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Abstract. We study an inverse problem of determining a time-dependent damping coefficient
and potential appearing in the wave equation in a compact Riemannian manifold of dimension three
or higher. More specifically, we are concerned with the case of conformally transversally anisotropic
manifolds, or in other words, compact Riemannian manifolds with boundary conformally embedded
in a product of the Euclidean line and a transversal manifold. With an additional assumption of
the attenuated geodesic ray transform being injective on the transversal manifold, we prove that the
knowledge of a certain partial Cauchy data set determines the time-dependent damping coefficient
and potential uniquely.
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1. Introduction and statement of results. This paper is devoted to an in-
verse problem of a hyperbolic initial boundary value problem, with the aim of deter-
mining lower order time-dependent perturbations, namely, a scalar-valued damping
coefficient and potential of a Riemannian wave operator, from a set of partial Cauchy
data. As introduced in [38], from the physical point of view, this inverse problem is
concerned with determining properties such as the time-evolving damping force and
the density of an inhomogeneous medium by probing the medium with disturbances
generated on the lateral boundary and at the initial time, and by measuring the
response at the end of the experiment as well as on some part of the lateral boundary.

To state the inverse problem considered in this paper, let (M,g) be a smooth,
compact, oriented Riemannian manifold of dimension n > 3 with smooth boundary
OM. We denote the spacetime Q = (0,T) x M™ with 0 < T < oo, @ the closure of
Q, and ¥ = (0,T) x OM the lateral boundary of Q). Recall that the Laplace—Beltrami
operator A, of the metric g acts on C?-smooth functions according to the following
expression in local coordinates x1,...,x, of the manifold M:

Agu(e) = lgl 7 /2(@),s (" @)lg(@)| *Dpev(a)), we M.

Here |g| and g% denote the absolute value of the determinant and the inverse of 9jk
respectively.

For a given smooth and strictly positive function ¢(z) on M, we consider the wave
operator
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(1.1) Ocg =c(z) 7107 — A,

whose coefficients are time independent. In this paper we study an inverse problem
for the following linear hyperbolic partial differential operator

(1.2) Legag=0cq+alt,z)0 +q(t,x), (tz)eQ,

with time-dependent lower order coefficients a € W1>°(Q) (the damping coefficient)

and g € C(Q) (the potential). Our first geometric assumption is the following.

DEFINITION 1.1. A Riemannian manifold (M,g) of dimension n >3 with bound-
ary OM is called conformally transversally anisotropic (CTA) if M is a compact
subset of a manifold R x M{™ with smooth boundary and nonempty interior, and
g =cle® go). Here (R,e) is the real line, (Mg, go) is a smooth compact (n — 1)-
dimensional Riemannian manifold with smooth boundary, called the transversal man-
ifold, and c € C*(R x My) is a strictly positive function.

Examples of CTA manifolds include precompact smooth proper subsets of Euclid-
ean, spherical, and hyperbolic spaces. We refer readers to [25] for more examples.
Since the manifold M is embedded into the product manifold R x M{", we can write
every point € M in the form x = (z1,2’'), where 21 € R and 2’ € My. In particular,
the projection ¢(z) = x1 is a limiting Carleman weight. It was established in [23,
Theorem 1.2] that the existence of a limiting Carleman weight implies that a con-
formal multiple of the metric g admits a parallel unit vector field, and the converse
holds for simply connected manifolds. Locally, the latter condition is equivalent to
the fact that the manifold (M, g) is conformal to the product of an interval and some
Riemannian manifold (Mp, go) of one dimension less.

The limiting Carleman weight ¢ gives us a canonical way to define the front and
back faces of OM and 0Q. Let v be the outward unit normal vector to 9M with respect
to the metric g. We denote My = {x € M : +0,p(z) > 0} and X4 = (0,T) x OM®.
Then we define U = (0,T) x U' and V = (0,T) x V', where U', V' C OM are open
neighborhoods of OM, OM_, respectively.

The goal of this paper is to show that the time-dependent damping coefficient
a(t,x) and potential ¢(¢, ), appearing in (1.2), can be uniquely determined from the
following set of partial Cauchy data:

(1.3)
Coa.q0 = {(uls, ult=0, uli=1, Ouli—0, Byulv) : w€ H(0,T;L*(M)), Leg,a,qu=0}.

We will define these data carefully in section 2.

Notice that in addition to the data measured on the lateral boundary, the set of
Cauchy data C, 4,4 also includes measurements made at the initial time ¢ =0 and the
end time ¢ =T. Indeed, it was established in [32] that the full lateral boundary data
with vanishing initial conditions,

(14) ¢ ={(uls,00uls) :ue€ H(0,T;L*(M)), Lg,a,qu=0, ult—o = yuls—o = 0},

g,a,q9 —

determines time-independent damping coefficients and potentials uniquely for T >
diam (M), where M is a bounded domain in R". However, due to domain of depen-
dence arguments, as explained for instance in [40, subsection 1.1], it is only possible
to recover a general time-dependent coefficient in the optimal set

D={(t,z) € Q:dist(x,0M) <t < T — dist(x,0M)}
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from C}fg’q. Thus, even for large measurement time 7" > 0, a global recovery of
time-dependent lower order coefficients of the hyperbolic operator (1.2) needs some
additional information at the beginning {t = 0} and at the end {t = T} of the
measurement.

Unfortunately, the product structure of the ambient space R x My of the manifold
(M, g) is not quite sufficient for the recovery method presented in this paper. We
need to also assume that certain geodesic ray transforms on the transversal manifold
(Mo, go) are injective. Such assumptions have been successfully implemented to solve
many important inverse problems on CTA manifolds; see, for instance, [21, 25, 46, 68]
and the references therein.

Let us now recall some definitions related to geodesic ray transforms on Riemann-
ian manifolds with boundary. Geodesics of (Mp, go) can be parametrized (nonuniquely)
by points on the unit sphere bundle SMy = {(z,£) € TMy : || = 1}. Moreover, we use
the notation

825 Mo = {(2,6) € SMy : & € dMy, (€, v(z)) > 0}

for the incoming (—) and outgoing (+) boundaries of SMj. These sets correspond to
the geodesics touching the boundary, and (-,-) is the Riemannian inner product of
(Mo, go)-

Let (z,&) € 0_SMy, and let v =7, ¢ be a geodesic of My with initial conditions
~7(0) = 2 and §(0) = £. Then Texit(z,&) > 0 stands for the first time when v meets
OMy with the convention that Tet(z,§) = +o0 if v stays in the interior of My. We
say that a unit speed geodesic segment 7 : [0, Toxit (2, €)] = Mo, 0 < Texit (2, &) < 00, is
nontangential if v(0), Y(Texit(x,£)) € OMo, (0) and (Texit(z,€)) are nontangential
vectors to OMy, and (1) € M for all 0 < 7 < Teyit (7, £).

In this paper we shall reduce the determination of unknown time-dependent coef-
ficients a(z,t) and q(z,t) from the set of partial Cauchy data (1.3) to the invertibility
of the attenuated geodesic ray transform on the transversal manifold (M, go). Given
a smooth function a on My, the attenuated geodesic ray transform of a function
f: My — R is given by

(1.5)
Texit (T,€) t
19(f) (2,€) = / exp [ / am,g(s))ds} Frmc()dt,  (2,6) €0_SMy\T_,

where I'_ = {(2,£) € 0_SMjy : Texit(x,€) = +00}. Our second geometric assumption 1
is the following.

Assumption 1. There exists € > 0 such that for each smooth function o on M,
with ||l Lo (ar,) < €, the respective attenuated geodesic ray transform I* on (Mo, go)
is injective over continuous functions f in the sense that if 7%(f)(z,£) = 0 for all
(x,€) € 0_SMy\T'_ such that v, ¢ is a nontangential geodesic, then f =0 in M.

It was verified in [23, Theorem 7.1] that simple manifolds always satisfy Assump-
tion 1. Traditionally, a compact, simply connected Riemannian manifold with smooth
boundary is called simple if its boundary is strictly convex, and no geodesic has con-
jugate points. Also, the injectivity of the geodesic ray transform (o = 0) on simple
manifolds is well known; see [52, 62].

In addition to simple manifolds, there are some other geometric conditions under
which the attenuated geodesic ray transform I¢ is known to be injective. For in-
stance, if the manifold is radially symmetric and satisfies the Herglotz condition, then
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1% is injective whenever the attenuation « is also radially symmetric and Lipschitz
continuous [22, Theorem 29]. For the purposes of the current paper it suffices to only
consider constant attenuations. The Herglotz condition is a special case of a manifold
satisfying a convex foliation condition, and in [53] the injectivity of I* is verified on
this type of manifold of dimension n > 3. Some examples of manifolds satisfying the
global foliation condition are the punctured Euclidean space R™ \ {0} and the torus
T™. We refer readers to [53, section 2] for more examples. Finally, we would like
to recall that a convex foliation condition does not forbid the existence of conjugate
points. Hence, there are many nonsimple Riemannian manifolds with an invertible
attenuated geodesic ray transform.
The main result of this paper is the following.

THEOREM 1.2. Let T > 0. Suppose that (M,g) is a CTA manifold of dimension
n > 3 and that Assumption 1 holds for the transversal manifold (Mg, go). Let a; €
Whoo(Q) and ¢; € C(Q), i =1,2. Ifa; =ay and q1 = g2 on 9Q, then Cy a,.91 = Cgaz.00
implies that a1 = as and g1 =q2 in Q.

Theorem 1.2 can be viewed as an extension of [41, Theorem 1.4], where only the
potential was considered, to the case of recovering both damping coefficient and po-
tential from the set of partial Cauchy data Cy q 4. From the perspective of a geometric
setting, this paper extends [38] from the Euclidean space, as well as [41] from CTA
manifolds with a simple transversal manifold, to a larger class of CTA manifolds. As
in [41], we attack the problem by utilizing tools from the theory of inverse problems
for elliptic operators. However, in comparison with the earlier works, we would not be
able to relax the simplicity assumption on the transversal manifold without significant
modifications to the construction of complex geometric optic (CGO) solutions.

Assumption 1 of this paper is different from the literature concerning inverse
problems for elliptic operators on CTA manifolds; see, for instance, [25, 36, 46]. These
works assume the invertibility of the geodesic ray transform I for o =0. In the case
of elliptic operators, where there is only one Euclidean direction x;, the authors
reduced the problem first to the attenuated geodesic ray transform. Then the authors
recovered the geodesic ray transform for each coefficient in the Taylor expansions
of the unknown functions by differentiating an expression similar to (5.21) in our
manuscript with respect to the variable A at zero. Unfortunately, this approach is
not applicable in our case, as the mapping (A, 8) — —A(5,1), appearing in (5.21), is
a diffeomorphism only if A # 0. Thus, computing A and [-derivatives of (5.21) at
A =0 will not give us the geodesic ray transform of Taylor coefficients of the unknown
functions at the origin in the Fourier variables.

1.1. Previous literature. The recovery of coefficients appearing in hyperbolic
equations from boundary measurements has attracted lots of attention in recent years.
Results in this direction are generally divided into two categories with respect to time-
independent and time-dependent coefficients.

Starting with seminal works [11, 14], there has been extensive literature related
to the recovery of time-independent coefficients appearing in hyperbolic equations.
We refer readers to [8, 19, 30, 31, 48] and references therein for some works in this
direction. A powerful tool to prove uniqueness results for time-independent coefficients
of hyperbolic equations, including the leading order coefficient, is the boundary control
method, which was developed in [11, 14], as well as a time-sharp unique continuation
theorem proved in [66]. We refer readers to [42] for an introduction to the method and
[12, 34] for reviews. However, it was discovered in [5, 6] that the unique continuation
theorem analogous to [66] may fail when the dependence of coefficients on time is not
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analytic, which means that the boundary control method is not well suited to recover
time-dependent coefficients in general.

Aside from the boundary control method, the approach of geometric optic (GO)
solutions is also widely utilized to recover time-independent coefficients of hyperbolic
equations. Using this approach, the unique recovery of time-independent potential g
(with @ =0) from full lateral boundary Dirichlet-to-Neumann map was established in
[55], and [32] extended this result to recovery of time-independent damping coefficients
using the same boundary data. A uniqueness result from partial boundary measure-
ments was considered in [26]. The GO solution approach has also been used to obtain
stronger stability results [16, 17, 37, 65] than the boundary control method [7], but
it gives less sharp uniqueness results from the perspective of geometric assumptions
than the latter.

Turning the attention to the time-dependent category, most of the results in this
direction rely on the use of GO solutions. This approach was first implemented in
the context of determining time-dependent coefficients of hyperbolic equations from
the knowledge of scattering data by using properties of the light-ray transform [64].
Recovery of time-dependent potential ¢ from the full lateral boundary data C}]‘“, given
by (1.4), on the infinite cylinder R x ), where 2 is a domain in R", was established in
[58]. On a finite cylinder (0,7") x Q with 7' > diam(f2), it was proved in [54] that C}*
determines ¢ uniquely in the optimal set D of (0,7) x . Uniqueness and stability
results for determining a general time-dependent potential ¢ from partial data were
established in [40] and [18, 39], respectively.

Going beyond the Euclidean space, uniqueness results for time-dependent poten-
tial ¢ from both full and partial boundary measurements were established in [41] on
a CTA manifold (M,g), with a simple transversal manifold My, by using the GO
solution approach. For more general manifolds, recently it was proved in [3] that the
set of full Cauchy data uniquely determines the potential ¢ in Lorentzian manifolds
satisfying certain two-sided curvature bounds and some other geometric assumptions,
and this curvature bound was weakened in [4] near Minkowski geometry. In particu-
lar, the proof of [3] is based on a new optimal unique continuation theorem and can
be viewed as a generalization of the boundary control method to the cases without
real analyticity assumptions.

