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Abstract. We study an inverse problem of determining a time-dependent damping coe�cient
and potential appearing in the wave equation in a compact Riemannian manifold of dimension three
or higher. More specifically, we are concerned with the case of conformally transversally anisotropic
manifolds, or in other words, compact Riemannian manifolds with boundary conformally embedded
in a product of the Euclidean line and a transversal manifold. With an additional assumption of
the attenuated geodesic ray transform being injective on the transversal manifold, we prove that the
knowledge of a certain partial Cauchy data set determines the time-dependent damping coe�cient
and potential uniquely.
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1. Introduction and statement of results. This paper is devoted to an in-
verse problem of a hyperbolic initial boundary value problem, with the aim of deter-
mining lower order time-dependent perturbations, namely, a scalar-valued damping
coe�cient and potential of a Riemannian wave operator, from a set of partial Cauchy
data. As introduced in [38], from the physical point of view, this inverse problem is
concerned with determining properties such as the time-evolving damping force and
the density of an inhomogeneous medium by probing the medium with disturbances
generated on the lateral boundary and at the initial time, and by measuring the
response at the end of the experiment as well as on some part of the lateral boundary.

To state the inverse problem considered in this paper, let (M,g) be a smooth,
compact, oriented Riemannian manifold of dimension n � 3 with smooth boundary
@M . We denote the spacetime Q = (0, T )⇥M

int with 0 < T < 1, Q the closure of
Q, and ⌃= (0, T )⇥@M the lateral boundary of Q. Recall that the Laplace–Beltrami
operator �g of the metric g acts on C

2-smooth functions according to the following
expression in local coordinates x1, . . . , xn of the manifold M :

�gv(x) = |g|�1/2(x)@xj

⇣
g
jk(x)|g(x)|1/2@xkv(x)

⌘
, x2M.

Here |g| and g
jk denote the absolute value of the determinant and the inverse of gjk,

respectively.
For a given smooth and strictly positive function c(x) on M , we consider the wave

operator

⇤Received by the editors July 28, 2023; accepted for publication (in revised form) June 4, 2024;
published electronically August 8, 2024.

https://doi.org/10.1137/23M1588676
Funding: The work of the second author was partially supported by the National Science

Foundation (NSF) grant DMS-2204997. The work of the third author was partially supported by
the NSF grant DMS-2109199.

†Department of Mathematics, North Carolina State University, Raleigh, NC 27695 USA
(bliu35@ncsu.edu, tssaksal@ncsu.edu).

‡School of Mathematics, University of Minnesota, Minneapolis, MN 55455 USA (lyan@umn.edu).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

5678

D
ow

nl
oa

de
d 

08
/2

1/
24

 to
 1

52
.7

.2
55

.1
97

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/23M1588676
mailto:bliu35@ncsu.edu
mailto:tssaksal@ncsu.edu
mailto:lyan@umn.edu


PARTIAL DATA INVERSE PROBLEM FOR WAVE EQUATION 5679

2c,g = c(x)�1
@
2
t
��g,(1.1)

whose coe�cients are time independent. In this paper we study an inverse problem
for the following linear hyperbolic partial di↵erential operator

Lc,g,a,q =2c,g + a(t, x)@t + q(t, x), (t, x)2Q,(1.2)

with time-dependent lower order coe�cients a 2 W
1,1(Q) (the damping coe�cient)

and q 2C(Q) (the potential). Our first geometric assumption is the following.

Definition 1.1. A Riemannian manifold (M,g) of dimension n� 3 with bound-

ary @M is called conformally transversally anisotropic (CTA) if M is a compact

subset of a manifold R ⇥ M
int
0 with smooth boundary and nonempty interior, and

g = c(e � g0). Here (R, e) is the real line, (M0, g0) is a smooth compact (n � 1)-
dimensional Riemannian manifold with smooth boundary, called the transversal man-

ifold, and c2C
1(R⇥M0) is a strictly positive function.

Examples of CTA manifolds include precompact smooth proper subsets of Euclid-
ean, spherical, and hyperbolic spaces. We refer readers to [25] for more examples.
Since the manifold M is embedded into the product manifold R⇥M

int
0 , we can write

every point x 2M in the form x= (x1, x
0), where x1 2R and x

0 2M0. In particular,
the projection '(x) = x1 is a limiting Carleman weight. It was established in [23,
Theorem 1.2] that the existence of a limiting Carleman weight implies that a con-
formal multiple of the metric g admits a parallel unit vector field, and the converse
holds for simply connected manifolds. Locally, the latter condition is equivalent to
the fact that the manifold (M,g) is conformal to the product of an interval and some
Riemannian manifold (M0, g0) of one dimension less.

The limiting Carleman weight ' gives us a canonical way to define the front and
back faces of @M and @Q. Let ⌫ be the outward unit normal vector to @M with respect
to the metric g. We denote @M± = {x2 @M :±@⌫'(x)� 0} and ⌃± = (0, T )⇥@M int

± .
Then we define U = (0, T ) ⇥ U

0 and V = (0, T ) ⇥ V
0, where U

0
, V

0 ⇢ @M are open
neighborhoods of @M+, @M�, respectively.

The goal of this paper is to show that the time-dependent damping coe�cient
a(t, x) and potential q(t, x), appearing in (1.2), can be uniquely determined from the
following set of partial Cauchy data:

Cg,a,q = {(u|⌃, u|t=0, u|t=T ,@tu|t=0,@⌫u|V ) : u2H
1(0, T ;L2(M)), Lc,g,a,qu= 0}.

(1.3)

We will define these data carefully in section 2.
Notice that in addition to the data measured on the lateral boundary, the set of

Cauchy data Cg,a,q also includes measurements made at the initial time t= 0 and the
end time t= T . Indeed, it was established in [32] that the full lateral boundary data
with vanishing initial conditions,

Clat
g,a,q

= {(u|⌃,@⌫u|⌃) : u2H
1(0, T ;L2(M)), Lg,a,qu= 0, u|t=0 = @tu|t=0 = 0},(1.4)

determines time-independent damping coe�cients and potentials uniquely for T >

diam(M), where M is a bounded domain in Rn. However, due to domain of depen-
dence arguments, as explained for instance in [40, subsection 1.1], it is only possible
to recover a general time-dependent coe�cient in the optimal set

D= {(t, x)2Q : dist(x,@M)< t< T � dist(x,@M)}

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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5680 BOYA LIU, TEEMU SAKSALA, AND LILI YAN

from Clat
g,a,q

. Thus, even for large measurement time T > 0, a global recovery of
time-dependent lower order coe�cients of the hyperbolic operator (1.2) needs some
additional information at the beginning {t = 0} and at the end {t = T} of the
measurement.

Unfortunately, the product structure of the ambient space R⇥M0 of the manifold
(M,g) is not quite su�cient for the recovery method presented in this paper. We
need to also assume that certain geodesic ray transforms on the transversal manifold
(M0, g0) are injective. Such assumptions have been successfully implemented to solve
many important inverse problems on CTA manifolds; see, for instance, [21, 25, 46, 68]
and the references therein.

Let us now recall some definitions related to geodesic ray transforms on Riemann-
ian manifolds with boundary. Geodesics of (M0, g0) can be parametrized (nonuniquely)
by points on the unit sphere bundle SM0 = {(x, ⇠)2 TM0 : |⇠|= 1}. Moreover, we use
the notation

@±SM0 = {(x, ⇠)2 SM0 : x2 @M0,±h⇠,⌫(x)i> 0}

for the incoming (–) and outgoing (+) boundaries of SM0. These sets correspond to
the geodesics touching the boundary, and h·, ·i is the Riemannian inner product of
(M0, g0).

Let (x, ⇠) 2 @�SM0, and let � = �x,⇠ be a geodesic of M0 with initial conditions
�(0) = x and �̇(0) = ⇠. Then ⌧exit(x, ⇠) > 0 stands for the first time when � meets
@M0 with the convention that ⌧exit(x, ⇠) = +1 if � stays in the interior of M0. We
say that a unit speed geodesic segment � : [0, ⌧exit(x, ⇠)]!M0, 0< ⌧exit(x, ⇠)<1, is
nontangential if �(0), �(⌧exit(x, ⇠)) 2 @M0, �̇(0) and �̇(⌧exit(x, ⇠)) are nontangential
vectors to @M0, and �(⌧)2M

int
0 for all 0< ⌧ < ⌧exit(x, ⇠).

In this paper we shall reduce the determination of unknown time-dependent coef-
ficients a(x, t) and q(x, t) from the set of partial Cauchy data (1.3) to the invertibility
of the attenuated geodesic ray transform on the transversal manifold (M0, g0). Given
a smooth function ↵ on M0, the attenuated geodesic ray transform of a function
f : M0 !R is given by

I
↵(f)(x, ⇠) =

Z
⌧exit(x,⇠)

0
exp

Z
t

0
↵(�x,⇠(s))ds

�
f(�x,⇠(t))dt, (x, ⇠)2 @�SM0 \ ��,

(1.5)

where �� = {(x, ⇠) 2 @�SM0 : ⌧exit(x, ⇠) =+1}. Our second geometric assumption 1
is the following.

Assumption 1. There exists " > 0 such that for each smooth function ↵ on M0

with k↵kL1(M0) < ", the respective attenuated geodesic ray transform I
↵ on (M0, g0)

is injective over continuous functions f in the sense that if I
↵(f)(x, ⇠) = 0 for all

(x, ⇠)2 @�SM0 \ �� such that �x,⇠ is a nontangential geodesic, then f = 0 in M0.

It was verified in [23, Theorem 7.1] that simple manifolds always satisfy Assump-
tion 1. Traditionally, a compact, simply connected Riemannian manifold with smooth
boundary is called simple if its boundary is strictly convex, and no geodesic has con-
jugate points. Also, the injectivity of the geodesic ray transform (↵ = 0) on simple
manifolds is well known; see [52, 62].

In addition to simple manifolds, there are some other geometric conditions under
which the attenuated geodesic ray transform I

↵ is known to be injective. For in-
stance, if the manifold is radially symmetric and satisfies the Herglotz condition, then

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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PARTIAL DATA INVERSE PROBLEM FOR WAVE EQUATION 5681

I
↵ is injective whenever the attenuation ↵ is also radially symmetric and Lipschitz

continuous [22, Theorem 29]. For the purposes of the current paper it su�ces to only
consider constant attenuations. The Herglotz condition is a special case of a manifold
satisfying a convex foliation condition, and in [53] the injectivity of I↵ is verified on
this type of manifold of dimension n� 3. Some examples of manifolds satisfying the
global foliation condition are the punctured Euclidean space Rn \ {0} and the torus
Tn. We refer readers to [53, section 2] for more examples. Finally, we would like
to recall that a convex foliation condition does not forbid the existence of conjugate
points. Hence, there are many nonsimple Riemannian manifolds with an invertible
attenuated geodesic ray transform.

The main result of this paper is the following.

Theorem 1.2. Let T > 0. Suppose that (M,g) is a CTA manifold of dimension

n � 3 and that Assumption 1 holds for the transversal manifold (M0, g0). Let ai 2
W

1,1(Q) and qi 2C(Q), i= 1,2. If a1 = a2 and q1 = q2 on @Q, then Cg,a1,q1
= Cg,a2,q2

implies that a1 = a2 and q1 = q2 in Q.

Theorem 1.2 can be viewed as an extension of [41, Theorem 1.4], where only the
potential was considered, to the case of recovering both damping coe�cient and po-
tential from the set of partial Cauchy data Cg,a,q. From the perspective of a geometric
setting, this paper extends [38] from the Euclidean space, as well as [41] from CTA
manifolds with a simple transversal manifold, to a larger class of CTA manifolds. As
in [41], we attack the problem by utilizing tools from the theory of inverse problems
for elliptic operators. However, in comparison with the earlier works, we would not be
able to relax the simplicity assumption on the transversal manifold without significant
modifications to the construction of complex geometric optic (CGO) solutions.

Assumption 1 of this paper is di↵erent from the literature concerning inverse
problems for elliptic operators on CTA manifolds; see, for instance, [25, 36, 46]. These
works assume the invertibility of the geodesic ray transform I

↵ for ↵= 0. In the case
of elliptic operators, where there is only one Euclidean direction x1, the authors
reduced the problem first to the attenuated geodesic ray transform. Then the authors
recovered the geodesic ray transform for each coe�cient in the Taylor expansions
of the unknown functions by di↵erentiating an expression similar to (5.21) in our
manuscript with respect to the variable � at zero. Unfortunately, this approach is
not applicable in our case, as the mapping (�,�) 7! ��(�,1), appearing in (5.21), is
a di↵eomorphism only if � 6= 0. Thus, computing � and �-derivatives of (5.21) at
�= 0 will not give us the geodesic ray transform of Taylor coe�cients of the unknown
functions at the origin in the Fourier variables.

1.1. Previous literature. The recovery of coe�cients appearing in hyperbolic
equations from boundary measurements has attracted lots of attention in recent years.
Results in this direction are generally divided into two categories with respect to time-
independent and time-dependent coe�cients.

Starting with seminal works [11, 14], there has been extensive literature related
to the recovery of time-independent coe�cients appearing in hyperbolic equations.
We refer readers to [8, 19, 30, 31, 48] and references therein for some works in this
direction. A powerful tool to prove uniqueness results for time-independent coe�cients
of hyperbolic equations, including the leading order coe�cient, is the boundary control
method, which was developed in [11, 14], as well as a time-sharp unique continuation
theorem proved in [66]. We refer readers to [42] for an introduction to the method and
[12, 34] for reviews. However, it was discovered in [5, 6] that the unique continuation
theorem analogous to [66] may fail when the dependence of coe�cients on time is not

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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5682 BOYA LIU, TEEMU SAKSALA, AND LILI YAN

analytic, which means that the boundary control method is not well suited to recover
time-dependent coe�cients in general.

Aside from the boundary control method, the approach of geometric optic (GO)
solutions is also widely utilized to recover time-independent coe�cients of hyperbolic
equations. Using this approach, the unique recovery of time-independent potential q
(with a= 0) from full lateral boundary Dirichlet-to-Neumann map was established in
[55], and [32] extended this result to recovery of time-independent damping coe�cients
using the same boundary data. A uniqueness result from partial boundary measure-
ments was considered in [26]. The GO solution approach has also been used to obtain
stronger stability results [16, 17, 37, 65] than the boundary control method [7], but
it gives less sharp uniqueness results from the perspective of geometric assumptions
than the latter.

Turning the attention to the time-dependent category, most of the results in this
direction rely on the use of GO solutions. This approach was first implemented in
the context of determining time-dependent coe�cients of hyperbolic equations from
the knowledge of scattering data by using properties of the light-ray transform [64].
Recovery of time-dependent potential q from the full lateral boundary data Clat

q
, given

by (1.4), on the infinite cylinder R⇥⌦, where ⌦ is a domain in Rn, was established in
[58]. On a finite cylinder (0, T )⇥⌦ with T > diam(⌦), it was proved in [54] that Clat

q

determines q uniquely in the optimal set D of (0, T ) ⇥ ⌦. Uniqueness and stability
results for determining a general time-dependent potential q from partial data were
established in [40] and [18, 39], respectively.

Going beyond the Euclidean space, uniqueness results for time-dependent poten-
tial q from both full and partial boundary measurements were established in [41] on
a CTA manifold (M,g), with a simple transversal manifold M0, by using the GO
solution approach. For more general manifolds, recently it was proved in [3] that the
set of full Cauchy data uniquely determines the potential q in Lorentzian manifolds
satisfying certain two-sided curvature bounds and some other geometric assumptions,
and this curvature bound was weakened in [4] near Minkowski geometry. In particu-
lar, the proof of [3] is based on a new optimal unique continuation theorem and can
be viewed as a generalization of the boundary control method to the cases without
real analyticity assumptions.

There is also some literature related to determining time-dependent first order
perturbations appearing in hyperbolic equations from boundary data analogous to
(1.3). In the Euclidean setting, [38] extended the result of [40] to a unique determi-
nation of time-dependent damping coe�cients and potentials from Cg,a,q. When the
vector field perturbation appears in the wave equation, similarly to elliptic operators
such as the magnetic Schrödinger operator, one can only recover the first order per-
turbation up to a gauge invariance, i.e., the di↵erential of a test function in Q; see [27]
for a uniqueness result when the dependence of coe�cients on time is real-analytic,
and this analyticity assumption was removed later in [59]. Logarithmic type stability
estimates for the vector field perturbation as well as the potential were proved in [15].
A uniqueness result analogous to [27, 59] from a partial Dirichlet-to-Neumann map was
obtained in [44]. In the non-Euclidean setting, it is established in [28] that the hyper-
bolic Dirichlet-to-Neumann map determines the first order and the zeroth order per-
turbations up a gauge invariance on a certain nonoptimal subset of Q by inverting the
light-ray transform of the Lorentzian metric �dt

2 + g(x) for one-form and functions.
To summarize, there are only two known methods to recover the coe�cients

appearing in hyperbolic equations from boundary measurements. Since in the current
paper the unknown lower order coe�cients of the hyperbolic operator Lc,g,a,q, as in

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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PARTIAL DATA INVERSE PROBLEM FOR WAVE EQUATION 5683

(1.2), are time dependent, we cannot apply the boundary control method. Thus,
our proofs are based on GO solutions. We believe that an introduction of any new
method, which can be used to attack the hyperbolic inverse problems, would be a
major breakthrough. Obviously, this is not in the scope of the current paper.

