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Abstract
We study the problem of universality in the anyon model described by the SU (2)
Witten–Chern–Simons theory at level k. A classic theorem of Freedman–Larsen–
Wang states that for k ! 3, k "= 4, braiding of the anyons of topological charge 1/2
is universal for topological quantum computing. For the case of one qubit, we prove
a stronger result that double-braiding of such anyons alone is already universal.

Keywords Topological quantum computing · Double braiding ·
Witten-Chern-Simons theory · Universal quantum computing

1 Introduction

Topological quantum computing is an approach to building a fault-tolerant quantum
computer using certain quasi-particles, called anyons, in two dimensions. The physical
systems hosting anyons are two-dimensional topological phases of matter. Topologi-
cal phases are gapped quantum phases which go beyond Landau’s theory of symmetry
breaking and local order parameters; instead, they obey a new order called topolog-
ical quantum order [1]. Such phases exhibit several remarkable properties including
robust ground state degeneracy, depending on the topology of the underlying system,
long-range entanglement, protected gapless edge modes, fractionalized quasi-particle
excitations, and exotic exchange statistics. The robustness of the ground/excited state
space provides an ideal place to store quantum information as logical qubits. Braiding
of anyons, a process of adiabatically interchanging anyons, induces a unitary trans-
formation on the state space. These unitary transformations remain unchanged under
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local deformations of the braiding world lines, and hence serve as logical quantum
gates. This method of encoding and manipulating information in global degrees of
anyons is called topological quantum computing [2, 3], and it has the advantage of
achieving fault tolerance at the ‘hardware’ level. This is an active area of research both
theoretically and experimentally. See [4, 5] for a comprehensive review. For somemore
recent progress on this area, see, for instance [6–12], and references therein.

An important family of topological phases is described by the Witten–Chern–
Simons theory associated with the Lie group SU (2) and a level k ∈ Z!0 [13]. Denote
the theory by SU(2)k . It is among the earliest studied anyonmodels. By a classic result
of [14], except for a few values of k, the model is universal for topological quantum
computing, i.e., it is equivalent to the standard circuit model. Furthermore, the the-
ory has various potential realizations in fractional quantum Hall (FQH) systems. For
example, SU(2)2 contains the Ising anyon expected to exist in FQH with filling factor
ν = 5/2, and SU(2)3 contains the Fibonacci anyon expected to exist in ν = 12/5
FQH.

We elaborate a bit more on the universality of SU(2)k . It contains an anyon type,
whichwedenote by τ ,with topological charge 1/2. Fusing two type-τ anyons produces
either the ground state or a type-τ anyon.By iteratively fusing τ with itself, every anyon
type in this model can be produced. In this sense, τ is the most critical anyon type
in SU(2)k . Denote by V τ⊗3

τ the space of three τ anyons with total type equal to τ ,
or equivalently, the space of four type-τ anyons (with total type trivial). This space
has dimension two, and hence is a qubit. Braiding of the τ anyons induces a unitary
representation of the braid group B3 on the qubit. The theorem of [14] states that,
for all k ! 3, k "= 4, 8, this representation has a dense image in U (V τ⊗3

τ ), implying
universal quantum computing on one qubit by braiding. In fact, [14] shows that for
the above values of k and for any n ! 3, the image of the braid group representation is
dense in V τ⊗n

τ .1 These results set the theoretical foundation for universal topological
quantum computing.

In this paper,we focus on the qubitV τττ
τ and study the representation frombraiding,

ρk : B3 → U (V τττ
τ ). (1)

Recall that the braid group on n strands Bn has the standard generators σ1, . . . , σn−1
(see Sec. 2). Bn acts on the space of n identical anyons of certain type where σi
corresponds to a counterclockwise braiding the i-th and (i + 1)-th anyon. We call
σ 2
i a double-braiding, and it corresponds to moving the i-th anyon counterclockwise

around the (i+1)-th anyon and returning to its original position in the end. See Fig. 1.
More generally, any braid in the group generated by the σ 2

i ′s is also called a double-
braiding. Specializing to the case of one qubit V τττ

τ in SU(2)k with k ! 3, k "= 4, 8,
while [14] states that the image of B3 under ρk is dense in U (V τττ

τ ), we prove that
the image of the subgroup of double-braidings alone is dense in U (V τττ

τ ).
Our result is of significance in several aspects. Firstly, it is mathematically stronger

than the theorem of [14] adapted to one qubit, and may reveal some hidden structure
in the representations of the braid group. Secondly, although our result is stated only

1 This result also holds for k = 8, but n needs to be at least 5.
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Fig. 1 (Left) A counterclockwise braiding of two anyons; (Right) A counterclockwise double-braiding of
two anyons

for one qubit, it is not too much restricted, as any entangling 2-qubit gate plus 1-qubit
gates are universal for quantum computing. Thirdly, our result generalizes the work of
[15] where the Fibonacci anyon was shown to be universal by double-braidings, which
corresponds to the case k = 3 here. Moreover, using the double-braiding-universality
of the Fibonacci anyon, the authors in [15] provided an elegant, exponentially fast
algorithm to produce entangling leakage-free 2-qubit gates which are necessary for
universal quantum computing on multi-qubits. With the result in the current paper, the
algorithm of [15] can be straightforwardly adapted to other SU(2)k . Fourthly, from a
physical point of view, double-braidings have the advantage that at each step only one
anyon needs to move, it needs to move at most to the vicinity of its nearest neighbor,
and it returns to its own position immediately after themove. Hence, there is no need to
track the positions of the involved anyons.This approachmitigates the errors associated
with the control of anyons, and simplifies the operations on them, thereby potentially
reducing the experimental challenges in realizing topological quantum computing. It
should be noted that the group of double-braidings is strictly smaller than the pure
braid group consisting of braids where anyons return to their positions eventually.