There is also some literature related to determining time-dependent first order
perturbations appearing in hyperbolic equations from boundary data analogous to
(1.3). In the Euclidean setting, [38] extended the result of [40] to a unique determi-
nation of time-dependent damping coefficients and potentials from Cg 4 4. When the
vector field perturbation appears in the wave equation, similarly to elliptic operators
such as the magnetic Schrédinger operator, one can only recover the first order per-
turbation up to a gauge invariance, i.e., the differential of a test function in Q; see [27]
for a uniqueness result when the dependence of coefficients on time is real-analytic,
and this analyticity assumption was removed later in [59]. Logarithmic type stability
estimates for the vector field perturbation as well as the potential were proved in [15].
A uniqueness result analogous to [27, 59] from a partial Dirichlet-to-Neumann map was
obtained in [44]. In the non-Euclidean setting, it is established in [28] that the hyper-
bolic Dirichlet-to-Neumann map determines the first order and the zeroth order per-
turbations up a gauge invariance on a certain nonoptimal subset of @ by inverting the
light-ray transform of the Lorentzian metric —dt? + g(z) for one-form and functions.

To summarize, there are only two known methods to recover the coefficients
appearing in hyperbolic equations from boundary measurements. Since in the current
paper the unknown lower order coefficients of the hyperbolic operator L. 44,4, as in
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(1.2), are time dependent, we cannot apply the boundary control method. Thus,
our proofs are based on GO solutions. We believe that an introduction of any new
method, which can be used to attack the hyperbolic inverse problems, would be a
major breakthrough. Obviously, this is not in the scope of the current paper.

Finally, we would like to emphasize that to the best of our knowledge, the global
recovery of a full first order time-dependent perturbation (a one-form and potential
function in @) of the Riemannian wave operator from a set of partial Cauchy data,
and the optimal recovery of these coefficients from the respective hyperbolic Dirichlet-
to-Neumann map, remain important open problems.

1.2. Outline for the proof of Theorem 1.2. The first main ingredient of the
proof is the construction of exponentially growing and decaying CGO solutions to the
equation L g,4,qu =0 of the form

ult, ) = eis(ﬂt—&-s@(l))(vs(t, T)+rs(t,x)), (t,z)€Q.

Here s = + + i) is a complex number, h € (0,1) is a semiclassical parameter, A € R

and f € (%, 1) are some fixed numbers, v, is a Gaussian beam quasimode, and 7 is a
correction term that decays with respect to the parameter h. The function p(z) =z
is a limiting Carleman weight on M.

We exploit the existence of the limiting Carleman weight S5t 4+ x1 in @ and de-
rive necessary boundary and interior Carleman estimates; see Proposition 3.1 and
Lemma 3.4, respectively. The boundary Carleman estimates are used to control the
solutions on the inaccessible part of the boundary, while the interior Carleman esti-
mates are needed to verify the existence of the correction term r, in Proposition 3.5. In
the current paper the Dirichlet boundary values are given on the full lateral bound-
ary, which is in line with many earlier works involving a first order term; see, for
instance, [38, 44, 51, 61]. Meanwhile, in the absence of the damping term, but with
Dirichlet data measured only on a part of the lateral boundary, the authors of [40, 41]
constructed GO solutions to the respective hyperbolic equation that vanish initially
and on part of the lateral boundary. In this way the authors were able to utilize the
boundary Carleman estimate to control their GO solutions on the inaccessible part
of the boundary. Unfortunately, this method only provides an L2-estimate for the
correction term 7, and due to the existence of the damping coefficient, we need an
H'-estimate for r4. This is provided in Proposition 3.5.

Since the transversal manifold (Mp,go) is not necessarily simple in this paper,
the approach based on global GO solutions is not applicable to us. To medicate
this, in Theorem 4.2 we construct Gaussian beam quasimodes for every nontangential
geodesic in the transversal manifold My by using techniques developed in solving
inverse problems for elliptic operators (see for instance [21, 25, 46]), followed by a
concentration property for the quasimodes given in Theorem 4.4. The construction
of CGO solutions is finalized in Theorem 4.5. In this part we need the regularity
conditions imposed on the unknown time-dependent coefficients a and gq.

The second main component in the proof is the integral identity (5.6), whose
derivation needs the equivalence of the partial Cauchy data. When the obtained
CGO solutions are inserted in the integral identity, the boundary Carleman estimate
of Proposition 3.2 forces the right-hand side of (5.6) to vanish in the limit h — 0. On
the other hand, the concentration property given in Theorem 4.4 implies that the left-
hand side of (5.6) converges to the attenuated geodesic ray transform of the Fourier
transform (in the two Euclidean variables (¢,21)) of the unknown coefficients in the
transversal manifold (My, go). To carry on this reduction step, we need the regularity
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and boundary conditions imposed on the unknown time-dependent coefficients a and
q. We need Assumption 1 to invert the attenuated geodesic ray transform. We first
provide a proof for the uniqueness result for the damping coefficient a(¢,x), followed
by verifying the uniqueness for the potential ¢(t, z).

This paper is organized as follows. We begin by carefully defining the set of
partial Cauchy data (1.3) in section 2. In section 3 we derive the boundary and
interior Carleman estimates. In section 4 we construct the CGO solutions to the
hyperbolic equation L. 4 4,4u =0 based on Gaussian beam quasimodes in ). Finally,
the proof of Theorem 1.2 is presented in section 5.

2. Definition of the partial Cauchy data. The goal of this short section is
to recall some properties of the weak solutions to the initial boundary value problem

Legaqu(t,z)=0 in Q,
(2.1) uw(0,z) = ho(x), Ou(0,2) =hy(z) in M,
u(t,z) = f(t,x) on X,

as introduced in [38, section 2].
We define the space

Hp, (Q)={u€ H'(0,T;L*(M)): Ocgu=(c"'8; — Ag)ue L*(Q)},
equipped with the norm
”uHIQLIDC“q(Q) = HUH%P(O,T;LQ(M)) + ||Dc,gu\|%2(Q)-

Our starting point is the following result, originally presented in [40, Theorem A.1].

LEMMA 2.1. The space Hg, , is continuously embedded into the closure of C>(Q)
in the space

Ko, ,(Q)={ueH'(0,T;L*(M)): O.qu€ L*(Q)}
equipped with the norm

||U||§<DCYQ(Q) = ||u||%I*1(O,T;L2(M)) + ||Dc,gu||2L2(Q)~
For each w € C™(Q), we introduce two linear maps
Low = (Lo,1W, Lo,2W, Lo,3W) = (Ws, Wt=0, Fwlt=0)
and
nw = (t1,1w, 11 2w, L1 3w) = (Opyw|s, W|t=1, Opw|i=T).
LEMMA 2.2. The maps 1y and t1 defined above can be extended continuously to
w:Hp, (Q)— H™3(0,T; HY/2(0M)) x H *(M) x H~*(M)
and

v Hy, (Q)— H30,T; H*2(0M)) x H2(M) x H*(M),

respectively.
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Proof. Since the conformal factor ¢ in O, is time independent, the proof is a
straightforward modification of the proof for [40, Proposition A.1]. |

We note that by the same argument as in [38, section 2], the set
J={ueH(0,T;L*(M)): Oc4u=0}

is a closed vector subspace of H'(0,T’; L?(M)), contained in Hp,  (Q). Finally, we
record the range of the map ¢q:

K:={ww:ue Hy, (Q)}CH30,T;H *(0M)) x H-*(M) x H~*(M).

By an analogous argument to the proof for [40, Proposition 2.1], we get the following
result.

LEMMA 2.3. The linear map 1o: J — K is a bijection.

By Lemma 2.3, the inverse function ;' : K — J exists, and we can use it to
define a norm in K via the formula

(£, hos b)) llic = lleg " (f hos ) b o, p2(aeyys - (fs oy ha) € K.

We would like to recall that we have defined OMy = {x € OM : £9,¢(z) > 0} and
V=(0,T)x V', where V' C 9M is an open neighborhood of dM_. We are now ready
to state and prove the existence and uniqueness of solutions to the initial boundary
value problem (2.1) with the datum (f, ho,h1) € K.

PROPOSITION 2.4. Let a € W1(Q) and g € C(Q). For each datum (f,ho,h1) €
K, the initial boundary value problem (2.1) has a unique weak solution u € H(0,T;
L?(M)) that satisfies

(2.2) lull 20,7522 (aryy < CN(fs hos b )| xc-
Furthermore, the boundary operator
(2.3) Bug:K— H30,T; H32(V')) x H2(M), Bagy(f ho,h1) = (t1.1ulv,t1.2u)

is bounded, and the partial Cauchy data set Cy q 4, as in (1.3), is the graph of the map
Bag-

Proof. The proof is a straightforward modification of the proof of [38, Proposition
2.1]. d

3. Carleman estimates. Our goal of this section is to prove a boundary Car-
leman estimate as well as an interior Carleman estimate for the operator L. g 4,4 con-
jugated by an exponential weight corresponding to a linear function St 4+ x;, where
0 < B <1 is a constant. We shall utilize the boundary Carleman estimate to control
boundary terms over subsets of the boundary 0@ where measurements are not acces-
sible, and the interior Carleman estimates will be used in section 4 to construct the
remainder term for both exponentially decaying and growing CGO solutions.

Let (M, g) be a CTA manifold as defined in Definition 1.1, and let g =e® go. By
the conformal properties of the Laplace—Beltrami operator, we have

(3.1) (=) () = —agu— (A, () ) u
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see [25, section 2]. Also, since c is independent of ¢, we get

(3.2) "5 ad, (cf%u> =caldyu, and c#af (cf%u) = cO?u.
Thus, it follows from (3.1) and (3.2) that for the hyperbolic operator L. g 4,4, Wwe have
(3:3) T oLogagoe T =Liag,

where

n—2

(3.4) a=ca, azc(q—c%Ag (C_T)).

Hence, by replacing the metric g and coefficients a,q with g, a, ¢, respectively, we can
assume that the conformal factor ¢ = 1. In this section we shall make use of this
assumption and consider the leading order wave operator Oegg, = 07 — Acgg,- Let us
denote L, , 4 as the hyperbolic partial differential operator L. 4,4, when c= 1.

3.1. Boundary Carleman estimate. Due to the damping coefficient, we need
to use a convexification argument similar to [38, 44] to establish the needed boundary
Carleman estimate. To elaborate, let us first introduce a new parameter € > 0, which
is independent of h and to be determined later. For 0 < h < & < 1, we consider the
perturbed weight

2

(3.5) Oane(t, ) ::I:%(Bt—i—xl) — ;—E

Our first result in this section can be viewed as an extension of [38, Theorem 3.1]
from the Euclidean setting to that of Riemannian manifolds with dependence on a
parameter 8. Note that [38, Theorem 3.1] is not directly applicable in our case since
the parameter (3 is strictly less than 1.

PROPOSITION 3.1. Let a,q € L=(Q,C) and u € C*(Q). If u satisfies the condi-
tions

(3.6) uly, = ult=o = Osuf4=0 =0,
then for all 0 < h < e <1 we have
(3.7)

- 4 B
e B2 Ly ugle W Eao) + (5~ 5
B2

4

(382 — 1)h Bh3 h
—— 10cu(T, 720y + ;g(llatUHiz(Q) +IVgullizg))

) WY (T ) 2o ary + 3BRI(T ) 2o an

2
2
2 1= lullZ2¢q) + e

+ h3/ v \6yu\2d5gdt
b

and
(3.8)
e~ h2L 05 <ul3aq) + 208+ DA (V40T M3eap) + 196(T, )32 ) )

(362 — 1)h?

>
- 4e

h4
[l Z2(q) + % (HatUHLZ(Q) + ||Vgu||2L2(Q)) —h /z n|d,ul*dSydt,

where @ip ¢ 15 given by (3.5), % <B <1, and vy = (V,05,)4.
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Proof. We shall only provide a detailed proof for estimate (3.7). The derivation
of (3.8) is analogous and therefore omitted. To proceed, we omit the subscripts h,e
in ¢p ¢ to simplify the notation.

Step 1: The conjugated operator e*‘/’h2£g7a,qe¢u. By direct computations, we
have

(3.9)
e PR’ Ly q qePu=h> [0fu + 20,00u + ud; o +u(dyp)* — (Agu+2(Vyp, Vau),
+ul g +u|V,0|?) + adyu+ audyp + qu]
= Plu —+ PQU —+ ]Dg’u,7

where

(3.10)
Pru=h*(0,u+ (0:0)%u — |Vyo|*u+ (Ogp)u), Pou=h?*(20400mu — 2(V 40,V 1)),
Psu = h*(adsu + (adyp)u + qu).

Thus, Pyu includes the even order derivatives of u, Pyu contains the odd order deriv-
atives of u, and Psu has all the terms involving a or ¢. Due to (3.9), (3.10), and the
triangle inequality, we have

1
(3.11) le™?h2 Ly aqe?ullF2(g) > 5 I1Pru+ PoullF2g) — | Psull7z (-

In the last two steps of this proof we shall bound ||Pyu+ PguH%z(Q) from below and
||P3UH%2(Q) from above. We first use Cauchy’s inequality to convert the first term on
the right-hand side of (3.11) into a product. The choice of the operators P, and P,
simplifies the subsequent computations, which involve several integration by parts.
The estimate for the second term in the right-hand side of (3.11) is short and is based
on the boundedness of a and g. Both estimations rely on the choice of the perturbed
weight given in (3.5). Finally, the inequality (3.7) is obtained by combining these two
estimates.

