

1 **Title:** Skin defenses and host-environment microbiome interactions in spotted salamanders

2 **Running title:** Skin defenses in spotted salamanders

3 **Authors:** Urrutia-Carter J.¹, Madison, J.D.^{1,2}, Frederick J.A.³, Muletz-Wolz C.R.¹

4 ¹Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute,

5 Washington DC, USA

6 ²Department of Biology, University of Massachusetts Boston, Boston, MA

7 ³Maryland Sea Grant, Institute of Marine and Environmental Technology, Baltimore, MD

8

9 **To whom correspondence should be addressed:**

10 Julian Urrutia-Carter (e) carter.julian131@gmail.com; (c) 240-753-9398

11 Carly Muletz-Wolz (e) craemuletz@gmail.com

12 3001 Connecticut Ave NW, Washington D.C., USA

13

14 **Total word count:** 4,394

15

16

17 **Abstract**

18 Emerging infectious diseases have been of particular interest as a major threat to global biodiversity. In
19 amphibians, two fungal sister taxa, *Batrachochytrium dendrobatidis* (Bd) and *Batrachochytrium*
20 *salamandrivorans* (Bsal) along with the viral pathogen ranavirus have affected global populations. Factors
21 such as host traits, abiotic and biotic environmental conditions, and pathogen prevalence contribute to
22 species specific disease susceptibility. The eastern United States is home to the Appalachian Mountain
23 system, known as a “hotspot” for salamander biodiversity. Bd and ranavirus are present throughout the
24 Appalachians, and a Bsal emergence could be imminent. Also throughout the Appalachians are the
25 spotted salamanders, *Ambystoma maculatum*, a mostly terrestrial salamander that participates in mass
26 breeding migration in the late spring. Previous experimental studies have shown that spotted
27 salamanders appear to be resistant to Bd and Bsal infection, but the mechanism of this defense remains
28 unknown. Spotted salamanders emerging from their overwintering habitats were hypothesized to have
29 potent anti-Bd function expressed in their mucus and in their skin microbiomes, as a countermeasure to
30 pathogen presence. We used non-invasive sampling at two pools during the spotted salamander annual
31 breeding event to (I) determine pathogen prevalence, (II) quantify the antifungal potential of salamander
32 skin mucus, and (III) characterize the diversity and composition of the salamander skin microbiome and
33 contrast it to that of the corresponding environmental microbiome. We did not detect any Bd, Bsal, or
34 ranavirus in the salamanders. The salamander mucus did not inhibit Bd growth in-vitro and few anti-Bd
35 bacteria at low relative abundance were present in the microbiome. The salamander microbiome sourced
36 a proportion of bacteria from the environment and appears to select rare taxa from their respective pools,
37 however their functional relevance in pathogen defense is unclear. Our results suggest that the spotted
38 salamander mucosal secretions or skin microbiome do not appear to be the mechanisms of defense
39 against Bd and Bsal during post-winter emergence. Instead, we suggest that a synergistic mechanism
40 within the salamander mucosal environment (e.g., AMPs-microbiome synergies) or skin immune cells
41 may confer resistance. This study contributes to the understanding of salamander intra- and interspecies
42 variation in disease susceptibility.

43 **Introduction**

44 Global biodiversity faces threats from a variety of sources, which include habitat loss (Cushman 2006),
45 climate change (Blaustein et al. 2010), overexploitation (Stuart et al. 2004) and emerging infectious
46 diseases (Fisher et al. 2020). Emerging infectious diseases have been of particular interest as a major
47 causal factor in amphibian declines and extinctions (Luedtke et al. 2023). The role of amphibian immune
48 and microbial defenses in observed differential species susceptibility during epidemics have been of
49 increasing interest (Madison et al. 2017; Scheele et al. 2019; Grogan et al. 2023). Understanding the
50 origin of host defenses against emerging infectious diseases and the mechanisms that promote them can
51 reveal key processes in host-microbial ecology and evolution, which may be critical to preserving
52 amphibian biodiversity in the event of disease outbreaks (Smith et al. 2018a; Ribas et al. 2022; Longo et
53 al. 2019).

54 In the eastern United States, the Appalachian Mountain system is home to the most speciose group of
55 salamanders in the world (Petranka and Smith 2005). In the Appalachians, three pathogens have been of
56 concern to salamander biodiversity including two fungal sister taxa, *Batrachochytrium dendrobatidis* (Bd)
57 and *Batrachochytrium salamandrivorans* (Bsal) (Martel et al. 2014; Scheele et al. 2019; Lötters et al.
58 2024) and double-stranded DNA viral pathogens in the genus *Ranavirus* (Sutton et al. 2015; Bartlett et al.
59 2021). The spread of the amphibian chytrids, Bd and Bsal, have exacerbated global declines in at least
60 500 amphibian species (Scheele et al. 2019). Bd is now enzootic in the US and examining host-pathogen
61 trade-offs is of interest in disease ecology (reviewed in Van Rooij et al. 2015; Grogan et al. 2023; Rollins-
62 Smith 2024). Fortunately, Bsal has not yet been detected in the US (Waddle et al. 2020), but a Bsal
63 introduction could alter extinction-speciation trends in Appalachian salamanders (Martel et al. 2014,
64 DiRenzo et al. 2022, Gray et al. 2023). *Ranavirus* is widespread in the US and their prevalence is likely
65 underestimated in the Appalachians (Mosher et al. 2018; Bartlett et al. 2021; Millikin et al. 2023). Previous
66 die-offs of Appalachian amphibians have been attributed to *Ranavirus* (Green et al. 2002) and species
67 susceptibility is higher in vernal pool breeding amphibians, particularly in larvae (Hoverman et al. 2011),
68 with limited sampling in adults.

69 Amphibians have a variety of host immune characteristics to combat pathogen infections (Grogan et al.
70 2018, 2023). Many salamander species are considered tolerant to Bd infection such as the eastern newt

71 (*Notophthalmus viridescens*) or resistant to infection, such as the red-backed salamander (*Plethodon*
72 *cinereus*) (Muletz Wolz et al. 2018; Jiménez et al. 2022). The amphibian skin mucus layer and its innate
73 defenses are the first physical barrier to pathogens. Peptides, secondary bacterial metabolites, and
74 symbiotic microbes make up each species' unique mucus composition and are predicted to be a key
75 factor in innate resistance mechanisms (Smith et al. 2018a; Jiménez et al. 2022; Rosa et al. 2022;
76 Rollins-Smith 2023). Additionally, host-associated microbial communities are known to contribute to
77 pathogen defense and maintain host health. However, the mechanisms of interaction between the host
78 microbiome and invading pathogens are not clear. Previous *in vitro* studies have shown the Bd-inhibitory
79 potential of bacteria present on amphibian skin (e.g. *Janthinobacterium lividum*, *Serratia marcescens*,
80 *Stenotrophomonas* sp. and *Chryseobacterium* sp.), yet few of these putative anti-Bd bacteria consistently
81 inhibit chytrid *in vivo* (Brucker et al. 2008; Park et al. 2014; Madison et al. 2019; Muletz-Wolz et al.
82 2019a). Specific interactions between bacterial taxa, the host, and the environment are likely altering
83 chytrid susceptibility. Examining the host and environmental microbiome in parallel can help reveal the
84 mechanisms of host microbe filtering and mucosal defense.

