
2023 IEEE International Conference on Bioinformatics and Biomedicine

979-8-3503-3748-8/23/$31.00 ©2023 IEEE

480

Improving VTE Identification through Adaptive

NLP Model Selection and Clinical Expert

Rule-based Classifier from Radiology Reports

Jamie Deng†, Yusen Wu†,∗, Hilary Hayssen‡, Brain Englum‡, Aman Kankaria‡, Minerva Mayorga-Carlin‡,

Shalini Sahoo‡, John Sorkin‡, Brajesh Lal‡, Yelena Yesha†, Phuong Nguyen†

†Frost Institute for Data Science & Computing, University of Miami, FL, USA
‡School of Medicine, University of Maryland, MD, USA

{jxd3987, yxw1259, yxy806, pnx208}@miami.edu

{amankankaria}@gmail.com {HHayssen, BEnglum, MCarlin, Shalini.Sahoo, jsorkin, BLal}@som.umaryland.edu

Abstract—Rapid and accurate identification of Venous throm-
boembolism (VTE), a severe cardiovascular condition including
deep vein thrombosis (DVT) and pulmonary embolism (PE), is
important for effective treatment. Leveraging Natural Language
Processing (NLP) on radiology reports, automated methods have
shown promising advancements in identifying VTE events from
retrospective data cohorts or aiding clinical experts in identi-
fying VTE events from radiology reports. However, effectively
training Deep Learning (DL) and the NLP models is challenging
due to limited labeled medical text data, the complexity and
heterogeneity of radiology reports, and data imbalance. This
study proposes novel method combinations of DL methods,
along with data augmentation, adaptive pre-trained NLP model
selection, and a clinical expert NLP rule-based classifier, to
improve the accuracy of VTE identification in unstructured (free-
text) radiology reports. Our experimental results demonstrate the
model’s efficacy, achieving an impressive 97% accuracy and 97%
F1 score in predicting DVT, and an outstanding 98.3% accuracy
and 98.4% F1 score in predicting PE. These findings emphasize
the model’s robustness and its potential to significantly contribute
to VTE research.

Index Terms—VTE, NLP, Deep Learning, Transfer Learning,
BERT, Bi-LSTM

I. INTRODUCTION

Venous thromboembolism (VTE) [1], including deep vein

thrombosis (DVT) and pulmonary embolism (PE), is recog-

nized as the third most prevalent cardiovascular disease [2].

DVT occurs when a blood clot forms within a deep vein, typ-

ically affecting the lower leg, thigh, or pelvis, while PE arises

when a clot dislodges and migrates through the bloodstream

to the lungs. VTE not only introduces complications during

surgical procedures but also leads to extended hospital stays

and heightened mortality rates when left undiagnosed [3]. In

fact, the risk of VTE can surge by up to 20 times following

surgical interventions [4]. Consequently, the timely detection

of VTE assumes a critical role in shaping medical decisions,
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and the integration of automated methods for identifying VTE

diagnosis holds promise for further advancements in healthcare

practices.

The widespread implementation of electronic health record

systems (EHRs) in the US hospitals presents a valuable oppor-

tunity to leverage advanced data analytics techniques for post-

operative VTE classification. Clinical notes and reports include

crucial information regarding postoperative complications [5].

To extract meaningful insights from these unstructured and

free-text reports, natural language processing (NLP) utilizes

computational linguistics to process and analyze the textual

data. The application of NLP has seen a growing trend in

the analysis of radiologist reports from medical imaging [6].

Considering that the diagnosis of VTE relies heavily on

imaging findings, the application of NLP can assist in automat-

ically identifying patients with VTE using radiology reports.

To better understand NLP reports, we show a de-identified

Ultrasound report and a partial CT-scan report (partial) format

as follows:

Sample Ultrasound Report:

Right: There is persistent occlusive thrombus visualized at right
gastrocnemius veins and right soleal veins. The right common
femoral, proximal femoral and profunda femoris veins were not
visualized due to the ECMO cannula. Left: There is persistent
thrombus visualized at left posterior tibial veins, left peroneal
veins, left gastrocnemius and left soleal veins.

