

Redox Properties of Structural Fe in Clay Minerals: 4. Reinterpreting Redox Curves by accounting for Electron Transfer and Structural Rearrangement Kinetics

Vineeth Pothanamkandathil^a, Anke Neumann^b, Aaron Thompson^c and Christopher A. Gorski^{a,*}

^a Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA

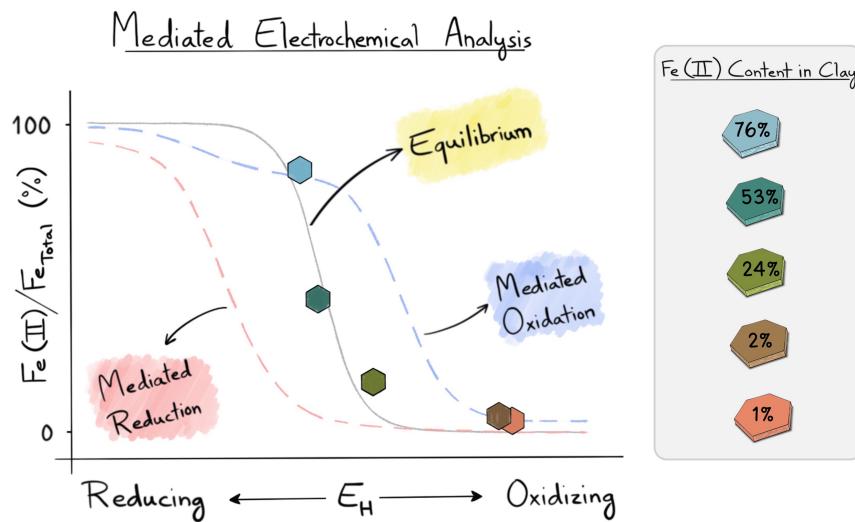
^b Paul Scherrer Institut, 5232 Villigen, Switzerland

^c Department of Crop and Soil Sciences, The University of Georgia, Athens, GA 30602, USA

*Corresponding author: Email: gorski@psu.edu; Tel: +1 814-865-5673

1 **KEYWORDS:** Iron, Smectites, Redox-potential, Kinetics, Equilibrium, Electrochemistry,
2 Hysteresis.

3 ABSTRACT


4 Iron-bearing smectite clay minerals can act as electron sources and sinks in the environment.
5 Previous studies using mediated electrochemical analyses to determine the reduction potential
6 (E_H) values of smectites observed that the relationship between the structural $Fe^{2+}_{(s)}/Fe_{Total}$ ratio in
7 the smectite and E_H varied based on the redox history of the smectite. We hypothesize that this
8 behavior, referred to as redox hysteresis, results from the smectite particles not equilibrating with
9 the applied E_H over the course of the experiment (~30 minutes). To test this hypothesis, we
10 developed a model incorporating interfacial electron transfer kinetics and charge redistribution
11 within the particle to simulate the mediated electrochemical experiments from previous studies.
12 The simulated redox curves accurately matched the previously reported experimental redox

13 curves of the smectite SWa-1, demonstrating that longer equilibration periods led to a decrease
14 in redox hysteresis. We validated this experimentally by measuring the redox curve of SWa-1
15 after an equilibration period of at least 12 hours. Furthermore, we extended the simulations to
16 three other smectites (NAu-1, NAu-2, and SWy-2) and extracted their respective thermodynamic
17 and kinetic parameters. This work offers a framework for interpreting and modeling redox
18 reactions on clay surfaces, along with key parameters for four commonly studied smectites.

19 SHORT SYNOPSIS STATEMENT

20 This study provides a mechanistic model for interpreting and modeling redox reactions
21 involving smectite clay minerals.

Graphic for Manuscript

22 INTRODUCTION

23 Iron-bearing clay minerals can serve as electron donors/acceptors in the environment, with
24 structural iron participating in redox reactions with microorganisms, nutrients, and
25 environmental contaminants.¹⁻¹³ Smectite-type clay minerals have received particular attention in
26 the scientific literature because most or all of their structural iron is capable of being reduced and
27 oxidized under environmentally relevant conditions.^{4-7, 14-20} In smectites, the structural iron is
28 largely preserved due to the silicate tetrahedral sheets sandwiching the Fe-bearing octahedral
29 sheet and the mineral compensating for changes in charge via reversible uptake of cations and/or
30 protons:

31 in which Cat^+ is a generic cation and the electron comes from an external donor and $x + y = 1$. Prior
32 efforts have established that the rates and extents of redox reactions involving structural Fe in
33 smectites depend on the structural $\text{Fe}^{2+}_{(s)}/\text{Fe}_{\text{Total}}$ ratio, which controls both the reduction potential
34 (E_H) of the mineral and the number of reactive sites.^{3-7, 14, 15, 17, 18, 21-28} However, attempts to quantify
35 E_H values of structural Fe in smectites have faced challenges.

36 Prior work by our group used mediated electrochemical experiments to determine the
37 relationships between the $\text{Fe}^{2+}_{(s)}/\text{Fe}_{\text{Total}}$ ratio and E_H for four purified naturally-occurring smectites
38 (SWy-2, SWa-1, NAu-1, and NAu-2).^{14, 21, 22} In the mediated electrochemical experiments, soluble
39 redox shuttles were used to facilitate electron transfer between smectite particles suspended in
40 an electrolyte and a working electrode.^{14, 21, 22, 28-30} In one set of experiments, a known amount of a
41 smectite that was initially fully oxidized ($\text{Fe}^{2+}_{(s)}/\text{Fe}_{\text{Total}} \approx 0$) was spiked into a solution poised at an

42 E_H value, and the extent of reduction was quantified by integrating the resulting current response
43 in a method referred to as mediated electrochemical reduction (MER). In a second set of
44 experiments, a known amount of reduced sample was oxidized to different extents in a method
45 referred to as mediated electrochemical oxidation (MEO).^{14, 21, 22} The final $Fe^{2+}_{(s)}/Fe_{Total}$ values were
46 then plotted against the applied E_H values to produce redox profiles for the smectites.^{21, 22}

47 A critical finding from our prior work was that the measured redox curves exhibited two
48 types of hysteresis (i.e., the $Fe^{2+}_{(s)}/Fe_{Total}$ ratio to E_H relationships differed depending on the history
49 of the smectite).^{21, 22} Specifically, the redox curve obtained from the mediated electrochemical
50 experiments differed depending on whether the smectite was initially (i) unaltered, (ii) reduced
51 using dithionite, or (iii) re-oxidized after dithionite reduction.^{21, 22} The first type was only observed
52 between the redox curve of a “native” (i.e., unaltered) smectite and a “re-oxidized” smectite (i.e.,
53 reduced using sodium dithionite and subsequently re-oxidized using hydrogen peroxide).^{21, 22}
54 The difference in the redox curves was relatively small and was attributed to the irreversible
55 changes that occur during dithionite reduction of smectites.^{13, 21, 22} The second—more significant—
56 type of hysteresis appeared when comparing the initially reduced and re-oxidized smectites.^{21, 22}
57 Specifically, the redox curves of the reduced and re-oxidized smectite differed considerably.^{21, 22}
58 This second type of hysteresis was reproducible over multiple redox cycles and was speculated
59 to be due to the formation of metastable Fe states on the clay surface.^{21, 22} A consequence of the
60 observed hysteresis was that we could not identify a singular standard reduction potential (E_H^0)
61 value for a given smectite.^{21, 22}

62 We now suspect that the observed redox hysteresis was due to the system not reaching
63 equilibrium over the experimental time scale. Evidence for this suspicion comes from studies
64 performed on other intercalating materials (e.g., Prussian blue analogs, LiMnO_2 , and LiFePO_4)
65 often used for energy storage and electrochemical ion separation.³¹⁻⁴² Here, intercalation refers to
66 the reversible insertion of a cation into the particle without an overt change to the crystal
67 structure. The charge transfer process for intercalation materials involves (at least) two steps: (1)
68 reduction of a structural redox-active site accompanied by cation or proton uptake at the mineral-
69 electrolyte interface and (2) cation or proton diffusion from the surface of the mineral into its bulk
70 structure to dissipate the concentration gradient created by step 1.^{32-34, 43-45} If an experiment
71 performed on an intercalating material is short relative to the time it takes for these processes to
72 reach an equilibrium state, the collected data appears irreversible.⁴⁴⁻⁴⁸ The mediated
73 electrochemical experiments performed on the smectites occurred over 30 minutes, but other
74 experiments done with probe compounds suggest the time needed to reach equilibrium may be
75 several days.^{4, 6, 7, 21, 22, 49} Recent experiments have also suggested temporary $\text{Fe}^{2+}_{(s)}/\text{Fe}_{\text{Total}}$ gradients
76 within a smectite crystal lattice after a surface redox reaction and indicated that the dissipation of
77 the concentration gradient may take multiple days.^{50, 51}

78 The central hypothesis of this paper was that the existing electrochemical data for
79 smectites could be reproduced with a mechanistically appropriate model that captures interfacial
80 electron transfer kinetics and charge dissipation within the crystal structure to quantify
81 thermodynamic and kinetic properties of the smectites. To test this, we developed a model that
82 described the reaction between the redox mediator and the smectite particle during a mediated
83 electrochemical reaction. In this model, the rate of charge transfer between the mediator and the

84 edge of the smectite particle was determined as a function of the E_H value and the Nernst-
85 Frumkin equation.^{33, 34, 52, 53} We focused on the edge sites, as previous studies demonstrated that
86 charge transfer predominantly occurs at edges at pH values ≥ 7 .^{18, 54} The subsequent migration of
87 charged species from the edge into the bulk of the smectite particle was modeled as a one-
88 dimensional diffusion process. The diffusive transport affected the rate at which the E_H value of
89 the clay surface changed over time.^{34, 53, 55} We used a one-dimensional approach because it
90 captured the dissipation of the $\text{Fe}^{2+}_{(s)}/\text{Fe}_{\text{Total}}$ gradient within the smectite particle effectively, while
91 avoiding the additional computational demands of a higher-dimensional model. Note that a more
92 complex, multidimensional model would be needed to accurately describe charge transfer
93 between surface basal sites and structural iron atoms. Using the model, we fit the redox profiles
94 collected by Gorski et al. (2013) to determine the E_H^0 value of four naturally occurring smectites
95 (SWy-2, SWa-1, NAu-1, and NAu-2).²² These four smectites were selected in our previous studies
96 due to the thorough documentation of their physical and chemical properties and their
97 commercial availability from the Clay Minerals Society.^{14, 21, 22} To further validate our hypothesis
98 that redox hysteresis is a manifestation of apparent irreversibility, we also performed mediated
99 potentiometry on SWa-1 suspensions with different $\text{Fe}^{2+}_{(s)}/\text{Fe}_{\text{Total}}$ ratios. These suspensions were
100 allowed to react with redox mediators overnight to determine if the redox curve generated from
101 the measured E_H values fell within the redox curves previously collected by Gorski et al.^{21, 22}

102 MATERIALS AND METHODS

103 All solutions were prepared by mixing reagents in deionized water ($>18.2 \text{ M}\Omega\cdot\text{cm}$).

104 Anoxic conditions.

105 SWa-1 reduction and re-oxidation as well as mediated open-circuit measurements were
106 conducted under anoxic conditions (<0.1 ppm O₂) in a glovebox (Unilab 2010, Mbraun GmbH,
107 Germany) containing a N₂ atmosphere. All Solutions were sparged with ultra-high purity N₂ for
108 one hour before being transferred into the glovebox. Plastic syringes, pipette tips, and glassware
109 were evacuated overnight in the transfer chamber and equilibrated in the glovebox for several
110 days before use.

