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Abstract— Humans have latency in their visual perception
system between observation and action. Any action we take is
based on an earlier observation since, by the time we act, the
state has already changed, and we got a new observation. In
autonomous driving, this latency is also present, determined
by the amount of time the control algorithm needs to process
information before acting. This algorithmic perception latency
can be reduced by massive computing power via GPUs and
FPGAs, which is improbable in automobile platforms. Thus, it is
a reasonable assumption that the algorithmic perception latency
is inevitable. Many researchers have developed different neural
network driving models without consideration of the algorith-
mic perception latency. This paper studies the latency effect on
vision-based neural network autonomous driving in the lane-
keeping task and proposes a vision-based novel neural network
controller, the Adaptive Neural Ensemble Controller (ANEC)
that is inspired by the near/far gaze distribution of human
drivers during lane-keeping. ANEC was tested in Gazebo 3D
simulation environment with Robot Operating System (ROS)
which showed the effectiveness of ANEC in dealing with
algorithmic latency. The source code is available at https:
//github.com/jrkwon/oscar/tree/devel_anec.

Autonomous Vehicle Navigation; Machine Learning for

Robot Control; Imitation Learning

I. INTRODUCTION

We are always living in the past. According to studies

[1], [2], our conscious perception system is always behind

the time we are. As a result, the brain must catch up to

the present in order for us to live it. When we drive a car,

for example, we sense our environment, assess it, make a

decision, and then act on that decision. The action we take,

however, is based on an earlier observation since by the

time we act, the state has already changed and we have

a new observation, as illustrated in Fig. 1. If we get an

observation of the environment at time t1, our brain needs

time δ to process the observation, so we take action at time

t1 + δ . However at time t1 + δ , the vehicle has moved, the

environment has changed, and we have a new observation.

There have been debates on how the brain produces present

conscious awareness using past sensory information. One

of the hypotheses is that visual perception is predictive, so

sensory information is extrapolated ahead of the perceived

event.

In autonomous driving, this latency is also present, deter-

mined by the amount of time the control algorithm needs to

process information before acting. This algorithmic percep-

tion latency δ , shown in Fig. 2, is inevitable [3]. To reduce
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Fig. 1. Latency in the visual perception system of a human driver between
observation and action. (A) The system observes its environment at time t1
(Ot1 ). (B) A conscious perception process starts at time t1 and ends at time
t2. (D) δ is the perception latency, which is the time required to complete
the perception process, where δ = t2 − t1. (C) During the time period δ ,
the state of the vehicle has changed from C-1 to C-2 and we have a new
observation (Ot1+δ or Ot2 ). (E) Because of δ , for observation Ot1 at t1, the
action At1 is only available at t1 +δ . (Part of this figure has been designed
using resources from Flaticon.com)

δ
t

Algorithm Actuation

t1 t1+ δ

Fig. 2. The definition of the perception latency δ in autonomous driving.
For observation Ot1 at time t1, the corresponding action At1 is applied when
observation Ot1+δ is input at time t1 + δ . (Part of this figure has been
designed using resources from Flaticon.com)

the latency, we may use massive computing power via GPUs,

FPGAs, and multicore CPUs. In training a deep neural net-

work, such a high computing power system can be a choice.

Yet, in actual inference, computing resources are limited in

automobile platforms. Thus, it is a reasonable assumption

that there will be an unavoidable latency in the perception

and actuation cycle. Most vision-based lateral control studies

[4]–[11], assume no delay between observation Ot and action

At at time t.

In this paper, we study the latency effect on autonomous

driving in the lane-keeping task. Fig. 3 illustrates the latency.