Step 2: A lower bound of ||Piu + PguH%Q(Q). To start, we have by Cauchy’s
inequality that

1 N
§||P1u+P2uH’§2(Q) z/ Re(PyuPou)dVydt.
Q

Since g(x1,2') = (dz1)? + go(2'), we get from direct computations that

(312)  Ap=18-1t OHp=—2, dne=1. (Vg Vyu)y= 10
which yield

(3.13)

/QRe(PluPQu)dngt

1 1\— 1 —_— 1 1\— 1 —
= Re/@2h4 |:at2u (hﬁ — 5t> atu — Eafuﬁxlu — Agu <h6 — Et) 0tu+EAguazlu

1 1 2 1 1 1\ — 1 —

Let us proceed to estimate each term on the right-hand side of (3.13). For the
first term, we integrate by parts and use the assumption dyu|;—g =0 to deduce
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(3.14)

1 1 — 1 1 h*
2h* —B—=t) OfududV,dt =h* ( -B—=T T,)|7- — 220
e [ (G 2t) obudiudvie =i (521 ) 1ouu(T. ) sy + = 0l o

Turning attention to the second term, we note that the Lie bracket [0, 0y,] van-
ishes. Thus, we integrate by parts and apply Oyult—o =0 to obtain

2h*Re / (—i) OFudy, udV,dt = —2h>Re / Ou(T, )0y, u(T, 2)dV,
Q M
+h3/ Oy [Opu2dVydt.
Q

Since the vector field 9,, is divergence free, we get from the assumption u|y =0 and
integration by parts that the last term in the equation above vanishes. Hence, we
have the following equality for the second term:

1 S .
(3.15) 2h'Re /Q <—h) Ofudy, udV,dt = —2h>Re /M (T, )0y, u(T, x)dV.

Before estimating the third term, we recall that in local coordinates (¢, (z;)}_,)
of @ we have [0,0,,] = 0 for every j = 1,...,n, and Vu(t,z) = g% (2)0pru(t, x).
Furthermore, since the metric g is time independent, we have

|V gul?> =2(V ,0,u, V ju) .
Thus, by Green’s identities and u|sy; = 0, we obtain
4 1 1\ — 4 1 1 9
—2h"Re | Agu( —p — =t ) OwudVydt =h —B— =t ) 0| Vgul“dV,dt.
Q h 3 Q h 3

Since u|s=o =0, it follows immediately that V,u(0,-) =0. Then we integrate by parts
to get

1 1 1 1 1
/ (hﬁ - €t> |V gu|*dV,dt :/ (hg - €T> |V u(T, )2V, +/ g|vgu|2dvgdt.
Q M Q
Therefore, we have verified that the third term on the right-hand side of (3.13) satisfies
. 1.1 (1,1 )
h4
+ ?”vgu"%?(Q)'
We next follow the proof of [41, Lemma 4.2] to estimate the fourth term. Since the

metric g is z1-independent, it follows from the Leibniz rule and the local representation
of the divergence operator [50, Proposition 2.46] that

205, ul gu = 2divy (0, uVgu) — divg(|Vgu|!2]8$1 ).

Thus, an application of the divergence theorem yields

— _
2h*Re /Q E(‘?mluAgudngt:h?’Re /Z 20,u0z,u — |V gu* (v, 0z, ) ydSydt.
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Since uly;, = 0, we see that Vyuls = (d,u)v and 0, uls = 0,u(v,0;,)g = Opury.
Therefore, we have

1 N
(3.17) 2h'Re /Q EAguaxludngtzh?) /Z V1|0, ul?dS,dt.

We now turn our attention to the last term on the right-hand side of (3.13). To
that end, we integrate by parts, and use divy(0,,) =0 and u|s; =0 to write

2Re/ u(t,~)3m1u(t,~)dvg:/ 5‘m1|u(t,~)\2dVg:/ lu(t,)|*r1dS, = 0.
M M oM

Hence, by utilizing the condition u|i—¢ = 0, the last term on the right-hand side of
(3.13) can be written as

2h4Re/ <th(1[32) iﬂt1t2> <<}1lﬂlt)8tu18mu) dV,dt
Q
1 2 1
h4/Q(h2(16)+ +hﬂt822)< 5t>8t|u|2dth
__a(1=p 28 Lo 2
i (4 2+ = 1) (38 27 Tl
s f(382=1_1_68, 3.
+h /Q( 3 Z gttt [u|?dV,dt.

We now choose the numbers €, h > 0 such that

1 1 oT 1287 28T 1
(3.18) 0<e<3T? —<f<1, and h>max{ b 26T }

V3 ef’e(3p2—-1)" ¢ ¢
These choices yield h < ¢,
2 _ 2 _
35 1_i_66t+ 223,6’ 1’
ch? g2 e2h 2eh?

and

1-8% 1 5 1.5\ /1 1 35
0 -+ —=T—-=T —p—-T
< ( wototal o BT ) <5
The choices of h and ¢ in (3.18) allow the term % to absorb the lower order terms
when 0 < h < ¢ < 1. Therefore, we get from these choices of € and h that

(3.19)
A 1 , 28 1, 1.1 1
2h Re/@—(hQ(l—ﬁ)+ +ht—t> ((hﬁ—€t>8tu—h8mlu)d\/gdt

(36% —1)h?
> =3Bh|u(T, )| 72(ar) + THUHQL?(Q)
By combining estimates (3.14)—(3.17) and (3.19), we obtain

1 1 1 h*
S P+ Pyul? > 1t (hﬁ - 5T> 90T, N qany + — (100l + Vgl )

—2h°Re | Ouu(T,2)0;, u(T,x)dV,y + h' GLﬁ —~ iT)

M
352 —1)h2
« \|vgu(T,.)||iz(M)+h3/ w10, u2ds,dt + B =D - )
>

= 3Bh)lw(T, )22

HUH%z(Q)
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We sharpen the estimate above by implementing > % from (3.18) and utilizing the
following inequality,

3 8
Re /M Ou(T, 2) 05, u(T, 2)dV,y < §||8tu(T, WM Fzean) + BHVgU(Ta M2y

to obtain
1 2 1 3 2 h’4 2 2
§||P1U + Poul|” > Zﬁh [0s(T, )T 2(ar) + ?(HaﬁuHL%Q) +1IVgullz2(q))
16 3 (362 — 1)h?
(320) -1 (3 = 5 ) IV My + L g

e / V1|0, u?dS,dt — 3BRIIu(T, )2 ar)-
>

Step 3: An upper bound of || Psu||z2(q). We deduce from (3.10), (3.12), as well as
the triangle inequality that

(3.21)

52
| Psula o < 3" (|a||%m(@||atu%2<@) n (,ﬂmn%m@) gl ) el ) -

Here we have used the inequality (z + vy + 2)? < 3(22 +y? + 2?) for z,y,2 €R.
In addition to the choice 0 < ¢ < 372 made in (3.18), we will further require that

382 -1
4e

1
— > 3||aH%oc(Q) and >3 (52||a||2Loo(Q) + Hq||2L°°(Q)) .

2e T

After combining estimates (3.11), (3.20), and (3.21), we obtain the claimed esti-
mate (3.7). This completes the proof of Proposition 3.1. |

We are now ready to state and prove the boundary Carleman estimate.

PROPOSITION 3.2. Let a,q € L>®(Q,C) and v € C%(Q). If v satisfies
(3.22) vlg = vlt=0 = Ov|t=0 =0,
then for all 0 < h < e <1, we have

e #PFEIR2L o ol L2y + O(RP/)]|e™ 5 CTHEIT u(T, )| 12 (ar)
+O(hY?)||e BTy (T, ) | 2 ar

1/2
+ (’)(h3/2)(/ |ay¢|e—h(ﬁt+w1>ayv|2dsgdt>

3.23 N
(323) > O(h)||e R0 12 ) + O(h/?) | R ETH) 90 (T, )| 2 ()

+O(R)([le™*BHTI0| 12y + e FHTIV 0] 12))

1/2
+(9(h3/2)( ay<p|e—i<ﬁt+m1>ayv2dsgdt) .

P2

Here p(x) =11, L1 = (0,T) x OM™, and OMy = {x € OM : +0,p(x) > 0}.
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Proof. By following the steps in the proof of [38, Theorem 3.1], we deduce the
claimed estimate (3.23) from estimate (3.7) by substituting u = exp(—¢pn )v, where
©n,e is given by (3.5), as well as choosing ¢ > 0 small but fixed. O

Remark 3.3. The Carleman estimate (3.23) can be extended to any function
veH:=C0,T]; L*(M))NC([0,T); H*(M)) satisfying (3.22) and Oegg,v € L*(Q).
Indeed, we may approximate f := Oeagov € L*(Q) by a sequence f; € C5°(Q) such
that f; — f in L*(Q) as j — oo. If v; solves Oegg,v; = f; and satisfies vj|y = vj|i=o =
O4vjli—o = 0, then v; € C*(Q) by [47, Remark 2.10]. In particular, the boundary
Carleman estimate (3.23) holds for v;.

Furthermore, we have

lv; = vlln + 110,05 = OpvllL2s) <O fj — fllL2@) =0, 70,

by the energy estimate [47, Theorem 2.1] together with [47, Remark 2.2]. Thus,
estimate (3.23) extends to v.

3.2. Semiclassical pseudodifferential operators. In this subsection we re-
call some fundamental concepts of semiclassical pseudodifferential calculus on closed
Riemannian manifolds by following the expositions of [63] and [69, Chapter 14]. Let
(N,g) be a smooth compact n-dimensional Riemannian manifold without boundary.
For each m € R, the Kohn-Nirenberg symbol class S™(T*N) consists of smooth
functions on the cotangent bundle 7N, which in local coordinates of N are given by

(3.24)
STO(T*N) = S™(T*N) = {a(x,£) € C™(T*N) : [9307 a(x,£)| < Cap ()™ 1713,

where (£) = (1 + |£[?)Y/2. For a parameter-dependent symbol a(z,&; h), we say that
a € S™(T*N) if the estimate in (3.24) holds uniformly for every h € (0,hg) and
for some hg > 0. A linear operator B: C*(N) — C*°(N) is called negligible if its
Schwartz kernel Kp € C°(N x N) locally satisfies the estimate 8365K3(x,y) =
O(h®) for all a, B € N".

A linear map A: C*°(N) — C*°(N) is a semiclassical pseudodifferential operator
of order m € R if there exists a € S™(T*N) such that in local coordinates, the operator
A is given by the standard h-quantization

1
J/L/meﬁ(m’y’§a<x,é;h)u(y)dyds—F13u<xx

(2wh)™
where the operator B is negligible, and the operator Ay is negligible for each
», € C*(N) with disjoint supports. We denote by ¥™(N) the set of semiclassical
pseudodifferential operators of order m on (N, g).

We recall that the correspondence from an operator to a symbol is not globally
well-defined, but there exists a bijective map between the following equivalence classes

U™ (N) /U™ YN) — S™(T*N)/S™ 1 (T*N).

(3.25) Au(z) =

The image o4 (x,&;h) of A€ U™(N) under this map is called the principal symbol of
A. These definitions allow us to compose the operators A; € ¥™i(N), j =1,2, and
we have Ay Ay € U1 ™2(N) with principal symbol 64,4, =04,04,.
An operator A € ¥ (N) is called elliptic if there is a constant C' > 0, independent
of h, such that the principal symbol satisfies
1

oAz, &h)] > Z(©™

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/21/24 to 152.7.255.197 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

5692 BOYA LIU, TEEMU SAKSALA, AND LILI YAN

An elliptic semiclassical operator A € U™ (N) has an inverse R € ¥~ (N) in the sense
that there exists hg > 0 such that for all h € (0,hy) we have RA = AR =T as linear
operators on C*° (M) and

or(z,&h) =oa(w,&h) ™ € ST(TTN) /ST THTN).
By [63, Proposition 10.1], the operator
(3.26) J*=(1-h%A;)2, sER,

which is defined by the means of the spectral theorem, is elliptic and belongs to the
class W#(N) with principal symbol (£)®. We note that for all s1,s2 € R, we have

(3.27) Jovter = g gsz o (gayl= gos s g0
We now define the semiclassical inner product of order s € R:
(u,v)ms vy = (J*u, J°v) 2 (), u,v € C(N).
Then the semiclassical Sobolev space HE | (N) is defined as the completion of C*>°(N)
with respect to a related norm. Furthermore, every operator A € U™ (N) yields a
bounded map A: HS,(N) — HZ 7™ (N). Also, we recall that if A is negligible, then

scl scl
the operator norm satisfies

(3.28) ”AHH;T(N)%H&(N) =0O(h*>) forall seR.

Finally, we discuss the definition of semiclassical Sobolev spaces on an open subset
U C N. We recall that for u € C*°(N), the norms ||ul|z1 (v) and

Jullf = HUH%Z(N) + ||hV§UH%2(N)

are equivalent. We use the latter to define the semiclassical Sobolev space HX (U) as
a completion of C°°(U) with respect to the norm |-||; restricted on U, and H_ (U) as
the topological dual of H',(U). We would like to recall the following characterization
[1, section 3.13] of H_'(N) via the completion of L?(N) with respect to the norm

scl

(3.29) Pllyon = sp el
scl ozperl (v) I1Ulm v

3.3. Interior Carleman estimate. In this subsection we assume that (Q,e®g)
is isometrically embedded into a closed Riemannian manifold (N, g) without bound-
ary, where g’ = e & g in some open neighborhood U C N of Q. Here U = (a,b) x M,
where [0,7] C (a,b) and M is an open manifold such that M C M. To prove the
existence of suitable solutions to L4 44u = 0 in @, we need the following interior
Calerman estimate for negative order Sobolev spaces.

LEMMA 3.4. Let a € WH°(Q) and q € L>=(Q,C). Then for all 0 < h < e < 1
and w € C§°(Q), there exists a constant C >0 such that

(330) h||wHL2(N) < C‘|€¥%(ﬁt+ml)h2£g,a7qei%(ﬁtJrIl)wHH’l(N)'

scl
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Proof. We shall follow the arguments from [46, section 2]; see also [24, 44]. We
start by extending a and ¢ from W1>°(Q) and L>(Q) to WH(N) and L>®(N),
respectively, and denote the extensions by the same letters. Throughout the proof of
this lemma, we will use the following shorthand notations for the convexified operators:

— o= Pth,e 2 P+h, — o= Pth,e 2 P+h,
Oppn. =¢€ nehtOge?*s and Py, . =e meh Ly a,qe7E e

t2
Here the convexified weight ¢4, - is defined as in (3.5). Let us also define u:=ez>w €
G5 (Q).
We get from the triangle inequality that

(331 N Ppsnullg=1 vy = 1Bpsn vl g1y — lle=#=meh?(ad, + Qe ul g1y

and begin by estimating the first term on the right-hand side of inequality (3.31).
This will be followed by a perturbation of the first term with the second term, which
contains the lower order terms.

