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ABSTRACT Tele-operated driving (ToD) systems are special types of cyber-physical systems (CPSs) where

the operator remotely controls the steering, acceleration, and braking actions of the vehicle. Malicious actors

may inject false data in communication channels tomanipulate the tele-operator’s driving commands to cause

harm. Hence, protection of this communication is necessary for the safe operation of the target vehicle.

However, according to the National Institute of Standards and Technology (NIST) cybersecurity framework,

protection merely is not enough and the detection of an attack is necessary. Moreover, UN R155 mandates

that security incidents across vehicle fleets be detected and logged. Thus, cyber-physical threats of ToD are

modeled with an attack-centric approach in this paper. Then, an attack model with false data injection (FDI)

on steering control commands is created from real vehicle data. The risk of this attack model is assessed

for a last-mile delivery (LMD) application. Finally, a physics-informed context-aware anomaly detection

system (PCADS) is proposed to detect such false injection attacks, and preliminary experimental results are

presented to validate the model.

INDEX TERMS Tele-operated driving, anomaly detection, cyber-physical system, physics-informed,

context-aware.

I. INTRODUCTION

In recent years, autonomous driving has been one of the

key areas of attention among the automotive researchers.

Numerous innovations and cutting-edge technologies have

emerged to bring full autonomy in road vehicles. Vehicle

teleportation is one such technology that originated to provide

emergency assistance to autonomous vehicles (AVs) in

unusual or difficult driving scenarios [1], [2], [3]. However,

this technology is also being targeted for tele-operated taxis

and delivery services [4], [5], [6], [7]. The National Institute

of Standards and Technology (NIST) vehicle tele-operation

forum and 5G blueprint project are leading the research

in this area in the United States and Europe, respectively
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[8] and [9]. Some start-up companies (e.g., Zoox, Ottopia,

Faction, DriveU.auto) have started testing their prototypes

of tele-operated vehicles for the mobility services for some

specific use cases [10], [11], [12], [13], [14].

A. PROBLEM STATEMENT

In general, the driving function of a vehicle can be viewed

as a combination of longitudinal control (i.e., acceleration,

braking) and lateral control (i.e., steering) of a vehicle to

reach from start to destination in various traffic scenarios.

Tele-operated drivers can monitor, control, or provide

guidance to the driving function from a remote operating

station [1], [15]. Typically, the perception and localization

are information sent by the vehicle to the operating station

via cloud and fog infrastructure using wireless or cellular

networks. Similarly, control commands transmitted from the
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operating station are sent to the vehicle. This poses a potential

exposure of perception data and control commands outside

the vehicle boundary and can make the ToD vulnerable

against cyberattacks. Attackers can target the ToD system

with denial-of-service (DoS) attacks, FDI attacks, man-in-

the-middle (MITM) attacks, and other attacks similar to

the attacks detected in other CPSs [16], [17]. A malicious

control of ToD may result in the vehicle crash, disruption

in tele-operation service, legal consequences, and financial

loss. Hence, a robust cybersecurity strategy is critical to

prevent, detect, and mitigate such attacks for a safe ToD.

Although cybersecurity is a common practice in information

technology (IT) and many other internet of things (IoT)

devices, cybersecurity for road vehicles has gained attention

in recent years since a researcher in this field hacked a

vehicle in 2016 [18]. In 2020, UNECE World Forum for

Harmonization of Vehicle Regulations (UNECE WP.29)

has adopted UN Regulation No. 155 on Cyber Security

and Cyber Security Management Systems, which requires

managing cyber risks to vehicles in 54 countries from

2024 [19]. Typically, cryptography, chain of trust, firewall

and access control are some of the common techniques to

protect security assets in cyber domains [20], [21], [22],

[23], [24], [25], [26]. However, with evolving threats on

these methods, protection from all potential attacks cannot

be guaranteed [27], [28], [29]. Moreover, insider attacks

increase the vulnerability of a system by inadequate security

measures in the system design and improper implementation

of cryptography algorithms which are exploited by zero-day

attacks. To address this challenge, security by design needs to

be followed that is the defense-in-depth (DiD) principle [30],

[31], where security strategies are applied at multiple

layers. One of the critical features of DiD is the detection

mechanism [32]. Further, UN R155 requires monitoring

and reporting of security incidents for vehicle fleets for

automotive applications [19]. Conventional cybersecurity

detection methods are primarily in the cyber domain and

have limitations in addressing the security requirements of

CPSs [33], [34], [35]. To address this, recent research in other

CPSs has demonstrated an extension of DiD and detection

methods to physical domains [36], [37], [38], [39], [40].

Currently, ToD is an emerging technology within restricted

operational design domain (ODD) and prototype phase.

When this technology gets deployed at large on public roads,

a cyber-physical DiD strategy will be necessary to reduce

risks from cyberattacks. However, to our knowledge, there is

no study to show threat analysis for cyberattacks on driver’s

control commands transmitted from tele-operator stations to

the target vehicles. Moreover, methods to detect such attacks

in tele-operated vehicle’s physical domain have not been

explored.