Finally, we would like to emphasize that to the best of our knowledge, the global
recovery of a full first order time-dependent perturbation (a one-form and potential
function in Q) of the Riemannian wave operator from a set of partial Cauchy data,
and the optimal recovery of these coe�cients from the respective hyperbolic Dirichlet-
to-Neumann map, remain important open problems.

1.2. Outline for the proof of Theorem 1.2. The first main ingredient of the
proof is the construction of exponentially growing and decaying CGO solutions to the
equation Lc,g,a,qu= 0 of the form

u(t, x) = e
±s(�t+'(x))(vs(t, x) + rs(t, x)), (t, x)2Q.

Here s = 1
h
+ i� is a complex number, h 2 (0,1) is a semiclassical parameter, � 2 R

and � 2 ( 1p
3
,1) are some fixed numbers, vs is a Gaussian beam quasimode, and rs is a

correction term that decays with respect to the parameter h. The function '(x) = x1

is a limiting Carleman weight on M .
We exploit the existence of the limiting Carleman weight �t + x1 in Q and de-

rive necessary boundary and interior Carleman estimates; see Proposition 3.1 and
Lemma 3.4, respectively. The boundary Carleman estimates are used to control the
solutions on the inaccessible part of the boundary, while the interior Carleman esti-
mates are needed to verify the existence of the correction term rs in Proposition 3.5. In
the current paper the Dirichlet boundary values are given on the full lateral bound-
ary, which is in line with many earlier works involving a first order term; see, for
instance, [38, 44, 51, 61]. Meanwhile, in the absence of the damping term, but with
Dirichlet data measured only on a part of the lateral boundary, the authors of [40, 41]
constructed GO solutions to the respective hyperbolic equation that vanish initially
and on part of the lateral boundary. In this way the authors were able to utilize the
boundary Carleman estimate to control their GO solutions on the inaccessible part
of the boundary. Unfortunately, this method only provides an L

2-estimate for the
correction term rs, and due to the existence of the damping coe�cient, we need an
H

1-estimate for rs. This is provided in Proposition 3.5.
Since the transversal manifold (M0, g0) is not necessarily simple in this paper,

the approach based on global GO solutions is not applicable to us. To medicate
this, in Theorem 4.2 we construct Gaussian beam quasimodes for every nontangential
geodesic in the transversal manifold M0 by using techniques developed in solving
inverse problems for elliptic operators (see for instance [21, 25, 46]), followed by a
concentration property for the quasimodes given in Theorem 4.4. The construction
of CGO solutions is finalized in Theorem 4.5. In this part we need the regularity
conditions imposed on the unknown time-dependent coe�cients a and q.

The second main component in the proof is the integral identity (5.6), whose
derivation needs the equivalence of the partial Cauchy data. When the obtained
CGO solutions are inserted in the integral identity, the boundary Carleman estimate
of Proposition 3.2 forces the right-hand side of (5.6) to vanish in the limit h! 0. On
the other hand, the concentration property given in Theorem 4.4 implies that the left-
hand side of (5.6) converges to the attenuated geodesic ray transform of the Fourier
transform (in the two Euclidean variables (t, x1)) of the unknown coe�cients in the
transversal manifold (M0, g0). To carry on this reduction step, we need the regularity

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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5684 BOYA LIU, TEEMU SAKSALA, AND LILI YAN

and boundary conditions imposed on the unknown time-dependent coe�cients a and
q. We need Assumption 1 to invert the attenuated geodesic ray transform. We first
provide a proof for the uniqueness result for the damping coe�cient a(t, x), followed
by verifying the uniqueness for the potential q(t, x).

This paper is organized as follows. We begin by carefully defining the set of
partial Cauchy data (1.3) in section 2. In section 3 we derive the boundary and
interior Carleman estimates. In section 4 we construct the CGO solutions to the
hyperbolic equation Lc,g,a,qu= 0 based on Gaussian beam quasimodes in Q. Finally,
the proof of Theorem 1.2 is presented in section 5.

2. Definition of the partial Cauchy data. The goal of this short section is
to recall some properties of the weak solutions to the initial boundary value problem

8
><

>:

Lc,g,a,qu(t, x) = 0 in Q,

u(0, x) = h0(x), @tu(0, x) = h1(x) in M,

u(t, x) = f(t, x) on ⌃,

(2.1)

as introduced in [38, section 2].
We define the space

H2c,g (Q) = {u2H
1(0, T ;L2(M)) :2c,gu= (c�1

@
2
t
��g)u2L

2(Q)},

equipped with the norm

kuk2
H2c,g (Q) = kuk2

H1(0,T ;L2(M)) + k2c,guk2L2(Q).

Our starting point is the following result, originally presented in [40, Theorem A.1].

Lemma 2.1. The space H2c,g is continuously embedded into the closure of C
1(Q)

in the space

K2c,g (Q) = {u2H
�1(0, T ;L2(M)) :2c,gu2L

2(Q)}

equipped with the norm

kuk2
K2c,g (Q) = kuk2

H�1(0,T ;L2(M)) + k2c,guk2L2(Q).

For each w 2C
1(Q), we introduce two linear maps

◆0w= (◆0,1w, ◆0,2w, ◆0,3w) = (w|⌃,w|t=0,@tw|t=0)

and

◆1w= (◆1,1w, ◆1,2w, ◆1,3w) = (@⌫w|⌃,w|t=T ,@tw|t=T ).

Lemma 2.2. The maps ◆0 and ◆1 defined above can be extended continuously to

◆0 :H2c,g (Q)!H
�3(0, T ;H�1/2(@M))⇥H

�2(M)⇥H
�4(M)

and

◆1 :H2c,g (Q)!H
�3(0, T ;H�3/2(@M))⇥H

�2(M)⇥H
�4(M),

respectively.
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PARTIAL DATA INVERSE PROBLEM FOR WAVE EQUATION 5685

Proof. Since the conformal factor c in 2c,g is time independent, the proof is a
straightforward modification of the proof for [40, Proposition A.1].

We note that by the same argument as in [38, section 2], the set

J = {u2H
1(0, T ;L2(M)) :2c,gu= 0}

is a closed vector subspace of H1(0, T ;L2(M)), contained in H2c,g (Q). Finally, we
record the range of the map ◆0:

K := {◆0w : u2H2c,g (Q)}⇢H
�3(0, T ;H�1/2(@M))⇥H

�2(M)⇥H
�4(M).

By an analogous argument to the proof for [40, Proposition 2.1], we get the following
result.

Lemma 2.3. The linear map ◆0 : J !K is a bijection.

By Lemma 2.3, the inverse function ◆
�1
0 : K ! J exists, and we can use it to

define a norm in K via the formula

k(f,h0, h1)kK = k◆�1
0 (f,h0, h1)kH1(0,T ;L2(M)), (f,h0, h1)2K.

We would like to recall that we have defined @M± = {x 2 @M : ±@⌫'(x) � 0} and
V = (0, T )⇥V

0, where V 0 ⇢ @M is an open neighborhood of @M�. We are now ready
to state and prove the existence and uniqueness of solutions to the initial boundary
value problem (2.1) with the datum (f,h0, h1)2K.

Proposition 2.4. Let a2W
1,1(Q) and q 2C(Q). For each datum (f,h0, h1)2

K, the initial boundary value problem (2.1) has a unique weak solution u 2 H
1(0, T ;

L
2(M)) that satisfies

kukH1(0,T ;L2(M)) Ck(f,h0, h1)kK.(2.2)

Furthermore, the boundary operator

Ba,q :K!H
�3(0, T ;H�3/2(V 0))⇥H

�2(M), Ba,q(f,h0, h1) = (◆1,1u|V , ◆1,2u)(2.3)

is bounded, and the partial Cauchy data set Cg,a,q, as in (1.3), is the graph of the map

Ba,q.

Proof. The proof is a straightforward modification of the proof of [38, Proposition
2.1].

3. Carleman estimates. Our goal of this section is to prove a boundary Car-
leman estimate as well as an interior Carleman estimate for the operator Lc,g,a,q con-
jugated by an exponential weight corresponding to a linear function �t+ x1, where
0< � < 1 is a constant. We shall utilize the boundary Carleman estimate to control
boundary terms over subsets of the boundary @Q where measurements are not acces-
sible, and the interior Carleman estimates will be used in section 4 to construct the
remainder term for both exponentially decaying and growing CGO solutions.

Let (M,g) be a CTA manifold as defined in Definition 1.1, and let eg= e� g0. By
the conformal properties of the Laplace–Beltrami operator, we have

c
n+2

4 (��g)
⇣
c
�n�2

4 u

⌘
=��egu�

⇣
c

n+2

4 �g

⇣
c
�n�2

4

⌘⌘
u;(3.1)
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5686 BOYA LIU, TEEMU SAKSALA, AND LILI YAN

see [25, section 2]. Also, since c is independent of t, we get

c
n+2

4 a@t

⇣
c
�n�2

4 u

⌘
= ca@tu, and c

n+2

4 @
2
t

⇣
c
�n�2

4 u

⌘
= c@

2
t
u.(3.2)

Thus, it follows from (3.1) and (3.2) that for the hyperbolic operator Lc,g,a,q, we have

c
n+2

4 �Lc,g,a,q � c�
n�2

4 =Leg,ea,eq,(3.3)

where

ea= ca, eq= c

⇣
q� c

n�2

4 �g

⇣
c
�n�2

4

⌘⌘
.(3.4)

Hence, by replacing the metric g and coe�cients a, q with eg,ea, eq, respectively, we can
assume that the conformal factor c = 1. In this section we shall make use of this
assumption and consider the leading order wave operator 2e�g0

= @
2
t
��e�g0

. Let us
denote Lg,a,q as the hyperbolic partial di↵erential operator Lc,g,a,q when c= 1.

3.1. Boundary Carleman estimate. Due to the damping coe�cient, we need
to use a convexification argument similar to [38, 44] to establish the needed boundary
Carleman estimate. To elaborate, let us first introduce a new parameter "> 0, which
is independent of h and to be determined later. For 0 < h < " < 1, we consider the
perturbed weight

'±h,"(t, x) =± 1

h
(�t+ x1)�

t
2

2"
.(3.5)

Our first result in this section can be viewed as an extension of [38, Theorem 3.1]
from the Euclidean setting to that of Riemannian manifolds with dependence on a
parameter �. Note that [38, Theorem 3.1] is not directly applicable in our case since
the parameter � is strictly less than 1.

Proposition 3.1. Let a, q 2 L
1(Q,C) and u 2 C

2(Q). If u satisfies the condi-

tions

u|⌃ = u|t=0 = @tu|t=0 = 0,(3.6)

then for all 0<h⌧ "⌧ 1 we have

ke�'h,"h
2Lg,a,q(e

'h,"u)k2
L2(Q) +

✓
4

�
� �

2

◆
h
3krgu(T, ·)k2L2(M) + 3�hku(T, ·)k2

L2(M)

� (3�2 � 1)h2

4"
kuk2

L2(Q) +
�h

3

4
k@tu(T, ·)k2L2(M) +

h
4

2"
(k@tuk2L2(Q) + krguk2L2(Q))

+ h
3

Z

⌃
⌫1|@⌫u|2dSgdt

(3.7)

and

ke�'�h,"h
2Lg,a,qe

'�h,"uk2
L2(Q) + 2(� + 1)h3

⇣
krgu(T, ·)k2L2(M) + k@tu(T, ·)k2L2(M)

⌘

� (3�2 � 1)h2

4"
kuk2

L2(Q) +
h
4

2"

⇣
k@tukL2(Q) + krguk2L2(Q)

⌘
� h

3

Z

⌃
⌫1|@⌫u|2dSgdt,

(3.8)

where '±h," is given by (3.5), 1p
3
 � < 1, and ⌫1 := h⌫,@x1

ig.
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PARTIAL DATA INVERSE PROBLEM FOR WAVE EQUATION 5687

Proof. We shall only provide a detailed proof for estimate (3.7). The derivation
of (3.8) is analogous and therefore omitted. To proceed, we omit the subscripts h, "

in 'h," to simplify the notation.
Step 1: The conjugated operator e

�'
h
2Lg,a,qe

'
u. By direct computations, we

have

e
�'

h
2Lg,a,qe

'
u= h

2
⇥
@
2
t
u+ 2@t'@tu+ u@

2
t
'+ u(@t')

2 � (�gu+ 2hrg',rguig
+u�g'+ u|rg'|2) + a@tu+ au@t'+ qu

⇤

:= P1u+ P2u+ P3u,

(3.9)

where

P1u= h
2(2gu+ (@t')

2
u� |rg'|2u+ (2g')u), P2u= h

2(2@t'@tu� 2hrg',rguig),
P3u= h

2(a@tu+ (a@t')u+ qu).

(3.10)

Thus, P1u includes the even order derivatives of u, P2u contains the odd order deriv-
atives of u, and P3u has all the terms involving a or q. Due to (3.9), (3.10), and the
triangle inequality, we have

ke�'h2Lg,a,qe
'
uk2

L2(Q) �
1

2
kP1u+ P2uk2L2(Q) � kP3uk2L2(Q).(3.11)

In the last two steps of this proof we shall bound kP1u+ P2uk2L2(Q) from below and
kP3uk2L2(Q) from above. We first use Cauchy’s inequality to convert the first term on
the right-hand side of (3.11) into a product. The choice of the operators P1 and P2

simplifies the subsequent computations, which involve several integration by parts.
The estimate for the second term in the right-hand side of (3.11) is short and is based
on the boundedness of a and q. Both estimations rely on the choice of the perturbed
weight given in (3.5). Finally, the inequality (3.7) is obtained by combining these two
estimates.

Step 2: A lower bound of kP1u + P2uk2L2(Q). To start, we have by Cauchy’s
inequality that

1

2
kP1u+ P2uk2L2(Q) �

Z

Q

Re(P1uP2u)dVgdt.

Since g(x1, x
0) = (dx1)2 + g0(x0), we get from direct computations that

@t'=
1

h
� � 1

"
t, @

2
t
'=�1

"
, @x1

'=
1

h
, hrg',rguig =

1

h
@x1

u,(3.12)

which yield

Z

Q

Re(P1uP2u)dVgdt

=Re

Z

Q

2h4


@
2
t
u

✓
1

h
� � 1

"
t

◆
@tu� 1

h
@
2
t
u@x1

u��gu

✓
1

h
� � 1

"
t

◆
@tu+

1

h
�gu@x1

u

�
✓

1

h2
(1� �

2) +
1

"
+

2�

h"
t� 1

"2
t
2

◆
u

✓✓
1

h
� � 1

"
t

◆
@tu� 1

h
@x1

u

◆�
dVgdt.

(3.13)

Let us proceed to estimate each term on the right-hand side of (3.13). For the
first term, we integrate by parts and use the assumption @tu|t=0 = 0 to deduce
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5688 BOYA LIU, TEEMU SAKSALA, AND LILI YAN

2h4Re

Z

Q

✓
1

h
�� 1

"
t

◆
@
2
t
u@tudVgdt= h

4

✓
1

h
�� 1

"
T

◆
k@tu(T, ·)k2L2(M)+

h
4

"
k@tuk2L2(Q).

(3.14)

Turning attention to the second term, we note that the Lie bracket [@t,@x1
] van-

ishes. Thus, we integrate by parts and apply @tu|t=0 = 0 to obtain

2h4Re

Z

Q

✓
� 1

h

◆
@
2
t
u@x1

udVgdt=�2h3Re

Z

M

@tu(T,x)@x1
u(T,x)dVg

+ h
3

Z

Q

@x1
|@tu|2dVgdt.

Since the vector field @x1
is divergence free, we get from the assumption u|⌃ = 0 and

integration by parts that the last term in the equation above vanishes. Hence, we
have the following equality for the second term:

2h4Re

Z

Q

✓
� 1

h

◆
@
2
t
u@x1

udVgdt=�2h3Re

Z

M

@tu(T,x)@x1
u(T,x)dVg.(3.15)

Before estimating the third term, we recall that in local coordinates (t, (xj)nj=1)
of Q we have [@t,@xj ] = 0 for every j = 1, . . . , n, and rgu(t, x) = g

ik(x)@xku(t, x).
Furthermore, since the metric g is time independent, we have

@t|rgu|2 = 2hrg@tu,rguig.

Thus, by Green’s identities and u|⌃ = 0, we obtain

�2h4Re

Z

Q

�gu

✓
1

h
� � 1

"
t

◆
@tudVgdt= h

4

Z

Q

✓
1

h
� � 1

"
t

◆
@t|rgu|2dVgdt.