Let the open set U C N be the same as at the beginning of this subsection. We
note that by taking a =¢=0 and v € C§°(U), Proposition 3.1 yields

h
(3.32) Zelllaz,on = ClBew vllzon,

2

\/3B2-1" B
Let x € C5°(U) be equal to 1 in a neighborhood of Q. Since the operator J !, as
defined in (3.26), is in $~1(V), and supp (1 —x) Nsupp u = 0, we have by (3.28) that

(333) 1= Ml vy = OBl oy

where C' =

< O(h™)lull L2y
Therefore, for all 0 < h < e <« 1 we have

(3:34)  llullzzevy < Ixd ™l vy + 10— 20Tl vy < X ull g, o)
+ Oh>)|ullL2 (-
To estimate the first term on the right-hand side of (3.34), we apply (3.32) with

v=xJ tue C(U) to get from the triangle inequality and the commutator [A4, B] =
AB — BA that

- Ve - -
335 %7 1u||chl<N>S0(h (T~ Bl 2y + 1X[B e Tl 22y
+H[D<P:th,,57X]J71u”L2(N))-

We now estimate the two terms containing the commutators on the right-hand side
of (3.35). Noting that O, . € ¥?(N), an application of [69, Theorem 9.5(iii)] yields
that the commutator satisfies the equation [0y, .,J '] = hR1, where Ry € WO(N).
Thus, for the second term on the right-hand side of (3.35) we have

(3.36) IX[O s, I Tull 2z < Bllullzz -
For the third term on the right-hand side of (3.35), we observe that

[DWih,g ) X] = hQDX + 2]7'2 (8tXat90ih,6 - <V9X7 vg‘ﬁih,e» + 2h2 (@X&s - <ng7 vq>)
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Thus, supp ([De,, ., x]) Csupp (9rx, Vyx) and supp (drx, Vgx) Nsupp u = (. There-
fore, we get from (3.28) that

(3.37) 1D X1 ull 20y < O ]2y

Since xJ ! € U=1(N), together with (3.35), (3.36), and (3.37), we deduce from
(3.34) that

3
lullzzon <0 (%)

For later purposes, let us rewrite this inequality as

h
(3.38) %”U”LQ(N) SOMB¢wnull gt vy +OM [l L2 )-

Ogen tllg=1 vy + OWElull 2wy + OB lull L2y

To estimate the lower order terms in (3.31), taking 0 # ¢ € HZ,
[l a1 vy =1, we integrate by parts to obtain

scl

(N) with

<€7¢ih,gh2 (ady + q)e?*mu, ¢>L2(N)
= —(u, h* ((Dra)) + adt) — (e pn.e)ad)) L2 () + (h*qu, ) L2 (-

By recalling that Oyp4p . = ﬂ:% - év 19| 2 =1 h<e,and B <1, we get from the
Cauchy—Schwartz inequality that ‘

(3.39)
[{e™#=meh?(ady + q)e? == u, ) 2wy < A3+ T)(llallwroe vy + llall oo () [l 2 vy -

Therefore, the characterization (3.29) of the semiclassical H~'-norm and (3.39)
imply that

(3.40) e #4me h(ad, + q)e = <ull -1 ) < O(h) [ull 2 .

Using (3.38) and (3.40), we derive from (3.31) that

h
OWNPosn.ull gt vy + OR)llull 2wy 2 %H“”LQ(N)a

which can be rewritten as

JE
0 (%5 ) 1Pl vy + Ol 2 il oo

We now take e small enough but fixed to absorb the second term on the left-hand
side and get

1
(3.41) 0 (3 ) 1Pl = Il
Finally, we use w = e~ %u for 0<t<T and apply (3.41) to obtain
1 2 1 x L T
Hw||L2(N) <0 (h) eze ||e:Fh,(Bt+ 1)h2£g7a’qeih(,3t+ l)wHHs_cll(N)'

Here the inequality relies on the assumption u € C§°(Q). This completes the proof of
Proposition 3.4. O

The following solvability result will be implemented in the next section to con-
struct CGO solutions for the operator Ly 4 4.
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PROPOSITION 3.5. Let a € WH*°(Q), q € L>=(Q,C), and s = % + A with A € R
fized. If h > 0 is small enough, then for all v € L*(Q) there exists a solution u €

H!,(Q) to the equation

(3.42) eis(ﬁtﬂ”l)h2£g7a7qe$3(ﬁt+zl)u =vinQ
such that

(3.43) ull 2, (@) < O H)|[vll L2(@)-

Proof. The proof uses standard functional analysis arguments, which have been
utilized to prove analogous results for elliptic operators; see, for instance, [23, 45], as
well as hyperbolic operators in [44]. d

4. Construction of CGO solutions based on Gaussian beam quasimodes.
Let (M,g) be a CTA manifold, a € WH(Q), and ¢ € C(Q). Let 0 <h <1, A€R,
and s = %—i—i)\ € C. In the first part of this section we shall assume that the conformal
factor ¢ = 1 and write Lg 4,4 for L¢ g.q4,4- The goal of this section is to construct an
exponentially decaying, with respect to the real part of s, solution to the equation

E;mqul =0 in @ of the form
(@) = e (o, 1),
where L} , =Ly ag-a,a is the formal L?-adjoint of the operator L, q 4, as well as

an exponentially growing solution to the equation £, 4 4u2 =0 in @ of the form
(4.2) g = e* P (w, 4 1y).

Here vs and ws are smooth Gaussian beam quasimodes, and r; = r; 5,72 = 72 5 are
correction terms that vanish in the limit A — 0. We construct the Gaussian beam
quasimodes vs and w; for each nontangential geodesic of (M, go) in subsection 4.1.
In particular, the functions vs and w; satisfy the estimates given in (4.4) and (4.5).
In subsection 4.2 we will establish a concentration property of the quasimodes along
the nontangential geodesic in the limit h — 0. Finally, in subsection 4.3 we will con-
struct the remainder terms r; and 79, whose existence and decaying properties follow
directly from the estimates for the quasimode and the interior Carleman estimate
Proposition 3.5. We emphasize that the CGO solutions (4.1) and (4.2) are construc-
ted under the assumption ¢ =1. We shall incorporate general conformal factors ¢ and
modify our CGO solutions accordingly in subsection 4.3.

Let us write x = (21,2’) for coordinates in R x My, globally in R and locally in
My. To justify our construction we note that a function u; of the form (4.1) solves

the equation £} , ju1 =0 if

Bt pr  =s(Brhan)y — _esBtta) pr  =s(Briany,

4.1. Construction of Gaussian beam quasimodes. In this subsection we
focus on constructing Gaussian beam quasimodes. Initially introduced in [10, 57],
the construction of Gaussian beam quasimodes has a very long tradition in spectral
theory and in microlocal analysis; see also [9, 56]. Gaussian beam quasimodes have
also been used extensively to solve inverse problems, starting with [13, 33]. Among
the literature in this direction, we refer readers to [21, 23, 25, 46, 68] for applications
to elliptic operators and [28, 34] to hyperbolic operators.
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Let (M,g) be a CTA manifold with the conformal factor ¢ =1, and let T' > 0.
Replacing the transversal manifold (My, go) by a slightly larger manifold if necessary,
we may assume without loss of generality that (M,g) C (R x M e @ go). The
Caussian beam quasimodes will be constructed in R? x M{"*. To obtain C*-smooth
Gaussian beam quasimodes, we shall regularize the damping coefficient a and explain
the necessity of doing so in the proof of Theorem 4.2. We extend a to le‘X’(RQ X
M) with compact support. Using a partition of unity argument combined with a
regularization in each coordinate patch, we have the following result; see [60, Lemma
2.1] for details.

PROPOSITION 4.1. For any a € Wy (R? x M{™), there exists an open and
bounded set W C R* x M{™ and a family a; € C5°(W,C) such that

la —acllze =0(1), llaclr==0Q1), [Vgacllz==0(¢""),

4.3
8 laclie =olc),  l18acllm =o(C2),  [Agaclz= =o(¢c2), ¢ —0.

Here the L®-norms are taken over the set R® x ME".
We are now ready to state and prove our first main result of this section.

THEOREM 4.2. Let (M,g) be a smooth CTA manifold with boundary, T > 0,
B8 € (%,1), and let s = + +iX, 0 < h < 1, X € R fiwed. Let a € WH*(Q) and

q € C(Q). Then for every unit speed nontangential geodesic v of (Mo, go) there exist
one parameter families of Gaussian beam quasimodes vg, wg € C"X’(R2 x My) such that
the estimates

[vsllzz(@) = OQ),  1|0svsllz2(q) = o(h™"/?),

(4.4) S

le*@HeIn?Ly , je =P pa gy = o(h)
and
(4.5) wsllz2@) = O1),  [|0yws]lz2(g) = o(h™*/?),

||e“9(5t+“)hgﬁg’a’qes(ﬂt”l)ws||L2(Q) — o(h)

are valid as h — 0.

The proof of Theorem 4.2 is very long and given in the following subsections.

4.1.1. Preparations for the proof of Theorem 4.2. Let v = (1) be a
nontangential geodesic in the transversal manifold (Mj,go) of length L > 0. By
following [49, Example 9.32], we embed (Mo, go) into a closed manifold (Mo, go) of
the same dimension. We also extend 7 as a unit speed geodesic in M. Since 7 is
nontangential, we can choose € > 0 so that v(7) € My\ My and it does not self-intersect
for 7€ [—2¢,0) U (L, L + 2¢].

We begin with the construction of a Gaussian beam quasimode for the conjugated
operator e~ stz cr - es(Bta) - We follow the main ideas from [21, 24, 46] and
modify the argument in accordance with the extra time variable ¢. Consider the CGO
ansatz v, of the form

vs(t, 1, 2';h) = eise(rl)b(t, xy,2';h),

where s = %—1— i\ is a complex number, and the amplitude b depends implicitly on the
semiclassical parameter h.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/21/24 to 152.7.255.197 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

PARTIAL DATA INVERSE PROBLEM FOR WAVE EQUATION 5697

Since the phase function © is independent of ¢, we have

(4.6)

e 900, (") = adib and e *C92('*°b) = 2b.

Also, as O is independent of z; and g =e ® go, we get

(4.7)

eiisg(*Ag)eiseb =—Agb—is[2(Vy,0,Vb(x1,°)) g, + (Ag,O)b]
+5%(V 4,0,V 4, 0) g, b.

Using (4.6) and (4.7), we obtain

(4.8)

eS(Btt+z) p

g—ag-ome P,

=e"O[s%((V4,0,V,0) g, — (1 — 2D
+ 5(20,,b — 280:b — 2i(V 3,0, V g b(21,-)) gy — (A gy ©)b + Sab) + L,y _aq-o,ab)-

The computations in (4.8) suggest that in order to verify the estimates in (4.4), we
should construct the phase function © and the amplitude b such that they approxi-
mately solve the eikonal and transport equations appearing on the right-hand side of
(4.8) as multipliers of the terms s? and s, respectively.

The construction of the Gaussian beam quasimode v, is divided into several steps,
which are addressed in the following subsections.

(1)

()

Fermi coordinates near v: In these local coordinates ' = (7,y) € My is given
by its closest point v(7) to the fixed geodesic v and by its location y in the
respective geodesic plane perpendicular to 4(7). Due to these choices, the
metric tensor go on 7y is Euclidean up to the first order. This simplifies many
subsequent computations.

Eikonal equation and phase function: To satisfy estimate (4.4) we solve the
eikonal equation, which is the multiplier of s in (4.8), up to a certain order.
The solution is called the phase function ©.

Transport equation and amplitude: To satisfy estimate (4.4) we solve the
transport equation, which is the multiplier of s in (4.8), up to a certain order,
and call the obtained solution b the amplitude. Since we want to construct a
smooth Gaussian beam quasimode, we shall solve the transport equation with
a regularized damping coefficient a; and relate the regularization parameter
¢ to the semiclassical parameter h with an explicit expression. We solve the
transport equation via a change of variables, which converts the transport
equation into a better understood O-equation.

Local verification of estimate (4.4): In this step we provide a proof for estimate
(4.4) in a neighborhood of a fixed point zg = v(7p). The key of the proof is
the fact that map z +— |z[*e=4*" is in L2(R") for all d >0 and k > 0.
Global construction of Gaussian beam quasimodes: We provide the global
construction of v, by gluing together quasimodes defined along the small
pieces of the geodesic.

4.1.2. Fermi coordinates near ~. We fix a point zg =(79) on v([—&, L + €])
and construct the quasimode locally near z. Let (1,y) € Q:= {(r,y) e Rx R""?:
|[7—70| <4, |yl < &'}, 6,0’ >0, be Fermi coordinates near zo. The detailed construction
of these coordinates is given in [36, Lemma 7.4]. Heuristically, the idea is to first choose
the number 6 > 0 to be sufficiently small, so that the geodesic segment ’y|[m,5,m+5] is
not self-intersecting. Then one uses the parallel transport to choose some vector fields
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Eq(7),...,Ep_o(7) along ~y such that the vector fields ¥(7), E1(7),..., En—2(7) span
a parallel orthonormal frame along . Due to the choice of §, as well as the inverse
function theorem, there exists ¢’ > 0 such that the map F(7,y) = exp.,(,) (y* Ea(7T))
is a diffeomorphism in the set . Here exp is the exponential map of (My,go) and
ae{l,...,n—2}.

We note that near zg = y(79) the trace of the geodesic v is given by the set
I'={(7,0): |t — 79| < é}. Due to this construction, we get

(4.9) ggk (1,0)=¢6% and 9, gék(T, 0) =0.
Hence, by Taylor’s theorem, for small |y| we have
(4.10) 9" (r,y) = 8% + O(ly[*).
In these coordinates the Gaussian beam ansatz takes the form
(4.11) v(t, 1,7, y) = e“CTVb(t, 1,7,y h),
and our aim is to find the phase function © € C*°(Q),C) that satisfies
(4.12) ImO >0, ImO|r=0, ImO(r,y) is bi-Lipschitz equivalent to |y|?,

and an amplitude b € C*°(R x R x ,C) such that supp (b(t,z1,-)) C{|y| <d’/2}. In
particular, the name “Gaussian beam” comes from (4.12).