111 **SWa-1 reduction and re-oxidation experiments.**

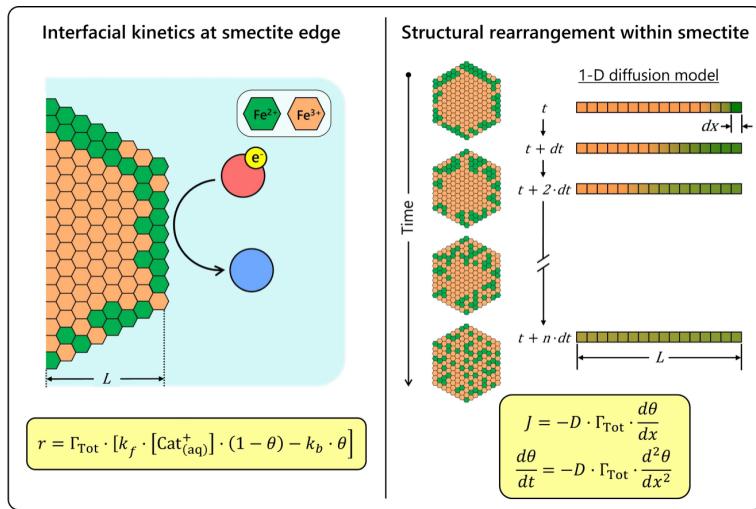
112 Ferruginous smectite (SWa-1, 12.6 % wt. Fe) was obtained from the Source Clay Minerals
113 Repository (Purdue University, West Lafayette, IN). A SWa-1 clay suspension (10 g·L⁻¹) with clay
114 particles ≤ 0.5 μm in 0.1 M NaClO₄ was used for the reduction experiment. Detailed description
115 on the preparation of the clay suspension was provided in our previous work.¹⁴

116 SWa-1 was reduced using the citrate-buffered dithionite method.¹³ Briefly, 25 mL of the
117 SWa-1 suspension was transferred to a glass bottle to which 50 mL of deionized water was added.
118 This bottle was sparged with humidified ultra-high purity N₂ for an hour and transferred to the
119 glovebox. To this bottle, 23.4 mL of 1 M NaHCO₃ (Fischer Chemical, 99.7%) and 1.6 mL of 0.3 M
120 Na₃-citrate (EMD Chemicals Inc., 99%) were added. The suspension was stirred and heated to 70
121 °C, at which point sodium dithionite (Milapore Sigma Sigma-Aldrich, > 99%) was slowly added.
122 The mass of sodium dithionite added was five times the mass of SWa-1 in suspension. The
123 suspension was stirred vigorously at 70 °C overnight. The reduced SWa-1 suspension was
124 transferred to a pre-washed and dried dialysis tube (molecular weight cutoff = 12– 14 kDa) and
125 immersed in a 1 L solution of 0.1 M NaClO₄ (Fischer Sci, > 99%). The suspension was equilibrated

126 for 8 hours, after which the solution was replaced with fresh 0.1 M NaClO₄. This process was
127 repeated four times. The suspension, with a final clay mineral concentration of ~2.5 g·L⁻¹, was
128 transferred to a glass bottle.

129 A previous study by our group demonstrated that nearly all the Fe atoms (>99%) in SWa-
130 1 occupied octahedral sites and were redox-active, with an electron storage capacity of 2.20
131 mmol·g_{SWa-1}⁻¹.¹⁴ The approximate oxidant dose required to fully oxidize the dithionite-treated
132 SWa-1 was calculated based on these values (**Section S1**). For the re-oxidation experiments, the
133 reduced clay suspension was divided equally into five glass vials (20 mL suspension per vial).
134 One vial was set apart as the “reduced” sample. Different volumes (30, 70, 110 and 140 µL) of 1.0
135 M H₂O₂ were added to each of the other four vials to re-oxidize the SWa-1 suspensions. A detailed
136 account of the re-oxidation process is provided in **Section S1**. A portion (11 mL) of the clay
137 suspension from each of the five vials was set aside for transmission ⁵⁷Fe Mössbauer spectroscopy
138 analysis of the SWa-1 clay. Sample preparation and methodology for Mössbauer spectroscopy
139 analysis is provided in **Section S2**. The remaining clay suspension (9 mL) was used for mediated
140 open-circuit potential measurements.

141 **Mediated potentiometry experiments.**


142 A protocol previously used by our group to determine the standard reduction potential of
143 hematite and goethite was modified to measure the *E_H* value of SWa-1 using mediated
144 potentiometry.²⁵ Briefly, The background electrolyte used in the mediated potentiometry
145 experiments was 0.1 M NaClO₄ buffered to pH 7.0 using 50 mM MOPS free acid (3-(N-
146 morpholino)propanesulfonic acid, EMD Chemicals Inc., 99%) and sodium hydroxide. To 25 mL

147 of background electrolyte, 400 μ L of SWa-1 clay suspension ($\sim 2.5 \text{ g}\cdot\text{L}^{-1}$) and 50 μ L of 10 mM redox
148 mediator was added and allowed to react overnight (12-24 hours). The mediators used in this
149 study were selected based on past work, ensuring that their standard reduction potentials at pH
150 7 spanned E_{H} values ranging between -0.14 and $+0.43$ V vs. SHE.^{21,22,56} A table of redox mediators
151 used along with their reduction potentials at pH 7 are provided in **Table S2**. After equilibration,
152 the E_{H} value of the suspension was measured using a combined Pt-ring electrode (0.209 V vs.
153 SHE, Metrohm, part 6.0451.100) for one hour. The Pt-ring electrode was calibrated using
154 quinhydrone redox couple and the open-circuit potential measurements were logged using tiamo
155 2.3 (Metrohm). The Pt-ring electrode was immersed in 3 M KCl for at least three hours between
156 consecutive E_{H} measurement experiments to minimize potential drift.²⁵

157 Note that three different volumes (12.5, 25 and 50 μ L) of the 10 mM redox mediator
158 solution were tested when performing the mediated potentiometry experiments to ensure that
159 specific adsorption of the mediator to the smectite did not influence the measured E_{H} value of the
160 SWa-1 suspension.²² No significant difference was found in the measured E_{H} values (i.e., within
161 25 mV of each other) across the three tested volumes.

162 THEORY AND MODEL DESCRIPTION

163 A redox reaction at a solid-water interface involves several steps: (i) diffusion of the redox-active
164 compound to the solid surface, (ii) adsorption of the redox-active compound, (iii) electron transfer
165 and possibly chemical reactions involving the adsorbed species, (iv) desorption of the product(s),
166 and (v) diffusion of the product(s) to the bulk solution.^{4,6,26,57} The slowest step(s) in this sequence
167 generally controls the overall reaction rate. For some redox-active minerals, the rate at which

Figure 1. Schematic representation of the interfacial reaction occurring at the edge site of a smectite particle during a mediated reduction experiment and the generation of a chemical potential gradient between the surface and bulk due to differences in the $\text{Fe}^{2+}_{\text{(s)}}/\text{Fe}_{\text{Total}}$ ratio.

168 redox-active surface sites are regenerated can also be sufficiently slow to affect the overall
 169 reaction rate. This slow regeneration may occur if species must diffuse through the crystal lattice
 170 or if structural rearrangements are needed within the crystal structure to maintain local charge
 171 balances.^{43, 50, 51} Here, we present a model framework to describe the kinetics of redox reactions at
 172 the edge site of a smectite particle when the aqueous diffusion and adsorption of the redox-active
 173 compound and its product(s) are sufficiently fast that the reaction rate is predominantly
 174 controlled by the electron transfer step(s) at the smectite-water interface and the rate at which
 175 redox-active surface sites are regenerated via diffusion within the solid. The following
 176 subsections describe the frameworks used to determine (i) the E_{H} value of Fe at or near the
 177 surface, (ii) the kinetics of electron transfer at the interface, and (iii) the rate at which the Fe sites
 178 are regenerated at the smectite surface for subsequent reactions.

179 **Determining the E_{H} value of Fe at the smectite-water interface.**

180 The reduction and oxidation of the Fe in smectites can be described using the simplistic half-
181 reaction in **eq. 1**.^{16, 18, 27} In this half-reaction, structural $\text{Fe}_{(\text{s})}^{3+}$ is reversibly reduced to $\text{Fe}_{(\text{s})}^{2+}$ by
182 accepting an electron from an electron donor. The change in charge is compensated by the uptake
183 of a monovalent cation, Cat^+ (e.g., Li^+ , Na^+ , or K^+), or a proton into the interlayer.^{16, 18, 27} Previous
184 work found that charge compensation in the interlayer occurs primarily by the uptake of cations,
185 not protons, at circumneutral pH values.^{58, 59} For the data analyzed in the present study, we could
186 not differentiate between cation and proton uptake because sodium uptake was not measured
187 and a pH buffer was present in solution. Consequently, the model assumes that charge
188 compensation occurs exclusively through cation (i.e., Na^+) uptake and release. This assumption
189 does not influence the model output, as both the aqueous Na^+ and H^+ concentrations in the
190 solution remained constant under the experimental conditions that were simulated.

191 Equilibrium reduction potential values of half reactions are typically determined using
192 the Nernst equation, which is a function of the standard reduction potential (E_{H}^0) and the activities
193 of the species.⁶⁰ The Nernst equation, however, is only applicable for sufficiently dilute solutions
194 and pure solid phases.^{31, 60, 61} In highly concentrated systems, including solid phases with
195 compositions that vary as a function of redox state, interactions between charged species (e.g.,
196 $\text{Fe}_{(\text{s})}^{2+}$, $\text{Fe}_{(\text{s})}^{3+}$, and $\text{Cat}_{(\text{s})}^+$) in close proximity to one another must be taken in account.^{18, 61, 62} The
197 Nernst-Frumkin isotherm, also referred to as Frumkin intercalation isotherm, accounts for these
198 interactions when determining the equilibrium reduction potential ($E_{\text{H},\theta,\text{eq}}$) of a solid:^{31, 34, 53, 60-62}

$$E_{\text{H},\theta,\text{eq}} = E_{\text{H}}^0 - \frac{RT}{nF} \ln \left[\frac{\theta}{1-\theta} \right] + \frac{RT}{nF} \ln \{ \text{Cat}_{(\text{aq})}^+ \} + \frac{RT}{F} g(0.5 - \theta) \quad (2)$$

199 where E_H^0 is the standard reduction potential (at $\text{Fe}^{2+}_{(s)}/\text{Fe}_{\text{Total}} = 0.5$) of the smectite (assumed to be
200 at pH 7.5 in this work because that is the pH value used to make previous measurements), R is
201 the ideal gas constant ($8.314 \text{ J}\cdot\text{K}^{-1}\cdot\text{mol}^{-1}$), T (K) is temperature, F is Faraday's constant (96,485
202 $\text{C}\cdot\text{mol}^{-1}$), and n is the number of electrons participating in the half reaction ($n = 1$ for **eq. 1**). The
203 variable θ represents the $\text{Fe}^{2+}_{(s)}/\text{Fe}_{\text{Total}}$ ratio at the smectite surface, and $\{\text{Cat}_{(\text{aq})}^+\}$ is the activity of
204 the monovalent cation in the electrolyte. The dimensionless interaction parameter, g ,
205 conventionally has been used to describe the interaction between adjacent reactive sites in an
206 intercalation material, where $g < 0$ indicates favorable interactions, and $g > 0$ indicates
207 unfavorable interactions.^{34, 52} The g term reflects the impact of non-ideal charge interactions on
208 the $E_{H,\theta,\text{eq}}$ value (and ΔG_{rxn}) for the half-reaction in **eq. 1**, due to changes in the $\text{Fe}^{2+}_{(s)}/\text{Fe}_{\text{Total}}$ ratio
209 at the smectite surface. Additionally, past studies have shown that Fe atoms in smectites occupy
210 different coordination environments, leading to a distribution of reduction potentials for
211 structural $\text{Fe}^{2+/3+}$ redox couple.^{18, 21, 22} This distribution broadens the potential window over which
212 the smectite remains redox active,^{21, 22} and, the g term can be used to describe this behavior in the
213 context of smectites.

