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1 Introduction

One of the spectacular instances of when ideas from physics and geometry come together
is in the study of a class of field theories known as the Non Linear Sigma Models (NLSM).
Mathematically, these are defined in terms of maps between two (pseudo-)Riemannian
manifolds known as the worldsheet and the target space such that the classical equations
of motion take the form of a generalized version of Laplace’s equation [1]. In physics, one
of the uses of NLSM is as low energy effective field theories with the choice of the target
space being dictated by the symmetries of the problem. The first such proposal appeared
in a paper of Gell-Mann and Levy [2]. They put forward the following Lagrangian density
as an effective field theory of pions:

L = 1
2 ηij ∂in⃗ · ∂jn⃗ with |n⃗|2 = 1

f2 . (1.1)

Here the last equation means that the four component field n⃗ = (n1, n2, n3, n4) is constrained
to lie on the three dimensional round sphere whose radius coincides with 1/f . Thus the target
space is S3 equipped with the homogeneous metric while the worldsheet is four dimensional
Minkowski spacetime M1,3. The field theory is known as the O(4) sigma model as it possesses
O(4) symmetry — the group of isometries of the three-sphere. Ignoring global aspects,
one may replace the latter by SU(2) × SU(2) which play the role of the vector and axial
symmetries appearing in the ‘chiral limit’ of QCD. For this reason the model (1.1) is also
referred to as the SU(2) principal chiral field.

The O(4) sigma model is rather special in 1 + 1 dimensional spacetime M1,1. In this
case, as was pointed out by Polyakov, the Lagrangian (1.1) defines a renormalizable QFT.
Following the traditional path-integral quantization, the model should be equipped with a UV
cutoff Λ [3]. It was shown to one-loop order that a consistent removal of the UV divergences
can be achieved if the bare coupling is given a dependence on the cutoff momentum, described
by the RG flow equation [4]

Λ d
dΛ(f−2) = N − 2

2π
ℏ + O(ℏ2) . (1.2)
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Here ℏ stands for the dimensionless Planck constant while N = 4 (the computation was
performed for the general O(N) sigma model with target space SN−1). Notice that in the
continuous limit Λ → ∞ the coupling constant f2 approaches zero. In turn, the curvature
of the sphere to which the fields nj(x0, x1) belong vanishes so that the theory becomes
non-interacting. This phenomenon, known as asymptotic freedom, indicates consistency of
the quantum field theory. As a result of the work of Polyakov and later Zamolodchikov and
Zamolodchikov [5], who proposed the associated scattering theory, it is commonly believed
that the O(N) sigma model in 1 + 1 dimensions is a well defined (UV complete) QFT.

The renormalizability of general NLSM in 1 + 1 dimensions was discussed in the work of
Friedan [6]. He considered the class of theories where the Lagrangian density takes the form

L = 1
2 Gµν(X) ηij∂iX

µ∂jXν . (1.3)

Here Gµν(X) is the metric written in terms of local coordinates Xµ on the target space.
The couplings are encoded in this metric so that the latter is taken to be dependent on the
cutoff Λ. Extending the results of Ecker and Honerkamp [7], Friedan computed the RG flow
equation to two loops. To the leading order in ℏ it takes the form

∂τ Gµν = −ℏRµν + O(ℏ2) , ∂τ = −2πΛ ∂

∂Λ , (1.4)

where Rµν is the Ricci tensor built from the metric. Without the O(ℏ2) term, (1.4) is
usually referred to as the Ricci flow equation [8], which is a partial differential equation
for Gµν = Gµν(X | τ). It found a remarkable application in mathematics in the proof of
the Poincaré conjecture [9, 10].

The question of renormalizability can be addressed within a class of NLSM where the
target space metric depends on a finite number of parameters. The simplest example is the
O(N) sigma model whose target manifold belongs to the family of the (N − 1) dimensional
round spheres, characterized by the radius 1/f . In this case, the Ricci flow equation boils
down to the ordinary differential equation (1.2). Another example is the Principal Chiral
Field (PCF), where the target space is the group manifold of a simple Lie group G equipped
with the left/right invariant metric. The latter is unique up to homothety and, in local
coordinates, is defined by the relation

Gµν(X) dXµdXν = − 1
e2

〈
U−1 dU , U−1 dU

〉
, (1.5)

where U ∈ G, e is the homothety parameter and the angular brackets ⟨·, ·⟩ denote the Killing
form in the Lie algebra of G.1 The Ricci flow (1.4) implies

∂τ (e−2) = −1
2 C2 ℏ + O(ℏ2) (1.6)

with C2 being the value of the quadratic Casimir in the adjoint representation. This equation
was essentially obtained in the original work of Polyakov [4], see also [3]. Notice that the
SU(2) PCF coincides with the O(4) sigma model. In this case C2 = 2, while (1.6) and (1.2)
are the same provided that e2 ≡ 2f2.

1For a classical Lie group we take the Killing form to be the trace over the defining representation.
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An example of an NLSM which is renormalizable within a two parametric family is the
so-called anisotropic SU(2) PCF. In this case the SU(2) × SU(2) isometry of the target space
is broken down to SU(2) × U(1) and the manifold is still topologically S3 but equipped with
a certain asymmetric metric. The latter is given by

Gµν(X) dXµdXν = − 1
e2

〈
U−1 dU ,O(U−1 dU)

〉
, (1.7)

where O is an operator acting from the Lie algebra su(2) to itself depending on the additional
deformation parameter r,

O : su(2) 7→ su(2) , O = 1 + r P3 , (1.8)

and P3 projects onto the Cartan subalgebra. The Ricci flow equation reduces to a system
of ordinary differential equations on e and r:

−1
ℏ

∂τ (e−2) = 1 − r

−1
ℏ

∂τ r = 2 e2r (r + 1) . (1.9)

In the domain −1 < r < 0, similar as with the SU(2) PCF, the theory is asymptotically
free and it turns out to be a consistent QFT.

When the τ dependence of the metric, satisfying the Ricci flow equation, is contained
in a finite number of parameters, the partial differential equation (1.4) reduces to a system
of ordinary ones. From the point of view of physics, this means that the corresponding
NLSM depends on a finite number of coupling constants and is one-loop renormalizable
within this class. The construction of such solutions is difficult to achieve even when the
dimension of the target manifold is low. Among the most impressive early results was the
work of Fateev [11], who discovered a three parameter family of metrics solving the Ricci
flow equation. The NLSM with this background is a two parameter deformation of the SU(2)
PCF, which contains the anisotropic case as a subfamily. A guiding principle for exploring the
class of renormalizable NLSM was formulated in the work [12]. It arose from the observation
that all the above mentioned models turn out to be classically integrable field theories. It
is now believed that there is a deep relation between classical integrability and one-loop
renormalizability in 1 + 1 dimensional sigma models.