85 To examine pathogen occurrence and mucosal defenses our study focused on the spotted salamander,
86 *Ambystoma maculatum*, a primarily terrestrial salamander with a distribution throughout the Appalachian
87 Mountains. Spotted salamanders can be found infected with ranavirus as larvae in the wild (Millikin et al.
88 2023) and as adults can become infected with Bsal and Bd (Paterno 2019), but generally considered
89 resistant based on experimental trials (Martel et al. 2014; Barnhart et al. 2020; Gray et al. 2023). Spotted
90 salamanders participate in mass breeding events from their overwinter habitats to vernal pools and ponds
91 in late winter and early spring. This annual event could provide suitable conditions for pathogen
92 transmission and impact host-microbiome interactions. We sampled adult spotted salamanders as they
93 migrated from their overwintering habitat into two breeding sites in Maryland with three objectives (I)
94 determine the prevalence of Bd, Bsal, and ranavirus as well as individual's infection intensity, if infected
95 (II) quantify the inhibitory potential of salamander skin mucus against Bd, and (III) characterize the
96 diversity and composition of the spotted salamander skin microbiome and contrast it to that of their pool
97 environmental microbiome. The salamanders emerging from their overwintering habitats were
98 hypothesized to have potent anti-Bd function expressed in their mucus and in their skin microbiomes, as

99 a countermeasure to pathogen presence. Our research aims to uncover microbial mechanisms related to
100 *Batrachochytrium* susceptibility and contribute to the conservation of wild amphibian species in Maryland
101 and the Appalachian region.

102 **Methods**

103 **Sample collection**

104 We sampled a total of 30 spotted salamanders (visibly sexed to 26 males and 4 females) at one vernal
105 pool and one semi-permanent pond in the Frederick City Municipal Forest in Frederick County, Maryland
106 (Figure S4, 39.563769, -77.478283) on March 6th and 9th, 2024 (Table S1). The vernal pool is referred to
107 as the small pool, while the pond is referred to as the big pool. The small pool is a natural ephemeral pool
108 and is filled by a nearby pond and rainfall in early spring. The big pool is of unknown origin but is likely
109 man-made similar to the surrounding stocked ponds. We had permits from Maryland DNR (#58925) and
110 approval from Smithsonian IACUC (#SI-24006) for sampling.

111 Adult spotted salamanders were captured by hand or dip net. Then, each salamander was placed briefly
112 in a deli cup (rinsed with pond water) for transport to sampling location, rinsed with sterile MilliQ water and
113 then placed in a sterile Whirl-Pak bag. All salamanders were handled with high-density polyethylene
114 gloves (food safe deli gloves) as opposed to powder free nitrile gloves to reduce the likelihood of powder
115 free nitrile gloves inhibiting Bd or Bsal growth (Thomas et al. 2020). Then, each salamander was
116 swabbed five times on one forelimb, one hindlimb, their ventrum, dorsum, and tail resulting in 25 streaks
117 per salamander. Swabs were placed in 1.5 mL tubes containing a 70/30 silicon bead mix (70% 0.1mm
118 and 30% 0.5 mm by volume) and immediately placed on dry ice. After swabbing, we measured each
119 salamander's mass and snout-vent length (SVL) and determined their sex. Males were smaller with a
120 very pronounced vent, and this was the key feature in sexing the salamanders. Females were larger with
121 an enlarged midsection. Then, each salamander received a 20-minute water bath in sterile MilliQ water to
122 obtain a mucus solution. The volume of water used in each salamander's water bath was based on their
123 mass (Table S2). Following the water bath, each salamander was returned to its initial capture site. The
124 mucus solution was transferred to sterile falcon tubes and immediately placed on dry ice, and then
125 lyophilized in the lab and stored in a -80°C freezer until assays were conducted. For environmental

126 samples, swabs were placed in unique locations at each sampling site at the interface between the water
127 and the soil surrounding the pools and swished through below surface pool debris for 15 seconds (n = 12;
128 Table S1). Negative controls were twirled through the air for 15 seconds at each sampling site (n = 4). All
129 swabs and mucus samples were transferred and stored at -20°C within 24 hours of collection.

130 **Mucosome-Bd challenge assays**

131 Bd strain GPL1-JEL404 was cultured on 1% tryptone agar plates at 20°C for 7 days to stimulate zoospore
132 production. The Bd isolate is from the eastern United States (Maine) and part of the Global Panzootic
133 Lineage that occurs throughout Appalachia (James et al. 2009). Following incubation, the plates were
134 flooded with 1% tryptone broth, allowed to sit for 20 mins, and then filtered through a 20-micron mesh
135 filter to exclude zoosporangia. Zoospore concentration was counted with a hemocytometer and diluted
136 with 1% tryptone broth to 1×10^6 zoospores ml⁻¹. To assess the inhibitory potential of the salamander
137 mucus, 50 µL of re-constituted mucus samples were cultured in quadruplicate with 50 µL of our zoospore
138 solution on 96-well tissue-culture treated polystyrene plates. Quadruplicate control wells consisted of a (i)
139 heat-killed zoospore solution, (ii) a nutrient depleted positive control (NDPC) with 50 µL of zoospore
140 solution and 50 µL sterile water (iii) a positive control with 50 µL of our zoospore solution and 50 µL 1%
141 tryptone and (iv) a sterile water negative control. The positive control wells were used as the threshold for
142 determining Bd augmentation in our experimental wells. 96-well plates were incubated at 20°C and Bd
143 growth was assessed via optical density (OD) at 480 nm on days 0, 4, 5, 7, 11 and 12. Bd inhibition score
144 calculations were performed using OD readings from 0 – 7 days (showing exponential growth) according
145 to Muletz-Wolz et al. (2017) using the NDPC to determine Bd inhibition. Briefly, we visually inspected OD
146 readings and excluded unusually high densities (indicating contamination or error). We corrected for
147 baseline zoospore OD by subtracting the average Bd heat-killed from the experimental wells then log
148 transformed the corrected OD readings. We fit linear regression models to the transformed OD readings
149 over time in each well and extracted the average slope of Bd growth in the NDPC on each plate. We
150 calculated the Bd inhibition score using this equation: [Inhibition score = 1 – (slope sample well / average
151 slope NDPC)].