Since u|t=0 = 0, it follows immediately that rgu(0, ·) = 0. Then we integrate by parts
to get
Z

Q

✓
1

h
� � 1

"
t

◆
@t|rgu|2dVgdt=

Z

M

✓
1

h
� � 1

"
T

◆
|rgu(T, ·)|2dVg +

Z

Q

1

"
|rgu|2dVgdt.

Therefore, we have verified that the third term on the right-hand side of (3.13) satisfies

�2h4Re

Z

Q

�gu

✓
1

h
� � 1

"
t

◆
@tudVgdt= h

4

✓
1

h
� � 1

"
T

◆
krgu(T, ·)k2L2(M)(3.16)

+
h
4

"
krguk2L2(Q).

We next follow the proof of [41, Lemma 4.2] to estimate the fourth term. Since the
metric g is x1-independent, it follows from the Leibniz rule and the local representation
of the divergence operator [50, Proposition 2.46] that

2@x1
u�gu= 2divg(@x1

urgu)� divg(|rgu|2g@x1
).

Thus, an application of the divergence theorem yields

2h4Re

Z

Q

1

h
@x1

u�gudVgdt= h
3Re

Z

⌃
2@⌫u@x1

u� |rgu|2h⌫,@x1
igdSgdt.
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PARTIAL DATA INVERSE PROBLEM FOR WAVE EQUATION 5689

Since u|⌃ = 0, we see that rgu|⌃ = (@⌫u)⌫ and @x1
u|⌃ = @⌫uh⌫,@x1

ig := @⌫u⌫1.
Therefore, we have

2h4Re

Z

Q

1

h
�gu@x1

udVgdt= h
3

Z

⌃
⌫1|@⌫u|2dSgdt.(3.17)

We now turn our attention to the last term on the right-hand side of (3.13). To
that end, we integrate by parts, and use divg(@x1

) = 0 and u|⌃ = 0 to write

2Re

Z

M

u(t, ·)@x1
u(t, ·)dVg =

Z

M

@x1
|u(t, ·)|2dVg =

Z

@M

|u(t, ·)|2⌫1dSg = 0.

Hence, by utilizing the condition u|t=0 = 0, the last term on the right-hand side of
(3.13) can be written as

2h4Re

Z

Q

�
✓

1

h2
(1� �

2) +
1

"
+

2�

h"
t� 1

"2
t
2

◆
u

✓✓
1

h
� � 1

"
t

◆
@tu� 1

h
@x1

u

◆
dVgdt

=�h
4

Z

Q

✓
1

h2
(1� �

2) +
1

"
+

2�

h"
t� 1

"2
t
2

◆✓
1

h
� � 1

"
t

◆
@t|u|2dVgdt

=�h
4

✓
1� �

2

h2
+

1

"
+

2�

"h
T � 1

"2
T

2

◆✓
1

h
� � 1

"
T

◆
ku(T, ·)k2

L2(M)

+ h
4

Z

Q

✓
3�2 � 1

"h2
� 1

"2
� 6�

"2h
t+

3

"3
t
2

◆
|u|2dVgdt.

We now choose the numbers ", h > 0 such that

0< "< 3T 2
,

1p
3
< � < 1, and

1

h
>max

⇢
2T

"�
,

12�T

"(3�2 � 1)
,
2�T

"
,
1

"

�
.(3.18)

These choices yield h< ",

3�2 � 1

"h2
� 1

"2
� 6�

"2h
t+

3

"3
t
2 � 3�2 � 1

2"h2
,

and

0<

✓
1� �

2

h2
+

1

"
+

2�

"h
T � 1

"2
T

2

◆✓
1

h
� � 1

"
T

◆
 3�

h3
.

The choices of h and " in (3.18) allow the term 1
h2 to absorb the lower order terms

when 0<h⌧ "⌧ 1. Therefore, we get from these choices of " and h that

2h4Re

Z

Q

�
✓

1

h2
(1� �

2) +
1

"
+

2�

h"
t� 1

"2
t
2

◆
u

✓✓
1

h
� � 1

"
t

◆
@tu� 1

h
@x1

u

◆
dVgdt

��3�hku(T, ·)k2
L2(M) +

(3�2 � 1)h2

2"
kuk2

L2(Q).

(3.19)

By combining estimates (3.14)–(3.17) and (3.19), we obtain

1

2
kP1u+ P2uk2 � h

4

✓
1

h
� � 1

"
T

◆
k@tu(T, ·)k2L2(M) +

h
4

"

⇣
k@tuk2L2(Q) + krguk2L2(Q)

⌘

� 2h3Re

Z

M

@tu(T,x)@x1
u(T,x)dVg + h

4

✓
1

h
� � 1

"
T

◆

⇥ krgu(T, ·)k2L2(M) + h
3

Z

⌃
⌫1|@⌫u|2dSgdt+

(3�2 � 1)h2

2"
kuk2

L2(Q)

� 3�hku(T, ·)k2
L2(M).
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We sharpen the estimate above by implementing 1
h
>

2T
"�

from (3.18) and utilizing the
following inequality,

Re

Z

M

@tu(T,x)@x1
u(T,x)dVg 

�

8
k@tu(T, ·)k2L2(M) +

8

�
krgu(T, ·)k2L2(M),

to obtain

1

2
kP1u+ P2uk2 �

1

4
�h

3k@tu(T, ·)k2L2(M) +
h
4

"
(k@tuk2L2(Q) + krguk2L2(Q))

� h
3

✓
16

�
� �

2

◆
krgu(T, ·)k2L2(M) +

(3�2 � 1)h2

2"
kuk2

L2(Q)

+ h
3

Z

⌃
⌫1|@⌫u|2dSgdt� 3�hku(T, ·)k2

L2(M).

(3.20)

Step 3: An upper bound of kP3ukL2(Q). We deduce from (3.10), (3.12), as well as
the triangle inequality that

kP3uk2L2(Q)  3h4

✓
kak2

L1(Q)k@tuk2L2(Q) +

✓
�
2

h2
kak2

L1(Q) + kqk2
L1(Q)

◆
kuk2

L2(Q)

◆
.

(3.21)

Here we have used the inequality (x+ y+ z)2  3(x2 + y
2 + z

2) for x, y, z 2R.
In addition to the choice 0< "< 3T 2 made in (3.18), we will further require that

1

2"
� 3kak2

L1(Q) and
3�2 � 1

4"
� 3

⇣
�
2kak2

L1(Q) + kqk2
L1(Q)

⌘
.

After combining estimates (3.11), (3.20), and (3.21), we obtain the claimed esti-
mate (3.7). This completes the proof of Proposition 3.1.

We are now ready to state and prove the boundary Carleman estimate.

Proposition 3.2. Let a, q 2L
1(Q,C) and v 2C

2(Q). If v satisfies

v|⌃ = v|t=0 = @tv|t=0 = 0,(3.22)

then for all 0<h⌧ "⌧ 1, we have

ke� 1

h (�t+x1)h
2Lg,a,qvkL2(Q) +O(h3/2)ke� 1

h (�T+x1)rgv(T, ·)kL2(M)

+O(h1/2)ke� 1

h (�T+x1)v(T, ·)kL2(M)

+O(h3/2)

✓Z

⌃�

|@⌫'||e�
1

h (�t+x1)@⌫v|2dSgdt

◆1/2

�O(h)ke� 1

h (�t+x1)vkL2(Q) +O(h3/2)ke� 1

h (�T+x1)@tv(T, ·)kL2(M)

+O(h2)(ke� 1

h (�t+x1)@tvkL2(Q) + ke� 1

h (�t+x1)rgvkL2(Q))

+O(h3/2)

✓Z

⌃+

@⌫'|e�
1

h (�t+x1)@⌫v|2dSgdt

◆1/2

.

(3.23)

Here '(x) = x1, ⌃± = (0, T )⇥ @M
int
± , and @M± = {x2 @M :±@⌫'(x)� 0}.
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PARTIAL DATA INVERSE PROBLEM FOR WAVE EQUATION 5691

Proof. By following the steps in the proof of [38, Theorem 3.1], we deduce the
claimed estimate (3.23) from estimate (3.7) by substituting u = exp(�'h,")v, where
'h," is given by (3.5), as well as choosing "> 0 small but fixed.

Remark 3.3. The Carleman estimate (3.23) can be extended to any function
v 2H := C

1([0, T ];L2(M)) \C([0, T ];H1(M)) satisfying (3.22) and 2e�g0
v 2 L

2(Q).
Indeed, we may approximate f := 2e�g0

v 2 L
2(Q) by a sequence fj 2 C

1
0 (Q) such

that fj ! f in L
2(Q) as j !1. If vj solves 2e�g0

vj = fj and satisfies vj |⌃ = vj |t=0 =
@tvj |t=0 = 0, then vj 2 C

1(Q) by [47, Remark 2.10]. In particular, the boundary
Carleman estimate (3.23) holds for vj .

Furthermore, we have

kvj � vkH + k@⌫vj � @⌫vkL2(⌃) Ckfj � fkL2(Q) ! 0, j ! 0,

by the energy estimate [47, Theorem 2.1] together with [47, Remark 2.2]. Thus,
estimate (3.23) extends to v.

3.2. Semiclassical pseudodi↵erential operators. In this subsection we re-
call some fundamental concepts of semiclassical pseudodi↵erential calculus on closed
Riemannian manifolds by following the expositions of [63] and [69, Chapter 14]. Let
(N,eg) be a smooth compact n-dimensional Riemannian manifold without boundary.
For each m 2 R, the Kohn–Nirenberg symbol class S

m(T ⇤
N) consists of smooth

functions on the cotangent bundle T
⇤
N , which in local coordinates of N are given by

S
m

1,0(T
⇤
N) = S

m(T ⇤
N) = {a(x, ⇠)2C

1(T ⇤
N) : |@↵

x
@
�

⇠
a(x, ⇠)|C↵�h⇠im�|�|},

(3.24)

where h⇠i = (1 + |⇠|2)1/2. For a parameter-dependent symbol a(x, ⇠;h), we say that
a 2 S

m(T ⇤
N) if the estimate in (3.24) holds uniformly for every h 2 (0, h0) and

for some h0 > 0. A linear operator B : C1(N) ! C
1(N) is called negligible if its

Schwartz kernel KB 2 C
1(N ⇥ N) locally satisfies the estimate @↵

x
@
�

y
KB(x, y) =

O(h1) for all ↵,� 2Nn
.

A linear map A : C1(N)!C
1(N) is a semiclassical pseudodi↵erential operator

of orderm2R if there exists a2 S
m(T ⇤

N) such that in local coordinates, the operator
A is given by the standard h-quantization

Au(x) =
1

(2⇡h)n

Z Z
e

i
h (x�y)·⇠

a(x, ⇠;h)u(y)dyd⇠ +Bu(x),(3.25)

where the operator B is negligible, and the operator  A' is negligible for each
', 2 C

1(N) with disjoint supports. We denote by  m(N) the set of semiclassical
pseudodi↵erential operators of order m on (N,g).

We recall that the correspondence from an operator to a symbol is not globally
well-defined, but there exists a bijective map between the following equivalence classes

 m(N)/ m�1(N)! S
m(T ⇤

N)/Sm�1(T ⇤
N).

The image �A(x, ⇠;h) of A2 m(N) under this map is called the principal symbol of
A. These definitions allow us to compose the operators Aj 2  mj (N), j = 1,2, and
we have A1A2 2 m1+m2(N) with principal symbol �A1A2

= �A1
�A2

.
An operator A2 m(N) is called elliptic if there is a constant C > 0, independent

of h, such that the principal symbol satisfies

|�A(x, ⇠;h)|>
1

C
h⇠im.
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5692 BOYA LIU, TEEMU SAKSALA, AND LILI YAN

An elliptic semiclassical operator A2 m(N) has an inverse R 2 �m(N) in the sense
that there exists h0 > 0 such that for all h 2 (0, h0) we have RA = AR = I as linear
operators on C

1(M) and

�R(x, ⇠;h) = �A(x, ⇠;h)
�1 2 S

�m(T ⇤
N)/S�m�1(T ⇤

N).

By [63, Proposition 10.1], the operator

J
s = (1� h

2�eg)
s
2 , s2R,(3.26)

which is defined by the means of the spectral theorem, is elliptic and belongs to the
class  s(N) with principal symbol h⇠is. We note that for all s1, s2 2R, we have

J
s1+s2 = J

s1J
s2 , (Js1)�1 = J

�s1 , J
0 = I.(3.27)

We now define the semiclassical inner product of order s2R:

(u, v)Hs
scl

(N) := (Js
u,J

s
v)L2(N), u, v 2C

1(N).

Then the semiclassical Sobolev space H
s

scl(N) is defined as the completion of C1(N)
with respect to a related norm. Furthermore, every operator A 2  m(N) yields a
bounded map A : Hs

scl(N) ! H
s�m

scl (N). Also, we recall that if A is negligible, then
the operator norm satisfies

kAk
H

�s
scl

(N)!H
s
scl

(N) =O(h1) for all s2R.(3.28)

Finally, we discuss the definition of semiclassical Sobolev spaces on an open subset
U ⇢N . We recall that for u2C

1(N), the norms kukH1

scl
(N) and

kuk2
h
:= kuk2

L2(N) + khreguk2L2(N)

are equivalent. We use the latter to define the semiclassical Sobolev space H
1
scl(U) as

a completion of C1(U) with respect to the norm k·kh restricted on U , and H
�1
scl (U) as

the topological dual of H1
scl(U). We would like to recall the following characterization

[1, section 3.13] of H�1
scl (N) via the completion of L2(N) with respect to the norm

kvk
H

�1

scl
(N) = sup

0 6= 2H
1

scl
(N)

|hv, iL2(N)|
k kH1

scl
(N)

.(3.29)

3.3. Interior Carleman estimate. In this subsection we assume that (Q,e�g)
is isometrically embedded into a closed Riemannian manifold (N,g

0) without bound-
ary, where g

0 = e� g in some open neighborhood U ⇢N of Q. Here U = (a, b)⇥ cM ,
where [0, T ] ⇢ (a, b) and cM is an open manifold such that M ⇢ cM . To prove the
existence of suitable solutions to Lg,a,qu = 0 in Q, we need the following interior
Calerman estimate for negative order Sobolev spaces.

Lemma 3.4. Let a 2 W
1,1(Q) and q 2 L

1(Q,C). Then for all 0 < h ⌧ " ⌧ 1
and w 2C

1
0 (Q), there exists a constant C > 0 such that

hkwkL2(N) Cke⌥ 1

h (�t+x1)h
2Lg,a,qe

± 1

h (�t+x1)wk
H

�1

scl
(N).(3.30)
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PARTIAL DATA INVERSE PROBLEM FOR WAVE EQUATION 5693

Proof. We shall follow the arguments from [46, section 2]; see also [24, 44]. We
start by extending a and q from W

1,1(Q) and L
1(Q) to W

1,1(N) and L
1(N),

respectively, and denote the extensions by the same letters. Throughout the proof of
this lemma, we will use the following shorthand notations for the convexified operators:

2'±h," = e
�'±h,"h

22ge
'±h," and P'±h," = e

�'±h,"h
2Lg,a,qe

'±h," .

Here the convexified weight '±h," is defined as in (3.5). Let us also define u := e
t2

2"w 2
C

1
0 (Q).

We get from the triangle inequality that

kP'±h,"ukH�1

scl
(N) � k2'±h,"ukH�1

scl
(N) � ke�'±h,"h

2(a@t + q)e'±h,"uk
H

�1

scl
(N),(3.31)

and begin by estimating the first term on the right-hand side of inequality (3.31).
This will be followed by a perturbation of the first term with the second term, which
contains the lower order terms.

Let the open set U ⇢N be the same as at the beginning of this subsection. We
note that by taking a= q= 0 and v 2C

1
0 (U), Proposition 3.1 yields

hp
"
kvkH1

scl
(N) Ck2'±h,"vkL2(N),(3.32)

where C = 2p
3�2�1

.

Let �2C
1
0 (U) be equal to 1 in a neighborhood of Q. Since the operator J�1, as

defined in (3.26), is in  �1(N), and supp (1��)\ supp u= ;, we have by (3.28) that

k(1� �)J�1
ukH1

scl
(N) =O(h1)kuk

H
�1

scl(N)

O(h1)kukL2(N).(3.33)

Therefore, for all 0<h⌧ "⌧ 1 we have

kukL2(N)  k�J�1
ukH1

scl
(N) + k(1� �)J�1

ukH1

scl
(N)  k�J�1

ukH1

scl
(N)(3.34)

+O(h1)kukL2(N).

To estimate the first term on the right-hand side of (3.34), we apply (3.32) with
v= �J

�1
u2C

1
0 (U) to get from the triangle inequality and the commutator [A,B] =

AB �BA that

k�J�1
ukH1

scl
(N) O

✓p
"

h

◆�
k�J�12'±h,"ukL2(N) + k�[2'±h," , J

�1]ukL2(N)

+k[2'±h," ,�]J
�1

ukL2(N)

�
.

