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Methods invited session Data Fission: Splitting a Single Data Point.

1. Introduction

Leiner et al. (2025) introduce the data fission technique, which
unifies and generalizes multiple methods in selective inference.
We congratulate the authors on this impactful work and elegant
idea. For a broad class of parametric distributions, it offers a gen-
eral recipe by exploiting a clever analogy to Bayesian inference to
split a single data point W into two components f (W) and g(W),
such that the marginal distribution of f (W) and the conditional
distribution of g(W) given f(W) are both known distributions,
up to the knowledge of the parameter. This property allows
the researcher to use f(W) for model selection and g(W) for
statistical inference, without the need to adjust for selection.

Is the data fission procedure sensitive to parametric assump-
tions? In this discussion, we make an attempt in answering this
question for fixed-design regressions with non-Gaussian errors
and unknown error variance. To set up the notation, we let
X € R"*P be a fixed matrix and

id
Y=u+eeR" €1,...,n ~F, var(e)) = o2 >0, (1)

where the error variance o2 is unknown. Let 6% be any estimate

of o2. For instance, we can set 62 to be the residual sum of
squares from the regression of Y on X, that is,

62 = ;pYT(I —XxXTx)'xT)y. 2)
"

We define the data fission procedure as follows, where t > 0
and (X, Y, ) are user inputs.

Step 1. Sample Z ~ N(0, I,,);

Step 2. Compute f(Y) =Y +16Z,¢g(Y) =Y —-1716Z;

Step 3. Selecta subset M C {1,...,p} based on f(Y);

Step 4. Choose a vector 7y that depends on M in the column
span of X;

Step 5. Construct a confidence interval for nl,u as [ng(Y) &
Zi—a/2V1 4+ 1726 Inmll], where zi_y/, is the (1 —
a/2)th quantile of the standard normal distribution.

In Step 4, a common option is ny = XM(XAT/IXM)flej
where X is the submatrix of X formed by columns in M and
¢; is the jth canonical basis in R™™I. Our result can be easily

generalized to multidimensional parameters but we focus on
unidimensional parameters for ease of exposition.

Let e(Y, Z, 0) be the indicator that the confidence interval in
Step 5 covers the true parameter n]ﬂ,u, that is,

e(V,2,6) =1 (nfy € Unfig (V) & 21021+ 726 [l

Our target is to show the unconditional coverage is (asymptoti-
cally) at least 1 — «, that is,

Ele(Y,Z,6)] > 1 —a + o(1). 3)

Leiner et al. (2025) offer a heuristic argument in Appendix
B.5 for the case where u is linear in X, €; is Gaussian, and o2
is estimated using the method described above. However, it is
hard to make the argument rigorous because f(Y) and g(Y)
are n-dimensional vectors and a slight estimation error in o
would result in a large deviation in the joint distribution. Rasines
and Young (2023) establish a central limit theorem of n&g(Y)
conditional on M = S for a given model S, provided that
the probability of selecting S is not too small and o2 can be
estimated consistently with data splitting. While it implies the
conditional coverage for each given § satisfying the condition,
the lack of uniformity makes it difficult to apply their result to
prove the unconditional guarantee (3). Moreover, they require
the selection rule to be convex, that is, the selection event {y :
M(X,y) = S}is convex for any S C {1,...,p}. However, this
event is often a union of convex sets or “too complicated to be
explored analytically”(Rasines and Young 2023).

In this discussion, we study a broad class of selection rules
that depends on f(Y) through XTf(Y), which includes many
practical selection rules. We prove the asymptotic coverage guar-
antee (5) when 62 is consistent (Theorem 2.1), and establish
a uniform lower bound when 62 is asymptotically conserva-
tive (Theorem 2.2). Both results allow the dimension to grow
with the sample size. Furthermore, we explore how additional
restrictions on the selection rule can be leveraged to improve
the bounds. In particular, when the selection events are sim-
ple convex sets, as defined in Chernozhukov, Chetverikov, and
Kato (2017), we can allow the dimension to grow linearly in
n in certain cases. By contrast, when the selection events are
merely assumed to be convex as in Rasines and Young (2023),
we are unable to achieve better dimension dependence than
those obtained for selection rules without further constraints.
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All technical proofs are presented in Appendix A of online
supplementary material.