The notion of classical integrability in 1 + 1 dimensional field theory requires explanation.
Recall that a mechanical system with d degrees of freedom is called integrable (in the Liouville
sense) if it possesses d functionally independent Integrals of Motion (IM) in involution. This
concept is difficult to extend to a field theory, where the number of degrees of freedom is
infinite. A suitable paradigm of integrability in the case of 1 + 1 dimensions arose from the
works of the Princeton group [13] and was later developed in the papers of Lax [14] and
Zakharov and Shabat [15]. A key ingredient is the existence of the so-called Zero Curvature
Representation (ZCR) of the Euler-Lagrange equations of the classical field theory:

[∂i − Ai, ∂j − Aj ] = 0 . (1.10)

– 3 –
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x0 x1 ∼ x1 + R

Figure 1. The integration contour for the Wilson loop can be moved freely along the cylinder.

Here Ai = Ai(x0, x1|λ) is a Lie-algebra valued worldsheet connection which also depends on
the auxiliary (spectral) parameter λ. The ZCR implies that the Wilson loops

T (λ) = Tr
←
P exp

(
−

∫
C

dxi Ai

)
, (1.11)

where the trace is taken over some matrix representation of the Lie algebra, are unchanged
under continuous deformations of the closed contour C. If suitable boundary conditions are
imposed, this can be used to generate IM. For instance, in the case when the worldsheet
is the cylinder and the connection is single valued, the contour C may be chosen to be the
equal-time slice at some x0 as in figure 1. Then, it is easy to see that T (λ) does not depend
on the choice of x0, i.e., it is an integral of motion. Due to the dependence on the arbitrary
complex variable λ, T (λ) constitutes a family of IM. The existence of these may provide a
starting point for solving the classical equations of motion by applying the inverse scattering
transform [16]. For this reason, we say that a 1 + 1 dimensional classical field theory is
integrable if it admits the ZCR.2

The theme of this paper is the interplay between classical integrability and one-loop
renormalizability in sigma models. Its structure is as follows. Section 2 is devoted to a
discussion of the so-called fully anisotropic SU(2) PCF, whose target space metric is given by

Gµν(X) dXµdXν = −2
〈
U−1 dU ,O(U−1 dU)

〉
, O = I1 P1 + I2 P2 + I3 P3 . (1.12)

Here Pa are projectors onto the basis ta of the Lie algebra su(2), which is taken to be
orthogonal w.r.t. the Killing form. The theory is a two parameter deformation of the SU(2)
PCF and it reduces to the latter when I1 = I2 = I3 = 1

2 e−2. In addition for the special case
I1 = I2 it becomes the anisotropic SU(2) PCF, whose target space metric was presented
above in eq. (1.7). We discuss the classical integrability of the model with metric (1.12). On
the other hand, the latter is shown to be a solution of the Ricci flow equation for a certain τ

dependence of the couplings Ia = Ia(τ). The corresponding system of ordinary differential
equations is derived and its first integrals are obtained. In section 3 the concept of the
Poisson-Lie deformation [17], which preserves integrability, is introduced. We apply it to the
fully anisotropic SU(2) PCF and obtain a new classically integrable field theory depending

2Such a ‘definition’ of integrability does not guarantee that the equations of motion can be analytically
solved in any sense. Thus, it is a much weaker notion than Liouville integrability in classical mechanics.
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on four parameters. It is argued that the resulting model is one-loop renormalizable. The
system of ODEs for the τ dependence of the four couplings is presented and explicit analytical
expressions for the renormalization group invariants are provided. The last section is devoted
to a discussion. Among other things, it contains the formulae for the renormalization group
invariants of the fully anisotropic SU(2) PCF with Wess-Zumino term.

2 Fully anisotropic SU(2) PCF

Following the lecture notes [18], let us gain some intuition about the fully anisotropic SU(2)
PCF by considering its classical mechanics counterpart. It is obtained via ‘dimensional
reduction’ where one restricts to field configurations that depend only on the spacetime
variable x0 so that U = U(x0). Then the Lagrangian density (1.3), (1.12) becomes

L =
3∑

a=1

Ia ω2
a

2 , (2.1)

where ωa are defined through the relation

U−1 U̇ = −i
3∑

a=1
ωa ta (2.2)

and the dot stands for differentiation w.r.t. the time x0. Also, the basis for the Lie algebra
has been normalized such that

⟨ta, tb⟩ = 1
2 δab and [ta, tb] = i ϵabctc (2.3)

with ϵabc being the Levi-Civita symbol and summation over the repeated index is being
assumed. It turns out that the Lagrangian (2.1) describes the free motion of a rigid body
where the translational degrees of freedom have been ignored.

Recall that an arbitrary displacement of a rigid body is a composition of a translation
and a rotation. For a free moving top, when the net external force is zero, one can without
loss of generality consider the case when the centre of mass is at rest. Introduce two right
handed coordinate systems called the fixed (laboratory) frame and moving frame, which are
defined by the ordered set of unit vectors (E1, E2, E3) and (e1, e2, e3), respectively. The axes
of the moving frame coincide with the principal axes of the rigid body w.r.t. the centre of
mass. Then the orientation of the body is uniquely specified by a 3 × 3 special orthogonal
matrix which relates the fixed and moving frames as in figure 2. Thus the configuration
space of a rigid body with a fixed point coincides with the group manifold of SO(3). The
matrix specifying the rotation can be identified with an SU(2) matrix U taken in the adjoint
representation. Mathematically this is expressed as

Eata = U eata U−1 , (2.4)

where again summation over a = 1, 2, 3 is being assumed. The coefficients ωa defined in (2.2)
coincide with the projections of the instantaneous angular velocity ω along the principal
axes. This can be seen by differentiating both sides of (2.4) w.r.t. time and comparing
the result with ėa = ω × ea.

– 5 –
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E3

E1

E2

e3

e2

e1

SO(3)

Figure 2. The orientation of the rigid body is uniquely specified by the 3D special orthogonal matrix
that relates the moving frame (e1, e2, e3) to the fixed frame (E1, E2, E3). The axes of the moving
frame are chosen to coincide with the principal axes of inertia.

