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Lower bounds on Bourgain’s constant for
harmonic measure

Matthew Badger and Alyssa Genschaw

Abstract. For every n ≥ 2, Bourgain’s constant bn is the largest number such that the (upper)
Hausdor
 dimension of harmonic measure is at most n − bn for every domain in R

n on which
harmonic measure is de�ned. Jones and Wol
 (1988, Acta Mathematica 161, 131–144) proved that
b2 = 1. When n ≥ 3, Bourgain (1987, Inventiones Mathematicae 87, 477–483) proved that bn > 0 and
Wol
 (1995, Essays on Fourier analysis in honor of Elias M. Stein (Princeton, NJ, 1991), Princeton
University Press, Princeton, NJ, 321–384) produced examples showing bn < 1. Re�ning Bourgain’s
original outline, we prove that

bn ≥ c n
−2n(n−1)/ ln(n),

for all n ≥ 3, where c > 0 is a constant that is independent of n. We further estimate b3 ≥ 1 × 10−15

and b4 ≥ 2 × 10−26 .

1 Introduction

An outstanding problem on the boundary behavior of harmonic functions in space is
to identify the maximal minimal dimension of a subset of the boundary of a domain
throughwhich Brownianmotion �rst exits the domain almost surely [8]. Adopting the
parlance of geometric measure theory [13, 25], one would like to identify the largest
possible (upper) Hausdor� dimension dimH ω of harmonic measure ω = ωΩ across all
connected, open sets Ω ⊊ R

n . For planar domains (n = 2), theHausdor	 dimension of
harmonic measure is at most 1 [19] (see also [11, 20, 23, 27, 29]) and this is sharp (e.g.,
when Ω is a disk). For space domains (n ≥ 3), the Hausdor	 dimension of harmonic
measure is at most n − bn for some undetermined value 0 < bn < 1 [10, 30] (see also
[21]), which we call Bourgain’s constant. Determining the value of Bourgain’s constant
is related to understanding certain physical phenomenon (passivation, fouling, and
poisoning) [14]. While a conjectural best value 1/(n − 1) for bn has been proposed [7],
there appears to have been little progress in a�rming or disproving this conjecture
to date. A numerical experiment [16] suggests that b3 ≤ 0.995, but this bound has not
been mathematically veri�ed.

Very recently, the authors proved an analogue of Bourgain’s theorem in the setting
of the heat equation [4]. In particular, the Hausdor	 dimension of caloric measure
on any domain in R

n ×R (space × time) with the parabolic distance is at most
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n + 2 − βn for some βn > 0; moreover, βn ≤ bn for all n. (�us, we indirectly obtain
bn > 0.) In the process of establishing this extension, the authors initially had some
di�culty implementing the demonstration of b3 > 0 from [10] in general dimensions.1

One goal of this paper is to record a complete and direct proof that bn > 0 when
n ≥ 3. Further, by re�ning Bourgain’s original outline, we provide quantitative lower
bounds on bn for arbitrary n ≥ 3 and the �rst explicit numerical lower bounds on bn
in dimensions n = 3, 4.

�eorem 1.1 �ere exists c > 0 such that bn ≥ c n−2n(n−1)/ ln(n) for all n ≥ 3.

�eorem 1.2 (15 decimals, 26 decimals) We have b3 ≥ 1 × 10−15 and b4 ≥ 2 × 10−26.
�at is to say, the Hausdor� dimension of harmonic measure in R

3 is at most

2.99999 99999 99999.

�e Hausdor� dimension of harmonic measure in R
4 is at most

3.99999 99999 99999 99999 999998.

Bourgain’s underlying idea to prove estimates of this type is that if the boundary
of a domain is spread uniformly in space throughout a cube, then the probability that
a Brownian traveler exits the domain near the center of the cube should be smaller
than the probability of exiting the domain near the boundary of the cube.�is sets up
an alternative: inside any window, either the boundary of the domain is geometrically
small at the resolution of the window, or the boundary of the domain is geometrically
large, but then we can �nd a geometrically smaller subset of the boundary that carries
most of the harmonic measure. To be more precise, at everym-adic location, for some
integerm ≫n 3, either the boundary has small (n − ρ)-dimensional content for some
0 < ρ ≪m ,n 1 or the harmonic measure has positive (n − λ)-dimensional density on a
subset of positive measure for some 0 < λ ≪m ,n 1. It follows that

dimH ω ≤ n − ρλ/(ρ + λ)
(see Lemma 2.2). �is approach exhibits strong dimension dependence in the form
of volume concentration near the boundary of balls or cubes in high dimensions. In
several places, the arguments in [4, 10] use continuity and so� analysis to assert the
existence of the parametersm, ρ, and λ to conclude that bn > 0 and βn > 0. A challenge
in proving�eorem 1.1 is to carry out explicit estimateswherever feasible. For�eorem
1.2, one need only track estimates for a small set of values ofm, because ρ → 0 rapidly
asm →∞. We remark that themethod of proof generates some interesting arithmetic
phenomenon (see the nonlinear dependence on size of the m-adic grid in the lower
bounds on Bourgain’s constant in Table 1).

In Section 2, we introduce necessary elements from geometric measure theory,
including a tight version of Frostman’s lemma for sets in R

n of Hausdor	 dimension
s > n − 1. In Section 3, we revisit and sharpen Bourgain’s estimate on harmonic
measure from below in terms of the relative size of the local m-adic net content.
We also record some basic estimates on harmonic measure inside nested rectangles.

1In particular, the ad hoc choice of several parameters in [10, Lemmas 1 and 2] is unexplained and
hides dimension dependence.
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In Section 4, we reduce the problem of �nding lower bounds on bn to showing the
existence of an admissible set of parameters. Using all of these ingredients, we prove
�eorem 1.1 in Section 5 and �eorem 1.2 in Section 6. We end with a brief call for
future work in Section 7.

2 Net measures, Hausdorff dimension, and Frostman’s lemma

Background on Hausdor	 measures, net measures, and related topics can be found in
[9, 24, 28]. Let Rn be equipped with the standard Euclidean distance, i.e., ∣X − Y ∣ =(∑n

1 (x i − y i)2)1/2 for all points X = (x1 , . . . , xn) and Y = (y1 , . . . , yn). Let diam
E = sup{∣X − Y ∣ ∶ X ,Y ∈ E} denote the diameter of E ⊂ R

n . For each integer m ≥ 2,
de�ne the system Δm(Rn) of half-open m-adic cubes to be all sets Q of the form

Q = [ j1
mk

,
j1 + 1

mk
) × ⋅ ⋅ ⋅ × [ jn

mk
,
jn + 1

mk
) (k, j1 , . . . , jn ∈ Z);

we say thatQ belongs to generation k of Δm(Rn) and has side length sideQ = m−k and
volume volQ = m−kn . Note that diamQ = √

n sideQ for every Q ∈ Δm(Rn).
�e cubes in each generation of Δm(Rn) partitionR

n . Every cube Q ∈ Δm(Rn) of
generation k is contained in a unique cube Q↑ ∈ Δm(Rn) of generation k − 1; we call
Q↑ the parent of Q and call Q a child of Q↑. Extending this metaphor, we may refer to
the ancestors “above” a cube and descendents “below” a cube. For every Q ∈ Δm(Rn),
#Child(Q) = mn and volQ = ∑R∈Child(Q) volR, whereChild(Q) is the set of children.
De�nition 2.1 Fix Δ = Δm(Rn) and let s ∈ [0,∞). For all δ ∈ (0,∞], we de�ne

M
s
δ(E) = inf {∞∑

1

(side E i)s ∶ E ⊆ ∞⋃
1
E i , side E i ≤ δ, E i ∈ Δ} for all E ⊂ R

n ;

we call Ms
∞ the s-dimensional net content on R

n . We de�ne the s-dimensional net
measure on R

n byMs(E) = limδ↓0 M
s
δ(E) for all E ⊂ R

n .