4.1.3. Eikonal equation and phase function. Our goal in this step is to find
a phase function © by solving the eikonal equation (V,,0,V,0), =1— 5% up to
order |y|*> on T' by arguing similarly as in [25, 34, 46, 56, 57]. That is, we find a
function O(7,y) € C*(Q2,C) that satisfies

(4.13) (Vgo©,Vg,0)g, — (1= 5% =0O(ly*), y—0,
and
(4.14) ImO(7,y) > d|y|*

for some constant d > 0 depending on 5. Equation (4.13), combined with a scaling in
the semiclassical parameter h, will be used in subsection 4.1.5 to prove estimate (4.4).

In order to utilize the Taylor expansion (4.10) for the metric gg, we look for a
function © of the form © = ©y + O + O3, where

0j.a(7) .

O(ry)= D ===y j=0,1.2,
lor|=j

are the homogeneous polynomials in the y-variable. We also write ggk = géf“o + ggﬁ +

gég + rék, where

ik
ik 90,1, ()
gé,l(’rvy): Z Tﬂ!yua 1:071727
l]=l

and r3 = O(|y|®) is the remainder in Taylor’s theorem. By the properties of Fermi
coordinates (4.9), we have g%{co =7 and géf“l =0. We then choose accordingly that

(4.15) Oo(1,y)=+1—-5%r and O4(r,y)=0.
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Let us next find ©,. To this end, we write the metric gj* = 6% + ggg +O(y?).
With the understanding that j,k run from 1 to n — 1 and «, ¢ run from 2 to n — 1,
we see that

(V400,Vg,0)g, — (1= 5%)=[21/1- 520,02+ V02 - V;, O+ (1~ 5) g5 5] + O(ly[*).

Similarly to [21, 25, 36], our aim is to find a function @5 such that

(4.16) 2/1— 20,05+ V,0,-V,05 + (1 - %)g5}, =0.

Due to our previous choice for the form of ©5, we have

Os(r,) = 51— PH(T)y -,

and in order to satisfy (4.12), we seek to obtain a smooth complex-valued symmetric
matrix H(7) with a positive definite imaginary part. Since each term of (4.16) is
quadratic in y, it is sufficient for H(7) to satisfy the following matrix initial value
problem, called the Ricatti equation

(4.17) H(r)+ H(t)*=F(r), H(m)=H,, forreR,

where F(7) is a symmetric matrix such that gi}(7,y) = —F(7)y-y in (10— 08,70 +9). If
we choose Hy to be a symmetric complex-valued matrix such that Im(Hy) is positive
definite, then (4.17) has a unique smooth symmetric complex-valued solution H (1)
with ImH (7) positive definite; see [34, Lemma 2.56] for details.

Therefore, the phase function © reads

(4.18) O(r,y) =+/1— 32 (T + %H(T)y . y) .

Due to the compactness and the positive definiteness of Im(H (7)), the function ©
satisfies the properties in (4.12).

4.1.4. Transport equation and the amplitude. We next seek an amplitude
b of the form

(419) b(tv Z1,T,Y; h7 C) = h_nTizbO(ta L1, T; C)X(y/(s/)a

where by € C®°(R¢ x Ry, X [19 — d,70 + d]) is independent of y and satisfies the
approximate transport equation

(4.20) 20,,bo — 2B0:by — 2i(V 3,0,V 3, bo (1, ) go — (A g ©)bo + Bachy = O(Jy|¢ ™)

as y,¢ — 0. The cutoff function x € C§°(R™?) in (4.19) is chosen such that y =1
for |y| <1/4 and x =0 for |y| > 1/2. Here ( is the regularization parameter and a is
the regularized damping coefficient given in Proposition 4.1. Instead of the transport
equation appearing in the coefficient of s in (4.8), we solve (4.20) and obtain a smooth
Gaussian beam quasimode. Eventually, we want the Gaussian beam to only depend
on the semiclassical parameter h. Therefore, at the end of this subsection we will give
an explicit relation between h and (. We shall make the expression |y|¢~! rigorous
in the next subsection when we prove estimate (4.4). Also, we will address the effect
of the change from a to ac on the proof of (4.4). Equation (4.20), combined with a
scaling in the semiclassical parameter h, will be used in subsection 4.1.5 to prove the
third estimate in (4.4).
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In order to find a function by such that (4.20) holds, we first compute (V,,©,

Vobo(z1,°)) g, It follows from (4.18) that

(4.21) 9-0(1,y) =1 -2+ O(ly*)

Therefore, we get from (4.10) that

90

(4.22)
(Vgo©, Vgobo(21,-))go = V1 = B2(rbo + H(7)y - Bybo) + O(|y|*)drbo + O(|y|*)8ybo-

We next compute A, © near the geodesic v. Using (4.10) and (4.18), we have

(Ag,0)(7,0) = /1 — 267" Hjp = \/1— B2tx H(7)
which implies
(4.23) (44,0 =/1- B2t H(r) + O(ly)).
Finally, we Taylor expand the coefficients appearing on the left-hand side of (4.20).

Writing

1
ac(tabe? y) = aC(tax17T7 0) +/ (Vyag(tﬂl?lﬂ? yS))yd5>
0
and utilizing (4.3), we get
(4.24) ag(t,:vl,ﬂy):ag(t,xl,T,O)+O(|y|{‘1).

To achieve (4.20), we require that by (¢, z1,7;() satisfies

(425) ﬂat 83;1 +1 \/ 1-— ﬂ28 bo = = i/ 1 — ﬂ2tI‘H(T) + ,Baig(t,Il,T7 O)}bo

To solve this equation we perform a change of variables and write the left-hand side
of (4.25) as a D-equation. To that end, let S:R* — R? be an invertible linear function
such that for a fixed g € (%, 1), its inverse function is

(4.26) S (t,xy,7) =

1
t T + t T
Then we get from (4.26) that

0ot 00p 00T 1

a0t & op 0 Or

O = 500, T op 0wy T Oron

By substituting (4.26) and (4.27) into (4.25), we obtain the equation

(4.28) (05 +i0y) b’: —iy/1— B2t H(\/1 = B2r) + Bac’ (t,p,r, 0)}bg,

where a;z =a¢ oS and by =bg o S.
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Writing 0= 1(0;+10,), we look for a solution to (4.28) of the form b)(t,p,r;¢) =
e®1.c(tpn)Hf1(r) | By a direct computation, we see that in order for such a function b))
to solve (4.28), the functions ®; ¢ and fi need to satisfy

(429) 90, o (Lp.r) = T (p.r.0) = g Ep ()

and
(4.30) orfr= 77“;52“1{(\/1 — B2r).

Note that fi can be obtained by integrating the right-hand side of (4.30) with respect
tor.
In order to solve the d-equation (4.29), we use the fundamental solution E(f,r) =

Tr(;iir) of the J-operator [29, section 5.4] to take

(4.31) @1 c(t,p,7) = %E s«ac’)(t,p,y(r)).

While forming the convolution over the complex variable ¢ + ir, we note that by
Proposition 4.1, the function a’C is compactly supported in R? x Mt Since v is a
nontangential geodesic in (Mg, go), we may assume without loss of generality that the
map (t,p,r) — ac’ (t,p,~(r)) is smooth and compactly supported in the entire (t,p,r)-
space so that estimate (4.3) still holds. Therefore, we have obtained a C'°°-smooth
solution bj(t,p,7;¢) = e®rc(EPr) (1) of (4.28) defined in the whole (#,p,r)-space.
To verify that by satisfies (4.20), we need to estimate by(-;(), as well as its first
and second order derivatives over the set [0, %] x J, x [ro — 8,79 + 8], where J, C R
is an open and bounded interval such that the respective p-coordinate of each point
in @ is in Jp. Since the function @¢ is supported in some open and bounded set of
R? x M as given in Proposition 4.1, there exists some compact set K C R? such

that the following inequality holds for every (t,p,r) € [0, %] x Jp % [0, ﬁ],

(4.32) |®1,<(EP7T)|§A\E(5— t.r = s)llac(t,p, s)ldtds < || B, | ) [ | o

where E7 (t,s) = E(t —t,r —s). Due to the local integrability of E, the term
| E L1 (x) has a uniform bound for all (t,r) €|, %] x [0, \/1%7] Then it follows
from estimate (4.3) that ||®1 |z~ = O(1). Furthermore, by replacing the function
@ with 97a; in (4.32) and utilizing (4.3) again, we get ||0;®1 ¢||z~ =o0(¢™1). We also
obtain the following estimates by using similar arguments:

Vg0 @1cllzoe, 10p@1cllLoe =0(CTh), Qg @1 cllroe, 021 ¢l =0(C72), ¢ —0.

To complete the verification of (4.20), we connect the semiclassical parameter h
and the regularization parameter ¢ by setting ( = h*, 0 < a < % Note that the
change of coordinates function S, given by (4.26), is independent of ¢. Hence, this
choice of ¢, in conjunction with estimates (4.3), (4.31), and || f1||z~ = O(1), yields

(4.33)
b0 h)l[Lee = O(1),  [IVgobo (s )l Lee, 10:bo (s )| oo, |02y bo (3 1)l Lo = 0(h™),
186,00 (5 B[ Loe, 07 b0 (- h) || oe = 0(R72%),  h—0.
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By substituting (4.21)—(4.25) into the left-hand side of (4.20), we get from (4.33)
that

205,by — 280:bg — 21(V 4,0,V g, bo(21,)) g0 — 1(Ag, ©)bo + Bachoy
= —2iy/1 = B2H(7)y - ybo + O(ly[*)d-bo + O(|y|*)8ybo + O(Jy|) + O(|y[h~*).
=O(ly[h™).
Thus, equation (4.20) is verified.

4.1.5. Local verification of estimate (4.4). Let us now verify that the esti-
mates in (4.4) hold for the quasimode

(4.34)
sy, 1y h) = OV B TIDY (T g b) = OB D = T2 50 (T p s ) x(y/8')

in the open set (0, %) x Jp x Q of @, where 2 C Mj is the domain of Fermi coordinates
near the point zg = (7). To establish this, we shall need the following estimate for
any k> 0:

_n—2 _Im© _n—-2 _d.,2
[T |yFe™ 5 L2 (y1<or2) < 1W77F [ylFe 7190 | Loy <o0 2

1/2
(4.35) < (/ hk|z|2ke_2dlz2dz)
Rn—2
=0O(h*?), h—o.

Here we applied estimate (4.14) and the change of variables z = h=1/2y.
We are now ready to start verifying (4.4) locally. To that end, we use (4.14),
(4.33), and (4.35) with k=0 to get

(4.36)

is®p —n=2
||Us||L2([o,%;]><7pr) < ||b0||L°°([O,%]xjpx[r0—6,7'0+6])He h™1 X(y/él)”L?([O,%]xjpr)
n—2

<OM)[lh~"=

2
6_%|y‘ ||L2(\y|§6//2):(9(1)7 h—0.

Let us next estimate ||6tvs||L2([o,T]x7pr)- By utilizing (4.33), (4.34), and ¢ = h®,
O<a< %, we obtain

(4.37) ”aWSHN([o,%]xjpr):0(h71/2), h—0.

We now proceed to estimate ||es(/3t+””1)hzﬁg,,aﬁ,atae*(ﬁt”l)vs||L2([O’z]XJPXQ)
by estimating each term on the right-hand side of (4.8) independently. Let us start
with the first term. By applying (4.13), (4.14), (4.33), and (4.35) with k=3, we get

h2||€is®32(<vgo@»vgo@>go (1= ﬂ2))b”L2([0,%]x7pr)
i —_n—=2
(438) = h2H€ 8982]7‘ 4 (<V90@7v90®>go - (1 - 52)) 6X(y/6/)||L2([0,%]><7,,><Q)
<SOW)A™ T [yl e 2y <o/ = O*?), k0.

We next consider the second term on the right-hand side of (4.8). From a direct
computation, we see that

50| = o~ +ImO ,~ARe® _ 6—7“27[*2ImH(T)y@e—A\/1—5276—A0(\y|2).
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We observe that e~ # = O(h*). Therefore, on the support of Vgox(y/0") we deduce
from (4.14) that

is _d 5
|e?*€| < e~ % for some d > 0.

Thus, using estimates (4.20) and (4.35) with k = 1, a € (0,1), and the triangle
inequality, we have

(4.39)

h? Hewes(2aw1b — 2P0 — 2i<vgo®ﬂ vgob(xlv ')>90 - i(Ag()@)b + ﬂfgb) ”L?([O,%]xjpxﬂ)
<OM) e Ch™ "7 [lylh=*x(y/8") = 2i(V4y©. Voo X(u/8 Vg0l 20,7157, x )
<O T [y h™ e 5| Loy <02y + O(e™H)
=O(h3?=*)=0o(h), h—0.

We want to emphasize that in the second term on the right-hand side of (4.8) we have
the damping coefficient @ instead of its smooth approximation @z, which appeared in
(4.39). To medicate this discrepancy, we use estimates (4.3) and (4.35) with k=0 to
get

h2‘|€i8686(6_CTC)bHLQ([O,%]xjpxﬂ)
5O /— g _—n=2
= O(h)||e*®(@—ag)h™ "7 box(y/0) | L2 (10, 217, x )

- — _n=2 __d|,?
<OMa—acll o o,51x7,x 17T € B 2y <5 /2)
=o(h), h—0.

(4.40)

Finally, we estimate the third term on the right-hand side of (4.8). To that end,
we utilize estimates (4.33) and (4.35) with k=0 to obtain

(4.41) W2[l eIl 2 10,7157, ) = o(h*1=*))=o(h), h—0.

To estimate the term involving the A,, we incorporate estimates (4.19), (4.33), and
(4.35) with k=0, as well as the triangle inequality, to get

(4.42)
W2 (= Agb)l| (10,217, w0
<OW)|Ih="T €O x(y/3) Agbpll 12 0,217, <2
+ ORI T €O Agx(y/8") +2(V b, Vo x(y/)) o)l 12 (0,217, xe)

<O(h?) (Hh_%?@_%ly‘2h_2a||L2(\y|ga//z) + 0(6_%)>

= O~ L O(e~ ) =o(h), h—0.
For the lower order terms, it follows from (4.33) that
(443) 1" (=adb+ (@ — 0@)b) || 1210, 717, x0ry = O(h*~*) = o(h*/?),  h—0.
Therefore, by combining estimates (4.38)—(4.43), we conclude from (4.8) that
(4.44) ||es(’BHIl)h2£g,—a,a—ataefs(ﬁtﬂl)vsHL?([O,I]x?pr) =o(h), h—0.