2. Main Results

Throughout the commentary we impose the following con-
straint on the selection rule.

Assumption 2.1. The selected subset M depends on f(Y)
through XTf(Y).

This includes a large class of selection procedures. For exam-
ple, all regularized regression in the following form, including
LASSO, satisfies Assumption 2.1:

in S F(Y) — XBI2 + (B
g@nv B o (B
Tx

X
T
o (%

Since the Gram matrix is fixed, the minimization problem only
depends on XTf(Y). Similarly, the Forward Stepwise selection
also satisfies Assumption 2.1. The fixed-X Knockofts procedure
(Barber and Candes 2015), or its uniformly improved variant
(Luo, Fithian, and Lei 2022), selects variables based on X Tf (V)
and XTf (Y) where X is the Knockoffs matrix. We can expand
the design matrix to include X to derive asymptotics.
Next, we assume that 62 is asymptotically upwardly-biased.

<— min
BeRP

) B 28T + 20 B, (@)

Assumption 2.2. There exists ai > o2 such that 6% = 0_% +
op(hy) for some deterministic sequence h,, — 0.

For the estimator (2), standard calculation implies
1
E[6%] =0 + e (U XXX XDl = o
n—

When p is in the span of X, as in standard linear models,
E[62] = o2. With a finite fourth moment, we show in Appendix
B.1 that Assumption 2.2 holds with 67 = E[6?] and any
sequence h,, with \/nh, — oco.

Now we state a generic result that the unconditional coverage
Ele(Y, Z,6)] changes little if 52 is replaced by its limit o2, up to
some minor adjustment. Define ey, (Y, Z, 0 ) as the indicator of
coverage when 6 is replaced by o in Step 2 and by o4 (1 — hy,)
in Step 5, that is,

en, (Y, Z,0p) =1 (mﬂm € [ny, g+ (Y)
2102V 1+ 720 (L= B . 1) (5)

where M is obtained based on (f(Y),g(Y)) = (f+-(Y),g+(Y))
and

fiN=Y+r10.2, g (V)=Y—-1'0,2 (6)
Lemma 2.1. Under Assumptions 2.1 and 2.2,

Ele(Y, Z;6)] > Eley, (Y, Zs01)] — /phn + 0(1).

Under the conditions of Proposition B.1, Lemma 2.1 holds
when p/n = o(1). Thus, the effect of unknown variance is
negligible if the average sample size per parameter is large.

2.1. Asymptotic Results for General Selection Rules

Consider the Gaussian model Y* = u + €¢* where €* ~
N(0,02I,). Further, let M* be the selection based on f(Y) =
f+(Y*) and

en,(Y*,Z,04) = I(mﬂiu € [nATﬁgAY*)

2102V 1+ 7205 (1= h) s 1)

Importantly, we use the same Z in the Gaussian model. Since ey,
depends on (Y, Z) only through (X Ty, XTZ7), we can show that

|Elen, (Y, Z,0.0)] — Eley, (Y*, Z,0 )] < drv(X"Y, XY,
(7)
where drv (W1, W5) denote the total variation distance between
variables W and W:

drv(W1, W2) = sup [P(W) € A) —P(W; € A)]
A

= inf P(W| # W5).
WL WH:W Lwy,widw,

To bound drv(XTY, XTY*), we impose assumptions on the
error distribution following Bubeck and Ganguly (2018) in
deriving the Entropic CLT for linear transforms of iid random
variables. In particular, it implies the errors are continuous.

Assumption 2.3. €1, ..
satisfied.

., €y are iid with the following conditions

(a) KL(¢;/a|IN(0,1)) < oo, where KL denotes the Kullback-
Leibler divergence.

(b) The distribution of ¢; has spectral gap c in the sense that, for
any smooth function g, E[g(ei)z] < (1/c)IE[g,2 ()]

The last assumption is on how the covariate dimension p
could grow with n.