Sample CT Scan Report (partial):

Examination: Contrast enhanced CT of the chest (CT pulmonary
angiography)
Clinical History:: The patient is a 56-year-old male with tachy-
cardia and shortness of breath with new oxygen requirements to
evaluate for pulmonary embolism. The patient has a prior history
of oral tongue malignancy and known pulmonary nodules.
......
Impression:

After further review of the images, there is a small filling defect
demonstrated within the subsegmental branch of the left lower
lobe pulmonary artery adjacent to the major fissure that is con-
sistent with pulmonary embolism.

Numerous studies conducted at individual institutions have

developed NLP tools to analyze free-text medical reports
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and notes. However, there are challenges and limitations that

must be addressed in order to fully harness the potential

of automated methods in VTE diagnosis. We discuss the

limitation of L1, L2 and L3 as follows:

(L1): Achieving a probability of higher accuracy in machine

learning tasks requires a well-labeled dataset. However, the

availability of adequate numbers of de-identified and labeled

VTE data is limited, and this scarcity is exacerbated by the

problem of data imbalance. The scarcity of VTE medical data

usually arises from various factors, such as privacy concerns

(e.g., hospitals may be reluctant to share patient personal data),

restricted data accessibility, and the challenges of gathering

large-scale labeled datasets in the medical domain. This lim-

ited availability of VTE data poses difficulties for effectively

training machine learning models since clinical experts have

to read and label the data reports.

(L2): Transfer learning (TL) and pre-trained models have

become popular in the fields of NLP and medical text analysis

[7]–[12]. However, there is limited research discussing the

use of pre-trained models to enhance model accuracy in

VTE prediction. In such scenarios, transfer learning proves

valuable by leveraging pre-trained models that have learned

generic features from large-scale medical datasets or related

tasks. These models can be fine-tuned on the limited VTE

data available. However, choosing the best pre-trained model

among the many available can be a challenging endeavor

due to their significant variations. Each pre-trained model

possesses distinct characteristics, making the selection process

more complex.

(L3): Traditional NLP methods usually involve rule-based

systems or statistical machine learning approaches [2], [5],

[13]–[15]. Although rule-based approaches offer the advantage

of requiring less training data and producing explainable

results, the design process for these methods demands a

substantial amount of effort by domain experts. Statistical

approaches offer the benefit of requiring minimal effort during

training. However, they require a large amount of training data

to ensure accuracy and provide results based on probabilities.

To address the issue of limited datasets affecting model ac-

curacy, we employed the Data Augmentation (DA) technique

[16]. However, in the case of text data, traditional image-based

DA techniques are not directly applicable. To address this,

textual DA techniques are employed to generate additional text

samples by applying word replacement, synonym substitution,

sentence shuffling, and contextual augmentation. By leverag-

ing these techniques, we can effectively increase the amount of

training data, thereby helping to alleviate the data imbalance

problem and slightly improved the model performance.

To discover the optimal pre-trained model, we have devel-

oped an Adaptive Pre-train Model Selection (APMS) algo-

rithm. This intelligent algorithm dynamically selects the most

appropriate pre-trained model based on the unique attributes of

specific downstream tasks and data characteristics. By doing

so, our aim is to enhance model performance and efficiency by

leveraging the strengths of different pre-trained models to ad-

dress the challenges posed by limited datasets in the context of

VTE. We utilize the pre-trained BERT [17] model, specifically

ClinicalBERT [18] selected by AMPS, for word embedding

in medical texts. Subsequently, a bi-directional LSTM (Bi-

LSTM) network is fine-tuned on the embedded representations

to perform the classification task. The Bi-LSTM architecture

involves stacking two LSTM layers together. This arrangement

effectively enhances the information available to the network,

thereby improving its ability to learn from the context. The

dataset used consists of free-text medical reports obtained from

University of Maryland Medical Center (UMMC) hospitals.

These reports are de-identified and have been annotated by

medical professionals.

Ultimately, we constructed a rule-based deep-learning

model for the purpose of classifying the VTE dataset. This

model utilizes a combination of rules and deep learning

techniques to accurately categorize VTE and Non-VTE within

the dataset based on predefined criteria. The integration of

rule-based methods with deep learning enhances the model’s

ability to capture complex patterns and achieve more effective

and accurate VTE classification. Importantly, the NLP model

has the capability to automatically generate labels for the VTE

dataset. This automated labeling process eliminates the need

for manual annotation, significantly reducing human effort and

potential errors.