When vehicle B receives a visual input Ot , the steering angle

is not St but St−δ because St will be available after δ from

t. This delayed steering angle St−δ makes the vehicle at B

be at C which is off track. The steering angle pSt−δ that

is predictive inferred steering angle at time t −δ should be20
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Fig. 3. Algorithmic perception latency in automobile platform. The vehicle
at B has visual input Ot . St−δ is an inferred steering angle at time t − δ
available at t. If St−δ is applied to the vehicle at time t, the vehicle location
at time t + δ will be C that is about to be out off the track. The steering
angle pSt−δ that is predictive inferred steering angle at time t − δ should
be applied to B to locate the vehicle at D.

applied to B to locate the vehicle at D, because as Fig. 3

shows, during the latency time δ the vehicle has traveled

distance dt which is defined as dt = vt δ , where vt is the

vehicle speed at time t and δ is the algorithmic perception

latency. The change in the scene, which is the difference

between two observations, is determined by the distance dt

traveled between the two observations. A larger effect of

the latency δ can be expected in higher velocity and curved

sections of the road. The changes in two scenes observed

at time t and t + δ can be more significant when dt is a

higher value. For instance, a model could be able to drive at

a speed up to 35 km/h, if it is trained at a maximum speed

of 30 km/h, but it would likely not function effectively at

higher speeds, such as 40 km/h. When vision-based neural

network models, such as PilotNet [7] and CNN-LSTM, were

employed for racing [11], neither model was able to finish

the course. We believe the reason was that the high speed

amplified the effect of the latency.

Perception latency does not prevent human drivers from

successful in-time decision-making. According to [12], when

they looked at the gaze distributions of human drivers during

lane keeping, they discovered that most of the time (assuming

there is no lead vehicle), humans hold their gaze at a distance

in front of their own vehicle, which aids in anticipating future

actions. Inspired by this gaze distribution, we hypothesize

that visual input at time t has latent variables not only for

the current state at time t but also for future states at time

t+δ and the weight of importance of the future states varies

with the current driving speed and curvature of the road.

We propose the Adaptive Neural Ensemble Controller

(ANEC) to show that the algorithmic perception latency issue

can be addressed by adaptively infusing the prediction action

output into the baseline output. A high-level overview of

the proposed system is shown in Fig. 4. ANEC depends on

Ot

Base DNN

Ãt 

Predictive DNN 

Ãt+ δ 

ANEC 
control

Velocity

mÃt 

Fig. 4. General overview of the proposed Adaptive Neural Ensemble
Controller (ANEC) for self-driving vehicles. The output of two driving
models, the Base Model (BM) and the Predictive Model (PM), must be
combined for ANEC to function. Like any vision-based neural network
model, BM is anticipated to concentrate on the near-point area. On the other
hand, PM is anticipated to examine the region beyond the near-point area
in order to uncover latent characteristics that would guide future decisions.
For the purpose of determining ANEC’s ultimate output, each model will
be given a dynamic weight based on the current speed of the vehicle. (Part
of this figure has been designed using resources from Flaticon.com)

combining the output of two driving models, the Base Model

(BM) and the Predictive Model (PM). BM is expected to

focus on the near-point area like any vision-based neural

network model. PM, on the other hand, is expected to cover

the far-point area to extract latent variables for future actions.

Note that near/far areas are not explicitly selected. BM and

PM will figure out which areas are important to infer control

output. A dynamic and adaptive weight, dependent on the

vehicle speed, is assigned to each model to establish ANEC

final output. The higher the speed, the greater the significance

of future states, and hence the greater the weight assigned

to PM.

II. RELATED WORK

As noted in the preceding section, most vision-based

neural network driving models from various research [4]–

[11] were developed without taking the algorithmic percep-

tion latency δ into account. Instead, latency in autonomous

driving has been discussed from different view angles. The

majority of the work concentrate on deployment-related com-

putational latency (i.e., hardware) [13]–[16] and network-

related latency (i.e., communication) [17]–[22], occasionally

both [23], [24]. In our study, we address the algorithmic

latency that was covered by just a few research [3], [25]–

[27].

Li et al. [3] emphasized how the problem of algorithmic

latency should not be overlooked in online vision-based

perception. Taking this latency into consideration, they pre-

sented a method for measuring the real-time performance

of perception systems that quantifies the trade-off between

accuracy and latency. Their approach might be a strong

solution for well-defined problems but is not ideal for safety-

critical systems such as automotive platforms. Mao et al.