(3.35)

We now estimate the two terms containing the commutators on the right-hand side
of (3.35). Noting that 2'±h," 2 2(N), an application of [69, Theorem 9.5(iii)] yields
that the commutator satisfies the equation [2'±h," , J

�1] = hR1, where R1 2  0(N).
Thus, for the second term on the right-hand side of (3.35) we have

k�[2'±h," , J
�1]ukL2(N)  hkukL2(N).(3.36)

For the third term on the right-hand side of (3.35), we observe that

[2'±h," ,�] = h
22�+ 2h2 (@t�@t'±h," � hrg�,rg'±h,"i) + 2h2(@t�@t � hrg�,rg·i).
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5694 BOYA LIU, TEEMU SAKSALA, AND LILI YAN

Thus, supp ([2'±h," ,�])⇢ supp (@t�,rg�) and supp (@t�,rg�)\ supp u= ;. There-
fore, we get from (3.28) that

k[2'±h," ,�]J
�1

ukL2(N) O(h1)kukL2(N).(3.37)

Since �J�1 2  �1(N), together with (3.35), (3.36), and (3.37), we deduce from
(3.34) that

kukL2(N) O
✓p

"

h

◆
k2'±h,"ukH�1

scl
(N) +O(

p
")kukL2(N) +O(h1)kukL2(N).

For later purposes, let us rewrite this inequality as

hp
"
kukL2(N) O(1)k2'±h,"ukH�1

scl
(N) +O(h)kukL2(N).(3.38)

To estimate the lower order terms in (3.31), taking 0 6=  2 H
1
scl(N) with

k kH1

scl
(N) = 1, we integrate by parts to obtain

he�'±h,"h
2(a@t + q)e'±h,"u, iL2(N)

=�hu,h2 ((@ta) + a@t � (@t'±h,")a )iL2(N) + hh2
qu, iL2(N).

By recalling that @t'±h," =±�

h
� t

"
, k kH1

scl
(N) = 1, h< ", and � < 1, we get from the

Cauchy–Schwartz inequality that

|he�'±h,"h
2(a@t + q)e'±h,"u, iL2(N)| h(3 + T )(kakW 1,1(N) + kqkL1(N))kukL2(N).

(3.39)

Therefore, the characterization (3.29) of the semiclassical H�1-norm and (3.39)
imply that

ke�'±h,"h
2(a@t + q)e'±h,"uk

H
�1

scl
(N) O(h)kukL2(N).(3.40)

Using (3.38) and (3.40), we derive from (3.31) that

O(1)kP'±h,"ukH�1

scl
(N) +O(h)kukL2(N) �

hp
"
kukL2(N),

which can be rewritten as

O
✓p

"

h

◆
kP'±h,"ukH�1

scl
(N) +O(

p
")kukL2(N) � kukL2(N).

We now take " small enough but fixed to absorb the second term on the left-hand
side and get

O
✓
1

h

◆
kP'±h,"ukH�1

scl
(N) � kukL2(N).(3.41)

Finally, we use w= e
� t2

2"u for 0< t< T and apply (3.41) to obtain

kwkL2(N) O
✓
1

h

◆
e

T2

2" ke⌥ 1

h (�t+x1)h
2Lg,a,qe

± 1

h (�t+x1)wk
H

�1

scl
(N).

Here the inequality relies on the assumption u2C
1
0 (Q). This completes the proof of

Proposition 3.4.

The following solvability result will be implemented in the next section to con-
struct CGO solutions for the operator Lg,a,q.
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PARTIAL DATA INVERSE PROBLEM FOR WAVE EQUATION 5695

Proposition 3.5. Let a 2W
1,1(Q), q 2 L

1(Q,C), and s = 1
h
+ i� with � 2 R

fixed. If h > 0 is small enough, then for all v 2 L
2(Q) there exists a solution u 2

H
1
scl(Q) to the equation

e
±s(�t+x1)h

2Lg,a,qe
⌥s(�t+x1)u= v in Q(3.42)

such that

kukH1

scl
(Q) O(h�1)kvkL2(Q).(3.43)

Proof. The proof uses standard functional analysis arguments, which have been
utilized to prove analogous results for elliptic operators; see, for instance, [23, 45], as
well as hyperbolic operators in [44].

4. Construction of CGO solutions based on Gaussian beam quasimodes.
Let (M,g) be a CTA manifold, a 2 W

1,1(Q), and q 2 C(Q). Let 0 < h < 1, � 2 R,
and s= 1

h
+i�2C. In the first part of this section we shall assume that the conformal

factor c = 1 and write Lg,a,q for Lc,g,a,q. The goal of this section is to construct an
exponentially decaying, with respect to the real part of s, solution to the equation
L⇤
g,a,q

u1 = 0 in Q of the form

u1 = e
�s(�t+x1)(vs + r1),(4.1)

where L⇤
g,a,q

= Lg,�a,q�@ta is the formal L2-adjoint of the operator Lg,a,q, as well as
an exponentially growing solution to the equation Lg,a,qu2 = 0 in Q of the form

u2 = e
s(�t+x1)(ws + r2).(4.2)

Here vs and ws are smooth Gaussian beam quasimodes, and r1 = r1,s, r2 = r2,s are
correction terms that vanish in the limit h ! 0. We construct the Gaussian beam
quasimodes vs and ws for each nontangential geodesic of (M0, g0) in subsection 4.1.
In particular, the functions vs and ws satisfy the estimates given in (4.4) and (4.5).
In subsection 4.2 we will establish a concentration property of the quasimodes along
the nontangential geodesic in the limit h! 0. Finally, in subsection 4.3 we will con-
struct the remainder terms r1 and r2, whose existence and decaying properties follow
directly from the estimates for the quasimode and the interior Carleman estimate
Proposition 3.5. We emphasize that the CGO solutions (4.1) and (4.2) are construc-
ted under the assumption c= 1. We shall incorporate general conformal factors c and
modify our CGO solutions accordingly in subsection 4.3.

Let us write x = (x1, x
0) for coordinates in R⇥M0, globally in R and locally in

M0. To justify our construction we note that a function u1 of the form (4.1) solves
the equation L⇤

g,a,q
u1 = 0 if

e
s(�t+x1)L⇤

g,a,q
e
�s(�t+x1)r1 =�e

s(�t+x1)L⇤
g,a,q

e
�s(�t+x1)vs.

4.1. Construction of Gaussian beam quasimodes. In this subsection we
focus on constructing Gaussian beam quasimodes. Initially introduced in [10, 57],
the construction of Gaussian beam quasimodes has a very long tradition in spectral
theory and in microlocal analysis; see also [9, 56]. Gaussian beam quasimodes have
also been used extensively to solve inverse problems, starting with [13, 33]. Among
the literature in this direction, we refer readers to [21, 23, 25, 46, 68] for applications
to elliptic operators and [28, 34] to hyperbolic operators.
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5696 BOYA LIU, TEEMU SAKSALA, AND LILI YAN

Let (M,g) be a CTA manifold with the conformal factor c = 1, and let T > 0.
Replacing the transversal manifold (M0, g0) by a slightly larger manifold if necessary,
we may assume without loss of generality that (M,g) ⇢ (R ⇥ M

int
0 , e � g0). The

Gaussian beam quasimodes will be constructed in R2 ⇥M
int
0 . To obtain C

1-smooth
Gaussian beam quasimodes, we shall regularize the damping coe�cient a and explain
the necessity of doing so in the proof of Theorem 4.2. We extend a to W

1,1(R2 ⇥
M

int
0 ) with compact support. Using a partition of unity argument combined with a

regularization in each coordinate patch, we have the following result; see [60, Lemma
2.1] for details.

Proposition 4.1. For any a 2 W
1,1
0 (R2 ⇥ M

int

0 ), there exists an open and

bounded set W ⇢R2 ⇥M
int

0 and a family a⇣ 2C
1
0 (W,C) such that

ka� a⇣kL1 = o(1), ka⇣kL1 =O(1), krga⇣kL1 = o(⇣�1),

k@ta⇣kL1 = o(⇣�1), k@2
t
a⇣kL1 = o(⇣�2), k�ga⇣kL1 = o(⇣�2), ⇣! 0.

(4.3)

Here the L
1
-norms are taken over the set R2 ⇥M

int

0 .

We are now ready to state and prove our first main result of this section.

Theorem 4.2. Let (M,g) be a smooth CTA manifold with boundary, T > 0,
� 2 ( 1p

3
,1), and let s = 1

h
+ i�, 0 < h ⌧ 1, � 2 R fixed. Let a 2 W

1,1(Q) and

q 2 C(Q). Then for every unit speed nontangential geodesic � of (M0, g0) there exist

one parameter families of Gaussian beam quasimodes vs,ws 2C
1(R2⇥M0) such that

the estimates

kvskL2(Q) =O(1), k@tvskL2(Q) = o(h�1/2),

kes(�t+x1)h
2L⇤

g,a,q
e
�s(�t+x1)vskL2(Q) = o(h)

(4.4)

and

kwskL2(Q) =O(1), k@twskL2(Q) = o(h�1/2),

ke�s(�t+x1)h
2Lg,a,qe

s(�t+x1)wskL2(Q) = o(h)
(4.5)

are valid as h! 0.

The proof of Theorem 4.2 is very long and given in the following subsections.

4.1.1. Preparations for the proof of Theorem 4.2. Let � = �(⌧) be a
nontangential geodesic in the transversal manifold (M0, g0) of length L > 0. By
following [49, Example 9.32], we embed (M0, g0) into a closed manifold (cM0, g0) of
the same dimension. We also extend � as a unit speed geodesic in cM0. Since � is
nontangential, we can choose "> 0 so that �(⌧)2 cM0\M0 and it does not self-intersect
for ⌧ 2 [�2",0)[ (L,L+ 2"].

We begin with the construction of a Gaussian beam quasimode for the conjugated
operator e

�s(�t+x1)L⇤
g,a,q

e
s(�t+x1). We follow the main ideas from [21, 24, 46] and

modify the argument in accordance with the extra time variable t. Consider the CGO
ansatz vs of the form

vs(t, x1, x
0;h) = e

is⇥(x0)
b(t, x1, x

0;h),

where s= 1
h
+ i� is a complex number, and the amplitude b depends implicitly on the

semiclassical parameter h.
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PARTIAL DATA INVERSE PROBLEM FOR WAVE EQUATION 5697

Since the phase function ⇥ is independent of t, we have

e
�is⇥

a@t(e
is⇥

b) = a@tb and e
�is⇥

@
2
t
(eis⇥b) = @

2
t
b.(4.6)

Also, as ⇥ is independent of x1 and g= e� g0, we get

e
�is⇥(��g)e

is⇥
b=��gb� is[2hrg0

⇥,rg0
b(x1, ·)ig0 + (�g0

⇥)b](4.7)

+ s
2hrg0

⇥,rg0
⇥ig0b.

Using (4.6) and (4.7), we obtain

e
s(�t+x1)Lg,�a,q�@tae

�s(�t+x1)vs

= e
is⇥[s2(hrg0

⇥,rg0
⇥ig0 � (1� �

2))b

+ s(2@x1
b� 2�@tb� 2ihrg0

⇥,rg0
b(x1, ·)ig0 � i(�g0

⇥)b+ �ab) +Lg,�a,q�@tab].

(4.8)

The computations in (4.8) suggest that in order to verify the estimates in (4.4), we
should construct the phase function ⇥ and the amplitude b such that they approxi-
mately solve the eikonal and transport equations appearing on the right-hand side of
(4.8) as multipliers of the terms s2 and s, respectively.

The construction of the Gaussian beam quasimode vs is divided into several steps,
which are addressed in the following subsections.

(1) Fermi coordinates near �: In these local coordinates x0 = (⌧, y)2M0 is given
by its closest point �(⌧) to the fixed geodesic � and by its location y in the
respective geodesic plane perpendicular to �̇(⌧). Due to these choices, the
metric tensor g0 on � is Euclidean up to the first order. This simplifies many
subsequent computations.

(2) Eikonal equation and phase function: To satisfy estimate (4.4) we solve the
eikonal equation, which is the multiplier of s2 in (4.8), up to a certain order.
The solution is called the phase function ⇥.

(3) Transport equation and amplitude: To satisfy estimate (4.4) we solve the
transport equation, which is the multiplier of s in (4.8), up to a certain order,
and call the obtained solution b the amplitude. Since we want to construct a
smooth Gaussian beam quasimode, we shall solve the transport equation with
a regularized damping coe�cient a⇣ and relate the regularization parameter
⇣ to the semiclassical parameter h with an explicit expression. We solve the
transport equation via a change of variables, which converts the transport
equation into a better understood @-equation.

(4) Local verification of estimate (4.4): In this step we provide a proof for estimate
(4.4) in a neighborhood of a fixed point z0 = �(⌧0). The key of the proof is
the fact that map x 7! |x|ke�d|x|2 is in L

2(Rn) for all d> 0 and k� 0.
(5) Global construction of Gaussian beam quasimodes: We provide the global

construction of vs by gluing together quasimodes defined along the small
pieces of the geodesic.

4.1.2. Fermi coordinates near �. We fix a point z0 = �(⌧0) on �([�",L+ "])
and construct the quasimode locally near z0. Let (⌧, y) 2 ⌦ := {(⌧, y) 2 R ⇥ Rn�2 :
|⌧�⌧0|< �, |y|< �

0}, �, �0 > 0, be Fermi coordinates near z0. The detailed construction
of these coordinates is given in [36, Lemma 7.4]. Heuristically, the idea is to first choose
the number �> 0 to be su�ciently small, so that the geodesic segment �|[⌧0��,⌧0+�] is
not self-intersecting. Then one uses the parallel transport to choose some vector fields
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5698 BOYA LIU, TEEMU SAKSALA, AND LILI YAN

E1(⌧), . . . ,En�2(⌧) along � such that the vector fields �̇(⌧),E1(⌧), . . . ,En�2(⌧) span
a parallel orthonormal frame along �. Due to the choice of �, as well as the inverse
function theorem, there exists �0 > 0 such that the map F (⌧, y) = exp

�(⌧) (y
↵
E↵(⌧))

is a di↵eomorphism in the set ⌦. Here exp is the exponential map of (M0, g0) and
↵2 {1, . . . , n� 2}.

We note that near z0 = �(⌧0) the trace of the geodesic � is given by the set
�= {(⌧,0) : |⌧ � ⌧0|< �}. Due to this construction, we get

g
jk

0 (⌧,0) = �
jk and @ylg

jk

0 (⌧,0) = 0.(4.9)

Hence, by Taylor’s theorem, for small |y| we have

g
jk

0 (⌧, y) = �
jk +O(|y|2).(4.10)

In these coordinates the Gaussian beam ansatz takes the form

vs(t, x1, ⌧, y) = e
is⇥(⌧,y)

b(t, x1, ⌧, y;h),(4.11)

and our aim is to find the phase function ⇥2C
1(⌦,C) that satisfies

Im⇥� 0, Im⇥|� = 0, Im⇥(⌧, y) is bi-Lipschitz equivalent to |y|2,(4.12)

and an amplitude b2C
1(R⇥R⇥⌦,C) such that supp (b(t, x1, ·))⇢ {|y|< �

0
/2}. In

particular, the name “Gaussian beam” comes from (4.12).

4.1.3. Eikonal equation and phase function. Our goal in this step is to find
a phase function ⇥ by solving the eikonal equation hrg0

⇥,rg0
⇥ig0 = 1 � �

2 up to
order |y|3 on � by arguing similarly as in [25, 34, 46, 56, 57]. That is, we find a
function ⇥(⌧, y)2C

1(⌦,C) that satisfies

hrg0
⇥,rg0

⇥ig0 � (1� �
2) =O(|y|3), y! 0,(4.13)

and

Im⇥(⌧, y)� d|y|2(4.14)

for some constant d> 0 depending on �. Equation (4.13), combined with a scaling in
the semiclassical parameter h, will be used in subsection 4.1.5 to prove estimate (4.4).

In order to utilize the Taylor expansion (4.10) for the metric g0, we look for a
function ⇥ of the form ⇥=⇥0 +⇥1 +⇥2, where

⇥j(⌧, y) =
X

|↵|=j

⇥j,↵(⌧)

↵!
y
↵
, j = 0,1,2,

are the homogeneous polynomials in the y-variable. We also write g
jk

0 = g
jk

0,0 + g
jk

0,1 +

g
jk

0,2 + r
jk

3 , where

g
jk

0,l(⌧, y) =
X

|µ|=l

g
jk

0,l,µ(⌧)

µ!
y
µ
, l= 0,1,2,

and r3 = O(|y|3) is the remainder in Taylor’s theorem. By the properties of Fermi
coordinates (4.9), we have g

jk

0,0 = �
jk and g

jk

0,1 = 0. We then choose accordingly that

⇥0(⌧, y) =
p
1� �2⌧ and ⇥1(⌧, y) = 0.(4.15)
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PARTIAL DATA INVERSE PROBLEM FOR WAVE EQUATION 5699

Let us next find ⇥2. To this end, we write the metric g
jk

0 = �
jk + g

jk

0,2 +O(|y|3).
With the understanding that j, k run from 1 to n� 1 and ↵, µ run from 2 to n� 1,
we see that

hrg0
⇥,rg0

⇥ig0�(1��2)=[2
p
1��2@⌧⇥2+ry⇥2 ·ry⇥2+(1��2)g110,2]+O(|y|3).