We summarize our contributions as follows:

• The paper presents an automated approach for VTE

classification using DL and NLP model, enabling timely

detection and improved patient outcomes.

• An adaptive pre-train model selection (APMS) algorithm

is proposed to dynamically choose the best pre-trained

model for improved VTE classification.

• We applied the rule-based classifier, significantly enhanc-

ing the predictive capability of the DL model, especially

in cases where the PE dataset is small and exhibits

class imbalance. We also introduced Data Augmentation

techniques to mitigate the impact of limited PE datasets,

slightly enhancing model performance.

• We conducted plenty of experiments and evaluations. The

results demonstrated the model’s high effectiveness in

predicting VTE events, achieving an impressive accuracy

rate of 98.3%. These findings highlight the model’s

robustness and its potential to significantly contribute to

VTE research.

II. RELATED WORK

Traditionally, NLP systems for classification involved rule-

based methods or statistical machine learning approaches.

Rule-based methods necessitated considerable effort from do-

main experts for manual feature selection, while statistical

approaches required a large volume of training data. Despite

deep learning (DL) studies showing improved results, it is

noteworthy that there are not many works utilizing DL meth-

ods for classifying VTE from medical report datasets because

of the limited datasets.

Traditional approaches. Nelson et al. [2] combined statistical

machine learning and rule-based NLP methods to identify
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postoperative VTE among surgical patients treated in VA

hospitals. However, their NLP system was proven unsuccessful

and failed to adequately identify postoperative VTE events

based on clinical notes. Tian et al. [13] randomly sampled radi-

ology reports from a university health network of 5 hospitals in

Montreal. The authors trained and utilized rule-based symbolic

NLP classifiers from the dataset. They achieved 73% positive

predictive value (PPV) on DVT and 80% PPV on PE. Sabra

et al. [14] proposed a Semantic Extraction and a Sentiment

Assessment of Risk Factors approach to produce feature inputs

to a support vector machine classifier for VTE identification.

Due to their small dataset of clinical narratives from electronic

health records (EHR), the resulting F1 score was only 0.7.

Shi et al. [5] extracted clinical notes from 2 independent

healthcare systems. Their NLP system broke down a patient’s

report into sentence tokens. It identified relevant concepts by

tokens and aggregated those semantic representations back to

the document level, and eventually to the patient level for

VTE classification. The results were an AUC of 0.9 for PE

and an AUC of 0.92 for DVT. Verma et al. [15] employed an

NLP algorithm, based on weighted regular expression rules,

to classify radiologist reports of medical images for VTE.

However, those rules were hand-picked by domain experts.

Their approaches achieved a PPV of 0.90 and an AUC of

0.96 for identifying DVT; for PE, the results were a PPV of

0.89 and an AUC of 0.96.

Deep Learning methods. Many medical text classification

tasks have taken advantage of Deep Learning approaches.

Mulyar et al. [7] explored several architectures for modeling

phenotyping that rely on BERT representations of free-text

clinical notes. Olthof et al. [8] also concluded that the deep

learning-based BERT model outperformed traditional ML and

rule-based methods in radiology reports classification tasks.

Goodrum et al. [9] extracted text from EHR and evaluated

multiple text classification ML models, including bag-of-

words and machine learning methods. The results showed that

a deep learning model using ClinicalBERT performed best.

They concluded that deep learning methods were effective in

identifying clinically-relevant content. Lee et al. [10] found

that RNN-based networks had the ability to classify significant

findings in radiology reports with high F1 scores. A compara-

tive analysis of text classification methods [11] studied the im-

pact of various word representations, text pre-processing, and

classification algorithms on different text classification tasks.

Their results showed that the Bi-LSTM algorithm combined

with Word2Vec embedding trained on MIMIC performs the

best, BioBERT the second. For VTE risk factor identification

tasks based on electronic medical records, a hybrid study

[12] employed BERT for word embedding, and Bi-LSTM for

information extraction. Then they used rule reasoning to judge

the risk of PE. Experiment results showed that this method

achieved 93.3% and 94.3% of entity and relation F1.

