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Abstract— Humans have latency in their visual perception
system between observation and action. Any action we take is
based on an earlier observation since, by the time we act, the
state has already changed, and we got a new observation. In
autonomous driving, this latency is also present, determined
by the amount of time the control algorithm needs to process
information before acting. This algorithmic perception latency
can be reduced by massive computing power via GPUs and
FPGAs, which is improbable in automobile platforms. Thus, it is
a reasonable assumption that the algorithmic perception latency
is inevitable. Many researchers have developed different neural
network driving models without consideration of the algorith-
mic perception latency. This paper studies the latency effect on
vision-based neural network autonomous driving in the lane-
keeping task and proposes a vision-based novel neural network
controller, the Adaptive Neural Ensemble Controller (ANEC)
that is inspired by the near/far gaze distribution of human
drivers during lane-keeping. ANEC was tested in Gazebo 3D
simulation environment with Robot Operating System (ROS)
which showed the effectiveness of ANEC in dealing with
algorithmic latency. The source code is available at https:
//github.com/jrkwon/oscar/tree/devel_anec.

Autonomous Vehicle Navigation; Machine Learning for

Robot Control; Imitation Learning

I. INTRODUCTION

We are always living in the past. According to studies
[1], [2], our conscious perception system is always behind
the time we are. As a result, the brain must catch up to
the present in order for us to live it. When we drive a car,
for example, we sense our environment, assess it, make a
decision, and then act on that decision. The action we take,
however, is based on an earlier observation since by the
time we act, the state has already changed and we have
a new observation, as illustrated in Fig. 1. If we get an
observation of the environment at time f#, our brain needs
time & to process the observation, so we take action at time
t; + 6. However at time t; + 0, the vehicle has moved, the
environment has changed, and we have a new observation.
There have been debates on how the brain produces present
conscious awareness using past sensory information. One
of the hypotheses is that visual perception is predictive, so
sensory information is extrapolated ahead of the perceived
event.

In autonomous driving, this latency is also present, deter-
mined by the amount of time the control algorithm needs to
process information before acting. This algorithmic percep-
tion latency 6, shown in Fig. 2, is inevitable [3]. To reduce
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Fig. 1. Latency in the visual perception system of a human driver between
observation and action. (A) The system observes its environment at time ¢,
(Or)). (B) A conscious perception process starts at time #; and ends at time
ty. (D) & is the perception latency, which is the time required to complete
the perception process, where 6 =t —#;. (C) During the time period 8,
the state of the vehicle has changed from C-1 to C-2 and we have a new
observation (O;, ;5 or Oy,). (E) Because of 4, for observation Oy, at 11, the
action A;, is only available at ¢ + &. (Part of this figure has been designed
using resources from Flaticon.com)
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Fig. 2. The definition of the perception latency & in autonomous driving.
For observation O, at time f1, the corresponding action A;, is applied when
observation O, s is input at time 7, +J. (Part of this figure has been
designed using resources from Flaticon.com)

the latency, we may use massive computing power via GPUs,
FPGAs, and multicore CPUs. In training a deep neural net-
work, such a high computing power system can be a choice.
Yet, in actual inference, computing resources are limited in
automobile platforms. Thus, it is a reasonable assumption
that there will be an unavoidable latency in the perception
and actuation cycle. Most vision-based lateral control studies
[4]-[11], assume no delay between observation O, and action
A; at time ¢.