B. RELATED WORK

An intrusion detection system (IDS) is one of the techniques

recommended by various standards (e.g., ISO 27039, NIST,

Open Web Application Security Project (OWASP)) to

monitor activities in the system or network for malicious

behavior. Several automotive communities and researchers

are considering an automotive specific IDS as a fundamental

solution for vehicle cyber incidents detection and reporting,

which has the potential to be extended to intrusion detection

and prevention systems (IDPSs) [41], [42], [43]. Automotive

Open System Architecture (AUTOSAR) organization has

released a specification for vehicle intrusion detection

systems in 2020 that provides a standardized interface to

report on-board security events for a vehicle electronic

control unit (ECU) and network environment [44]. Basically,

IDS methods in cyber domains are of three types, includ-

ing signature-based, behavior-based, and anomaly-based

approaches [45], [46], [47]. Other IDS methods are inspired

or combined by these basic methods. In the automotive

industry, IDSs are typically software components deployed

in the network, host, or as a distributed system. These types

of IDS are mainly focused on messages in vehicle network

protocols (e.g., CAN, automotive Ethernet) [48], [49], [50]

and lack utilizing the application specific knowledge. Other

than IDSs, an anomaly detection (AD) process is also

used in other applications (e.g., sensor AD [51], [52],

vehicle traffic AD [53], [54], in-vehicle monitoring for

AVs [55]). In science, an anomaly is described when there is a

difference between actual observation and expected outcome

developed based on the original scientific idea [56]. In the

statistics and data mining field, outliers in the dataset are

considered as anomalies. For physical systems, detecting

anomalies in AV sensors, aerial systems, and intelligent

traffic systems are examples of some important applications.

An AD process for IDSs was introduced in the 1980s to

detect security violations by recognizing abnormal patterns

in system logs [57]. Recent research on cyber-physical attack

detection is presented in Table 1. According to this table,

the current AD techniques for automotive IDSs primarily

focus on finding anomalies based on a data-driven analysis

of the network and less consideration of physical behavior.

Table 1 shows research on other CPSs found for detecting

cyber-physical attacks, hybrid approaches by combining

data-driven models and physics-based models. The recent

growth in ML research and its applications is largely driven

by two key factors. Firstly, the digital creation and storage

of extensive datasets plays a crucial role. Secondly, the

accessibility of cost-effective high-performance computing

devices that can process these extensive datasets acts as

a vital accelerator. These datasets are often developed for

particular applications, including prediction, recognition,

recommendation systems, and language processing [63].

Solaas et al. [64] performed a comprehensive literature

review encompassing 203 papers concerning anomaly detec-

tion in Connected and Autonomous Vehicles. Their study

highlighted LSTM, CNN, and autoencoders as the primary

AI techniques and delved into the training methodologies

and evaluation metrics utilized. Their evaluation revealed

significant limitations: notably, only 9 out of 203 studies
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TABLE 1. A literature survey on AD process in CPSs.

offered open-source availability; there was a deficiency in

real-world deployment data; and there was an absence of

standardized benchmarking datasets. Moreover, the research

did not delve into the vulnerabilities associated with on-

demand tele-operation or the use of mission-specific driving

contexts for context-aware detection. Additionally, it did

not investigate approaches informed by physics for the

validation of vehicle behavior signatures. Mansourian et al.

[65] developed a framework for forecasting temporal events

that utilizes LSTM and ConvLSTM models to detect

anomalies in Controller Area Networks (CAN) through

the analysis of patterns across both space and time. This

approach showcased remarkable accuracy when tested on

established datasets. However, the supervised approach limits

flexibility against new attacks, overlooks vulnerabilities

related to remote operations, and fails to incorporate vali-

dation within the context of specific missions. Additionally,

the system lacks physics-based behavioral authentication

and addresses only internal network security rather than

comprehensive remote operation threats. A physics-informed

anomaly detection framework by Guo et al. [66] embedded

AAV dynamics into neural detection models, demonstrating

enhancements in performance, achieving increases of up

to 17.77% in ROC-AUC scores in countering spoofing

attacks. Despite this, the approach continues to be limited

to the validation of spoofing incidents and wind disturbance,

failing to address the vulnerabilities associated with remote

operations and the integration of operation contexts that are

specific to particular routes. Moreover, while the efficiency

of training is enhanced by smoothing the loss landscape,

the framework did not include thorough physics-based

behavioral verification and primarily targets internal AAV

anomalies, neglecting the broader range of threats related to

remote operations. Makridis and Kouvelas [67] introduced

an adaptive physics-informed model that reconstructs vehicle

paths by integrating constraints from vehicle dynamics with

patterns of driver behavior, effectively filtering out noise from

sensor data. However, their methodology focuses primarily

on smoothing trajectories in an offline manner, rather than

the crucial real-time anomaly detection necessary for the

ToD security. Although they utilize constraints grounded

in physics with effectiveness, their system lacks context

recognition to determine that vehicle tasks correspond with

the prescribed mission pathways. Moreover, the framework

considers all anomalies to be sensor noise, neglecting to

account for malicious cyber-physical threats such as FDI

attacks targeting steering mechanisms. While their method

shows promise for trajectory reconstruction, it necessi-

tates precise vehicle specifications, which might not be

obtainable in real-world ToD implementations. Furthermore,

it lacks threat modeling and risk assessment features,

which are essential for securing connected vehicle systems.