152 **DNA Extraction and sequence processing**

153 DNA was extracted from the swabs using a DNeasy PowerSoil HTP 96 kit (Qiagen) with the bead-beating
154 step consisting of 90 seconds on a Biospec 96 machine. We used qPCR for the quantification of Bd, Bsal,
155 and ranavirus infection using synthesized gene fragments (gBlocks) as in Standish et al. (2018). All
156 swabs were tested in duplicate. We used a one-step PCR library preparation and dual-indexed paired-
157 end sequencing to sequence the microbiome of each salamander skin swab sample and all controls. The
158 V3–V5 region of the 16S rRNA gene (~380 bp) was amplified from samples and controls (field, extraction,
159 and PCR controls) using the universal primers 515F-Y and 939R as fully detailed in Bornbusch et al.
160 (2024) and sequenced the library on one MiSeq (Illumina) run (2 x 300 V3 kit) at the Center for
161 Conservation Genomics at the National Zoo & Conservation Biology Institute, Washington, DC.

162 **16S rRNA Sequencing**

163 Demultiplexed reads were downloaded from Basespace (Illumina) and processed in R version 4.3.2. The
164 package “dada2” (Callahan et al. 2016) was used to perform quality filtering (maxEE = 2), collapsed high
165 quality reads into amplicon sequence variants (ASV) and removed chimeras. Bacterial taxonomy was
166 assigned using Silva (version 138.2). The package “phyloseq” was used to import and merge the final
167 ASV table, taxonomy table, and metadata for downstream analysis. Mitochondria, Cyanobacteria,
168 chloroplasts, and singletons were filtered out. We used “decontam” to remove contaminants (method =
169 combined, threshold = 0.25) as well as ASVs that occurred in 2 or more negative samples. We used
170 BLAST to search against an Antifungal Isolates Database (Update 2020 strict database [>80% inhibition
171 and any facilitating isolate matches removed] received from M. Bletz) and ASVs with 100% identity to
172 anti-Bd bacteria were considered to have Bd-inhibitory activity. We also matched our ASVs to the 2023
173 Database including all antifungal taxa to compare to estimates of anti-Bd relative abundance of spotted
174 salamanders in Barnhart-McCarty et al. (2024). Sequence counts ranged from 1483 to 14527 sequences
175 per sample. We analyzed alpha and beta diversity metrics with both non-rarefied and rarefied (to 1483
176 sequences per sample) and found that the statistical inference was the same; we report the results based
177 on the non-rarefied dataset analyses.

178 **Microbiome Analysis**

179 In alpha and beta diversity analyses, we examined if these microbiome measures were influenced by
180 sample type (salamander or environment), sample location (small pool or big pool) or their interaction. For
181 alpha diversity, we examined ASV richness and anti-Bd richness using two-way ANOVA or the non-
182 parametric Scheirer-Ray-Hare (SRH) test, respectively. Anti-Bd relative abundance was calculated using
183 the equation: [anti-Bd ASV count in sample X / count of ASVs in sample X] and we used a SRH test for
184 comparison. For beta diversity, we examined Bray-Curtis dissimilarity and Jaccard distances using
185 PERMANOVAs from the package “vegan” (Oksanen et al. 2024). Then, we used FEAST, a tool for fast
186 expectation-maximization microbial source tracking (Shenhav et al. 2019), to represent the scaled
187 proportions of each salamander microbiome (sinks) that can be attributed to the environmental
188 microbiome (source) and to an ‘Unknown source’ (i.e. all source proportions that cannot be attributed to
189 the environmental microbiome). Shared and unique ASVs were determined with R by finding ASVs that
190 intersect between the adult salamanders and the sample location. To determine if the salamanders were
191 selecting for rare or functionally relevant taxa, we used the R package “ALDEx2”(Gloor et al. 2024) (128
192 Monte-Carlo simulations, gamma = 0.5) on centered-log ratio transformed data to identify differentially
193 abundant ASVs that are shared between the environmental and salamander microbiomes. We used an
194 effect size threshold greater than 1 or less than -1 and Benjamini-Hochberg corrected p-value from
195 Wilcoxon-test less than 0.05 to determine if an ASV was significantly differentially abundant. Additionally,
196 we performed Kendal's tau ranked correlations for the relative abundance of ASVs between each
197 salamander and its corresponding environment as in Rebollar et al. (2016). Correlations were focused on
198 (i) all ASVs and (ii) ASVs with relative abundance of 0.1% or higher, determined by calculating total
199 relative abundance values of both sample types.

200 **Results**

201 The average salamander weight was 20.97g (SD = 5.47) and snout-vent-length was 92.45 mm (SD =
202 5.58) (Table S1). There was no Bd, Bsal, or ranavirus detected in any of the salamander swabs. In mucus-
203 Bd assays, we found that spotted salamander skin secretions generally did not inhibit Bd growth. Bd was
204 slightly inhibited in only one sample (WSBP16, $\mu = 4.70\%$) (Figure 1).

205 The environmental microbiome at the pond/terrestrial interface had higher number of overall bacterial
206 ASVs and anti-Bd bacterial ASVs than salamander skin microbiomes (Figure 2; overall ASVs ANOVA,
207 $F_{1,33} = 12.96, p < 0.01$; Anti-Bd ASVs SRH test, $H_{1,33} = 12.72, p < 0.001$). Interestingly, while the number of
208 anti-Bd bacterial ASVs were higher in the environment, the relative abundance of that community, the
209 anti-Bd bacteria, were similar between the environment and the salamanders (SRH test, $H_{1,33} = 1.70, p =$
210 0.19), albeit at a relatively low relative abundance ($\mu = 3.2\%$ and 3.0% respectively). The environmental
211 and salamander overall richness, anti-Bd bacterial richness and anti-Bd bacterial relative abundance
212 were similar between the two pools (Overall ASVs ANOVA, location $p = 0.18$; Anti-Bd ASV SRH test,
213 location $p = 0.87$; Anti-Bd relative abundance ANOVA, location $p = 0.56$). In all three measures, the
214 interaction between sample type and location was not significant. The bacterial community composition
215 differed between salamanders and their environment (Figure 3; Bray-Curtis: $F = 2.61 R^2 = 19.2\%, p <$
216 0.01 | Jaccard: $F = 1.75 R^2 = 13.7\%, p < 0.01$).

