representations and mitigate catastrophic forgetting. CIEL.O
consistently achieved the lowest errors, leveraging memory
optimization and sensitivity-based sample selection to retain
critical data and maintain generalization. In contrast, baseline
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methods struggled due to their inability to efficiently adapt
to frequent updates and incremental learning in non-1ID
settings, resulting in higher localization errors.

s CIELO
mEE ICARL [20]
s LWF [18]

EWC [16]
s FEDHIL [15]

HHEEERRR

Mean Localization Error
(in Meters)
SrWhMNLONWNINNW
ouowounounououon

2 5 10
Number of New Classes in Model Retraining

FIGURE 9. Mean localization error with varying number of new classes
(RPs) introduced through retraining.

Fig. 10 shows the average retraining loss across all
buildings and testing devices for the three scenarios explored
in Fig. 9. CIELO demonstrated faster convergence and lower
retraining losses by prioritizing impactful samples, effec-
tively mitigating catastrophic forgetting and outperforming
other frameworks.

F. EVALUATION OF COMPUTATIONAL COST ON EDGE
SERVER
Lastly, the computational cost of each framework was
evaluated in terms of average %CPU usage, average power
consumption and average training latency during continual
retraining on an edge server that is equipped with an AMD
Ryzen 7 5800HS processor. Fig. 11 shows the results for
the retraining across the scenarios depicted in Fig. 6 and 7,
averaged over the two buildings considered. Also shown for
reference is the mean localization error for each framework.
It can be observed that CIELO achieves the best balance,
with a low mean localization error of 0.32 meters and efficient
resource usage (24.92% CPU, 18.72W, 8.82s). In contrast,
EWC [16] and FEDHIL [15] exhibited high CPU usage
(over 54%) and power consumption (~29W). EWC’s fixed
weight constraints require frequent computations to preserve
prior knowledge, increasing overhead, while FEDHIL's GM
aggregation technique involves extensive updates, making
it resource intensive. iCaRL [20], with moderate resource
usage, benefits from its selective replay mechanism but
still incurs costs due to replay computations. LwF [18],
while resource-efficient (17.56W, 21.6% CPU, 22.64s),
uses task-output preservation, requiring fewer computations
but sacrificing accuracy due to disruptions in dynamic
environments. CIELO’s slight increase in overhead compared
to 1CaRL [20] and LwF [18] stems from its RMM, which
incorporates both confidence and sensitivity measures. This
approach carefully selects and adapts key information, rather
than relying solely on past data, as in 1CaRL, or direct
task-output alignment, as in LwF. These results highlight
CIELO’s ability to reduce edge server resource utilization
while maintaining high localization performance, making it
suitable for resource-limited and evolving indoor scenarios.
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VI. CONCLUSION
In this paper, we introduced CIELO, a novel Class-
Incremental Learning (CIL) framework tailored for Wi-Fi
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RSS-based indoor localization. CIELO is designed to address
the challenges of learning new indoor areas efficiently while
mitigating catastrophic forgetting and reducing data storage
overhead. To the best of our knowledge, CIELO is the
first framework designed to support continual learning and
CIL for indoor localization. By leveraging crowdsourced
data and implementing a novel representation memory
management (RMM) policy, CIELO seamlessly integrates
new indoor locations while retaining knowledge of previously
learned locations. Experimental results highlight CIELO’s
effectiveness, demonstrating up to 29.4x improvement in
localization accuracy (while learning new classes), up to
1.75x reduction in data storage requirements, and up to
1.69x lower device power consumption compared to state-
of-the-art approaches.
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