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Abstract—Real-time anomaly detection and trajectory prediction in autonomous ve-
hicles demand models both computationally efficient and accurate. Traditional deep
learning approaches often suffer from high latency, energy inefficiency, and complex
training, limiting their suitability for edge-based inference. We propose a hardware-
optimized architecture combining an autoencoder (AE) and reservoir computing
(RC) implemented on a 22nm CMOS ASIC. The AE extracts spatial features from
multi-sensor data, while the RC captures temporal patterns for robust anomaly de-
tection and trajectory forecasting. With ultra-low power consumption and high-speed
processing, our system is well-suited for resource-constrained loT environments like
autonomous vehicles. Evaluated on the KITTI dataset, the AE-RC model achieves
96.8% accuracy, with 5.6mW power usage and 5us inference latency. This work ad-
vances energy-efficient, high-performance Al hardware for safety-critical automotive
applications and enables scalable edge intelligence in next-generation loT systems.
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ment.

To overcome such limitations, we propose a novel
Autoencoder-Reservoir Computing (AE-RC) model im-
plemented on a 22nm Application-Specific Integrated
Circuit (ASIC) designed for low-power, high-speed Al
processing at the edge. Our approach leverages the
energy efficiency of ASIC hardware and the compu-
tational simplicity of reservoir computing, a class of
recurrent neural networks that eliminates the need
for costly backpropagation through time (BPTT) train-
ing.° In reservoir computing (RC), a high-dimensional
dynamical reservoir, constructed with random, static
connections, embeds temporal features with a simple
linear read-out, greatly reducing training complexity.
While RC variants such as Echo State Networks and
Liquid State Machines rely on densely connected node
arrays, our Delayed Dynamical Feedback Reservoir
(DDFR) replaces hundreds of physical neurons with
a single nonlinear element plus a delay line, repro-
ducing rich temporal dynamics with far less circuitry

he rapid advancement of autonomous vehicles

(AVs) has driven the need for efficient, real-time

anomaly detection and trajectory prediction to
ensure safe navigation in complex environments. AVs
rely on high-dimensional data from sensors such as
LiDAR, radar, cameras, GPS, and IMUs," generating
over 2 GB/s of data that needs to be processed
with ultra-low latency for timely decisions.? Cloud-
based solutions struggle with latency, bandwidth, and
security limitations,® prompting a shift toward edge-
based Al for on-device inference.* While deep learning
techniques are widely used,® conventional models like
Convolutional Neural Networks (CNNs) and Recurrent
Neural Networks (RNNs) face trade-offs. CNNs excel
at spatial feature extraction but lack temporal context,®
whereas LSTM” and GRU® models capture temporal
dynamics but are computationally intensive, limiting
their suitability for low-power, real-time edge deploy-
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and power. The autoencoder (AE) module extracts low-
dimensional latent representations of vehicle sensor
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data using Multiply and Accumulate (MAC) opera-
tions, significantly reducing computational overhead.
The DDFR in our system enhances stability and adapt-
ability, mitigating issues of gradient vanishing and com-
putational bottlenecks commonly encountered in deep
recurrent architectures. We use a Support Vector Ma-
chine (SVM) readout layer to classify anomalies. Since
the RC fixes its internal weights, only the SVM needs
training, avoiding costly end-to-end gradient updates
while preserving accuracy.

While reservoir computing efficiently captures tem-
poral dependencies, its deployment in AVs requires
hardware capable of real-time, low-power inference.
GPUs'® and FPGAs'! offer Al acceleration but suffer
from high power usage and latency. In contrast, ASICs
provide tailored hardware optimized for operations like
matrix multiplications and activation functions,'? en-
abling energy-efficient, real-time sensor processing.
Integrating our AE-RC model into an ASIC framework
allows on-device anomaly detection and trajectory pre-
diction with minimal latency, removing dependence on
cloud-based inference.

The contributions of this work are summarized
as follows. We present the first AEFRC ASIC in 22
nm CMOS for real-time AV anomaly and obstacle
detection. The autoencoder uses MAC crossbars to
condense high-dimensional sensor data into com-
pact, noise-reduced latent space, cutting computa-
tional cost. A delayed-feedback reservoir then captures
temporal dependencies without backpropagation, en-
abling low-latency, minimal-training anomaly and tra-
jectory inference. We evaluate the architecture using
the large-scale KITTI dataset,’® which includes di-
verse driving scenarios like pedestrians and oncom-
ing vehicles, treated as anomalies. Our ASIC-based
AE-RC design demonstrates high accuracy, superior
energy efficiency, and significantly reduced inference
latency, outperforming state-of-the-art models in real-
world edge Al applications for autonomous driving.