Remark 2.1 �e net contents Ms
∞ are outer measures on R

n and the net measures
M

s are Borel regular outer measures on R
n . Unlike the Hausdor	 measures Hs and

contents Hs
∞, the net measures and net contents are neither translation nor dilation

invariant. Of course, for all n ≥ 1 and s > 0, we have Hs ≲n M
s ≲n ,m H

s and H
s
∞ ≲n

M
s
∞ ≲n ,m H

s
∞. �is allows us to de�ne Hausdor	 dimension using net measures in

lieu of Hausdor	 measures. While the net measures and net contents depend on
the choice of the underlying grid Δ = Δm(Rn), for simplicity, we suppress this from
the notation. We choose the letter M to suggest m-adic. An elementary fact is that
M

s(E) = 0 if and only ifMs
∞(E) = 0.

De�nition 2.2 Let E ⊂ R
n . �e Hausdor� dimension of E is the unique number

dimH E ∈ [0, n] where one witnesses a transition fromM
s(E) = ∞ for all s < dimH E

toMs(E) = 0 for all s > dimH E.

De�nition 2.3 Let μ be a Borel measure onR
n . �e upper Hausdor� dimension of μ

is de�ned to be dimH μ = inf{dimH E ∶ E ⊂ R
n is Borel, μ(Rn/E) = 0}.

Lemma 2.2 Fix Δ = Δm(Rn). Let μ be a Radon measure on R
n , and let E ⊂ R

n be a
Borel set with μ(Rn/E) = 0. If there exist constants 0 < ρ < n and λ > 0 such that for
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every Q ∈ Δ with sideQ ≤ 1,

M
n−ρ
m−1 side Q(E ∩ Q) < (sideQ)n−ρ(2.1)

or

∑
R∈Child(Q)

μ(R)1/2(volR)1/2 ≤ m−λ μ(Q)1/2(volQ)1/2 ,(2.2)

then dimH μ ≤ n − λρ/(λ + ρ).
Proof An implicit version of the lemma with the weaker conclusion dimH μ < n
appears at the end of [10, pp. 481–483]. �e authors supplied a detailed proof with
the indicated upper bound, in the setting of Rn ×R, equipped with the parabolic
distance. For the Euclidean case, simply repeat the proof of [4,�eorem 2.10], making
the following super�cial change. Replace each occurrence of n + 2 (the Hausdor	
dimension of parabolic Rn ×R) with n (the Hausdor	 dimension of Rn). ∎
Lemma 2.3 (Frostman’s lemma with better constant) Fix Δ = Δm(Rn). Let K ⊂
R

n be a compact set. If s > n − 1, then there exists a Radon measure μ on R
n such

that μ(Q) ≤ (sideQ)s for all Q ∈ Δ, μ(∂Q) = 0 for all Q ∈ Δ, and μ(Rn) = μ(K) ≥
M

s
∞(K).

Remark When s > n − 1, the “constant” in front of Ms
∞(K) is 1. For smaller s,

it is possible that μ(∂Q) > 0 for some Q ∈ Δ and the proof only gives μ(Rn) ≥
2−nMs

∞(K). If one would like to relax the requirement thatK be compact toK Souslin
or to require μ satisfy the stronger conclusion μ(A) ≤ (diamA)s for all sets A ⊂ R

n ,
then the constant in front ofMs

∞(K) becomes even smaller (see [24, pp. 112–114]).

Proof Let K ⊂ R
n be compact and �x s > n − 1. We will modify a standard proof of

Frostman’s lemma, exploiting the fact that s is greater than the Hausdor	 dimension
of the boundaries of m-adic cubes. Cover K with a �nite list of cubes Q1 , . . . ,Q l ∈ Δ
with the property that each pair Q i and Q j have no common ancestors unless i = j.

�enMs
∞(K) = ∑l

i=1 M
s
∞(K ∩ Q i). Suppose that for each i, we can construct a Radon

measure μ i onR
n such that μ i(Q) ≤ (sideQ)s for allQ ∈ Δ, μ i(∂Q) = 0 for allQ ∈ Δ,

and μ i(Rn) = μ i(K ∩ Q i) ≥M
s
∞(K ∩ Q i). (See the next paragraph.) �en μ = μ1 +⋅ ⋅ ⋅ + μ l is our desired measure, because each μ i vanishes on the boundaries of cubes

in Δ and pairwise Q1 , . . . ,Q l have no common ancestors.
Fix a cube Q0 ∈ Δ and assign E ∶= K ∩ Q0 ⊂ Q0. Following the proof of [24, �eo-

rem 8.8], usingm-adic cubes instead of dyadic cubes, one may produce a sequence of
Radon measure (νk)∞k=1 such that:

(1) the support of νk belongs to the closure of⋃{Q ∈ Δ ∶ sideQ = m−k , Q ∩ E ≠ ∅};
(2) νk(∂Q) = 0 for all Q ∈ Δ;
(3) νk(Q) ≤ (sideQ)s for all Q ∈ Δ with sideQ ≥ m−k ; and
(4) for each X ∈ E, there is QX ∈ Δ with sideQX ≥ m−k and νk(QX) = (sideQX)s .
By (1)–(3), νk(Rn) = νk(Q0) = νk(Q0) ≤ (sideQ0)s < ∞ for all k that are large
enough so that sideQ0 ≥ m−k . By weak compactness of Radon measures, there exist
a subsequence (νk j

)∞j=1 and a Radon measure ν such that νk j
converges weakly to ν

as j →∞ in the sense of Radon measures. By (1), the support of ν is contained in
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K ∩ Q0. By (4), for each k, there exist (maximal) disjoint cubesQX1 , . . . ,QXp such that
E ⊂ QX1 ∪ ⋅ ⋅ ⋅ ∪ QXp and νk(Rn) ≥ ∑p

i=1 νk(QX i ) = ∑p
i=1(sideQX i )s ≥M

s
∞(E).�us,

ν(Rn) = ν(Q0) ≥ lim sup
j→∞

νk j
(Q0) = lim sup

j→∞

νk j
(Rn) ≥M

s
∞(E).

Next, let Q ∈ Δ. For all i ≥ 1, a su�ciently small open neighborhood of ∂Q can be
covered by C(n)m i(n−1) cubes R ∈ Δ with sideR = m−i sideQ. By (3), it follows that

ν(∂Q) ≤ lim inf
j→∞

∑
R

νk j
(R) ≤ C(n)m i(n−1−s)(sideQ)s for all i ≥ 1.