In contrast to their research ideas, we propose a DL model

where we employ pre-trained ClinicalBERT for feature selec-

tion and a Bi-LSTM network for classification tasks. For the

PE dataset, we employ a data augmentation method to generate

Clinical BERT

VTE Reports
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Output
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Extraction Bi-LSTM
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Fig. 1: Model structure. The ClinicalBERT layer transforms

input text into word embeddings. [CLS] here is a special

classification token and this token is used for classification

tasks. [CLS] tokens store the vectors for classification tasks.

Those features are fed into Bi-LSTM and linear layers for

training.

synthetic data for training. We also enhance the prediction of

the DL model with a rule-based classifier.

III. PROPOSED METHODS

We propose a deep learning (DL) model that comprises

two main functions: (1) Feature selection: We applied a pre-

trained ClinicalBERT model to convert medical texts into

numerical representations. (2) Classification task: We applied

bi-directional LSTM (Bi-LSTM) to train a model based on the

embedded data and use the trained model for prediction tasks.

As shown in Figure 1, for the input text, data augmentations

and Adaptive Pre-train Model Selection are performed. Then

a tokenizer converts the text into tokens, attaching a [CLS]

token to the beginning. The [CLS] tokens store the vectors for

classification purposes. The pre-trained ClinicalBERT model

processes the tokens and produces word embeddings from the

input vectors. The classification layer of the output embed-

dings is extracted and fed to the Bi-LSTM layer. A linear

layer is attached to Bi-LSTM and they are trained together

for classification tasks. Each part of the model is described in

detail below. After that, a rule-based classifier is attached to

enhance the predictions of the DL model.

A. Textual Data Augmentation

Labeled and de-identified VTE data is scarce since it’s time-

consuming and costly to prepare the data. Also, medical data

is sometimes imbalanced, as the positive examples are far

fewer than the negative examples. Therefore we can apply

the technique of data augmentation to artificially increase the
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size and diversity of a textual dataset by generating new ex-

amples with slight modifications while preserving the original

meaning. Textual data augmentation helps in improving the

performance and robustness of NLP models, especially when

faced with limited labeled or imbalanced data. An empirical

study [19] suggests that for supervised learning, token-level

augmentations, specifically word replacement and random

swapping, consistently demonstrate the most enhancement in

performance.

Algorithm 1: Data Augmentation Algorithm for VTE

Text Classification

Require: Training VTE dataset D with labeled reports,

augmentation parameters

Ensure: Augmented training dataset D′

1: Initialize an empty augmented dataset D′ = {}
2: for n iterations do

3: Randomly select a text-label pair from the minority

class

4: repeat

5: (augmin, augmax) augments are produced

6: Randomly select a sentence s from the text

7: Tokenize the sentence into individual tokens

8: if Synonym Replacement then

9: Randomly select 1 token t within the sentence

10: Look for the synonyms of t from the database,

produce a list of synonyms

11: Replace t with a randomly selected synonym

from the list with probability preplace

12: else

13: if Random Swapping then

14: Randomly select 2 tokens t1, t2 within the

sentence

15: Swap the positions of t1, t2 with probability

pswap

16: end if

17: end if

18: Add augmented text-label pair (x, y) to D′

19: until (augmin, augmax) augments are produced

20: end for

21: return augmented dataset D′

Word replacement data augmentation methods involve re-

placing specific words in the training data with alternative

words or synonyms. These techniques slightly change the

wording in the text while preserving the overall meaning.

We apply the commonly used synonym replacement in our

experiments. This technique replaces a word with one of its

synonyms. It helps diversify the vocabulary and introduces

alternative expressions while maintaining semantic similarity.

The synonym library we use is from the PPDB database

[20]. We also experiment with random swapping, which is

a data augmentation method used to generate new training

samples by swapping words or tokens within a sentence while

maintaining the overall sentence structure. The aim is to

Algorithm 2: Adaptive Pre-train Model Selection

(APMS) Algorithm for VTE Dataset

Require: VTE dataset, list of pre-trained model options

M = {M1,M2, . . . ,Mk}, evaluation metric(s)

E = {E1, E2, . . . , Em}
Ensure: Optimal pre-trained model M∗ for VTE task

1: Parameters:

2: Number of pre-trained model options, k

3: Number of evaluation metrics, m

4: Split the VTE dataset into training, validation, and test

sets: Dtrain,Dval,Dtest.