Shi et al. [68] developed a physics-informed deep learning

(PIDL) framework with fundamental diagram learning (i.e.,

PIDL + FDL) for estimating traffic states and learning

flow-density relationships in highway scenarios. While

their methodology focuses on typical traffic reconstruction,

it did not tackle the unique security issues associated

with ToD. Although the framework successfully integrates

physics-based models with neural networks, it fails in

validating context specific to the mission and neglects

considerations for harmful cyber-physical threats such as

FDI attacks on steering controls. While appropriate for

highway traffic analysis, it lacks both the threat assess-

ment and real-time anomaly detection needed to protect

ToD systems against adversarial manipulations. A physics-

informed learning framework for autonomous screw-driving

proposed by Manyar et al. [69] that characterizes rotational

motion dynamics and handles position through active and

passive compliance mechanisms. Although their method

effectively incorporates physics-based modeling to ensure

dependable assembly processes in the presence of positional

uncertainties, it focuses on automating manufacturing instead

of addressing ToD security issues. While the architecture

includes mechanisms for identifying mechanical failures,

such as cross-threading and jamming, it is deficient in
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FIGURE 1. A workflow of the paper’s contributions.

functionalities for detecting sophisticated cyber-physical

threats, specifically FDI attacks targeting the steering

commands. Fan et al. [70] constructed an advanced

anomaly detection framework utilizing unsupervised Gen-

erative Adversarial Networks (GANs) in combination with

LSTM networks. The proposed framework is meticulously

crafted to identify adversarial threats directed at trajectory

prediction algorithms. It accomplishes this through an

extensive evaluation of two types of losses: the reconstruction

loss, which measures the performance of the model in

reproducing input data, and the discrimination loss, which

assesses the model’s capability to distinguish between

legitimate and adversarial inputs. Nonetheless, their approach

primarily concentrates on detecting malicious trajectories

specific to prediction models, without fully addressing the

protection of ToD operations in a holistic manner. Although

the method proficiently detects adversarial trajectories by

examining temporal-spatial characteristics, it is deficient

in context-aware validation that would confirm maneuvers

against planned mission paths. Further, the framework fails

to tackle FDI attacks aimed at steering directives and lacks

a physics-based validation mechanism for vehicle behavior

verification. According to the provided challenges and gaps

in this domain, the contributions of this research will be

presented in the next section.

C. CONTRIBUTIONS

The primary contribution of this work is the development of

a novel Physics-informed Context-Aware Anomaly Detec-

tion System (PCADS), designed to secure Tele-operation

on Demand (ToD) systems against critical cyber-physical

threats. The workflow culminating in these contributions is

illustrated in Fig. 1. To establish the necessity for this system,

this paper first introduces a foundational threat model for

ToD, an area previously unaddressed in the literature. This

analysis identifies False Data Injection (FDI) on steering

commands as a high-risk vulnerability. Building on this,

we contribute a detailed FDI attack model, formulated and

implemented by injecting noise into steering data from the

D2CAV real-world driving dataset during turning maneu-

vers [71]. The core contribution is the PCADS framework

itself, which pioneers a dual-pronged detection strategy

by integrating two innovative concepts: a context-aware

module that leverages the vehicle’s mission-specific Driving

Contexts (DCs) and a physics-informed module that learns

the vehicle’s physical response signatures during maneuvers.

The principal contributions are therefore:

• A foundational cyber-physical threat analysis and

risk assessment for ToD systems, identifying previ-

ously uncatalogued vulnerabilities.

• A novel FDI attack model targeting steering control,

completed with its mathematical formulation and vali-

dation on real-world driving data.

• A context-aware anomaly detection method that

uniquely utilizes mission-specific driving contexts to

validate vehicle maneuvers against intended routes.

• A physics-informed anomaly detection method that

learns and verifies the physical signatures of vehicle

behavior, providing a robust, model-based layer of

security.

D. ASSUMPTIONS AND SCOPE

• This work is focused on a specific use case of ToDwhich

is last-mile delivery (LMD).

• For DCs, a solution of the vehicle routing plan (VRP) to

find optimal routes for the fleet of vehicles is not in the

scope of this paper and it is assumed the VRP is accurate

and robust to address real-time traffic density, road

conditions, weather and vehicle maintenance schedule.

• A dynamic alert generation is out of scope in this

research which it is simulated as a binary flag.

• For the physical parameter learning, left turn, right turn

and U-turn maneuvers are considered.

• Experimental results are based on the dataset mentioned

in experiment section.

• The proposed methodology assumes the vehicle config-

uration and physical parameter values for left turn, right

turn and U-turn maneuvers of the target vehicle that are

known to AD system.

E. PAPER STRUCTURE

The rest of this paper is organized as follows: Section II

provides cyber-physical threat models for ToD and attack

models for injecting noise on steering control command for

left turn, right turn, and U turn actions at a traffic intersection.

Section III describes the proposed AD method, PCADS, and

the corresponding mathematical modeling. The experimental

setup and results are discussed in Section IV. Finally, the

paper is concluded in Section V, and the supplementary

material is given in Section VI.
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FIGURE 2. An attack tree for a ToD event.

II. A TOD THREAT ANALYSIS

Tele-operation on Demand (ToD), or tele-operation, provides

remote driving or assistance to piloted and autonomous

vehicles (AVs) and is a critical component of the AV

ecosystem, enabling services like tele-operated taxis and

deliveries [72], [73], [74]. This technology allows a remote

operator to passively monitor and, if necessary, take full

control of semi-autonomous and autonomous vehicles. The

automotive industry categorizes ToD into three main types of

control. As described in Table 2, in direct control, the remote

operator manages most driving functions, including planning

and decision-making. With indirect control, the operator

guides the vehicle by providing or selecting trajectories.

Shared control involves a division of decision-making and

vehicle control between the automated driving system and the

remote operator [75], [76].

A. THREAT MODELING OF TELE-OPERATED DRIVING

A threat modeling, also referred to as threat analysis and

risk assessment (TARA) model, is generally viewed as the

starting point for designing a cyber-secure system [77]. Given

the extensive and dispersed attack surface of vehicle tele-

operation, an attack-tree based method is employed for the

threat analysis. In this study, TARA of the ToD system is

carried out with the following steps. The first step involves

identifying the components of a ToD system. According to

Table 2, ToD functions can be distributed in three categories

of components (e.g., operator station, IoT infrastructure, and

vehicle). An operator station must include human operator,

operator terminal, server, and local communication network.

