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ABSTRACT Tele-operated driving (ToD) systems are special types of cyber-physical systems (CPSs) where
the operator remotely controls the steering, acceleration, and braking actions of the vehicle. Malicious actors
may inject false data in communication channels to manipulate the tele-operator’s driving commands to cause
harm. Hence, protection of this communication is necessary for the safe operation of the target vehicle.
However, according to the National Institute of Standards and Technology (NIST) cybersecurity framework,
protection merely is not enough and the detection of an attack is necessary. Moreover, UN R155 mandates
that security incidents across vehicle fleets be detected and logged. Thus, cyber-physical threats of ToD are
modeled with an attack-centric approach in this paper. Then, an attack model with false data injection (FDI)
on steering control commands is created from real vehicle data. The risk of this attack model is assessed
for a last-mile delivery (LMD) application. Finally, a physics-informed context-aware anomaly detection
system (PCADS) is proposed to detect such false injection attacks, and preliminary experimental results are
presented to validate the model.

INDEX TERMS Tele-operated driving, anomaly detection, cyber-physical system, physics-informed,
context-aware.

I. INTRODUCTION

In recent years, autonomous driving has been one of the
key areas of attention among the automotive researchers.
Numerous innovations and cutting-edge technologies have
emerged to bring full autonomy in road vehicles. Vehicle
teleportation is one such technology that originated to provide
emergency assistance to autonomous vehicles (AVs) in
unusual or difficult driving scenarios [1], [2], [3]. However,
this technology is also being targeted for tele-operated taxis
and delivery services [4], [5], [6], [7]. The National Institute
of Standards and Technology (NIST) vehicle tele-operation
forum and 5G blueprint project are leading the research
in this area in the United States and Europe, respectively
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[8] and [9]. Some start-up companies (e.g., Zoox, Ottopia,
Faction, DriveU.auto) have started testing their prototypes
of tele-operated vehicles for the mobility services for some
specific use cases [10], [11], [12], [13], [14].

A. PROBLEM STATEMENT

In general, the driving function of a vehicle can be viewed
as a combination of longitudinal control (i.e., acceleration,
braking) and lateral control (i.e., steering) of a vehicle to
reach from start to destination in various traffic scenarios.
Tele-operated drivers can monitor, control, or provide
guidance to the driving function from a remote operating
station [1], [15]. Typically, the perception and localization
are information sent by the vehicle to the operating station
via cloud and fog infrastructure using wireless or cellular
networks. Similarly, control commands transmitted from the
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operating station are sent to the vehicle. This poses a potential
exposure of perception data and control commands outside
the vehicle boundary and can make the ToD vulnerable
against cyberattacks. Attackers can target the ToD system
with denial-of-service (DoS) attacks, FDI attacks, man-in-
the-middle (MITM) attacks, and other attacks similar to
the attacks detected in other CPSs [16], [17]. A malicious
control of ToD may result in the vehicle crash, disruption
in tele-operation service, legal consequences, and financial
loss. Hence, a robust cybersecurity strategy is critical to
prevent, detect, and mitigate such attacks for a safe ToD.
Although cybersecurity is a common practice in information
technology (IT) and many other internet of things (IoT)
devices, cybersecurity for road vehicles has gained attention
in recent years since a researcher in this field hacked a
vehicle in 2016 [18]. In 2020, UNECE World Forum for
Harmonization of Vehicle Regulations (UNECE WP.29)
has adopted UN Regulation No. 155 on Cyber Security
and Cyber Security Management Systems, which requires
managing cyber risks to vehicles in 54 countries from
2024 [19]. Typically, cryptography, chain of trust, firewall
and access control are some of the common techniques to
protect security assets in cyber domains [20], [21], [22],
[23], [24], [25], [26]. However, with evolving threats on
these methods, protection from all potential attacks cannot
be guaranteed [27], [28], [29]. Moreover, insider attacks
increase the vulnerability of a system by inadequate security
measures in the system design and improper implementation
of cryptography algorithms which are exploited by zero-day
attacks. To address this challenge, security by design needs to
be followed that is the defense-in-depth (DiD) principle [30],
[31], where security strategies are applied at multiple
layers. One of the critical features of DiD is the detection
mechanism [32]. Further, UN R155 requires monitoring
and reporting of security incidents for vehicle fleets for
automotive applications [19]. Conventional cybersecurity
detection methods are primarily in the cyber domain and
have limitations in addressing the security requirements of
CPSs [33], [34], [35]. To address this, recent research in other
CPSs has demonstrated an extension of DiD and detection
methods to physical domains [36], [37], [38], [39], [40].
Currently, ToD is an emerging technology within restricted
operational design domain (ODD) and prototype phase.
When this technology gets deployed at large on public roads,
a cyber-physical DiD strategy will be necessary to reduce
risks from cyberattacks. However, to our knowledge, there is
no study to show threat analysis for cyberattacks on driver’s
control commands transmitted from tele-operator stations to
the target vehicles. Moreover, methods to detect such attacks
in tele-operated vehicle’s physical domain have not been
explored.