This completes the verification of estimate (4.4) locally in the set (0, %) x Jp x Q.
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Before proceeding to the global construction, we need an estimate for ||v(¢,
r1,-)||2(an,) for later purposes. If Q contains a boundary point xo = (70,0) € Mo,
then 4(7p) is transversal to 9My. Let p be a boundary defining function for My so
that OMj is given by the level set p(r,y) =0 near zo, and V4, p is normal to 9M, at
xo. These imply 0, p(xg) # 0. By the implicit function theorem, there exists a smooth
function y — r(y) near 0 such that OMy near xg is given by {(r(y),v) : |y| < ro} for
some 1 > 0 small; see the proof of [36, Proposition 7.5].

Using (4.12), (4.14), and (4.33), we see that there exists a constant C' such that

(4.45) [os(t, 21,73 1) < CR™ 75 e 51 x (/8.

Thus, after shrinking the set € if necessary and using (4.35) with k£ = 0 along with
(4.45), we get

v(tmw)linaMom)—/l [o(t,1,7(y), y) *dSy (y)
Yle<ro

(4.46)
gO(l)/RHh*Q W ay=0(1), h—o0.

4.1.6. Global construction of the Gaussian beam quasimodes via glu-
ing. Finally, we glue together the quasnnodes defined along small pieces of the
geodesic v to obtaln the quasimode vy in R? x Mt Since Mo is compact and

y(r) : (—2e, 17 +2¢) — My is a nontangential geodesic that is not a loop, it fol-
lows from [36, Lemma 7.2] and the choice of € > 0 that the curve | _ L i2e) has
finitely many self-intersection times ry >0 with £ € {1,..., R} and
—5:r0<r1<--~<rR<TR+1=#+
N
Due to [36, Lemma 7.4], there exists an open cover {(Q, r¢) ;5 } of v([—¢ +e])

i
consisting of Fermi coordinate neighborhoods that have the following properties:
(1) ke(Q) = I; x B, where the I, are open intervals and B = B(0,0’) is an open
ball in R"72. Here & > 0 can be taken arbitrarily small and the same for
each .
(2) ke(y(r)) = (r,0) for r € I,.
(3) ¢ only belongs to I, and Iy N I}, = unless |[£ — k| < 1.
(4) ke =k, on ki, (I, N Tx) x B).
In particular, the intervals Iy and Iry; are chosen in such a way that they do not
contain any self-intersection times. In the case when ~ does not self-intersect, there is
a single coordinate neighborhood of y|_, __ . such that (1) and (2) are satisfied.
Vi-p2

We proceed as follows to construct the quasimode vs. Suppose first that + does
not self-intersect at » = 0. Using the procedure from the earlier part of this proof, we
find a quasimode

ol (E,p, 7,y h) = h™ 55 O (VI (2nEpn) 110y (/)

in Qg with some fixed initial conditions at » = —e for the Riccati equation (4.17)
determining ©(?). We now choose some 74, such that v(rj) € Qo N2y and let

vgl)(tN,p,T,y;h) h— 3 199(”(\/1 B2r.y) o1, n(Ep,r)+f1(r) (y/(S’)
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be the quasimode in Q; by choosing the initial conditions for @) such that ) (1)) =
(9(0)(7’6). Here we have used the same functions ®; 5 and f; in vgo) and vgl) since
®, 5, and fy are both globally defined for all r € (—2e, \/ﬁ + 2¢), and neither of
the functions depends on y. On the other hand, since the equations determining the
phase functions O and O have the same initial data in Qy and in Q;, and the
local coordinates kg and #; coincide on #y'((Ip N 1) x B), we have 1) = 0 in

Qo N Q. Therefore, we conclude that vgo) = vgl) in the overlapped region Qy N ;.

Continuing in this way, we obtain quasimodes vﬁ,f"), . .,vﬁRH) such that
(4.47) v (Ep,) =0l (Ep,) In QN

for all ¢ and p. If  self-intersects at = 0, we start the construction from v by
fixing initial conditions for (4.17) at 7 =0 and find v(*) by going backwards.

Let y;(r) be a partition of unity subordinate to the intervals (I,)f'. We denote
Xe(t,p,m,y) = xe(r) and define a smooth function

R+1 .
vy = Z Xev®  in R? x M.
£=0

Let 21,...,2rr € My, R’ < R, be the distinct self-intersection points of ~y, corre-
sponding to the self-intersection times 0 <r; <--- <rg. Let V; be a small neighbor-
hood in ]/\4\0 centered at z; for j € {1,..., R'}. We proceed as in [36, Proposition 7.5],
and use the definition of the intervals Iy,...,Ir+1 and (4.47) to pick a finite cover
Wo, ... Ws of the remaining points on the geodesic v such that for each k€ {1,...,5}
we have W), C Q) for some £(k) € {0,..., R+ 1}. This gives us an open cover for

supp (vs(t,p,-)) N Mo,

R’ s
supp (vs(£,p,)) Mo | [ JV; | U <U Wk> :
k=0

J=1

and the quasimode restricted to V; and W}, is of the form

(448)  witp ), = Y. vP(Ep)  and  ws(fp,)|w, =0l (L p, ),
Ly (re)=z;

respectively. Here (4.48) follows from the construction of the intervals (I;);}, the
partition of unity subordinate to these intervals, and choosing the set V; small enough.

Since in both cases of (4.48) the function v, is a finite sum of v(*); the estimate
[vs(t,p. )| L2(omy) = O(1) and those in (4.4) follow from the corresponding local
considerations (4.37), (4.44), and (4.46) for each of o, respectively. This completes
the construction of the Gaussian beam quasimode vs.

4.1.7. Construction of a Gaussian beam quasimode for the operator
e—sBttz) £ e3Pt We next seek a Gaussian beam quasimode for the oper-
ator e~ s(Btte) L es(BtH21) of the form

ws(ta X1, T,Y; h7 C) = eis®(7—7y)B(t7 T1,7T,Y; h7 C)

with the phase function © € C*°(Q,C) satisfying (4.12) and B(t,z1,7,y) € C(R x
R x ) supported near I'. By replacing s in (4.6) and (4.7) by —s, and recalling that
© is independent of x1, we obtain
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,S(Bt+w1)£g1a’ s(Bterl)w

=¢"%[s*((V,0, Vg, 0)g, — (1= 5))B

+ 5(—20,, B+ 280, B — 2i(V 4,0,V g, B(21,-)) 4o — i(Ag,©)B + BaB)
+ Lg.a,qB].

(4.49)

Since the eikonal equation above is identical to the one in (4.8), we see from
subsection 4.1.3 that the phase function © is given by (4.18). We next find the
amplitude B in the form of

(4.50) B(t,z1,7,y:h) = h™ "% Bo(t,z1,7:h)x(y/d),

where By € C([R x R x {7: |7 — 79| < d}). To that end, by proceeding similarly as
in the construction of by in subsection 4.1.4, we require that By solves

(4.51) (80 — iv/1—320,)B (in/1 = B2tr H(1) — Ba(t,x1,7,0)]By.

Using change of coordinates (4.26) again, we get

(452) (95— i0,)By= 5[iv/T— Pir H(YT— r) — fa(F.p.r,0)| By,

where B = Byo S and a; =a¢o S.

By writing 0 = (9; — i0,) and looking for a solution of the form By =

e%(zp”’)*h(r)n(ﬂ p,7) with 0n =0, we see that the functions ®,  and fo must satisfy

(4.53) 0Dy ¢ = —iﬁa’g(ﬁpﬁ(r))

and
(4.54) Opfo= —7\/12_ﬁ2trH(\/1 — B2r).

Using similar arguments as in the construction of vs, we obtain a Guassian beam
quasimode w,s € C*°(Q) such that the estimates in (4.5) hold.
This completes the proof of Theorem 4.2.

4.2. Concentration property of the Gaussian beam quasimodes. By the
proof of Theorem 4.2, for each nontangential geodesic v: [0, \/ﬁ] — My and h >0

] x Jp x [0, —£—] satisfying

. ~ 1, ~ ) ~ 1 ~
(atv—i_ Z87')(I>1,h(t7pa T) = ilga’lh(tpaf}/(r)) and (a{_ 287')(1)2,}L(tapa T) = _iﬁa;z(tap/Y(r)L

where a}, = ay, 0 S, and the change of coordinates S is given by (4.26). Here J, CR is
an open and bounded interval such that for each point in @) the respective p-coordinate
is in Jp. In the next lemma we study the behavior for these functions as h — 0.

there exist smooth functions ®; ,®5 5 in [O, 5

1 . L ;
LEMMA 4.3. Let 8 € (ﬁ,l), and let ~v: [0, \/ﬁ] — My be a nontangential
geodesic in (Mo,go) as in Proposition 4.2. Then there exist continuous functions ®q
and @5 in [0, ] x Jp % [0, \/ﬁ] that satisfy

(4.55)
(0 +i0,)1 (7,p,r) = 56 (1,p,7(r)) and (2 — i0,) % (F,p,r) = — ' (F.p. (7)),

respectively. Furthermore, the following estimate holds:
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(4.56) |®;jn — (I>j||Loo([0’%]X7pX[07 L)) = o(l), j=1,2, h—0.

Proof. With a slight abuse of notation, we consider the compactly supported
function a'(t,p,r) =a'(t,p,7(r)) in R? and define a continuous function by (t,p,7) =
@(E xa’)(t,p,r). Here the convolution is taken over the complex variable ¢+ ir. Since

E = ?1 s the fundamental solution for the O-operator, we see that O®; = 1 Lsa’

Last, estimate (4.56) follows from the local integrability of E, estimate (4.3), and an
mequahty analogous to (4.32). The analogous claims for j = 2 follow by the same
arguments. This completes the proof of Lemma 4.3. 0

In the following theorem we show that a Gaussian beam quasimode concentrates
along the geodesic in the limit A — 0.

THEOREM 4.4. Let s =  +i\, 0 < h < 1, A € R fized, andﬁe(l 1). Let
[0, 2—
10 7=

Jp be as above. Let vs and wy be the quasimodes from Proposition 4.2. Then for each
Y € C(My) and (¢',p') €[0,%] x J,, we have

] = My be a nontangential geodesic in (Mo, go) as in Pmposztwn 4.2. Let

B
(4.57)
lim @(?,p/, ')ws(?yp/a )wdvgo
h—0 Mo

L
=y [ A T ) @ )
0

Here the functions ®1,®2 € C’([O,%] x J, x [0, \/13?}) are as in Lemma 4.3, and
neC>=([0,5] x J, x [0, ﬁ]) with (0 — i0,)n = 0.

Proof. By a partition of unity, it suffices to verify (4.57) for ¢ € Co(V; N My) and
¥ € Co(Wy N My), where V; and W}, are the same as in subsection 4.1.6 in the proof
of Theorem 4.2.

Case 1: ¢ € Co(WiNMy). We first consider the easier case that ¥ € Co (W, N M)
for some k. Here supp v may extend to M, and we extend 1 by zero outside
Wi N My. Using the quasimodes vs and wy, given in (4.48), by arguing similarly as in
the proof of Theorem 4.2, we obtain Gaussian beam quasimodes

) = O TR 0 ),
ws(t,p, 7, y) = e*OWV 1= Ep R0 E p,r)x(y/8).

In order to establish (4.57), we substitute the quasimodes given in (4.58) directly
into the left-hand side of (4.57). After that, we apply the dominated convergence
theorem to simplify our computation since the term e~ ®VI=AImH(/1=8r)yy qomi-
nates the other exponentials in the phase function. Then we utilize properties of the
solution H(r) to the Riccati equation (4.17), as well as the definitions of functions
f1, f2 given by (4.30) and (4.54), respectively.

Let us now provide the detailed proof. Using (4.10), we see that the determinant
satisfies

(4.59) l90(r, ) = V1~ 52+ O(lyl*)
It then follows from (4.18), (4.26), (4.58), and (4.59) that

(4.58)
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(4.60)
/ @(?ap/a')ws(?ap/a')wdvqo
M, ’
L
_ i@ [V / - 2O, 152 B (@0 )+ P2 (@ )+ L)+ f2(r)
R™— 2
X X (y/5) (& P y)lgoll/Qdydr
1_52/v / V1B ImH (/=B r)y-y
Rn— 2
x e A=A A0 =225\ 2 (y 6y (' 1)
x e21n(Ep )+ @ n (@ ) FH L)) () (/T = B2 + O(|y|?))dydr
L
2)/\/14@2/ e—\/l—BZImH(\/1—,82r)y~ye—2(1—b’2))\reh}\0(|y\2)X2(hl/Qy/(S/)
0 Rn—2

x TR E ROy W y) (14 hO(y)n(@ /) dydr,

where we have performed a change of variables y — hﬁy in the last step.
Passing to the limit A — 0 in (4.60), we get the following pointwise limits,

MOUD® 1 (A2 /6"y =1, W(r hy) = h(r,0) = (y(r), @i — B,
where we used (4.56) in the verification of the last limit. We recall that
1
Im@:§ 1—B2ImH(\/1— B2r)y-y>dly* and / e_dly‘2dy<oo.
Rn—2
Hence, by the dominated convergence theorem, we get

lim Ts(?,p,, ')ws(Paplv )¢d‘/go
h—0 My

L
(4.61) —a _62)/¢1,52 WAGETAG (/ e\/WImH(Wr)y-ydy>
Rn—2

x (@, p',r)e2A=Fr LR D220 (o (1))

To simplify the expression on the right-hand side of (4.61), we perform a change
of variable y — (1 — 62)’%34 to obtain

R _wRao gy
et (yT— 52r))
We set 79 = /1 — 3279 and recall from [34, Lemma 2.58] that
(4.63) det(TmH (/1 — B2r)) = det (TmH (\/1 = B2rg))e 2 i V1= FReH (/1= 3 u)du.