217 The salamander microbiome selected less bacteria from the environment than expected (Figure 4A; 555
218 shared bacterial ASVs in the big pool and 228 in the small pool). Similarly, our source tracking predicted
219 around 1/3 of the salamander microbiome to be sourced from the environment (Figure S2; FEAST
220 prediction, $\mu = 29\%$ source, $\mu = 71\%$ unknown). We found 30 putatively anti-Bd bacterial ASVs that match
221 the strict anti-Bd isolates database (>80% inhibition, strains with matches to facilitating strains removed),
222 however, none were present across all salamander samples. Some anti-Bd ASVs were shared with the
223 environment (Figure 4B; 18 anti-Bd ASVs in the big pool and 10 in the small pool). We found 33 putatively
224 anti-Bd bacterial ASVs that match the non-strict 2023 anti-Bd isolates database (all strains with >0%
225 inhibition) with average relative abundance of 2.8% in the small pool and 3.4% in the big pool. We prefer
226 to use a conservative approach in estimating anti-Bd relative abundance and focus our results on the
227 strict database estimates. Of all the ASVs that were shared between sample types, none were
228 significantly differentially abundant per our threshold (corrected $p < 0.05$ and effect size >1 or < -1).
229 ASV34 (family *Acetobacteraceae*) was the only ASV to meet the effect size threshold with higher
230 abundance in the environment (effect size < -1 , $p > 0.05$). In the Kendall's correlation of all ASVs and
231 higher relative abundance ASVs (0.1% or higher) the ASVs on the salamander and their respective
232 environment were significantly negatively correlated, showing that ASVs in higher abundance on

233 salamander skin were in lower abundance in the environment (Figure S3, all ASVs: small pool: $\tau = -0.20$,
234 $p < 0.001$, big pool: $\tau = -0.31$, $p < 0.001$; $>0.1\%$ ASVs: small pool: $\tau = -0.40$, $p < 0.001$, big pool: $\tau = -0.23$, p
235 < 0.001).

236 **Figure 1.** Spotted salamander skin mucus (mucosome) and Bd (GPL JEL404) challenge assays. Grey
237 dashed line at 0 indicates no inhibition of Bd growth. Red dashed line at -45.9 is the average score of the
238 positive control, which reflects a normal Bd growth pattern.

239 **Figure 2.** Bacterial ASV richness and putative Bd-inhibitory(anti-Bd) relative abundance by sampling
240 location. (A) ASV richness and (B) richness of putative anti-Bd ASVs (C) relative abundance of anti-Bd
241 bacterial ASVs. Yellow boxes represent salamander samples, darker blue boxes represent environmental
242 samples.

243 **Figure 3.** Bacterial community composition differed between spotted salamanders and their environment
244 similarly at two sampling locations. Bray-Curtis principal coordinates shown. Jaccard principal coordinates
245 showed a similar structure (Figure S4).

246 **Figure 4.** Shared and unique bacterial ASVs and anti-Bd bacterial ASVs by sample type and location. (A)
247 Presence/absence count of ASVs in the environment and salamander samples by location (B)
248 Presence/absence count of putative anti-Bd ASVs. Yellow bars are ASVs found only on the salamander
249 skin, while blue bars are ASVs found only in the environment. Grey bars are ASVs shared between
250 salamander and the environment.

251 **Discussion**

252 We sought to determine pathogen prevalence and innate immune defenses in adult spotted salamanders
253 during their annual mass breeding event. We hypothesized that the environmental effects around the time
254 of the breeding event in early-March (cooler temperature, frequent rains, frost melting) would coincide
255 with higher Bd prevalence (Woodhams et al. 2008; Le Sage et al. 2021; Basanta et al. 2023) and to
256 counteract Bd exposures, the immune capabilities of the spotted salamander would be heightened (e.g.
257 increased AMP expression, dominant antifungal microbes). However, Bd was not detected and
258 surprisingly, wild mucus samples showed little to no ability to inhibit the growth of Bd *in vitro* (GPL1-

259 JEL404). We found that all but one salamander hosted a number of anti-Bd bacterial taxa on their skin.
260 However, their relative abundance was lower compared to estimates found in lab reared spotted
261 salamanders in a Massachusetts, USA population (~50% relative abundance using full anti-Bd 2023
262 database) (Barnhardt-McCarty et al. 2024), and in other terrestrial Appalachian salamanders (i.e.,
263 *Plethodon* species: ~15% relative abundance using strict anti-Bd 2020 database) (Osborne et al. 2024). It
264 is likely that Bd and *Ranavirus* occur at our sampling sites, at least seasonally, as they host various
265 amphibian species known to become infected regularly with Bd (e.g., eastern newts: Jiménez et al. 2022)
266 and *Ranavirus* (e.g., wood frog larvae: Mosher et al. 2018). Perhaps other immune mechanisms or
267 environmental conditions limit susceptibility or exposure. *Ambystoma* salamanders, including spotted
268 salamanders, appear to be resistant to both Bd and Bsal (Paterno 2019; Barnhart et al. 2020; Basanta et
269 al. 2023; Gray et al. 2023; Barnhart-McCarty et al. 2024) with our evidence suggesting that their mucosal
270 defenses are limited against Bd. Therefore, they may serve as useful models to understand the
271 contribution of innate and adaptive immune cells in amphibian chytrid resistance (e.g., Barnhart et al.
272 2020; Hauser et al. 2024).

273 Amphibian skin mucus consists of host-defense antimicrobial peptides (AMPs; Pereira and Woodley
274 2021) larger antimicrobial proteins (Smith et al. 2018b), and bacterial metabolites (Woodhams et al. 2014)
275 that can work synergistically to kill Bd (Myers et al. 2012). Here we tested crude skin mucus samples to
276 examine the naturally available anti-Bd content of the salamander mucus and observed limited inhibition
277 of Bd. Le Sage et al. (2021), similarly found skin mucus from frogs in a cooler environment (4°C
278 compared to 21°C) were less effective at inhibiting Bd (Le Sage et al. 2021). The two nights of collection
279 were recorded at approximately 10°C and 6°C respectively, with average daily temperature ranging from
280 5°C – 10°C (data via Open-Meteo.com, Zippenfenig 2024). Others have observed seasonal patterns to
281 Bd prevalence, with a general pattern of low Bd prevalence in late-winter, which comes to a peak in
282 spring (Wilber et al. 2022; Saenz et al. 2024). Perhaps Bd prevalence is low, and environmental
283 conditions are less favorable for Bd such that the pressure on the salamanders to upregulate AMP genes
284 and storage following an overwintering event is limited. AMP expression patterns are variable among
285 amphibians, and our results could possibly resemble the wood frog, with no detectable AMP expression
286 until they are acclimated to a warmer temperature (approximately 30°C) (Matutte et al. 2000). However,

287 we have also observed AMPs gene expression at high levels in Bd-infected red-backed salamanders at
288 cool temperatures (13°C) (Ellison et al. 2020) showcasing variability among amphibian species in AMPs
289 expression that warrants future study.