B. RELATED WORK

An intrusion detection system (IDS) is one of the techniques
recommended by various standards (e.g., ISO 27039, NIST,
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Open Web Application Security Project (OWASP)) to
monitor activities in the system or network for malicious
behavior. Several automotive communities and researchers
are considering an automotive specific IDS as a fundamental
solution for vehicle cyber incidents detection and reporting,
which has the potential to be extended to intrusion detection
and prevention systems (IDPSs) [41], [42], [43]. Automotive
Open System Architecture (AUTOSAR) organization has
released a specification for vehicle intrusion detection
systems in 2020 that provides a standardized interface to
report on-board security events for a vehicle electronic
control unit (ECU) and network environment [44]. Basically,
IDS methods in cyber domains are of three types, includ-
ing signature-based, behavior-based, and anomaly-based
approaches [45], [46], [47]. Other IDS methods are inspired
or combined by these basic methods. In the automotive
industry, IDSs are typically software components deployed
in the network, host, or as a distributed system. These types
of IDS are mainly focused on messages in vehicle network
protocols (e.g., CAN, automotive Ethernet) [48], [49], [50]
and lack utilizing the application specific knowledge. Other
than IDSs, an anomaly detection (AD) process is also
used in other applications (e.g., sensor AD [51], [52],
vehicle traffic AD [53], [54], in-vehicle monitoring for
AVs [55]). In science, an anomaly is described when there is a
difference between actual observation and expected outcome
developed based on the original scientific idea [56]. In the
statistics and data mining field, outliers in the dataset are
considered as anomalies. For physical systems, detecting
anomalies in AV sensors, aerial systems, and intelligent
traffic systems are examples of some important applications.
An AD process for IDSs was introduced in the 1980s to
detect security violations by recognizing abnormal patterns
in system logs [57]. Recent research on cyber-physical attack
detection is presented in Table 1. According to this table,
the current AD techniques for automotive IDSs primarily
focus on finding anomalies based on a data-driven analysis
of the network and less consideration of physical behavior.
Table 1 shows research on other CPSs found for detecting
cyber-physical attacks, hybrid approaches by combining
data-driven models and physics-based models. The recent
growth in ML research and its applications is largely driven
by two key factors. Firstly, the digital creation and storage
of extensive datasets plays a crucial role. Secondly, the
accessibility of cost-effective high-performance computing
devices that can process these extensive datasets acts as
a vital accelerator. These datasets are often developed for
particular applications, including prediction, recognition,
recommendation systems, and language processing [63].
Solaas et al. [64] performed a comprehensive literature
review encompassing 203 papers concerning anomaly detec-
tion in Connected and Autonomous Vehicles. Their study
highlighted LSTM, CNN, and autoencoders as the primary
Al techniques and delved into the training methodologies
and evaluation metrics utilized. Their evaluation revealed
significant limitations: notably, only 9 out of 203 studies
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TABLE 1. A literature survey on AD process in CPSs.

Author Method Application Contributions
- Classified the hybrid models into physics-based pre-processing, physics-
based network architectures, physics-based regularization, and miscella-
Rahul et Physics guided machine General CPSs neous categories based on the way the model-based is brought into the
al. (58] learning (ML) techniques hybrid architecture.
- Proposed five metrics for all-round performance evaluation of a hybrid
CPS model.
Hvbrid phvsics - Presented a hybrid framework with physics-based and data-driven ensem-
Cody et mo del—{)ase dp d;,ta— driven Smart grid real-time ble CorrDet (ECD) algorithm.
al. [59] monitoring - Tested the results on IEEE 118-bus system which shows 6.75% improvement
framework X .
from the physic-based solution.
Faris ef Statistical learning and Adaptive cruise - Proposed generalized e{xtreme stu.dentlzed deVlat(? VV]Fh sliding chunks
y ) X (GESD-SC) approach, which is applied at each vehicle in the platoon to
al. [60] kinematic model control for AVs s . S . .
detect anomalies in real-time based on the vehicle’s own speeding decisions.
Spatio-temporal correlation Autonomous Aerial - Suggested an An spatio-temporal convolutional (STC)-LSTM algorithm
Jie et al. [61] based a long short-term . which can accurately locate the anomalies of AAV flight data and provide
B} Vehicles (AAVs) . L. .
memory (LSTM) method high-precision recovery prediction values.
Bin et al. [62] Physics-informed neural Power svstems - Several paradigms of PINNSs (e.g., PI loss function, PI initialization, PI design
) networks (PINNs) Y of architecture, and hybrid physics-DL models) are summarized.

offered open-source availability; there was a deficiency in
real-world deployment data; and there was an absence of
standardized benchmarking datasets. Moreover, the research
did not delve into the vulnerabilities associated with on-
demand tele-operation or the use of mission-specific driving
contexts for context-aware detection. Additionally, it did
not investigate approaches informed by physics for the
validation of vehicle behavior signatures. Mansourian et al.
[65] developed a framework for forecasting temporal events
that utilizes LSTM and ConvLSTM models to detect
anomalies in Controller Area Networks (CAN) through
the analysis of patterns across both space and time. This
approach showcased remarkable accuracy when tested on
established datasets. However, the supervised approach limits
flexibility against new attacks, overlooks vulnerabilities
related to remote operations, and fails to incorporate vali-
dation within the context of specific missions. Additionally,
the system lacks physics-based behavioral authentication
and addresses only internal network security rather than
comprehensive remote operation threats. A physics-informed
anomaly detection framework by Guo et al. [66] embedded
AAV dynamics into neural detection models, demonstrating
enhancements in performance, achieving increases of up
to 17.77% in ROC-AUC scores in countering spoofing
attacks. Despite this, the approach continues to be limited
to the validation of spoofing incidents and wind disturbance,
failing to address the vulnerabilities associated with remote
operations and the integration of operation contexts that are
specific to particular routes. Moreover, while the efficiency
of training is enhanced by smoothing the loss landscape,
the framework did not include thorough physics-based
behavioral verification and primarily targets internal AAV
anomalies, neglecting the broader range of threats related to
remote operations. Makridis and Kouvelas [67] introduced
an adaptive physics-informed model that reconstructs vehicle
paths by integrating constraints from vehicle dynamics with
patterns of driver behavior, effectively filtering out noise from
sensor data. However, their methodology focuses primarily