It is now a well-established dictionary that two-dimensional topological phases of
matter are characterized by the structure of a unitary modular tensor category which
is a braided category satisfying additional conditions. A double-braiding is also called
a twine structure in the braided category introduced by [16]. The twine structure can
be formalized and defined on non-braided categories. There exist monoidal categories
without a braiding structure, but with a twine structure. An example of this is the
fermionic Moore–Read fusion category [17]. While most FQH states are expected to
fit in the framework of modular tensor categories, some do not seem so. Instead, they
might be described by twine fusion categories [17, 18]. Our work on double-braidings
could provide insight into exploring the power of quantumcomputing in those systems.

We conjecture that our result on the universality of double-braidings also holds for
the case of multi-qubits, i.e., the space of more than three anyons. For that generaliza-
tion, the techniques utilized in this paper may not apply. Instead, it is possible to make
use of the Lie-theoretical tools on the two-eigenvalue problem in [14]. We leave this
as a future direction.

After the first version of the manuscript was posted, we were made aware2 that
Theorem 3.5 follows from a result in [19], which proved that if braiding of n identical
anyons is universal, then universality is also achieved by moving only one anyon
around the other n − 1 anyons. Specializing to n = 3, the group of braids in which
only the second anyonmoves is precisely the group of double braids. Then, combining
the braiding universality of SU(2)k of [14] and result of [19] for n = 3, we arrive at

2 S.X.C would like to thank Sachin Valera for pointing out the result in [19]
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Theorem 3.5. However, it should be noted that both [14] and [19] replied heavily on
abstract Lie-theoretical results such as the characterization of normal subgroups of Lie
groups. In contrast, our proof for Theorem 3.5 is explicit and only involves elementary
tools. We hope the proof itself is interesting to readers who might want to extend it to
other anyon theories.

The rest of the paper is organized as follows. Section2 gives a brief overview
on the algebraic theory of anyons and the setup in topological quantum computing,
with a more detailed explanation in Appendix A. In Sects. 3.1–3.2, we provide data
for SU(2)k and explicit calculations of the braid group representations. Section3.3
contains the main result.

2 Topological quantum computing with anyons

In this section, we provide a very brief introduction to topological quantum comput-
ing (TQC). There are many references with more comprehensive discussions on this
subject, such as [4, 5, 20, 21].

Mathematically, an anyon model is characterized by the structure of a unitary mod-
ular tensor category (MTC). An MTC can be described either in terms of abstract
categorical language or by a set of concrete data. We take the second approach and
provide a partial set of data for the purpose of fixing the convention. See Appendix A
for a more detailed discussion of MTCs.

An anyon model has a finite set

L = {a, b, c, . . .} (2)

consisting of all the possible anyon types in a topological phase. Each anyon type a
has a dual anyon type ā. The ground state is considered as a special trivial anyon type,
usually denoted by 1. The fusion rule describes the possible outcomes when fusing
two anyons. Given a, b ∈ L , we formally write,

a ⊗ b =
⊕

c∈L
Nc
ab c, (3)

where Nc
ab denotes the number of different channels of fusing a and b to result in the

output c. If there is no way to obtain c from the fusion, then Nc
ab = 0. If Nc

ab > 0, we
say c is a total type or total charge of a and b, and call the triple (a, b; c) admissible.
For simplicity, in the following discussions we will assume Nc

ab is either 0 or 1, i.e.,
the anyon model is multiplicity-free.

For anyon types c, a1, . . . , an , denote by V a1a2···an
c the space of states representing

n anyons a1, . . . , an with total charge c. A basis for such a space can be described
as follows. Choose an upward-growing binary tree with one root at the bottom and n
leaves at the top. See Fig. 2 for an illustration. Label the root by c and the leaves, from
left to right, by a1, a2, . . . , an . Now label each internal edge e by an anyon type be such
that at each fork, the relevant triple of labels are admissible. Then, the binary tree with
all possible labels {be} of internal edges forms a basis of Va1a2···an

c , called a splitting-
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Fig. 2 A basis of Va1a2···an
c

corresponding to a binary tree a1 a2

b1
b2

a3 a4 · · ·
an

c

· · ·

tree basis. For each labeled binary tree, one can interpret the state it represents as a
splitting process, where and throughout the context, the time direction is from bottom
to top. For example, the state represented by the tree in Fig. 2 is obtained by splitting
c into bn−2 and an , followed by splitting bn−2 into bn−3 and an−1, . . ., followed by
splitting b1 into b0 = a1 and a2.

For n = 3, there are two splitting trees, with one internal edge, as shown on both
sides of the equation below. The basis corresponding to the tree on the left side of the
equation consists of all possible labelings m of the internal edge so that (a, b;m) and
(m, c; d) are both admissible. Similarly, the basis for the tree on the right side consists
of labelings n of the internal edge so that (b, c; n) and (a, n; d) are both admissible.
Denote the matrix change between the two bases by Fabc

d . More explicitly,

d

a cb

m = ∑
n

Fabc
d;nm

a

d

cb

n

(4)

where Fabc
d;nm is the (n,m)-entry of Fabc

d , and the sum is over all labelings n as
described above. Note that, here the anyon types n and m are used as the indices of
the entries of Fabc

d . We call Fabc
d an F-matrix, its entries F-symbols or 6 j-symbols,

and the identity in the above equation an F-move.
The process of swapping positions of anyons is called a braiding.A braiding induces

a unitary transformation on the state space. Consider two anyons a and b with total
type c. A counterclockwise braiding of a and b maps a state in V ab

c to one in V ba
c .