[25] investigated the algorithmic latency for video object

detection, comparing the detection latency of several video

object detectors. They proposed a metric to measure the

latency, not a solution to deal with the latency. Kocic et al.
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[26] attempted to reduce the algorithmic latency in driving by

modifying the DNN architecture. This approach may reduce

the latency but it is challenging to maintain the original ac-

curacy. Wu et al. [27] highlighted that control-based driving

models (image → control signal) have algorithmic latency

and may fail since they focused on the current time step.

To address this issue, they created Trajectory-guided Control

Prediction (TCP), a multi-task learning system that combines

a control prediction model with a trajectory planning model.

Their approach requires extracting the exact trajectory which

can be challenging.

In our approach, we accept that the latency is inevitable

and try to reduce its effect by adaptively combining predicted

future actions with the current action.

III. METHOD

In this section, we cover the ANEC framework, the

architecture of neural networks, the training process, and

finally the performance metrics used to evaluate ANEC.

A. Proposed System

The proposed ANEC for vision-based autonomous driving

improves driving quality by implicitly scanning the road

ahead. A detailed overview of ANEC is shown in Fig. 5.

Since BM is like any vision-based neural network model, its

policy πBM
φ will provide the action ÃBM

t as the corresponding

action for the observation Ot given the vehicle’s state St , as

ÃBM
t = πBM

φ (Ot |St). (1)

On the other hand, because PM is expected to extract

future actions from the observation, it does not only have

access to the current state St but can also estimate the

future state Ŝt+δ of the vehicle. Hence, the PM’s policy πPM
φ

minimizes the latency effect by providing the future action

ÃPM
t+δ as the corresponding action to the current observation

Ot , given the current state of the vehicle St and the predicted

state Ŝt+δ , as

ÃPM
t+δ = πPM

φ (Ot |St , Ŝt+δ ). (2)

Finally, each action from each model will be given a

weight based on the vehicle’s current speed as shown in (4)

and (5), and the final action provided by ANEC is calculated

as

ÃANEC
t = wBM ÃBM

t +wPM ÃPM
t+δ . (3)

The speed of the vehicle has a significant impact on how

latency affects driving quality. PM is supposed to scan the

road ahead, so the higher the speed, the more we need it

to take control. The two models are combined in such a

manner that BM can act as the primary controller at low

speeds and PM can act as the primary controller at high

speeds. We employed an adaptive weight function that can

dynamically vary based on the current speed to be able to

create ANEC. The hyperbolic tangent function (tanh) was

selected to adaptively represent the weights given to each

St

Ot

St+δŜt+δ

ωBM

ωPM

V

Ot+δ

Adaptive Neural Ensemble Controller (ANEC)

Fig. 5. A thorough description of the proposed Adaptive Neural Ensemble
Controller (ANEC) for autonomous vehicles. According to BM’s policy

πBM
φ , given the vehicle’s state St , the action ÃBM

t will be the appropriate

response for the observation Ot . In contrast, PM is designed to extract future
actions from the observation, which not only grants it access to the current
state St but also enables it to estimate the future state Ŝt+δ of the vehicle. To

minimize latency effects, PM’s policy πPM
φ offers the future action ÃPM

t+δ as

the corresponding action for the current observation Ot , taking into account
both the current state of the vehicle St and the predicted state Ŝt+δ . Finally,
ANEC incorporates each model’s action, dynamically weighted based on

the vehicle’s current speed v, to calculate the final output ÃANEC
t .

model. Based on the current speed, the PM’s weight wPM is

defined in (4) and the BM’s weight can be calculated using

(5).

wPM = (α −βVmax + γvcur)tanh(κ(vcur −Vp))+0.5, (4)

wBM +wPM = 1, (5)

where Vmax is the maximum speed set by the user, vcur is

the current speed of the vehicle, and Vp is the pivot speed,

which is the maximum speed achieved in the training data.

B. Neural Network Architecture

The two driving models, BM and PM, that we employ in

our proposed system ANEC have the same model architec-

ture shown in Fig. 6. This model architecture was adopted

from our previous work [10], influenced by PilotNet [6] but

no max-pooling layers were employed. Five convolutional

layers and five dense layers are present. The first three

convoluted layers are composed of 5 × 5 filters with 2 × 2

strides. The final two convoluted layers feature 3 × 3 filters

with 1 × 1 stride. The dense layers have 1000, 100, 50, and 10

neurons, respectively. The network has a total of 11,054,019

trainable parameters.