214 **Kinetics of interfacial electron transfer.**

215 The electron transfer reaction between the redox-active compound and Fe atoms at the edge of
216 the smectite particle is depicted in **Figure 1** and the rate of this reaction described by the following
217 rate expression:

$$r = \Gamma_{\text{Tot}} \cdot [k_f \cdot [\text{Cat}_{(\text{aq})}^+] \cdot (1 - \theta) - k_b \cdot \theta] \quad (3)$$

218 where r (mol·cm⁻²·s⁻¹) is a surface-normalized reaction rate, k_f (cm⁴·mol⁻¹·s⁻¹) is the forward
 219 (reduction) reaction rate constant, k_b (cm·s⁻¹) is the backward (oxidation) reaction rate constant,
 220 and $[\text{Cat}_{(\text{aq})}^+]$ (mol·cm⁻³) is the cation concentration in the electrolyte. The term Γ_{Tot} is the
 221 concentration of surface Fe sites (mol·cm⁻³), and it is defined as:

$$\Gamma_{\text{Tot}} = \text{SSA} \cdot \text{SL} \cdot \text{site density} \quad (4)$$

222 where SSA is the specific surface area of the smectite (cm²·g⁻¹), SL is the solids loading of smectite
 223 in solution (g·cm⁻³), and *site density* represents the surface density of reactive sites on the smectite
 224 surface (mol·cm⁻²). Note that k_f and k_b have different units because their reaction orders differ.
 225 Both k_f and k_b are determined using the Butler-Volmer equation, which is conventionally used
 226 to describe electron transfer kinetics occurring at solid-liquid interfaces:^{17, 18, 34, 52, 60}

$$k_f = \frac{k_0}{[\text{Cat}_{(\text{aq})}^+]_{\text{ref}}} \cdot \exp\left((- \alpha) \cdot \frac{nF}{RT} \cdot (E_{\text{H}} - E_{\text{H},\theta})\right) \quad (5)$$

$$k_b = k_0 \cdot \exp\left((1 - \alpha) \cdot \frac{nF}{RT} \cdot (E_{\text{H}} - E_{\text{H},\theta})\right) \quad (6)$$

227 where k_0 (cm·s⁻¹) is the standard heterogeneous rate constant for the reaction, $[\text{Cat}_{(\text{aq})}^+]_{\text{ref}}$ is the
 228 standard reference concentration ($1 \cdot 10^{-3}$ mol·cm⁻³), and α is a dimensionless electron transfer
 229 coefficient ($0 < \alpha < 1$), which represents the “closeness” of the reaction intermediate to either the
 230 reactant ($\alpha < 0.5$) or the product ($\alpha > 0.5$) in eq. 1.⁶⁰ The term ' $E_{\text{H}} - E_{\text{H},\theta}$ ' in eqs. 5 and 6 represent
 231 the electrochemical potential difference between the soluble redox-active compound in solution
 232 and the Fe redox couple on the smectite surface. The reduction potential of the redox-active
 233 compound is represented by E_{H} and the equilibrium potential of structural Fe at the smectite
 234 surface, $E_{\text{H},\theta}$, is determined using:^{44, 45}

$$E_{\text{H},\theta} = E_{\text{H}}^0 + \frac{RT}{F} g(0.5 - \theta) \quad (7)$$

235 where **eq. 7** describes the variation in the surface potential of the structural Fe as a function of θ .
 236 Note that we use a singular standard heterogeneous rate constant, k_0 , to describe both the
 237 forward and backward redox reaction in **eqs. 5** and **6**. This is based on the assumption that both
 238 reduction and oxidation occur along the same reaction coordinate and that the local environment
 239 of the Fe atom, where charge transfer occurs, remains spatially consistent.⁶⁰ Although this is a
 240 simplifying assumption and may not fully capture the kinetic variations caused by differences in
 241 the local coordination environment of Fe atoms in smectites, it still offers an adequate
 242 representation of the interfacial kinetics at the smectite-water interface.

243 **The rate of structural rearrangement of charged species within the smectite lattice.**

244 As structural Fe at the smectite surface is reduced or oxidized, the $\text{Fe}^{2+}_{(\text{s})}/\text{Fe}_{\text{Total}}$ ratio at the surface
 245 begins to differ from the ratio deeper within the particle, creating a chemical potential gradient
 246 within the crystal lattice. To dissipate the chemical potential gradient, charged species rearrange
 247 themselves within the crystal lattice. In dioctahedral smectites (i.e., smectites with vacancies in
 248 the octahedral sheet), the rearrangement has been proposed to be controlled by rearrangement of
 249 Fe atoms and/or intervalence electron transfer reactions between adjacent Fe atoms in $\text{Fe}^{2+}\text{-O-Fe}^{3+}$
 250 linkages.^{1, 18, 49, 51, 54, 63} In a previous study we demonstrated that the dissipation of the chemical
 251 potential gradient within an intercalation material can be successfully modeled using a one-
 252 dimensional diffusion model based on Fick's laws:⁵⁵

$$J = -D \cdot \Gamma_{\text{Tot}} \cdot \frac{d\theta}{dx} \quad (8)$$

$$\frac{d\theta}{dt} = -D \cdot \Gamma_{\text{Tot}} \cdot \frac{d^2\theta}{dx^2} \quad (9)$$

253 where, J (mol·cm⁻²·s⁻¹) represents the flux of charged species across a plane and D (cm²·s⁻¹)
 254 represents the apparent diffusion coefficient of the redox sites in the clay matrix. Note that we
 255 use the term 'apparent' before the diffusion coefficient to indicate that the exact mechanism
 256 responsible for the dissipation of the chemical potential gradient remains uncertain. The
 257 parameter D represents a composite property that describes either the translocation of Fe atoms,
 258 electron hopping between adjacent Fe atoms, diffusion of cations through the smectite interlayers,
 259 or a combination of these processes.^{1, 18, 49, 51, 54, 63} Additionally, D is assumed to be constant
 260 throughout the smectite particle and does not account for spatial heterogeneities that may exist
 261 within the particle. A schematic of the interfacial electron transfer reaction and the subsequent
 262 diffusion process, which dissipates the concentration gradient within the smectite particle, is
 263 provided in **Figure 1**.

264 In our model, the temporal step is represented by dt (1 second) and the spatial resolution
 265 of the finite-element, dx (cm), is calculated using the following equation:

$$dx = \sqrt{\frac{D \cdot dt}{D_M}} \quad (10)$$

266 where, D_M (0.45) is the dimensionless simulation constant and has a value less than 0.5 to maintain
 267 the numerical stability of the finite-element diffusion model, as explained in previous modeling
 268 studies.^{60, 64, 65} The characteristic length, L , of the smectite clay particle is given by its radius, and
 269 is assumed to 2.5·10⁻⁵ cm (0.25 microns) based on the size fraction used by Gorski et al. for the
 270 mediated electrochemical experiments.¹⁴ The smectite particle is divided into N elements of
 271 thickness dx where $N = L/dx$. Note that in **eqs. 2, 3, and 7**, the variable θ represents the

272 $\text{Fe}^{2+}_{(s)}/\text{Fe}_{\text{Total}}$ at the smectite surface, referring solely to the first element among N elements of the
273 clay particle. Conversely, in **eq. 8** and **9**, θ represents the $\text{Fe}^{2+}_{(s)}/\text{Fe}_{\text{Total}}$ ratio in elements 2 through
274 N .

275 **Using the model to revisit the interpretation of mediated electrochemical measurements.**

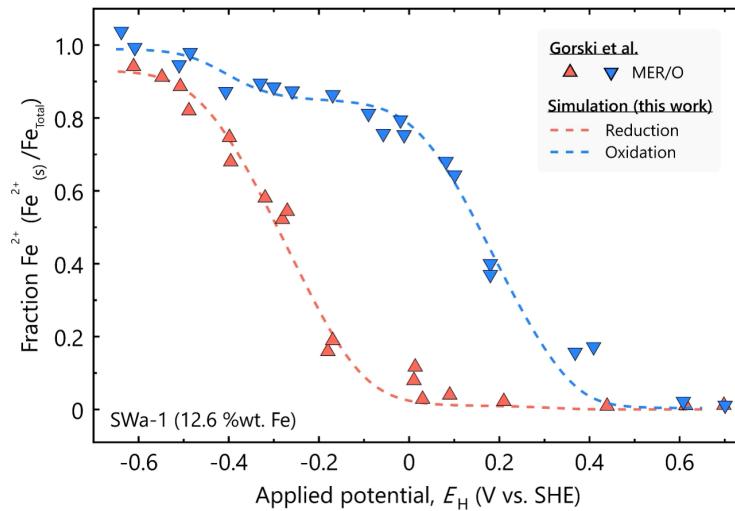
276 In the mediated electrochemical reduction and oxidation experiments conducted by Gorski et
277 al.,^{14, 21, 22} a constant potential was applied to a working electrode immersed in an electrolyte
278 solution (i.e., 0.1 M NaClO_4 buffered at pH 7.5) containing a redox-active mediator. A small,
279 known amount of smectite suspension was then added to the solution, and the current response
280 was measured. For these experiments, we assumed that the redox-active compound was already
281 in equilibrium with the working electrode when the smectite was added, and that the E_{H} value
282 of the solution reflects the potential applied on the working electrode (i.e., the E_{H} values in **eq. 5**
283 and **6** are known). The current response, i (A) produced when a known quantity of smectite was
284 added to the solution can then be determined using the following equation:

$$i = n \cdot F \cdot A \cdot r \quad (11)$$

285 where, A (cm^2) is the active surface area of the smectite particles, $n = 1$, and r is represented by **eq.**
286 **3**. Note that this equation only holds true when the kinetics of electron transfer between the redox-
287 active compound and the working electrode are significantly faster than the electron transfer
288 between the redox-active compound and the smectite particle, which is assumed to be the case in
289 this study.⁵⁶ At the end of the experiment, the simulated current-time curve is integrated to
290 determine the net change in the bulk $\text{Fe}^{2+}_{(s)}$ (mol) concentration in the smectite particle using
291 Faraday's law:

$$\Delta\text{Fe}_{(s)}^{2+} = \frac{1}{nF} \int_0^{t_{\text{cutoff}}} i \cdot dt \quad (12)$$

292 where t_{cutoff} is the cutoff time and is the time-step until which the simulated current-time curve
 293 is integrated. An example of how t_{cutoff} is implemented to the simulated current-time curve is
 294 illustrated in **Figure S4**. In the case of the mediated electrochemical experiments conducted by
 295 Gorski et al., the cutoff was approximately 30 minutes.^{14, 21, 22} The final bulk $\text{Fe}^{2+}_{(s)}/\text{Fe}_{\text{Total}}$ ratio for
 296 the applied E_{H} is calculated using the following equation:


$$\text{Fe}_{(s)}^{2+}/\text{Fe}_{\text{Total}} = \frac{\text{Fe}_{(s),\text{initial}}^{2+} + \Delta\text{Fe}_{(s)}^{2+}}{\Gamma_{\text{Tot}} \cdot A \cdot L} \quad (13)$$

297 where $\text{Fe}_{(s),\text{initial}}^{2+}$ (mol) is the initial number of $\text{Fe}^{2+}_{(s)}$ sites in the smectite particle before mediated
 298 electrochemical reduction or oxidation. The $\text{Fe}^{2+}_{(s)}/\text{Fe}_{\text{Total}}$ ratio is then plotted as a function of
 299 applied E_{H} to generate the redox profile.