Similarly to [21, 25, 36], our aim is to find a function ⇥2 such that

2
p
1� �2@⌧⇥2 +ry⇥2 ·ry⇥2 + (1� �

2)g110,2 = 0.(4.16)

Due to our previous choice for the form of ⇥2, we have

⇥2(⌧, y) =
1

2

p
1� �2H(⌧)y · y,

and in order to satisfy (4.12), we seek to obtain a smooth complex-valued symmetric
matrix H(⌧) with a positive definite imaginary part. Since each term of (4.16) is
quadratic in y, it is su�cient for H(⌧) to satisfy the following matrix initial value
problem, called the Ricatti equation

Ḣ(⌧) +H(⌧)2 = F (⌧), H(⌧0) =H0, for ⌧ 2R,(4.17)

where F (⌧) is a symmetric matrix such that g110,2(⌧, y) =�F (⌧)y ·y in (⌧0��, ⌧0+�). If
we choose H0 to be a symmetric complex-valued matrix such that Im(H0) is positive
definite, then (4.17) has a unique smooth symmetric complex-valued solution H(⌧)
with ImH(⌧) positive definite; see [34, Lemma 2.56] for details.

Therefore, the phase function ⇥ reads

⇥(⌧, y) =
p
1� �2

✓
⌧ +

1

2
H(⌧)y · y

◆
.(4.18)

Due to the compactness and the positive definiteness of Im(H(⌧)), the function ⇥
satisfies the properties in (4.12).

4.1.4. Transport equation and the amplitude. We next seek an amplitude
b of the form

b(t, x1, ⌧, y;h, ⇣) = h
�n�2

4 b0(t, x1, ⌧ ; ⇣)�(y/�
0),(4.19)

where b0 2 C
1(Rt ⇥ Rx1

⇥ [⌧0 � �, ⌧0 + �]) is independent of y and satisfies the
approximate transport equation

2@x1
b0 � 2�@tb0 � 2ihrg0

⇥,rg0
b0(x1, ·)ig0 � i(�g0

⇥)b0 + �a⇣b0 =O(|y|⇣�1)(4.20)

as y, ⇣ ! 0. The cuto↵ function � 2 C
1
0 (Rn�2) in (4.19) is chosen such that � = 1

for |y| 1/4 and �= 0 for |y|� 1/2. Here ⇣ is the regularization parameter and a⇣ is
the regularized damping coe�cient given in Proposition 4.1. Instead of the transport
equation appearing in the coe�cient of s in (4.8), we solve (4.20) and obtain a smooth
Gaussian beam quasimode. Eventually, we want the Gaussian beam to only depend
on the semiclassical parameter h. Therefore, at the end of this subsection we will give
an explicit relation between h and ⇣. We shall make the expression |y|⇣�1 rigorous
in the next subsection when we prove estimate (4.4). Also, we will address the e↵ect
of the change from a to a⇣ on the proof of (4.4). Equation (4.20), combined with a
scaling in the semiclassical parameter h, will be used in subsection 4.1.5 to prove the
third estimate in (4.4).
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5700 BOYA LIU, TEEMU SAKSALA, AND LILI YAN

In order to find a function b0 such that (4.20) holds, we first compute hrg0
⇥,

rg0
b0(x1, ·)ig0 . It follows from (4.18) that

@⌧⇥(⌧, y) =
p
1� �2 +O(|y|2).(4.21)

Therefore, we get from (4.10) that

hrg0
⇥,rg0

b0(x1, ·)ig0 =
p
1� �2(@⌧ b0 +H(⌧)y · @yb0) +O(|y|2)@⌧ b0 +O(|y|2)@yb0.

(4.22)

We next compute �g0
⇥ near the geodesic �. Using (4.10) and (4.18), we have

(�g0
⇥)(⌧,0) =

p
1� �2�

jk
Hjk =

p
1� �2trH(⌧),

which implies

(�g0
⇥)(⌧, y) =

p
1� �2trH(⌧) +O(|y|).(4.23)

Finally, we Taylor expand the coe�cients appearing on the left-hand side of (4.20).
Writing

a⇣(t, x1, ⌧, y) = a⇣(t, x1, ⌧,0) +

Z 1

0
(rya⇣(t, x1, ⌧, ys))yds,

and utilizing (4.3), we get

a⇣(t, x1, ⌧, y) = a⇣(t, x1, ⌧,0) +O(|y|⇣�1).(4.24)

To achieve (4.20), we require that b0(t, x1, ⌧ ; ⇣) satisfies

(�@t � @x1
+ i

p
1� �2@⌧ )b0 =

1

2
[�i

p
1� �2trH(⌧) + �a⇣(t, x1, ⌧,0)]b0.(4.25)

To solve this equation we perform a change of variables and write the left-hand side
of (4.25) as a @-equation. To that end, let S :R3 !R3 be an invertible linear function
such that for a fixed � 2 ( 1p

3
,1), its inverse function is

S
�1(t, x1, ⌧) =

 
1

�
t, x1 +

1

�
t,

1p
1� �2

⌧

!
:= (et, p, r).(4.26)

Then we get from (4.26) that

@t =
@

@et
@et
@t

+
@

@p

@p

@t
+

@

@⌧

@⌧

@t
=

1

�
(@et + @p) and(4.27)

@x1
=
@

@et
@et
@x1

+
@

@p

@p

@x1
+

@

@⌧

@⌧

@x1
= @p.

By substituting (4.26) and (4.27) into (4.25), we obtain the equation

(@et + i@r)b
0
0 =

1

2
[�i

p
1� �2trH(

p
1� �2r) + �a⇣

0(et, p, r,0)]b00,(4.28)

where a
0
⇣
= a⇣ � S and b

0
0 = b0 � S.
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PARTIAL DATA INVERSE PROBLEM FOR WAVE EQUATION 5701

Writing @ = 1
2 (@et+ i@r), we look for a solution to (4.28) of the form b

0
0(et, p, r; ⇣) =

e
�1,⇣(et,p,r)+f1(r). By a direct computation, we see that in order for such a function b

0
0

to solve (4.28), the functions �1,⇣ and f1 need to satisfy

@�1,⇣(et, p, r) =
�

4
a⇣

0(et, p, r,0) = �

4
a⇣

0(et, p,�(r))(4.29)

and

@rf1 =�
p
1� �2

2
trH(

p
1� �2r).(4.30)

Note that f1 can be obtained by integrating the right-hand side of (4.30) with respect
to r.

In order to solve the @-equation (4.29), we use the fundamental solution E(et, r) =
1

⇡(et+ir)
of the @-operator [29, section 5.4] to take

�1,⇣(et, p, r) =
�

4
(E ⇤ a⇣ 0)(et, p,�(r)).(4.31)

While forming the convolution over the complex variable et + ir, we note that by
Proposition 4.1, the function a

0
⇣
is compactly supported in R2 ⇥M

int
0 . Since � is a

nontangential geodesic in (M0, g0), we may assume without loss of generality that the
map (et, p, r) 7! a⇣

0(et, p,�(r)) is smooth and compactly supported in the entire (et, p, r)-
space so that estimate (4.3) still holds. Therefore, we have obtained a C

1-smooth
solution b

0
0(et, p, r; ⇣) = e

�1,⇣(et,p,r)+f1(r) of (4.28) defined in the whole (et, p, r)-space.
To verify that b0 satisfies (4.20), we need to estimate b0(·; ⇣), as well as its first

and second order derivatives over the set [0, T
�
]⇥ Jp ⇥ [r0 � �, r0 + �], where Jp ⇢ R

is an open and bounded interval such that the respective p-coordinate of each point
in Q is in Jp. Since the function a⇣ is supported in some open and bounded set of
R2 ⇥M

int
0 , as given in Proposition 4.1, there exists some compact set K ⇢ R2 such

that the following inequality holds for every (et, p, r)2 [0, T
�
]⇥ Jp ⇥ [0, Lp

1��2
],

|�1,⇣(et, p, r)|
Z

K

|E(et� t, r� s)||a0
⇣
(t, p, s)|dtds kE(et,r)kL1(K)ka0⇣kL1 ,(4.32)

where Eet,r(t, s) = E(et � t, r � s). Due to the local integrability of E, the term

kE(et,r)kL1(K) has a uniform bound for all (et, r) 2 [0, T
�
]⇥ [0, Lp

1��2
]. Then it follows

from estimate (4.3) that k�1,⇣kL1 = O(1). Furthermore, by replacing the function
a⇣ with @eta⇣ in (4.32) and utilizing (4.3) again, we get k@et�1,⇣kL1 = o(⇣�1). We also
obtain the following estimates by using similar arguments:

krg0
�1,⇣kL1 ,k@p�1,⇣kL1 = o(⇣�1), k�g0

�1,⇣kL1 ,k@2et�1,⇣kL1 = o(⇣�2), ⇣! 0.

To complete the verification of (4.20), we connect the semiclassical parameter h

and the regularization parameter ⇣ by setting ⇣ = h
↵, 0 < ↵ <

1
2 . Note that the

change of coordinates function S, given by (4.26), is independent of ⇣. Hence, this
choice of ⇣, in conjunction with estimates (4.3), (4.31), and kf1kL1 =O(1), yields

kb0(·;h)kL1 =O(1), krg0
b0(·;h)kL1 ,k@tb0(·;h)kL1 ,k@x1

b0(·;h)kL1 = o(h�↵),

k�g0
b0(·;h)kL1 ,k@2

t
b0(·;h)kL1 = o(h�2↵), h! 0.

(4.33)
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5702 BOYA LIU, TEEMU SAKSALA, AND LILI YAN

By substituting (4.21)–(4.25) into the left-hand side of (4.20), we get from (4.33)
that

2@x1
b0 � 2�@tb0 � 2ihrg0

⇥,rg0
b0(x1, ·)ig0 � i(�g0

⇥)b0 + �a⇣b0

=�2i
p
1� �2H(⌧)y · @yb0 +O(|y|2)@⌧ b0 +O(|y|2)@yb0 +O(|y|) +O(|y|h�↵).

=O(|y|h�↵).

Thus, equation (4.20) is verified.

4.1.5. Local verification of estimate (4.4). Let us now verify that the esti-
mates in (4.4) hold for the quasimode

vs(et, p, r, y;h) = e
is⇥(

p
1��2r,y)

b
0(et, p, r, y;h) = e

is⇥(
p

1��2r,y)
h
�n�2

4 b
0
0(et, p, r;h)�(y/�0)

(4.34)

in the open set (0, T
�
)⇥Jp⇥⌦ of Q, where ⌦⇢M0 is the domain of Fermi coordinates

near the point z0 = �(⌧0). To establish this, we shall need the following estimate for
any k� 0:

kh�n�2

4 |y|ke� Im⇥

h kL2(|y|�0/2)  kh�n�2

4 |y|ke� d
h |y|2kL2(|y|�0/2)


✓Z

Rn�2

h
k|z|2ke�2d|z|2

dz

◆1/2

=O(hk/2), h! 0.

(4.35)

Here we applied estimate (4.14) and the change of variables z = h
�1/2

y.
We are now ready to start verifying (4.4) locally. To that end, we use (4.14),

(4.33), and (4.35) with k= 0 to get

kvskL2([0,T� ]⇥Jp⇥⌦)  kb00kL1([0,T� ]⇥Jp⇥[r0��,r0+�])ke
is⇥

h
�n�2

4 �(y/�0)k
L2([0,T� ]⇥Jp⇥⌦)

O(1)kh�n�2

4 e
� d

h |y|2kL2(|y|�0/2) =O(1), h! 0.

(4.36)

Let us next estimate k@tvskL2([0,T ]⇥Jp⇥⌦). By utilizing (4.33), (4.34), and ⇣ = h
↵,

0< ↵<
1
2 , we obtain

k@tvskL2([0,T� ]⇥Jp⇥⌦) = o(h�1/2), h! 0.(4.37)

We now proceed to estimate kes(�t+x1)h2Lg,�a,q�@tae
�s(�t+x1)vskL2([0,T� ]⇥Jp⇥⌦)

by estimating each term on the right-hand side of (4.8) independently. Let us start
with the first term. By applying (4.13), (4.14), (4.33), and (4.35) with k= 3, we get

h
2keis⇥s2(hrg0

⇥,rg0
⇥ig0 � (1� �

2))bk
L2([0,T� ]⇥Jp⇥⌦)

= h
2keis⇥s2h�n�2

4 (hrg0
⇥,rg0

⇥ig0 � (1� �
2))b00�(y/�

0)k
L2([0,T� ]⇥Jp⇥⌦)

O(1)kh�n�2

4 |y|3e� d
h |y|2kL2(|y|�0/2) =O(h3/2), h! 0.

(4.38)

We next consider the second term on the right-hand side of (4.8). From a direct
computation, we see that

|eis⇥|= e
� 1

h Im⇥
e
��Re⇥ = e

�
p

1��2

2h ImH(⌧)y·y
e
��

p
1��2⌧

e
��O(|y|2)

.
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PARTIAL DATA INVERSE PROBLEM FOR WAVE EQUATION 5703

We observe that e�
1

h = O(h1). Therefore, on the support of rg0
�(y/�0) we deduce

from (4.14) that

|eis⇥| e
� ed

h for some ed> 0.

Thus, using estimates (4.20) and (4.35) with k = 1, ↵ 2 (0, 12 ), and the triangle
inequality, we have

h
2keis⇥s(2@x1

b� 2�@tb� 2ihrg0
⇥,rg0

b(x1, ·)ig0 � i(�g0
⇥)b+ �a⇣b)kL2([0,T� ]⇥Jp⇥⌦)

O(h)keis⇥h�n�2

4 [|y|h�↵
�(y/�0)� 2ihrg0

⇥,rg0
�(y/�0)ig0 ]kL2([0,T� ]⇥Jp⇥⌦)

O(h)kh�n�2

4 |y|h�↵
e
� d

h |y|2kL2(|y|�0/2) +O(e�
ed
h )

=O(h3/2�↵) = o(h), h! 0.

(4.39)

We want to emphasize that in the second term on the right-hand side of (4.8) we have
the damping coe�cient ā instead of its smooth approximation a⇣ , which appeared in
(4.39). To medicate this discrepancy, we use estimates (4.3) and (4.35) with k= 0 to
get

h
2keis⇥s�(a� a⇣)bkL2([0,T� ]⇥Jp⇥⌦)

=O(h)keis⇥(a� a⇣)h
�n�2

4 b
0
0�(y/�

0)k
L2([0,T� ]⇥Jp⇥⌦)

O(h)ka� a⇣kL1([0,T� ]⇥Jp⇥⌦)kh
�n�2

4 e
� d

h |y|2kL2(|y|�0/2)

= o(h), h! 0.

(4.40)

Finally, we estimate the third term on the right-hand side of (4.8). To that end,
we utilize estimates (4.33) and (4.35) with k= 0 to obtain

h
2keis⇥@2

t
bk

L2([0,T� ]⇥Jp⇥⌦) = o(h2(1�↵)) = o(h), h! 0.(4.41)

To estimate the term involving the �g, we incorporate estimates (4.19), (4.33), and
(4.35) with k= 0, as well as the triangle inequality, to get

h
2keis⇥(��gb)kL2([0,T� ]⇥Jp⇥⌦)

O(h2)kh�n�2

4 e
is⇥

�(y/�0)�gb
0
0kL2([0,T� ]⇥Jp⇥⌦)

+O(h2)kh�n�2

4 e
is⇥[b00�g�(y/�

0) + 2hrgb
0
0,rg�(y/�

0)ig]kL2([0,T� ]⇥Jp⇥⌦)

O(h2)
⇣
kh�n�2

4 e
� d

h |y|2
h
�2↵kL2(|y|�0/2) +O(e�

ed
h )
⌘

=O(h2(1�↵)) +O(e�
ed
h ) = o(h), h! 0.

(4.42)

For the lower order terms, it follows from (4.33) that

h
2keis⇥(�a@tb+ (q� @ta)b)kL2([0,T� ]⇥Jp⇥⌦) = o(h2�↵) = o(h3/2), h! 0.(4.43)

Therefore, by combining estimates (4.38)–(4.43), we conclude from (4.8) that

kes(�t+x1)h
2Lg,�a,q�@tae

�s(�t+x1)vskL2([0,T� ]⇥Jp⇥⌦) = o(h), h! 0.(4.44)

This completes the verification of estimate (4.4) locally in the set (0, T
�
)⇥ Jp ⇥⌦.
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5704 BOYA LIU, TEEMU SAKSALA, AND LILI YAN

Before proceeding to the global construction, we need an estimate for kv(t,
x1, ·)kL2(@M0) for later purposes. If ⌦ contains a boundary point x0 = (⌧0,0) 2 @M0,
then �̇(⌧0) is transversal to @M0. Let ⇢ be a boundary defining function for M0 so
that @M0 is given by the level set ⇢(r, y) = 0 near x0, and rg0

⇢ is normal to @M0 at
x0. These imply @⌧⇢(x0) 6= 0. By the implicit function theorem, there exists a smooth
function y 7! r(y) near 0 such that @M0 near x0 is given by {(r(y), y) : |y| < r0} for
some r0 > 0 small; see the proof of [36, Proposition 7.5].