The classical mechanics system governed by the Lagrangian (2.1) is called the Euler
top. The parameters Ia, which were introduced originally as formal couplings in (1.12),
coincide with the principal moments of inertia. Notice that the Lagrangian is built from
U−1U̇ which belongs to the Lie algebra and hence is insensitive to the difference between
the groups SU(2) and SO(3).3

The Euler top is a textbook example of a Liouville integrable system. The IM that
satisfy the conditions of Liouville’s theorem are the Hamiltonian H and two more which
are built from the angular momentum M :

H =
3∑

a=1

Ia ω2
a

2 , M =
3∑

a=1
Iaωa ea . (2.5)

For a free moving body the angular momentum is conserved, i.e., Ṁ = 0. On the other hand,
the total time derivative Ṁ can be written in terms of the canonical Poisson bracket as
{H, M}. Hence, the classical observable M Poisson commutes with the Hamiltonian. This
way, the three functionally independent involutive Integrals of Motion may be taken to be

H , MZ ≡ M · E3 and M2 =
3∑

a=1
I2

a ω2
a . (2.6)

It follows from Liouville’s theorem that the equations of motion for the Euler top can be
integrated in quadratures. The solution is discussed in any standard textbook on classical
mechanics see, e.g., [19].

The rigid body with two of the principal moments of inertia equal I1 = I2 ≡ I is usually
referred to as the symmetric top. In this case the Lagrangian (2.1) possesses invariance
w.r.t. rotations about the axis e3. For the symmetric top it is convenient to choose the three

3Topologically, the special unitary group SU(2) is the three sphere S3, while the special orthogonal group
SO(3) is the three dimensional real projective space RP3. The latter coincides with S3 with antipodal points
±n⃗ ∈ S3 identified.
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functionally independent, involutive IM to be M2, MZ and M3 ≡ M · e3. Notice that the
Hamiltonian is given in terms of these as

H = 1
2I

M2 +
( 1

2I3
− 1

2I

)
M2

3 (I1 = I2 ≡ I) . (2.7)

The case I1 = I2 = I3 ≡ I is known as the spherical top and the Hamiltonian is proportional
to M2. The field theory generalization of the symmetric top is the anisotropic SU(2)
PCF (1.3), (1.7), while that of the spherical top is the SU(2) PCF (1.3), (1.5).

Remarkably, the fully anisotropic SU(2) PCF is also an integrable field theory according
to the technical definition given in the introduction. Namely, the equations of motion for the
model admit the Zero Curvature Representation (1.10). To demonstrate the integrability,
it is useful to introduce the currents Ja

i via the formula:

U−1 ∂iU = −i
3∑

a=1
Ja

i ta (i = 0, 1) . (2.8)

Then the Euler-Lagrange equations for the model (1.3), (1.12) can be written as follows:

∂−Ja
+ + ∂+Ja

− = Ib − Ic

Ia
(Jb

+ Jc
− + Jc

+ Jb
−) , (2.9)

where (a, b, c) is a cyclic permutation of (1, 2, 3) while

∂± = 1
2 (∂0 ± ∂1) , Ja

± = 1
2 (Ja

0 ± Ja
1 ) . (2.10)

Note also the kinematic relations (Bianchi identities) which follow directly from the def-
inition (2.8):

∂−Ja
+ − ∂+Ja

− = ϵabc Jb
+Jc
− . (2.11)

The worldsheet connection for the fully anisotropic SU(2) PCF is rather complicated. For
this reason we give it first for the case I1 = I2 = I3 = 1

2 e−2 which corresponds to the SU(2)
PCF. Then the equations of motion (2.9) simplify greatly since the term in the r.h.s. vanishes.
The worldsheet connection A± reads as

A± =
i Ja
± ta

1 ± λ
(I1 = I2 = I3) (2.12)

and one can easily check that as a consequence of eqs. (2.9) and (2.11),

[∂+ − A+, ∂− − A−] = 0 . (2.13)

This ZCR was first proposed in the work [20] and is valid for the sigma model associated
with any simple Lie group G with iJa

± ta replaced by −U−1 ∂±U .
The ZCR for the general case with I1 ̸= I2 ̸= I3 was found in [21] and presented in a

slightly different form in ref. [22]. In the following, the conventions of the latter paper will
be used. To write the result, we swap the two independent combinations of (I1, I2, I3) that
enter into the equations of motion for m and ν according to

m = I2 (I1 − I3)
I3 (I1 − I2) , cn2(ν, m) = I1

I2
, (2.14)

– 7 –
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where cn(ν, m) is the Jacobi elliptic function with the parameter m. Together with sn and
dn, it satisfies the relations

sn2(ν, m) + cn2(ν, m) = 1 , m sn2(ν, m) + dn2(ν, m) = 1 . (2.15)

The flat worldsheet connection reads explicitly as

A± = i
3∑

a=1
wa(ν ∓ λ)Ja

± ta , (2.16)

where

w1(λ) = sn(ν, m)
sn(λ, m) , w2(λ) = sn(ν, m)

cn(ν, m)
cn(λ, m)
sn(λ, m) , w3(λ) = sn(ν, m)

dn(ν, m)
dn(λ, m)
sn(λ, m) .

(2.17)
In order to explore the one-loop renormalizability of the fully anisotropic SU(2) PCF, we

turn to the analysis of the Ricci flow equation (1.4). It requires one to calculate the Ricci
tensor Rµν corresponding to the target space metric Gµν given in (1.12). The computation is
straightforward and we do not present it here. Instead, we mention the identity:

Rµν =
3∑

a=1

(Ia − Ib + Ic)(Ia + Ib − Ic)
2IbIc

∂

∂Ia
Gµν , (2.18)

where (a, b, c) is a cyclic permutation of (1, 2, 3). Then it follows that the Ricci flow equation
is satisfied if the couplings Ia are assigned a τ dependence such that (see also refs. [23, 24])

−1
ℏ

∂τ (Ia Ib) = Ia + Ib − Ic , (a, b, c) = perm(1, 2, 3) . (2.19)

This constitutes a set of coupled nonlinear ordinary differential equations describing the
flow. Notice that for I1 = I2 = 1

2e2 and I3 = 1+r
2e2 one recovers the Ricci flow equations for

the anisotropic SU(2) PCF (1.9). The latter reduce to the ones for the SU(2) PCF (1.6)
with C2 = 2 upon setting r = 0.