300 RESULTS AND DISCUSSION

301 **Simulating mediated electrochemical reduction and oxidation of Fe in SWa-1.**

302 To validate the model's capability of reproducing experimentally collected data, we initially
 303 simulated the mediated electrochemical reduction and oxidation experiments with ferruginous
 304 smectite, SWa-1 (**Figure 2**).²¹ To generate the *reduction* curves (red-dashed line, **Figure 2**), we
 305 simulated the electrochemical reduction of fully re-oxidized SWa-1 clay (i.e., initial bulk
 306 $\text{Fe}^{2+}_{(s)}/\text{Fe}_{\text{Total}}$ ratio = 0.01) at different E_{H} values ranging from +0.65 to -0.65 V vs. SHE at 0.01 V
 307 intervals. Note that we simulated re-oxidized SWa-1, as opposed to native SWa-1, because the
 308 dithionite reduction process is known to irreversibly alter the structural and chemical properties

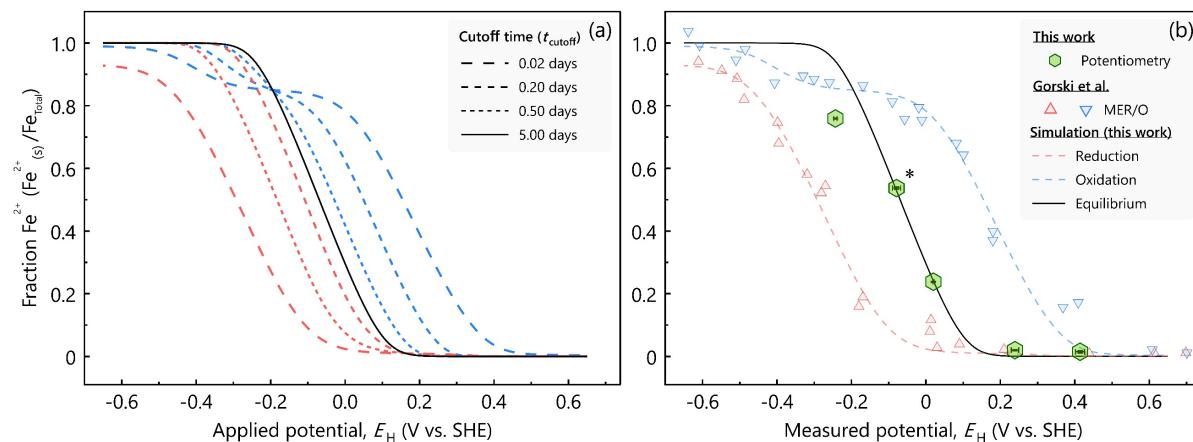
Figure 2. Simulated redox profiles of SWa-1 fitted to experimental redox profiles collected by Gorski et al.^{21,22} The Gorski et al. data includes the re-oxidized, re-re-oxidized, reduced, and re-reduced datasets. The parameters used to achieve the fit for SWa-1 were $E_H^0 = -0.01$ V vs. SHE, $k_0 = 2.5 \cdot 10^{-10}$ cm·s⁻¹, $D = 7.5 \cdot 10^{-13}$ cm²·s⁻¹, $\alpha = 0.52$, and $g = 9$. A t_{cutoff} value of 30 minutes was assumed for generating the *reduction* (red-dashed line) and *oxidation* (blue-dashed line) profiles. Initial $\text{Fe}^{2+}_{(s)}/\text{Fe}_{\text{Total}}$ values of 0.01 and 0.85 were used for simulating the *oxidation* and *reduction* curves, respectively.

309 of smectite.^{13, 14, 21, 22, 49} Thus, the native and reduced SWa-1 were most likely structurally different,
 310 whereas the re-oxidized and reduced SWa-1 were likely structurally more similar. To mimic the
 311 experiments performed by Gorski et al., the simulation cutoff time was set to 30 minutes.^{21, 22} This
 312 meant that only the first 30 minutes of the simulated current response was considered when
 313 calculating the change in the $\text{Fe}^{2+}_{(s)}/\text{Fe}_{\text{Total}}$ ratio at an applied E_H . The simulated $\text{Fe}^{2+}_{(s)}/\text{Fe}_{\text{Total}}$ ratios
 314 were plotted against E_H to generate the reduction profile. The *oxidation* curve (blue-dashed line,
 315 **Figure 2**) was generated in a similar fashion to the reduction profile, with the only difference
 316 being that the re-oxidized SWa-1 was assumed to be fully reduced (i.e., initial bulk $\text{Fe}^{2+}_{(s)}/\text{Fe}_{\text{Total}}$
 317 ratio = 0.99) before being electrochemically oxidized. The simulated redox curves were fitted to
 318 the experimental ones by floating multiple parameters and minimizing the least-squared
 319 differences between the two sets of curves.^{21, 22} The parameters that were

320 floated were the standard reduction potential (E_H^0), the standard heterogeneous rate constant (k_0),
321 the apparent diffusion coefficient (D), the electron transfer coefficient (α), and the interaction
322 parameter (g). Subsequently, we manually fine-tuned the fitted parameters to improve the overall
323 fit quality.

324 The simulated data for the *reduction* of re-oxidized SWa-1 closely matched the
325 experimental data collected by Gorski et al (**Figure 2**).^{21, 22} However, the simulated data for the
326 *oxidation* of reduced SWa-1 initially did not fully capture the data collected from the oxidation
327 experiments (**Figure S5**). Specifically, the experimental and simulation data between $E_H = -0.4$ V
328 to 0.0 V differed, with the simulation calculating larger $Fe^{2+}_{(s)}/Fe_{Total}$ ratios than those
329 experimentally recorded (refer to **Figure S5**). When we changed the initial $Fe^{2+}_{(s)}/Fe_{Total}$ ratio in the
330 reduced SWa-1 from 0.99 to 0.85 (i.e., only 85% of the Fe sites were reduced to $Fe^{2+}_{(s)}$ initially) for
331 the oxidation simulations, the simulated and experimental curves converged (**Figure 2**).^{21, 22} We
332 speculate that the reduced SWa-1 used to generate the experimental data was incompletely
333 reduced, which may have been caused by incomplete reduction by dithionite or inadvertant
334 partial oxidation during subsequent storage.^{21, 22} With this modification, the simulation
335 successfully replicated the experimental redox curves collected for SWa-1 (**Figure 2**, $r^2 = 0.98$, $n =$
336 40).^{21, 22} Importantly, the simulation described both the *reduction* and *oxidation* redox curves using
337 the same parameters: E_H^0 (-0.01 V vs. SHE), k_0 ($2.5 \cdot 10^{-10}$ cm·s⁻¹), D ($7.5 \cdot 10^{-13}$ cm²·s⁻¹), α (0.52), and g
338 (9), meaning that the hysteresis could be due to the experimental cutoff time.

339 Sensitivity analyses of the simulations were performed to assess the uncertainty
340 associated with each of the fitted redox parameters (**Section S3**). Based on the analyses, the


341 quality of fit between the simulated and experimental data was highly sensitive to changes in the
342 E_H^0 value, exhibiting a narrow range of uncertainty in the predicted E_H^0 with values ranging from
343 -0.11 V to $+0.01$ V vs. SHE. Relatively, k_0 displayed more uncertainty in its predicted value with
344 the best fits occurring for k_0 values ranging between $2.0 \cdot 10^{-11}$ to $2.5 \cdot 10^{-9}$ cm·s $^{-1}$. Determining the
345 uncertainty associated with D proved to be challenging as the quality of fit between the
346 experimental and simulated data remained relatively constant for D values greater than 10^{-12}
347 cm 2 ·s $^{-1}$ (**Section S3**). However, the quality of fit deteriorated significantly for D values less than
348 $5 \cdot 10^{-13}$ cm 2 ·s $^{-1}$, suggesting that the apparent diffusion of charge carriers in the smectite particle is
349 likely higher than $5 \cdot 10^{-13}$ cm 2 ·s $^{-1}$. The uncertainty in α ranged between 0.3 and 0.7, and the quality
350 of fit was insensitive to changes in g for values ranging between 0 and 30. Collectively, the
351 sensitivity analyses indicated that E_H^0 and k_0 influenced the simulated redox profile of SWa-1 the
352 most. Although D did not significantly affect the fit quality for values above 10^{-12} cm 2 ·s $^{-1}$ (**Section**
353 **S3**), it was essential for capturing the trend in the experimental data between $E_H = -0.6$ V to -0.5
354 V, where the $\text{Fe}^{2+}_{(s)}/\text{Fe}_{\text{Total}}$ ratio value plateaus but does not reach 1 in the *reduction* experiment
355 (**Figure 2**). The relatively low sensitivity of α and g on the quality of the fit can be attributed to the
356 narrower range of values used for these parameters during the fitting process, compared to the
357 wider range used for k_0 and D , which differed by orders of magnitude. Examples depicting the
358 effect of each parameter on the simulated redox curves are provided in **Figure S7**.

359 **Effect of equilibration time on redox hysteresis.**

360 After validating the accuracy of our simulations with the experimental redox curves of SWa-1
361 (**Figure 2**)^{21, 22} we proceeded to test our hypothesis that redox hysteresis was due to insufficient

362 equilibration time in the mediated electrochemical experiments using two approaches. First, we
 363 simulated *reduction* and *oxidation* experiments of SWa-1, varying the cutoff time to determine if
 364 the extent of redox hysteresis decreased with increasing cutoff time. In these simulations, the
 365 cutoff time represented the duration allowed for the clay particles to be reduced or oxidized by a
 366 redox mediator under a constant applied E_H . Second, we performed experiments in which we
 367 allowed reduced SWa-1 to equilibrate with an electron mediator for a longer period (12-24 hours)
 368 and measured E_H for samples having different $Fe^{2+}_{(s)}/Fe_{Total}$ ratios.

369 The *reduction* and *oxidation* curves at varying cutoff times were simulated using the best-
 370 fit parameters used to simulate the redox curve of SWa-1 in **Figure 2**, which had a cutoff time of

Figure 3. (a) Effect of cutoff time (t_{cutoff}) on the redox profiles generated from the simulated *reduction* and *oxidation* experiments on SWa-1, and (b) mediated potentiometry measurements of reduced and re-oxidized SWa-1 (green hexagonal marker); the data points from the mediated electrochemical experiments performed by Gorski et al. and the redox profiles from the simulations are included as reference to help guide the reader.^{21,22} The green hexagonal data points represent the average of triplicate mediated potentiometry measurements, and the error bars indicate the standard deviation. Note that '*' denotes the SWa-1 sample treated with 30 μ L of 1.0 M hydrogen peroxide which had leaked in transit to Mössbauer analysis leading to an underestimated Fe^{2+}/Fe_{Total} ratio of 0.11 (Section S2). A corrected Fe^{2+}/Fe_{Total} ratio of 0.53 was used when plotting the data point against the corresponding E_H . Details on how the Fe^{2+}/Fe_{Total} ratio was calculated are provided in Section S5 of the supplemental text.