In this paper, we study the latency effect on autonomous
driving in the lane-keeping task. Fig. 3 illustrates the latency.
When vehicle B receives a visual input Oy, the steering angle
is not S; but S,_gs because S; will be available after § from
t. This delayed steering angle S,_s makes the vehicle at B
be at C which is off track. The steering angle 7S;_s that
is predictive inferred steering angle at time ¢ — J should be
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Fig. 3. Algorithmic perception latency in automobile platform. The vehicle

at B has visual input O;. S,_g is an inferred steering angle at time 1 — &
available at ¢. If S,_g is applied to the vehicle at time ¢, the vehicle location
at time 7+ & will be C that is about to be out off the track. The steering
angle ”S,_g that is predictive inferred steering angle at time # — & should
be applied to B to locate the vehicle at D.

applied to B to locate the vehicle at D, because as Fig. 3
shows, during the latency time & the vehicle has traveled
distance d; which is defined as d; = v, &, where v, is the
vehicle speed at time ¢ and § is the algorithmic perception
latency. The change in the scene, which is the difference
between two observations, is determined by the distance d;
traveled between the two observations. A larger effect of
the latency & can be expected in higher velocity and curved
sections of the road. The changes in two scenes observed
at time ¢ and f+ 0 can be more significant when d, is a
higher value. For instance, a model could be able to drive at
a speed up to 35 km/h, if it is trained at a maximum speed
of 30 km/h, but it would likely not function effectively at
higher speeds, such as 40 km/h. When vision-based neural
network models, such as PilotNet [7] and CNN-LSTM, were
employed for racing [11], neither model was able to finish
the course. We believe the reason was that the high speed
amplified the effect of the latency.

Perception latency does not prevent human drivers from
successful in-time decision-making. According to [12], when
they looked at the gaze distributions of human drivers during
lane keeping, they discovered that most of the time (assuming
there is no lead vehicle), humans hold their gaze at a distance
in front of their own vehicle, which aids in anticipating future
actions. Inspired by this gaze distribution, we hypothesize
that visual input at time ¢ has latent variables not only for
the current state at time ¢ but also for future states at time
t+ 6 and the weight of importance of the future states varies
with the current driving speed and curvature of the road.

We propose the Adaptive Neural Ensemble Controller
(ANEC) to show that the algorithmic perception latency issue
can be addressed by adaptively infusing the prediction action
output into the baseline output. A high-level overview of
the proposed system is shown in Fig. 4. ANEC depends on

—
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Fig. 4. General overview of the proposed Adaptive Neural Ensemble
Controller (ANEC) for self-driving vehicles. The output of two driving
models, the Base Model (BM) and the Predictive Model (PM), must be
combined for ANEC to function. Like any vision-based neural network
model, BM is anticipated to concentrate on the near-point area. On the other
hand, PM is anticipated to examine the region beyond the near-point area
in order to uncover latent characteristics that would guide future decisions.
For the purpose of determining ANEC’s ultimate output, each model will
be given a dynamic weight based on the current speed of the vehicle. (Part
of this figure has been designed using resources from Flaticon.com)

combining the output of two driving models, the Base Model
(BM) and the Predictive Model (PM). BM is expected to
focus on the near-point area like any vision-based neural
network model. PM, on the other hand, is expected to cover
the far-point area to extract latent variables for future actions.
Note that near/far areas are not explicitly selected. BM and
PM will figure out which areas are important to infer control
output. A dynamic and adaptive weight, dependent on the
vehicle speed, is assigned to each model to establish ANEC
final output. The higher the speed, the greater the significance
of future states, and hence the greater the weight assigned
to PM.

II. RELATED WORK

As noted in the preceding section, most vision-based
neural network driving models from various research [4]—
[11] were developed without taking the algorithmic percep-
tion latency 6 into account. Instead, latency in autonomous
driving has been discussed from different view angles. The
majority of the work concentrate on deployment-related com-
putational latency (i.e., hardware) [13]-[16] and network-
related latency (i.e., communication) [17]-[22], occasionally
both [23], [24]. In our study, we address the algorithmic
latency that was covered by just a few research [3], [25]-
[27].