We found that the system (2.19) possesses two Liouvillian first integrals.4 They are
given by

Q1 = K(1 − m) − (1 − p)E(1 − m)
(1 − p)E(m) + pK(m) , Q2 =

I2
1
(
(p − 1) E(m) − p K(m)

)2

p (p − 1) (p m − m + 1) . (2.20)

Here K(m) and E(m) stand for the complete elliptic integrals of the first and second kind,

K(m) =
∫ π

2

0

dθ√
1 − m sin2 θ

, E(m) =
∫ π

2

0
dθ

√
1 − m sin2 θ , (2.21)

the parameter m is the same as in (2.14), while p coincides with cn2(ν, m) from that
formula, i.e.,

m = I2 (I1 − I3)
I3 (I1 − I2) , p = I1

I2
. (2.22)

4Liouvillian first integrals are those that are expressed in quadratures in the dependent variables of the
differential equation.

– 8 –
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ℏτ

I3I2I1

Figure 3. The evolution of I1, I2 and I3 as functions of ℏτ . The initial conditions at τ = 0 were
chosen to be I1(0) = 0.06, I2(0) = 0.42, I3(0) = 0.10. The flow remains real and non-singular in the
interval τ ∈ (τmin, τmax) with ℏτmin = −0.006 and ℏτmax = 0.154 which is marked by the dashed lines.

The expression (2.20) for the first integrals is one of the original results of this paper.5

After it was obtained, we discovered that the system of differential equations (2.19) had
been introduced, in a slightly different form, in the work of Darboux [26]. Its solution was
discussed in refs. [27, 28].

The flow of the couplings Ia as a function of τ can be analyzed numerically. The
typical behaviour, for generic initial conditions such that all Ia at τ = 0 are positive and
different, is presented in figure 3. One observes from the figure that the solution of (2.19),
i.e., the Ricci flow equation, remains real and non-singular only within the finite interval
τ ∈ (τmin, τmax). At the end points one of the couplings goes to zero so that the curvature
of the target space blows up. As a result, the one-loop approximation is no longer valid
and the perturbative analysis is not sufficient to explore whether or not the model can be
defined as a consistent (UV complete) QFT.

There exists another three parameter family of deformations of the three dimensional
round sphere (1.5). It is the one mentioned in the introduction that was proposed by Fateev
in ref. [11]. His metric, depending on (e2, r, l), can be written as

Gµν(X) dXµdXν = −(1 + r)(1 + l)
e2

〈
U−1 dU , O(U−1 dU)

〉
(1 + r)(1 + l) − 4rl

(
⟨Ut3U−1, t3⟩

)2 . (2.23)

Here the operator O, acting on the Lie algebra, is given by

O = 1 + r P3 + l AdU ◦ P3 ◦ Ad−1
U , (2.24)

where AdU stands for the adjoint action of the group:

AdU x = U−1x U , x ∈ su(2) . (2.25)

The Ricci flow equation (1.4) leads to the system of ordinary differential equations for the

5A set of first integrals of the system (2.19), similar to (2.20), have also appeared in the recent work [25].
Their results and the ones of our study were achieved independently of each other.
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three parameters:

−1
ℏ

∂τ l = 2 e2 l (1 + l + r)
1 + r

−1
ℏ

∂τ r = 2 e2 r (1 + l + r)
1 + l

(2.26)

−1
ℏ

∂τ (e−2) = (1 − l − r)(1 + l + r)
(1 + l)(1 + r) .

Notice that for l = 0 the metric (2.23) becomes the one for the anisotropic SU(2) PCF (1.7),
while the above system of differential equations reduces to (1.9).

A remarkable feature of (2.26) is that it possesses solutions where e2(τ), r(τ), l(τ) are
real and non-singular on the half infinite line (−∞, τmax) with some real τmax. In particular,
this always happens when the couplings r and l are restricted as −1 < r(τ), l(τ) < 0. Such
solutions of the Ricci flow equation, which can be continued to infinite negative τ , are called
‘ancient’. That (2.26) admits ancient solutions suggests that the corresponding NLSM is a
consistent QFT. The factorized scattering theory for the model was proposed in ref. [11].

The NLSM with metric (2.23) is an integrable classical field theory. The ZCR for
the Euler-Lagrange equations was originally obtained in the work [12]. This way, the
Fateev model provides an additional example of the link between integrability and one-loop
renormalizability in sigma models.

3 Poisson-Lie deformation

The models discussed above illustrate the connection between integrable NLSM and solutions
of the Ricci flow equation. This can be used as a guiding principle for constructing new
multiparametric families of metrics that satisfy the Ricci flow. Here we will discuss the so-
called Poisson-Lie deformation of integrable NLSM. Such a deformation preserves integrability
and allows one to obtain new solutions of the Ricci flow equation. We first illustrate the idea
by showing that the anisotropic SU(2) PCF can be obtained as the Poisson-Lie deformation
of the SU(2) PCF [17]. Then, a new integrable model is constructed by deforming the
fully anisotropic SU(2) PCF.

3.1 Poisson-Lie deformation of PCF

To explain the Poisson-Lie deformation, we start from the Hamiltonian formulation of the
model. The latter, in the case of the SU(2) PCF, can be described using the currents Ja

i (2.8).
It follows from the Lagrangian (1.5), (1.3) that they form a closed Poisson algebra [16]:6

{Ja
0 (x), Jb

0(y)} = ϵabc Jc
0(x) δ(x − y)

{Ja
0 (x), Jb

1(y)} = ϵabc Jc
1(x) δ(x − y) − δab δ′(x − y) (3.1)

{Ja
1 (x), Jb

1(y)} = 0 .

6In our discussion of the Poisson-Lie deformation we set e2 = 1. Since it appears in an overall factor
multiplying the Lagrangian, this has no effect on the classical equations of motion.
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These are understood to be equal-time relations with x0 = y0, while x ≡ x1 and y ≡ y1

are the space coordinates (the dependence of the currents on the time variable has been
suppressed). The Hamiltonian is obtained by means of the Legendre transform and is given by

H = 1
2

∫
dx

3∑
a=1

(
Ja

0 Ja
0 + Ja

1 Ja
1
)

. (3.2)

One can check that the Hamiltonian equations of motion, Ȯ = {H, O}, for the currents are
equivalent to eqs. (2.9) and (2.11) with I1 = I2 = I3, i.e.,

∂−Ja
+ = 1

2 ϵabc Jb
+Jc
− , ∂+Ja

− = 1
2 ϵabc Jb

−Jc
+ . (3.3)

The Poisson algebra (3.1) admits a certain deformation which preserves its defining
properties, namely, skew-symmetry, the Jacobi and Leibniz identities. The deformed Poisson
bracket relations read explicitly as

{J̃a
0 (x), J̃b

0(y)} = 1
1 + r

ϵabc J̃c
0(x) δ(x − y)

{J̃a
0 (x), J̃b

1(y)} = 1
1 + r

ϵabc J̃c
1(x) δ(x − y) − δab δ′(x − y) (3.4)

{J̃a
1 (x), J̃b

1(y)} = − r

1 + r
ϵabc J̃c

0(x) δ(x − y) .