C. Models Training

A training dataset for a vision-based neural network driv-

ing model can be defined as D = {Ot ,At}
N
t=1, where Ot is an

observation (i.e., visual input) at time t, At is the correlative

action (i.e., steering angle), and the total time-steps is N.

As shown in Fig. 7, BM is trained like any vision-

based neural network model, with a training dataset DBM =
{Ot ,At}

N
t=1. Each observation collected at a certain time step

(e.g., Ot collected at time t) with its corresponding driving

data of the same time step (At ) are fed to the DNN to

learn the BM policy (πBM
φ ) by minimizing the prediction

error of At when observation Ot is given (DBM → πBM
φ ).
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160x160x3

78x78x24

37x37x36

17x17x48

15x15x64

13x13x64

Conv_3
5x5 filter
2x2 stride

Conv_1
5x5 filter
2x2 stride

Conv_2
5x5 filter
2x2 stride

Conv_4
3x3 filter
1x1 stride

Conv_4
3x3 filter
1x1 stride

Flatten

10,816

Dense (D)
1,000

D
100
D
50
D
10

1

Output

D

Fig. 6. The network architecture of BIMI-net. This model design is based
on our earlier work [10] and was inspired by PilotNet [6]. However, no
max-pooling layers were used. There are five Convolutional layers and five
Fully-connected (Dense) layers. The model starts with three Convolutional
layers with 5 × 5 filters with 2 × 2 strides. The fourth and fifth Convolutional
layers feature 3 × 3 filters with 1 × 1 stride. The final Convolution layer is
then flattened into a vector with a length of 10,816. This flat vector is fed
to a series of Dense layers with the following number of neurons: 1000,
100, 50, and 10. The last Dense layer will give us the final single output
which represents the steering angle.

Ot

Base DNN

Ãt 

Predictive DNN

Ãt+ 𝛿

Labeled 
Data

-

-

At 

At+ 𝛿 

Fig. 7. Model Training. The BM’s policy πBM
φ is learned by the base

DNN by providing it an observation collected at a specific time step with
its corresponding action data of the same time step {Ot ,At}

T
t=1 as input. On

the other hand, for the PM to uncover latent variables for future actions, the
PM’s policy πPM

φ is learned by Predictive DNN by feeding it an observation

collected at a certain time step with future driving data at a future time step

{Ot ,At+δ }
T−δ
t=1 , where δ is the algorithmic perception latency. (Part of this

figure has been designed using resources from Flaticon.com)

The training dataset for PM is DPM = {Ot ,At+δ}
N−δ
t=1 as it is

expected to extract latent variables for future actions from a

given observation. The DNN will be fed Ot (i.e., the image

collected at time t) with At+δ (i.e., future driving data at

the time step t + δ ), where δ is the algorithmic perception

latency, to learn the PM policy (πPM
φ ).

D. Performance Metrics in Driving

The performance metrics used to assess the three models’

driving abilities were taken from [28] and [29].

a) Trajectory Similarity: Using several methods from

[28] at a top speed of 90 km/h, we examine the trajectories

of all three models on a series of consequence turns, to

show driving quality. These methods include partial curve

mapping, Frechet distance, area between two curves, curve

length, and dynamic time warping. The driving trajectory of

BM at a reference speed will be compared to three driving

trajectories of BM, PM, and ANEC at a maximum speed of

90 km/h.

b) Track Completion: We evaluate how well each of

the three models performed throughout the whole track at

various speeds. We utilize the autonomy metric shown in (6)

that was inspired by [29] and count the number of times the

car leaves the lane and the track.

Autonomy = (1−
Win f Pw +Yin f Py

T
)×100%, (6)

where Win f is the number of white lane infringements, Pw is

the penalty for Win f in seconds, Yin f is the number of yellow

lane infringements, Py is the penalty for Yin f in seconds, and

T is the total travel time in seconds.