This implies
(4.64)

/ e—\/l—ﬂQImH(\/l—BQT)y'ydy: ™
]Rn—Z

(4.62)

n=2 (1 . 62)_%7261:0 v/ 1—B2trRe(H (n/1—p2w))dw
\/det(tmH(y/T— 5r))
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Furthermore, since

(4.65) Oy f;(r Vl—ﬁQtrH (V1-=p%r), j=1,2,
we get

O (fi(r) + fa(r)) = —v/1 — B2trReH (/1 — B2r).

Thus, by the fundamental theorem of calculus, we have

(4.66) F1(r) + f2(r) = fi(ro) + fa(ro) — /T V1= B%trRe(H (V1 - f2w))dw.

We next choose f1(rg) and fa(rg) so that

Fi(ro)+fa(ro) 252
(4.67) < L—

\/det(ImH (/1= Bro))

Thus, it follows from (4.64), (4.66), and (4.67) that
(468) eﬂ(r)-‘rfz(r) (/ e—ImH(MT)wwdx) — (1 _ ﬁZ)—"Zz.
Rn—2

Finally, we obtain (4.57) for ¢ € Co(Wj, N My) by substituting (4.68) into (4.61).

Case 2: 9 € Cyp(V; N My). Let us now verify (4.57) when ¢ € Co(V; N M) for
some j € {1,...,R'}, where R’ is the number of self-intersection points of . In this
case, we obtain from (4.48) that the quasimodes are of the form

Vg = Z v, wy= Z wh

Ly (r)=z; Liy(r)=2;
on supp (¢), thus
(4.69) TgWs = Z vgl)wgl) + Z vgl)wgl/).
liy(r)=2; LAV (r)="(ry)=2;

We aim to prove that the contribution of the cross terms vanish in the limit h — 0.
More precisely,

(4.70) lim [ oD@, @y, YpdVy, =0, L£L.
h—0 M,

If so, then the limit (4.57) follows from the first part of this proof.

In order to verify (4.70), we split ¢ into a smooth and a sufficiently small part.
In the latter case, the limit (4.70) follows from Proposition 4.1. For the smooth part,
we integrate by parts, which requires us to differentiate . In addition, we need the
estimate (4.46) to show that the boundary term vanishes. This estimate was not
needed to prove Theorem 4.2.

To start the proof, following similar arguments as in the proof of [25, Proposition
3.1], we write

iRe©® _ W _ o
vgl):ehRee ol P = = AReOW —stmO® 1)
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and

wgz/) _ e%ReG(l/)w(l’)’ W) = e—AReG)(ll)e—sIm@(l,)B(l/)7
which imply that

(4.71) o) = 760w ¢ =Re®!) — Re®®,

Hence, in view of (4.71), we need to show that

(4.72) lim [ et 7¢O, p, )@, p, ) pdVy, =0, 1#1.
h—0 Mo
To prove (4.72), let us write ¢ = ¢, + (¢p — ¥p,), where the regularization vy, €
C§°(V;NMy), but its support can meet 0 My, and ¢ —1y, is continuous. We recall that,
due to the estimates in (4.4) and (4.5), we have ||¢(l)||Lz(ijM0), ||w(ll)||L2(ijMO) =
O(1). Thus, by Holder’s inequality and estimate (4.3), we obtain

(4.73) ‘ / et T oD, p Y@, p ) (W — n)dVy
Mo
< oD 2wl L2l = ¢nllz= = o0(1), h—0,

where the LP-norms are taken over the set V; N M.

To analyze the term involving the smooth part ¢, we note that by (4.10) and
(4.18), the gradients of Re®®) and Re®) at z; are parallel to §(r;) and 4(ry/), respec-
tively. Since the geodesic v intersects itself transversally at z;, we have V4 0(z;) #0.

Therefore, by shrinking the set V; if necessary, we may assume that ¢ has no critical
S () . .
points in V. Thus, the vector field L = %V%a is well-defined and satisfies
90

et gDy, = —ihL(e#). Therefore, we integrate by parts in (4.72) to obtain

/ G%UW(?,p/, ')w(l/)(f{/7p/a ~)’(/)hdv;;0
Mo
0,0
vinoMo | Vaool?
+ih e%”div(L)(?,p/a )dVy,.
Mo

To show that the boundary term on the right-hand side of (4.74) vanishes as
h — 0, we use estimate (4.46) to observe that ||| r2(aas,), ||w(ll)||Lz(8M0) = 0O(1).
Furthermore, o is real valued and independent of h. Then by estimate (4.3) and
Holder’s inequality, we have

0,0

VN Mo |V900|2

6%0W<%7ap/7 ')w(l/) (Zj7p/7 ')¢hd5g0

(4.74) = —ih

—ih ewoO@,p', Y (@, p, ) pndSy, = O(h), h—0.

To prove that the second term on the right-hand side of (4.74) vanishes as h — 0,
we first compute that

aive = div (G000 T80 ) = (9, (G0, T2
9o

|V900|2 7 |V900|2

— Vo o
+ ¢Ww ey div < 90 > .
Vgool?
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Using estimates (4.3), [|¢® || z2(ar), [|w®) |2 (m0) = O(1), and Hélder’s inequality, we
get
zh/ en O (@, p, Y@, p, ndiv <v9°”2) dV,, =O(h), h—0.
Mo ‘V900-|
Next, we write

Ww(l')%:[ —A(Re®® +Re0 ) —M(Irn@(l,)—lm@(”)}

0] Ny, _n=2 0 (1) L
x [em HUmOUImO ) =22 40 B2y /8') [ gn = i fo st
To streamline the proof, we only provide the estlmat/e for the worst case scenario,
which occurs when V,, acts on fo = o= % (mOW+ImO) ) — 252 © 4ot end, due to

(4.18), there exists C' > 0 such that by the Cauchy—Schwarz inequality, as well as
estimates (4.3) and (4.35) with k= %, we have

; v
h/ len? f1 fatby, <Vgof2, g002>|dVgo
. Vo

~ _n=-2 _d |2
<Cllgnll= 6@ F,p", )l 2 [l (t',p’v')IILZ/ h™ " Jyle R av,
Mo

=0(rY?), h—o.

Hence, we conclude that the second term on the right-hand side of (4.74) is
of order O(h'/?), thus the limit (4.72) is verified. This completes the proof of
Proposition 4.4. 0

4.3. Construction of CGO solutions. We now proceed to construct CGO
solutions of the forms (4.1) and (4.2). Thanks to the interior Carleman estimate
established in Proposition 3.5, we can put the ingredients together in a simple way.
Let (M,g) be a CTA manifold given by Definition 1.1. We already computed in
section 3 that

n+2 _;
¢ oLegaqgoc =£§ac7
where g =e®go, @ =ca, and ¢ = c(q—cn4 glc™ )) This implies that w=c T

satisfies L¢ g.q,qu =0 if @ solves L5z 51 =0 in Q.

Let us write (¢,2) = (¢,x1,2") for local coordinates in @) and recall that s = %+i)\,
0 < h <1, where A € R is fixed. We are interested in finding CGO solutions to the
equation

(4.75) ,Cg,aﬁ’ﬁ: 0 in Q
of the form
U= P (y ),
where v, is the Gaussian beam quasimode given in Proposition 4.2, and r =74 is a

correction term that vanishes in the limit 2 — 0. Indeed, % is a solution to (4.75) if

(4.76) es(ﬂt+x1)h2£§ﬁﬁe—s([3t+x1)74 = _es(Bt+x1)h255,67&6—3(6t+x1)vs

Then we apply Proposition 3.5 with v = —e3Ft+71)p2 L - ~e=s(Bt421)y and estimate
(4.4) to conclude that there exists r € H'(Q™") such that (4.76) holds and 17l 51, ) =
o(1) as h— 0.

We summarize our discussion above in the following theorem. In particular, we
have general conformal factor ¢ in this result instead of ¢ =1, which we assumed in
all of the earlier results in this paper.
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THEOREM 4.5. Let a € W'(Q) and q € C(Q). Let s =4 + i\ with A€ R fized.
For all h > 0 small enough, there exists a solution uj € Hl(Q) to Lz‘.7g7a7qu1 =0 of the
form

(4.77) uy = B T (o o),

where vy € C*°(Q) is the Gaussian beam quasimode given in Proposition 4.2, and
ry € HL (Q™) is such that 171l z1 (i) = 0(1) as h— 0.
There also exists a solution us € H(Q) to Le.gaqu2 =0 that has the form

n—2

4 (ws + 7’2),

(4.78) Uy = e*PtFT) e~
where ws € C™(Q) is the Gaussian beam quasimode given in Proposition 4.2, and
ro € H1,(Q™) is such that ||r2| g (@) =0(1) as h—0.

5. Proof of Theorem 1.2. Let u; € H!(Q) be an exponentially decaying CGO
solution given by (4.77) to the equation L* up = 0 in @, and let uy € HY(Q)

¢,9,a1,91

be an exponentially growing CGO solution given by (4.78) satisfying L. g.45,4,%2 =0
in . Due to the main assumption Cg q4,,q; = Cg.a4,q, it follows from Proposition 2.4
that there exists a function v € Hg_ (Q) such that L. g 4,,4,v=0 and

(uz = v)|2 = (u2 = v)[t=0 = (uz — V) |1=1 = 9t (uz — v)|t=0 = 0, (uz — v)|v = 0.
Then u:=uy —v € Hg, ,(Q) solves the equation

(5.1)

Legay,gt=a0us+quy in Q, uls=uli—o="uli=r = 0sul—o = dyuly =0.

Here and in what follows we denote a := a7 — a2 and q:= ¢ — go. Since adyus + qus €
L?(Q), it follows from [47, Theorem 2.1] that

ue CH([0,T); LA (M)) N C([0,T); Hy (M)) ¢ HY(Q) with d,u € L*(%).
Since u; € H(Q) and O, 4u; € L*(Q), we see that
(c 'O, —Vyur) € Haw (Q) == {F € L*(Q,TQ) : div(;  F € L*(Q)}

We view Q as a compact Riemannian manifold of dimension n + 1 with the metric
g=dt>®g, and let ¥ be the outward unit normal vector to Q. In view of [35, Lemma
2.2], for F € Haiv(Q), F - 7|gg can be defined as an element of H~'/2(9Q), and for
1 € H(Q) we have

(0, F - 0) gz (o), m-12(0q) = (¥, divg(F)) r2(@) + Vg, F) r2(q)-

By taking ¢ =u and F = (¢~ 10yu1, —V4u1), we deduce that

(u, (¢ Opur, =V gu1) - V) gr1/2(50), 1-1/2(0Q)

(52) :
= <ua Dc,gm>L2(Q) =+ <(atua Vg“): (C 187:171, _vgm)>L2 (Q)-

Arguing similarly and using dsu|;—g, Osu|i—r € L2(M), d,u € L*(X), and u; € H(Q),
we get
((c™ O, —Vgu) - 1,U1) 12(5Q) = (He,gU, U1) 12(Q)

5.3
(5:3) + (¢ Ou, =V u), (947, V1)) 12(@)-
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Since a € W1°°(Q) and u,u7 € H*(Q), it follows from the proof [20, Proposition 9.4]
that au; € H(Q) and 0;(atur) = d;auy + adyuy in the weak sense. Therefore, the
following integration by parts is justified:

(5.4) / (a177)OpudVydt = —/ Oc(artr)udV,dt = 7/ (Orartr + a10,u7)udV,dt.
Q Q Q

In particular, there are no boundary terms since u|¢—g = u|t=7 = 0.
We then multiply (5.1) by @7 and integrate over Q). Therefore, we deduce from
(5.1)—(5.4) that

(5.5)
/ (adyug + quo)urdVydt
Q

= <£C’g’alle1u7u71>L2(Q) - <u7£z,g,a1,q1u1>L2(Q)
= (¢ Byu, =Vgu) - ,u7) 12(aq) — (u, (¢~ 0T, =V gT1) - V) 111/2(90), 1-1/2(60)-

Since u|s; = u|t=0 = uli=r = 0, the second term on the right-hand side of (5.5)
vanishes. Furthermore, since d,u € L*(X) with dyul,—0 = d,uly = 0, we obtain the
integral identity

(5.6) / (aOrug + quo)urdVydt = — Oy utdSydt + / cflatu(T, z)ur (T, x)dVy.
Q

T\V M

We shall next substitute the CGO solutions (4.77) and (4.78) into (5.6), multiply
the equation by h, and pass to the limit 4 — 0. In order to analyze the limit of the
terms on the left-hand side of (5.6), we use estimates (3.43) and (4.4) to obtain the
following estimates for the remainder terms:

(5.7) I75llr2@) < MImjill e, (@imy =0(1), =12,
and

1 1 .
(5.8) ||atrj||L2(Q) < E”rj”Hslcl(Qi"t) =o(h™), j=1,2.

On the other hand, the following lemma explains the behaviors of the two terms on
the right-hand side of (5.6) as h — 0.

LEMMA 5.1. Let uy and u be the functions described above. Then the following
estimates hold as h — 0:

O(h=Y2) ifa#0,

(5.9) / ¢ 1 ouu(T, x)uy (T, x)dV, =
M O(h'/?)  ifa=0,
o(h™%) ifa#0,
(5.10) dyutrdSydt =
Z\V o(1) ifa=0.

We will postpone the proof of this result and use it to prove the uniqueness of
the damping coefficient first.

5.1. Uniqueness of the damping coefficient. From the respective CGO so-
lutions (4.77) and (4.78) for u; and wus, we compute that
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20N (Bt+a1) .~ 52 (

UU] = € UsWs + Uy + FLWs +T172) .

Therefore, by estimates (4.4), (4.5), (5.7), and the Cauchy—Schwartz inequality, we
have

[u2ttr][ L1 (@) < O(1).

Hence, the following estimate holds:
(5.11) h’/ qu2U1dngt’ < hllgll=(@)lluzti| L1 (@) = O(h), h—0.
Q

We next consider the term h |, o W(Oruz)urdVydt on the left-hand side of (5.6). To
that end, direct computations yield

(Byun )y = 2P0 =52 (550w, + V3047 + FLOw, + T104T2)

+ 8B(Vsws + Vsra + Frws +T1r2)].