Here r plays the role of the deformation parameter and we switch the notation from Ja
i to

J̃a
i as the above Poisson brackets will be associated with a different classical field theory.

Remarkably, with the same form of the Hamiltonian as (3.2), i.e.,

H̃ = 1
2

∫
dx

3∑
a=1

(
J̃a

0 J̃a
0 + J̃a

1 J̃a
1
)

(3.5)

the equations of motion do not depend on the deformation parameter. Namely, they coincide
with (3.3) upon replacing Ja

± by J̃a
± = 1

2(J̃a
0 ± J̃a

1 ). This means that the Hamiltonian
system defined through (3.4) and (3.5) is integrable by construction. The corresponding
flat connection entering into the ZCR takes the same form as for the SU(2) PCF (2.12)
but written in terms of the currents J̃a

±:

A± =
i J̃a
± ta

1 ± λ
. (3.6)

The obtained classical field theory is called the Poisson-Lie deformation of the SU(2) PCF.
The final and technically most involved step of the procedure is to derive the Lagrangian
of the deformed model.

It is well known in classical mechanics how to get from the Hamiltonian to the Lagrangian
picture. Consider a mechanical system with a finite number of degrees of freedom d. The
Poisson brackets are defined on the algebra of functions on the 2d-dimensional phase space.
In local coordinates (z1, . . . , z2d) they are given by

{f, g} = ΩAB ∂f

∂zA

∂g

∂zB
. (3.7)
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Since the Poisson brackets are assumed to be non-degenerate, the inverse of the contravariant
tensor ΩAB exists and we will denote it as ΩAB . Due to skew-symmetry of the Poisson brackets,
the covariant tensor ΩAB is antisymmetric, i.e., it defines a two-form as Ω = ΩAB dzA ∧ dzB .
Moreover, the Jacobi identity implies that the form is closed, dΩ = 0. This allows one to
write Ω as an exact form, Ω = dα, at least locally. The action is expressed in terms of
the one-form α and the Hamiltonian as

S =
∫ (

α − H dt
)

(3.8)

with the integral being taken over a path in the phase space parameterized by the time
t. According to the Darboux theorem there exists (locally) a set of canonical variables
(q1, . . . , qd, p1, . . . pd) such that α =

∑d
m=1 pm dqm. Then the Lagrangian associated with

the action (3.8) is given by

L =
d∑

m=1
pm q̇m − H . (3.9)

This can be interpreted as the Legendre transform of H where the canonical momenta pm

are replaced by q̇m as the independent variables.
In order to apply the above procedure to the infinite dimensional Hamiltonian struc-

ture (3.4), (3.5), it is useful to realize the Poisson algebra in terms of the fields, similar to the
canonical variables pm and qm in the finite dimensional case. For this reason we introduce
local coordinates Xµ on the group manifold and the corresponding canonical momentum
densities Πµ. They obey the Poisson bracket relations

{Πµ(x), Xν(y)} = δν
µ δ(x − y) , {Xµ(x), Xν(y)} = {Πµ(x), Πν(y)} = 0 . (3.10)

In the case r = 0, when (3.4) becomes the undeformed algebra (3.1), the currents

Ki ≡ J̃a
i ta

∣∣
r=0 (i = 0, 1) (3.11)

can be expressed in terms of the canonical fields in the following way; first, define the 3 × 3
matrix Ea

µ through the relation

dU U−1 = i Ea
µ dXµ ta . (3.12)

Its inverse will be denoted by Eµa so that Ea
µEµb = δab. Then with the choice

K0 = Eµa Πµ ta, K1 = Ea
µ ∂1Xµ ta = −i ∂1U U−1 (3.13)

one can check via a direct computation that the Poisson algebra (3.1) with Ja
i replaced by

the components of Ki is satisfied. In fact, the r.h.s. of the first equation in (3.13) is just
−i ∂0U U−1 written in terms of the canonical fields for the PCF.7

For general r ̸= 0 one should first apply the linear transformation

Ia = 1 + r

2
√

r

(√
r J̃a

0 + i J̃a
1

)
, J a = 1 + r

2
√

r

(√
r J̃a

0 − i J̃a
1

)
. (3.14)

7We realise the algebra (3.1) using the ‘left’ currents Ki = −i ∂iU U−1 rather than the ‘right’ ones
Ja

i ta = i U−1 ∂iU (2.8) for future convenience. The latter obey the same Poisson bracket relations (3.1).
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This brings the closed Poisson algebra (3.4) to the form:

{Ia(x), Ib(y)} = ϵabc Ic(x) δ(x − y) − k δab δ′(x − y)
{J a(x), J b(y)} = ϵabc J c(x) δ(x − y) + k δab δ′(x − y) (3.15)
{Ia(x), J b(y)} = 0 ,

where
k = i (1 + r)2

2
√

r
, (3.16)

which is a direct sum of two independent so-called SU(2) current algebras. It turns out that
the Poisson algebra generated by Ia and J a can be formally realised in terms of the currents
Ki (3.13) as well as the group valued field U ∈ SU(2). The explicit formula, along with
its verification, is contained in ref. [29] and is given by

Ia ta = 1
2
(
1 − i Ad−1

U ◦ R ◦ AdU

)
K0 + k K1

J a ta = 1
2
(
1 + i Ad−1

U ◦ R ◦ AdU

)
K0 − k K1 . (3.17)

Here AdU stands for the adjoint action of the group, see eq. (2.25), while the linear operator
R : su(2) 7→ su(2) is defined via its action on the generators as

R(t1) = t2 , R(t2) = −t1 , R(t3) = 0 . (3.18)

Formulae (3.14), (3.17) and (3.13) allow one to realize the currents J̃a
0 and J̃a

1 , satisfying
the Poisson bracket relations (3.4), through the canonical fields (3.10). The corresponding
expression for the Hamiltonian follows from (3.5). In the basis of canonical variables the
construction of the Lagrangian is straightforward and is the field theory analogue of the
Lengedre transform (3.9). Applying the procedure, where Πµ maps to Ẋµ = {H̃, Xµ}, one
arrives at the Lagrangian density