Hence, ν(∂Q) = 0, since s > n − 1. Consequently, ν(Q) = lim j→∞ νk j
(Q) ≤ (sideQ)s .∎

3 Estimates for harmonic measure

Harmonic measure is perhaps best viewed through several complementary perspec-
tives, including geometric function theory [15], potential theory [17], and stochastic
processes [26]. To ease notation, we adopt the following convention. Domains are
assumed to be connected open sets. On a bounded domain Ω ⊂ R

n , we let ∂Ω denote
the topological boundary in the Euclidean topology. On an unbounded domain Ω ⊂
R

n , we let ∂Ωdenote the topological boundary in a one-point compacti�cation ofΩ so
that ∂Ω includes the point at in�nity.�is ensures that for any domain Ω ⊊ R

n , n ≥ 3,
harmonic measure ωX

Ω with pole at X ∈ Ω exists and is a Borel probability measure
with support in ∂Ω. By Harnack’s inequality, ωX

Ω and ωY
Ω are mutually absolutely

continuous for all X ,Y ∈ Ω. In particular, the support and Hausdor	 dimension of
ωX
Ω are independent of the choice of X.
Given anm-adic grid Δ = Δm(Rn), we let

Δ⃗ ∶= {Q + ( j1
mk+1

, . . . ,
jn

mk+1
) ∶ Q ∈ Δ, sideQ = m−k , j1 , . . . , jn ∈ Z}(3.1)

denote the set of translates of m-adic cubes that are aligned with m-adic cubes of
the next generation. �e following lemma is modeled a�er [10, Lemma 1]. Results
of this type are now collectively referred to as Bourgain’s estimate and have become a
fundamental tool used to study absolute continuity of harmonic measure (see, e.g., [3,
18]). Also, see [2, 5, 6] for applications of Bourgain’s estimate to study the dimension
of harmonic measure on special classes of domains.

Lemma 3.1 (Bourgain’s estimate with better constants) Fix Δ = Δm(Rn) for some n ≥
3 and m ≥ 5 with m > ξm + 2

√
n, where we de�ne ξm ∶= 1, when m is odd, and ξm ∶= 2,

when m is even. Let P ∈ Δ⃗ and P∗ ∈ Δ be any cubes such that side P∗ = m−1 side P and
P∗ includes the center of P. Assign Q ∶= int P and Q∗ ∶= P∗ (Figure 1). For all closed sets
E ⊂ R

n , poles X ∈ Q∗/E, and dimensions n − 1 < s ≤ n,

⎛
⎝(

1√
n
)n−2 − ( 2

m − ξm
)n−2⎞⎠

M
s
∞(E ∩ Q∗)(sideQ∗)s ≤ O(n,m, s)ωX

Q/E(E ∩ Q),(3.2)
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Figure 1: Examples of Q∗ andQ in Lemma 3.1 whenm = 5 (le�) andm = 6 (right).�e smaller

cube Q∗ is the closure of a cube P∗ ∈ Δ
m(R2). �e larger cube Q is the interior of a cube P ∈

Δ⃗m(R2).

where

O(n,m, s) =min
k∈Z

⎛
⎝(

2mk

(n − 2)√n
)n−2 + ωn

4
( mn

n − 2
)n−2 n3mk(n−2−s)

1 −mn−2−s

⎞
⎠ .(3.3)

Remark. Here and below, we let ωn denote the volume of the unit ball in R
n . When

m is odd, the cube P∗ is uniquely determined by P. When m is even, there are 2n

possibilities for P∗ for each P. �e gap (distance) between P∗ and ∂P is (m − ξm)/2
times side P∗. �e value of k that minimizes O(n,m, s) depends on n, logn(m),
and s.

Proof Let n, m, Q, and Q∗ be given with the stated requirements. Let E ⊂ R
n

be closed. Because Q∗ is compact, K ∶= E ∩ Q∗ is compact. Freeze n − 1 < s ≤ n. By
Lemma 2.3, there exists a �nite Borel measure μ on R

n with support in K such that
μ(R) ≤ (sideR)s for all R ∈ Δ, μ(∂R) = 0 for all R ∈ Δ, and μ(Rn) = μ(K) ≥M

s
∞(K).

Consider the harmonic function u(X) = ∫K ∣X − Y ∣−(n−2) dμ(Y) de�ned on R
n/K,

which satis�es

u(X) ≤ O(n,m, s) (sideQ∗)s−(n−2) ∀X ∈ Rn/K ,(E1)

u(X) ≥ (diamQ∗)−(n−2)μ(K) = √
n
−(n−2)(sideQ∗)−(n−2)μ(K) ∀X ∈ Q∗/K ,

(E2)

u(X) ≤ (gap(Q∗ , ∂Q))−(n−2)μ(K) = (m − ξm
2

sideQ∗)
−(n−2)

μ(K) ∀X ∈ ∂Q ,

(E3)

where gap(A, B) = inf a∈A inf b∈B ∣a − b∣ denotes the gap between nonempty setsA and
B (sometimes referred to as the distance between A and B). Of the three estimates,
(E2) and (E3) are straightforward; we delay the proof of (E1) to the end of the lemma.
Following [10], de�ne an auxiliary harmonic function w on R

n/K by setting

w(X) = u(X) − ∥u∥L∞(∂Q)∥u∥L∞(Rn/K)

for all X ∈ Rn/K ,
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where the norms denote the supremum of the continuous function u on the speci�ed
sets. By design,w ≤ 0 on ∂Q,w is continuous on ∂Q, andw ≤ 1 on all ofRn/K. Hence,

lim sup
X→X0

w(X) ≤ χK(X0) for all X0 ∈ ∂(Q/K).
�us, w(X) ≤ ωX

Q/K(K) ≤ ωX
Q/E(E ∩ Q) for every X ∈ Q/E by two applications of

the maximum principle. Suppose that X ∈ Q∗/E = Q∗/K. Using (E1) to estimate the
denominator in the de�nition ofw and (E2), (E3) to estimate the numerator, we obtain

ωX
Q/E(Q ∩ E) ≥ ((1/√n)n−2 − (2/(m − ξm))n−2) (sideQ∗)−(n−2)Ms

∞(K)
O(n,m, s) (sideQ∗)s−(n−2) .

�is is our desired estimate.
It remains to verify (E1), which is the main improvement over the corresponding

lemma in [10]. We will use an annular decomposition (see Figure 2), but do not guess
the geometry of the annuli in advance. Fix X ∈ Rn/K and let j0 denote the integer
such that sideQ∗ = m− j0 . Recall that μ(R) ≤ (sideR)s for all R ∈ Δ. Let l ∈ Z and let
r l > 0 (depending on l) to be determined. Let h ∈ Z and write K = B l

j0+h
∪⋃∞j= j0+h Al

j ,
where

B l
j ∶= {Y ∈ K ∶ ∣X − Y ∣ ≥ r lm

− j} , Al
j ∶= {Y ∈ K ∶ r lm−( j+1) ≤ ∣X − Y ∣ < r lm

− j} .
On one hand, we may trivially estimate μ(B l

j0+h
) ≤ μ(Q∗) ≤ m− j0 s . On the other

hand, let ωn denote the volume of the unit ball in R
n . �en Al

j is covered by

⌊ωn(r lm l +√
n)n⌋ or fewer cubes in Δ of side length m−( j+l). (To derive this, let R

represent a cube of side length m−( j+l); divide the volume of a ball of radius r lm
− j +

diamR by the volume of R.) Hence, μ(Al
j) ≤ ωn(r lm l +√

n)nm−( j+l)s . �erefore,

u(X) ≤ (1/r l)n−2m(n−2)( j0+h)μ(B l
j0+h

) + ∞∑
j= j0+h

(1/r l)n−2m(n−2)( j+1)μ(Al
j)

≤ (mh/r l)n−2m j0(n−2−s) + (m/r l)n−2ωn(r lm l +√
n)nm−l s ∞∑

j= j0+h

m j(n−2−s)

≤ ((mh/r l)n−2 + ωn(m/r l)n−2(r lm l +√
n)n m−l s+h(n−2−s)

1 −mn−2−s
)

67777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777778777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777779
I

(sideQ∗)s−(n−2) .