Since both spaces have dimension one, there exists a phase Rba
c such that the following

equality holds,
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· · · · · ·

1 i+ 1i n

· · · · · ·

1 i+ 1i n

Fig. 3 (Left) the braid diagram σi ; (Right) the braid diagram σ−1
i

a b

c

b a

= Rba
c

b a

c

(5)

The above equality is called an R-move, and Rba
c is called an R-symbol. The set

of F- and R-symbols is crucial for calculations in the anyon model.
Now, we discuss how to perform quantum computing with anyons. The state space

of multi-anyons is the logical space to store information. Typically, one chooses mul-
tiple identical anyons, say n type-a anyons with total type c for some n. Denote this
space by V a⊗n

c := V aa···a
c . The type a needs to be non-Abelian so that the dimension of

V a⊗n

c approaches to infinity as n → ∞. In general, V a⊗n

c does not have a natural tensor
product structure, and we need to choose a subspace which does have a tensor product
structure as multi-qubits or multi-qudits. The computational basis for the qudits can
be chosen to be any splitting-tree basis.

Braiding of anyons induces a representation of the braid group and acts as quan-
tum gates on the logical space V a⊗n

c . Recall that the n-strand braid group Bn has a
presentation as

Bn = 〈σ1, . . . , σn−1 | σiσi+1σi = σi+1σiσi+1,

σiσ j = σ jσi , |i − j | > 1 〉, (6)

where σi (resp. σ−1
i ) corresponds to the braid diagram in Fig. 3(Left) (resp. (Right) ).

We have a representation,

ρ : Bn → U (V a⊗n

c ), (7)

where σi (resp. σ−1
i ) acts on V a⊗n

c by counterclockwise (resp. clockwise) braiding of
the i-th with the (i + 1)-th anyon. With a chosen splitting-tree basis, a matrix for each
braid generator can be computed using F- and R-symbols. The set of quantum gates
obtained from braiding is the image of this braid group representation.

123



Universal topological quantum computing via double… Page 7 of 23 14

3 Universality in SU(2)k anyons

3.1 SU(2)k anyons

Recall that the SU (2) Witten–Chern–Simons theory at level k ∈ Z!0 is denoted by
SU(2)k . The MTC corresponding to SU(2)k is constructed from finite-dimensional
representations of the quantum group Uq(sl2) for q = e

2π i
k+2 . It also describes the

Wess–Zumino–Witten conformal field theory [22, 23].
Below we describe the data of the SU(2)k MTC obtained from Sec. 5.4 of [18],

though the data also appeared in earlier literature in different forms. The MTC has
k+ 1 anyon types (i.e., simple objects) labeled by half-integers 0, 1

2 ,
2
2 , . . . ,

k
2 , where

0 denotes the trivial anyon type. The fusion rule is given by,

j1 ⊗ j2 =
min{ j1+ j2,k− j1− j2}⊕

j=| j1− j2|
j, (8)

where j has an increment of 1 in the above sum, implying that for admissible ( j1, j2; j),
j1 + j2 + j is always an integer. Throughout the context, fix q = e

2π i
k+2 , and denote

by qx := e
2π i x
k+2 . For n ∈ Z!0, the quantum integer [n] and the quantum factorial are

defined by,

[n]q := q
n
2 − q− n

2

q
1
2 − q− 1

2

, [n]q ! = ([n − 1]q !) [n], [0]q ! = 1. (9)

The R-symbols are given by,

R j1, j2
j = (−1) j− j1− j2q

1
2 ( j( j+1)− j1( j1+1)− j2( j2+1)). (10)

The F-symbols are given by,

F j1, j2, j3
j; j12, j23 = [F j1, j2, j3

j ] j12, j23 = (−1) j1+ j2+ j3+ j
√
[2 j12 + 1]q [2 j23 + 1]q

{
j1 j2 j12
j3 j j23

}

q
,

(11)

where

{
j1 j2 j12
j3 j j23

}

q
= &( j1, j2, j12)&( j12, j3, j)&( j2, j3, j23)&( j1, j23, j) +

∑

z

{
(−1)z[z + 1]q !

[z − j1 − j2 − j12]q ![z − j12 − j3 − j]q ![z − j2 − j3 − j23]q ![z − j1 − j23 − j]q !

+ 1
[ j1 + j2 + j3 + j − z]q ![ j1 + j12 + j3 + j23 − z]q ![ j2 + j12 + j + j23 − z]

}
,
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Fig. 4 (Left) A splitting-tree
basis for V τττ

τ ; (Right) A
splitting-tree basis for V ττττ

0 ,
where τ is the anyon of type 1

2 .
a, b = 0, 1

τ

τ ττ

a

τ

b

τ

b

τ τ

0

(12)

where the sum is over z with an increment of 1 for which all the [·]q ! in the sum are
defined, and

&( j1, j2, j3) =
√
[− j1 + j2 + j3]q ![ j1 − j2 + j3]q ![ j1 + j2 − j3]

[ j1 + j2 + j3 + 1]q !
. (13)

A fact that will not be used in this paper is that a close cousin of the SU(2)k MTC
is the Temperley–Lieb–Jones MTC obtained from skein theory [24]. Under a proper
translation between the level k and the Kauffman variable A in the skein theory, the
SU(2)k MTC and the Temperley–Lieb–Jones MTC are equivalent as braided fusion
categories, but differ by a ribbon twist.