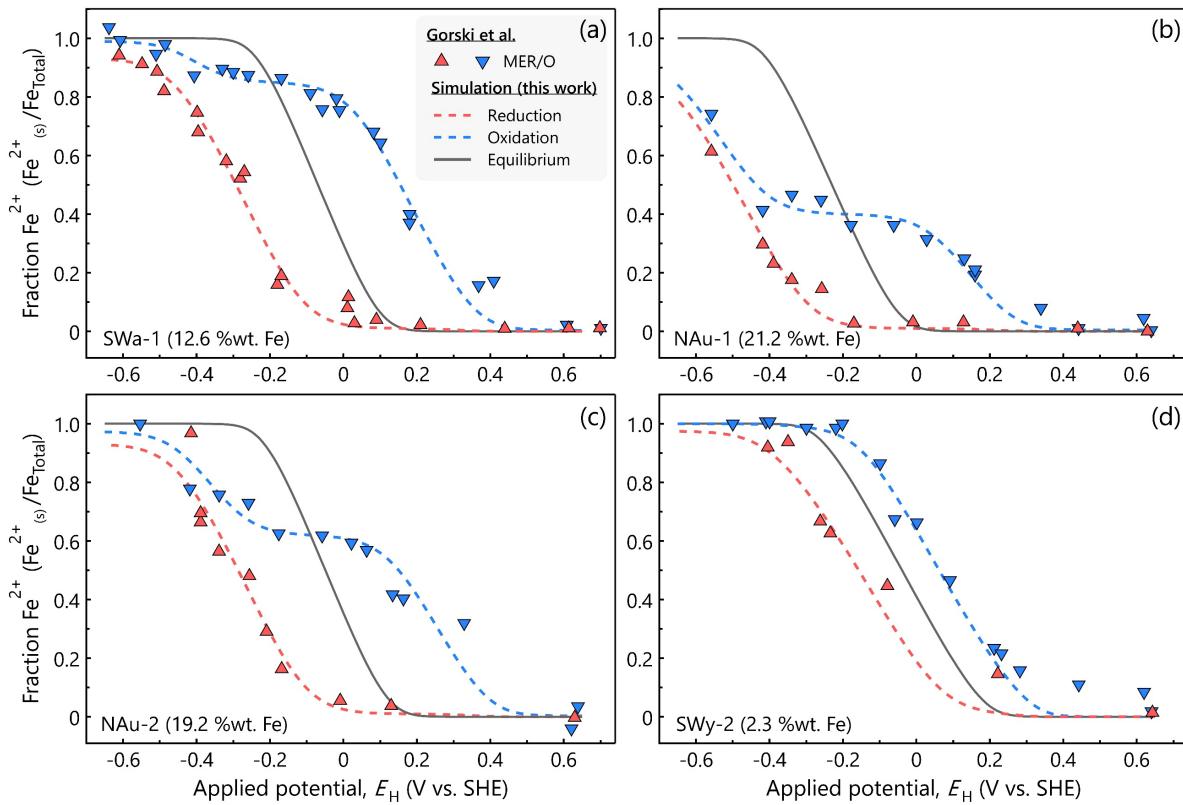
371 30 minutes. The extent of redox hysteresis in the simulations of the *reduction* and *oxidation*
372 experiments decreased as the cutoff time employed in the simulation was increased from 0.02
373 days to 5.00 days as seen in **Figure 3**, panel a. The separation between the redox curves generated
374 from the simulated *reduction* and *oxidation* experiments gradually approached each other as the
375 cutoff time increased. At a cutoff time of approximately 4.75 days, both redox curves converged
376 to form a single redox curve represented by the solid black line in **Figure 3a**, indicating that the
377 SWa-1 particles had reached equilibrium in the simulation. Further increasing in the cutoff time
378 (e.g., $t_{\text{cutoff}} > 4.75$ days) did not affect the simulated redox curves. Notably, the 'equilibrated' redox
379 curve (solid black line in **Figure 3**, panel a) could fully be described by the Nernst-Frumkin
380 equation (**eq. 2**) without the need for any kinetic or diffusion terms. This mathematical
381 consistency arises because the rate equation (**eq. 3**) reduces to the Nernst-Frumkin equation when
382 equilibrium conditions are assumed (refer to **Section S4** in SI for derivation). At equilibrium, the
383 equilibrated redox curve for SWa-1 exhibited an $\text{Fe}^{2+}_{(\text{s})}/\text{Fe}_{\text{Total}}$ ratio of 0.50 at an E_{H} value of -0.07
384 V vs. SHE, which was 60 mV more negative than that of the fitted value of $E_{\text{H}}^0 = -0.01$ V vs SHE.
385 This shift is attributed to the dependence of the reduction potential on the activity of Na^+ , which
386 was assumed to be 0.1 in the simulation due to the use of 0.1 M NaClO_4 in the experiments.^{21, 22}
387 Note that the time required to reach equilibrium depends on both k_0 and D , and is influenced by
388 the active surface area and size of the clay particles in suspension. We speculate that smaller
389 particles may equilibrate faster if charge transfer occurs predominantly at edge sites, due to the
390 shorter distance between the edge and center, and their relatively larger active surface area.

391 An interesting observation from the simulations with varying cutoff times was that all
392 simulated *oxidation* curves in **Figure 3a** consistently intersected the equilibrated redox curve at an

393 E_H value of -0.195 V vs. SHE and an $\text{Fe}^{2+}_{(s)}/\text{Fe}_{\text{Total}}$ ratio of 0.85 , whereas the simulated *reduction*
394 curves never intersected the equilibrated redox curve. This crossover of the *oxidation* curves with
395 the equilibrated redox curve arises from the assumption that the initial $\text{Fe}^{2+}_{(s)}/\text{Fe}_{\text{Total}}$ ratio in SWa-
396 1 was 0.85 (i.e., not fully reduced). Based on the equilibrated redox curve (black line in **Figure 3**,
397 panel a) and **eq.2**, an SWa-1 sample with an $\text{Fe}^{2+}_{(s)}/\text{Fe}_{\text{Total}}$ ratio of 0.85 would have a reduction
398 potential of -0.195 V vs. SHE. This implies that at E_H values more positive than -0.195 V, the
399 SWa-1 would undergo oxidation, while at E_H values more negative than -0.195 V, the SWa-1
400 would undergo reduction. This behavior is reflected in the simulated *oxidation* curves in **Figure**
401 **3a**, where data points to the right of the equilibrated redox curve (i.e., $E_H > -0.195$ V vs. SHE)
402 represent oxidation, while data points to the left (i.e., $E_H < -0.195$ V vs. SHE) actually represent
403 reduction. This effect is more evident when comparing the 30-minute *oxidation* curves depicted
404 in **Figure S4**, where the *oxidation* curves were simulated with initial $\text{Fe}^{2+}_{(s)}/\text{Fe}_{\text{Total}}$ ratios of 0.85 and
405 0.99 . The *oxidation* curve simulated using an initial $\text{Fe}^{2+}_{(s)}/\text{Fe}_{\text{Total}}$ ratio of 0.99 does not cross over
406 the equilibrated redox curve, as all points represent oxidation (compare blue dashed lines in
407 **Figure 3a** and **Figure S4**). Note that, despite the *oxidation* curve not necessarily representing
408 oxidation at all E_H values, within this study, we continue to use the term '*oxidation*' for brevity
409 when referring to the curves fitted to the data obtained from the mediated electrochemical
410 oxidation experiments.^{21, 22}

411 After studying the impact of cutoff time on the simulated redox curves of SWa-1, we
412 proceeded to experimentally validate our observations from the simulation. We hypothesized
413 that the E_H values of the SWa-1 samples measured during mediated potentiometry experiments
414 would lie in between the SWa-1 redox curves collected by Gorski et al. due to the longer

415 equilibration time provided in our experiments (12-24 hours compared to 30 minutes).^{21, 22} Based
416 on this hypothesis, we performed mediated potentiometric measurements on SWa-1 samples
417 with varying $\text{Fe}^{2+}_{(\text{s})}/\text{Fe}_{\text{Total}}$ ratios (**Figure 3**, panel b).


418 These samples were prepared by reducing SWa-1 with sodium dithionite, then
419 reoxidizing samples to various extents by adding different amounts of 1.0 M hydrogen peroxide
420 (experimental details in **Section S1**) and allowing the reaction to proceed for at least 24 hours.
421 The extent of reduction and reoxidation (i.e., $\text{Fe}^{2+}_{(\text{s})}/\text{Fe}_{\text{Total}}$ ratio of each sample) of the chemically
422 treated SWa-1 samples were determined using ^{57}Fe Mössbauer spectroscopy analysis
423 (experimental details and Mössbauer spectra of each sample are provided in **Section S2**). The E_{H}
424 values of the SWa-1 samples with differing $\text{Fe}^{2+}_{(\text{s})}/\text{Fe}_{\text{Total}}$ ratios were measured using mediated
425 potentiometry (experimental details are provided in **Section S6**). Note that SWa-1 suspensions
426 were allowed to equilibrate with the mediator in the electrolyte for 12-24 hours before the E_{H}
427 measurements were recorded. The measured E_{H} values at pH 7.0 were normalized to pH 7.5 by
428 subtracting 30 mV (i.e., 59 mV per pH decade multiplied by 0.5 pH units) from the measured
429 value to ensure consistency between the E_{H} values and the SWa-1 data collected by Gorski et al.¹⁸
430 ⁵⁶

431 The measured E_{H} values of the SWa-1 samples closely matched the equilibrated redox
432 curve of SWa-1 (**Figure 3**, panel b, $r^2 = 0.98$, $n = 5$), supporting our hypothesis that extended
433 equilibration times mitigate redox hysteresis. Note that the data collected by Gorski et al. used
434 mediated electrochemical reduction/oxidation, which is fundamentally different from the
435 mediated potentiometry used in this study.^{14, 21, 22} Mediated electrochemical reduction/oxidation

436 is an active technique that measures the change in the $\text{Fe}^{2+}_{(\text{s})}/\text{Fe}_{\text{Total}}$ ratio by integrating the current
437 response observed when an aliquot of oxidized or reduced clay mineral is added to a pH-buffered
438 electrolyte containing a mediator maintained at a fixed E_{H} value.^{22, 56} This approach has an
439 inherent time limitation, as the current response can only be analyzed for a short period of time
440 before it decreases to the point where it becomes indistinguishable from the background
441 current.^{22, 56} In contrast, mediated potentiometry is a passive technique where no current flows
442 through the system, and the clay mineral allowed to equilibrate with the mediator for durations
443 exceeding 12 hours.^{25, 26} An important consequence of the two different approaches is that, in
444 mediated electrochemical reduction/oxidation, a gradient of $\text{Fe}^{2+}_{(\text{s})}/\text{Fe}_{\text{Total}}$ develops during the
445 redox process, which must dissipate over time. However, in mediated potentiometry, where the
446 E_{H} values of clay minerals with different $\text{Fe}^{2+}_{(\text{s})}/\text{Fe}_{\text{Total}}$ ratios are measured, no such gradient exists,
447 as the bulk of the clay mineral is already in an equilibrated state. We fit the data points obtained
448 from mediated potentiometry in this study to the Nernst-Frumkin equation (**eq. 2**) to test whether
449 the fitted E_{H}^0 value deviated significantly from the E_{H}^0 value obtained from the fits of the *reduction*
450 and *oxidation* curves. The fit produced and E_{H}^0 value of -0.017 V vs. SHE ($r^2 = 0.92$, $n = 5$), which
451 was remarkably close to the E_{H}^0 value (-0.01 V vs. SHE) determined by fitting the *reduction* and
452 *oxidation* curves.