290 Salamander microbial communities clustered with each other and were distinct from the environmental
291 community regardless of location. We hypothesize that species-specific host traits and environmental
292 factors that did not differ between sampling locations (Kueneman et al. 2014; Muletz Wolz et al. 2018)
293 explain this observation. The number of overall bacterial richness and anti-Bd richness was higher in the
294 environmental samples than the salamanders, implying a larger pool of micro-organisms for which the
295 salamander microbiome selects a subset (Walke et al. 2014). Interestingly, we also previously observed
296 that pond-associated salamander species (including *Ambystoma jeffersonianum* metamorphs) had lower
297 bacterial richness than their environment, but not forest- or stream-associated species (Osborne et al.
298 2024), suggesting that some host factor associated with pond life history traits leads to fewer bacteria
299 taxa living on pond-associated salamander skin. Additionally, the salamanders shared less than 50% of
300 their ASVs with their environment suggesting ecological filtering of rare environmental bacteria as they
301 migrate. We found a significant negative correlation between relative abundance of ASVs in the
302 salamander and environment suggesting the salamander skin microbiome is enriched with rare
303 environmental bacteria likely due to the unique structure of the skin (mucus pH, moisture) which favors
304 the growth of specific bacteria, as seen in Rebollar et al. (2016). Overall, the anti-Bd microbes present
305 were lower than we expected suggesting that the selective pressure of Bd, or possibly other fungi in the
306 environment, on the composition of the spotted salamander skin microbiome is limited. Cooler
307 temperatures as experienced during their migration may also explain this lower anti-Bd richness, as some
308 species display a reduction in microbiome diversity in cold climates (Kueneman et al. 2019; Muletz-Wolz
309 et al. 2019b). Anti-Bd microbes and host-defense AMPs can act synergistically to kill Bd (Myers et al.
310 2012), and it is plausible that a similar interaction is occurring in the spotted salamanders for which we
311 were not able to capture. However, we hypothesize that innate and adaptive immune cells of *Ambystoma*
312 salamanders may have a stronger contribution to their generally observed Bd- and Bsal- resistance.

313 Our results contribute to our understanding of amphibian mucosal defenses. The factors that stimulate
314 mucus production, pathogen inhibitory potential, and microbiome structure and function are multifactorial.
315 Future studies on identifying salamander skin innate and adaptive immune defenses and their
316 interactions with AMPs, the skin microbiome and immune cells will help uncover possible immune or
317 synergistic effects that confer resistance (e.g. Hauser et al. 2024). Continued research efforts on
318 Appalachian salamanders are important to our understanding of vertebrate disease ecology and
319 salamander conservation. Appalachian salamanders have complex, yet fascinating immune components
320 and a better understanding of the underlying mechanisms will better equip researchers to combat the
321 threat of Bd in a changing climate and a possible spread of Bsal to the United States.

322 **Acknowledgments**

323 We thank all the spotted salamanders and hope they had a successful breeding season. We thank all
324 people that helped in finding salamanders and sampling, including Alison Fowler, Lauren Hennelly, Sally
325 Bornbusch, Susette Castañeda-Rico, Chris Flight, and the science administrators and teachers of Carroll
326 County Public Schools. A special acknowledgment to Nichelle VanTassel for her help with sampling and
327 photography. We thank Steve Paris for help with lyophilizing samples.

328 **Funding**

329 This work was supported by the National Science Foundation (NSF) [grant number IOS-2131060 to
330 C.R.M.W].

331 **Data Availability**

332 We deposited demultiplexed sequence data in the National Center for Biotechnology Information
333 Sequence (NCBI) under BioProject ID: PRJNA1220672. All code used for data analysis is available at
334 <https://github.com/JulianU-C/SpottedSalamander2024>.

335

336 **References**

337

338 Barnhart K, Bletz MC, LaBumbard B, Tokash-Peters A, Gabor CR, Woodhams DC. 2020.
339 Batrachochytrium salamandrivorans elicits acute stress response in spotted salamanders but not
340 infection or mortality. *Anim Conserv* 23:533–46.

341 Barnhart-McCarty K, LaBumbard B, Kearns PJ, Ahsan R, Whetstone R, Bletz M, AlKhalifa SE, Poltronetti
342 A, Tokash-Peters A, Gabor CR, Schliep K, Umile TP, Minbolie K, Woodhams DC. 2024.
343 Micromanagement: conditions influencing antipathogen function of the skin microbiome in spotted
344 salamanders, *Ambystoma maculatum*. *Front Amphib Reptile Sci* 2.

345 Bartlett P, Ward T, Brue D, Carey A, Duffus A. 2021. Ranaviruses in North America: A Brief Review in Wild
346 Herpetofauna. *J North Am Herpetol* 2021.

347 Basanta MD, Anaya-Morales SL, Martínez-Ugalde E, González Martínez TM, Ávila-Akerberg VD, Trejo
348 MV, Rebollar EA. 2023. Metamorphosis and seasonality are major determinants of chytrid
349 infection in a paedomorphic salamander. *Anim Conserv* 26:340–54.

350 Blaustein AR, Walls SC, Bancroft BA, Lawler JJ, Searle CL, Gervasi SS. 2010. Direct and Indirect Effects
351 of Climate Change on Amphibian Populations. *Diversity* 2:281–313.

352 Bornbusch SL, Shinnerl HE, Gentry L, Keady MM, Glick V, Muletz-Wolz CR, Power ML. 2024. Local
353 environment shapes milk microbiomes while evolutionary history constrains milk macronutrients
354 in captive cercopithecine primates. *Environ Microbiol* 26:e16664.

355 Brucker RM, Harris RN, Schwantes CR, Gallaher TN, Flaherty DC, Lam BA, Minbolie KPC. 2008.
356 Amphibian Chemical Defense: Antifungal Metabolites of the Microsymbiont *Janthinobacterium*
357 *lividum* on the Salamander *Pllethodon cinereus*. *J Chem Ecol* 34:1422–29.

358 Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 2016. DADA2: High-resolution
359 sample inference from Illumina amplicon data. *Nat Methods* 13:581–83.

360 Cushman SA. 2006. Effects of habitat loss and fragmentation on amphibians: A review and prospectus.
361 *Biol Conserv* 128:231–40.

362 Ellison A, Zamudio K, Lips K, Muletz-Wolz C. 2020. Temperature-mediated shifts in salamander
363 transcriptomic responses to the amphibian-killing fungus. *Mol Ecol* 29:325–43.

364 Fisher MC, Gurr SJ, Cuomo CA, Blehert DS, Jin H, Stukenbrock EH, Stajich JE, Kahmann R, Boone C,
365 Denning DW, Gow NAR, Klein BS, Kronstad JW, Sheppard DC, Taylor JW, Wright GD, Heitman
366 J, Casadevall A, Cowen LE. 2020. Threats Posed by the Fungal Kingdom to Humans, Wildlife,
367 and Agriculture. *mBio* 11:10.1128/mbio.00449-20.