It might also have artificial intelligence (AI) assistance to

the terminal. An IoT infrastructure can be divided into three

primary sub-components including cellular network, cloud,

and edge. From the ToD perspective, the vehicle needs to

have sensing devices for perception, localization, inertia, and

vehicle diagnostics. A vehicle also requires an in-vehicle

communication network to communicate between multiple

ECUs and a modem to communicate using cellular channels.

For vehicle motion, it needs the drive-train, controller, and

actuators. In the second step, all of these components are

organized in a tree format as shown in Fig. 2. In the third step,

the attack tree is created with potential attacks on the ToD

FIGURE 3. A tele-operated vehicle attack likelihood vs impact.

system. The attack tree in Fig. 2 illustrates the variety of

attacks that can be aimed at different components from

the vehicle to the operator station, potentially leading

to malicious ToD. These attacks are determined based

on the literature review for other CPSs and MITRE

ATT&CK®matrices [78]. In the 4th step, most promising

applications of ToD are analyzed for an impact on safety,

finance, and legality due to malicious ToD, as illustrated

in Fig. 3. This analysis is carried out with a subjective

approach considering that malicious ToD can disrupt lateral

and longitudinal motions, and suspension control of the tele-

operated vehicle. Such incidents can interrupt ToD service

and even jeopardize the safety of passengers and other

road users. In [79], [80], [81] and [82], researchers have

discussed various consequences of disrupting cross-border

transportation, LMD, and mobility services. According to

these papers, disruption of these applications has major

adverse effects on road safety and the regional economy.

As these are the potential applications for ToD, it can be

argued that a malicious ToD event can inflict serious harm

on these applications. Finally, in the 5th step of the TARA,

a risk is assessed based on the likelihood of attacks causing

a malicious ToD and the impact on the ToD application.

At present, ToD for public roads is still a developing

technology. However, when ToD is implemented on public

roads, attack surface and the number of impacted users will

expand. As a result, the risk will also escalate, which is

demonstrated as a high risk in Fig. 3.

B. ATTACK MODEL FOR LAST-MILE DELIVERY

According to the attack tree analysis, an attacker can cause a

malicious ToD event by compromising the IoT infrastructure.

In this section, firstly, an attack model is developed for one

of the potential use cases of the ToD event on public roads,

known as ‘‘last-mile delivery (LMD)’’. Secondly, an attack

formulation is implemented for an FDI attack on the steering

wheel angle command from the tele-operator. The LMD
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TABLE 2. Functions and data flows for various ToD events.

FIGURE 4. An FDI attack on communication between remote operators
and the vehicle.

represents the concluding stage in a business-to-customer

(B2C) delivery process where the package is transported to

the recipient, either directly to their home or to a designated

pickup location [83]. Fig. 4 illustrates the performance of

the tele-operated LMD vehicle. This illustration showcases

the essential framework of the remote vehicle operation

system, which serves as the primary motivation for this study

into tele-operated vehicles. The inclusion of this diagram

is essential to understanding the attack surface which is

investigated throughout this work. The system functions

within a two-way communication framework, wherein the

vehicle’s onboard sensors consistently gather environmental

data and transmit this information to a remote operator

station through cellular or wireless networks. At the terminal,

the human operator leverages advanced digital perception

systems and localization technologies to evaluate the driving

environment. Utilizing this remote visual interface, the

operator conceives navigational strategies and develops

control instructions, which are conveyed to the vehicle via the

identical communication framework. Upon receiving these

directives, the vehicle’s integrated systems which include

controllers, drivetrain components, and actuators, carry

out the designated movements. Critically, this architectural

design reveals a potential security weakness, as indicated

FIGURE 5. A traffic light intersection attack scenario.

by the red arrow. FDI attacks can target steering control

commands during transmission. This security risk grows

increasingly relevant in LMD scenarios, where AVs regularly

maneuver through complex urban landscapes that demand

accurate steering modifications, particularly during turning

maneuvers at intersections as they follow specified delivery

pathways [84]. However, an attack on the steering command

can execute an undesired driving action and trajectory,

causing an accident that is depicted in Fig. 5. According to

this diagram, the normal trajectories for vehicle A are shown

with green arrows, but the vehicle follows the path shown

in red arrows under a cyberattack. This malicious behavior

can be a potential cause of frontal or angled collisions with

other stationary and moving road users. Based on US NSC

data 2020, angled collisions and head-on collisions are the

top two reasons for deaths and fatal crashes in the U.S. [85].

The analysis of damage patterns and severity of impact for

passenger cars presented by Kurebwa et. al shows that the

probability of damage and severity is significantly higher at
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FIGURE 6. A system model for the vehicle’s steering angle under attacks.

FIGURE 7. FDI attacks on steering wheel angle commands demonstrating
two distinct attack scenarios with varying injection points and durations.

the front and front corner zones as compared to other points

of impact on a vehicle [86]. Hence, an FDI attack on the

steering command from the tele-operator is selected for the

case study of the attack model. An attack model designed for

this study is presented in Fig. 6. As depicted, driver inputs

for steering wheel angle, accelerator pedal, and brake pedal

determine the motion control logic of a tele-operated vehicle.

Furthermore, motion control signals determine the vehicle

heading angle and vehicle dynamics. Therefore, it can be

derived that an FDI attack on driver input for steering wheel

angle will impact the vehicle heading angle and dynamics.