�e quantity (m/r l)n−2(r lm l +√
n)n has a unique critical point and is minimized

across all r l > 0 when r l = ((n − 2)√n)/2m l . Selecting this value yields

I = ( 2mh+l

(n − 2)√n
)n−2 + ωn ( 2m1+l

(n − 2)√n
)n−2 (n

√
n

2
)n

m−l s+h(n−2−s)

1 −mn−2−s

= ( 2mh+l

(n − 2)√n
)n−2 + ωn

4
( mn

n − 2
)n−2 n3m(h+l)(n−2−s)

1 −mn−2−s
.

Letting h + l range over arbitrary values k ∈ Z, we arrive at (E1). ∎
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Figure 2: Annular decomposition used in the proof of (E1).

We use the following two special cases to prove�eorem 1.1.

Corollary 3.2 For all n ≥ 3, there exists Cn > 1 depending only on n such that for all
m > ξm + 2

√
n and n − 1 < s ≤ n,

M
s
∞(E ∩ Q∗) ≤ Cnm

n−2 ωX
Q/E(E ∩ Q) (sideQ∗)s .(3.4)

Proof In (3.3), take k = 0 or k = 1. ∎
Corollary 3.3 For all δ > 0, there exists nδ ≥ 3 such that if n and m are integers with
n ≥ nδ and m ≥ δn, and n − 1/2 < s ≤ n, then

M
s
∞(E ∩ Q∗) ≤ δ(m√

2πe)n−2 ωX
Q/E(E ∩ Q) (sideQ∗)s .(3.5)

Proof Let δ > 0 be given and �x ε > 0 to be speci�ed below. Suppose that n andm are
integers with n ≥ 3 and m ≥ δn. Let us agree to write cn ∼ dn if cn is asymptotic to dn
as n →∞ in the sense that limn→∞ cn/dn = 1 and further agree to write cn = o(dn) if
limn→∞ cn/dn = 0. Using Stirling’s formula for Γ(x) (e.g., [22]) and ωn = πn/2/Γ( n

2 +
1) (e.g., [1, Appendix A]), we see that

ωn ∼ 1√
πn

(
√
2πe√
n

)n = 2
√
πe√
n
3 (

√
2πe√
n

)n−2

.

We also have (n/(n − 2))n−2 ∼ e2. Choosing k = 1 in (3.3), it follows from the noted
asymptotic estimates that for su�ciently large n, depending only on ε,

O(n,m, s)
(1 + ε)e2 ≤ ( 2m

n
√
n
)n−2 +

√
πe

2

√
n
3
mn−2−s (m

√
2πe√
n

)n−2

,

where the reader may observe that we also absorbed the factor (1 −mn−2−s)−1 appear-
ing in O(n,m, s) into the error on the le�-hand side. Because m ≥ δn and −2 ≤ n −
2 − s < −3/2, the factor

√
n
3
mn−2−s = o(max{δ−2 , δ−3/2}) = o(1). Also, (2/n)n−2 =

o(√2πe
n−2). �us, taking n to be su�ciently large depending only on δ and ε, we
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have

O(n,m, s) ≤ ε(1 + ε)e2 (m
√
2πe√
n

)n−2

.(3.6)

Next, because m ≥ δn, we can estimate

( 1√
n
)n−2 − ( 2

m − ξm
)n−2 ≥ (1 + ε)−1√n

−(n−2)
(3.7)

for all su�ciently large n depending only on ε and δ. Combining (3.2), (3.6), and (3.7),
we conclude that for all n su�ciently large depending only on ε and δ,

M
s
∞(E ∩ Q∗) ≤ ε(1 + ε)2e2(m√

2πe)n−2ωX
Q/E(E ∩ Q)(sideQ∗)s .

Specifying that ε(1 + ε)2e2 = δ yields (3.5). ∎
We use the next two special cases to prove�eorem 1.2.

Corollary 3.4 Suppose n = 3. For all integers m ≥ 5 and dimensions 2.999999 ≤ s ≤ 3,

( 1√
3
− 2

m − ξm
) M

s
∞(E ∩ Q∗)(sideQ∗)s ≤ ( 2√

3
m + 27π

m−0.999999

1 −m−1.999999
)ωX

Q/E(E ∩ Q).
(3.8)

Proof In (3.3), take n = 3 and k = 1. Bound the factor m2−s/(1 −m1−s) appearing in
O(3,m, s) using the assumption s ≥ 2.999999. ∎
Corollary 3.5 Suppose n = 4. For all integers m ≥ 7 and dimensions 3.999999 ≤ s ≤ 4,

( 1

4
− ( 2

m − ξm
)2) M

s
∞(E ∩ Q∗)(sideQ∗)s ≤ ( 1

4
m2 + 32π2 m0.000001

1 −m−1.999999
)ωX

Q/E(E ∩ Q).
(3.9)

Proof In (3.3), take n = 4 and k = 1. Bound the factorm4−s/(1 −m2−s) appearing in
O(4,m, s) using the assumption s ≥ 3.999999. ∎

A rectangle in R
n is a set of the form [x1 , x1 + s1] × ⋅ ⋅ ⋅ × [xn , xn + sn] with

s1 , . . . , sn > 0. Iterating the strongMarkov property, one gets an estimate on harmonic
measure of the portion of the boundary lying inside a sequence of nested rectangles:
Brownian motion cannot reach the innermost rectangle without passing through the
outer rectangles.

Lemma 3.6 Let n ≥ 3, and letΩ ⊊ R
n be a domain. Let H1 , . . . ,Hk be rectangles inR

n

that are strictly nested in the sense that Hk ⊂ intHk−1, Hk−1 ⊂ intHk−2, . . ., H2 ⊂ intH1.
Write G′i = Ω ∩ ∂(Ω/H i) ⊂ ∂H i = G i for each i. If X ∈ Ω/H1, then

ωX
Ω(Hk) ≤ ωX

Ω/H1
(G′1)⎛⎝ sup

X1∈G′1

ωX1

Ω/H2

(G′2)⎞⎠ ⋅ ⋅ ⋅ ⎛⎝ sup
Xk−1∈G

′
k−1

ωXk−1

Ω/Hk
(Gk)⎞⎠ .(3.10)

(Except for the �nal instance, Gk , all instances of a “G” in the formula are G′i .)
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Proof We induct on the number of rectangles. �e base case ωX
Ω(H1) ≤ ωX

Ω/H1
(G1)

holds by themaximumprinciple. For the induction step, suppose that the lemmaholds
with k nested rectangles for some k ≥ 1. Let H1 , . . . ,Hk+1 be rectangles with H j+1 ⊂
intH j for all 1 ≤ j ≤ k and �x X ∈ Ω/H1. Note that every X1 ∈ G′1 lies outside of H2.
�us, the inductive hypothesis applied with H2 , . . . ,Hk+1 guarantees that

ωX1

Ω (Hk+1) ≤ ωX1

Ω/H2

(G′2)⎛⎝ sup
X2∈G′2

ωX2

Ω/H3

(G′3)⎞⎠ ⋅ ⋅ ⋅ ⎛⎝ sup
Xk∈G

′
k

ωXk

Ω/Hk+1
(Gk+1)⎞⎠ .