368 Gloor GB, Nixon MP, Silverman JD. 2024. Explicit Scale Simulation for analysis of RNA-sequencing with
369 ALDEx2. .

370 Gray MJ, Carter ED, Piovia-Scott J, Cusaac JPW, Peterson AC, Whetstone RD, Hertz A, Muniz-Torres AY,
371 Bletz MC, Woodhams DC, Romansic JM, Sutton WB, Sheley W, Pessier A, McCusker CD, Wilber
372 MQ, Miller DL. 2023. Broad host susceptibility of North American amphibian species to
373 Batrachochytrium salamandrivorans suggests high invasion potential and biodiversity risk. *Nat
374 Commun* 14:3270.

375 Green DE, Converse KA, Schrader AK. 2002. Epizootiology of Sixty-Four Amphibian Morbidity and
376 Mortality Events in the USA, 1996–2001. *Ann N Y Acad Sci* 969:323–39.

377 Grogan LF, Mangan MJ, McCallum HI. 2023. Amphibian infection tolerance to chytridiomycosis. *Philos
378 Trans R Soc B Biol Sci* 378:20220133.

379 Grogan LF, Robert J, Berger L, Skerratt LF, Scheele BC, Castley JG, Newell DA, McCallum HI. 2018.
380 Review of the Amphibian Immune Response to Chytridiomycosis, and Future Directions. *Front
381 Immunol* 9.

382 Hauser KA, Garvey CN, Crow RS, Hossainey MR, Howard DT, Ranganathan N, Gentry LK, Yaparla A,
383 Kalia N, Zelle M, Jones EJ, Duttargi AN, Rollins-Smith LA, Muletz-Wolz CR, Grayfer L. 2024.
384 Amphibian mast cells serve as barriers to chytrid fungus infections. *eLife* 12:RP92168.

385 Hoverman JT, Gray MJ, Haislip NA, Miller DL. 2011. Phylogeny, Life History, and Ecology Contribute to
386 Differences in Amphibian Susceptibility to Ranaviruses. *EcoHealth* 8:301–19.

387 James TY, Litvintseva AP, Vilgalys R, Morgan JAT, Taylor JW, Fisher MC, Berger L, Weldon C, Preez L
388 du, Longcore JE. 2009. Rapid Global Expansion of the Fungal Disease Chytridiomycosis into
389 Declining and Healthy Amphibian Populations. *PLOS Pathog* 5:e1000458.

390 Jiménez RR, Carfagno A, Linhoff L, Gratwicke B, Woodhams DC, Chafran LS, Bletz MC, Bishop B,
391 Muletz-Wolz CR. 2022. Inhibitory Bacterial Diversity and Mucosome Function Differentiate
392 Susceptibility of Appalachian Salamanders to Chytrid Fungal Infection. *Appl Environ Microbiol*
393 88:e01818–21.

394 Kueneman JG, Bletz MC, McKenzie VJ, Becker CG, Joseph MB, Abarca JG, Archer H, Arellano AL,
 395 Bataille A, Becker M, Belden LK, Crottini A, Geffers R, Haddad CFB, Harris RN, Holden WM,
 396 Hughey M, Jarek M, Kearns PJ, Kerby JL, Kielgast J, Kurabayashi A, Longo AV, Loudon A,
 397 Medina D, Nuñez JJ, Perl RGB, Pinto-Tomás A, Rabemananjara FCE, Rebollar EA, Rodríguez A,
 398 Rollins-Smith L, Stevenson R, Tebbe CC, Vargas Asensio G, Waldman B, Walke JB, Whitfield
 399 SM, Zamudio KR, Zúñiga Chaves I, Woodhams DC, Vences M. 2019. Community richness of
 400 amphibian skin bacteria correlates with bioclimate at the global scale. *Nat Ecol Evol* 3:381–89.
 401 Kueneman JG, Parfrey LW, Woodhams DC, Archer HM, Knight R, McKenzie VJ. 2014. The amphibian
 402 skin-associated microbiome across species, space and life history stages. *Mol Ecol* 23:1238–50.
 403 Le Sage EH, LaBumbard BC, Reinert LK, Miller BT, Richards-Zawacki CL, Woodhams DC, Rollins-Smith
 404 LA. 2021. Preparatory immunity: Seasonality of mucosal skin defences and Batrachochytrium
 405 infections in Southern leopard frogs. *J Anim Ecol* 90:542–54.
 406 Longo AV, Fleischer RC, Lips KR. 2019. Double trouble: co-infections of chytrid fungi will severely impact
 407 widely distributed newts. *Biol Invasions* 21:2233–45.
 408 Lötters, Wagner, Albaladejo, Böning. 2024. The amphibian pathogen Batrachochytrium salamandrivorans
 409 in the hotspot of its European invasive range: past – present – future. ResearchGate.
 410 Luedtke JA, Chanson J, Neam K, Hobin L, Maciel AO, Catenazzi A, Borzée A, Hamidy A, Aowphol A,
 411 Jean A, Sosa-Bartuano Á, Fong G. A, de Silva A, Fouquet A, Angulo A, Kidov AA, Muñoz Saravia
 412 A, Diesmos AC, Tominaga A, Shrestha B, Gratwicke B, Tjaturadi B, Martínez Rivera CC, Vásquez
 413 Almazán CR, Señaris C, Chandramouli SR, Strüssmann C, Cortez Fernández CF, Azat C, Hoskin
 414 CJ, Hilton-Taylor C, Whyte DL, Gower DJ, Olson DH, Cisneros-Heredia DF, Santana DJ,
 415 Nagombi E, Najafi-Majd E, Quah ESH, Bolaños F, Xie F, Brusquetti F, Álvarez FS, Andreone F,
 416 Glaw F, Castañeda FE, Kraus F, Parra-Olea G, Chaves G, Medina-Rangel GF, González-Durán
 417 G, Ortega-Andrade HM, Machado IF, Das I, Dias IR, Urbina-Cardona JN, Crnobrnja-Isailović J,
 418 Yang J-H, Jianping J, Wangyal JT, Rowley JJL, Measey J, Vasudevan K, Chan KO, Gururaja KV,
 419 Ovaska K, Warr LC, Canseco-Márquez L, Toledo LF, Díaz LM, Khan MMH, Meegaskumbura M,
 420 Acevedo ME, Napoli MF, Ponce MA, Vaira M, Lampo M, Yáñez-Muñoz MH, Scherz MD, Rödel M-
 421 O, Matsui M, Fildor M, Kusrini MD, Ahmed MF, Rais M, Kouamé NG, García N, Gonwouo NL,
 422 Burrowes PA, Imbun PY, Wagner P, Kok PJR, Joglar RL, Auguste RJ, Brandão RA, Ibáñez R, von
 423 May R, Hedges SB, Biju SD, Ganesh SR, Wren S, Das S, Flechas SV, Ashpole SL, Robleto-
 424 Hernández SJ, Loader SP, Incháustegui SJ, Garg S, Phimmachak S, Richards SJ, Slimani T,
 425 Osborne-Naikatini T, Abreu-Jardim TPF, Condez TH, De Carvalho TR, Cutajar TP, Pierson TW,
 426 Nguyen TQ, Kaya U, Yuan Z, Long B, Langhammer P, Stuart SN. 2023. Ongoing declines for the
 427 world's amphibians in the face of emerging threats. *Nature* 622:308–14.
 428 Madison JD, Berg EA, Abarca JG, Whitfield SM, Gorbatenko O, Pinto A, Kerby JL. 2017. Characterization
 429 of Batrachochytrium dendrobatidis Inhibiting Bacteria from Amphibian Populations in Costa Rica.
 430 *Front Microbiol* 8.
 431 Madison JD, Ouellette SP, Schmidt EL, Kerby JL. 2019. *Serratia marcescens* shapes cutaneous bacterial
 432 communities and influences survival of an amphibian host. *Proc R Soc B Biol Sci* 286:20191833.
 433 Martel A, Blooi M, Adriaensen C, Van Rooij P, Beukema W, Fisher MC, Farrer RA, Schmidt BR, Tobler U,
 434 Goka K, Lips KR, Muletz C, Zamudio KR, Bosch J, Lötters S, Wombwell E, Garner TWJ,
 435 Cunningham AA, Spitsen-van der Sluijs A, Salvidio S, Ducatelle R, Nishikawa K, Nguyen TT,
 436 Kolby JE, Van Bocxlaer I, Bossuyt F, Pasmans F. 2014. Recent introduction of a chytrid fungus
 437 endangers Western Palearctic salamanders. *Science* 346:630–31.
 438 Matutte B, Storey KB, Knoop FC, Conlon JM. 2000. Induction of synthesis of an antimicrobial peptide in
 439 the skin of the freeze-tolerant frog, *Rana sylvatica*, in response to environmental stimuli. *FEBS*
 440 *Lett* 483:135–38.
 441 Millikin AR, Davis DR, Brown DJ, Woodley SK, Coster S, Welsh A, Kerby JL, Anderson JT. 2023.
 442 PREVALENCE OF RANAVIRUS IN SPOTTED SALAMANDER (AMBYSTOMA MACULATUM)
 443 LARVAE FROM CREATED VERNAL POOLS IN WEST VIRGINIA, USA. *J Wildl Dis* 59:24–36.
 444 Mosher BA, Brand AB, Wiewel ANM, Miller DAW, Gray MJ, Miller DL, Grant EHC. 2018. ESTIMATING
 445 OCCURRENCE, PREVALENCE, AND DETECTION OF AMPHIBIAN PATHOGENS: INSIGHTS
 446 FROM OCCUPANCY MODELS. *J Wildl Dis* 55:563–75.
 447 Muletz Wolz CR, Yarwood SA, Campbell Grant EH, Fleischer RC, Lips KR. 2018. Effects of host species
 448 and environment on the skin microbiome of Plethodontid salamanders. *J Anim Ecol* 87:341–53.