Li et al. [3] emphasized how the problem of algorithmic
latency should not be overlooked in online vision-based
perception. Taking this latency into consideration, they pre-
sented a method for measuring the real-time performance
of perception systems that quantifies the trade-off between
accuracy and latency. Their approach might be a strong
solution for well-defined problems but is not ideal for safety-
critical systems such as automotive platforms. Mao et al.
[25] investigated the algorithmic latency for video object
detection, comparing the detection latency of several video
object detectors. They proposed a metric to measure the
latency, not a solution to deal with the latency. Kocic et al.
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[26] attempted to reduce the algorithmic latency in driving by
modifying the DNN architecture. This approach may reduce
the latency but it is challenging to maintain the original ac-
curacy. Wu et al. [27] highlighted that control-based driving
models (image — control signal) have algorithmic latency
and may fail since they focused on the current time step.
To address this issue, they created Trajectory-guided Control
Prediction (TCP), a multi-task learning system that combines
a control prediction model with a trajectory planning model.
Their approach requires extracting the exact trajectory which
can be challenging.

In our approach, we accept that the latency is inevitable
and try to reduce its effect by adaptively combining predicted
future actions with the current action.

III. METHOD

In this section, we cover the ANEC framework, the
architecture of neural networks, the training process, and
finally the performance metrics used to evaluate ANEC.

A. Proposed System

The proposed ANEC for vision-based autonomous driving
improves driving quality by implicitly scanning the road
ahead. A detailed overview of ANEC is shown in Fig. 5.
Since BM is like any vision-based Ileural network model, its
policy g™ will provide the action AP™ as the corresponding
action for the observation O; given the vehicle’s state S;, as

ABM = B (0,5,). (1)

On the other hand, because PM is expected to extract
future actions from the observation, it does not only have
access to the current state S; but can also estimate the
future state S, 5 of the vehicle. Hence, the PM’s policy 7,
minimizes the latency effect by providing the future action
Af i’g as the corresponding action to the current observation
O, given the current state of the vehicle S, and the predicted
state S, 5, as

APY = 2PM(0,18,,5,15). 2)

Finally, each action from each model will be given a
weight based on the vehicle’s current speed as shown in (4)
and (5), and the final action provided by ANEC is calculated
as

AV?NEC = WBMm AvfM +wpym Avl[:% 3)

The speed of the vehicle has a significant impact on how
latency affects driving quality. PM is supposed to scan the
road ahead, so the higher the speed, the more we need it
to take control. The two models are combined in such a
manner that BM can act as the primary controller at low
speeds and PM can act as the primary controller at high
speeds. We employed an adaptive weight function that can
dynamically vary based on the current speed to be able to
create ANEC. The hyperbolic tangent function (tanh) was
selected to adaptively represent the weights given to each

~
Adaptive Neural Ensemble Controller (ANEC)

Fig. 5. A thorough description of the proposed Adaptive Neural Ensemble
Controller (ANEC) for autonomous vehicles. According to BM’s policy
IrgM , given the vehicle’s state S;, the action AFM will be the appropriate
response for the observation O;. In contrast, PM is designed to extract future
actions from the observation, which not only grants it access to the current
state S; but also enables it to estimate the future state §,+5 of the vehicle. To
minimize latency effects, PM’s policy 75™ offers the future action Af i"g as
the corresponding action for the current observation Oy, taking into account
both the current state of the vehicle S; and the predicted state §,+5. Finally,
ANEC incorporates each model’s action, dynamically weighted based on
the vehicle’s current speed v, to calculate the final output AANEC,

model. Based on the current speed, the PM’s weight wpy, is
defined in (4) and the BM’s weight can be calculated using

5).
wpp = (06—ﬁVmax-f—Ychr)fanh(K(chr—Vp)) +0.5, 4

wem +wpy =1, &)

where V,,, is the maximum speed set by the user, vg,, is
the current speed of the vehicle, and V), is the pivot speed,
which is the maximum speed achieved in the training data.

B. Neural Network Architecture

The two driving models, BM and PM, that we employ in
our proposed system ANEC have the same model architec-
ture shown in Fig. 6. This model architecture was adopted
from our previous work [10], influenced by PilotNet [6] but
no max-pooling layers were employed. Five convolutional
layers and five dense layers are present. The first three
convoluted layers are composed of 5 x 5 filters with 2 x 2
strides. The final two convoluted layers feature 3 x 3 filters
with 1 x 1 stride. The dense layers have 1000, 100, 50, and 10
neurons, respectively. The network has a total of 11,054,019
trainable parameters.