176832

on smoothing trajectories in an offline manner, rather than
the crucial real-time anomaly detection necessary for the
ToD security. Although they utilize constraints grounded
in physics with effectiveness, their system lacks context
recognition to determine that vehicle tasks correspond with
the prescribed mission pathways. Moreover, the framework
considers all anomalies to be sensor noise, neglecting to
account for malicious cyber-physical threats such as FDI
attacks targeting steering mechanisms. While their method
shows promise for trajectory reconstruction, it necessi-
tates precise vehicle specifications, which might not be
obtainable in real-world ToD implementations. Furthermore,
it lacks threat modeling and risk assessment features,
which are essential for securing connected vehicle systems.
Shi et al. [68] developed a physics-informed deep learning
(PIDL) framework with fundamental diagram learning (i.e.,
PIDL + FDL) for estimating traffic states and learning
flow-density relationships in highway scenarios. While
their methodology focuses on typical traffic reconstruction,
it did not tackle the unique security issues associated
with ToD. Although the framework successfully integrates
physics-based models with neural networks, it fails in
validating context specific to the mission and neglects
considerations for harmful cyber-physical threats such as
FDI attacks on steering controls. While appropriate for
highway traffic analysis, it lacks both the threat assess-
ment and real-time anomaly detection needed to protect
ToD systems against adversarial manipulations. A physics-
informed learning framework for autonomous screw-driving
proposed by Manyar et al. [69] that characterizes rotational
motion dynamics and handles position through active and
passive compliance mechanisms. Although their method
effectively incorporates physics-based modeling to ensure
dependable assembly processes in the presence of positional
uncertainties, it focuses on automating manufacturing instead
of addressing ToD security issues. While the architecture
includes mechanisms for identifying mechanical failures,
such as cross-threading and jamming, it is deficient in
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FIGURE 1. A workflow of the paper’s contributions.

functionalities for detecting sophisticated cyber-physical
threats, specifically FDI attacks targeting the steering
commands. Fan et al. [70] constructed an advanced
anomaly detection framework utilizing unsupervised Gen-
erative Adversarial Networks (GANSs) in combination with
LSTM networks. The proposed framework is meticulously
crafted to identify adversarial threats directed at trajectory
prediction algorithms. It accomplishes this through an
extensive evaluation of two types of losses: the reconstruction
loss, which measures the performance of the model in
reproducing input data, and the discrimination loss, which
assesses the model’s capability to distinguish between
legitimate and adversarial inputs. Nonetheless, their approach
primarily concentrates on detecting malicious trajectories
specific to prediction models, without fully addressing the
protection of ToD operations in a holistic manner. Although
the method proficiently detects adversarial trajectories by
examining temporal-spatial characteristics, it is deficient
in context-aware validation that would confirm maneuvers
against planned mission paths. Further, the framework fails
to tackle FDI attacks aimed at steering directives and lacks
a physics-based validation mechanism for vehicle behavior
verification. According to the provided challenges and gaps
in this domain, the contributions of this research will be
presented in the next section.

C. CONTRIBUTIONS

The primary contribution of this work is the development of
a novel Physics-informed Context-Aware Anomaly Detec-
tion System (PCADS), designed to secure Tele-operation
on Demand (ToD) systems against critical cyber-physical
threats. The workflow culminating in these contributions is
illustrated in Fig. 1. To establish the necessity for this system,
this paper first introduces a foundational threat model for
ToD, an area previously unaddressed in the literature. This
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analysis identifies False Data Injection (FDI) on steering
commands as a high-risk vulnerability. Building on this,
we contribute a detailed FDI attack model, formulated and
implemented by injecting noise into steering data from the
D2CAV real-world driving dataset during turning maneu-
vers [71]. The core contribution is the PCADS framework
itself, which pioneers a dual-pronged detection strategy
by integrating two innovative concepts: a context-aware
module that leverages the vehicle’s mission-specific Driving
Contexts (DCs) and a physics-informed module that learns
the vehicle’s physical response signatures during maneuvers.
The principal contributions are therefore:

« A foundational cyber-physical threat analysis and
risk assessment for ToD systems, identifying previ-
ously uncatalogued vulnerabilities.

« A novel FDI attack model targeting steering control,
completed with its mathematical formulation and vali-
dation on real-world driving data.

o« A context-aware anomaly detection method that
uniquely utilizes mission-specific driving contexts to
validate vehicle maneuvers against intended routes.

o A physics-informed anomaly detection method that
learns and verifies the physical signatures of vehicle
behavior, providing a robust, model-based layer of
security.

D. ASSUMPTIONS AND SCOPE

« This work is focused on a specific use case of ToD which
is last-mile delivery (LMD).

« For DCs, a solution of the vehicle routing plan (VRP) to
find optimal routes for the fleet of vehicles is not in the
scope of this paper and it is assumed the VRP is accurate
and robust to address real-time traffic density, road
conditions, weather and vehicle maintenance schedule.

e A dynamic alert generation is out of scope in this
research which it is simulated as a binary flag.

« For the physical parameter learning, left turn, right turn
and U-turn maneuvers are considered.

« Experimental results are based on the dataset mentioned
in experiment section.

o The proposed methodology assumes the vehicle config-
uration and physical parameter values for left turn, right
turn and U-turn maneuvers of the target vehicle that are
known to AD system.

E. PAPER STRUCTURE

The rest of this paper is organized as follows: Section II
provides cyber-physical threat models for ToD and attack
models for injecting noise on steering control command for
left turn, right turn, and U turn actions at a traffic intersection.
Section III describes the proposed AD method, PCADS, and
the corresponding mathematical modeling. The experimental
setup and results are discussed in Section IV. Finally, the
paper is concluded in Section V, and the supplementary
material is given in Section VI.
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FIGURE 2. An attack tree for a ToD event.

Il. A TOD THREAT ANALYSIS

Tele-operation on Demand (ToD), or tele-operation, provides
remote driving or assistance to piloted and autonomous
vehicles (AVs) and is a critical component of the AV
ecosystem, enabling services like tele-operated taxis and
deliveries [72], [73], [74]. This technology allows a remote
operator to passively monitor and, if necessary, take full
control of semi-autonomous and autonomous vehicles. The
automotive industry categorizes ToD into three main types of
control. As described in Table 2, in direct control, the remote
operator manages most driving functions, including planning
and decision-making. With indirect control, the operator
guides the vehicle by providing or selecting trajectories.
Shared control involves a division of decision-making and
vehicle control between the automated driving system and the
remote operator [75], [76].