449 Muletz-Wolz CR, Almario JG, Barnett SE, DiRenzo GV, Martel A, Pasmans F, Zamudio KR, Toledo LF,
450 Lips KR. 2017. Inhibition of Fungal Pathogens across Genotypes and Temperatures by
451 Amphibian Skin Bacteria. *Front Microbiol* 8.

452 Muletz-Wolz CR, Fleischer RC, Lips KR. 2019a. Fungal disease and temperature alter skin microbiome
453 structure in an experimental salamander system. *Mol Ecol* 28:2917–31.

454 Muletz-Wolz CR, Fleischer RC, Lips KR. 2019b. Fungal disease and temperature alter skin microbiome
455 structure in an experimental salamander system. *Mol Ecol* 28:2917–31.

456 Myers JM, Ramsey JP, Blackman AL, Nichols AE, Minbile KPC, Harris RN. 2012. Synergistic Inhibition
457 of the Lethal Fungal Pathogen *Batrachochytrium dendrobatidis*: The Combined Effect of
458 Symbiotic Bacterial Metabolites and Antimicrobial Peptides of the Frog *Rana muscosa*. *J Chem*
459 *Ecol* 38:958–65.

460 Oksanen J, Simpson GL, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, Solymos P,
461 Stevens MHH, Szoecs E, Wagner H, Barbour M, Bedward M, Bolker B, Borcard D, Carvalho G,
462 Chirico M, Caceres MD, Durand S, Evangelista HBA, FitzJohn R, Friendly M, Furneaux B,
463 Hannigan G, Hill MO, Lahti L, McGlinn D, Ouellette M-H, Cunha ER, Smith T, Stier A, Braak
464 CJFT, Weedon J. 2024. *vegan: Community Ecology Package*..

465 Osborne OG, Jiménez RR, Byrne AQ, Gratwicke B, Ellison A, Muletz-Wolz CR. 2024. Phylosymbiosis
466 shapes skin bacterial communities and pathogen-protective function in Appalachian salamanders.
467 *ISME J* 18:wrae104.

468 Park ST, Collingwood AM, St-Hilaire S, Sheridan PP. 2014. Inhibition of *Batrachochytrium dendrobatidis*
469 Caused by Bacteria Isolated from the Skin of Boreal Toads, *Anaxyrus (Bufo) boreas boreas*, from
470 Grand Teton National Park, Wyoming, USA. *Microbiol Insights* 7:1–8.

471 Patillo B. 2019. Investigating the impacts of the fungal pathogen, *Batrachochytrium dendrobatidis*, on
472 growth, behavior, and reproductive investment in salamanders. *Electron Theses Diss*.

473 Pereira K, Woodley S. 2021. Skin defenses of North American salamanders against a deadly salamander
474 fungus. *Anim Conserv* 24:552–67.

475 Petranka JW, Smith CK. 2005. A functional analysis of streamside habitat use by southern Appalachian
476 salamanders: Implications for riparian forest management. *For Ecol Manag* 210:443–54.

477 Rebollar EA, Hughey MC, Medina D, Harris RN, Ibáñez R, Belden LK. 2016. Skin bacterial diversity of
478 Panamanian frogs is associated with host susceptibility and presence of *Batrachochytrium*
479 *dendrobatidis*. *ISME J* 10:1682–95.