3.2 The 1-qubit model

For k ! 2, we consider the anyon type labeled by τ := 1
2 in the SU(2)k model. For

k = 2, τ is the Ising anyon, while for k = 3, τ is closely related to the Fibonacci
anyon.3

There are two standard ways to obtain a qubit using τ anyons. They are the dense
encoding and the sparse encoding corresponding to the spacesV τττ

τ andV ττττ
0 , respec-

tively. That is, the dense encoding takes, as a qubit, the space of three τ anyons with
total type τ , while the sparse encoding takes the space of four τ anyons with total type
0. From the fusion rule,

1
2

⊗ 1
2
= 0 ⊕ 1,

1
2

⊗ 1 = 1
2

⊕ 3
2
, 0 ⊗ j = j, (14)

both V τττ
τ and V ττττ

0 are of two dimensions with a splitting-tree basis given in Fig. 4.
Denote the splitting-tree basis in Fig. 4 (Left) by {|x〉 : x = 0, 1} and the one in Fig. 4
(Right) by {|x〉′ : x = 0, 1}.

The braiding of the τ anyons induces representations of the braid groups with the
action of the generator σi given by the counterclockwise swap of the i-th and the
(i + 1)-th anyon,

ρk : B3 → U (V τττ
τ ), (15)

3 The anyon of type 1
2 in SU(2)3 is the composite of the Fibonacci anyon with a semion [18].
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τ

x

τ τ τ

= Rττ
x

τ

x

τ τ τ

Fig. 5 The action of σ1 on V τττ
τ

τ

x

τ τ τ

=
y∈{0,1}

F τττ
τ ;yx

τ

y

τ τ τ

=
y∈{0,1}

F τττ
τ ;yxR

ττ
y

τ

y

τ τ τ

=
y,z∈{0,1}

F τττ
τ ;yxR

ττ
y (F τττ

τ )−1
zy

τ

z

τ τ τ

Fig. 6 The action of σ2 on V τττ
τ . The first and the third equalities are due to an F-move and an inverse

F-move, respectively. The second equality is due to an R-move

ρ′
k : B4 → U (V ττττ

0 ). (16)

For the dense encoding, under the basis {|x〉 : x = 0, 1} of V τττ
τ , the action of the

generators σ1 and σ2 are computed in Fig. 5 and Fig. 6, respectively.
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Hence,
ρk(σ1)|x〉 = Rττ

x |x〉 (17)

ρk(σ2)|x〉 =
∑

y,z∈{0,1}
Fτττ

τ ;yx Rττ
y (Fτττ

τ )−1
zy |z〉. (18)

Denote by,

R =
(
Rττ
0 0
0 Rττ

1

)
, F = Fτττ

τ =
(
Fτττ

τ ;00 Fτττ
τ ;01

Fτττ
τ ;10 Fτττ

τ ;11

)
. (19)

From the data in Sect. 3.1,

R =
(

−q− 3
4 0

0 q
1
4

)

, F = Fτττ
τ =

√
q

q + 1




−1

√
q + 1

q + 1
√
q + 1

q + 1 1



 . (20)

Note that F is a symmetric, real, involutory matrix. Then, we have

ρk(σ1) = R =
(

−q− 3
4 0

0 q
1
4

)

, (21)

ρk(σ2) = F−1RF = q
1
4

1+ q




q

√
q + 1

q + 1
√
q + 1

q + 1 − 1
q



 . (22)

For the sparse encoding, we show in fact the image ρ′
k(B4) is the same as ρk(B3)

if we identify |x〉′ ∈ V ττττ
0 with |x〉 ∈ V τττ

τ . Under this identification, it is clear that
ρ′
k(σ1) = ρ′

k(σ3) = ρk(σ1), while ρ′
k(σ2) can be computed, similar to ρk(σ2) in Fig. 6,

as,

ρ′
k(σ2)|x〉′ = (Fxττ

0 )−1
τ x




∑

y,z∈{0,1}
Fτττ

τ ;yx Rττ
y (Fτττ

τ )−1
zy



 Fzττ
0;zτ |z〉′. (23)

From the F-symbols of SU(2)k in Sect. 3.1, it can be checked that F j1 j2 j3
j; j23 j12 = 1

whenever j = 0 and the involved labels are admissible. Hence, we have ρ′
k(σ2) =

ρk(σ2). This shows the equality of ρ′
k(B4) and ρk(B3).

Therefore, from now on, we will focus on the dense encoding only. A logical qubit
is given by the space V τττ

τ whose computational basis is {|0〉, |1〉} as shown in Fig. 4
(Left). The set of 1-qubit logical gates obtained from anyon braidings corresponds to
elements in the image ρk(B3). Since quantum gates are well defined only up to global
U (1) phases, the gates in ρk(B3) can be multiplied by any phase, or they should be
considered as elements of the projective unitary group PU (V τττ

τ ).
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Definition 3.1 Let V be a Hilbert space, and G be a subset of the unitary groupU (V ).
G is said to be universal on V if G ∪U (1) generate a dense subgroup of U (V ).

To study the universality of the braiding gates, it is convenient to normalize the gen-
erators of B3 so that the image of ρk lies in SU (V τττ

τ ). Explicitly, multiplying −iq1/4

to the generators, we obtain the normalized representation ρ̃k : B3 → SU (V τττ
τ ),

ρ̃k(σ1) = R̃ =
(
i q− 1

2 0
0 −i q

1
2

)

, (24)

ρ̃k(σ2) = F−1 R̃F = i
√
q

q + 1




−q −

√
q + 1

q + 1

−
√
q + 1

q + 1 1
q



 . (25)

Since ρk equals ρ̃k up to a global phase, we will use ρk and ρ̃k interchangeably.
As an example, when k = 2, ρ̃2(σ1) and ρ̃k(σ2) are given, respectively, by,

e
π i
4

(
1 0
0 −i

)
and

1√
2

(
1 −i
−i 1

)
, (26)

which, together with U (1) phases, generate the 1-qubit Clifford group.
Themulti-qubitmodels canbeobtainedby increasing the number of anyons utilized.