A. THREAT MODELING OF TELE-OPERATED DRIVING

A threat modeling, also referred to as threat analysis and
risk assessment (TARA) model, is generally viewed as the
starting point for designing a cyber-secure system [77]. Given
the extensive and dispersed attack surface of vehicle tele-
operation, an attack-tree based method is employed for the
threat analysis. In this study, TARA of the ToD system is
carried out with the following steps. The first step involves
identifying the components of a ToD system. According to
Table 2, ToD functions can be distributed in three categories
of components (e.g., operator station, IoT infrastructure, and
vehicle). An operator station must include human operator,
operator terminal, server, and local communication network.
It might also have artificial intelligence (AI) assistance to
the terminal. An IoT infrastructure can be divided into three
primary sub-components including cellular network, cloud,
and edge. From the ToD perspective, the vehicle needs to
have sensing devices for perception, localization, inertia, and
vehicle diagnostics. A vehicle also requires an in-vehicle
communication network to communicate between multiple
ECUs and a modem to communicate using cellular channels.
For vehicle motion, it needs the drive-train, controller, and
actuators. In the second step, all of these components are
organized in a tree format as shown in Fig. 2. In the third step,
the attack tree is created with potential attacks on the ToD
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FIGURE 3. A tele-operated vehicle attack likelihood vs impact.

system. The attack tree in Fig. 2 illustrates the variety of
attacks that can be aimed at different components from
the vehicle to the operator station, potentially leading
to malicious ToD. These attacks are determined based
on the literature review for other CPSs and MITRE
ATT&CK@®matrices [78]. In the 4™ step, most promising
applications of ToD are analyzed for an impact on safety,
finance, and legality due to malicious ToD, as illustrated
in Fig. 3. This analysis is carried out with a subjective
approach considering that malicious ToD can disrupt lateral
and longitudinal motions, and suspension control of the tele-
operated vehicle. Such incidents can interrupt ToD service
and even jeopardize the safety of passengers and other
road users. In [79], [80], [81] and [82], researchers have
discussed various consequences of disrupting cross-border
transportation, LMD, and mobility services. According to
these papers, disruption of these applications has major
adverse effects on road safety and the regional economy.
As these are the potential applications for ToD, it can be
argued that a malicious ToD event can inflict serious harm
on these applications. Finally, in the 5 step of the TARA,
a risk is assessed based on the likelihood of attacks causing
a malicious ToD and the impact on the ToD application.
At present, ToD for public roads is still a developing
technology. However, when ToD is implemented on public
roads, attack surface and the number of impacted users will
expand. As a result, the risk will also escalate, which is
demonstrated as a high risk in Fig. 3.

B. ATTACK MODEL FOR LAST-MILE DELIVERY

According to the attack tree analysis, an attacker can cause a
malicious ToD event by compromising the IoT infrastructure.
In this section, firstly, an attack model is developed for one
of the potential use cases of the ToD event on public roads,
known as “last-mile delivery (LMD)”. Secondly, an attack
formulation is implemented for an FDI attack on the steering
wheel angle command from the tele-operator. The LMD
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TABLE 2. Functions and data flows for various ToD events.

Data Flow Function
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Control command via .
Direct Control Sensor data steering, brake, acceleration|  yepicle Operator Operator Operator Operator Hi level: Vehicle
pedal operation by station station station station Operator station
remote operator. Lo level:
Operator station
. . Desired control command Vehicle and " .
Object list or a A 5 . . . Operator Hi level: .
Shared Control representation of the via steering, brake, Vehicle Vehicle Vehicle station Oper_ator Vehicle Operator Vehicle
. acceleration pedal station .
free space. . station
operation by remote Lo level: Vehicle
operator.
Trajectory Sensor data Control command as Vehicle Vehicle/Operator| Vehicle/Operator Operator Operator Hi level: Operator Vehicle
Guidance trajectory station station station station station
Indirect Control Lo level: Vehicle
Waypoml Sensor data Discrete waypoints Vehicle Vellléle/pperator Vemc_le’.Opemmr OPer.exlor 0_per.amr Vehicle Vehicle
Guidance station station station station
. e o Vehicle and e
Interactlv.e Path Object list and a grid Optimized path Vehicle Vehicle Vehicle Operator Oer_amr Vehicle Vehicle
Planning map o station
station
. L . Vehicle and
]Vll):;icfeis:l?:n Object h;::nd agrid Bounding box Vehicle Operator Vehicle Vehicle Vehicle Vehicle Vehicle
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FIGURE 4. An FDI attack on communication between remote operators
and the vehicle.

represents the concluding stage in a business-to-customer
(B2C) delivery process where the package is transported to
the recipient, either directly to their home or to a designated
pickup location [83]. Fig. 4 illustrates the performance of
the tele-operated LMD vehicle. This illustration showcases
the essential framework of the remote vehicle operation
system, which serves as the primary motivation for this study
into tele-operated vehicles. The inclusion of this diagram
is essential to understanding the attack surface which is
investigated throughout this work. The system functions
within a two-way communication framework, wherein the
vehicle’s onboard sensors consistently gather environmental
data and transmit this information to a remote operator
station through cellular or wireless networks. At the terminal,
the human operator leverages advanced digital perception
systems and localization technologies to evaluate the driving
environment. Utilizing this remote visual interface, the
operator conceives navigational strategies and develops
control instructions, which are conveyed to the vehicle via the
identical communication framework. Upon receiving these
directives, the vehicle’s integrated systems which include
controllers, drivetrain components, and actuators, carry
out the designated movements. Critically, this architectural
design reveals a potential security weakness, as indicated
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A ToD left turn at a traffic intersection.