L = −1 + r

e2
〈
U−1 ∂+U ,O

(
U−1 ∂−U

)〉
with O =

(
1 −

√
r R

)−1
. (3.19)

Here the dependence on e2 was restored and we performed the substitution e2 7→ (1 + r) e2

to keep with the conventions of section 1.
At first glance, in local coordinates, L can not be written in the form (1.3). Instead,

the latter should be modified as

L = 2 Gµν(X) ∂+Xµ ∂−Xν − Bµν(X)
(
∂+Xµ ∂−Xν − ∂−Xµ ∂+Xν) . (3.20)

Here the last term is not invariant w.r.t. the parity transformation x1 7→ −x1, i.e., ∂± 7→ ∂∓
and comes about because the Lagrangian density (3.19) is not either. Models of this type
motivate a generalization of the NLSM where the target space is additionally equipped
with a two form B = Bµν dXµ ∧ dXν known as the B-field [30]. It turns out that in the
SU(2) case the B-field corresponding to L (3.19) is a closed form (in fact, exact). As a
result, the term proportional to Bµν in (3.20) is a total derivative and has no effect on
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the Euler-Lagrange equations. This way, for the SU(2) case, the obtained sigma model is
equivalently described by (1.3) where

Gµν(X) dXµdXν = −1 + r

e2
〈
U−1 dU ,Osym (U−1 dU)

〉
with Osym =

(
1+r−r P3

)−1

(3.21)
and P3 = 1 + R2 ∈ End

(
su(2)

)
stands for the projector on the Cartan subalgebra generated

by t3. This way we arrive at the metric of the anisotropic SU(2) PCF (1.7).
It was discussed in section 1 that the anisotropic SU(2) PCF is a integrable classical field

theory. Having established that the model is a Poisson-Lie deformation of the SU(2) PCF,
we obtain a way to derive the Zero Curvature Representation for the classical equations of
motion. Namely, the flat connection is given by (3.6) where the currents J̃a

± = 1
2(J̃a

0 ± J̃a
1 )

entering therein read as

J̃a
±ta = (1 + r) AdU ◦

(
1 ±

√
r R

) (
∂±U U−1) . (3.22)

Indeed, as it follows from the Euler-Lagrange equations for the model (3.19),

∂−J̃a
+ = 1

2 ϵabc J̃b
+J̃c
− , ∂+J̃a

− = 1
2 ϵabc J̃b

−J̃c
+ . (3.23)

The following comment is in order here. The anisotropic SU(2) PCF admits an integrable
generalization, where U belongs to an arbitrary simple Lie group G. The Lagrangian is still
given by (3.19) with R being a certain linear operator which is usually referred to as the
Yang-Baxter operator. It acts on the Lie algebra g = Lie(G) and is required to satisfy a skew
symmetry condition and the so-called modified Yang-Baxter equation [31]. A possible choice
obeying the two properties is specified using the Cartan-Weyl decomposition of the simple Lie
algebra, g = n+ ⊕ h⊕ n−, where h stands for the Cartan subalgebra and n± are the nilpotent
ones. Namely, the linear operator R is unambiguously defined through the conditions

R(e±) = ∓i e± , R(h) = 0
(
∀e± ∈ n±, ∀ h ∈ h

)
. (3.24)

The NLSM (3.19) with R being the Yang-Baxter operator was introduced by Klimčík in
ref. [32] who called it the Yang-Baxter sigma model. Written in terms of local coordinates,
the Lagrangian takes the form (3.20) where, for general group, the second term ∝ Bµν is no
longer a total derivative and cannot be ignored. The model is classically integrable and the
corresponding flat connection is given by the same formulae (3.6) and (3.22) [17].

The Yang-Baxter sigma model also turns out to be a one-loop renormalizable field theory.
The proof is based on the extension of the results of the works [6, 7] to the case of an NLSM
equipped with a B-field that was carried out in ref. [30], see also the textbook [33]. The
one-loop RG flow equations are modified from (1.4) as

∂τ Gµν = −ℏ
(

Rµν − 1
4Hµ

σρHσρν

)
+ O(ℏ2)

∂τ Bµν = −1
2 ℏ∇σHσ

µν + O(ℏ2) . (3.25)

Here Hµνλ are the components of the so-called torsion tensor. It is given by the exterior
derivative of the B-field, i.e.,

Hµνλ = ∂µ Bνλ + ∂ν Bλµ + ∂λ Bµν . (3.26)
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SU(2) PCF
anisotropic
SU(2) PCF Fateev model

Figure 4. The relation between the various models. The Poisson-Lie deformation is represented by
an arrow.

For the model (3.19), (3.20) with U belonging to a simple Lie group, the above equations
boil down to a system of ordinary differential equations on e2 and r. They read as [34]

−1
ℏ

∂τ (e−2) = 1
2 C2 (1 − r)

−1
ℏ

∂τ r = C2 e2r (r + 1) , (3.27)

where, remarkably, the only dependence on the group appears through an overall factor
proportional to the value of the quadratic Casimir in the adjoint representation. Note that
in the domain −1 < r < 0, for which the system (3.27) possesses ancient solutions, the
deformation parameter

√
r entering into the Lagrangian of the Yang-Baxter sigma model (3.19)

is an imaginary number. The corresponding target-space metric (3.21) remains real. However,
the torsion tensor (3.26), which is non-vanishing outside the SU(2) case, becomes purely
imaginary (a related discussion is contained in appendix A of ref. [35]).

We have just discussed that the Poisson-Lie deformation of the PCF yields the Yang-
Baxter sigma model. The latter itself can be deformed along the similar line of arguments [17],
see also [35] as well as figure 4 for a summary. In the case of G = SU(2) the obtained theory
turns out to be the Fateev model, i.e., the sigma model with target space metric (2.23). For
a general simple Lie group G, the two parameter deformation of the PCF was introduced
by Klimčík in ref. [17]. The corresponding Lagrangian involves the Yang-Baxter operator
R and is given by

L = −2(1 + r)(1 + l)
e2

〈
U−1 ∂+U ,O

(
U−1 ∂−U

)〉
(3.28)

with
O =

(
1 −

√
l(1 + r) R −

√
r(1 + l) AdU ◦ R ◦ Ad−1

U

)−1
. (3.29)

For U ∈ SU(2) the B-field turns out to define a closed two form and has no effect on
the equations of motion. It was shown in [36] by an explicit computation that the metric
is equivalent to (2.23). For arbitrary simple Lie group G the model (3.28) is classically
integrable and the ZCR was found in ref. [37]. One-loop renormalizability was demonstrated
in the work [38] using the results of [39]. The differential equations describing the flow of
the couplings (e2, r, l) are

−1
ℏ

∂τ (e−2) = C2 (1 − l − r)(l + r + 1)
2 (1 + l)(1 + r)

−1
ℏ

∂τ r = C2 e2 r (l + r + 1)
1 + l

(3.30)

−1
ℏ

∂τ l = C2 e2 l (l + r + 1)
1 + r

.