Common Al accelerators in AVs include Graphics
Processing Units (GPUs), Field Programmable Gate
Arrays (FPGAs), and Application-Specific Integrated
Circuits (ASICs). GPUs, such as in NVIDIA’s Drive
PX2 platform, are widely used for parallel tasks like
object detection and sensor fusion,'® but their high
power consumption and general-purpose design limit
suitability for energy-constrained, latency-critical ap-
plications. FPGAs, such as Xilinx’s Zynq UltraScale
MPSoC, offer reconfigurability and improved efficiency
for real-time workloads,!" but are hindered by com-

plex programming, higher cost, and notable power
demands, reducing their scalability in AV systems.

ASIC-based computing offers an optimal solution
for Al acceleration in AVs by providing hardware tai-
lored to specific autonomous driving workloads. These
custom chips maximize efficiency, minimize energy
use, and enable low-latency, real-time inference.'?
Companies like Mobileye, NVIDIA, and Qualcomm
have developed ASICs with dedicated accelerators
for tasks such as computer vision, sensor fusion,
and trajectory prediction.'* By leveraging ASICs, AVs
benefit from deterministic inference times, essential
for safety and decision-making. This work builds on
these advantages by implementing a custom 22nm Al
accelerator to execute an AE-RC model for real-time
edge-based anomaly detection.

The AE-RC architecture, shown in Figure 1, processes
sensor data from autonomous vehicles using an au-
toencoder to extract spatial features through dimen-
sionality reduction. These features are then passed
to the DDFR for temporal feature extraction. The
combined output is classified by an SVM to detect
anomalies and trajectory deviations during obstacle
encounters.'®

The Autoencoder Layer

The autoencoder layer compresses multi-modal sensor
inputs from LiDAR or cameras, into a compact latent
space, denoising and distilling essential spatial fea-
tures such as speed and object positions.'® By map-
ping high-dimensional data into a lower-dimensional
representation, it reduces computational load while
preserving critical information for the DDFR down-
stream. The encoding phase process is mathematically
represented as:

Z = ReLU(WeX + be), (1)

where X represents the input feature vector, W, and
be are the learnable weight matrix and bias terms of
the encoder, while ReLU is the activation function for
nonlinearity and robustness.

The decoder reconstructs the input from the latent
space in compressed form, reducing dimensionality
and noise, as described by (2):

Xrec = ReLU(W4Z + by) )

where Wy and by are the decoder weights and bias,
and Z is the latent vector fed into decoder. We use
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FIGURE 1. Architecture of the autoencoder-based reservoir computing model

ReLU for its simplicity, sparsity, and hardware-friendly
analog implementation due to its piecewise linear na-
ture. It also helps avoid vanishing gradients during
training. The autoencoder minimizes the reconstruction
error from the original input data, expressed using (3),

L= X — Xeec|. )

During inference, input data is passed through the au-
toencoder to produce a reconstructed output. Anoma-
lies, unseen or irregular patterns, result in higher re-
construction errors. Comparing this error to a thresh-
old allows detection, with outliers flagged when the
error exceeds the limit. This threshold is empirically
determined based on training data to balance detection
sensitivity and minimize false positives.

The core mathematical operation of the autoen-
coder from (1) and (2) involves MAC operations, which
can be realized using a crossbar architecture. To im-
plement the autoencoder in ASIC, the weight matrices,
We and Wy, can be mapped onto these crossbar
architectures, into the conductance values of each
cell, as demonstrated in Figure 2. We first discuss
the design of our individual cell properties and their
weight storage phenomenon to demonstrate how the
autoencoder is implemented via our crossbar.

A MOSFET operating in the deep triode region
behaves as a voltage-controlled resistor and is utilized
to store autoencoder weight values in our CMOS ASIC
implementation. As shown in Figure 2, each weight cell
is programmable using our custom cell design. When
the enable signal V. activates the write transistors, a
voltage Vi, charges the capacitor, setting a specific
drain-to-source voltage, Vys. This voltage determines
the effective channel resistance of the MOSFET, en-
abling analog weight storage. In this regime, the MOS-
FET'’s current—voltage relationship is defined by:
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where p is the carrier mobility, Cox is the gate oxide
capacitance, W/L is the width-to-length ratio of the
transistor, and Vy, is the threshold voltage. In our
architecture, the input signal V is applied as the gate-
source voltage Vgs, modulating the output current Iy
based on the stored weight V. This current repre-
sents the product of input and weight from (1) and (2),
which is collected at the column line of the crossbar,
enabling analog parallel vector-matrix multiplication.
The precision of this operation is affected by device
resistances and channel length modulation, which are
minimized through optimized transistor sizing and lay-
out techniques.