FIGURE 5. A traffic light intersection attack scenario.

by the red arrow. FDI attacks can target steering control
commands during transmission. This security risk grows
increasingly relevant in LMD scenarios, where AVs regularly
maneuver through complex urban landscapes that demand
accurate steering modifications, particularly during turning
maneuvers at intersections as they follow specified delivery
pathways [84]. However, an attack on the steering command
can execute an undesired driving action and trajectory,
causing an accident that is depicted in Fig. 5. According to
this diagram, the normal trajectories for vehicle A are shown
with green arrows, but the vehicle follows the path shown
in red arrows under a cyberattack. This malicious behavior
can be a potential cause of frontal or angled collisions with
other stationary and moving road users. Based on US NSC
data 2020, angled collisions and head-on collisions are the
top two reasons for deaths and fatal crashes in the U.S. [85].
The analysis of damage patterns and severity of impact for
passenger cars presented by Kurebwa et. al shows that the
probability of damage and severity is significantly higher at
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FIGURE 6. A system model for the vehicle’s steering angle under attacks.

Steering Wheel False Data Injection Attack u
Example 1

FIGURE 7. FDI attacks on steering wheel angle commands demonstrating
two distinct attack scenarios with varying injection points and durations.

the front and front corner zones as compared to other points
of impact on a vehicle [86]. Hence, an FDI attack on the
steering command from the tele-operator is selected for the
case study of the attack model. An attack model designed for
this study is presented in Fig. 6. As depicted, driver inputs
for steering wheel angle, accelerator pedal, and brake pedal
determine the motion control logic of a tele-operated vehicle.
Furthermore, motion control signals determine the vehicle
heading angle and vehicle dynamics. Therefore, it can be
derived that an FDI attack on driver input for steering wheel
angle will impact the vehicle heading angle and dynamics.
In order to create this attack, an attack formula is developed
for the FDI on steering wheel angle. For this purpose,
ISO/SAE 21434 is reviewed for recommended core factors
to assess the attack feasibility. Empirical data illustrating
the execution and effects of FDI attacks on steering wheel
angle directives are depicted in Fig. 7. Incorporating this
figure is crucial for illustrating the dynamics of the attack
and for clarifying the practical implications embedded in
this theoretical framework. The figure illustrates two separate
attack scenarios, each demonstrating a unique strategy of
exploitation. In Example 1, a moderate steering maneuver
is observed where the vehicle’s steering angle transitions
from approximately 50 degrees to —170 degrees. The attack
signal (depicted in orange) introduces a sharp rectangular
pulse deviation at the critical moment when the steering
angle begins its reduction, specifically around the 30-40
time unit mark. The timing strategy illustrates the method by
which adversaries can take advantage of transitional steering
phases to achieve maximum disruption while minimizing the
duration of the injection. Example 2 demonstrates a more
intense situation featuring a U-turn maneuver, characterized
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by steering angles that vary between 0 and —450 degrees.
In this scenario, the attack is characterized by the injection
of a continuous rectangular pulse within the 150 to 250 time
unit interval, resulting in an extended simulated steering
command of —500 degrees. This instance showcases that
extended attack durations may be utilized in complex
maneuvers to possibly trigger significant deviations in the
trajectory. These attacks are grounded in a mathematical
framework that is effectively represented through Eq. (1),
where & represents the falsified steering command, « denotes
the legitimate command, € indicates the injected fault
magnitude, and o defines the window of opportunity (WoO)
as a function of the injection point (p) and duration.

a=f(o, € o) (1)

The graphical visualizations reveal that an effective attack
depends on the precise coordination of the injection timing
with the dynamics of the vehicle’s steering. The varying
approaches, i.e., short and precisely timed as seen in Example
1 as opposed to the extended approach in Example 2,
highlight the wide range of attack methodologies that
adversaries could utilize in targeting tele-operated vehicle
systems.

IIl. PROPOSED PHYSICS-INFORMED CONTEXT-AWARE
ANOMALY DETECTION SYSTEM

In this section, a Physics- and Context-Aware Anomaly
Detection System (PCADS) is proposed to detect anomalies
during left, right, and U-turns in Last Mile Delivery (LMD)
vehicles, focusing on False Data Injection (FDI) attacks
against the steering wheel angle. The method, outlined in
Fig. 8, requires vehicle-specific Driving Contexts (DCs) and
time-series patterns of physical parameters. As depicted, the
method has two stages:

« A context-aware anomaly detection (PCADS-CA).
o A physics-informed anomaly detection (PCADS-PI).

The PCADS-CA stage compares the intended maneuver,
inferred from DCs, with the actual driving command from
the teleoperator. The PCADS-PI stage monitors the vehicle’s
physical parameter patterns during a turn and compares them
against learned patterns to detect deviations. The following
sections detail the PCADS-CA and PCADS-PI models.

A. STAGE 1: PCADS-BASED CONTEXT-AWARE ANOMALY
DETECTION FRAMEWORK

The context-aware anomaly detection module suggests that
the environmental and situational conditions around a vehicle
can effectively anticipate expected driving actions. This
framework establishes a predictive chain where driving con-
texts (DCs) inform the intended maneuver (IM), which subse-
quently corresponds to the actual control inputs (Dy) from the
tele-operated driver. This hierarchical framework constitutes
the foundational structure of the anomaly detection strategy.
DC is mathematically expressed as Eq. (2), a function of
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FIGURE 8. An LMD ToD anomaly detection framework.

multiple environmental and operational parameters:
D¢ =film,y, 1,0, 7,1, ) 2

Here, the DC incorporates the mission parameters (m),
current road conditions (y), traffic congestion levels (¢),
weather conditions (w), temporal information (t), geograph-
ical location (7), and various dynamic factors (g) that may
influence driving decisions. Furthermore, the system takes
into account the predetermined route (R) as well as the
intersection points (f) along the trajectory. The IM prediction
follows from the DC through Eq. (3):

Dy € {st,lt, rt,ut} = fo(Dc) 3)

This function maps the contextual information to specific
maneuver types: continuing straight (st), executing a left turn
(It), performing a right turn (rf), or making a U-turn (ut).
Subsequently, these IMs translate into specific vehicle control
commands that are illustrated in Eq. (4):