Wewill not discuss that direction. The universality of braiding the τ anyons is a classic
problem settled in [14]. We rephrase Theorem 4.1 of [14] in the setup of one qubit.

Theorem 3.2 ([14]) For any integer k ! 3, k "= 4, 8, let V τττ
τ be the 1-qubit space

in the SU(2)k model. Then, set of braiding gates corresponding to the image of the
representation ρ̃k defined in Eqs.24 and rm 25 is universal on V τττ

τ .

3.3 Universality of double-braiding in SU(2)k

In this section, we prove a stronger result than Theorem 3.2. That is, for those values of
k in Theorem 3.2, we show that the set of double-braiding gates on V τττ

τ is universal
in the SU(2)k model. By a double-braiding is meant a braid generated by even powers
of the standard generators σ ′

i s of the braid group. We will rely on two critical results.
The content of Lemma 3.3 below first appeared in the work of Kitaev [25] where he
used the lemma to prove the universality of certain gate sets. The lemma can also be
found in Section 6 of [26].

Lemma 3.3 ([25]) Let A and B be two non-commuting elements of SU(2) both of
which are of infinite order. Then, A and B generate a dense subgroup of SU (2).

Proof (sketch.) Let G be the closure of the subgroup generated by A and B. By the
assumption in the lemma, G is a closed connected noncommutative Lie subgroup of
SU (2). Hence, the Lie algebra g of G is a noncommutative Lie subalgebra of su(2).
The only such Lie subalgebra of su(2) is itself. Therefore, G = SU (2). /0
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Theorem 3.4 (Theorem 7, [27]) Suppose we have at most four distinct rational multi-
ples of π lying strictly between 0 and π

2 for which some rational linear combination of
their cosines is rational but no proper subset has this property. Then, the appropriate
linear combination is proportional to one from the following list:

• cosπ/3 = 1
3 ,

• − cosφ + cos (π/3 − φ)+ cos (π/3+ φ) = 0 (0 < φ < π/6),
• cosπ/5 − cos 2π/5 = 1

2 ,
• cosπ/7 − cos 2π/7+ cos 3π/7 = 1

2 ,
• cosπ/5 − cosπ/15+ cos 4π/15 = 1

2 ,
• − cos 2π/5+ cos 2π/15 − cos 7π/15 = 1

2 ,
• cosπ/7+ cos 3π/7 − cosπ/21+ cos 8π/21 = 1

2 ,
• cosπ/7 − cos 2π/7+ cos 2π/21 − cos 5π/21 = 1

2 ,
• − cos 2π/7+ cos 3π/7+ cos 4π/21+ cos 10π/21 = 1

2 ,
• − cosπ/15+ cos 2π/15+ cos 4π/15 − cos 7π/15 = 1

2 .

The following is the main result of the paper.

Theorem 3.5 For any integer k ! 3, k "= 4, 8, let τ be the anyon of type 1
2 in the

anyon model SU(2)k , and ρk : B3 → U (V τττ
τ ) be the representation of B3 on the

dense-encoding 1-qubit V τττ
τ . Then, the images of σ 2

1 and σ 2
2 under ρk , together with

phases, generate a dense subgroup of U (V τττ
τ ). That is, the double-braiding gates

alone are universal.

Proof It suffices to show, for the normalized ρ̃k : B3 → U (V τττ
τ ) defined in Eqs. 24

25, ρ̃k(σ 2
1 ) and ρ̃k(σ

2
2 ) generate a dense subgroup of SU (V τττ

τ ). Let

A := ρ̃k(σ
2
1 σ 4

2 ) = R̃2F−1 R̃4F, B := ρ̃k(σ
2
1 σ 6

2 ) = R̃2F−1 R̃6F . (27)

From the expressions of R̃ (Eq. 24) and F (Eq. 20), the matrices of A, B, and W :=
ABA−1B−1 canbe calculated as (SeeAppendixB for aMathematica implementation),

A =




− q4+q2−q+1

q3+q2 −
√
q+ 1

q+1
(
q3−q2+q−1

)

q2(q+1)

−
√
q+ 1

q+1
(
q3−q2+q−1

)

q+1 − q5+q2+q+1
q(q+1)2



 (28)

B =




q7+q6+q5+1
q3(q+1)2

√
q+ 1

q+1
(
q5−q4+q3−q2+q−1

)

q3(q+1)√
q+ 1

q+1
(
q5−q4+q3−q2+q−1

)

q(q+1)
q6+q+ 1

q+1

q(q+1)2



 (29)

W11 = q13−3q12+6q11−11q10+16q9−19q8+22q7−21q6+19q5−14q4+10q3−6q2+3q−1
q6(q+1)

(30)
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W12 =−
(q−1)2

√
q+ 1

q +1
(
q10−q9+3q8−4q7+5q6−6q5+6q4−5q3+4q2−2q+1

)

q7(q+1)
(31)

W21 =
(q−1)2

√
q+ 1

q +1
(
q10−2q9+4q8−5q7+6q6−6q5+5q4−4q3+3q2−q+1

)

q4(q+1)
(32)

W22 = −q13+3q12−6q11+10q10−14q9+19q8−21q7+22q6−19q5+16q4−11q3+6q2−3q+1
q7+q6

(33)

Wewill show that, for the values of k in the statement of the theorem, A and B are both
of infinite order and they do not commute. Then by Lemma 3.3, A and B generate a
dense subgroup of SU (2), implying the validity of the theorem. The rest of the proof
is devoted to verifying the assumptions on A and B mentioned above.
Proving A has infinite order.