To model activation and bias in hardware, we de-
sign the circuit in Figure 2. Outputs from each cell
are summed and passed through a voltage-to-current
converter that includes RelLU activation. The resulting
current is combined with a bias and sent to the output
module. Resistor Ry converts current to voltage, which
drives MOSFET N5 in a transconductance amplifier
setup, effectively modeling the RelLU function such
that:

w

Vout = RopiCox (T) (Vo= Vih Vi > Vi (5)

The Delayed Dynamical Feedback Reservoir
The autoencoder output is passed through a mask-
ing module to enhance virtual node diversity before
entering the Delayed Dynamical Feedback Reservoir
(DDFR) in 22nm CMOS to extract temporal features.
We adopt binary masking for its low hardware cost
and effectiveness in spreading input signals across
reservoir states.'”” Masking ensures each node re-
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FIGURE 2. Modeling the autoencoder using cell and crossbar design

sponds uniquely, maximizing state space utilization.
This operation is expressed in (6),

N
Vour(t) = > Vin(t) - Vinek(2) (6)
m=1

where V/™(t) represents the input for the m™ virtual
node, VI (t) is the masking sequence, and Vou(t) is
the modulated signal.

To achieve the masking functionality we use our
design in Figure 3, where the input signals are sampled
at a rate of CLK;; and the differential pairs are applied
to the gates of transistors M, and My. The differen-
tial mask signal Vs, and Vye—, which carry the
variations, are applied to the transistors M, M;3, and
Mz, Myo. The mask signal pairs control the amount of
current flowing through the output nodes of the circuit,
modulating the drain current through Mz, M7, Mg, and
M;>. We formulate the relationship between the input
and output signals such that,

w
Vout = K(—) (Vinsk — Vip)2VinPa | 123 | 17 (7)
3,8

L

where R, corresponds to the load resistances, and ro3
and r,7 are the output resistances of the transistors in
the differential pair, Vip and Vpe is the threshold of
the transistor and mask signal respectively. Using this
technique, (7) can be implemented by our masking de-
sign from Figure 3, where the input signal is amplified
and imprinted with the mask.

The output from the masking stage is passed
through a nonlinearity module implementing the
Mackey-Glass function. As shown in Figure 3, the
analog circuit exhibits a piecewise response, at low

input voltages, transistor M; operates in subthreshold,
allowing the output to follow the input with a positive
gradient. Once the threshold is exceeded, My turns on
fully, and M, discharges the output, creating a negative
gradient. This threshold corresponds to the transistor’s
inherent V;,, defined by the 22nm CMOS process. This
compact design replicates the non-monotonic behavior
of the Mackey-Glass function.

The outputs are then fed into the Analog-to-Spike
Encoder circuit, which begins with a voltage-to-current
converter that activates neurons N1 and N2, as shown
in Figure 4. The high input impedance of the tran-
simpedance amplifier directs the signal to transistor
M2, where matched PMOS transistors M; and M- and
diode-connected transistors (Ms/Mg/M;o) ensure linear
and stable current scaling, mitigating channel length
modulation. The resulting mirrored currents, I and
loute, drive two leaky integrate-and-fire (LIF) neurons,
introducing spatiotemporal encoding. These neurons
integrate current over time on a membrane capacitor,
with V¢ evolving as:

dav _ 1

vl <Mh - Aeak> . (®)

(W/L)

When V. crosses a threshold set by Vi, inverters gen-
erate spikes, regulated by an external clock V. A pos-
itive feedback loop triggers transistor My to discharge
the capacitor and reset the neuron. The spike outputs
from N1 and N2 are combined into a unified spike train
that encodes the extracted temporal features, such
as motion dynamics and temporal correlations, into a
spatiotemporal format for neuromorphic processing.
This spike train is then injected into the reservoir
core, where delayed, recurrent spiking activity simu-
lates temporal feedback and memory. Each neuron
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FIGURE 3. The input module of the DDFR

output acts as a clock for the next, introducing delay =
and generating output spikes offset by 6. The spike
train is finally decoded into an analog signal using
a charge pump, where each spike Spk triggers the
transistor to turn on and incrementally raises the output
voltage across the capacitor. A buffer amplifier stabi-
lizes the output, and a feedback loop via a summing
amplifier combines the current input with a scaled
version of the prior output, enhancing the network’s
ability to learn time-varying patterns.