They essentially coincide with (2.26) which were derived in Fateev’s original paper [11].
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3.2 Poisson-Lie deformation of fully anisotropic SU(2) PCF

Here we obtain a new clasically integrable NLSM as a Poisson-Lie deformation of the fully
anisotropic SU(2) PCF. The procedure closely follows that which was explained above on
the example of the SU(2) PCF.

The Hamiltonian for the fully anisotropic SU(2) PCF (1.3), (1.12), written in terms
of the currents (2.8), is given by

H = 1
2

3∑
a=1

∫
dx Ia

(
Ja

0 Ja
0 + Ja

1 Ja
1

)
, (3.31)

while the equal-time Poisson bracket relations for Ja
i read as

{Ja
0 (x), Jb

0(y)} = Ic

Ia Ib
ϵabc Jc

0(x) δ(x − y)

{Ja
0 (x), Jb

1(y)} = 1
Ia

ϵabc Jc
1(x) δ(x − y) − 1

Ia
δab δ′(x − y) (3.32)

{Ja
1 (x), Jb

1(y)} = 0 .

The above Poisson algebra admits a deformation of the form

{J̃a
0 (x), J̃b

0(y)} = Ic − ξ

Ia Ib
ϵabc J̃c

0(x) δ(x − y)

{J̃a
0 (x), J̃b

1(y)} = Ib − ξ

Ia Ib
ϵabc J̃c

1(x) δ(x − y) − 1
Ia

δab δ′(x − y) (3.33)

{J̃a
1 (x), J̃b

1(y)} = − ξ

Ia Ib
ϵabc J̃c

0(x) δ(x − y)

depending on the extra parameter ξ. Then, with the Hamiltonian

H̃ = 1
2

3∑
a=1

∫
dx Ia

(
J̃a

0 J̃a
0 + J̃a

1 J̃a
1

)
, (3.34)

which is formally the same as (3.31) but expressed in terms of the new currents J̃a
i , the

Hamiltonian equations of motion imply

∂−J̃a
+ = Ia + Ib − Ic

2Ia
J̃b

+ J̃c
− − Ia − Ib + Ic

2Ia
J̃c

+ J̃b
−

∂+J̃a
− = Ia + Ib − Ic

2Ia
J̃b
− J̃c

+ − Ia − Ib + Ic

2Ia
J̃c
− J̃b

+ . (3.35)

Here (a, b, c) = perm(1, 2, 3) and summation over repeated indices is not being assumed. The
equations (3.35) are equivalent to (2.9), (2.11) up to the replacement Ja

i 7→ J̃a
i .

The currents J̃a
i obeying the Poisson bracket relations (3.33) can be realized in terms of

the fields Xµ and Πµ subject to the canonical commutation relations (3.10). This is done
along the same line of arguments as was discussed in the previous subsection. Namely, one
first considers certain linear combinations of J̃a

i which obey two independent copies of the
classical SU(2) current algebra (3.15) with k being a certain function of the couplings Ia and
deformation parameter ξ. Then realizing I and J in terms of the canonical variables (see
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formulae (3.17), (3.13)) and performing the Legendre transform of the Hamiltonian (3.34),
one obtains the Lagrangian of the deformed theory. The result of the calculations reads as

L = −4
〈

U−1∂−U , O+
(
U−1∂+U

)〉
, (3.36)

where a certain choice of the overall multiplicative factor for the Lagrangian density was
made. Here and below we use the notation O± for the linear operators acting on the Lie
algebra su(2) given by

O± =
( 1

I1 − ξ
P1 + 1

I2 − ξ
P2 + 1

I3 − ξ
P3 ±

√
γ AdU ◦ R ◦ Ad−1

U

)−1
(3.37)

with
γ = ξ

(I1 − ξ)(I2 − ξ)(I3 − ξ) . (3.38)

The Lagrangian density (3.36) is formally not invariant under the parity transformation
x1 7→ −x1 (so that ∂± 7→ ∂∓). Nevertheless, the theory possesses this symmetry. The reason
is because in local coordinates, where L (3.36) takes the form (3.20), the term ∝ Bµν turns
out to be a total derivative. Thus one is free to replace O+ in (3.36) by

Osym = 1
2
(
O+ + OT

+
)

, (3.39)

where the transposition is defined by the condition ⟨x ,O+ y⟩ = ⟨OT
+ x , y⟩ for any x, y ∈ su(2).

This way, the target space metric for the deformed sigma model can be written as

Gµν(X) dXµdXν = −2
〈
U−1 dU ,Osym(U−1 dU)

〉
. (3.40)

It is worth mentioning that for I1 = I2 this becomes the Fateev metric (2.23), (2.24) upon
the identification of parameters:

I1 = I2 = (1 + l)2

2e2 , I3 = (1 + l) (1 + l + r)
2e2 , ξ = l (l + 1)

2e2 . (3.41)

By construction the obtained model (3.36) is a classically integrable field theory. The
corresponding flat connection takes the same form as for the fully anisotropic SU(2) PCF, i.e.,

A± = i
3∑

a=1
wa(ν ∓ λ)J̃a

± ta , (3.42)

where the functions wa(λ) are given in (2.14) and (2.17). The formula for the currents J̃a
±

in terms of the SU(2) element U reads as

J̃a
± = i Ca

〈
O±

(
U−1∂±U

)
, ta

〉
, Ca = 2

Ia − ξ

√
Ib Ic

(Ib − ξ) (Ic − ξ) (3.43)

with (a, b, c) = perm(1, 2, 3).
One can check that the metric (3.37)–(3.40) satisfies the Ricci flow equation (1.4). The

parameter γ defined in (3.38) turns out to be an RG invariant, i.e.,

1
ℏ

∂τ γ = O(ℏ) . (3.44)
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As for the couplings Ia = Ia(τ), it is convenient to swap these in favour of Ĩa according to