(When k = 1, this formula should be read asωX1

Ω (H2) ≤ ωX1

Ω/H2

(G2).) Since Ω/H1 ⊂ Ω,

the strong Markov property (see, e.g., [12, p. 117]) ensures that

ωX
Ω(Hk+1) = ωX

Ω/H1
(Hk+1 ∩ ∂Ω) + ∫

Ω∩∂(Ω/H1)
ωX1

Ω (Hk+1) dωX
Ω/H1

(X1)
= ∫

G′
1

ωX1

Ω (Hk+1) dωX
Ω/H1

(X1) ≤ ωX
Ω/H1

(G′1) sup
X1∈G′1

ωX1

Ω (Hk+1),
whereωX

Ω/H1
(Hk+1 ∩ ∂Ω) = 0 trivially, sinceHk+1 is contained in the exterior of Ω/H1.

Combining the two displayed equations gives the desired inequality forH1 , . . . ,Hk+1.∎
A nearly identical argument gives the following dual inequality.

Lemma 3.7 Let n ≥ 3, and let Ω ⊊ R
n be a domain. Let H1 ,H2 be rectangles in R

n

with H2 ⊂ intH1. Write G′i = Ω ∩ ∂(Ω/H i) ⊂ ∂H i = G i for all i. If X ∈ Ω/H1, then

ωX
Ω(H2) ≥ ωX

Ω/H1
(G′1)( inf

X1∈G′1

ωX1

Ω/H2

(G2)) .(3.11)

4 Bounding Bourgain’s constant from below

Recall that Bourgain’s constant bn is the largest value such that the upper Hausdor	
dimension of harmonic measure is at most n − bn for all domains Ω ⊂ R

n . �e
following theorem is based on the demonstration in [10] that b3 > 0 and implements
ideas from [4]. It reduces the problem of bounding bn from below to estimation of
constants appearing in Bourgain’s estimate and selection of parameters m, η, h, and
d satisfying the constraint (4.2). By working exclusively with m-adic cubes and net
contents – without passing through Hausdor	 contents – we avoid introducing an
unnecessary source of error as was done in the original argument. �is is important
in the context of �eorem 1.2.

�eorem 4.1 Let n ≥ 3, and let m ≥ 5. Suppose that ε > 0 and α > 0 are constants such
that Bourgain’s estimate holds in the sense that for all Q∗ and Q, as in Lemma 3.1, for all
closed sets E ⊂ R

n , for all X ∈ Q∗/E, and for all n − ε < s ≤ n, we have

M
s
∞(E ∩ Q∗) ≤ α ωX

Q/E(E ∩ Q)(sideQ∗)s .(4.1)
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Let η > 0 be any number such that (2 −m−n)αη ≤ 1 −m−n . Finally, suppose that 1 ≤ h <
m/2 and d ≥ 1 are integers such that

γ ∶= (1 − (1 − 2h/m)n)1/2 + (1 − 2h/m)n/2η−1/2(1 − η)hmd−1/2 < 1.(4.2)

�en bn ≥ λρ/(λ + ρ), where
λ ∶= − logm(γ) and ρ ∶=min{ε, 0.914186(1 − αη)(1 −m−n)m−(d+1)n/ ln(m)}.

(4.3)

In order to prove the theorem, we start with an auxiliary estimate.

Lemma 4.2 If n ≥ 3, m ≥ 5, and d ≥ 1 are integers and (2 −m−n)a ≤ 1 −m−n , then

(mn − 1)(mρ−n +m2(ρ−n) + ⋅ ⋅ ⋅ +m(d+1)(ρ−n)) < 1 − am(d+1)(ρ−n)(4.4)

holds for all values of ρ in the range

0 ≤ ρ ≤ 0.914186(1 − a)(1 −m−n)m−(d+1)n/ ln(m).(4.5)

Remark. As a referee noted, the proof below shows that by imposing stricter con-
straints onm and d, the constant 0.914186 can be made arbitrarily close to

√
2 − 1/2 =

0.914213 . . .. We shall not dwell on this point, because it would not change the �rst
signi�cant digit of our estimate on b3 and b4 in�eorem 1.2. Itmay beworth exploring
how much the bound can be improved without using the relaxation c − x < 1⇒
c − cd+2x < 1, but this is beyond the scope of the current paper.

Proof Rewriting (4.4) using the formula for partial geometric series, we want to �nd
the largest possible ρ ≥ 0 such that

(mρ −mρ−n)(1 −m(d+1)(ρ−n))
1 −mρ−n

< 1 − am(d+1)(ρ−n) .

Rearranging, expanding the products, and cancelling like terms, our goal becomes

mρ(1 −m(d+1)(ρ−n)) +m(d+2)(ρ−n) < 1 − am(d+1)(ρ−n) + am(d+2)(ρ−n) .

Set ρ = logm(c) with c ≥ 1, close to 1, to be found below. �en we would like

c − cd+2 m−(d+1)n(1 − (1 − a)m−n − a/c)67777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777877777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777779
x

< 1.

Since c ≥ 1 and x > 0, the inequality c − cd+2x < 1 is implied by c − x < 1. Hence, it
su�ces to �nd c ≥ 1 such that c −m−(d+1)n(1 − (1 − a)m−n − a/c) < 1. Equivalently,

c2 − (1 +m−(d+1)n(1 − (1 − a)m−n)677777777777777777777777777777777777777777777777777777777777777777777777777787777777777777777777777777777777777777777777777777777777777777777777777777779
y

) c + am−(d+1)n67777777777777777777877777777777777777779
z

< 0.

Now, c2 − (1 + y)c + z < 0 holds at c = 1 provided that z < y. In our case, we need(1 − a)m−n < 1 − a, which is true since a < 1. It follows that we may select c to be any
number between 1 and the greater of the two roots of c2 − (1 + y)c + z = 0. �at is,

1 ≤ c < 1 + y +√(1 + y)2 − 4z

2
.

https://doi.org/10.4153/S0008414X2300069X Published online by Cambridge University Press



1978 M. Badger and A. Genschaw

Well, 1 + (√2 − 1)(2y − 4z) ≤ √
1 + 2y − 4z < √(1 + y)2 − 4z provided that 0 ≤ 2y −

4z < 1. (To verify the �rst inequality, start by squaring both sides.) In particular, 4z ≤
2y as long as 4a ≤ 2 − 2(1 − a)m−n ; this holds by our demand that (2 −m−n)a ≤ 1 −
m−n . Hence, we can choose

1 ≤ c ≤ 1 + y + 1 + (√2 − 1)(2y − 4z)
2

= 1 + (√2 − 1/2)m−(d+1)n ( (1 − 2(√2 − 1))a
(√2 − 1/2) − (1 − a)m−n )677777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777877777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777779
w

.