In order to create this attack, an attack formula is developed

for the FDI on steering wheel angle. For this purpose,

ISO/SAE 21434 is reviewed for recommended core factors

to assess the attack feasibility. Empirical data illustrating

the execution and effects of FDI attacks on steering wheel

angle directives are depicted in Fig. 7. Incorporating this

figure is crucial for illustrating the dynamics of the attack

and for clarifying the practical implications embedded in

this theoretical framework. The figure illustrates two separate

attack scenarios, each demonstrating a unique strategy of

exploitation. In Example 1, a moderate steering maneuver

is observed where the vehicle’s steering angle transitions

from approximately 50 degrees to −170 degrees. The attack

signal (depicted in orange) introduces a sharp rectangular

pulse deviation at the critical moment when the steering

angle begins its reduction, specifically around the 30–40

time unit mark. The timing strategy illustrates the method by

which adversaries can take advantage of transitional steering

phases to achieve maximum disruption while minimizing the

duration of the injection. Example 2 demonstrates a more

intense situation featuring a U-turn maneuver, characterized

by steering angles that vary between 0 and −450 degrees.

In this scenario, the attack is characterized by the injection

of a continuous rectangular pulse within the 150 to 250 time

unit interval, resulting in an extended simulated steering

command of −500 degrees. This instance showcases that

extended attack durations may be utilized in complex

maneuvers to possibly trigger significant deviations in the

trajectory. These attacks are grounded in a mathematical

framework that is effectively represented through Eq. (1),

where α̂ represents the falsified steering command, α denotes

the legitimate command, ϵ indicates the injected fault

magnitude, and ω̄ defines the window of opportunity (WoO)

as a function of the injection point (ρ) and duration.

α̂ = f (α, ϵ, ω̄) (1)

The graphical visualizations reveal that an effective attack

depends on the precise coordination of the injection timing

with the dynamics of the vehicle’s steering. The varying

approaches, i.e., short and precisely timed as seen in Example

1 as opposed to the extended approach in Example 2,

highlight the wide range of attack methodologies that

adversaries could utilize in targeting tele-operated vehicle

systems.

III. PROPOSED PHYSICS-INFORMED CONTEXT-AWARE

ANOMALY DETECTION SYSTEM

In this section, a Physics- and Context-Aware Anomaly

Detection System (PCADS) is proposed to detect anomalies

during left, right, and U-turns in Last Mile Delivery (LMD)

vehicles, focusing on False Data Injection (FDI) attacks

against the steering wheel angle. The method, outlined in

Fig. 8, requires vehicle-specific Driving Contexts (DCs) and

time-series patterns of physical parameters. As depicted, the

method has two stages:

• A context-aware anomaly detection (PCADS-CA).

• A physics-informed anomaly detection (PCADS-PI).

The PCADS-CA stage compares the intended maneuver,

inferred from DCs, with the actual driving command from

the teleoperator. The PCADS-PI stage monitors the vehicle’s

physical parameter patterns during a turn and compares them

against learned patterns to detect deviations. The following

sections detail the PCADS-CA and PCADS-PI models.

A. STAGE 1: PCADS-BASED CONTEXT-AWARE ANOMALY

DETECTION FRAMEWORK

The context-aware anomaly detection module suggests that

the environmental and situational conditions around a vehicle

can effectively anticipate expected driving actions. This

framework establishes a predictive chain where driving con-

texts (DCs) inform the intendedmaneuver (IM), which subse-

quently corresponds to the actual control inputs (DI ) from the

tele-operated driver. This hierarchical framework constitutes

the foundational structure of the anomaly detection strategy.

DC is mathematically expressed as Eq. (2), a function of
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FIGURE 8. An LMD ToD anomaly detection framework.

multiple environmental and operational parameters:

DC = f1(m, γ, t, ω, τ, l, ε) (2)

Here, the DC incorporates the mission parameters (m),

current road conditions (γ ), traffic congestion levels (t),

weather conditions (ω), temporal information (τ ), geograph-

ical location (l), and various dynamic factors (ε) that may

influence driving decisions. Furthermore, the system takes

into account the predetermined route (R) as well as the

intersection points (f ) along the trajectory. The IM prediction

follows from the DC through Eq. (3):

DM ∈ {st, lt, rt, ut} = f2(DC ) (3)

This function maps the contextual information to specific

maneuver types: continuing straight (st), executing a left turn

(lt), performing a right turn (rt), or making a U-turn (ut).

Subsequently, these IMs translate into specific vehicle control

commands that are illustrated in Eq. (4):

DI ∈ {Cmdstr ,Cmdaccl,CmdBrk} = f3(DM ) (4)

These commands encompass steering inputs (Cmdstr ),

acceleration commands (Cmdaccl), and braking instructions

(CmdBrk ), with vehicle health status (Ĥ ) and context-based

anomaly flags (A′
C ) being monitored throughout. This

detection framework implements three distinct verification

mechanisms to identify potential security breaches or system

malfunctions as follows:

1) INCORRECT MANEUVER DETECTION AT INTERSECTIONS

The initial detection mechanism continuously observes the

vehicular behavior at designated intersection locations.When

the vehicle (V ) operates under an active mission (m), the

system initializes tracking for the vehicle’s lateral position

(DILat ), longitudinal position (DILong ), and executed maneuver

(DIMnvr ). As the vehicle navigates the planned route, the

system locates all intersection features and establishes a

reference database (E) containing expected lateral positions,

expected longitudinal positions, and anticipated maneuvers.