C. Models Training

A training dataset for a vision-based neural network driv-
ing model can be defined as D = {Ot,A,}ﬁV: |» Where O is an
observation (i.e., visual input) at time ¢, A; is the correlative
action (i.e., steering angle), and the total time-steps is N.

As shown in Fig. 7, BM is trained like any vision-
based neural network model, with a training dataset DM —
{ 0,,At}f/= 1- Each observation collected at a certain time step
(e.g., O collected at time ¢) with its corresponding driving
data of the same time step (A;) are fed to the DNN to
learn the BM policy (ngM ) by minimizing the prediction

error of A, when observation O, is given (DM — ﬂgM ).
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Fig. 6. The network architecture of BIMI-net. This model design is based
on our earlier work [10] and was inspired by PilotNet [6]. However, no
max-pooling layers were used. There are five Convolutional layers and five
Fully-connected (Dense) layers. The model starts with three Convolutional
layers with 5 x 5 filters with 2 x 2 strides. The fourth and fifth Convolutional
layers feature 3 x 3 filters with 1 x 1 stride. The final Convolution layer is
then flattened into a vector with a length of 10,816. This flat vector is fed
to a series of Dense layers with the following number of neurons: 1000,
100, 50, and 10. The last Dense layer will give us the final single output
which represents the steering angle.
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Fig. 7. Model Training. The BM’s policy ngM is learned by the base
DNN by providing it an observation collected at a specific time step with
its corresponding action data of the same time step {0,,A,},T:1 as input. On
the other hand, for the PM to uncover latent variables for future actions, the
PM’s policy ngM is learned by Predictive DNN by feeding it an observation
collected at a certain time step with future driving data at a future time step
{0:,A, +5}rT:’15, where 6 is the algorithmic perception latency. (Part of this
figure has been designed using resources from Flaticon.com)

The training dataset for PM is DM = {0, A, , 5}¥° as it is
expected to extract latent variables for future actions from a
given observation. The DNN will be fed O, (i.e., the image
collected at time f) with A, s (i.e., future driving data at
the time step ¢+ 0), where 0 is the algorithmic perception

latency, to learn the PM policy (ngM ).

D. Performance Metrics in Driving

The performance metrics used to assess the three models’
driving abilities were taken from [28] and [29].

a) Trajectory Similarity: Using several methods from
[28] at a top speed of 90 km/h, we examine the trajectories
of all three models on a series of consequence turns, to
show driving quality. These methods include partial curve
mapping, Frechet distance, area between two curves, curve
length, and dynamic time warping. The driving trajectory of
BM at a reference speed will be compared to three driving
trajectories of BM, PM, and ANEC at a maximum speed of
90 km/h.

b) Track Completion: We evaluate how well each of
the three models performed throughout the whole track at
various speeds. We utilize the autonomy metric shown in (6)
that was inspired by [29] and count the number of times the
car leaves the lane and the track.

Vvin fP wt Yin ny
T

where W;,r is the number of white lane infringements, P, is

the penalty for W;,¢ in seconds, Y;,r is the number of yellow

lane infringements, P, is the penalty for Y,r in seconds, and

T is the total travel time in seconds.

Autonomy = (1 — ) x 100%, (6)

IV. EXPERIMENTAL SETUP
A. Simulator

We conducted the experiments on OSCAR simulator [30]
that is user-friendly and customizable. The OSCAR is based
on ROS (Robotic Operating System) [31] integrated with
Gazebo multi-robot 3D simulator [32]. ROS Melodic and
Gazebo 9 were used. We updated the OSCAR platform to
enable the simultaneous operation of several neural network
controllers because it was originally designed to support just
one neural network controller.

B. Data Collection

We designed a new three-lane track that has several sharp
turns in left and right directions and straight road segments,
as shown in Fig. 8. Training datasets were collected by a
human driver who drove the track at a maximum speed of
65 km/h.