Support Vector Machine Classifier

The final layer utilizes an SVM classifier with a Radial
Basis Function (RBF) kernel to identify anomalies in AV
environments. The SVM operates by finding an optimal
decision boundary that separates normal and anoma-
lous driving behaviors, which can be mathematically
formulated as an optimization problem,

n
min %||w||2+c;s; ©)
where w and b define the decision hyperplane, C
is a regularization parameter balancing classification
accuracy and margin maximization, and &; are slack
variables allowing flexibility in handling misclassified
samples. The input feature vectors X; represent pro-
cessed driving patterns, while y; denotes the respec-
tive class labels, distinguishing normal vehicle behavior
from hazardous situations.

To enhance the classification capability, the RBF
kernel function is employed to map the input data
into a higher-dimensional space, allowing the SVM
to separate complex patterns effectively. The kernel
function is given by (10),

K(xi.x) = exp (=1 — xIF) (10)
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where ~ is a hyperparameter controlling the influence
of training samples on the decision boundary, and
||x; — x||? represents the squared Euclidean distance
between two feature vectors.

The SVM makes its final classification decision
based on the function:

N
f(x) = ciyiK(xi, x) + b (11)
i=1

where «; are Lagrange multipliers learned during train-
ing. The model classifies new driving behavior as
normal or anomalous according to (12),

f(x) > 0
f(x) <0

(Normal Driving Condition)

(Obstacle).
(12)

Measurement Results from the ASIC
Implementation

We validate our design by applying sample inputs to
the 3232 crossbar in Figure 2. Different write voltages
at Vi terminal program the weights, and the resulting
column output currents serve as inputs to the ReLU
activation module. Input voltages range from 400mV to
800mV. Figures 5a and 5b show the input voltages and
corresponding output currents across various weight
values, confirming that the outputs depend on both
the stored Vi, weights and the input signals, effectively
realizing matrix multiplication.

To test the modules of our DDFR on 22nm tech-
nology with a supply voltage of 800mV, we apply a
1MHz sinusoidal wave with 100mV amplitude as input,
emulating an analog signal. A binary mask waveform
is applied to the input terminals of the masking circuit
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c. Final outputs from decoder.

which then modulates the amplitude of the input signal
adding variability and increasing the dimensions in
the state space. The corresponding masked output
is demonstrated in Figure 6a. After the mackey-glass
nonlinearity is applied to the output, the signal goes
through the analog to spike converter module, gener-
ating the spike train from Figure 6b. This spike train
is injected onto the neuron core forming the reservoir
with a 500ns delay between each neuron. The outputs
from the decoder module is shown in Figure 6¢ from
3 blocks inside the core, demonstrating the reservoir’s
capability of combining the current and past outputs.
At a supply voltage of 800mV, the mask consumes

the most power of 1.2mW. The neurons and decoder
modules which form the bulk of the reservoir only con-
sume 3.3 W and 48 W respectively. The layout of the
DDFR in 22nm technology is demonstrated in Figure
7a. Area analysis in Figure 7b shows the mask and
encoder modules dominate overall area usage, with

the neuron and decoder modules occupying minimal
area.

Evaluation on the KITTI Dataset for Anomaly
Detection

We evaluate our anomaly detection framework using
the KITTI dataset on a 12GB NVIDIA Tesla K80 GPU
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FIGURE 7. a. Layout of our DDFR design. b. Area consump-
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with 13GB RAM. The dataset includes 7,480 training
and 7,517 testing RGB images labeled for object de-
tection. All images are resized to 128x128 (16,384)
and normalized to [0,1]. Object categories are parsed
from the label files, with outliers flagged as anomalies.
The dataset is randomly split 80/20 for training and
validation.

The autoencoder compresses the 16,384-
dimensional input into a 128-dimensional latent
space, with a compression ratio of 128:1, preserving
key structural features like edges and contours, while
filtering noise. The encoder has fully connected
layers sized 16,384x4096, 4096x1024, 1024x512,
and 512x128, where these matrix sizes translate
to the number of crossbar cells in hardware. This
AE is trained independently, using mean squared
error (MSE) loss over 100 epochs, achieving a final
reconstruction error of 0.0303.