5: for each pre-trained model Mi ∈ M do

6: Initialize the model Mi with pre-trained weights.

7: Fine-tune the model Mi on the training set for VTE

task:

8: for each evaluation metric Ej ∈ E do

9: Add task-specific layers and loss functions for

binary classification (e.g., VTE or non-VTE).

10: Fine-tune the model Mi on the VTE-specific data

using hyperparameters and optimization techniques.

11: end for

12: for each evaluation metric Ej ∈ E do

13: Evaluate the fine-tuned model Mi on the validation

set for VTE task using evaluation metric Ej .

14: end for

15: end for

16: Identify the pre-trained model M∗ with the best

performance on the validation set for VTE task based on

the evaluation metrics:

M∗ = arg max
Mi∈M





∑

Ej∈E

Ej(Mi,Dval)



 .

17: Fine-tune and evaluate the selected optimal model M∗

on the test set for VTE task to obtain final performance

results.

18: return The optimal pre-trained model M∗ for the VTE

task.

introduce variations in the data and can help improve model

performance and generalization. The DA algorithm is shown

in Algorithm 1.

This algorithm outlines the steps to perform data augmen-

tation for the VTE classification task. It includes two types of

possible transformation including synonym replacement and

random swapping. The parameters preplace, pswap, control the

probabilities of applying each transformation, while augmin

and augmax determine the minimal and maximal numbers

of words will be augmented. If augmax is not given, the

number of augmentation is calculated via preplace or pswap. If

the calculated result from p is smaller than augmax, will use the

calculated result from p. Otherwise, using augmax. Parameter

n determines the number of synthetic samples that will be

generated. The resulting augmented dataset D′ contains the
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original images along with their augmented versions, ready

for training a robust VTE classification model. We tested both

synonym replacement and random swapping only on the CT

scan reports (PE classification) dataset since the data contains

fewer samples and is imbalanced.

B. Adaptive Pre-train Model Selection (APMS)

The Adaptive Pre-train Model Selection (APMS) algorithm

is designed to dynamically and intelligently select the most

suitable pre-trained model based on specific downstream tasks

and data characteristics. The goal is to optimize model perfor-

mance and efficiency by leveraging the strengths of different

pre-trained models for various tasks. Algorithm 2 illustrates

the pseudo-code summary of the APMS. The selection method

is inspired by [21].

The selection process shows that the pre-trained Clini-

calBERT [18] outperforms others in word embedding. The

other two candidate methods are: (1) Original BERT, and

(2) Clinical BioBERT, fine-tuned from BioBERT [22] with

clinical notes. We select ClinicalBERT because of its superior

performance [9] and its relevance to the domain of medical

texts. ClinicalBERT is a publicly available word embedding

model pre-trained on a large and publicly accessible collection

of clinical notes: MIMIC-III v1.4 database, which contains

approximately 2 million clinical notes.

C. Word Embedding with Clinical Expert Rule-based Classi-

fier

Following data augmentation, the medical reports undergo

tokenization, dividing radiology reports into token vectors

limited to a maximum length of 512 tokens. These vectors

are then converted into numerical representations using a pre-

trained word embedding layer. The [CLS] tokens within these

representations encapsulate all the necessary information for

the classification task. These features, with a dimension of

768, are used as input to the classifier during training. The Bi-

LSTM layer’s output consists of both forward and backward

sequences, which are concatenated before passing to the linear

layer. Both the Bi-LSTM and linear layer are trained together

during the fine-tuning process.

Given a limited dataset size and imbalanced classes, deep

learning models often overfit on the majority (negative) class.

To counter this issue, we leverage the strength of a rule-based

expert system [23], which focuses on predicting the positive

class. Specifically, we apply the CT-All PE ruleset which was

developed by medical experts for identifying PE in CT scan

reports [24]. By incorporating this ruleset, we aim to improve

the predictions of our DL model on the PE - CT scan reports

dataset. The ruleset consists of a series of regular expressions

designed to match specific keywords within a CT scan report.