480 Ribas MP, Cabezón O, Velarde R, Estruch J, Serrano E, Bosch J, Thumsová B, Martínez-Silvestre A.
481 2022. Coinfection of Chytrid Fungi in Urodeles during an Outbreak of Chytridiomycosis in Spain. *J*
482 *Wildl Dis* 58:658–63.

483 Rollins-Smith LA. 2023. The importance of antimicrobial peptides (AMPs) in amphibian skin defense. *Dev*
484 *Comp Immunol* 142:104657.

485 Rollins-Smith LA. 2024. The future of amphibian immunology: Opportunities and challenges. *Dev Comp*
486 *Immunol* 160:105237.

487 Rosa GM, Perez R, Richards LA, Richards-Zawacki CL, Smilanich AM, Reinert LK, Rollins-Smith LA,
488 Wetzel DP, Voyles J. 2022. Seasonality of host immunity in a tropical disease system. *Ecosphere*
489 13:e4158.

490 Saenz V, Byrne AQ, Ohmer MEB, Hammond TT, Brannelly LA, Altman KA, Kosowsky M, Nordheim CL,
491 Rosenblum EB, Richards-Zawacki CL. 2024. Landscape-scale drivers of spatial dynamics and
492 genetic diversity in an emerging wildlife pathogen. *Oecologia* 207:3.

493 Scheele BC, Pasmans F, Skerratt LF, Berger L, Martel A, Beukema W, Acevedo AA, Burrowes PA,
494 Carvalho T, Catenazzi A, De la Riva I, Fisher MC, Flechas SV, Foster CN, Frías-Álvarez P,
495 Garner TWJ, Gratwicke B, Guayasamin JM, Hirschfeld M, Kolby JE, Kosch TA, La Marca E,
496 Lindenmayer DB, Lips KR, Longo AV, Maneyro R, McDonald CA, Mendelson J, Palacios-
497 Rodriguez P, Parra-Olea G, Richards-Zawacki CL, Rödel M-O, Rovito SM, Soto-Azat C, Toledo
498 LF, Voyles J, Weldon C, Whitfield SM, Wilkinson M, Zamudio KR, Canessa S. 2019. Amphibian
499 fungal panzootic causes catastrophic and ongoing loss of biodiversity. *Science* 363:1459–63.

500 Shenhav L, Thompson M, Joseph TA, Briscoe L, Furman O, Bogumil D, Mizrahi I, Pe'er I, Halperin E.
501 2019. FEAST: fast expectation-maximization for microbial source tracking. *Nat Methods* 16:627–
502 32.

503 Smith HK, Pasmans F, Dhaenens M, Deforce D, Bonte D, Verheyen K, Lens L, Martel A. 2018a. Skin
504 mucosome activity as an indicator of *Batrachochytrium* salamandivorans susceptibility in
505 salamanders. *PLOS ONE* 13:e0199295.

506 Smith HK, Pasmans F, Dhaenens M, Deforce D, Bonte D, Verheyen K, Lens L, Martel A. 2018b. Skin
507 mucosome activity as an indicator of *Batrachochytrium* salamandivorans susceptibility in
508 salamanders. *PLOS ONE* 13:e0199295.

509 Standish I, Leis E, Schmitz N, Credico J, Erickson S, Bailey J, Kerby J, Phillips K, Lewis T. 2018.
510 Optimizing, validating, and field testing a multiplex qPCR for the detection of amphibian
511 pathogens. *Dis Aquat Organ* 129:1–13.

512 Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW. 2004. Status and
513 Trends of Amphibian Declines and Extinctions Worldwide. *Science* 306:1783–86.

514 Sutton WB, Gray MJ, Hoverman JT, Secrist RG, Super PE, Hardman RH, Tucker JL, Miller DL. 2015.
515 Trends in Ranavirus Prevalence Among Plethodontid Salamanders in the Great Smoky
516 Mountains National Park. *EcoHealth* 12:320–29.

517 Thomas V, Rooij PV, Meerpoel C, Stegen G, Wauters J, Vanhaecke L, Martel A, Pasmans F. 2020. Instant
518 killing of pathogenic chytrid fungi by disposable nitrile gloves prevents disease transmission
519 between amphibians. *PLOS ONE* 15:e0241048.

520 Van Rooij P, Martel A, Haesebrouck F, Pasmans F. 2015. Amphibian chytridiomycosis: a review with focus
521 on fungus-host interactions. *Vet Res* 46:137.

522 Waddle JH, Gear DA, Mosher BA, Grant EHC, Adams MJ, Backlin AR, Barichivich WJ, Brand AB,
523 Bucciarelli GM, Calhoun DL, Chestnut T, Davenport JM, Dietrich AE, Fisher RN, Glorioso BM,
524 Halstead BJ, Hayes MP, Honeycutt RK, Hossack BR, Kleeman PM, Lemos-Espinal JA, Lorch JM,
525 McCreary B, Muths E, Pearl CA, Richgels KLD, Robinson CW, Roth MF, Rowe JC, Sadinski W,
526 Sigafus BH, Stasiak I, Sweet S, Walls SC, Watkins-Colwell GJ, White CL, Williams LA, Winzeler
527 ME. 2020. *Batrachochytrium* salamandivorans (Bsal) not detected in an intensive survey of wild
528 North American amphibians. *Sci Rep* 10:13012.

529 Walke JB, Becker MH, Loftus SC, House LL, Cormier G, Jensen RV, Belden LK. 2014. Amphibian skin
530 may select for rare environmental microbes. *ISME J* 8:2207–17.

531 Wilber MQ, Ohmer MEB, Altman KA, Brannelly LA, LaBumbard BC, Le Sage EH, McDonnell NB, Muñiz
532 Torres AY, Nordheim CL, Pfah F, Richards-Zawacki CL, Rollins-Smith LA, Saenz V, Voyles J,
533 Wetzel DP, Woodhams DC, Briggs CJ. 2022. Once a reservoir, always a reservoir? Seasonality
534 affects the pathogen maintenance potential of amphibian hosts. *Ecology* 103:e3759.

535 Woodhams DC, Alford RA, Briggs CJ, Johnson M, Rollins-Smith LA. 2008. Life-History Trade-Offs
536 Influence Disease in Changing Climates: Strategies of an Amphibian Pathogen. *Ecology*
537 89:1627–39.

538 Woodhams DC, Brandt H, Baumgartner S, Kielgast J, Küpfer E, Tobler U, Davis LR, Schmidt BR, Bel C,
539 Hodel S, Knight R, McKenzie V. 2014. Interacting Symbionts and Immunity in the Amphibian Skin
540 Mucosome Predict Disease Risk and Probiotic Effectiveness. *PLOS ONE* 9:e96375.

541 Zippenfenig P. 2024. Open-Meteo.com Weather API. .

542