IV. EXPERIMENTAL SETUP

A. Simulator

We conducted the experiments on OSCAR simulator [30]

that is user-friendly and customizable. The OSCAR is based

on ROS (Robotic Operating System) [31] integrated with

Gazebo multi-robot 3D simulator [32]. ROS Melodic and

Gazebo 9 were used. We updated the OSCAR platform to

enable the simultaneous operation of several neural network

controllers because it was originally designed to support just

one neural network controller.

B. Data Collection

We designed a new three-lane track that has several sharp

turns in left and right directions and straight road segments,

as shown in Fig. 8. Training datasets were collected by a

human driver who drove the track at a maximum speed of

65 km/h.

To train our models, we need high-quality data in pairs

(road images, steering angles). We collected data using

OSCAR, which records an image and all related control

information, including steering angle, throttle position, brak-

ing pressure, time, velocity, and position. We utilized the

Logitech G920 dual-motor feedback driving force racing

wheel with pedals and a gear shifter to collect high-quality

training data. The total number of training data samples for

each model was 7,167.

C. Parameter Tuning

When training the models, δ , shown in Fig. 7, was set

to 25. both models were trained using the Adam optimizer

[33] with a batch size of 16 and a learning rate of 0.001. To

fuse both models, each model will be assigned with a weight

based on (4) and (5). The parameters of the equations are set

to α = 0.5, β = 0.01, γ = 0.01, and κ = 20. Pivot speed Vp

was set to 65 km/h. For the performance metric Autonomy,

we used 3 for Pw and 5 for Py and 360 for T .
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Fig. 8. Driving track. The dimensions of the track are shown, as well as
the starting point and the direction of driving.

TABLE I

BM DRIVING PERFORMANCE AT MAXIMUM SPEED OF 65 KM/H AND

MAXIMUM SPEED OF 90 KM/H.

Max Off Off Win f Yin f Autonomy

Speed Lane Track

65 (ref) 1 0 8 0 93.33 %

90 11 8 13 9 76.67 %

D. Machine Learning Framework and Computing Platforms

The OSCAR’s neural network modules are designed using

Tensorflow and Keras. We used keras 2.2.5 with tensorflow-

gpu 1.12.0 on CUDA 9 and cuDNN 7.1.2. All experiments

were run on a computer with Intel i7-10700K CPU, 32GB

RAM, and an NVIDIA GeForce RTX 2080 8GB GPU. The

operating system was Ubuntu 18.04.6.

V. RESULTS

The conducted experiments were designed with the fol-

lowing purposes: 1) To illustrate how the latency effect on

driving quality increases when we increase the maximum

driving speed. 2) To compare the trajectories of all three

models (BM, PM, and ANEC) on a series of consequence

turns while driving at a maximum speed of 90 km/h against

the trajectory of the reference model while driving at an ideal

maximum speed. 3) To compare the driving performance of

all three models at different maximum speeds (90, 94, and

97 km/h) to validate that the proposed method can address

the algorithmic perception latency issue.

First, to illustrate the latency effect, we had the BM neural

network drive a vehicle at a maximum speed of 65 km/h and

90 km/h. The driving performance of BM at a maximum

speed of 65 km/h compared to its driving performance at

90 km/h, is shown in Fig. 9 and Table I. The increase in

speed amplified the latency effect where the autonomy score

significantly decreased from 93.33% to 76.67%.

The reference model will determine how well our pro-

posed driving model is performing. We chose the reference

model to be BM driving at a maximum speed of 65 km/h,

as this was the maximum speed in the training dataset.

S
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Fig. 9. BM driving performance at a maximum speed of 65 km/h (a) and
a maximum speed of 90 km/h (b). A white circle represents a white lane
infringement, and a yellow circle represents a yellow lane infringement. The
thick border indicates the final value. In (a), the final number of white lane
infringements is 8. In (b), the final number of white lane infringements is
13 and the final number of yellow lane infringements is 9.

TABLE II

PERFORMANCE COMPARISON OF ALL THREE MODELS TRAJECTORIES

WITH THE REFERENCE BM TRAJECTORY ON A SERIES OF CONSEQUENT

TURNS.