To train our models, we need high-quality data in pairs
(road images, steering angles). We collected data using
OSCAR, which records an image and all related control
information, including steering angle, throttle position, brak-
ing pressure, time, velocity, and position. We utilized the
Logitech G920 dual-motor feedback driving force racing
wheel with pedals and a gear shifter to collect high-quality
training data. The total number of training data samples for
each model was 7,167.

C. Parameter Tuning

When training the models, 8, shown in Fig. 7, was set
to 25. both models were trained using the Adam optimizer
[33] with a batch size of 16 and a learning rate of 0.001. To
fuse both models, each model will be assigned with a weight
based on (4) and (5). The parameters of the equations are set
to ¢ =0.5, B =0.01, y=0.01, and ¥ = 20. Pivot speed Vo
was set to 65 km/h. For the performance metric Autonomy,
we used 3 for P, and 5 for P, and 360 for 7.
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Fig. 8.  Driving track. The dimensions of the track are shown, as well as
the starting point and the direction of driving.

TABLE I
BM DRIVING PERFORMANCE AT MAXIMUM SPEED OF 65 KM/H AND
MAXIMUM SPEED OF 90 KM/H.

Max Off Off Wiy Yy  Autonomy
Speed Lane Track
65 (ref) 1 0 8 0 93.33 %
90 11 8 13 9 76.67 %

D. Machine Learning Framework and Computing Platforms

The OSCAR’s neural network modules are designed using
Tensorflow and Keras. We used keras 2.2.5 with tensorflow-
gpu 1.12.0 on CUDA 9 and cuDNN 7.1.2. All experiments
were run on a computer with Intel i7-10700K CPU, 32GB
RAM, and an NVIDIA GeForce RTX 2080 8GB GPU. The
operating system was Ubuntu 18.04.6.

V. RESULTS

The conducted experiments were designed with the fol-
lowing purposes: 1) To illustrate how the latency effect on
driving quality increases when we increase the maximum
driving speed. 2) To compare the trajectories of all three
models (BM, PM, and ANEC) on a series of consequence
turns while driving at a maximum speed of 90 km/h against
the trajectory of the reference model while driving at an ideal
maximum speed. 3) To compare the driving performance of
all three models at different maximum speeds (90, 94, and
97 km/h) to validate that the proposed method can address
the algorithmic perception latency issue.

First, to illustrate the latency effect, we had the BM neural
network drive a vehicle at a maximum speed of 65 km/h and
90 km/h. The driving performance of BM at a maximum
speed of 65 km/h compared to its driving performance at
90 km/h, is shown in Fig. 9 and Table I. The increase in
speed amplified the latency effect where the autonomy score
significantly decreased from 93.33% to 76.67%.

The reference model will determine how well our pro-
posed driving model is performing. We chose the reference
model to be BM driving at a maximum speed of 65 km/h,
as this was the maximum speed in the training dataset.

(@)

Fig. 9. BM driving performance at a maximum speed of 65 km/h (a) and
a maximum speed of 90 km/h (b). A white circle represents a white lane
infringement, and a yellow circle represents a yellow lane infringement. The
thick border indicates the final value. In (a), the final number of white lane
infringements is 8. In (b), the final number of white lane infringements is
13 and the final number of yellow lane infringements is 9.

TABLE I
PERFORMANCE COMPARISON OF ALL THREE MODELS TRAJECTORIES
WITH THE REFERENCE BM TRAJECTORY ON A SERIES OF CONSEQUENT

TURNS.