Dy € {Cmdyy, Cmdgecr, Cmdpic} = f3(Dy) @

These commands encompass steering inputs (Cmdg,),
acceleration commands (Cmd,;), and braking instructions
(Cmdp,t,), with vehicle health status (I:I ) and context-based
anomaly flags (A,) being monitored throughout. This
detection framework implements three distinct verification
mechanisms to identify potential security breaches or system
malfunctions as follows:

1) INCORRECT MANEUVER DETECTION AT INTERSECTIONS

The initial detection mechanism continuously observes the
vehicular behavior at designated intersection locations. When
the vehicle (V) operates under an active mission (m), the
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system initializes tracking for the vehicle’s lateral position
(Dy,,,), longitudinal position (Dy,,,,. ), and executed maneuver
(D). As the vehicle navigates the planned route, the
system locates all intersection features and establishes a
reference database (E) containing expected lateral positions,
expected longitudinal positions, and anticipated maneuvers.
Throughout the operational phase, the system persistently
evaluates the actual vehicle position and maneuver relative to
the anticipated parameters. In the event that an inconsistency
is identified, particularly when the maneuver executed at the
current location deviates from the expected maneuver at the
corresponding position, an anomaly flag (A;.) is activated and
documented within the database.

2) TEMPORAL WINDOW VALIDATION

The second verification layer implements temporal con-
straints on the anomaly detection process. This layer
enhances spatial validation by integrating time-dependent
parameters (7). The system assesses whether maneuvers are
executed within acceptable time frames by correlating the
actual timing of maneuvers with predefined temporal limits.
In instances where a vehicle executes a maneuver at the
correct spatial location but beyond the expected temporal
window, this temporal deviation activates an anomaly alert.
This method efficiently detects attacks that might exploit
timing manipulations to trigger hazardous conditions while
preserving spatial integrity.

3) DYNAMIC ALERT FILTERING AND FALSE POSITIVE
REDUCTION

The third component mitigates the issue of false positives
through the implementation of intelligent filtering. This
mechanism considers dynamic environmental factors (¢) and
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vehicle health status (H) before confirming an anomaly.
The system conducts standard positional and temporal
validations, further ensuring the absence of dynamic factors
and confirming the vehicle’s health status as indicating
normal operation. The system confirms the anomaly flag
exclusively when two criteria are met: there is no dynamic
interference (¢ = NULL), and the vehicle’s health status
is verified as satisfactory (H = OK). This comprehensive
verification approach effectively minimizes the occurrence
of false positives, yet continues to preserve the sensitivity
required to detect authentic security threats.

This extensive context-aware methodology guarantees
effective anomaly detection by utilizing environmental
insights, temporal limitations, and advanced filtering to
differentiate between authentic operational deviations and
possible security breaches within tele-operated vehicle sys-
tems.

B. STAGE 2: PCADS-PHYSICS-INFORMED ANOMALY
DETECTION

The PCADS-PI method leverages the vehicle’s physical
elements (e.g., power transfer, vehicle dynamics) to vali-
date cyber-element commands (e.g., steering, acceleration).
As shown in Fig. 9, the detection mechanism is divided
into a vehicle physics domain and a learning/prediction
domain. ToD inputs are fed into the vehicle physics model,
whose output is then passed to an ML algorithm that learns
the correlation between physical responses and specific
maneuvers to predict deviations.

1) PROPOSED MATHEMATICAL MODELING
The PCADS-PI framework is modeled as follows.

a: INPUTS

Time-series ToD inputs include acceleration-pedal-position
(APP), steering-wheel-angle (SW), and brake-pedal-status
(BP) over a time window of size N.

APP — {APP,_y,...,APP,} 5)
SW — {SW,_n, ..., SW;} ©6)
BP — {BP,_y, ..., BP;} 7

b: VEHICLE MODEL & CONFIGURATION

The vehicle model translates inputs into motion based on its
configuration, including drivetrain (D), steering system, and
tires.

o Drivetrain Dynamics: Ty, = f(APP;, D)
o Steering Dynamics: Oy, = g(SW;)
« Braking Dynamics: ageceiaration = W(BP;)

The overall motion is determined by integrating these
dynamics into the vehicle’s equations of motion:
d(Vehicle State)
dt

= \I}(Toutpuh Osteer » Adeceleration

Vehicle Configuration) (8)
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¢: MODEL PARAMETERS
The model integrates control inputs with physical responses
from the Energy Storage System (ESS), Motors (M), and
Vehicle Dynamics (VD).

« ESS Dynamics: Battery power Ppgsery is the sum of
motor power consumption.

o Motor Dynamics: Torque and speed are functions of
APP and vehicle state.

« Vehicle Dynamics: Parameters like Wheel Angle (WA),
Roll (R), Pitch (PT), and Yaw are derived from steering,
braking, and acceleration forces.

2) MACHINE LEARNING FRAMEWORK

Various ML methods were reviewed, including Naive Bayes,
Decision Tree, SVM, and KNN. The Long Short-Term
Memory (LSTM) algorithm, a type of RNN, was selected as
the base model due to its efficacy in learning from complex
sequential data [87], [88]. An LSTM unit (Fig. 10) uses a cell
state and gates (input, forget, output) to regulate information
flow, enabling it to capture long-term dependencies in time-
series data. For this research, the LSTM model is applied to
data from a full-electric vehicle model, using parameters from
the ESS and traction motors.

a: A VEHICLE MODEL INTEGRATION INTO THE LSTM
FRAMEWORK

The architecture for processing temporal sequences employs
an LSTM, which at each timestep, 7, processes a feature
vector as its input, defined as x;, = [E;, M;, VD,].
These components represent the ESS parameters (E;), motor
characteristics (M;), and vehicle dynamics measurements
(VDy), respectively. The LSTM network navigates this
information utilizing a sequence of gating mechanisms,
which are analytically represented in different parts. The
input gate controls information flow into the cell state, which
can be illustrated as iy = o(Wy; - x; + Wy - hy_1 + by).
The forget gate as f; = o(Wyr - x; + Wy - b1 + by)
determines which previous information to retain. The cell
state update combines new and retained information which
can be presented as g; = tanh(Wyg - x; + Wpe - hy—1 + by)
and ¢; = f; - ¢;—1 + i; - g The output gate produces the
final hidden state through o; = 0 (Wy, - Xt + Who - hi—1 + by)
and h; = o, - tanh(c;). In this context, o signifies the sigmoid
activation function, with W matrices indicating the acquired
weights, b vectors serving as bias components, and /,_|
along with ¢,_; denoting the prior hidden and cell states,
respectively.