Throughout the operational phase, the system persistently

evaluates the actual vehicle position and maneuver relative to

the anticipated parameters. In the event that an inconsistency

is identified, particularly when the maneuver executed at the

current location deviates from the expected maneuver at the

corresponding position, an anomaly flag (A′
C ) is activated and

documented within the database.

2) TEMPORAL WINDOW VALIDATION

The second verification layer implements temporal con-

straints on the anomaly detection process. This layer

enhances spatial validation by integrating time-dependent

parameters (τ ). The system assesses whether maneuvers are

executed within acceptable time frames by correlating the

actual timing of maneuvers with predefined temporal limits.

In instances where a vehicle executes a maneuver at the

correct spatial location but beyond the expected temporal

window, this temporal deviation activates an anomaly alert.

This method efficiently detects attacks that might exploit

timing manipulations to trigger hazardous conditions while

preserving spatial integrity.

3) DYNAMIC ALERT FILTERING AND FALSE POSITIVE

REDUCTION

The third component mitigates the issue of false positives

through the implementation of intelligent filtering. This

mechanism considers dynamic environmental factors (ε) and
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vehicle health status (Ĥ ) before confirming an anomaly.

The system conducts standard positional and temporal

validations, further ensuring the absence of dynamic factors

and confirming the vehicle’s health status as indicating

normal operation. The system confirms the anomaly flag

exclusively when two criteria are met: there is no dynamic

interference (ε = NULL), and the vehicle’s health status

is verified as satisfactory (Ĥ = OK). This comprehensive

verification approach effectively minimizes the occurrence

of false positives, yet continues to preserve the sensitivity

required to detect authentic security threats.

This extensive context-aware methodology guarantees

effective anomaly detection by utilizing environmental

insights, temporal limitations, and advanced filtering to

differentiate between authentic operational deviations and

possible security breaches within tele-operated vehicle sys-

tems.

B. STAGE 2: PCADS-PHYSICS-INFORMED ANOMALY

DETECTION

The PCADS-PI method leverages the vehicle’s physical

elements (e.g., power transfer, vehicle dynamics) to vali-

date cyber-element commands (e.g., steering, acceleration).

As shown in Fig. 9, the detection mechanism is divided

into a vehicle physics domain and a learning/prediction

domain. ToD inputs are fed into the vehicle physics model,

whose output is then passed to an ML algorithm that learns

the correlation between physical responses and specific

maneuvers to predict deviations.

1) PROPOSED MATHEMATICAL MODELING

The PCADS-PI framework is modeled as follows.

a: INPUTS

Time-series ToD inputs include acceleration-pedal-position

(APP), steering-wheel-angle (SW), and brake-pedal-status

(BP) over a time window of size N.

APP → {APPt−N , . . . ,APPt } (5)

SW → {SWt−N , . . . , SWt } (6)

BP → {BPt−N , . . . ,BPt } (7)

b: VEHICLE MODEL & CONFIGURATION

The vehicle model translates inputs into motion based on its

configuration, including drivetrain (D), steering system, and

tires.

• Drivetrain Dynamics: Toutput = f (APPt ,D)

• Steering Dynamics: θsteer = g(SW t )

• Braking Dynamics: adecelaration = h(BPt )

The overall motion is determined by integrating these

dynamics into the vehicle’s equations of motion:

d(Vehicle State)

dt
= 9(Toutput , θsteer , adeceleration,

Vehicle Configuration) (8)

c: MODEL PARAMETERS

The model integrates control inputs with physical responses

from the Energy Storage System (ESS), Motors (M), and

Vehicle Dynamics (VD).

• ESS Dynamics: Battery power Pbattery is the sum of

motor power consumption.

• Motor Dynamics: Torque and speed are functions of

APP and vehicle state.

• Vehicle Dynamics: Parameters likeWheel Angle (WA),

Roll (R), Pitch (PT), and Yaw are derived from steering,

braking, and acceleration forces.

2) MACHINE LEARNING FRAMEWORK

Various ML methods were reviewed, including Naive Bayes,

Decision Tree, SVM, and KNN. The Long Short-Term

Memory (LSTM) algorithm, a type of RNN, was selected as

the base model due to its efficacy in learning from complex

sequential data [87], [88]. An LSTM unit (Fig. 10) uses a cell

state and gates (input, forget, output) to regulate information

flow, enabling it to capture long-term dependencies in time-

series data. For this research, the LSTM model is applied to

data from a full-electric vehiclemodel, using parameters from

the ESS and traction motors.

a: A VEHICLE MODEL INTEGRATION INTO THE LSTM

FRAMEWORK

The architecture for processing temporal sequences employs

an LSTM, which at each timestep, t , processes a feature

vector as its input, defined as xt = [Et ,Mt ,VDt ].

These components represent the ESS parameters (Et ), motor

characteristics (Mt ), and vehicle dynamics measurements

(VDt ), respectively. The LSTM network navigates this

information utilizing a sequence of gating mechanisms,

which are analytically represented in different parts. The

input gate controls information flow into the cell state, which

can be illustrated as it = σ (Wxi · xt + Whi · ht−1 + bi).

The forget gate as ft = σ (Wxf · xt + Whf · ht−1 + bf )

determines which previous information to retain. The cell

state update combines new and retained information which

can be presented as gt = tanh(Wxg · xt + Whg · ht−1 + bg)

and ct = ft · ct−1 + it · gt . The output gate produces the

final hidden state through ot = σ (Wxo · xt +Who · ht−1 + bo)

and ht = ot · tanh(ct ). In this context, σ signifies the sigmoid

activation function, with W matrices indicating the acquired

weights, b vectors serving as bias components, and ht−1

along with ct−1 denoting the prior hidden and cell states,

respectively.