�us, (4.4) holds if 0 ≤ ρ ≤ ln(1 +w)/ ln(m). Estimating

ln(1 +w) ≥ w(1 − (1/2)w) ≥ w(1 − (1/2)(√2 − 1/2) ⋅ 5−6) ≥ 0.99997w

and 1 − 2(√2 − 1)a/(√2 − 1/2) − (1 − a)m−n ≥ (1 − a)(1 −m−n) and checking that(√2 − 1/2) ⋅ 0.99997 = 0.914186 . . ., we conclude that (4.5) implies (4.4). ∎
Proof of �eorem 4.1 Let n, m, ε, α, η, h, d, γ, λ, and ρ be given according to the
statement of the theorem. Shrinking ρ as needed, we may assume without loss of
generality that ρ < ε. Let Δ = Δm(Rn), let Ω ⊊ R

n be a domain, let Ωc = R
n/Ω, let

X ∈ Ω, and let ω = ωX
Ω . De�ne Δ⃗ as in (3.1). We say (Q ,Q∗) is an admissible pair

if Q ∈ Δ⃗, Q∗ ∈ Δ, sideQ∗ = m−1 sideQ, and Q∗ includes the center of Q. For every
admissible pair (Q ,Q∗), the Bourgain type estimate (4.1) with s = n − ρ implies either

ωZ
(int Q)/Ωc(Ωc ∩ intQ) ≥ η for all Z ∈ Q∗/Ωc(4.6)

or

M
n−ρ
∞ (Ωc ∩ Q∗) < αη(sideQ∗)n−ρ .(4.7)

To bound dimH ω from above by n − λρ/(λ + ρ), we aim to use Lemma 2.2.
Because scaling and translating the domain in space and changing the pole has no
e	ect on the Hausdor	 dimension of harmonic measure, we may assume without loss
of generality that if P ∈ Δ, side P ≤ 1, and X ∈ P, then P is disjoint from ∂Ω. For any
such cube P,

∑
Q∈Child(P)

ω(Q)1/2(volQ)1/2 = 0 = m−λω(P)1/2(vol P)1/2 ,(4.8)

trivially.
To continue, suppose that P ∈ Δ is anm-adic cube with side P ≤ 1, for which X /∈ P.

For any j ≥ 1, let Child j(P) denote the set of all jth generation descendents of P in the
tree Δ. For example, Child2(P) = {R ∈ Δ ∶ R ⊂ P, sideR = m−2 side P} is the set of all
grandchildren of P. Keeping in mind our goal of checking the hypothesis of Lemma
2.2, we consider two alternatives. Under Alternative 1, we will show that P satis�es
(2.1). Under Alternative 2, we will show that P satis�es (2.2).

Alternative 1. Suppose that the estimate (4.7) holds for some admissible pair (Q ,Q∗)
with Q∗ ∈ Childd+1(P). LetQ↑ j∗ ∈ Δ denote the jth ancestor ofQ∗ in Δ. Covering Ωc ∩
P by Child(P)/{Q↑d∗ }, Child(Q↑d∗ )/{Q↑d−1∗ }, . . ., Child(Q↑1∗ )/{Q∗}, and Ωc ∩ Q∗, we
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Figure 3: Optimal covering of Ωc ∩ P under the assumption that the net content of Ωc inside

of some (d + 1)-descendent Q∗ is small.

obtain (Figure 3)

M
n−ρ
m−1 side P(Ωc ∩ P) < (mn − 1) ((sideQ↑d∗ )n−ρ + ⋅ ⋅ ⋅ + (sideQ∗)n−ρ)

+ αη(sideQ∗)n−ρ .
Rewriting each side length in terms of side P and rearranging,

M
n−ρ
m−1 side P(Ωc ∩ P)
(side P)n−ρ ≤ (mn − 1)(m−(n−ρ) + ⋅ ⋅ ⋅ +m−(d+1)(n−ρ)) + αηm−(d+1)(n−ρ) .

Applying Lemma 4.2 with a = αη, we conclude that

M
n−ρ
m−1 side P(Ωc ∩ P) < (side P)n−ρ .(4.9)

Alternative 2. Suppose that the estimate (4.6) holds for every admissible pair (Q ,Q∗)
with Q∗ ∈ Childd+1(P). Partition P into annular rings of dth generation descendents.
Working from the outside to the inside, de�ne A0 = ∅, P0 = P,

A1 = ⋃{Q ∈ Childd(P) ∶ Q /⊂ A0 , Q ∩ ∂P0 ≠ ∅}, P1 = P0/A1 ,

A2 = ⋃{Q ∈ Childd(P) ∶ Q /⊂ A1 , Q ∩ ∂P1 ≠ ∅}, P2 = P1/A2 ,⋮ ⋮
AM = ⋃{Q ∈ Childd(P) ∶ Q /⊂ AM−1 , Q ∩ ∂PM−1 ≠ ∅}, PM = PM−1/AM ,

AM+1 = ⋃{Q ∈ Childd(P) ∶ Q /⊂ AM , Q ∩ ∂PM ≠ ∅} = PM , PM+1 = ∅,
wheremd = 2M + 1, ifm is odd, andmd = 2M + 2, ifm is even. Next, for each annulus
A i , with 1 ≤ i ≤ M, choose a rectangle H i such that (i) G i ∶= ∂H i ⊂ A i separates ∂Pi−1
from ∂Pi and (ii) for any Z ∈ G i , there exists an admissible pair (Q ,Q∗) with Q∗ ∈
Child

d+1(P), Z ∈ Q∗,Q ⊂ A i , andQ ∩ A i+1 = ∅.�ere are a continuumof possibilities
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Figure 4: A decomposition P = Ã1 ∪ ⋅ ⋅ ⋅ ∪ Ãh ∪ Phmd−1 when n = 2, m = 9, h = 2, and d = 1,
where each little square represents a d + 1 descendent of P. Brownian motion, started outside

of P, cannot reach the inner region Phmd−1 without passing through surfacesG i (not displayed)

drawn in the collars of white squares. Increasing h raises the number of annuli Ã j of children

of P. Increasing d yields a higher density md−1 of separating surfaces per annulus.

for each H i . Further, as in Lemma 3.6, assign G′i ∶= Ω ∩ ∂(Ω/H i) ⊂ G i for each i. See
Figure 4.

Fix any 1 ≤ k ≤ M. Later, we will choose k = k(m, h, d). Let H1 , . . . ,Hk and
G1 , . . . ,Gk andG

′
1 , . . . ,G

′
k be given as above. In addition, by a slight abuse of notation,

write Hk+1 = Pk and Gk+1 = ∂Pk . �en H i+1 ⊂ intH i for all 1 ≤ i ≤ k. Recall that
X /∈ P. On the one hand, by Lemma 3.6, the trivial observation ωX i

Ω/H i+1
(G′i+1) ≤

ωX i

Ω/H i+1
(G i+1), and the fact that we are in Alternative 2,

ω(Pk) ≤ ωX
Ω/H1

(G′1) k∏
i=1

sup
X i∈G′i∩Ω

ωX i

Ω/H i+1
(G i+1)(4.10)

≤ ωX
Ω/H1

(G′1) k∏
i=1

(1 − inf
X i∈G′i∩Ω

ωX i

Ω/H i+1
(A i)) ≤ ωX

Ω/H1
(G′1)(1 − η)k .