The PCADS-PI methodology utilizes a trained LSTM
network to assess sequential vehicular parameter information
and categorizes turning maneuvers into separate types, such
as left turns, right turns, and U-turns. The approach to
anomaly detection is grounded in probabilistic principles,
allowing for the calculation of logarithmic probability scores
for each classification of turns based on the observed physical

VOLUME 13, 2025



S. Ghosh et al.: Physics-Informed Context-Aware Approach for Anomaly Detection

IEEE Access

Vehicle Physics Domain

Learning and Protection Domain

LSTM Fully Probability of
»  Connected Softmax True Class in
Framework o
(FC) Layer Prediction

Parameters
ESS
Vehicle Model
ToD Inputs > & » | Traction Motor
Configuration
Vehicle
Dynamic

FIGURE 9. A vehicle physics informed anomaly detection framework.
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FIGURE 10. A standard LSTM cell showing forget, input, and output gates
with o /tanh activations and state propagation paths [89].

parameters. The process of detection adheres to the following
statement.

Given an expected turn type based on system inputs or
driver commands, log P(Turngxpected) can be calculated and
compared against log P(Turngger) for all alternative turn
classifications. An anomaly indicator A}, is initiated upon
meeting the condition:

log P (TurnExpected) < log P(Turnogher) 9

The physical behavior of the vehicle appears more aligned
with an unexpected type of turn than initially expected, indi-
cating possible system anomalies or the presence of malicious
interference. This probabilistic methodology guarantees the
detection of anomalies whenever there are substantial devia-
tions in the observed vehicle behavior from the anticipated
dynamics, thereby offering a validation mechanism that
is grounded in physics. The next section will thoroughly
validate this detection method experimentally.

IV. EXPERIMENT AND RESULTS

This section presents the experimental setup and the result-
ing outcomes to assess the effectiveness of the proposed
PCADS model. In order to demonstrate the two stages
of the PCADS model, this section is divided into two
parts, including the PCADS-CA method and the PCADS-PI
method.
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FIGURE 11. Results for the PCADS-CA incorrect maneuvers.

A. PCADS-CA MODEL

The experiment with the PCADS-CA stage has three steps.
First, an original route plan for a delivery vehicle is created
with a web-based route planning service from MyRouteOn-
line [90]. This provides the IM at each intersection along the
delivery route derived from DCs. This corresponds to IM and
DC processes in Fig. 8. Secondly, the ToD input is created by
altering the original route, which includes the expected turn at
certain intersections along the route and the modification of
the expected time window of the turn. Additionally, an input
is added to indicate if there is any dynamic alert on a particular
intersection. In the final step, IM from step 1 and altered
ToD input and dynamic alert from step 2 are passed to
the PCADS-PI algorithm proposed in Section III-B. This
algorithm is implemented using a MATLAB script such
that the results of this experiment are presented in Fig. 11.
According to this figure, the table shows the DC including
the original intended maneuvering action for intersections
along the selected delivery route. The most column shows
the dynamic alert for an intersection. The diagram shows
the results of the PCADS-CA detection. According to this
diagram, the blue line indicates the original route and blue
dots denote the intersections along the route. The red dots
indicate that the PCADS-CA method’s detected anomalies in
an actual maneuver from the intended action. However, the
results also notify about the dynamic alerts at intersections
along the route. Generally, the results illustrate that the
PCADS-CA model can detect the first stage of anomalies
based on the DC. Further, it also provides notification of
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TABLE 3. A Comparison of ML algorithms for good dataset.
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FIGURE 13. An attack on the steering wheel command.

dynamic alerts to reduce FPs. In the next part, experiments
and results for the second stage of the PCADS model are
discussed.

B. PCADS-PI MODEL

This section elaborates on the experiment and results with
the physics-informed AD stage of the PCADS model. This
experiment has two primary steps, including data generation
and the AD process, that are described below.

1) DATA GENERATION

An experimental dataset for the PCADS-PI model is gen-
erated based on the real dataset known as “D2CAV.” The
dataset contains 75 left turn, 78 right turn, and 62 U-turn
scenarios. As per the scope of this paper, steering wheel angle,
accelerator pedal, and brake pedal signals are extracted from
this dataset. The signals are recorded every 100 ms. This
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dataset is referred to as a good ToD input dataset. In the next
step, this dataset is used as inputs to simulate virtual vehicle
models. One dataset of the vehicle physical parameters is
created with the good ToD input dataset and another is created
for the attack dataset as an input. The data generation of
vehicle parameters with steering wheel angle FDI injection
is illustrated in Fig. 12. In this diagram, steering wheel
input is shown as FDI noise at two different points, A and
B during the turning action. It can be noted that the good
data generation for vehicle physical parameters is a similar
process except for the FDI in any input. The configuration
of the virtual vehicle model and the set of vehicle physical
parameters recorded by simulating the virtual vehicles are
the same for good ToD input and ToD input with noise.
To generate the good dataset of vehicle physical parameters,
the virtual vehicle model is simulated without the good ToD
input dataset. The virtual vehicle models are selected from
three potential electric drive train configurations with six
degrees of freedom. Virtual Vehicle Config 1, 2, 3 refer
to a single motor, dual motor, and quad motor used as
propulsion motors. Vehicle physical parameters are selected
from three subsystems including the energy storage system,
traction motor, and vehicle dynamics. The virtual vehicle
model is configured and simulated in MATLAB/SIMULINK
software. To inject the noise, the attack formula, shown in
Eq. (1) is implemented using MATLAB. As illustrated in
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TABLE 5. An AD rate against 8 test sets (TSs) of FDI attacks.