The PCADS-PI methodology utilizes a trained LSTM

network to assess sequential vehicular parameter information

and categorizes turning maneuvers into separate types, such

as left turns, right turns, and U-turns. The approach to

anomaly detection is grounded in probabilistic principles,

allowing for the calculation of logarithmic probability scores

for each classification of turns based on the observed physical
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FIGURE 9. A vehicle physics informed anomaly detection framework.

FIGURE 10. A standard LSTM cell showing forget, input, and output gates
with σ/tanh activations and state propagation paths [89].

parameters. The process of detection adheres to the following

statement.

Given an expected turn type based on system inputs or

driver commands, logP(TurnExpected) can be calculated and

compared against logP(TurnOther) for all alternative turn

classifications. An anomaly indicator A′
P is initiated upon

meeting the condition:

logP(TurnExpected) < logP(TurnOther) (9)

The physical behavior of the vehicle appears more aligned

with an unexpected type of turn than initially expected, indi-

cating possible system anomalies or the presence ofmalicious

interference. This probabilistic methodology guarantees the

detection of anomalies whenever there are substantial devia-

tions in the observed vehicle behavior from the anticipated

dynamics, thereby offering a validation mechanism that

is grounded in physics. The next section will thoroughly

validate this detection method experimentally.

IV. EXPERIMENT AND RESULTS

This section presents the experimental setup and the result-

ing outcomes to assess the effectiveness of the proposed

PCADS model. In order to demonstrate the two stages

of the PCADS model, this section is divided into two

parts, including the PCADS-CA method and the PCADS-PI

method.

FIGURE 11. Results for the PCADS-CA incorrect maneuvers.

A. PCADS-CA MODEL

The experiment with the PCADS-CA stage has three steps.

First, an original route plan for a delivery vehicle is created

with a web-based route planning service from MyRouteOn-

line [90]. This provides the IM at each intersection along the

delivery route derived from DCs. This corresponds to IM and

DC processes in Fig. 8. Secondly, the ToD input is created by

altering the original route, which includes the expected turn at

certain intersections along the route and the modification of

the expected time window of the turn. Additionally, an input

is added to indicate if there is any dynamic alert on a particular

intersection. In the final step, IM from step 1 and altered

ToD input and dynamic alert from step 2 are passed to

the PCADS-PI algorithm proposed in Section III-B. This

algorithm is implemented using a MATLAB script such

that the results of this experiment are presented in Fig. 11.

According to this figure, the table shows the DC including

the original intended maneuvering action for intersections

along the selected delivery route. The most column shows

the dynamic alert for an intersection. The diagram shows

the results of the PCADS-CA detection. According to this

diagram, the blue line indicates the original route and blue

dots denote the intersections along the route. The red dots

indicate that the PCADS-CA method’s detected anomalies in

an actual maneuver from the intended action. However, the

results also notify about the dynamic alerts at intersections

along the route. Generally, the results illustrate that the

PCADS-CA model can detect the first stage of anomalies

based on the DC. Further, it also provides notification of
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FIGURE 12. Results for the PCADS-CA incorrect maneuvers.

FIGURE 13. An attack on the steering wheel command.

dynamic alerts to reduce FPs. In the next part, experiments

and results for the second stage of the PCADS model are

discussed.

B. PCADS-PI MODEL

This section elaborates on the experiment and results with

the physics-informed AD stage of the PCADS model. This

experiment has two primary steps, including data generation

and the AD process, that are described below.

1) DATA GENERATION

An experimental dataset for the PCADS-PI model is gen-

erated based on the real dataset known as ‘‘D2CAV.’’ The

dataset contains 75 left turn, 78 right turn, and 62 U-turn

scenarios. As per the scope of this paper, steeringwheel angle,

accelerator pedal, and brake pedal signals are extracted from

this dataset. The signals are recorded every 100 ms. This

TABLE 3. A Comparison of ML algorithms for good dataset.

TABLE 4. The LSTM prediction probability score.

dataset is referred to as a good ToD input dataset. In the next

step, this dataset is used as inputs to simulate virtual vehicle

models. One dataset of the vehicle physical parameters is

createdwith the good ToD input dataset and another is created

for the attack dataset as an input. The data generation of

vehicle parameters with steering wheel angle FDI injection

is illustrated in Fig. 12. In this diagram, steering wheel

input is shown as FDI noise at two different points, A and

B during the turning action. It can be noted that the good

data generation for vehicle physical parameters is a similar

process except for the FDI in any input. The configuration

of the virtual vehicle model and the set of vehicle physical

parameters recorded by simulating the virtual vehicles are

the same for good ToD input and ToD input with noise.

To generate the good dataset of vehicle physical parameters,

the virtual vehicle model is simulated without the good ToD

input dataset. The virtual vehicle models are selected from

three potential electric drive train configurations with six

degrees of freedom. Virtual Vehicle Config 1, 2, 3 refer

to a single motor, dual motor, and quad motor used as

propulsion motors. Vehicle physical parameters are selected

from three subsystems including the energy storage system,

traction motor, and vehicle dynamics. The virtual vehicle

model is configured and simulated in MATLAB/SIMULINK

software. To inject the noise, the attack formula, shown in

Eq. (1) is implemented using MATLAB. As illustrated in
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TABLE 5. An AD rate against 8 test sets (TSs) of FDI attacks.