The decoder is symmetric to the encoder, recon-
structing the images from the latent space, to be fed
into the DDFR which introduces memory via delayed
feedback loops. The DDFR has a controlled feedback
loop with a delay parameter, allowing the network to
retain past states while processing new inputs. The
reservoir state evolves according to:

r(f) = f(Whes - r(t—1)+ Win - x(t) + Wiy - r(t — d)+ b) (13)

June

TABLE 1. Comparison of state-of-the-art models.

Network Data Accuracy Loss Task
GRU®  Image - 0.03 Trajectory
Prediction
LSTM Radar 96% - Lane
+ Signal Change
GRU’
RCNN'™ Image 96% 0.06 Signal
Recognition
GSAN+ Image+ 92.7% 0.43 Lane
RNN'™  LiDAR Change
Variance LIDAR 69.2% 0.45 Trajectory
AE® Prediction
This Image 96.8% 0.03 Anomaly
Work Detection

where Wes is the recurrent weight matrix, W, is the
input weight matrix, W, represents the delayed feed-
back connections, d is the feedback delay, and f(-) is
the nonlinear activation function. The DDFR consists
of 100 neurons, where the critical parameters are the
spectral radius and leak rate, tuned to control the
reservoir's temporal memory depth and stability. This
structure enables the reservoir to encode spatiotem-
poral dependencies in the dataset, improving anomaly
detection performance.

The final anomaly classification stage is performed
using an SVM with the RBF kernel. The reservoir-
transformed features are used as input to the classifier,
enabling non-linear decision boundaries for anomaly
detection. The model achieves an accuracy of 96.8%
on the training set and 94.2% on the validation set.
Table 1 includes a comparison of our model with
diverse set of approaches applied to the different tasks,
highlighting the breadth of AV inference challenges.
Our model outperforms other models, achieving 96.8%
accuracy and an MAE loss of 0.03.

This work is the first to validate an AE-RC
anomaly-detection model in 22nm CMOS ASIC hard-
ware. To meet physical and energy constraints, we
simplify the input by extracting grayscale maps from
RGB images in the KITTI dataset and resizing them
to 5x5 pixels. This reduces input dimensionality to
25, enabling efficient mapping onto the crossbar. The
encoder compresses this into a 4-dimensional la-
tent space using 25x8 and 8x4 cells, achieving a
6.25:1 compression ratio. This simplified grayscale,
low-resolution design enables efficient ASIC deploy-
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FIGURE 8. a. Original and reconstructed images from the hardware AE-RC model b. Extracted weight matrix from the crossbar.

ment, with some trade-off in accuracy. Temporal feed-
back in the DDFR helps preserve anomaly detec-
tion performance, validating the AE-RC pipeline as a
lightweight, scalable solution. The extracted spatial fea-
tures and required crossbar cells are adaptable based
on deployment needs. The model is first trained offline,
after which the learned weight values are mapped onto
the crossbar hardware.

Figure 8a presents the resized input images along-
side their reconstructed counterparts and 8b shows the
crossbar mapping for our ASIC implementation. The
weight values are linearly mapped onto the crossbar,
and the processed input images are applied accord-
ingly. After the accumulated currents are computed, as
demonstrated in Figure 5, the signals pass through the
reservoir computing layer. The outputs from the reser-
voir are extracted and subsequently classified using
an SVM classifier following our previous setup. When
tested with 50 images, the ASIC system successfully
identified 30 normal images and correctly detected
20 anomalous images, with a power consumption of
5.6mW at a latency of 5us.

Our model functions as a low-latency, power-
efficient auxiliary perception layer that enhances the
AV’s core perception and control stack. Its modular
design allows it to run in parallel across different sensor
inputs. This enables strategies like combining results
over time or from multiple sensors, which helps reduce

false negatives and makes the system more reliable.
Furthermore, the use of an SVM with an RBF kernel
enables tunable confidence thresholds, allowing the
model to be conservatively biased in favor of minimiz-
ing unsafe outcomes.

This work introduces a hardware-efficient anomaly de-
tection framework combining an autoencoder with a
delayed feedback reservoir and SVM classifier. Imple-
mented in 22nm technology, the design enables ultra-
low-power, real-time inference for autonomous and loT-
enabled systems, achieving 96.8% accuracy on the
KITTI dataset. ASIC validation confirms its feasibility
for edge deployment in reliable applications.

This work was supported in part by the U.S. National
Science Foundation (NSF) under Grant CCF-1750450,
Grant ECCS-1731928, Grant ECCS-2128594, Grant
ECCS-2314813, Grant CCF-1937487, Grant CNS-
2103604 and Grant CNS-2231523.
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