453 **Simulating the redox curves of NAu-1, NAu-2, and SWy-2.**

454 After confirming that our simulations accurately replicated the data from the mediated
455 electrochemical experiments conducted on SWa-1 (**Figure 2**) and demonstrating that the redox
456 hysteresis was likely due to insufficient equilibration time for the smectite particles (**Figure 3**), we

Figure 4. Simulated redox profiles of four smectites – (a) SWa-1, (b) NAu-1, (c) NAu-2 and (d) SWy-2 – fitted to experimental redox profiles collected by Gorski et al.^{21,22} The parameters used to achieve the fit are provided in Table 1. The *reduction* and *oxidation* experiment simulations are represented by the dashed red and blue lines, respectively. The solid black line represents the equilibrated redox curve. All simulation fits had an r^2 value greater than 0.94. The initial $\text{Fe}^{2+}_{(s)}/\text{Fe}_{\text{Total}}$ ratio used for simulating the *oxidation* curves are 0.85 (SWa-1), 0.40 (NAu-1), 0.62 (NAu-2), and 0.99 (SWy-2).

457 expanded our simulations to include the *reduction* and *oxidation* experiments conducted by Gorski
 458 et al. on three other smectites: nontronite NAu-1 (21.2 % wt. Fe), nontronite NAu-2 (19.2 % wt.
 459 Fe), and Wyoming montmorillonite SWy-2 (2.3 % wt. Fe). The simulated redox and experimental
 460 data for the *reduction* and *oxidation* experiments conducted on all four clays are shown in Figure
 461 4, and the simulation parameters used to achieve the fit for the four clays are provided in Table
 462 1.²² The simulated redox curves of the *reduction* experiments closely matched the experimental
 463 data collected by Gorski et al. for all four smectites (compare red dashed lines with red upward

Table 1. Model parameters used to simulate the redox curves of smectites SWa-1, NAu-1, NAu-2, and SWy-2.

Smectite	E_H^0 (V vs. SHE)	k_0 (cm·s ⁻¹)	D (cm ² ·s ⁻¹)	t_{eqb} ^a (days)	α	g	r^2
SWa-1	-0.01	$2.5 \cdot 10^{-10}$	$7.5 \cdot 10^{-13}$	4.75	0.52	9	0.98
NAu-1	-0.17	$1.0 \cdot 10^{-10}$	$6.2 \cdot 10^{-13}$	7.63	0.52	10	0.97
NAu-2	+0.01	$1.9 \cdot 10^{-10}$	$7.7 \cdot 10^{-13}$	5.32	0.52	10	0.94
SWy-2	+0.02	$2.0 \cdot 10^{-9}$	$1.2 \cdot 10^{-12}$	0.52	0.48	13	0.98

^aThe cutoff time taken to reach equilibrium in a mediated electrochemical reduction/oxidation is represented by t_{eqb} and r^2 represents the quality of fit between the simulated and experimental data in **Figure 3**. The uncertainty associated with the extracted model parameters are provided in **Section S3** of the SI.

464 facing triangles in **Figure 4**) without any modifications to the initial $\text{Fe}^{2+}_{(s)}/\text{Fe}_{\text{Total}}$ ratio of 0.01.²²
 465 However, as with SWa-1, fitting the redox curves for the *oxidation* experiments required us to
 466 adjust the initial $\text{Fe}^{2+}_{(s)}/\text{Fe}_{\text{Total}}$ ratio to a value lower than 0.99 for NAu-1 and NAu-2 to ensure
 467 convergence between the experimental and simulated data (compare blue dashed lines with
 468 blue downward facing triangles in **Figure 4**, panels a-c). An initial $\text{Fe}^{2+}_{(s)}/\text{Fe}_{\text{Total}}$ ratio of 0.40 (NAu-
 469 1) and 0.62 (NAu-2) was used to achieve convergence (**Figure 4**, panels b and c). Note that the
 470 initial $\text{Fe}^{2+}_{(s)}/\text{Fe}_{\text{Total}}$ ratio of 0.40 (i.e., 40% of the total Fe was reduced to $\text{Fe}^{2+}_{(s)}$) for NAu-1 is close to
 471 the experimentally determined value of 0.45 from the original study based on Mössbauer
 472 analysis.²² Unlike the iron-rich smectites, we were able to simulate the redox profile for the
 473 *oxidation* experiments conducted on SWy-2 without any change to the initial $\text{Fe}^{2+}_{(s)}/\text{Fe}_{\text{Total}}$ ratio of
 474 0.99, suggesting that SWy-2 was completely reduced before being electrochemically oxidized
 475 (**Figure 4**, panel d). Overall, the simulations accurately replicated the experimental redox curves
 476 collected by Gorski et al. for NAu-1 (**Figure 4**, panel b, $r^2 = 0.97$, $n = 23$), NAu-2 (**Figure 4**, panel
 477 c, $r^2 = 0.94$, $n = 23$), and SWy-2 (**Figure 4**, panel d, $r^2 = 0.99$, $n = 23$).²²

478 Extended *reduction* and *oxidation* experiment simulations were also conducted on the three
479 other clays to determine their equilibrated redox curves. The equilibrated redox profile for each
480 clay is represented by the solid black lines in **Figure 4**. The cutoff time required to reach
481 equilibrium differed among the four smectites. SWy-2 equilibrated the fastest with a cutoff time
482 of 0.52 days and NAu-1 equilibrated the slowest with a cutoff time of 7.63 days; NAu-2
483 equilibrated with a cutoff time of 5.32 days. Interestingly, the cutoff time required to reach
484 equilibrium bore a strong positive correlation against the % wt. Fe content of the smectite ($r^2 =$
485 0.93, $n = 4$), suggesting that smectites with higher Fe content would take longer to reach
486 equilibrium.

487 **Interpreting the redox properties of the smectites.**

488 Based on our simulations, the E_H^0 values at pH 7.5 for the four smectites were: – 0.17 (NAu-1), –
489 0.01 (SWa-1), + 0.01 (NAu-2) and + 0.02 (SWy-2) V vs. SHE (**Table 1**). The range of values defining
490 the uncertainty in the fitted E_H^0 , k_0 and D values are provided in **Table S3**. The trend observed in
491 the fitted E_H^0 values aligned with the apparent standard reduction potentials reported by Gorski
492 et al. for native smectites, where SWy-2 exhibited the highest apparent standard reduction
493 potential ($E_H^0 = – 0.03$ V vs. SHE) and NAu-1 the lowest ($E_H^0 = – 0.45$ V vs. SHE).²² However, the
494 E_H^0 values spanned a narrower range (0.19 V) than the E_H^0 values reported by Gorski et al. (0.42
495 V), suggesting that the affinity of structural Fe to gain or lose electrons did not vary among the
496 four smectites as our original interpretation indicated.²² Prior studies have shown that the
497 reactivity of the dioctahedral Fe in smectites is influenced by its coordination environment, where
498 an Fe^{2+} atom adjacent to a Mg^{2+} or another Fe^{2+} atom was oxidized prior to an Fe^{2+} atom associated

499 with an Al³⁺ atom.^{18, 66} We speculate that the E_H^0 value of a smectite is dependent on the relative
500 abundance of Mg²⁺-O-Fe^{2+/3+}, Fe³⁺-O-Fe^{2+/3+} and Al³⁺-O-Fe^{2+/3+} linkages in the smectite. Note that the
501 E_H^0 values reported in this study specifically apply to smectites that were chemically treated with
502 dithionite. Based on trends observed by Gorski et al. when comparing the E_H^0 values of unaltered
503 and dithionite-treated smectites,²² we speculate that the E_H^0 for unaltered smectites would likely
504 be slightly more negative than those reported here.

505 Among the smectites investigated, SWy-2 exhibited the fastest kinetics with a standard
506 heterogeneous rate of $2.0 \cdot 10^{-9}$ cm·s⁻¹ (**Table 1**). The standard heterogeneous rate constants for the
507 iron rich smectites were over an order of magnitude lower than SWy-2 with values ranging
508 between $1.0 \cdot 10^{-10}$ cm·s⁻¹ (NAu-1) and $2.5 \cdot 10^{-10}$ cm·s⁻¹ (SWa-1). Interestingly, the standard
509 heterogeneous rate constants correlated strongly against the inverse of % wt. Fe in each smectite
510 ($r^2 = 0.99$, $n = 4$; **Figure S9**) suggesting that the heterogeneous rate constant captured some of the
511 structural aspects of the smectites investigated in this study. However, deducing conclusive
512 inferences based on this correlation would require a quantitative investigation of parameters such
513 as active surface area, particle size distribution, and exact masses of smectite added during the
514 mediated electrochemical experiments. The apparent diffusion coefficients of all four smectites
515 were similar, ranging from $6.2 \cdot 10^{-13}$ cm²·s⁻¹ for NAu-1 to $1.2 \cdot 10^{-12}$ cm²·s⁻¹ for SWy-2 (**Table 1**). While
516 these values were several orders of magnitude greater than reported proton diffusion values in
517 montmorillonite (10^{-19} cm²·s⁻¹) and kaolinite (10^{-21} cm²·s⁻¹),⁶⁷⁻⁶⁹ they are only an order of magnitude
518 lower than the electron diffusion coefficient (10^{-11} cm²·s⁻¹) reported by Rosso et al. for a defect free
519 iron rich smectites.^{69, 70} The closeness of the reported electron diffusion coefficient and the
520 diffusion coefficients from this study (**Table 1**) suggests that electron migration in Fe²⁺-O-Fe³⁺

521 linkages may be the major process responsible for dissipating the chemical potential gradient
522 within the iron rich smectites.^{69, 70} The parameters α and g did not vary significantly among the
523 four smectites. The α values for the four smectites ranged between 0.48 and 0.52 and g values
524 ranged between 9 and 13 (**Table 1**).

525 **ENVIRONMENTAL IMPLICATIONS**

526 This work demonstrates that mediated electrochemical techniques have inherent limitations due
527 to their short measurement times, which can potentially complicate data interpretation.
528 Therefore, it is important to consider the processes that could limit the rate of the redox reaction
529 being investigated. In this study, we found that when interpreting the mediated electrochemical
530 reduction/oxidation data of smectites, both the electron transfer kinetics at the smectite-water
531 interface and the internal charge reorganization within the smectite particle need to be
532 considered. Furthermore, the Nernst-Frumkin isotherm fully captured the redox properties of the
533 clay minerals under equilibrium conditions. The time required to reach equilibrium under
534 oxidizing or reducing conditions varied across smectites, ranging from 0.52 days for SWy-2 to
535 7.63 days for NAu-1. This variation could have significant implications for how smectites behave
536 in the environment when exposed to events that induce oxidizing or reducing conditions. These
537 processes are particularly relevant in the context of 'biogeochemical batteries,' where the redox
538 cycling of minerals like smectites plays a crucial role in the storage and transfer of electrons across
539 environmental interfaces.⁷¹ Depending on the duration of such events, the rate of smectite
540 oxidation or reduction may be governed by the kinetics of charge transfer at the mineral surface
541 or by the internal reorganization of charge within the mineral.⁷¹ For instance, in the case of SWy-

542 2, redox events lasting for a day could result in full equilibration with its environment, whereas
543 iron-rich smectites such as SWa-1, NAu-1, and NAu-2 may require significantly more time to
544 reach equilibrium. Additionally, both processes should be considered when interpreting kinetic
545 data from contaminant transformation studies, as the reaction rates observed in these studies can
546 be influenced by either the interfacial electron transfer kinetics or the dissipation of the chemical
547 potential gradient within the smectite particle.^{4, 6, 7, 49} The process limiting the reaction rate
548 depends on the thermodynamic driving force, represented by the difference in reduction
549 potential between the contaminant and the smectite particle.^{4, 6, 7, 49} The model developed here
550 describes the reactivity of the smectite as a function of electrochemical potential difference (ΔE_H)
551 between the smectite surface and the soluble redox compound (e.g., redox mediator and soluble
552 organic matter that can act as electron donors/acceptors). One can potentially apply the model to
553 describe the redox activity of minerals in systems where ΔE_H changes as function of time due to
554 periodic oscillations in environmental conditions, such as changes in dissolved oxygen and
555 chemical composition of groundwater caused by seasonal fluctuations in the groundwater
556 table.⁷¹⁻⁷³