TS# Al A2 B.1 B.2 C.1 C.2 D.1 D.2
No. of
anomaly 10 9 16 15 20 11 30 30
detected
No. of
FDI tested 30 30 30 30 30 30 30 30
ADR (%) 33.33 30 53.33 50 66.67 36.67 100 33.33

Fig. 13, an attack dataset consists of two points of injection
in the steering wheel angle command and the duration of
the injected noise is 2 s. The points of injection are at the
beginning of turns and during the mid-point of turning. The
attack dataset is created by injecting noise into the steering
wheel angle in 30 randomly selected observations of the left
turn, right turn, and U-turn scenarios. In the final step of
data generation, the good dataset and attack dataset of vehicle
physical parameters generated from the virtual vehicle model
are formatted to train and test the anomaly detection model.

2) ANOMALY DETECTION

An anomaly in trajectory patterns of turning maneuvers is
formulated as a sequence to a classification problem. For that
reason, the experiment is divided into two steps. Initially,
the experiment is conducted to train the ML model with a
good dataset and predict 3 classes (i.e., left turn, right turn,
and U-turn). A tree-based classifier and 7 NN architectures
are trained using the MATLAB DL tool in this case, and
the performance is evaluated with standard metrics (i.e.,
accuracy, precision, recall, F1-score). A value for each metric
can range between 0 and 1, where a higher value shows
better performance, and the results are presented in Tables 3.
According to this table, the LSTM performance is as follows:
minimum accuracy: 0.95, lowest precision: 0.83, lowest
recall: 0.89 and lowest F1-score: 0.91. This shows that LSTM
predicted left turn, right turn, and U-turn with higher true
positive values and true negative values as compared to other
neural network architectures employed in this experiment.
Based on this observation, an LSTM algorithm is chosen as a
base model for the PCADS-PI method.

The resulting data is subjected to an in-depth analysis,
the aim of which is to determine the probability density
score associated with both correctly and incorrectly predicted
observations. An illustrative instance of this analytical
approach is exhibited within Table 4.

It might be noted that the probability score ranges
from O to 1. As shown in Table 4, the highest probability score
observed by an ML classifier for a particular class is reported
as a predicted class. When the predicted class matches the
true class provided in a test sample, the prediction is TRUE
(shown with a green color) while the prediction is FALSE
when the probability score of the true class is not the highest
one (shown with a red color). This observation verifies that
the LSTM model is able to capture the temporal dependencies
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and effectively learns the pattern of physical parameters for
a valid maneuver. The probability score analysis also shows
that the model lowers the probability score when the sequence
is anomalous. In the final step, the trained LSTM model with
a good dataset is tested with the attack dataset generated in
Section IV-B1 and the results are presented in Table 5.

Each TS# column provides an anomaly detection rate
(ADR) for a set of tests with 30 samples of FDI turning
maneuvers. ‘A’, ‘B’, ‘C’ and ‘D’ indicate what kind of data
is used to train the model in TS#. ‘A’ means the trained
LSTM model with a ToD input. ‘B’ shows the trained
LSTM model with vehicle physical parameters for a single
motor electric vehicle. The trained LSTM model with vehicle
physical parameters for dual and quad motor electric vehicles
is mentioned by ‘C’ and ‘D’, respectively. The number 1 in
TS# indicates the point of noise injection at the beginning
of turning and 2 means noise is injected at the middle of
the turning. As detailed in Table 5, the Anomaly Detection
Rate (ADR) progressively increases with the complexity
of the vehicle’s drivetrain model. The model trained on
single-motor parameters (TS B.1, 53.33% ADR) outperforms
the baseline ToD input model (TS A.1, 33.33% ADR). This
performance is further enhanced with dual-motor parameters
(TS C.1, 66.67% ADR) and culminates in a 100% ADR for
the quad-motor configuration (TS D.1). This demonstrates
that parameters related to the drivetrain—specifically indi-
vidual motor torque, speed, and power consumption—are
the most critical for detection. These parameters provide a
high-fidelity, difficult-to-spoof fingerprint of the vehicle’s
physical state. A quad-motor configuration offers the most
granular data, as an attacker would need to simultaneously
spoof the complex, differential torque distribution across all
four motors to remain undetected, which is a significantly
more challenging task.

V. CONCLUSION AND FUTURE DIRECTIONS

A foundational framework for the cyber-physical security
of ToD systems was established by this paper. Through a
TARA, FDI attacks on steering commands were identified as
a high-risk vulnerability. Subsequently, a novel attack model
was developed, and, most critically, a PCADS was proposed
and validated to mitigate this threat. The core hypothesis
of this work is validated by the experimental results.
A model based solely on control inputs is outperformed
by a physics-informed detection model that uses an LSTM
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architecture, which is adept at capturing temporal patterns,
to effectively learn the physical signature of a valid maneuver
from vehicle physical parameters.

A foundation for research to develop robust and intrinsic
security layers for ToD, extending the Defense-in-Depth
(DiD) paradigm into the vehicle’s physical domain, is pro-
vided by the contributions presented here—the ToD threat
model, the FDI attack formulation, and the PCADS frame-
work. This is critical for a comprehensive cyber-physical
security roadmap. As part of future work, a holistic dataset
for FDI attacks on ToD control with various combinations of
noise, points of injection, and attack durations is planned to be
developed. As an extension of the PCADS model, other AD
approaches will be explored, and a comparative performance
analysis will be carried out on this extensive attack dataset.

APPENDIX

DATA AVAILABILITY AND SUPPLEMENTARY MATERIAL
The source codes, datasets, and additional supplemen-
tary materials supporting the findings of this study
are publicly available through the GitHub repository
(https://github.com/ghostsubha/TODS_LMD_AD). This
repository contains comprehensive implementation details,
experimental scripts, datasets, and detailed instructions for
reproducing all results.
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