Denote the eigenvalues of A by e±(k i , 0 ≤ (k ≤ π . It suffices to show that (k is not
a rational multiple of π . Recall that q = e

2π i
k+2 . We have,

2 cos (k = tr(A) = − ((q − 1)q + 1)
(
q2 + 1

)

q2
(34)

= −2 −
(
q2 + 1

q2

)
+

(
q + 1

q

)
(35)

= −2 − 2 cos
4π

k + 2
+ 2 cos

2π
k + 2

. (36)

That is,

cos
4π

k + 2
− cos

2π
k + 2

+ cos (k = −1. (37)

Wewish to show the above identity is not equivalent to any of the identities in Theorem
3.4, and hence (k cannot be a rational multiple of π . But we need to first verify the
assumptions in that theorem.

We make four statements which can be verified by checking small values of k and
applying Theorem 3.4, noting that when k > 6, 2π

k+2 and 4π
k+2 lie strictly between 0

and π
2 . Assume k ! 3.

(A) The only k for which cos 2π
k+2 is rational is k = 4,

cos
2π

4+ 2
= 1

2
. (38)

(B) The only k′s for which cos 4π
k+2 is rational are k = 4, 6, 10,

cos
4π

4+ 2
= −1

2
, cos

4π
6+ 2

= 0, cos
4π

10+ 2
= 1

2
. (39)
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(C) The only k′s forwhich neither cos 2π
k+2 nor cos

4π
k+2 is rational but certain nontrivial

rational combinations of them is rational are k = 3, 8,

− cos
2π

3+ 2
− cos

4π
3+ 2

= 1
2
, cos

2π
8+ 2

− cos
4π

8+ 2
= 1

2
. (40)

(D) Furthermore, the only k′s for which cos (k is rational are k = 4, 8,

cos (4 = 0, cos (8 = −1
2
. (41)

Statement D) implies that for k = 4, 8, (k is a rational multiple of π . For all other
k′s, (k is not a rational multiple of π and in particular (k "= 0, π

2 ,π .
The above statements also imply for k ! 7, k "= 8, 10, none of cos 4π

k+2 , cos
2π
k+2 ,

or cos (k is rational. Furthermore, for those values of k, for any two elements from
{cos 4π

k+2 , cos
2π
k+2 , cos (k}, they cannot have a nontrivial rational combination which

is rational. The above claim for the pair {cos 4π
k+2 , cos

4π
k+2 } is clear from Statement

C). For the other two pairs, say, {cos 4π
k+2 , cos (k}, if they do not satisfy the claim, then

one can substitute cos (k with an expression of cos 4π
k+2 in Eq.37, yielding a rational

combination of cos 4π
k+2 and cos 2π

k+2 which is rational. That is a contradiction.
Then for k ! 7, k "= 8, 10, if (k is a rational multiple of π strictly between 0 and

π
2 , then Eq.37 is an identity concerning a rational combination of the cosine of three
distinct angles satisfying the conditions in Theorem 3.4. However, this identity is not
equivalent to any of those in that theorem, a contradiction.

If (k is a rational multiple of π strictly between π
2 and π , then Eq.37 can be written

as,

cos
4π

k + 2
− cos

2π
k + 2

− cos(π − (k) = −1. (42)

Applying the same argument to the new equation leads to a similar contradiction. This
shows that for k ! 7, k "= 8, 10, (k is not a rational multiple of π .

The remaining cases to check are k = 3, 5, 6, 10. The corresponding identity of
Eq.37 for these values of k can be simplified below.

cos (3 =
√
5 − 2
2

, cos (5 = cos
3π
7

+ cos
2π
7

− 1, cos (6 =
√
2 − 2
2

,

cos (10 =
√
3 − 3
2

. (43)

It can be checked directly by a computer program or by applying Theorem 3.4 that the
above ( ′

ks are not rational multiple of pi . This completes the proof that the eigenvalues
of A are of infinite order for k ! 3, k "= 4, 8.
Proving B has infinite order.
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Denote the eigenvalues of B by e±(k i , 0 ≤ (k ≤ π .

2 cos (k = tr(B) =
(
q2 + 1

) (
(q − 1)q

(
q2 + 1

)
+ 1

)

q3
(44)

= −2+ (q3 + 1
q3

) −
(
q2 + 1

q2

)
+ 2

(
q + 1

q

)
(45)

= −2+ 2 cos
6π

k + 2
− 2 cos

4π
k + 2

+ 4 cos
2π

k + 2
. (46)

That is,

2 cos
2π

k + 2
− cos

4π
k + 2

+ cos
6π

k + 2
− cos (k = 1. (47)

The rest of the proof is completely similar to the case of the matrix A by repeatedly
applying Theorem 3.4. We leave the details as an exercise for curious readers.
Proving W "= I.

Note that W "= I if and only if Tr(W ) "= 2. Assume Tr(W ) = 2. Then,

2 = − ((q − 1)q + 1)
(
q4 − 2q3 − 2q + 1

)

q3
(48)

= 4 −
(
q3 + 1

q3

)
+ 3

(
q2 + 1

q2

)
− 3

(
q + 1

q

)
(49)

= 4 − 2 cos
6π

k + 2
+ 6 cos

4π
k + 2

− 6 cos
2π

k + 2
. (50)

That is,

cos
6π

k + 2
− 3 cos

4π
k + 2

+ 3 cos
2π

k + 2
= 1. (51)

That the above identity is fake can be checked directly for small values k ≤ 10 and
by Theorem 3.4 for k ! 11. /0

Appendix A Anyonmodels

Mathematically, an anyon model is characterized by the structure of a unitary modular
tensor category (MTC). To avoid abstract categorical language, we describe an MTC
with a set of concrete data. The content and figures contained in this section are adapted
from the second named author’s lecture notes [28].
Label set. Associated with each anyon model is a finite set