Using estimates (4.4), (4.5), (5.7), (5.8), as well as the Cauchy—Schwartz inequality,
we obtain

h

/ eQi’\(ﬂle)c—anQa(@atws + Ug0¢ro + 710w —l—ﬁ@trg)d‘/gdt‘ =o(l), h—0,
Q
and
h’ / 2Bt (=52 o B(Usra + TTws +r17'2)dngt‘ =o0(1), h—0.
Q
Therefore, we have
(5.12) h / adyuzrdVydt — / FAEH) = By, dVydt, - 0.
Q Q
Using (5.11), (5.12), and Lemma 5.1, we deduce from (5.6) that
/ ezi’\(ﬁpﬂ”l)c*%ﬂa@wstgdt —0, h—0.
Q

On the other hand, since aj,a; € W1>°(Q) and a; = ay on the boundary 9Q,
we can continuously extend a on (R2 x Mp) \ Q by 0 and denote the extension by
the same letter. Using dV, = c¢%dV,,dz;, the change of coordinates (4.26), Fubini’s

theorem, the dominated convergence theorem, and the concentration property (4.57)
of the quasimodes v, and w,, we obtain

/ 62M(ﬁt+z1)cfnT—26answstgdt
Q
/ / / egik(ﬂt-&-m)cﬂa@wsd%odxldt
RJRJ M,
/ / / 3262i/\((/32_1)t~+p)(ca)@wsd%o dpd%v_> 52(1 62)_%75
R JR J My

L
><///Vl*’32 2IM(B*=DI4p)=20=B)r () (B p — T, y(1/1 — B2r))
rJR Jo

x 2 EPr)T22Er )y (T Ydrdpdt,  h— 0.
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As B e [%, 1), we conclude that

L
[T [ et oy 57 p - B (VI )
0 RJR

% e‘i’l(tN,P7T)+‘i’2(t~7P7T)n(%: P, r)dpd;fvdr —0.

(5.13)

We next follow the arguments in [46, section 4] closely to prove that (5.13) holds

when e‘i’l(’5~””7")““I’2(’?””’")n(f7 p,r) is removed from the integral. To this end, let us write
n(t,p,r) :=mn1(t,r)n2(p) in (4.58) with dn; =0, where 0 = 1(89;+ i9,), and denote

(5.14) U(E,p, r) = PN D= =Drly, 0y,

It follows from direct computations that 0¥ = 1(9; — i0,)¥ = 0.
Since a is supported in @, we get from (5.13) that

[ [ [ 9@nn)ca(Bip—ia(VT= 5 Er0 s ) dpdiar =0,
RJRJR

and there exists a constant R > 0 such that supp a CC Bz, .(0,R). Also, since
N2 € C°(R) is arbitrary, for almost every p € R we have

(5.15) / W(T,p,r)(ca) (BL,p — T,y (V/1 = B2r))e® (Brm)+ @200 gy — g,
Q

p

where €2, = {(t,r) : (t,p,7,y) € Q}. ~We shall view €2, as a domain in the complex
plane with the complex variable z =t + ir.

Recall that it was explained in the formulas (3.1)—(3.4) how to transform the
hyperbolic operator L. 44,4 into another operator L5z g of the same type, where
the contribution of the conformal factor ¢ was moved from the highest order term to
the lower order ones. In particular, we have a = ca, and the construction of the Gauss-
ian beams in section 4 is carried over for this damping coefficient. Hence, (4.55) yields

N 1 ~ ~
(5.16) ZJCN +‘I’2):Zﬁ(ca)(ﬁtvp—tﬁ(\/1—/327‘))-
Thus, it follows from (5.15) and (5.16) that

(5.17) / G(W(z,p)eq)l(z’p)+%(z’p))dz ANdzZ=0 for almost every p.
Q

I4

We now discuss the regularity of ®;. To that end, using (5.16) along with the fact
that a(-,p) € L>°(C) is compactly supported for almost every p, we see that 0®; €
LP(C) for 1 < p < co. By the boundedness of the Beurling—Ahlfors operator 09+
on LP(C), 1 < p < oo, we get 0®; = 00~1(0®;), which implies that V,®; € LP(C).
Furthermore, since ®; € L>(C), we have ®;(-,p) € W,.?(C), 1 < p < co. Hence, we

conclude that ®;(-,p) € H'(£2,), i =1,2. Thus, an application of Stokes’ theorem [67,
Theorem 18A] yields

(5.18) / U(z,p)elr1GPI+220) gz — ),
09,

By [24, Lemma 5.1] (see also [2, Lemma 3, section 2.3, Chapter 4]), there exists a

nonvanishing function F € C(€2,), antiholomorphic in €, such that

F‘BQP = 6¢1+®2|5Qp.
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Furthermore, the arguments in the proof of [43, Lemma 7.3] show that there exists
an antiholomorphic function G € C(£2,) such that F'=¢e% in Q,,, and we may assume
that G = ®; + ®3 on 9Q,. Choosing n; = Ge~% in (5.14), we get from (5.18) that

[ @) + afFp.r)) 2T gz g,

09y

Applying Stokes’ theorem again, using (5.16), and integrating over the p variable, we
obtain

(5.19)
L
e 2B =D E+p)=2(1=B")Ar (o) (37, p — T, 1 — 32r))dpdtdr = 0.
(ca)(Bt,p—t,7( B2r))dp
0 RJR

Finally, we use (4.26) to return to (t,z,7) coordinates from (,p,r) coordinates and
replace 2\ with A. After these changes, (5.19) becomes

L
(5.20) / //em(ﬁtﬂ“)* L=B2AT (ca) (t, 21, (7)) dz, dtdT = 0.
o JrJr

We are now ready to utilize Assumption 1, the invertibility of the attenuated
geodesic ray transform on (Mo, go). To that end, we let F(; z,)— (¢, ¢,) be the Fourier
transform in the Euclidean variables (¢,21) and define

(@ B,N) = / / MBI (ca)(t, 21, 2! )dr dt
RJR

= f(t,$1)~>(§1,§2)(Ca)|(£1’§2):,)\(lg,1) for 2’ € My, B € [1/2, 1), AeR.

Since a € W1°°(Q), we see that the function f(-,3,) is continuous on My. Further-
more, as v is an arbitrarily chosen nontangential geodesic in (My,go), we get from
(5.20) that the following attenuated geodesic ray transform vanishes:

L
(5.21) /0 e V=BT £(4(7), B, \)dr = 0.

By Assumption 1, there exists € > 0 such that f(v(7), 3,\) =0 whenever \/1 — 32|
Al < e. Hence, there exist 8y € (%71), Ao > 0, and 6 > 0 such that for every

(A, B) € R? that satisfies |8 — o, |A — Ao| <6, and A # 0, we have /1 — 52|)\| <e. In
particular, the mapping (A, ) — —A(8,1) is a diffeomorphism when A # 0, implying
that F(; 2,)-(¢,,¢,)(ca) =0 in an open set of R?. Last, the compact support of a and
the Paley—Wiener theorem yield that F(ca) is real analytic. Therefore, we get ca =0
in Q. Since c is a positive function, we must have a =a; — as =0.

To complete the proof of uniqueness for the damping coefficient in Theorem 1.2,
we still need to verify Lemma 5.1.

Proof of Lemma 5.1. Let us prove estimate (5.9) first. To this end, using estimates
(4.4) and (5.7), the CGO solution (4.77), and the Cauchy—Schwartz inequality, we get

' /M c Lopu(T, x)uy (T, z)dV,

(5.22) <lle™ =@ /M |0u(T, x)ur (T, ) |V,

<O(1) [ e 5 e CTH (T, 2)|([v (T, )] + 1 (T, ) |)dV,,
M

<O(1)|lesPTHe) gua(T, N2y
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Utilizing the boundary Carleman estimate (3.23) and (5.1), we obtain
(5.23) le=*CTHE09u(T, | p2ary < OBY2) e PHI Lo g o, gy ull 22

We then substitute the CGO solution (4.78) for us into (5.1) to get

efs(ﬁth:cl)[’ 7S(ﬁt+x1)(

c,g,a1,q1 U =€ a U2+qu2)

= [asﬁ( +1r2) + a(Orws + Ora) + q(ws + 12)].

We recall that s =h~! 4 i) and use estimates (4.5), (5.7), and (5.8) to obtain

O(h=Y) ifa#0,
(5.24) le™*FHD Lo g 0y arull L2(@) =
o) ifa=0.

Therefore, estimates (5.22)—(5.24) imply (5.9).
We next prove estimate (5.10). To that end, for all £ >0 we set

OM; ={x€dM:0,0(x)>e} and 34 ,.=(0,T)xOM,4..

We recall that in section 1 we defined the open sets U, V' C OM such that they
contain the back and front faces M, 0M_ of the manifold M, respectively. By the
compactness of {x € M : d,¢p(x) = 0}, there exists £ > 0 such that X\ V C X4 ,
where we had set V =(0,T) x V.

We utilize estimates (4.4), (4.77), (5.7), as well as the Cauchy—Schwartz inequality
to get

&,uulngdt‘ < / e P19, ul ([vs| + |r1])dSydt

‘ T\V i

1/2
< C(/ |e_s(5t+””1)8l,u|2dsgdt> (lvsllz2 (s ) +Ir1llz2(my)-
Ty.

Next we estimate the terms in the inequality above. By Proposition 4.5 and
estimate (5.7), in conjunction with the inequalities

1/2 —
Ir1llz2 () < Il oty Iy and Irllm ) < Ch~irlla, o),
we obtain
(5.25) 71|22y = 0(h™Y?),  h—0.

We now follow the steps in the proof of [21, Theorem 6.2] to verify
(5.26) ||U5HL2(2+1€) 20(1), h—0.
Due to the product structure of ¥ . and the fact that 7" > 0 is finite, it suffices to
prove that [vs|[z2(aar, ) = O(1).
Let 7 : OM — R be a projection defined by
mi(z) =z, for any x = (z1,2') € OM.

Without loss of generality, we assume that M. := M Nn; *(e) is a manifold for any
€ >0. Hence, OM, . is a compact (n — 1)-dimensional manifold with boundary.
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First, we observe that OM, . C OM is an open and precompact manifold of
dimension n—1, the same as My. Clearly, the projections 7 : OM — R, 71 (x1,2") = 21,
and 7o : OM — My, mo(x1,2') =2’ = (x9,...,x,), are smooth. From here, our aim is to
show that 75 is a local diffeomorphism in 9M .. To accomplish this, we note that by
definition, the vector field dx; is transversal to OM on OM, .. Thus, if 29,..., 2, are
some local coordinates in OM, ., the functions 1, 22, ... 2z, form local coordinates in
R x My near zg. Moreover, the map = — (z1,2’) is a diffeomorphim. Thus, the (n—1)x
(n—1) matrix gi; for a, 8 =2,...,n, which is also the differential of 75, is invertible.
By the inverse function theorem, the map w5 is a local diffeomorphism in OM} ..

Let € OM, . be an arbitrary point, and let &/ C OM, . be a neighborhood of
x such that may is a diffeomorphism. Then it follows from the change of variables
formula that the pullback of the surface elements satisfy (m2)*(dSy) = Jr,dVy,, where
Jr, is the Jacobian of 7, '. Therefore, we have

/M‘USFng:/ @) |USOW51|2JW2d‘/;Jo'
w2

Furthermore, after possibly choosing a smaller set U, we see that the Jacobian J, is
bounded on w3 (U) C My. Therefore, we deduce from (4.35) and (4.45) that

/u s, = [ o Pndy, =00)
>

Since z € M . was arbitrarily chosen, we can choose a larger ¢ and obtain a finite
cover for M, . consisting of the sets U as above by shrinking M .. This leads to
estimate (5.26).

Whence, estimates (5.25) and (5.26) yield
(5.27) ||US||L2(E+,E) + HTIHL?(E) ZO(h_l/Q), h—0.

On the other hand, we have

(/ |8l,ue_s(m+”’1)|2d5’gdt> 1
Sy

1/2
€8, ue=sBt+e) |2ngdt)
2+ .

1/2
(/ Dy p|d,ue Pt 2q8 dt)
Sy

1/2
8l,g0|8 ue= 3Bt 1243, dt> ,

%\H %\H B

where we used X4 = (0,7T) x oM.
Using the boundary Carleman estimate (3.23) and (5.1), we get

1/2
1
( Dy pl0,ue”*PHTI2ds, dt) SO )| PHIL, g o gull 2 (@)
SN NG

Therefore, estimates (5.24) and (5.27) yield (5.10). This completes the proof of
Lemma 5.1. d

5.2. Uniqueness of the potential. In this subsection we assume a; = as and
prove that Cg 4,.q; = Cg,a5,q, iMplies g1 = g2. Our starting point is again the integral
identity (5.6). When a; — ag = a =0, this reads

(5.28) /qugqungtz/ 10T, 2)uy (T, x)dV, — Oy utirdSgydt.
Q M S\V
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Since a = 0, Lemma 5.1 implies that both terms on the right-hand side of (5.28)
vanish in the limit h — 0. Therefore, we have

/ quatdVydt — 0, h—0.
Q

On the other hand, by substituting the CGO solutions (4.77) and (4.78) into the
left-hand side of (5.28), we get

/ quatiTdVydt = / e2iABttT1) .~ "5~ (vsws + Trg + w1 + T1re)dVydt.
Q Q
It follows from estimates (4.4), (4.5), and (5.7) that
/ qe2 A Bttz) — e (Tsra + w1 +T1r2)dVgdt = 0(1), h—0.
Q
Therefore, we obtain
/ qe? Btz = " TswsdVydt =0, h—0.
Q

By repeating the arguments leading from (5.12) to (5.13), with the assumptions that
q1,q2 € C(Q) and ¢1 = g2 on 0Q, we get

/ ﬁ/ / B DD =203 (e) (B, p — T, 7(\/T = B27))

<I>1(t,p ) +®2(t,p, T)n(t p,T )dpdfdr =0.

Then we follow the same arguments from (5.13) onward in the proof for the uniqueness
of the damping coefficient to obtain ¢; = go. This completes the proof of Theorem 1.2.
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