557 The findings from this work may also offer an alternative hypothesis as to why
558 biologically and chemically reduced smectites often exhibit different structural properties, even
559 when samples are reduced to the same extents.⁷⁴ Prior work has largely speculated that the
560 differences are due to bacteria preferentially reducing Fe^{3+} at edge sites, while chemical reductants
561 react with both edge and basal Fe^{3+} sites.⁷⁴ We speculate that the structural differences could also
562 be caused by the differences in the chemical driving force of reduction (ΔE_H) and the timescale
563 over which reduction occurs. Microbial reduction involves a small driving force but long

564 equilibration time, often extending several days to weeks,^{5,11} while chemical reduction involves
565 a large driving force and relatively short equilibration time. The $\text{Fe}^{2+}_{(s)}/\text{Fe}^{3+}_{(s)}$ gradient created
566 during chemical reduction, but not biological reduction, may alter what types of structural
567 modifications occur over the course of the reaction. While the model performs adequately in
568 describing the redox properties of smectites in controlled environments, such as in the mediated
569 electrochemical experiments conducted by Gorski et al.,^{21,22} it does not account for the presence
570 of other cations, anions, or natural organic matter, which could alter the observed experimental
571 trends. These species are expected to influence the aggregation behavior and interlayer spacing
572 of clay minerals. Further experiments investigating the effect of these parameters on the redox
573 properties of smectites would be necessary to accurately predict their behavior in more complex
574 environmental conditions.

575 ASSOCIATED CONTENT

576 Supporting Information

577 The re-oxidation process of the smectite, E_{H}^0 values of the redox mediators used in this study,
578 derivation of Nernst-Frumkin isotherm from rate equation, calculation of $\text{Fe}^{2+}_{(s)}/\text{Fe}_{\text{Total}}$ ratio of
579 leaked sample, and the mediated open-circuit potential profiles are provided in the supplemental
580 text.

581 Supporting information (PDF)

582 AUTHOR INFORMATION

583 Corresponding Author

584 *E-mail: gorski@psu.edu; Phone: +1 814-865-5673

585 **Notes**

586 The authors declare no competing financial interests.

587 **ACKNOWLEDGEMENTS**

588 We thank Nehru Sambasiva Mantripragada (The University of Georgia, Athens) for performing
589 Mössbauer analysis on the reduced and partially re-oxidized SWa-1 clay samples. This study was
590 financially supported by the National Science Foundation (CBET – 1749207) and the Marcus
591 Engineering Research Fellowship (The Pennsylvania State University). The opinions, findings,
592 and conclusions expressed in this study are those of the authors and do not necessarily reflect the
593 views of the funding sources.

594 **REFERENCES**

- 595 1. Komadel, P.; Lear, P. R.; Stucki, J. W., Reduction and reoxidation of nontronite: Extent of
596 reduction and reaction rates. *Clays and Clay Minerals* **1990**, *38*, 203-208.
- 597 2. Hofstetter, T. B.; Schwarzenbach, R. P.; Haderlein, S. B., Reactivity of Fe (II) species associated
598 with clay minerals. *Environmental science & technology* **2003**, *37*, (3), 519-528.
- 599 3. Elsner, M.; Schwarzenbach, R. P.; Haderlein, S. B., Reactivity of Fe (II)-bearing minerals
600 toward reductive transformation of organic contaminants. *Environmental science & technology*
601 **2004**, *38*, (3), 799-807.
- 602 4. Hofstetter, T. B.; Neumann, A.; Schwarzenbach, R. P., Reduction of nitroaromatic compounds
603 by Fe(II) species associated with iron-rich smectites. *Environ Sci Technol* **2006**, *40*, (1), 235-42.
- 604 5. Kukkadapu, R. K.; Zachara, J. M.; Fredrickson, J. K.; McKinley, J. P.; Kennedy, D. W.; Smith,
605 S. C.; Dong, H., Reductive biotransformation of Fe in shale–limestone saprolite containing Fe
606 (III) oxides and Fe (II)/Fe (III) phyllosilicates. *Geochimica et Cosmochimica Acta* **2006**, *70*, (14),
607 3662-3676.
- 608 6. Neumann, A.; Hofstetter, T. B.; Lüssi, M.; Cirpka, O. A.; Petit, S.; Schwarzenbach, R. P.,
609 Assessing the redox reactivity of structural iron in smectites using nitroaromatic compounds
610 as kinetic probes. *Environmental science & technology* **2008**, *42*, (22), 8381-8387.
- 611 7. Neumann, A.; Hofstetter, T. B.; Skarpeli-Liati, M.; Schwarzenbach, R. P., Reduction of
612 polychlorinated ethanes and carbon tetrachloride by structural Fe (II) in smectites.
613 *Environmental science & technology* **2009**, *43*, (11), 4082-4089.

614 8. Dong, H.; Jaisi, D. P.; Kim, J.; Zhang, G., Microbe-clay mineral interactions. *American*
615 *Mineralogist* **2009**, *94*, (11-12), 1505-1519.

616 9. Bishop, M. E.; Dong, H.; Kukkadapu, R. K.; Liu, C.; Edelmann, R. E., Bioreduction of Fe-
617 bearing clay minerals and their reactivity toward pertechnetate (Tc-99). *Geochimica et*
618 *Cosmochimica Acta* **2011**, *75*, (18), 5229-5246.

619 10. Yang, J.; Kukkadapu, R. K.; Dong, H.; Shelobolina, E. S.; Zhang, J.; Kim, J., Effects of redox
620 cycling of iron in nontronite on reduction of technetium. *Chemical Geology* **2012**, *291*, 206-216.

621 11. Luan, F.; Liu, Y.; Griffin, A. M.; Gorski, C. A.; Burgos, W. D., Iron (III)-bearing clay minerals
622 enhance bioreduction of nitrobenzene by *Shewanella putrefaciens* CN32. *Environmental*
623 *science & technology* **2015**, *49*, (3), 1418-1426.

624 12. Tsarev, S.; Waite, T. D.; Collins, R. N., Uranium reduction by Fe (II) in the presence of
625 montmorillonite and nontronite. *Environmental Science & Technology* **2016**, *50*, (15), 8223-8230.

626 13. Stucki, J. W.; Golden, D.; Roth, C. B., Preparation and handling of dithionite-reduced smectite
627 suspensions. *Clays and Clay Minerals* **1984**, *32*, 191-197.

628 14. Gorski, C. A.; Aeschbacher, M.; Soltermann, D.; Voegelin, A.; Baeyens, B.; Marques
629 Fernandes, M.; Hofstetter, T. B.; Sander, M., Redox Properties of Structural Fe in Clay
630 Minerals. 1. Electrochemical Quantification of Electron-Donating and -Accepting Capacities
631 of Smectites. *Environmental Science & Technology* **2012**, *46*, (17), 9360-9368.

632 15. Jones, A. M.; Murphy, C. A.; Waite, T. D.; Collins, R. N., Fe(II) Interactions with Smectites:
633 Temporal Changes in Redox Reactivity and the Formation of Green Rust. *Environmental*
634 *Science & Technology* **2017**, *51*, (21), 12573-12582.

635 16. Manceau, A.; Drits, V.; Lanson, B.; Chateigner, D.; Wu, J.; Huo, D.; Gates, W. P.; Stucki, J.,
636 Oxidation-reduction mechanism of iron in dioctahedral smectites: II. Crystal chemistry of
637 reduced Garfield nontronite. *American Mineralogist* **2000**, *85*, (1), 153-172.

638 17. Favre, F.; Stucki, J. W.; Boivin, P., Redox properties of structural Fe in ferruginous smectite. A
639 discussion of the standard potential and its environmental implications. *Clays and clay minerals*
640 **2006**, *54*, (4), 466-472.

641 18. Neumann, A.; Sander, M.; Hofstetter, T. B., Redox Properties of Structural Fe in Smectite Clay
642 Minerals. In *Aquatic Redox Chemistry*, American Chemical Society: 2011; Vol. 1071, pp 361-379.

643 19. Bergaya, F.; Lagaly, G., General introduction: clays, clay minerals, and clay science.
644 *Developments in clay science* **2006**, *1*, 1-18.

645 20. Bergaya, F.; Lagaly, G., *Handbook of clay science*. Newnes: 2013.

646 21. Gorski, C. A.; Klüpfel, L.; Voegelin, A.; Sander, M.; Hofstetter, T. B., Redox Properties of
647 Structural Fe in Clay Minerals. 2. Electrochemical and Spectroscopic Characterization of
648 Electron Transfer Irreversibility in Ferruginous Smectite, SWa-1. *Environmental Science &*
649 *Technology* **2012**, *46*, (17), 9369-9377.

650 22. Gorski, C. A.; Klüpfel, L. E.; Voegelin, A.; Sander, M.; Hofstetter, T. B., Redox Properties of
651 Structural Fe in Clay Minerals: 3. Relationships between Smectite Redox and Structural
652 Properties. *Environmental Science & Technology* **2013**, *47*, (23), 13477-13485.

653 23. Aeppli, M.; Voegelin, A.; Gorski, C. A.; Hofstetter, T. B.; Sander, M., Mediated Electrochemical
654 Reduction of Iron (Oxyhydr-)Oxides under Defined Thermodynamic Boundary Conditions.
655 *Environmental Science & Technology* **2018**, 52, (2), 560-570.

656 24. Aeppli, M.; Kaegi, R.; Kretzschmar, R.; Voegelin, A.; Hofstetter, T. B.; Sander, M.,
657 Electrochemical Analysis of Changes in Iron Oxide Reducibility during Abiotic Ferrihydrite
658 Transformation into Goethite and Magnetite. *Environmental Science & Technology* **2019**, 53, (7),
659 3568-3578.

660 25. Gorski, C. A.; Edwards, R.; Sander, M.; Hofstetter, T. B.; Stewart, S. M., Thermodynamic
661 Characterization of Iron Oxide–Aqueous Fe²⁺ Redox Couples. *Environmental Science &
662 Technology* **2016**, 50, (16), 8538-8547.

663 26. Stewart, S. M.; Hofstetter, T. B.; Joshi, P.; Gorski, C. A., Linking Thermodynamics to Pollutant
664 Reduction Kinetics by Fe²⁺ Bound to Iron Oxides. *Environmental Science & Technology* **2018**,
665 52, (10), 5600-5609.

666 27. Amonette, J. E., Iron redox chemistry of clays and oxides: environmental applications. **2002**.

667 28. Robinson, T. C.; Latta, D. E.; Leddy, J.; Scherer, M. M., Redox Potentials of Magnetite
668 Suspensions under Reducing Conditions. *Environmental Science & Technology* **2022**, 56, (23),
669 17454-17461.

670 29. Fultz, M. L.; Durst, R. A., Mediator compounds for the electrochemical study of biological
671 redox systems: a compilation. *Analytica Chimica Acta* **1982**, 140, (1), 1-18.

672 30. Aeschbacher, M.; Sander, M.; Schwarzenbach, R. P., Novel Electrochemical Approach to
673 Assess the Redox Properties of Humic Substances. *Environmental Science & Technology* **2010**,
674 44, (1), 87-93.