To verify the �nal inequality, �x Z ∈ G′i and let (Q ,Q∗) be the admissible pair given
by property (ii) in the de�nition ofG i .�en ωZ

Ω/H i+1
(A i) ≥ ωZ

int Q/Ωc(Ωc ∩ intQ) ≥ η

by the maximum principle and (4.6). On the other hand,

ω(P) ≥ ωΩ/H1
(G′1) inf

Z∈G′
1
∩Ω

ωZ
Ω(P) ≥ η ωX

Ω/H1
(G′1)(4.11)
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by Lemma 3.7, the maximum principle, and (4.6). Combining (4.10) and (4.11), we
obtain

ω(Pk) ≤ η−1(1 − η)kω(P).(4.12)

�e consequence of this estimate is that if k (hence M, hence d) is su�ciently large,
then ω(Pk) is arbitrarily small relative to ω(P).

To proceed, note that each union Ã j = A1+( j−1)md−1 ∪ ⋅ ⋅ ⋅ ∪ Amd−1+( j−1)md−1 of md−1

consecutive rings A i of d-descendents is an annulus formed from children of P. �at
is, Ã1 is the outermost annulus of children, Ã2 is the second annulus of children, and
so on. Assign k = hmd−1, with h given in the hypothesis of the theorem, and note that
k ≤ M, because h < m/2. Partition the set of all children of P into two collections:

A = {Q ∈ Child(P) ∶ Q ⊂ A1 ∪ ⋅ ⋅ ⋅ ∪ Ak} and B = {Q ∈ Child(P) ∶ Q ⊂ Pk}.
Writing vol(Pk)/ vol(P) = δ, we have

∑
Q∈Child(P)

ω(Q)1/2(volQ)1/2 = ∑
Q∈A

ω(Q)1/2(volQ)1/2 + ∑
Q∈B

ω(Q)1/2(volQ)1/2
≤ ω(A1 ∪ ⋅ ⋅ ⋅ ∪ Ak)1/2 (∑Q∈A volQ)1/2 + ω(Pk)1/2(vol Pk)1/2
≤ ((1 − δ)1/2 + δ1/2η−1/2(1 − η)k/2)ω(P)1/2(vol P)1/2 ,

where the �rst inequality holds by Cauchy–Schwarz. To �nd the value of δ in terms of
the parameters n,m, and h, write

δ = vol Pk
vol P

= (md − 2k)n
mdn

= (1 − 2k

md
)n = (1 − 2h

m
)n .

We have shown that

∑
Q∈Child(P)

ω(Q)1/2(volQ)1/2 ≤ m−λω(P)1/2(vol P)1/2 ,(4.13)

where

λ = − logm(γ) = − logm((1 − (1 − 2h/m)n)1/2 + (1 − 2h/m)n/2η−1/2(1 − η)hmd−1/2) > 0

by (4.2).
Conclusion. By (4.8), (4.9), and (4.13), the harmonic measure ω = ωX

Ω of Ω satis�es

the hypothesis of Lemma 2.2. �erefore, dimH ω ≤ n − λρ/(λ + ρ). As we let Ω ⊊ R
n

be an arbitrary domain, this proves bn ≥ λρ/(λ + ρ). ∎
Remark 4.3 Given n,m, η, h, and d, assign

V ∶= (1 − (1 − 2h/m)n)1/2 and Π ∶= η−1/2(1 − η)hmd−1/2 .(4.14)

�en γ < V +Π, where γ is de�ned in (4.2). In particular, V +Π < 1 implies γ < 1.

5 Proof of Theorem 1.1

Fix n ≥ 3. We �rst verify that bn > 0. Fix a large integer m > ξm + 2
√
n satisfying

the stipulations below. By Corollary 3.2, a Bourgain-type estimate (4.1) holds with
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α = Cnm
n−2 and ε = 1. Set η = 1/(3α), h = 1, and d = n. �en, certainly, αη = 1/3 <(1 −m−n)/(2 −m−n). We claim the quantity γ de�ned in (4.2) is less than 1 if m is

su�ciently large. Indeed, on the one hand,

V = (1 − (1 − 2h/m)n)1/2 = (1 − (1 − 2/m)n)1/2 < 1/2
for large enough m. On the other hand, Π = η−1/2(1 − η)hmd−1/2 = η−1/2(1 − η)mn−1/2.
Using the bound ln(1 − x) ≤ −x for all 0 ≤ x < 1, we see that

lnΠ ≤ 1

2
ln(3Cn) + 1

2
(n − 2) ln(m) − mn−1

6Cnmn−2
→ −∞ as m →∞.

Hence, Π < 1/2 if m is su�ciently large. �us, γ < V +Π < 1 if m is su�ciently large.
�erefore, bn > 0 by�eorem 4.1.

Now, suppose that n ≥ n1/3, where n1/3 is given by Corollary 3.3. Aiming for a
quantitative lower bound on bn that is valid for all su�ciently large n, wemay increase
the value ofn as convenient. Setm = n. ByCorollary 3.3, a Bourgain-type estimate (4.1)
holds with α = (1/3)(n√2πe)n−2 and ε = 1/2. Set η = (n√2πe)−(n−2), which ensures
that αη = 1/3 < (1 −m−n)/(2 −m−n). Set h = 1 and d = 2n − 3. On the one hand,

V = (1 − (1 − 2/n)n)1/2 ∼ (1 − e−2)1/2 = 0.9298 . . . .

On the other hand, Π = η−1/2(1 − η)n2n−4/2 satis�es

lnΠ ≤ 1

2
(n − 2) ln(n√2πe) − 1

2
n2n−4(n√2πe)−(n−2)

= 1

2
(n − 2) ln(n√2πe) − 1

2
( n√

2πe
)n−2

.

As the latter expression tends to −∞ as n grows, we see that Π < 0.07 for large n.
�us, γ < V +Π < 0.9998 and λ ≥ − ln(0.9998)/ ln(n) for all su�ciently large n. By
�eorem 4.1, bn ≥ λρ/(λ + ρ), where ρ = 0.914186(1 − 1/3)(1 − n−n)n−2n(n−1)/ ln(n).
Since ρ is substantially smaller than λ for large n, it follows that bn ≈ ρ. In particular,
since 0.914186(2/3)(1 − n−n) > 0.6, we may conclude that bn ≥ 0.6n−2n(n−1)/ ln(n)
for all su�ciently large n.�erefore, since bn > 0 for all n ≥ 3, the theoremholds: there
exists c > 0 such that bn ≥ c n−2n(n−1)/ ln(n) for all n ≥ 3.

Remark 5.1 For the large n case, one could also choose d = n − 1 + θ(n − 2) for any
θ > 0 by making n large enough depending on θ. For simplicity, we chose θ = 1.

6 Proof of Theorem 1.2

When n = 3 and m = 9, a Bourgain-type estimate (4.1) holds with α = 60.8979 and
ε = 0.000001 by Corollary 3.4. Assign η = 0.0046, h = 3, and d = 4. With the aid of a
calculator, one can see that

γ = (1 − (1 − 2h/m)n)1/2 + (1 − 2h/m)n/2η−1/2(1 − η)hmd−1/2 < 0.9996.