Partial Frechet Area Curve Dynamic

Curve distance between length Time

Mapping two curves Warping

BM 65 (ref) 0.000 0.000 0.000 0.000 0.000

BM 90 9.295 10.526 1692.05 3.153 4143.48

PM 90 7.008 5.234 1472.98 1.134 2950.07

ANEC 90 3.124 3.743 818.114 0.945 1313.59

The trajectories of all driving models at a maximum speed

of 90 km/h with the reference model trajectory are illustrated

in Fig. 10. It can be said that the trajectory of ANEC is the

closest to the reference BM, qualitatively. Table II confirms

the visual results and shows how each model performs in

contrast to the reference BM model, quantitatively. For all

measures shown in the table, the higher the number, the

less similar the two trajectories are to one another. The data

unambiguously demonstrates that ANEC performed better

and was able to tolerate high speed to some extent compared

to BM and PM.

TABLE III

PERFORMANCE COMPARISON OF ALL THREE MODELS WITH THE

REFERENCE BM USING AUTONOMY METRIC.

Max Model Off Off Win f Yin f Autonomy Fig. 11

Speed Lane Track (6) sub-figure

65 (ref) BM 1 0 8 0 93.33 % −

90 BM 11 8 13 9 76.67 % (a)

90 PM 7 2 12 2 87.22 % (b)

90 ANEC 6 2 8 2 90.56 % (c)

94 BM 10 8 13 8 78.06 % (d)

94 PM 9 2 11 3 86.67 % (e)

94 ANEC 6 2 10 2 88.89 % (f)

97 BM 11 8 14 8 77.22 % (g)

97 PM 8 3 11 5 83.88 % (h)

97 ANEC 5 4 9 5 85.56 % (i)

Fig. 11 and Table III compare the performance of all
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(a) (b) (c)

Fig. 10. Visualization of all three models’ trajectories with respect to the reference BM trajectory on a series of consequent turns at a maximum speed
of 90 km/h. (a) The trajectory of BM, where red circles indicate that the vehicle went off track and required human intervention. (b) The trajectory of
PM. (c) The trajectory of ANEC. It can be said that the trajectory of ANEC is the closest to the reference BM, qualitatively.
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Fig. 11. Performance comparison of all three models with the reference BM using Autonomy metric. A white circle represents a white lane infringement,
and a yellow circle represents a yellow lane infringement. The bigger the number of infringements, the higher the penalty, thus a lower Autonomy score.
ANEC model shows higher Autonomy at 90 km/h, 94 km/h, and 97 km/h compared to BM and PM. (a-c) performance of BM, PM, and ANEC, respectively,
at a maximum speed of 90 km/h. (d-f) performance of BM, PM, and ANEC, respectively, at a maximum speed of 94 km/h. (g-i) performance of BM, PM,
and ANEC, respectively, at a maximum speed of 97 km/h.

three models using the Autonomy metric in (6). The test

was carried out at three distinct top speeds: 90, 94, and

97 km/h. The table demonstrates the ANEC’s superiority,

as it obtained the greatest Autonomy score at the three

different speeds and did not drive off lane as frequently as the

other models. When compared to ANEC, the PM performed

marginally worse. The BM, on the other hand, performed

badly at high speeds.

VI. CONCLUSION AND FUTURE WORK

In this study, we introduced a novel adaptive neural

lateral controller, ANEC, for autonomous driving to solve
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a problem that most studies overlook: algorithmic latency.

Our proposed ANEC is inspired by human drivers’ near/far

gaze distribution during lane-keeping, and it ensembles two

driving models: BM and PM, as illustrated in Fig. 5. Note

that near/far areas are not explicitly selected. BM and PM

will figure out which areas are important to infer control

output. While BM is expected to cover the near point of

observation, PM is expected to scan the road ahead to extract

latent variables for future actions. PM is adaptively combined

with BM using the current speed of the vehicle using ANEC.

As a result, ANEC can overcome the algorithmic latency

issue so that neural controllers can maintain the quality of

driving.

Future work will involve expanding our dataset and in-

corporating additional test tracks to further explore and val-

idate ANEC’s capabilities in various new environments and

scenarios. In addition, different driving model architectures

will be used to demonstrate that the concept of ANEC

remains independent of the network architecture. Finally, we

aim to optimize the weight adaptation function and explore

various alternative approaches to enhance ANEC’s overall

performance.
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