Ĩa ≡ Ia − ξ . (3.45)

The latter obey the RG flow equations

−1
ℏ

∂τ
(
Ĩa Ĩb

)
=

(
1 + γ Ĩa Ĩb

) (
Ĩa + Ĩb − Ĩc + γ Ĩa Ĩb Ĩc

)
+ O(ℏ) , (a, b, c) = perm(1, 2, 3) ,

(3.46)
which may be compared to the underformed case (2.19). The derivation of the above formulae
uses the property that the Ricci tensor corresponding to the metric (3.37)–(3.40) can be
written as

Rµν =
3∑

a=1

(Ĩa − Ĩb + Ĩc + γ Ĩa Ĩb Ĩc)(Ĩa + Ĩb − Ĩc + γ Ĩa Ĩb Ĩc)
2Ĩb Ĩc

(
∂Gµν

∂Ĩa

)
γ

, (3.47)

which generalizes the relation (2.18).
For γ = 0 the two first integrals of (3.46) coincide with Q1, Q2 (2.20) - (2.22) with

Ia 7→ Ĩa. We found that these RG invariants admit a deformation to arbitrary γ. The
explicit expressions involve, apart from

m̃ = Ĩ2 (Ĩ1 − Ĩ3)
Ĩ3 (Ĩ1 − Ĩ2)

, p̃ = Ĩ1

Ĩ2
, (3.48)

also m (2.22), which enters into the functions wa that appear in the flat connection (3.42).
In terms of the parameters Ĩa, it is given by

m = Ĩ2 (Ĩ1 − Ĩ3) (1 + γ Ĩ1 Ĩ3)
Ĩ3 (Ĩ1 − Ĩ2) (1 + γ Ĩ1 Ĩ2)

. (3.49)

The two first integrals of the system (3.46) read as

Q
(γ)
1 = K(1 − m) − (1 − p̃) m̃ Π(1 − m̃, 1 − m)

(1 − p̃)(1 − m̃) Π(m̃, m) + p̃ K(m)

Q
(γ)
2 = m̃ − m

γ

(
(p̃ − 1)(1 − m̃) Π(m̃, m) − p̃ K(m)

)2

(p̃ − 1)2 m̃ (1 − m̃) , (3.50)

where Π(m̃, m) is the complete elliptic integral of the third kind:

Π(m̃, m) =
1∫

0

dt

(1 − m̃ t2)
√

(1 − t2)(1 − m t2)
. (3.51)

It is straightforward to check that Q
(0)
1 = Q1, while limγ→0 Q

(γ)
2 = Q2.

4 Summary and discussion

In this work we explored the interplay between integrability and one-loop renormalizability
for NLSM in 1 + 1 dimensional spacetime. Our main example was the fully anisotropic
SU(2) PCF. On the one hand, it was explained that this is a clasically integrable field theory
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and the Zero Curvature Representation for its equations of motion was reviewed. On the
other, the corresponding target space metric satisfies the Ricci flow equation (1.4) so that
the fully anisotropic SU(2) PCF is one-loop renormalizable within a three dimensional space
of couplings. The system of ODEs describing the flow was derived and its full set of first
integrals was obtained, independently from [27, 28].

Another main result is the construction of a classically integrable NLSM depending
on four parameters whose Lagrangian density is given by (3.36)–(3.38). It was found by
applying a Poisson-Lie deformation to the fully anisotropic SU(2) PCF. The corresponding
target space metric turned out to provide a new solution to the Ricci flow equation. The
first integrals to the system of ODEs (3.44) and (3.46), which describe the flow of the four
couplings, were derived in the course of this work and are given in (3.50).

The class of theories that we discussed admit a modification such that they remain
one-loop renormalizable. This is achieved by adding the so-called Wess-Zumino term to the
action. The Lagrangian takes the form (3.20) with the B-field no longer being exact. This
implies that the target space, together with the Riemannian metric Gµν , is equipped with
the affine connection, where the torsion H = dB is non-vanishing [30]. In the case of SU(2),
the 3-form H is proportional to the volume form for the group and can be written as

H ≡ dB = k
24π

〈[
U−1 dU ∧, U−1 dU

] ∧, U−1 dU
〉

. (4.1)

Here k is an additional parameter of the model. In the classical theory there is no contraint
on the values it may take, however, upon quantization it is required to be an RG invariant
and, furthermore, must be an integer [40]. For the case of the fully anisotropic SU(2) PCF
with Wess-Zumino term, the one-loop RG flow equations (3.25) imply the system of ODEs
for the couplings:

−1
ℏ

∂τ (Ia Ib) = Ia + Ib − Ic −
k2

64π2Ic
+ O(ℏ) , (a, b, c) = perm(1, 2, 3)

1
ℏ

∂τ k = 0 . (4.2)

It possesses two Liouvillian first integrals, which are a simple generalization of (2.20) and
in terms of p and m (2.22) take the form

Q1 = K(1 − m) − (1 − p)E(1 − m)
(1 − p)E(m) + pK(m) , (4.3)

Q2 =
I2

1
(
(p − 1)E(m) − pK(m)

)2

p (p − 1)(pm − m + 1) + k2

64π2
K(m)
p − 1

(
(p − 1)E(m) − pK(m)

)
. (4.4)

A complete analysis of the behaviour of the solutions to (4.2) has not been carried out yet.
Moreover, the classical integrability of the model has not been established and the Zero Curva-
ture Representation, if it exists, remains unknown to us. These would be interesting questions
to pursue in future work. They can also be addressed for the Poisson-Lie deformed theory.

Our work was mainly focused on sigma models associated with the Lie group SU(2).
Nevertheless, we expect it to be possible to generalize the Poisson-Lie deformed theory
constructed here to the case of higher rank Lie groups. One way to approach the problem
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uses the results of ref. [41]. In that paper, a classically integrable NLSM is introduced, which
is a two parameter deformation of the PCF for Lie group SL(N). For N = 2 it coincides
with the fully anisotropic SU(2) PCF (upon an appropriate choice of reality conditions on
the fields and parameters). We expect that this sigma model may also be deformed along
the line of arguments presented in section 3. Another possibility for constructing integrable
deformations, based on the formalism of the so-called affine Gaudin model, is mentioned
in the perspectives section of ref. [41].

Finally, classically integrable multiparametric families of sigma models are of interest to
string theory. In particular, the possibility of an integrable elliptic deformation of strings
on Ad3 × S3 × T4 was investigated in the recent paper [42].
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