L = {a, b, c, . . .} (52)
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consisting of all the possible anyon types in a topological phase. The ground state is
considered as a special trivial anyon type, and is usually denoted by 1 ∈ L . For each
anyon type x ∈ L , there exists x̄ ∈ L corresponding to the anti-particle (i.e., the dual
anyon type) of x . We require that 1̄ = 1 and ¯̄x = x .
Fusion rule. For a, b ∈ L , fusing a and b produces different possible anyon types.
Formally, it is written as,

a ⊗ b =
⊕

c∈L
Nc
ab c, (53)

where Nc
ab denotes the number of different channels of fusing a and b to result in the

output c. If there is no way to obtain c from the fusion, then Nc
ab = 0. One can also

view the equality in the above equation from an alternative perspective. Namely, the
composite type of a and b is a superposition of all possible anyon types with each type
c appearing in Nc

ab copies. If N
c
ab > 0, we say c is a total type or total charge of a and b,

and call the triple (a, b; c) admissible. The collection of the integers {Nc
ab | a, b, c ∈ L}

is called the fusion rule. The fusion rule should satisfy the following requirements.

(A) The fusion rule is commutative, i.e., a ⊗ b = b ⊗ a, implying

Nc
ab = Nc

ba, ∀a, b, c. (54)

(B) The dual of a ⊗ b as a composite equals b̄ ⊗ ā, implying

Nc
ab = Nc̄

b̄ā
, ∀a, b, c. (55)

(C) 1 ⊗ a = a, implying

Nb
1a = )a,b, ∀a, b. (56)

(D) 1 is a total type of a and b if and only if a = b̄, implying

N 1
ab = )a,b̄, ∀a, b. (57)

(E) The fusion rule is associative, i.e., (a ⊗ b) ⊗ c = a ⊗ (b ⊗ c), implying

∑

p∈L
N p
abN

d
pc =

∑

q∈L
Nd
aq N

q
bc, ∀a, b, c, d, (58)

For simplicity, in the following discussions we will assume Nc
ab is either 0 or 1,

i.e., the anyon model is multiplicity-free. This already covers a large family of anyon
models including the ones considered in the current paper.
State space. For anyon types c, a1, . . . , an , denote by V a1a2···an

c the space of states
representing n anyons a1, . . . , an with total charge c. The dimension and bases of
these spaces are described inductively as follows.
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Fig. 7 (Left) A canonical basis
of V c

c ; (Right) A (noncanonical)
basis of Va1a2

c

c c

a1 a2

Fig. 8 A basis of Va1a2···an
c

corresponding to a binary tree a1 a2

b1
b2

a3 a4 · · ·
an

c

· · ·

For n = 1, Va1
c = 0 if c "= a1, and V c

c is one-dimensional with a canonical basis
denoted by the left diagram of Fig. 7. One can think of the diagram representing the
state obtained by ‘doing nothing’ to an existent anyon c.

For n = 2, V a1a2
c = 0 if Nc

a1a2 = 0, and V a1a2
c is one-dimensional otherwise, with

a noncanonical basis denoted by the right diagram in Fig. 7. One can then think of the
diagram representing the state obtained from the process of splitting c into the pair a
and b, where and throughout the context, the time direction for physical processes is
assumed to be from bottom to top. This choice of basis is not canonical as one can
multiply an arbitrary phase to it. We will use the diagrams in Fig. 7 as building blocks
to describe bases of multi-anyon spaces.

For n ! 3, take an upward-growing binary tree with one root at the bottom and n
leaves at the top. See Fig. 8 for an illustration. It is to be understood that the tree is
constructed using the two diagrams in Fig. 7. Label the root by c and the leaves, from
left to right, by a1, a2, . . . , an . Now label each internal edge e by an anyon type be
such that at each fork, the relevant labels are admissible. Then, the binary tree with
all possible labels {be} of internal edges forms a basis of V a1a2...an

c . For each labeled
binary tree, one can similarly interpret the state it represents as a splitting process. For
example, the state represented by the tree in Fig.8 is obtained by splitting c into bn−2
and an , followed by splitting bn−2 into bn−3 and an−1, . . ., followed by splitting b1
into b0 = a1 and a2. Such a basis is called a splitting-tree basis.

For the case of n = 3, there are exactly two such binary trees as shown on both sides
of Equation (59), each of which provides a basis of V abc

d . Each tree has one internal
edge. The basis corresponding to the tree on the left side of the equation consists of
all possible labelings m of the internal edge so that (a, b;m) and (m, c; d) are both
admissible. Similarly, the basis for the tree on the right side consists of labelings n of
the internal edge so that (b, c; n) and (a, n; d) are both admissible. Denote the matrix
change between the two bases by Fabc

d . More explicitly,
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d

a cb

m = ∑
n

Fabc
d;nm

a

d

cb

n (59)

where Fabc
d;nm is the (n,m)-entry of Fabc

d , and the sum is over all labelings n as
described above. Note that, here the anyon types n and m are used as the indices of
the entries of Fabc

d . We call Fabc
d an F-matrix, its entries F-symbols or 6 j-symbols,

and the identity in Equation (59) an F-move.
Using the F-move or its inverse, we can relate any two splitting-tree bases of

V a1a2···an
c . For V abcd

e , there are exactly five splitting-tree bases, and Fig.9 shows the
F-moves connecting them. In particular, starting from the basis labeled by 1©, there
are two ways of performing F-moves to obtain the basis labeled by 3©, namely, either
via the path 1© → 2© → 3© or via the path 1© → 5© → 4© → 3©. Since both
ways induce a basis change between 1© and 3©, this introduces some constraints on
the F-symbols, namely,

Fmcd
e;zn F

abz
e;ym =

∑

x∈L
Fabc
n;xm F

axd
e;yn F

bcd
y;zx , ∀a, b, c, d, e,m, n, y, z. (60)

Equation60 is known as the Pentagon equations. It is a nontrivial fact that the Pentagon
equations guarantee that the change between splitting-tree bases via F-moves for an
arbitrary state space is consistent.