Each match is assigned a score of -1, 0, or 1. The rule-based

classifier first breaks down a report into sentences and then

computes a sentence score by aggregating the scores of each

match within that sentence. For example, if a sentence contains

the keywords [segmental] and [filling], the sentence score is

1. However, if the sentence also contains keyword [no] OR

[negative] OR [without] OR [question] OR [unchanged], the

algorithm ignores previously assigned score 1, the sentence

score remains 0. All sentence scores are then summed to

produce a total score for the entire report. If the final score

is greater than 0, the output prediction is positive for PE;

otherwise, it is negative.

For the PE dataset, we combine the outcomes of both

the DL classifier and the rule classifier. In cases where the

DL classifier predicts a negative label but the rule classifier

predicts a positive one, we prioritize the output of the rule

classifier. However, there is an exception to this rule. If the

DL classifier assigns a high probability (more than 95%) of

the negative class and the report score is lower than 2, the

final prediction remains negative.

IV. EXPERIMENT RESULTS

A. VTE Datasets

We possess two datasets of medical imaging reports for

VTE classification (DVT and PE). These datasets comprise

de-identified and labeled medical reports. They were sourced

from the University of Maryland Medical Center (UMD). The

de-identification and labeling of datasets were done by medical

experts from UMD.

The first dataset includes 1,000 free-text duplex ultrasound

imaging reports. The reports were classified into 3 categories

by a Radiologist: Class 0 - No acute DVT, Class 1 - Upper

extremity acute DVT, and Class 2 - Lower extremity acute

DVT. A total of 78% of data samples fall into the category of

class 0, and 11% for class 1 and 2 respectively. The dataset

consists primarily of structured reports containing concise

texts, with the majority of them being less than 170 words

in length.

The second dataset includes 900 free-text chest computed

tomography (CT) angiography scan reports. It has fewer

samples than the first dataset and is more imbalanced. The

reports were classified into 2 categories: class 0 - No PE

(88%), class 1 - PE (12%). These CT scan reports contain

mostly unstructured texts and are longer in length. Most of

them are around 200 words. Some reports exceed 600 words.

The input size of a BERT model is limited to 512 tokens since

high-dimensional vectors require larger computational power.

Therefore longer text will be truncated to fit into the model and

some of the information in the text will be lost. The reports

also contain many special symbols, numbers, and punctuation.

All of these increase the complexity of the CT scan reports

dataset.

B. Experimental Settings

The experiment was run on a GPU-accelerated high-

performance computing (HPC) system, built using IBM Power

Systems AC922 servers. This system was designed to maxi-

mize data movement between the IBM POWER9 CPU and

attached accelerators like GPUs. The GPU was an NVIDIA

Tesla V100 GPU with a memory size of 16 GB. The ex-

periments were run on the IBM Watson machine learning

environment.
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TABLE I: Performance of different techniques on the DVT dataset of Ultrasound reports.

Algorithm Accuracy Sensitivity Specificity Precision Recall F1

ClinicalBERT + LSTM 0.885 0.885 0.88 0.92 0.885 0.887
ClinicalBERT + Linear 0.87 0.87 0.79 0.87 0.87 0.86
BioBERT + Bi-LSTM 0.955 0.955 0.94 0.957 0.955 0.955
BioBERT + LSTM 0.885 0.885 0.89 0.90 0.885 0.89
BioBERT + Linear 0.895 0.895 0.899 0.897 0.895 0.89
base BERT + Bi-LSTM 0.94 0.94 0.975 0.948 0.94 0.94

ClinicalBERT + Bi-LSTM (Ours) 0.97 0.97 0.93 0.97 0.97 0.97

TABLE II: Effectiveness of Data Augmentations on the PE dataset of CT scan reports.