Using (4.12), (4.14), and (4.33), we see that there exists a constant C such that

|vs(t, x1, ⌧, y;h)|Ch
�n�2

4 e
� d

h |y|2
�(y/�0).(4.45)

Thus, after shrinking the set ⌦ if necessary and using (4.35) with k = 0 along with
(4.45), we get

kv(t, x1, ·)k2L2(@M0\⌦) =

Z

|y|e<r0

|v(t, x1, r(y), y)|2dSg(y)

O(1)

Z

Rn�2

h
�n�2

2 e
� 2d

h |y|2
dy=O(1), h! 0.

(4.46)

4.1.6. Global construction of the Gaussian beam quasimodes via glu-
ing. Finally, we glue together the quasimodes defined along small pieces of the
geodesic � to obtain the quasimode vs in R2 ⇥ M

int
0 . Since cM0 is compact and

�(r) : (�2", Lp
1��2

+ 2") ! cM0 is a nontangential geodesic that is not a loop, it fol-

lows from [36, Lemma 7.2] and the choice of "> 0 that the curve �|(�2", Lp
1��2

+2") has

finitely many self-intersection times r` � 0 with `2 {1, . . . ,R} and

�"= r0 < r1 < · · ·< rR < rR+1 =
Lp

1� �2
+ ".

Due to [36, Lemma 7.4], there exists an open cover {(⌦`,`)R+1
`=0 } of �([�", Lp

1��2
+"])

consisting of Fermi coordinate neighborhoods that have the following properties:
(1) `(⌦`) = I` ⇥B, where the I` are open intervals and B =B(0, �0) is an open

ball in Rn�2. Here �0 > 0 can be taken arbitrarily small and the same for
each ⌦`.

(2) `(�(r)) = (r,0) for r 2 I`.
(3) r` only belongs to I` and I` \ Ik = ; unless |`� k| 1.
(4) ` = k on �1

`
((I` \ Ik)⇥B).

In particular, the intervals I0 and IR+1 are chosen in such a way that they do not
contain any self-intersection times. In the case when � does not self-intersect, there is
a single coordinate neighborhood of �|[�", Lp

1��2
+"] such that (1) and (2) are satisfied.

We proceed as follows to construct the quasimode vs. Suppose first that � does
not self-intersect at r= 0. Using the procedure from the earlier part of this proof, we
find a quasimode

v
(0)
s

(et, p, r, y;h) = h
�n�2

4 e
is⇥(0)(

p
1��2r,y)

e
�1,h(et,p,r)+f1(r)�(y/�0)

in ⌦0 with some fixed initial conditions at r = �" for the Riccati equation (4.17)
determining ⇥(0). We now choose some r

0
0 such that �(r00)2⌦0 \⌦1 and let

v
(1)
s

(et, p, r, y;h) = h
�n�2

4 e
is⇥(1)(

p
1��2r,y)

e
�1,h(et,p,r)+f1(r)�(y/�0)
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PARTIAL DATA INVERSE PROBLEM FOR WAVE EQUATION 5705

be the quasimode in ⌦1 by choosing the initial conditions for ⇥(1) such that ⇥(1)(r00) =
⇥(0)(r00). Here we have used the same functions �1,h and f1 in v

(0)
s and v

(1)
s since

�1,h and f1 are both globally defined for all r 2 (�2", Lp
1��2

+ 2"), and neither of

the functions depends on y. On the other hand, since the equations determining the
phase functions ⇥(0) and ⇥(1) have the same initial data in ⌦0 and in ⌦1, and the
local coordinates 0 and 1 coincide on 

�1
0 ((I0 \ I1) ⇥ B), we have ⇥(1) = ⇥(0) in

⌦0 \ ⌦1. Therefore, we conclude that v
(0)
s = v

(1)
s in the overlapped region ⌦0 \ ⌦1.

Continuing in this way, we obtain quasimodes v(2)s , . . . , v
(R+1)
s such that

v
(`)
s

(et, p, ·) = v
(`+1)
s

(et, p, ·) in ⌦` \⌦`+1(4.47)

for all et and p. If � self-intersects at r = 0, we start the construction from v
(1) by

fixing initial conditions for (4.17) at r= 0 and find v
(0) by going backwards.

Let �j(r) be a partition of unity subordinate to the intervals (I`)
R+1
`=0 . We denote

e�`(et, p, r, y) = �`(r) and define a smooth function

vs =
R+1X

`=0

e�`v(`)s
in R2 ⇥ cM0.

Let z1, . . . , zR0 2 M0, R0
< R, be the distinct self-intersection points of �, corre-

sponding to the self-intersection times 0 r1 < · · ·< rR. Let Vj be a small neighbor-
hood in cM0 centered at zj for j 2 {1, . . . ,R0}. We proceed as in [36, Proposition 7.5],
and use the definition of the intervals I0, . . . , IR+1 and (4.47) to pick a finite cover
W0, . . .WS of the remaining points on the geodesic � such that for each k 2 {1, . . . , S}
we have Wk ⇢ ⌦`(k) for some `(k) 2 {0, . . . ,R+ 1}. This gives us an open cover for
supp (vs(et, p, ·))\M0,

supp (vs(et, p, ·))\M0 ⇢

0

@
R

0[

j=1

Vj

1

A[
 

S[

k=0

Wk

!
,

and the quasimode restricted to Vj and Wk is of the form

vs(et, p, ·)|Vj =
X

`:�(r`)=zj

v
(`)
s

(et, p, ·) and vs(et, p, ·)|Wk = v
(`(k))
s

(et, p, ·),(4.48)

respectively. Here (4.48) follows from the construction of the intervals (I`)
R+1
`=0 , the

partition of unity subordinate to these intervals, and choosing the set Vj small enough.
Since in both cases of (4.48) the function vs is a finite sum of v(`), the estimate

kvs(et, p, ·)kL2(@M0) = O(1) and those in (4.4) follow from the corresponding local

considerations (4.37), (4.44), and (4.46) for each of v(`)s , respectively. This completes
the construction of the Gaussian beam quasimode vs.

4.1.7. Construction of a Gaussian beam quasimode for the operator
e�s(�t+x1)Lg,a,qes(�t+x1). We next seek a Gaussian beam quasimode for the oper-
ator e�s(�t+x1)Lg,a,qe

s(�t+x1) of the form

ws(t, x1, ⌧, y;h, ⇣) = e
is⇥(⌧,y)

B(t, x1, ⌧, y;h, ⇣)

with the phase function ⇥ 2 C
1(⌦,C) satisfying (4.12) and B(t, x1, ⌧, y) 2 C

1(R⇥
R⇥⌦) supported near �. By replacing s in (4.6) and (4.7) by �s, and recalling that
⇥ is independent of x1, we obtain
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5706 BOYA LIU, TEEMU SAKSALA, AND LILI YAN

e
�s(�t+x1)Lg,a,qe

s(�t+x1)ws

= e
is⇥[s2(hrg0

⇥,rg0
⇥ig0 � (1� �

2))B

+ s(�2@x1
B + 2�@tB � 2ihrg0

⇥,rg0
B(x1, ·)ig0 � i(�g0

⇥)B + �aB)

+Lg,a,qB].

(4.49)

Since the eikonal equation above is identical to the one in (4.8), we see from
subsection 4.1.3 that the phase function ⇥ is given by (4.18). We next find the
amplitude B in the form of

B(t, x1, ⌧, y;h) = h
�n�2

4 B0(t, x1, ⌧ ;h)�(y/�
0),(4.50)

where B0 2 C
1([R⇥R⇥ {⌧ : |⌧ � ⌧0|< �}). To that end, by proceeding similarly as

in the construction of b0 in subsection 4.1.4, we require that B0 solves

(�@t � @x1
� i

p
1� �2@⌧ )B0 =

1

2
[(i
p
1� �2trH(⌧)� �a(t, x1, ⌧,0)]B0.(4.51)

Using change of coordinates (4.26) again, we get

(@et � i@r)B
0
0 =

1

2
[i
p
1� �2trH(

p
1� �2r)� �a

0
⇣
(et, p, r,0)]B0

0,(4.52)

where B
0
0 =B0 � S and a

0
⇣
= a⇣ � S.

By writing @ = 1
2 (@et � i@r) and looking for a solution of the form B0 =

e
�2(et,p,r)+f2(r)⌘(et, p, r) with @⌘= 0, we see that the functions �2,⇣ and f2 must satisfy

@�2,⇣ =�1

4
�a

0
⇣
(et, p,�(r))(4.53)

and

@rf2 =�
p
1� �2

2
trH(

p
1� �2r).(4.54)

Using similar arguments as in the construction of vs, we obtain a Guassian beam
quasimode ws 2C

1(Q) such that the estimates in (4.5) hold.
This completes the proof of Theorem 4.2.

4.2. Concentration property of the Gaussian beam quasimodes. By the
proof of Theorem 4.2, for each nontangential geodesic � : [0, Lp

1��2
]!M0 and h > 0

there exist smooth functions �1,h,�2,h in [0, T
�
]⇥ Jp ⇥ [0, Lp

1��2
] satisfying

(@et + i@r)�1,h(et, p, r) =
1

2
�a

0
h
(et, p,�(r)) and (@et � i@r)�2,h(et, p, r) =�1

2
�a

0
h
(et, p,�(r)),

where a
0
h
= ah �S, and the change of coordinates S is given by (4.26). Here Jp ⇢R is

an open and bounded interval such that for each point in Q the respective p-coordinate
is in Jp. In the next lemma we study the behavior for these functions as h! 0.

Lemma 4.3. Let � 2 ( 1p
3
,1), and let � : [0, Lp

1��2
] ! M0 be a nontangential

geodesic in (M0, g0) as in Proposition 4.2. Then there exist continuous functions �1

and �2 in [0, T
�
]⇥ Jp ⇥ [0, Lp

1��2
] that satisfy

(@et + i@r)�1(et, p, r) =
1

2
�a

0(et, p,�(r)) and (@et � i@r)�2(et, p, r) =�1

2
�a

0(et, p,�(r)),

(4.55)

respectively. Furthermore, the following estimate holds:
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PARTIAL DATA INVERSE PROBLEM FOR WAVE EQUATION 5707

k�j,h ��jkL1([0,T� ]⇥Jp⇥[0, Lp
1��2

]) = o(1), j = 1,2, h! 0.(4.56)

Proof. With a slight abuse of notation, we consider the compactly supported
function ā

0(et, p, r) = a
0(et, p,�(r)) in R3 and define a continuous function �1(et, p, r) =

�

4 (E ⇤a0)(et, p, r). Here the convolution is taken over the complex variable et+ ir. Since
E := 1

⇡(et+ir)
is the fundamental solution for the @̄-operator, we see that @�1 =

1
4�a

0
.

Last, estimate (4.56) follows from the local integrability of E, estimate (4.3), and an
inequality analogous to (4.32). The analogous claims for j = 2 follow by the same
arguments. This completes the proof of Lemma 4.3.

In the following theorem we show that a Gaussian beam quasimode concentrates
along the geodesic in the limit h! 0.

Theorem 4.4. Let s = 1
h
+ i�, 0 < h ⌧ 1, � 2 R fixed, and � 2 ( 1p

3
,1). Let

� : [0, Lp
1��2

]!M0 be a nontangential geodesic in (M0, g0) as in Proposition 4.2. Let

Jp be as above. Let vs and ws be the quasimodes from Proposition 4.2. Then for each

 2C(M0) and (et0, p0)2 [0, T
�
]⇥ Jp we have

lim
h!0

Z

M0

vs(et0, p0, ·)ws(et0, p0, ·) dVg0

= (1� �
2)�

n�6

4

Z Lp
1��2

0
e
�2(1��2)�r

e
�1(et0,p0

,r)+�2(et0,p0
,r) ⇥ ⌘(et0, p0, r) (�(r))dr.

(4.57)

Here the functions �1,�2 2 C([0, T
�
] ⇥ Jp ⇥ [0, Lp

1��2
]) are as in Lemma 4.3, and

⌘ 2C
1([0, T

�
]⇥ Jp ⇥ [0, Lp

1��2
]) with (@et � i@r)⌘= 0.

Proof. By a partition of unity, it su�ces to verify (4.57) for  2C0(Vj \M0) and
 2C0(Wk \M0), where Vj and Wk are the same as in subsection 4.1.6 in the proof
of Theorem 4.2.

Case 1:  2C0(Wk\M0). We first consider the easier case that  2C0(Wk\M0)
for some k. Here supp  may extend to @M0, and we extend  by zero outside
Wk \M0. Using the quasimodes vs and wk given in (4.48), by arguing similarly as in
the proof of Theorem 4.2, we obtain Gaussian beam quasimodes

vs(et, p, r, y) = e
is⇥(

p
1��2r,y)

h
�n�2

4 e
�1,h(et,p,r)+f1(r)�(y/�0),

ws(et, p, r, y) = e
is⇥(

p
1��2r,y)

h
�n�2

4 e
�2,h(et,p,r)+f2(r)⌘(et, p, r)�(y/�0).

(4.58)

In order to establish (4.57), we substitute the quasimodes given in (4.58) directly
into the left-hand side of (4.57). After that, we apply the dominated convergence

theorem to simplify our computation since the term e
� 1

h

p
1��2ImH(

p
1��2r)y·y domi-

nates the other exponentials in the phase function. Then we utilize properties of the
solution H(r) to the Riccati equation (4.17), as well as the definitions of functions
f1, f2 given by (4.30) and (4.54), respectively.

Let us now provide the detailed proof. Using (4.10), we see that the determinant
satisfies

|g0(r, y)|1/2 =
p
1� �2 +O(|y|2).(4.59)

It then follows from (4.18), (4.26), (4.58), and (4.59) that
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Z

M0

vs(et0, p0, ·)ws(et0, p0, ·) dVg0

=
p
1� �2

Z Lp
1��2

0

Z

Rn�2

e
� 2

h Im⇥
e
�2�Re⇥

h
�n�2

2 e
�1,h(et0,p0

,r)+�2,h(et0,p0
,r)+f1(r)+f2(r)

⇥ �
2(y/�0)⌘(et, p, r) (r, y)|g0|1/2dydr

=
p
1� �2

Z Lp
1��2

0

Z

Rn�2

e
� 1

h

p
1��2ImH(

p
1��2r)y·y

⇥ e
�2�(1��2)r

e
�O(|y|2)

h
�n�2

2 �
2(y/�0)⌘(et0, p0, r)

⇥ e
�1,h(et0,p0

,r)+�2,h(et0,p0
,r)+f1(r)+f2(r) (r, y)(

p
1� �2 +O(|y|2))dydr

= (1��2)

Z Lp
1��2

0

Z

Rn�2

e
�
p

1��2ImH(
p

1��2r)y·y
e
�2(1��2)�r

e
h�O(|y|2)

�
2(h1/2

y/�
0)

⇥ e
�1,h(et0,p0

,r)+�2,h(et0,p0
,r)+f1(r)+f2(r) (r,h

1

2 y)(1 + hO(|y|2))⌘(et0, p0, r)dydr,

(4.60)

where we have performed a change of variables y 7! h
1

2 y in the last step.
Passing to the limit h! 0 in (4.60), we get the following pointwise limits,

e
h�O(|y|)2 ! 1, �

2(h1/2
y/�

0)! 1,  (r,h
1

2 y)! (r,0) =  (�(r)), �i,h !�i,

where we used (4.56) in the verification of the last limit. We recall that

Im⇥=
1

2

p
1� �2ImH(

p
1� �2r)y · y� d|y|2 and

Z

Rn�2

e
�d|y|2

dy <1.

Hence, by the dominated convergence theorem, we get

lim
h!0

Z

M0

vs(et0, p0, ·)ws(et0, p0, ·) dVg0

= (1� �
2)

Z Lp
1��2

0
e
f1(r)+f2(r)

✓Z

Rn�2

e
�
p

1��2ImH(
p

1��2r)y·y
dy

◆

⇥ ⌘(et0, p0, r)e�2(1��2)�r
e
�1(et0,p0

,r)+�2(et0,p0
,r)
 (�(r))dr.

(4.61)

To simplify the expression on the right-hand side of (4.61), we perform a change
of variable y 7! (1� �

2)�
1

4 y to obtain
Z

Rn�2

e
�
p

1��2ImH(
p

1��2r)y·y
dy=

Z

Rn�2

(1� �
2)�

n�2

4 e
�ImH(

p
1��2r)y·y

dy

=
⇡

n�2

2 (1� �
2)�

n�2

4

q
det(ImH(

p
1� �2r))

.

(4.62)

We set r0 =
p
1� �2⌧0 and recall from [34, Lemma 2.58] that

det(ImH(
p
1� �2r)) = det(ImH(

p
1� �2r0))e

�2
R r
r0

p
1��2trReH(

p
1��2w)dw

.(4.63)

This implies

Z

Rn�2

e
�
p

1��2ImH(
p

1��2r)y·y
dy=

⇡
n�2

2 (1� �
2)�

n�2

4 e

R r
r0

p
1��2trRe(H(

p
1��2w))dw

q
det(ImH(

p
1� �2r0))

.