Braiding. The process of swapping positions of anyons is called a braiding. Since
anyons live in two-dimensional space, a counterclockwise braiding has a different
world line from that of a clockwise braiding. The world line of a sequence of braidings
of multi-anyons is a braid diagram, and hence the naming of the process. A braiding
induces a unitary transformation on the state space. Consider two anyons a and b with
total type c. A counterclockwise braiding of a and b maps a state in V ab

c to one in
V ba
c . Since both spaces have dimension one, there exists a phase Rba

c such that the
following equality holds,

a b

c

b a

= Rba
c

b a

c

(61)

The above equality is called an R-move, and {Rab
c } is called an R-symbol. Since

a counterclockwise braiding followed by a clockwise braiding is equivalent to the

123



Universal topological quantum computing via double… Page 19 of 23 14

a

m

b

n

c d

e
1

a

m

b

z

c d

e
2

a

y

b

z

c d

e
3

a

x

b

n

c d

e
5

a

y

b

x

c d

e
4

Fig. 9 The five splitting-tree bases of Vabcd
e and the F-moves connecting them

identity process, we have,

a b

c

b a

= (Rab
c )−1

b a

c

(62)

Consider the space Vabc
d , and braid a with b and c. Each node in Fig. 10 represents a

basis of V bca
d , and performing an F-move or R-move change fromone basis to another.

To change from basis 1© to basis 3©, one can follow either the path 1© → 2© → 3©
or the path 1© → 6© → 5© → 4© → 3©. Consequently, we obtain the hexagon
equation,
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d

m

b c a

1
d

m

b c a

6

d

n

b c a

5

d

n

b c a

4
d

x

b c a

3

d

x

b c a

=

d

x

b c a

2

Fig. 10 Consistency conditions for braidings on Vabc
d

Rba
m Fbac

d;nm Rca
n =

∑

x∈L
Fabc
d;xm Rxa

d Fbca
d;nx . (63)

By replacing the counterclockwise braidings in Fig. 10 with clockwise braidings, we
obtain another hexagon equation,

(Rab
m )−1Fbac

d;nm(R
ac
n )−1 =

∑

x∈L
Fabc
d;xm(R

ax
d )−1Fbca

d;nx . (64)

Topological spin. Each anyon type a has an (intrinsic) topological spin (a which is
always a root of unity. The type a is said to be bosonic if (a = 1, fermionic if (a = −1,
and semionic if (a = i . The topological spins are required to satisfy the following
conditions.
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(A) The trivial anyon is bosonic,

(1 = 1. (65)

(B) An anyon and its dual have equal topological spin,

(a = (ā, ∀a ∈ L. (66)

(C) Whenever c is a total type of a and b, we have

(c(
−1
a (−1

b = Rab
c Rba

c . (67)

Quantum dimension. For each anyon type a, define an |L| + |L| matrix Na whose
(b, c)-entry is Nc

ab = Nc
ba . Hence, the entries of Na are nonnegative integers. By

the Perron–Frobenius theorem, Na has an eigenvalue dim(a), called the Frobenius–
Perron dimension of a, which is greater than or equal to, in absolute value, any other
eigenvalues. In the anyon model, we also call dim(a) the quantum dimension of
a. To get a sense of what dim(a) measures, consider the dimension of the space
of n type-a anyons with total type 1. We use the splitting-tree basis in Fig. 8 with
a = a1 = · · · = an, 1 = c to compute the dimension for large n,

∑

b1,...,bn−2

Nb1
aaN

b2
b1a

· · · Nbn−2
bn−3a

N 1
bn−2a =

∑

b1,...,bn−3

Nb1
aaN

b2
b1a

· · · Nā
bn−3a (68)

=
(
(Na)

n−2
)

aā

n→∞∼ dim(a)n−2. (69)

Thus, dim(a)measures the asymptotic size of the spaceofn type-a anyons.Apparently,
dim(a) ! 1. An anyon a is called Abelian if dim(a) = 1, and non-Abelian otherwise.
S-matrix. Define the |L| + |L| modular S-matrix with entries,

Sab := (−1
a (−1

b

∑

c∈L
Nc
āb (c dim(c). (70)

The S-matrix is required to be invertible.
To summarize, an anyon model or a unitary MTC is described by a label set,

fusion rule, F-symbols, R-symbols, and topological spins, from which one can derive
quantum dimensions and the S-matrix. These data should satisfy various compatibility
conditions as listed in this section.

Appendix B Mathematica code

Below we list the Mathematica code to compute some of the matrices used in Sect. 3.2
and 3.3 including F , R̃, A, B, and W .

1

2 Clear[q];
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3 QuantumInteger [n_] := (q^(n/2) - q^(-n/2))/(q^(1/2) - q
^( -1/2));

4 F = FullSimplify [{{-1,
5 Sqrt[QuantumInteger [3]]} , {Sqrt[QuantumInteger [3]], 1}}/
6 QuantumInteger [2]];
7 Rtilde = DiagonalMatrix [{q^( -1/2), -q^(1/2) }]*I;
8 A = Simplify[
9 MatrixPower[Rtilde , 2] . F . MatrixPower[Rtilde , 4] . F];

10 B = Simplify[
11 MatrixPower[Rtilde , 2] . F . MatrixPower[Rtilde , 6] . F];
12 W = Simplify[A . B . Inverse[A] . Inverse[B]];
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