Partial Frechet Area Curve  Dynamic

Curve distance between length Time
Mapping two curves Warping
BM 65 (ref) 0.000 0.000 0.000  0.000 0.000
BM 90 9.295 10.526 1692.05  3.153 4143.48
PM 90 7.008 5.234 1472.98 1.134 2950.07
ANEC 90 3.124 3.743 818.114  0.945 1313.59

The trajectories of all driving models at a maximum speed
of 90 km/h with the reference model trajectory are illustrated
in Fig. 10. It can be said that the trajectory of ANEC is the
closest to the reference BM, qualitatively. Table II confirms
the visual results and shows how each model performs in
contrast to the reference BM model, quantitatively. For all
measures shown in the table, the higher the number, the
less similar the two trajectories are to one another. The data
unambiguously demonstrates that ANEC performed better
and was able to tolerate high speed to some extent compared
to BM and PM.

TABLE III
PERFORMANCE COMPARISON OF ALL THREE MODELS WITH THE
REFERENCE BM USING AUTONOMY METRIC.

Max Model Off Off Wiy Yy  Autonomy Fig. 11
Speed Lane Track (6) sub-figure
65 (ref) BM 1 0 8 0 93.33 % —

90 BM 11 8 13 9 76.67 % (a)
90 PM 7 2 12 87.22 % (b)
90 ANEC 6 2 8 90.56 % (c)
94 BM 10 8 13 8 78.06 % (d)
94 PM 9 2 11 86.67 % (e)
94 ANEC 6 2 10 88.89 % ()
97 BM 11 8 14 77.22 % (2)
97 PM 8 3 11 5 83.88 % (h)
97 ANEC 5 4 9 5 85.56 % (1)

Fig. 11 and Table III compare the performance of all
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Fig. 10.  Visualization of all three models’ trajectories with respect to the reference BM trajectory on a series of consequent turns at a maximum speed
of 90 km/h. (a) The trajectory of BM, where red circles indicate that the vehicle went off track and required human intervention. (b) The trajectory of
PM. (c) The trajectory of ANEC. It can be said that the trajectory of ANEC is the closest to the reference BM, qualitatively.
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Fig. 11.  Performance comparison of all three models with the reference BM using Autonomy metric. A white circle represents a white lane infringement,
and a yellow circle represents a yellow lane infringement. The bigger the number of infringements, the higher the penalty, thus a lower Autonomy score.
ANEC model shows higher Autonomy at 90 km/h, 94 km/h, and 97 km/h compared to BM and PM. (a-c) performance of BM, PM, and ANEC, respectively,
at a maximum speed of 90 km/h. (d-f) performance of BM, PM, and ANEC, respectively, at a maximum speed of 94 km/h. (g-i) performance of BM, PM,
and ANEC, respectively, at a maximum speed of 97 km/h.

three models using the Autonomy metric in (6). The test
was carried out at three distinct top speeds: 90, 94, and
97 km/h. The table demonstrates the ANEC’s superiority,
as it obtained the greatest Autonomy score at the three
different speeds and did not drive off lane as frequently as the
other models. When compared to ANEC, the PM performed

marginally worse. The BM, on the other hand, performed
badly at high speeds.

VI. CONCLUSION AND FUTURE WORK

In this study, we introduced a novel adaptive neural
lateral controller, ANEC, for autonomous driving to solve
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a problem that most studies overlook: algorithmic latency.
Our proposed ANEC is inspired by human drivers’ near/far
gaze distribution during lane-keeping, and it ensembles two
driving models: BM and PM, as illustrated in Fig. 5. Note
that near/far areas are not explicitly selected. BM and PM
will figure out which areas are important to infer control
output. While BM is expected to cover the near point of
observation, PM is expected to scan the road ahead to extract
latent variables for future actions. PM is adaptively combined
with BM using the current speed of the vehicle using ANEC.
As a result, ANEC can overcome the algorithmic latency
issue so that neural controllers can maintain the quality of
driving.

Future work will involve expanding our dataset and in-
corporating additional test tracks to further explore and val-
idate ANEC’s capabilities in various new environments and
scenarios. In addition, different driving model architectures
will be used to demonstrate that the concept of ANEC
remains independent of the network architecture. Finally, we
aim to optimize the weight adaptation function and explore
various alternative approaches to enhance ANEC’s overall
performance.
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