Fig. 13, an attack dataset consists of two points of injection

in the steering wheel angle command and the duration of

the injected noise is 2 s. The points of injection are at the

beginning of turns and during the mid-point of turning. The

attack dataset is created by injecting noise into the steering

wheel angle in 30 randomly selected observations of the left

turn, right turn, and U-turn scenarios. In the final step of

data generation, the good dataset and attack dataset of vehicle

physical parameters generated from the virtual vehicle model

are formatted to train and test the anomaly detection model.

2) ANOMALY DETECTION

An anomaly in trajectory patterns of turning maneuvers is

formulated as a sequence to a classification problem. For that

reason, the experiment is divided into two steps. Initially,

the experiment is conducted to train the ML model with a

good dataset and predict 3 classes (i.e., left turn, right turn,

and U-turn). A tree-based classifier and 7 NN architectures

are trained using the MATLAB DL tool in this case, and

the performance is evaluated with standard metrics (i.e.,

accuracy, precision, recall, F1-score). A value for each metric

can range between 0 and 1, where a higher value shows

better performance, and the results are presented in Tables 3.

According to this table, the LSTM performance is as follows:

minimum accuracy: 0.95, lowest precision: 0.83, lowest

recall: 0.89 and lowest F1-score: 0.91. This shows that LSTM

predicted left turn, right turn, and U-turn with higher true

positive values and true negative values as compared to other

neural network architectures employed in this experiment.

Based on this observation, an LSTM algorithm is chosen as a

base model for the PCADS-PI method.

The resulting data is subjected to an in-depth analysis,

the aim of which is to determine the probability density

score associated with both correctly and incorrectly predicted

observations. An illustrative instance of this analytical

approach is exhibited within Table 4.

It might be noted that the probability score ranges

from 0 to 1. As shown in Table 4, the highest probability score

observed by an ML classifier for a particular class is reported

as a predicted class. When the predicted class matches the

true class provided in a test sample, the prediction is TRUE

(shown with a green color) while the prediction is FALSE

when the probability score of the true class is not the highest

one (shown with a red color). This observation verifies that

the LSTMmodel is able to capture the temporal dependencies

and effectively learns the pattern of physical parameters for

a valid maneuver. The probability score analysis also shows

that themodel lowers the probability score when the sequence

is anomalous. In the final step, the trained LSTMmodel with

a good dataset is tested with the attack dataset generated in

Section IV-B1 and the results are presented in Table 5.

Each TS# column provides an anomaly detection rate

(ADR) for a set of tests with 30 samples of FDI turning

maneuvers. ‘A’, ‘B’, ‘C’ and ‘D’ indicate what kind of data

is used to train the model in TS#. ‘A’ means the trained

LSTM model with a ToD input. ‘B’ shows the trained

LSTM model with vehicle physical parameters for a single

motor electric vehicle. The trained LSTMmodel with vehicle

physical parameters for dual and quad motor electric vehicles

is mentioned by ‘C’ and ‘D’, respectively. The number 1 in

TS# indicates the point of noise injection at the beginning

of turning and 2 means noise is injected at the middle of

the turning. As detailed in Table 5, the Anomaly Detection

Rate (ADR) progressively increases with the complexity

of the vehicle’s drivetrain model. The model trained on

single-motor parameters (TS B.1, 53.33%ADR) outperforms

the baseline ToD input model (TS A.1, 33.33% ADR). This

performance is further enhanced with dual-motor parameters

(TS C.1, 66.67% ADR) and culminates in a 100% ADR for

the quad-motor configuration (TS D.1). This demonstrates

that parameters related to the drivetrain—specifically indi-

vidual motor torque, speed, and power consumption—are

the most critical for detection. These parameters provide a

high-fidelity, difficult-to-spoof fingerprint of the vehicle’s

physical state. A quad-motor configuration offers the most

granular data, as an attacker would need to simultaneously

spoof the complex, differential torque distribution across all

four motors to remain undetected, which is a significantly

more challenging task.

V. CONCLUSION AND FUTURE DIRECTIONS

A foundational framework for the cyber-physical security

of ToD systems was established by this paper. Through a

TARA, FDI attacks on steering commands were identified as

a high-risk vulnerability. Subsequently, a novel attack model

was developed, and, most critically, a PCADS was proposed

and validated to mitigate this threat. The core hypothesis

of this work is validated by the experimental results.

A model based solely on control inputs is outperformed

by a physics-informed detection model that uses an LSTM
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architecture, which is adept at capturing temporal patterns,

to effectively learn the physical signature of a valid maneuver

from vehicle physical parameters.

A foundation for research to develop robust and intrinsic

security layers for ToD, extending the Defense-in-Depth

(DiD) paradigm into the vehicle’s physical domain, is pro-

vided by the contributions presented here—the ToD threat

model, the FDI attack formulation, and the PCADS frame-

work. This is critical for a comprehensive cyber-physical

security roadmap. As part of future work, a holistic dataset

for FDI attacks on ToD control with various combinations of

noise, points of injection, and attack durations is planned to be

developed. As an extension of the PCADS model, other AD

approaches will be explored, and a comparative performance

analysis will be carried out on this extensive attack dataset.

APPENDIX

DATA AVAILABILITY AND SUPPLEMENTARY MATERIAL

The source codes, datasets, and additional supplemen-

tary materials supporting the findings of this study

are publicly available through the GitHub repository

(https://github.com/ghostsubha/TODS_LMD_AD). This

repository contains comprehensive implementation details,

experimental scripts, datasets, and detailed instructions for

reproducing all results.
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