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Abstract—Real-time anomaly detection and trajectory prediction in autonomous ve-

hicles demand models both computationally efficient and accurate. Traditional deep

learning approaches often suffer from high latency, energy inefficiency, and complex

training, limiting their suitability for edge-based inference. We propose a hardware-

optimized architecture combining an autoencoder (AE) and reservoir computing

(RC) implemented on a 22nm CMOS ASIC. The AE extracts spatial features from

multi-sensor data, while the RC captures temporal patterns for robust anomaly de-

tection and trajectory forecasting. With ultra-low power consumption and high-speed

processing, our system is well-suited for resource-constrained IoT environments like

autonomous vehicles. Evaluated on the KITTI dataset, the AE-RC model achieves

96.8% accuracy, with 5.6mW power usage and 5µs inference latency. This work ad-

vances energy-efficient, high-performance AI hardware for safety-critical automotive

applications and enables scalable edge intelligence in next-generation IoT systems.
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T
he rapid advancement of autonomous vehicles

(AVs) has driven the need for efficient, real-time

anomaly detection and trajectory prediction to

ensure safe navigation in complex environments. AVs

rely on high-dimensional data from sensors such as

LiDAR, radar, cameras, GPS, and IMUs,1 generating

over 2 GB/s of data that needs to be processed

with ultra-low latency for timely decisions.2 Cloud-

based solutions struggle with latency, bandwidth, and

security limitations,3 prompting a shift toward edge-

based AI for on-device inference.4 While deep learning

techniques are widely used,5 conventional models like

Convolutional Neural Networks (CNNs) and Recurrent

Neural Networks (RNNs) face trade-offs. CNNs excel

at spatial feature extraction but lack temporal context,6

whereas LSTM7 and GRU8 models capture temporal

dynamics but are computationally intensive, limiting

their suitability for low-power, real-time edge deploy-
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ment.

To overcome such limitations, we propose a novel

Autoencoder-Reservoir Computing (AE-RC) model im-

plemented on a 22nm Application-Specific Integrated

Circuit (ASIC) designed for low-power, high-speed AI

processing at the edge. Our approach leverages the

energy efficiency of ASIC hardware and the compu-

tational simplicity of reservoir computing, a class of

recurrent neural networks that eliminates the need

for costly backpropagation through time (BPTT) train-

ing.9 In reservoir computing (RC), a high-dimensional

dynamical reservoir, constructed with random, static

connections, embeds temporal features with a simple

linear read-out, greatly reducing training complexity.

While RC variants such as Echo State Networks and

Liquid State Machines rely on densely connected node

arrays, our Delayed Dynamical Feedback Reservoir

(DDFR) replaces hundreds of physical neurons with

a single nonlinear element plus a delay line, repro-

ducing rich temporal dynamics with far less circuitry

and power. The autoencoder (AE) module extracts low-

dimensional latent representations of vehicle sensor
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data using Multiply and Accumulate (MAC) opera-

tions, significantly reducing computational overhead.

The DDFR in our system enhances stability and adapt-

ability, mitigating issues of gradient vanishing and com-

putational bottlenecks commonly encountered in deep

recurrent architectures. We use a Support Vector Ma-

chine (SVM) readout layer to classify anomalies. Since

the RC fixes its internal weights, only the SVM needs

training, avoiding costly end-to-end gradient updates

while preserving accuracy.

While reservoir computing efficiently captures tem-

poral dependencies, its deployment in AVs requires

hardware capable of real-time, low-power inference.

GPUs10 and FPGAs11 offer AI acceleration but suffer

from high power usage and latency. In contrast, ASICs

provide tailored hardware optimized for operations like

matrix multiplications and activation functions,12 en-

abling energy-efficient, real-time sensor processing.

Integrating our AE-RC model into an ASIC framework

allows on-device anomaly detection and trajectory pre-

diction with minimal latency, removing dependence on

cloud-based inference.

The contributions of this work are summarized

as follows. We present the first AE–RC ASIC in 22

nm CMOS for real-time AV anomaly and obstacle

detection. The autoencoder uses MAC crossbars to

condense high-dimensional sensor data into com-

pact, noise-reduced latent space, cutting computa-

tional cost. A delayed-feedback reservoir then captures

temporal dependencies without backpropagation, en-

abling low-latency, minimal-training anomaly and tra-

jectory inference. We evaluate the architecture using

the large-scale KITTI dataset,13 which includes di-

verse driving scenarios like pedestrians and oncom-

ing vehicles, treated as anomalies. Our ASIC-based

AE-RC design demonstrates high accuracy, superior

energy efficiency, and significantly reduced inference

latency, outperforming state-of-the-art models in real-

world edge AI applications for autonomous driving.

RELATED WORKS
Common AI accelerators in AVs include Graphics

Processing Units (GPUs), Field Programmable Gate

Arrays (FPGAs), and Application-Specific Integrated

Circuits (ASICs). GPUs, such as in NVIDIA’s Drive

PX2 platform, are widely used for parallel tasks like

object detection and sensor fusion,10 but their high

power consumption and general-purpose design limit

suitability for energy-constrained, latency-critical ap-

plications. FPGAs, such as Xilinx’s Zynq UltraScale

MPSoC, offer reconfigurability and improved efficiency

for real-time workloads,11 but are hindered by com-

plex programming, higher cost, and notable power

demands, reducing their scalability in AV systems.

ASIC-based computing offers an optimal solution

for AI acceleration in AVs by providing hardware tai-

lored to specific autonomous driving workloads. These

custom chips maximize efficiency, minimize energy

use, and enable low-latency, real-time inference.12

Companies like Mobileye, NVIDIA, and Qualcomm

have developed ASICs with dedicated accelerators

for tasks such as computer vision, sensor fusion,

and trajectory prediction.14 By leveraging ASICs, AVs

benefit from deterministic inference times, essential

for safety and decision-making. This work builds on

these advantages by implementing a custom 22nm AI

accelerator to execute an AE-RC model for real-time

edge-based anomaly detection.

THE AE-RC ARCHITECTURE
The AE-RC architecture, shown in Figure 1, processes

sensor data from autonomous vehicles using an au-

toencoder to extract spatial features through dimen-

sionality reduction. These features are then passed

to the DDFR for temporal feature extraction. The

combined output is classified by an SVM to detect

anomalies and trajectory deviations during obstacle

encounters.15

The Autoencoder Layer
The autoencoder layer compresses multi-modal sensor

inputs from LiDAR or cameras, into a compact latent

space, denoising and distilling essential spatial fea-

tures such as speed and object positions.16 By map-

ping high-dimensional data into a lower-dimensional

representation, it reduces computational load while

preserving critical information for the DDFR down-

stream. The encoding phase process is mathematically

represented as:

Z = ReLU(WeX + be), (1)

where X represents the input feature vector, We and

be are the learnable weight matrix and bias terms of

the encoder, while ReLU is the activation function for

nonlinearity and robustness.

The decoder reconstructs the input from the latent

space in compressed form, reducing dimensionality

and noise, as described by (2):

Xrec = ReLU(Wd Z + bd ) (2)

where Wd and bd are the decoder weights and bias,

and Z is the latent vector fed into decoder. We use
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