675 31. Vitins, G.; West, K., Lithium Intercalation into Layered LiMnO₂. *Journal of The Electrochemical
676 Society* **1997**, 144, (8), 2587.

677 32. Malik, M. A.; Kulesza, P. J.; Marassi, R.; Nobili, F.; Miecznikowski, K.; Zamponi, S.,
678 Countercation intercalation and kinetics of charge transport during redox reactions of nickel
679 hexacyanoferrate. *Electrochimica Acta* **2004**, 49, (25), 4253-4258.

680 33. Aurbach, D.; Levi, M. D.; Levi, E., A review on the solid-state ionics of electrochemical
681 intercalation processes: How to interpret properly their electrochemical response. *Solid State
682 Ionics* **2008**, 179, (21), 742-751.

683 34. Levi, M. D.; Aurbach, D., Frumkin intercalation isotherm — a tool for the description of
684 lithium insertion into host materials: a review. *Electrochimica Acta* **1999**, 45, (1), 167-185.

685 35. Hurlbutt, K.; Wheeler, S.; Capone, I.; Pasta, M., Prussian Blue Analogs as Battery Materials.
686 *Joule* **2018**, 2, (10), 1950-1960.

687 36. Moritomo, Y.; Takachi, M.; Kurihara, Y.; Matsuda, T., Thin film electrodes of Prussian blue
688 analogues with rapid Li⁺ intercalation. *Applied Physics Express* **2012**, 5, (4), 041801.

689 37. Heubner, C.; Schneider, M.; Michaelis, A., Investigation of charge transfer kinetics of Li-
690 Intercalation in LiFePO₄. *Journal of Power Sources* **2015**, 288, 115-120.

691 38. Yun, J.; Pfisterer, J.; Bandarenka, A. S., How simple are the models of Na intercalation in
692 aqueous media? *Energy & Environmental Science* **2016**, 9, (3), 955-961.

693 39. Porada, S.; Shrivastava, A.; Bukowska, P.; Biesheuvel, P. M.; Smith, K. C., Nickel
694 Hexacyanoferrate Electrodes for Continuous Cation Intercalation Desalination of Brackish
695 Water. *Electrochimica Acta* **2017**, 255, 369-378.

696 40. Singh, K.; Qian, Z.; Biesheuvel, P. M.; Zuilhof, H.; Porada, S.; de Smet, L. C. P. M., Nickel
697 hexacyanoferrate electrodes for high mono/divalent ion-selectivity in capacitive deionization.
698 *Desalination* **2020**, 481, 114346.

699 41. Neff, V. D., Electrochemical Oxidation and Reduction of Thin Films of Prussian Blue. *Journal*
700 *of The Electrochemical Society* **1978**, 125, (6), 886.

701 42. Itaya, K.; Uchida, I.; Neff, V. D., Electrochemistry of polynuclear transition metal cyanides:
702 Prussian blue and its analogues. *Accounts of Chemical Research* **1986**, 19, (6), 162-168.

703 43. Liu, T.; Pell, W. G.; Conway, B. E., Self-discharge and potential recovery phenomena at
704 thermally and electrochemically prepared RuO₂ supercapacitor electrodes. *Electrochimica*
705 *Acta* **1997**, 42, (23), 3541-3552.

706 44. Newman, J.; Balsara, N. P., *Electrochemical systems*. John Wiley & Sons: 2021.

707 45. Thomas, K. E.; Newman, J.; Darling, R. M., Mathematical modeling of lithium batteries. In
708 *Advances in lithium-ion batteries*, Springer: 2002; pp 345-392.

709 46. Li, B.; Assat, G.; Pearce, P. E.; Nikitina, V. A.; Iadecola, A.; Delacourt, C.; Tarascon, J.-M.,
710 Exploring the Kinetic Limitations Causing Unusual Low-Voltage Li Reinsertion in Either
711 Layered or Tridimensional Li₂IrO₃ Cathode Materials. *Chemistry of Materials* **2020**, 32, (5),
712 2133-2147.

713 47. Li, B.; Sougrati, M. T.; Rousse, G.; Morozov, A. V.; Dedryvère, R.; Iadecola, A.; Senyshyn, A.;
714 Zhang, L.; Abakumov, A. M.; Doublet, M.-L.; Tarascon, J.-M., Correlating ligand-to-metal
715 charge transfer with voltage hysteresis in a Li-rich rock-salt compound exhibiting anionic
716 redox. *Nature Chemistry* **2021**, 13, (11), 1070-1080.

717 48. Pothanamkandathil, V.; Boualavong, J.; Gorski, C. A., Open-Circuit Potential Drift in
718 Intercalation Electrodes: Role of Charge Redistribution in a Prussian Blue Analog. *Journal of*
719 *The Electrochemical Society* **2023**, 170, (11), 110503.

720 49. Rothwell, K. A.; Pentrak, M. P.; Pentrak, L. A.; Stucki, J. W.; Neumann, A., Reduction
721 Pathway-Dependent Formation of Reactive Fe(II) Sites in Clay Minerals. *Environmental Science*
722 & *Technology* **2023**, 57, (28), 10231-10241.

723 50. Yuan, S.; Liu, X.; Liao, W.; Zhang, P.; Wang, X.; Tong, M., Mechanisms of electron transfer
724 from structural Fe(II) in reduced nontronite to oxygen for production of hydroxyl radicals.
725 *Geochimica et Cosmochimica Acta* **2018**, 223, 422-436.

726 51. Liao, W.; Yuan, S.; Liu, X.; Tong, M., Anoxic storage regenerates reactive Fe (II) in reduced
727 nontronite with short-term oxidation. *Geochimica et Cosmochimica Acta* **2019**, 257, 96-109.

728 52. Singh, K.; Bouwmeester, H. J. M.; de Smet, L. C. P. M.; Bazant, M. Z.; Biesheuvel, P. M., Theory
729 of Water Desalination with Intercalation Materials. *Physical Review Applied* **2018**, 9, (6), 064036.

730 53. Malaie, K.; Scholz, F.; Schröder, U., A thermodynamic model for the insertion
731 electrochemistry of battery cathodes. *ChemElectroChem* **2023**, 10, (7), e202201118.

732 54. Neumann, A.; Olson, T. L.; Scherer, M. M., Spectroscopic evidence for Fe (II)-Fe (III) electron
733 transfer at clay mineral edge and basal sites. *Environmental science & technology* **2013**, *47*, (13),
734 6969-6977.

735 55. Fick, A., V. On liquid diffusion. *The London, Edinburgh, and Dublin Philosophical Magazine and*
736 *Journal of Science* **1855**, *10*, (63), 30-39.

737 56. Sander, M.; Hofstetter, T. B.; Gorski, C. A., Electrochemical Analyses of Redox-Active Iron
738 Minerals: A Review of Nonmediated and Mediated Approaches. *Environmental Science &*
739 *Technology* **2015**, *49*, (10), 5862-5878.

740 57. Aeppli, M.; Giroud, S.; Vranic, S.; Voegelin, A.; Hofstetter, T. B.; Sander, M., Thermodynamic
741 controls on rates of iron oxide reduction by extracellular electron shuttles. *Proceedings of the*
742 *National Academy of Sciences* **2022**, *119*, (3), e2115629119.

743 58. Tournassat, C.; Greneche, J.-M.; Tisserand, D.; Charlet, L., The titration of clay minerals: I.
744 Discontinuous backtitration technique combined with CEC measurements. *Journal of Colloid*
745 *and Interface Science* **2004**, *273*, (1), 224-233.

746 59. Sposito, G., *The thermodynamics of soil solutions*. 1981.

747 60. Bard, A. J.; Faulkner, L. R.; White, H. S., *Electrochemical methods: fundamentals and applications*.
748 John Wiley & Sons: 2022.

749 61. Gellings, P. J., *Handbook of solid state electrochemistry*. CRC press: 2019.

750 62. Bruce, P. G., *Solid state electrochemistry*. Cambridge university press: 1997.

751 63. Yuan, S.; Liu, X.; Liao, W.; Zhang, P.; Wang, X.; Tong, M., Mechanisms of electron transfer
752 from structural Fe (II) in reduced nontronite to oxygen for production of hydroxyl radicals.
753 *Geochimica et Cosmochimica Acta* **2018**, *223*, 422-436.

754 64. Pearce, P. J.; Bard, A. J., Polymer films on electrodes: Part III. Digital simulation model for
755 cyclic voltammetry of electroactive polymer film and electrochemistry of poly(vinylferrocene)
756 on platinum. *Journal of Electroanalytical Chemistry and Interfacial Electrochemistry* **1980**, *114*, (1),
757 89-115.

758 65. Ostrogorsky, A. G.; Glicksman, M. E., 25 - Segregation and Component Distribution. In
759 *Handbook of Crystal Growth (Second Edition)*, Rudolph, P., Ed. Elsevier: Boston, 2015; pp 995-
760 1047.

761 66. Neumann, A.; Petit, S.; Hofstetter, T. B., Evaluation of redox-active iron sites in smectites
762 using middle and near infrared spectroscopy. *Geochimica et Cosmochimica Acta* **2011**, *75*, (9),
763 2336-2355.

764 67. Taylor, H. P.; O'Neil, J. R.; Kaplan, I. R., Stable isotope geochemistry: A tribute to Samuel
765 Epstein. (*No Title*) **1991**.

766 68. Xue-lei, C.; Ohmoto, H., Kinetics of isotope exchange reactions involving intra- and
767 intermolecular reactions: I. Rate law for a system with two chemical compounds and three
768 exchangeable atoms. *Geochimica et Cosmochimica Acta* **1991**, *55*, (7), 1953-1961.

769 69. Neumann, A.; Wu, L.; Li, W.; Beard, B. L.; Johnson, C. M.; Rosso, K. M.; Frierdich, A. J.;
770 Scherer, M. M., Atom Exchange between Aqueous Fe(II) and Structural Fe in Clay Minerals.
771 *Environmental Science & Technology* **2015**, *49*, (5), 2786-2795.

772 70. Alexandrov, V.; Neumann, A.; Scherer, M. M.; Rosso, K. M., Electron Exchange and
773 Conduction in Nontronite from First-Principles. *The Journal of Physical Chemistry C* **2013**, *117*,
774 (5), 2032-2040.

775 71. Peiffer, S.; Kappler, A.; Haderlein, S. B.; Schmidt, C.; Byrne, J. M.; Kleindienst, S.; Vogt, C.;
776 Richnow, H. H.; Obst, M.; Angenent, L. T.; Bryce, C.; McCammon, C.; Planer-Friedrich, B., A
777 biogeochemical-hydrological framework for the role of redox-active compounds in aquatic
778 systems. *Nature Geoscience* **2021**, *14*, (5), 264-272.

779 72. Ginn, B.; Meile, C.; Wilmoth, J.; Tang, Y.; Thompson, A., Rapid Iron Reduction Rates Are
780 Stimulated by High-Amplitude Redox Fluctuations in a Tropical Forest Soil. *Environmental
781 Science & Technology* **2017**, *51*, (6), 3250-3259.

782 73. Zhao, G.; Tan, M.; Wu, B.; Zheng, X.; Xiong, R.; Chen, B.; Kappler, A.; Chu, C., Redox
783 Oscillations Activate Thermodynamically Stable Iron Minerals for Enhanced Reactive
784 Oxygen Species Production. *Environmental Science & Technology* **2023**, *57*, (23), 8628-8637.

785 74. Penráková, L.; Su, K.; Penrák, M.; Stucki, J. W., A review of microbial redox interactions with
786 structural Fe in clay minerals. *Clay Minerals* **2013**, *48*, (3), 543-560.

787