Method Accuracy Sensitivity Specificity Precision Recall F1

No Augmentation 0.89 0.89 0.45 0.88 0.89 0.885
Random Swapping 0.9 0.9 0.33 0.88 0.9 0.877

Synonym Replacement (Ours) 0.911 0.911 0.41 0.90 0.911 0.895

TABLE III: DL classifier and rule classifier results on PE - CT scan reports dataset

Method Accuracy Sensitivity Specificity Precision Recall F1

Rule 0.972 0.972 0.955 0.975 0.972 0.973
DL 0.911 0.911 0.41 0.9 0.911 0.895

DL + Rule (Ours) 0.983 0.983 0.956 0.984 0.983 0.984

To evaluate the effectiveness of Transfer Learning, Data

Augmentation, and Rule-based system, we conducted three

sets of experiments. The first set utilized the DVT dataset,

which consists of shorter and well-structured text from Ul-

trasound reports. We tested the ClinicalBERT and Bi-LSTM

models proposed in this study, along with several baseline

algorithms. In the second set of experiments, we focused

on the PE dataset, which contains longer and more intricate

text from CT scan reports. This dataset is limited in size

and imbalanced. The third experiment aims to assess the

effectiveness of integrating the capabilities of both a DL

classifier and a rule-based classifier when dealing with the

PE dataset.

We split the datasets into 80% training set and 20% test

set. The training sets are further split into 90% train sets and

10% validation sets. For the DVT dataset that contains mostly

short texts, the input texts are limited to a maximum of 170

tokens. Any input longer than that will be truncated to the

right, shorter texts are padded. For the PE dataset, input texts

are limited to 512 tokens, which is the maximum input size of

ClinicalBERT. Longer texts are truncated to the left since we

notice that some important information such as conclusions

usually appear by the end of the CT scan reports. The Bi-

LSTM network’s input size is 768, which is the dimension of

BERT’s output [CLS] tokens. It is comprised of two layers,

each having a hidden size of 256. A linear layer is appended

to the Bi-LSTM network to form a classifier.

C. Model Performance

We compare the proposed method with some baseline

contextual embedding techniques and classification methods.

The baseline Transfer Learning methods for word embedding

include:

• Original (base) BERT: this contextual word embedding

network was trained on Wikipedia 2.5 billion words and

Books Corpus 0.8 billion words. It’s a general-purpose

language representation model that can then be fine-

tuned on small-data NLP tasks. BERT improves upon

previous models by introducing deep bidirectionality and

unsupervised learning. Unlike its predecessors, BERT is

the first language model to be pre-trained solely on a

plain text corpus.

• BioBERT fine-tuned on clinical notes: BioBERT is

a domain-specific language representation model pre-

trained on large-scale biomedical corpora of biomedical

research articles: PubMed article abstracts and PubMed

Central article full texts. It’s designed for biomedical text-

mining tasks. Alsentzer et al. [18] fine-tuned BioBERT

on the MIMIC-III v1.4 database. Note that both Clini-

calBERT and BioBERT were initialized with base BERT

and then fine-tuned on other domain-specific databases.

The baselines of classification methods are the LSTM net-

work and linear classifier. The LSTM network only consists of

unidirectional layers, making it a more basic variant compared

to the Bi-LSTM. In order to perform classification tasks,

a linear layer is added to the LSTM network, similar to

the Bi-LSTM approach, and both components are trained in

conjunction. The linear classifier consists of two linear layers

with 256 hidden sizes.

Table I shows the experiment results in terms of common

metrics of weighted precision, recall, and F1 scores, as well as

accuracy, sensitivity, and specificity. Our purposed method of

ClinicalBERT and Bi-LSTM performs the best, with the high-
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Fig. 2: ROC curves of different methods on the DVT dataset of Ultrasound reports. (Class 0 - No acute DVT, Class 1 - Upper

extremity acute DVT, and Class 2 - Lower extremity acute DVT.)
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Fig. 3: ROC curves of different Data Augmentation methods on the PE dataset of CT scan reports. (class 0 - No PE, class 1

- PE.)

est values across all performance measures. Both BioBERT

and BERT demonstrate strong performance, when combined

with Bi-LSTM, yielding results that are close to the top-

performing methods. Although BERTs exhibit good perfor-

mance across all variants, their effectiveness starts to decrease

when the classification methods are switched to LSTM or lin-

ear classifiers. The results indicate that the power of domain-

specific ClinicalBERT embeddings effectively transfers to the

VTE dataset, and the Bi-LSTM network performs better than

the basic LSTM and linear classifiers. The ROC curves of

the three best models are shown in Figure 2. They consist of

different BERT embedding with Bi-LSTM classifiers. Their

resulting AUCs are very similar.