�us, by �eorem 4.1, b3 ≥ λρ/(λ + ρ) ≥ 1.452 . . . × 10−15. See the Appendix for
details.
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When n = 4 and m = 11, a Bourgain-type estimate (4.1) holds with α = 1660.53
by Corollary 3.5. When η = 0.00026, h = 4, and d = 5, one may check that γ <
0.9995.�us, by�eorem 4.1, b4 ≥ λρ/(λ + ρ) ≥ 2.199 . . . × 10−26. Once again, see the
Appendix.

Remark 6.1 �e authors do not claim that these bounds are sharp, but do believe
that they are likely close to what the method can prove without further improvements
to (3.2) or a more complicated case analysis in the proof of �eorem 4.1. Another
small optimization available is to use Hölder’s inequality with conjugate exponents
depending on m, η, h, d instead of the Cauchy–Schwarz inequality and p = q = 1/2
in the statement and proof of Lemma 2.2 and in the de�nition of γ and the proof of
�eorem 4.1.

7 Coda

�e story is far fromover. Now that explicit lower bounds on b3 and b4 and asymptotic
lower bounds on bn are known, one can test new methods and estimates against
Bourgain’s method. �e authors invite further activity to improve their estimates on
(or compute!) the dimension of harmonic measure in R

n , n ≥ 3.

A Wolfram Language code for estimating b3

We wrote the following code in Mathematica 13 to estimate b3 using�eorem 4.1 and
Corollary 3.4. See Table 1 for a record of outputs. For each �xedm ≥ 5, the parameters
η, h, and d were optimized by hand. To maximize ρ, the �rst priority is to minimize
d. To rule out small values of d, take η ≈ α−1(1 −m−3)/(2 −m−3) and check that γ > 1
for each integer 1 ≤ h < m/2. Once the optimal value of the integer d is identi�ed, the
second priority is to minimize the real-valued parameter η. Using the current best
guess for η (keeping γ < 1), adjust h to minimize γ. One can then test the value of γ
against smaller values of η. If γ < 1 for some smaller value of η, update the best guess
for η and repeat (adjust h, test smaller values of η).Halt the search for η once all smaller
values of η (up to some predetermined number of decimals) yield γ > 1. Use the values
of λ and ρ associated withm, η, h, and d to bound b3 from below by λρ/(λ + ρ).
(* All formulas use n=3, epsilon=0.000001 *)

bgAlpha[m_] := (LHS = 1/Sqrt[3] - 2/(m - 2 + Mod[m,2]);

RHS = m*2/Sqrt[3] + 27*Pi*mˆ(-0.999999)/(1 - mˆ(-1.999999));

Ceiling[10000*RHS/LHS]/10000); (* round up fourth decimal *)

bgMaxEta[m_] := ((1 - mˆ(-3))/(2 - mˆ(-3)))/bgAlpha[m];

bgV[m_,h_] := If[h<m/2, (1 - (1 - 2*h/m)ˆ3)ˆ0.5, 1];

bgEtaProd[m_,eta_,h_,d_] := If[h<m/2,

(1 - 2*h/m)ˆ1.5 * etaˆ(-0.5) * ((1-eta)ˆ(0.5*h*mˆ(d-1))), 1];

(* If h >= m/2, then bgV[m,h]=1 and bgEtaProd[m,eta,h,d]=1 *)

bgGamma[m_,eta_,h_,d_] := bgV[m,h]+ bgEtaProd[m,eta,h,d];

bgLambda[m_,eta_,h_,d_] := Max[0,-Log[m,bgGamma[m,eta,h,d]]];

(* If bgGamma[m,eta,h,d]>=1, then bgLambda[m,eta,h,d]=0 *)
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bgRho[m_,eta_,d_]:= If[eta <= bgMaxEta[m],

0.914186*(1 - mˆ(-3))*(1-bgAlpha[m]*eta)

*mˆ(-3*(d+1))/Log[m],0];

(* If eta > bgMaxEta[m], then bgRho[m,eta,d]=0 *)

bgLowerBound[m_,eta_,h_,d_] := (lambda = bgLambda[m,eta,h,d];

rho = bgRho[m, eta, d];

lambda*rho/(lambda + rho));

(* Returns lower bound on b_3 for any admissible (m,eta,h,d) *)

(* For example, bgLowerBound[9,0.0046,3,4]

returns 1.45271 * 10ˆ(-15) *)

n m η h d α γ λ ρ

3 5 0.0005 2 7 303.102 0.9976. . . 1.488 . . . × 10−3 8.020 . . . × 10−18

3 6 0.0008 2 6 277.560 0.9947. . . 2.911 . . . × 10−3 1.801 . . . × 10−17

3 7 0.0019 3 5 83.8178 0.9998. . . 7.481 . . . × 10−5 2.418 . . . × 10−16

3 8 0.0011 3 5 81.9976 0.9965. . . 1.678 . . . × 10−3 2.215 . . . × 10−17

3 9 0.0046 3 4 60.8979 0.9996 . . . 1.616 . . . × 10
−4

1.452 . . . × 10
−15

3 10 0.0031 4 4 61.4480 0.9992. . . 3.385 . . . × 10−4 3.210 . . . × 10−16

3 11 0.0022 4 4 54.2657 0.9984. . . 6.516 . . . × 10−4 8.031 . . . × 10−17

3 12 0.0016 5 4 55.5835 0.9993. . . 2.254 . . . × 10−4 2.174 . . . × 10−17

3 13 0.0012 5 4 52.5339 0.9982. . . 6.978 . . . × 10−4 6.521 . . . × 10−18

3 14 0.0009 5 4 54.1918 0.9988. . . 4.385 . . . × 10−4 2.117 . . . × 10−18

4 7 0.00006 3 7 2409.54 0.9998. . . 7.291 . . . × 10−5 3.637 . . . × 10−28

4 8 0.00016 3 6 2425.26 0.9999. . . 2.780 . . . × 10−5 1.390 . . . × 10−26

4 9 0.00009 3 6 1813.48 0.9978. . . 9.801 . . . × 10−4 6.651 . . . × 10−28

4 10 0.00005 4 6 1834.77 0.9994. . . 2.361 . . . × 10−4 3.605 . . . × 10−29

4 11 0.00026 4 5 1660.53 0.9995 . . . 2.062 . . . × 10
−4

2.199 . . . × 10
−26

4 12 0.00017 5 5 1685.89 0.9999. . . 2.779 . . . × 10−5 3.301 . . . × 10−27

4 13 0.00012 5 5 1619.82 0.9995. . . 1.932 . . . × 10−4 5.289 . . . × 10−28

4 14 0.00009 5 5 1649.02 0.9981. . . 6.908 . . . × 10−4 9.177 . . . × 10−29

4 15 0.00006 6 5 1626.75 0.9997. . . 8.531 . . . × 10−5 1.809 . . . × 10−29

4 16 0.00005 6 5 1659.76 0.9985. . . 5.340 . . . × 10−4 3.816 . . . × 10−30

Table 1: Bounding Bourgain’s constant for harmonic measure: bn ≥ λρ/(λ + ρ) ≈ ρ
when ρ ≪ λ. Bold entries indicate optimal parameters.
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�e code used to estimate b4 (omitted) is similar. It can be reproduced by mod-
ifying the de�nition of bgAlpha using Corollary 3.5 instead of Corollary 3.4 and
changing n = 3 to n = 4 in the de�nitions of bgMaxEta, bgV, bgEtaProd, and
bgRho.
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