(4.64)
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PARTIAL DATA INVERSE PROBLEM FOR WAVE EQUATION 5709

Furthermore, since

@rfj(r) =�1

2

p
1� �2trH(

p
1� �2r), j = 1,2,(4.65)

we get

@r(f1(r) + f2(r)) =�
p
1� �2trReH(

p
1� �2r).

Thus, by the fundamental theorem of calculus, we have

f1(r) + f2(r) = f1(r0) + f2(r0)�
Z

r

r0

p
1� �2trRe(H(

p
1� �2w))dw.(4.66)

We next choose f1(r0) and f2(r0) so that

e
f1(r0)+f2(r0)⇡

n�2

2

q
det(ImH(

p
1� �2r0))

= 1.(4.67)

Thus, it follows from (4.64), (4.66), and (4.67) that

e
f1(r)+f2(r)

✓Z

Rn�2

e
�ImH(

p
1��2r)x·x

dx

◆
= (1� �

2)�
n�2

4 .(4.68)

Finally, we obtain (4.57) for  2C0(Wk \M0) by substituting (4.68) into (4.61).
Case 2:  2 C0(Vj \M0). Let us now verify (4.57) when  2 C0(Vj \M0) for

some j 2 {1, . . . ,R0}, where R
0 is the number of self-intersection points of �. In this

case, we obtain from (4.48) that the quasimodes are of the form

vs =
X

l:�(rl)=zj

v
(l)
s
, ws =

X

l:�(rl)=zj

w
(l)
s

on supp ( ), thus

vsws =
X

l:�(rl)=zj

v
(l)
s w

(l)
s

+
X

l 6=l0:�(rl)=�(rl0 )=zj

v
(l)
s w

(l0)
s

.(4.69)

We aim to prove that the contribution of the cross terms vanish in the limit h! 0.
More precisely,

lim
h!0

Z

M0

v
(l)
s (et0, p0, ·)w(l0)

s
(et0, p0, ·) dVg0

= 0, l 6= l
0
.(4.70)

If so, then the limit (4.57) follows from the first part of this proof.
In order to verify (4.70), we split  into a smooth and a su�ciently small part.

In the latter case, the limit (4.70) follows from Proposition 4.1. For the smooth part,
we integrate by parts, which requires us to di↵erentiate  . In addition, we need the
estimate (4.46) to show that the boundary term vanishes. This estimate was not
needed to prove Theorem 4.2.

To start the proof, following similar arguments as in the proof of [25, Proposition
3.1], we write

v
(l)
s

= e
i
hRe⇥(l)

�
(l)
, �

(l) = e
��Re⇥(l)

e
�sIm⇥(l)

b
(l)
,
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5710 BOYA LIU, TEEMU SAKSALA, AND LILI YAN

and

w
(l0)
s

= e
i
hRe⇥(l0)

!
(l0)

, !
(l0) = e

��Re⇥(l0)
e
�sIm⇥(l0)

B
(l0)

,

which imply that

v
(l)
s w

(l0)
s

= e
i
h��(l)!

(l0)
, �=Re⇥(l0) �Re⇥(l)

.(4.71)

Hence, in view of (4.71), we need to show that

lim
h!0

Z

M0

e
i
h��(l)(et0, p0, ·)!(l0)(et0, p0, ·) dVg0

= 0, l 6= l
0
.(4.72)

To prove (4.72), let us write  =  h + ( �  h), where the regularization  h 2
C

1
0 (Vj\M0), but its support can meet @M0, and  � h is continuous. We recall that,

due to the estimates in (4.4) and (4.5), we have k�(l)kL2(Vj\M0),k!(l0)kL2(Vj\M0) =
O(1). Thus, by Hölder’s inequality and estimate (4.3), we obtain

����
Z

M0

e
i
h��(l)(et0, p0, ·)!(l0)(et0, p0, ·)( � h)dVg0

����(4.73)

 kv(l)
s
kL2kw(l0)

s
kL2k � hkL1 = o(1), h! 0,

where the L
p-norms are taken over the set Vj \M0.

To analyze the term involving the smooth part  h, we note that by (4.10) and
(4.18), the gradients of Re⇥(l) and Re⇥(l0) at zj are parallel to �̇(rl) and �̇(rl0), respec-
tively. Since the geodesic � intersects itself transversally at zj , we have rg0

�(zj) 6= 0.
Therefore, by shrinking the set Vj if necessary, we may assume that � has no critical

points in Vj . Thus, the vector field L = �(l)!
(l0)

 h

|rg0�|2
rg0

� is well-defined and satisfies

e
i
h��(l)!(l0)

 h =�ihL(e
i
h�). Therefore, we integrate by parts in (4.72) to obtain

Z

M0

e
i
h��(l)(et0, p0, ·)!(l0)(et0, p0, ·) hdVg0

=�ih

Z

Vj\@M0

@⌫�

|rg0
�|2 e

i
h��(l)(et0, p0, ·)!(l0)(et0, p0, ·) hdSg0

+ ih

Z

M0

e
i
h�div(L)(et0, p0, ·)dVg0

.

(4.74)

To show that the boundary term on the right-hand side of (4.74) vanishes as
h ! 0, we use estimate (4.46) to observe that k�(l)kL2(@M0), k!(l0)kL2(@M0) = O(1).
Furthermore, � is real valued and independent of h. Then by estimate (4.3) and
Hölder’s inequality, we have

�ih

Z

Vj\@M0

@⌫�

|rg0
�|2 e

i
h��(l)(et0, p0, ·)!(l0)(et0, p0, ·) hdSg0

=O(h), h! 0.

To prove that the second term on the right-hand side of (4.74) vanishes as h! 0,
we first compute that

divL=div

✓
�(l)!

(l0)
 h

rg0
�

|rg0
�|2

◆
=

⌧
rg0

(�(l)!(l0)
 h),

rg0
�

|rg0
�|2

�

g0

+ �(l)!
(l0)
 hdiv

✓
rg0

�

|rg0
�|2

◆
.
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Using estimates (4.3), k�(l)kL2(M0),k!(l0)kL2(M0) =O(1), and Hölder’s inequality, we
get

ih

Z

M0

e
i
h��(l)(et0, p0, ·)!(l0)(et0, p0, ·) hdiv

✓
rg0

�

|rg0
�|2

◆
dVg0

=O(h), h! 0.

Next, we write

�(l)!
(l0)
 h = [e��(Re⇥(l)+Re⇥(l0))

e
�i�(Im⇥(l0)�Im⇥(l))]

⇥ [e�
1

h (Im⇥(l)+Im⇥(l0))
h
�n�2

2 ][b(l)0 B
(l0)
0 �

2(y/�0)] h = f1f2f3 h.

To streamline the proof, we only provide the estimate for the worst case scenario,

which occurs when rg0
acts on f2 = e

� 1

h (Im⇥(l)+Im⇥(l0))
h
�n�2

2 . To that end, due to
(4.18), there exists C > 0 such that by the Cauchy–Schwarz inequality, as well as
estimates (4.3) and (4.35) with k= 1

2 , we have

h

Z

M0

|e i
h�f1f2 h

⌧
rg0

f2,
rg0

�

|rg0
�|2

�
|dVg0

Ck hkL1k�(l)(et0, p0, ·)kL2k!(l0)(et0, p0, ·)kL2

Z

M0

h
�n�2

2 |y|e� d
h |y|2

dVg0

=O(h1/2), h! 0.

Hence, we conclude that the second term on the right-hand side of (4.74) is
of order O(h1/2), thus the limit (4.72) is verified. This completes the proof of
Proposition 4.4.

4.3. Construction of CGO solutions. We now proceed to construct CGO
solutions of the forms (4.1) and (4.2). Thanks to the interior Carleman estimate
established in Proposition 3.5, we can put the ingredients together in a simple way.
Let (M,g) be a CTA manifold given by Definition 1.1. We already computed in
section 3 that

c
n+2

4 �Lc,g,a,q � c�
n�2

4 =Leg,ea,eq,

where eg= e�g0, ea= ca, and eq= c(q�c
n�2

4 �g(c�
n�2

4 )). This implies that u= c
�n�2

4 eu
satisfies Lc,g,a,qu= 0 if eu solves Leg,ea,eqeu= 0 in Q.

Let us write (t, x) = (t, x1, x
0) for local coordinates in Q and recall that s= 1

h
+i�,

0 < h ⌧ 1, where � 2 R is fixed. We are interested in finding CGO solutions to the
equation

Leg,ea,eqeu= 0 in Q(4.75)

of the form

eu= e
�s(�t+x1)(vs + r),

where vs is the Gaussian beam quasimode given in Proposition 4.2, and r = rs is a
correction term that vanishes in the limit h! 0. Indeed, eu is a solution to (4.75) if

e
s(�t+x1)h

2Leg,ea,eqe
�s(�t+x1)r=�e

s(�t+x1)h
2Leg,ea,eqe

�s(�t+x1)vs.(4.76)

Then we apply Proposition 3.5 with v=�e
s(�t+x1)h2Leg,ea,eqe

�s(�t+x1)vs and estimate
(4.4) to conclude that there exists r 2H

1(Qint) such that (4.76) holds and krkH1

scl
(Q) =

o(1) as h! 0.
We summarize our discussion above in the following theorem. In particular, we

have general conformal factor c in this result instead of c = 1, which we assumed in
all of the earlier results in this paper.
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5712 BOYA LIU, TEEMU SAKSALA, AND LILI YAN

Theorem 4.5. Let a 2W
1,1(Q) and q 2C(Q). Let s= 1

h
+ i� with � 2R fixed.

For all h> 0 small enough, there exists a solution u1 2H
1(Q) to L⇤

c,g,a,q
u1 = 0 of the

form

u1 = e
�s(�t+x1)c

�n�2

4 (vs + r1),(4.77)

where vs 2 C
1(Q) is the Gaussian beam quasimode given in Proposition 4.2, and

r1 2H
1
scl(Q

int) is such that kr1kH1

scl
(Qint) = o(1) as h! 0.

There also exists a solution u2 2H
1(Q) to Lc,g,a,qu2 = 0 that has the form

u2 = e
s(�t+x1)c

�n�2

4 (ws + r2),(4.78)

where ws 2 C
1(Q) is the Gaussian beam quasimode given in Proposition 4.2, and

r2 2H
1
scl(Q

int) is such that kr2kH1

scl
(Qint) = o(1) as h! 0.

5. Proof of Theorem 1.2. Let u1 2H
1(Q) be an exponentially decaying CGO

solution given by (4.77) to the equation L⇤
c,g,a1,q1

u1 = 0 in Q, and let u2 2 H
1(Q)

be an exponentially growing CGO solution given by (4.78) satisfying Lc,g,a2,q2
u2 = 0

in Q. Due to the main assumption Cg,a1,q1
= Cg,a2,q2

, it follows from Proposition 2.4
that there exists a function v 2H2c,g (Q) such that Lc,g,a1,q1

v= 0 and

(u2 � v)|⌃ = (u2 � v)|t=0 = (u2 � v)|t=T = @t(u2 � v)|t=0 = @⌫(u2 � v)|V = 0.

Then u := u2 � v 2H2c,g (Q) solves the equation

Lc,g,a1,q1
u= a@tu2 + qu2 in Q, u|⌃ = u|t=0 = u|t=T = @tu|t=0 = @⌫u|V = 0.

(5.1)

Here and in what follows we denote a := a1�a2 and q := q1� q2. Since a@tu2+ qu2 2
L
2(Q), it follows from [47, Theorem 2.1] that

u2C
1([0, T ];L2(M))\C([0, T ];H1

0 (M))⇢H
1(Q) with @⌫u2L

2(⌃).

Since u1 2H
1(Q) and 2c,gu1 2L

2(Q), we see that

(c�1
@tu1,�rgu1)2Hdiv(Q) := {F 2L

2(Q,TQ) : div(t,x)F 2L
2(Q)}.

We view Q as a compact Riemannian manifold of dimension n + 1 with the metric
g= dt

2�g, and let ⌫̄ be the outward unit normal vector to @Q. In view of [35, Lemma
2.2], for F 2 Hdiv(Q), F · ⌫̄|@Q can be defined as an element of H�1/2(@Q), and for
 2H

1(Q) we have

h , F · ⌫̄iH1/2(@Q),H�1/2(@Q) = h ,divg(F )iL2(Q) + hrg , F iL2(Q).

By taking  = u and F = (c�1@tu1,�rgu1), we deduce that

hu, (c�1@tu1,�rgu1) · ⌫̄iH1/2(@Q),H�1/2(@Q)

= hu,2c,gu1iL2(Q) + h(@tu,rgu), (c
�1
@tu1,�rgu1)iL2(Q).

(5.2)

Arguing similarly and using @tu|t=0, @tu|t=T 2L
2(M), @⌫u2L

2(⌃), and u1 2H
1(Q),

we get

h(c�1
@tu,�rgu) · ⌫̄, u1iL2(@Q) = h2c,gu,u1iL2(Q)

+ h(c�1
@tu,�rgu), (@tu1,rgu1)iL2(Q).

(5.3)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/2

1/
24

 to
 1

52
.7

.2
55

.1
97

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



PARTIAL DATA INVERSE PROBLEM FOR WAVE EQUATION 5713

Since a2W
1,1(Q) and u,u1 2H

1(Q), it follows from the proof [20, Proposition 9.4]
that au1 2 H

1(Q) and @t(au1) = @tau1 + a@tu1 in the weak sense. Therefore, the
following integration by parts is justified:

Z

Q

(a1u1)@tudVgdt=�
Z

Q

@t(a1u1)udVgdt=�
Z

Q

(@ta1u1 + a1@tu1)udVgdt.(5.4)

In particular, there are no boundary terms since u|t=0 = u|t=T = 0.
We then multiply (5.1) by u1 and integrate over Q. Therefore, we deduce from

(5.1)–(5.4) that

Z

Q

(a@tu2 + qu2)u1dVgdt

= hLc,g,a1,q1
u,u1iL2(Q) � hu,L⇤

c,g,a1,q1
u1iL2(Q)

= h(c�1
@tu,�rgu) · ⌫̄, u1iL2(@Q) � hu, (c�1

@tu1,�rgu1) · ⌫̄iH1/2(@Q),H�1/2(@Q).

(5.5)

Since u|⌃ = u|t=0 = u|t=T = 0, the second term on the right-hand side of (5.5)
vanishes. Furthermore, since @⌫u 2 L

2(⌃) with @tu|t=0 = @⌫u|V = 0, we obtain the
integral identity

Z

Q

(a@tu2 + qu2)u1dVgdt=�
Z

⌃\V
@⌫uu1dSgdt+

Z

M

c
�1
@tu(T,x)u1(T,x)dVg.(5.6)

We shall next substitute the CGO solutions (4.77) and (4.78) into (5.6), multiply
the equation by h, and pass to the limit h! 0. In order to analyze the limit of the
terms on the left-hand side of (5.6), we use estimates (3.43) and (4.4) to obtain the
following estimates for the remainder terms:

krjkL2(Q)  krjkH1

scl
(Qint) = o(1), j = 1,2,(5.7)

and

k@trjkL2(Q) 
1

h
krjkH1

scl
(Qint) = o(h�1), j = 1,2.(5.8)

On the other hand, the following lemma explains the behaviors of the two terms on
the right-hand side of (5.6) as h! 0.

Lemma 5.1. Let u1 and u be the functions described above. Then the following

estimates hold as h! 0:

Z

M

c
�1
@tu(T,x)u1(T,x)dVg =

8
<

:

O(h�1/2) if a 6= 0,

O(h1/2) if a= 0,
(5.9)

Z

⌃\V
@⌫uu1dSgdt=

8
<

:

o(h�1) if a 6= 0,

o(1) if a= 0.
(5.10)

We will postpone the proof of this result and use it to prove the uniqueness of
the damping coe�cient first.

5.1. Uniqueness of the damping coe�cient. From the respective CGO so-
lutions (4.77) and (4.78) for u1 and u2, we compute that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/2

1/
24

 to
 1

52
.7

.2
55

.1
97

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



5714 BOYA LIU, TEEMU SAKSALA, AND LILI YAN

u2u1 = e
2i�(�t+x1)c

�n�2

2 (vsws + vsr2 + r1ws + r1r2) .

Therefore, by estimates (4.4), (4.5), (5.7), and the Cauchy–Schwartz inequality, we
have

ku2u1kL1(Q) O(1).

Hence, the following estimate holds:

h

����
Z

Q

qu2u1dVgdt

���� hkqkL1(Q)ku2u1kL1(Q) =O(h), h! 0.(5.11)

We next consider the term h
R
Q
a(@tu2)u1dVgdt on the left-hand side of (5.6). To

that end, direct computations yield

(@tu2)u1 = e
2i�(�t+x1)c

�n�2

2 [(vs@tws + vs@tr2 + r1@tws + r1@tr2)

+ s�(vsws + vsr2 + r1ws + r1r2)].