Data augmentation techniques are only applied to the PE

dataset, which is characterized by its limited size and imbal-

anced classes. The dataset consists of 900 CT scan reports,

with 88% of them falling into the majority class labeled as neg-

ative for pulmonary embolism (PE). Before word embedding,

the text undergoes two types of data augmentation: Synonym

Replacement and Random Swapping. Each of these techniques

has a few adjustable parameters. Both methods generate 200

synthetic instances specifically for the minority class. Incor-

porating more supplementary data would lead the model to

rapidly overfit the training set. The influence of augmentation

probability is significant in determining the outcomes. In the

case of Synonym Replacement, a higher probability of 0.8 is

preferred to improve performance. Conversely, for Random

Swapping, a lower probability of 0.2 is more inclined to yield

favorable results. The minimal number of augmentations is 30

for both methods.

In Table II, the outcomes of two different Data Augmen-

tation methods implemented on the PE dataset are displayed.

Synonym Replacement demonstrates slightly superior perfor-

mance when compared to Random Swapping. Both techniques

exhibit better results than not employing any augmentation.

However, both augmentation methods still tend to overfit the

training data, causing the trained models to correctly predict

more samples of the majority class, but perform slightly worse

when predicting the minority class. Hence No Augmentation

method produces a higher specificity score. The ROC curves

of different data augmentation methods are shown in Figure 3.

The two augmentation methods produce slightly better AUCs

than no augmentation approach.

Table III presents the performances of DL and rule-based
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classifiers on the PE dataset. The integration of the rule

classifier’s predictions into our proposed DL model leads to a

substantial enhancement in the results. Notably, all evaluation

metrics show improvement, with specificity experiencing a

remarkable increase from 0.41 to 0.956. The incorporation

of rule-based systems plays a crucial role in enhancing the

DL model’s predictive capacity, especially for the rare class.

This integration effectively addresses the challenges posed by

imbalanced datasets and significantly improves the model’s

ability to accurately classify instances of the rare class on the

PE dataset.

V. CONCLUSION

In this study, we have successfully utilized Deep Learn-

ing (DL) and NLP techniques to effectively identify venous

thromboembolism (VTE) based on freetext clinical reports

obtained from medical imaging. Our approach incorporates

advanced NLP methods, including ClinicalBERT for word

embedding and Bi-LSTM networks for model training, leading

to the transformation of textual data into numerical features.

To optimize our model’s performance, ClinicalBERT was fine-

tuned on corpora of radiology reports, making it particularly

efficient at handling Natural Language Processing (NLP) tasks

in identifying VTE events. Additionally, we addressed the

challenges posed by the complexity and data imbalance of

classifying PE through the application of a textual Domain

Adaptation (DA) method and an APMS pre-trained model

section algorithm. To further enhance accuracy, a clinical

expert rule-based approach was introduced, which showed

notable improvements in the DL model’s performance. As

a result, our model achieved impressive results, boasting a

remarkable 97% accuracy and F1 score on the DVT dataset

and an exceptional 98.3% accuracy and 98.4% F1 score on the

PE dataset. The experimental findings substantiate the efficacy

of NLP Transfer Learning approaches and NLP rule-based

methods for medical text classification tasks.
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González Cristóbal, “Hybrid approach combining machine learning and
a rule-based expert system for text categorization,” in Proceedings of

the Twenty-Fourth International Florida Artificial Intelligence Research

Society Conference, (Palm Beach, Florida), pp. 323–328, AAAI, 2011.
[24] A. A. Verma, H. Masoom, C. Pou-Prom, S. Shin, M. Guerzhoy,

M. Fralick, M. Mamdani, and F. Razak, “Developing and validating
natural language processing algorithms for radiology reports compared
to icd-10 codes for identifying venous thromboembolism in hospitalized
medical patients,” Thrombosis Research, vol. 209, pp. 51–58, 2022.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on January 26,2024 at 16:59:01 UTC from IEEE Xplore.  Restrictions apply. 