Using estimates (4.4), (4.5), (5.7), (5.8), as well as the Cauchy–Schwartz inequality,
we obtain

h

����
Z

Q

e
2i�(�t+x1)c

�n�2

2 a(vs@tws + vs@tr2 + r1@tws + r1@tr2)dVgdt

����= o(1), h! 0,

and

h

����
Z

Q

e
2i�(�t+x1)c

�n�2

2 as �(vsr2 + r1ws + r1r2)dVgdt

����= o(1), h! 0.

Therefore, we have

h

Z

Q

a@tu2u1dVgdt!
Z

Q

e
2i�(�t+x1)c

�n�2

2 �avswsdVgdt, h! 0.(5.12)

Using (5.11), (5.12), and Lemma 5.1, we deduce from (5.6) that
Z

Q

e
2i�(�t+x1)c

�n�2

2 �avswsdVgdt! 0, h! 0.

On the other hand, since a1, a2 2 W
1,1(Q) and a1 = a2 on the boundary @Q,

we can continuously extend a on (R2 ⇥M0) \ Q by 0 and denote the extension by
the same letter. Using dVg = c

n
2 dVg0

dx1, the change of coordinates (4.26), Fubini’s
theorem, the dominated convergence theorem, and the concentration property (4.57)
of the quasimodes vs and ws, we obtain

Z

Q

e
2i�(�t+x1)c

�n�2

2 �avswsdVgdt

=

Z

R

Z

R

Z

M0

e
2i�(�t+x1)c�avswsdVg0

dx1dt

=

Z

R

Z

R

Z

M0

�
2
e
2i�((�2�1)et+p)(ca)vswsdVg0

dpdet! �
2(1� �

2)�
n�6

4

⇥
Z

R

Z

R

Z Lp
1��2

0
e
2i�((�2�1)et+p)�2(1��2)�r(ca)(�et, p� et,�(

p
1� �2r))

⇥ e
�1(et,p,r)+�2(et,p,r)⌘(et, p, r)drdpdet, h! 0.
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PARTIAL DATA INVERSE PROBLEM FOR WAVE EQUATION 5715

As � 2 [ 1p
3
,1), we conclude that

Z Lp
1��2

0

Z

R

Z

R
e
2i�((�2�1)et+p)�2(1��2)�r(ca)(�et, p� et,�(

p
1� �2r))

⇥ e
�1(et,p,r)+�2(et,p,r)⌘(et, p, r)dpdetdr= 0.

(5.13)

We next follow the arguments in [46, section 4] closely to prove that (5.13) holds

when e
�1(et,p,r)+�2(et,p,r)⌘(et, p, r) is removed from the integral. To this end, let us write

⌘(et, p, r) := ⌘1(t̃, r)⌘2(p) in (4.58) with @⌘1 = 0, where @ = 1
2 (@et + i@r), and denote

 (et, p, r) = e
2i�[(�2�1)et+p�i(�2�1)r]

⌘1(et, r).(5.14)

It follows from direct computations that @ = 1
2 (@et � i@r) = 0.

Since a is supported in Q, we get from (5.13) that
Z

R

Z

R

Z

R
 (et, p, r)(ca)(�et, p� et,�(

p
1� �2r))e�1(et,p,r)+�2(et,p,r)⌘2(p)dpdetdr= 0,

and there exists a constant R > 0 such that supp a ⇢⇢ Bet,p,r(0,R). Also, since
⌘2 2C

1(R) is arbitrary, for almost every p2R we have
Z

⌦p

 (et, p, r)(ca)(�et, p� et,�(
p
1� �2r))e�1(et,p,r)+�2(et,p,r)detdr= 0,(5.15)

where ⌦p = {(et, r) : (et, p, r, y) 2 Q}. We shall view ⌦p as a domain in the complex
plane with the complex variable z = et+ ir.

Recall that it was explained in the formulas (3.1)–(3.4) how to transform the
hyperbolic operator Lc,g,a,q into another operator Leg,ea,eq of the same type, where
the contribution of the conformal factor c was moved from the highest order term to
the lower order ones. In particular, we have ea= ca, and the construction of the Gauss-
ian beams in section 4 is carried over for this damping coe�cient. Hence, (4.55) yields

@(�1 +�2) =
1

4
�(ca)(�et, p� et,�(

p
1� �2r)).(5.16)

Thus, it follows from (5.15) and (5.16) that
Z

⌦p

@
�
 (z, p)e�1(z,p)+�2(z,p)

�
dz ^ dz = 0 for almost every p.(5.17)

We now discuss the regularity of �i. To that end, using (5.16) along with the fact
that a(·, p) 2 L

1(C) is compactly supported for almost every p, we see that @�i 2
L
p(C) for 1  p  1. By the boundedness of the Beurling–Ahlfors operator @@�1

on L
p(C), 1 < p < 1, we get @�i = @@

�1(@�i), which implies that rg�i 2 L
p(C).

Furthermore, since �i 2 L
1(C), we have �i(·, p) 2 W

1,p
loc (C), 1 < p < 1. Hence, we

conclude that �i(·, p)2H
1(⌦p), i= 1,2. Thus, an application of Stokes’ theorem [67,

Theorem 18A] yields
Z

@⌦p

 (z, p)e�1(z,p)+�2(z,p)dz = 0.(5.18)

By [24, Lemma 5.1] (see also [2, Lemma 3, section 2.3, Chapter 4]), there exists a
nonvanishing function F 2C(⌦p), antiholomorphic in ⌦p, such that

F |@⌦p = e
�1+�2 |@⌦p .
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5716 BOYA LIU, TEEMU SAKSALA, AND LILI YAN

Furthermore, the arguments in the proof of [43, Lemma 7.3] show that there exists
an antiholomorphic function G2C(⌦p) such that F = e

G in ⌦p, and we may assume
that G=�1 +�2 on @⌦p. Choosing ⌘1 =Ge

�G in (5.14), we get from (5.18) that
Z

@⌦p

�
�1(et, p, r) +�2(et, p, r)

�
e
2i�[(�2�1)et+p�i(�2�1)r]

dz = 0.

Applying Stokes’ theorem again, using (5.16), and integrating over the p variable, we
obtain

Z Lp
1��2

0

Z

R

Z

R
e
2i�((�2�1)et+p)�2(1��2)�r(ca)(�et, p� et,�(

p
1� �2r))dpdetdr= 0.

(5.19)

Finally, we use (4.26) to return to (t, x1, ⌧) coordinates from (et, p, r) coordinates and
replace 2� with �. After these changes, (5.19) becomes

Z
L

0

Z

R

Z

R
e
i�(�t+x1)�

p
1��2�⌧ (ca)(t, x1,�(⌧))dx1dtd⌧ = 0.(5.20)

We are now ready to utilize Assumption 1, the invertibility of the attenuated
geodesic ray transform on (M0, g0). To that end, we let F(t,x1)!(⇠1,⇠2) be the Fourier
transform in the Euclidean variables (t, x1) and define

f(x0
,�,�) :=

Z

R

Z

R
e
i�(�t+x1)(ca)(t, x1, x

0)dx1dt

=F(t,x1)!(⇠1,⇠2)(ca)|(⇠1,⇠2)=��(�,1) for x0 2M0, � 2 [1/2,1), �2R.

Since a2W
1,1(Q), we see that the function f(·,�,�) is continuous on M0. Further-

more, as � is an arbitrarily chosen nontangential geodesic in (M0, g0), we get from
(5.20) that the following attenuated geodesic ray transform vanishes:

Z
L

0
e
�
p

1��2�⌧
f(�(⌧),�,�)d⌧ = 0.(5.21)

By Assumption 1, there exists "> 0 such that f(�(⌧),�,�) = 0 whenever
p
1� �2|

�| < ". Hence, there exist �0 2 ( 1p
3
,1), �0 > 0, and � > 0 such that for every

(�,�)2R2 that satisfies |� � �0|, |�� �0|< �, and � 6= 0, we have
p
1� �2|�|< ". In

particular, the mapping (�,�) 7! ��(�,1) is a di↵eomorphism when � 6= 0, implying
that F(t,x1)!(⇠1,⇠2)(ca) = 0 in an open set of R2. Last, the compact support of a and
the Paley–Wiener theorem yield that F(ca) is real analytic. Therefore, we get ca= 0
in Q. Since c is a positive function, we must have a= a1 � a2 = 0.

To complete the proof of uniqueness for the damping coe�cient in Theorem 1.2,
we still need to verify Lemma 5.1.

Proof of Lemma 5.1. Let us prove estimate (5.9) first. To this end, using estimates
(4.4) and (5.7), the CGO solution (4.77), and the Cauchy–Schwartz inequality, we get

����
Z

M

c
�1
@tu(T,x)u1(T,x)dVg

����

 kc�1kL1(Q)

Z

M

|@tu(T,x)u1(T,x)|dVg

O(1)

Z

M

|c�
n�2

4 e
�s(�T+x1)@tu(T,x)|(|vs(T,x)|+ |r1(T,x)|)dVg

O(1)ke�s(�T+x1)@tu(T, ·)kL2(M).

(5.22)
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PARTIAL DATA INVERSE PROBLEM FOR WAVE EQUATION 5717

Utilizing the boundary Carleman estimate (3.23) and (5.1), we obtain

ke�s(�T+x1)@tu(T, ·)kL2(M) O(h1/2)ke�s(�t+x1)Lc,g,a1,q1
ukL2(Q).(5.23)

We then substitute the CGO solution (4.78) for u2 into (5.1) to get

e
�s(�t+x1)Lc,g,a1,q1

u= e
�s(�t+x1)(a@tu2 + qu2)

= c
�n�2

2 [as�(ws + r2) + a(@tws + @tr2) + q(ws + r2)].

We recall that s= h
�1 + i� and use estimates (4.5), (5.7), and (5.8) to obtain

ke�s(�t+x1)Lc,g,a1,q1
ukL2(Q) =

8
<

:

O(h�1) if a 6= 0,

O(1) if a= 0.
(5.24)

Therefore, estimates (5.22)–(5.24) imply (5.9).
We next prove estimate (5.10). To that end, for all "> 0 we set

@M+," = {x2 @M : @⌫'(x)> "} and ⌃+," = (0, T )⇥ @M+,".

We recall that in section 1 we defined the open sets U
0
, V

0 ⇢ @M such that they
contain the back and front faces @M+,@M� of the manifold M , respectively. By the
compactness of {x 2 @M : @⌫'(x) = 0}, there exists " > 0 such that ⌃ \ V ⇢ ⌃+,",
where we had set V = (0, T )⇥ V

0.
We utilize estimates (4.4), (4.77), (5.7), as well as the Cauchy–Schwartz inequality

to get
����
Z

⌃\V
@⌫uu1dSgdt

����
Z

⌃+,"

e
�s(�t+x1)|@⌫u|(|vs|+ |r1|)dSgdt

C

✓Z

⌃+,"

|e�s(�t+x1)@⌫u|2dSgdt

◆1/2

(kvskL2(⌃+,") + kr1kL2(⌃)).

Next we estimate the terms in the inequality above. By Proposition 4.5 and
estimate (5.7), in conjunction with the inequalities

kr1kL2(⌃)  kr1k1/2L2(Q)kr1k
1/2
H1(Q) and kr1kH1(Q) Ch

�1kr1kH1

scl
(Q),

we obtain

kr1kL2(⌃) = o(h�1/2), h! 0.(5.25)

We now follow the steps in the proof of [21, Theorem 6.2] to verify

kvskL2(⌃+,") =O(1), h! 0.(5.26)

Due to the product structure of ⌃+," and the fact that T > 0 is finite, it su�ces to
prove that kvskL2(@M+,") =O(1).

Let ⇡1 : @M !R be a projection defined by

⇡1(x) = x1 for any x= (x1, x
0)2 @M.

Without loss of generality, we assume that @M" := @M \⇡�1
1 (") is a manifold for any

"> 0. Hence, @M+," is a compact (n� 1)-dimensional manifold with boundary.
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5718 BOYA LIU, TEEMU SAKSALA, AND LILI YAN

First, we observe that @M+," ⇢ @M is an open and precompact manifold of
dimension n�1, the same asM0. Clearly, the projections ⇡1 : @M !R,⇡1(x1, x

0) = x1,
and ⇡2 : @M !M0, ⇡2(x1, x

0) = x
0 = (x2, . . . , xn), are smooth. From here, our aim is to

show that ⇡2 is a local di↵eomorphism in @M+,". To accomplish this, we note that by
definition, the vector field @x1 is transversal to @M on @M+,". Thus, if z2, . . . , zn are
some local coordinates in @M+,", the functions x1, z2, . . . zn form local coordinates in
R⇥M0 near z0. Moreover, the map x 7! (x1, x

0) is a di↵eomorphim. Thus, the (n�1)⇥
(n�1) matrix @x↵

@z�
for ↵,� = 2, . . . , n, which is also the di↵erential of ⇡2, is invertible.

By the inverse function theorem, the map ⇡2 is a local di↵eomorphism in @M+,".
Let x 2 @M+," be an arbitrary point, and let U ⇢ @M+," be a neighborhood of

x such that ⇡2|U is a di↵eomorphism. Then it follows from the change of variables
formula that the pullback of the surface elements satisfy (⇡2)⇤(dSg) = J⇡2

dVg0
, where

J⇡2
is the Jacobian of ⇡�1

2 . Therefore, we have
Z

U
|vs|2dSg =

Z

⇡2(U)
|vs � ⇡�1

2 |2J⇡2
dVg0

.

Furthermore, after possibly choosing a smaller set U , we see that the Jacobian J⇡2
is

bounded on ⇡2(U)⇢M0. Therefore, we deduce from (4.35) and (4.45) that
Z

U
|vs|2dSg =

Z

⇡2(U)
|vs � ⇡�1

2 |2J⇡2
dVg0

=O(1).

Since x 2 @M+," was arbitrarily chosen, we can choose a larger " and obtain a finite
cover for @M+," consisting of the sets U as above by shrinking @M+,". This leads to
estimate (5.26).

Whence, estimates (5.25) and (5.26) yield

kvskL2(⌃+,") + kr1kL2(⌃) = o(h�1/2), h! 0.(5.27)

On the other hand, we have
✓Z

⌃+,"

|@⌫ue�s(�t+x1)|2dSgdt

◆1/2

=
1p
"

✓Z

⌃+,"

"|@⌫ue�s(�t+x1)|2dSgdt

◆1/2

 1p
"

✓Z

⌃+,"

@⌫'|@⌫ue�s(�t+x1)|2dSgdt

◆1/2

 1p
"

✓Z

⌃+

@⌫'|@⌫ue�s(�t+x1)|2dSgdt

◆1/2

,

where we used ⌃+ = (0, T )⇥ @M
int
+ .

Using the boundary Carleman estimate (3.23) and (5.1), we get
✓Z

⌃+

@⌫'|@⌫ue�s(�t+x1)|2dSgdt

◆1/2

O(h1/2)
1p
"
ke�s(�t+x1)Lc,g,a1,q1

ukL2(Q).

Therefore, estimates (5.24) and (5.27) yield (5.10). This completes the proof of
Lemma 5.1.

5.2. Uniqueness of the potential. In this subsection we assume a1 = a2 and
prove that Cg,a1,q1

= Cg,a2,q2
implies q1 = q2. Our starting point is again the integral

identity (5.6). When a1 � a2 = a= 0, this reads
Z

Q

qu2u1dVgdt=

Z

M

c
�1
@tu(T,x)u1(T,x)dVg �

Z

⌃\V
@⌫uu1dSgdt.(5.28)
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PARTIAL DATA INVERSE PROBLEM FOR WAVE EQUATION 5719

Since a= 0, Lemma 5.1 implies that both terms on the right-hand side of (5.28)
vanish in the limit h! 0. Therefore, we have

Z

Q

qu2u1dVgdt! 0, h! 0.

On the other hand, by substituting the CGO solutions (4.77) and (4.78) into the
left-hand side of (5.28), we get

Z

Q

qu2u1dVgdt=

Z

Q

qe
2i�(�t+x1)c

�n�2

2 (vsws + vsr2 +wsr1 + r1r2)dVgdt.

It follows from estimates (4.4), (4.5), and (5.7) that
Z

Q

qe
2i�(�t+x1)c

�n�2

2 (vsr2 +wsr1 + r1r2)dVgdt= o(1), h! 0.

Therefore, we obtain
Z

Q

qe
2i�(�t+x1)c

�n�2

2 vswsdVgdt! 0, h! 0.

By repeating the arguments leading from (5.12) to (5.13), with the assumptions that
q1, q2 2C(Q) and q1 = q2 on @Q, we get

Z Lp
1��2

0

Z

R

Z

R
e
2i�((�2�1)et+p)�2(1��2)�r(cq)(�et, p� et,�(

p
1� �2r))

⇥ e
�1(et,p,r)+�2(et,p,r)⌘(et, p, r)dpdetdr= 0.

Then we follow the same arguments from (5.13) onward in the proof for the uniqueness
of the damping coe�cient to obtain q1 = q2. This completes the proof of Theorem 1.2.
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