Assumption 2.4. Asn — 00, \/ph, = o(1) and pL(X) = o(1)
where

L(X) = max H(X);; + nm;x(H(X)ij)z,
1 i ]
HX) = XX'%)7'x",

We show in Appendix B.2 that, if p = o(y/n/ log n), Assump-
tion 2.4 is satisfied with high probability when X is a realization
of a random matrix with iid sub-Gaussian entries, based on a
similar proof strategy as in Appendix F of Lei and Ding (2021).

With these assumptions, we prove that the data fission proce-
dure described in Section 1 produces asymptotically valid confi-
dence intervals for all selection rules satisfying Assumption 2.1
if the estimated variance is consistent.

Theorem 2.1. Under Assumptions 2.1-2.4, if oi =02,

Ele(Y,Z,6)]1 > 1 — o + o(1). (8)

When o is a conservative estimate of o, we can derive lower
a bound on the coverage that is uniform in 0.



Theorem 2.2. Under Assumptions 2.1-2.4,
Ele(Y,Z,6)]
= 1—a =P (2nfiZl = Va2 + 10 = holinul) +o(1)(9)

Theorem 2.2 suggests that the slackness of coverage is small
if the dependence between 1) and Z is limited. For example, if
M can include at most s variables, then

P (220 = Ve + 10 = Bl )
= Y P2k, = VP10 - kol )

Mo:|Mo|<s
<2p° {1 - ® <\/12 +1(1 - hn)/Z)}
< 2p’exp {—(x> + DA — hy)*/8},

whenever ~/12+1(1 — h,)/2 > 1 since 1 — ®(z) <
(1/z) exp{—2z2/2}. Thus, the slackness is negligible if T is chosen
to be C,/slog p for some universal constant C > 0.

2.2. Asymptotic Results for Restricted Selection Rules

In (7), we bound the coverage difference between the raw
model and Gaussian model using the most conservative total
variation distance which works for all selection rules. This
could be tightened under further restrictions on the selection
rule.

Note that we can reformulate the unconditional coverage
Elen, (Y, Z,04)] as

Elen, (Y, Z,o)l = Y P(My =S nigi(Y) € las, bs]).
Scil,...p}

(10)
where as = {1t — z21¢/2v/1+ 17204 (1 — hy)Ins| and bs =
nST/L +2z1—a/2vV 1 + 17201 (1 — hy)|Insl. Since M is a function
of XTf, (Y) and 75 is in the span of X, there are nonrandom sets
Ag and Bg such that M = S <= XTf,(Y) € As,nlg(Y) €
[as, bs] <— XTg+(Y) € Bg. Note that Bg is the intersection of
two half-spaces. Since (X Tf+ (Y),X Tg+ (Y)) isalinear transform
of (XTY,XTZ), we can define Cs such that

XTf (V) € As, XTg (Y) € Bs = (XTY,X7Z) € Cs. (11)

We consider the following high-level assumption on the selec-
tion rule.

Assumption 2.5. Let C be a class of subsets in R such that Cg €
Sforall §,and

p(C) = sup |IP(XTY,XT2) e C) = P((XTY*,XT2) € O)|.
ceC

There exists a set S of subsets of {1, .. ., p} such that

PAML ¢ S) =o(1), [S]-p(C)=o0(1).

Remark 2.1. When |[M? | < s almost surely, we can choose S to
include all subsets of size no more than s. Then Assumption 2.5
reduces to p* - p(C) = o(1).

With the new assumption, we can prove the following result.
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Corollary 2.1. Under Assumptions 2.1, 2.2, and 2.5, (9) holds. If
o4+ = 0, (8) holds.

We discuss the implication of Assumption 2.5 for two choices
of C.

Example 1. Rasines and Young (2023) consider the case where
Ag is convex for any S. Clearly, Cs is also convex since Bg is
convex and linear transformations maintain convexity. Thus, we
can choose C to be the set of convex sets in R??. Using a similar
argument as in Rasines and Young (2023), we prove in Appendix
B.3 that

p(C) =0 (p““ : Z(H(X>ii)3/2> (12)

1

where H(X) is defined in Assumption 2.4. Since ), H(X);; =
p, by Jensens inequality, > ;(H(X);)*? > p*?//n. Thus,
Assumption 2.5 implies p = o(n?/7), which is worse than
Assumption 2.4 for the case discussed in Appendix B.2.

Example 2. If Ag is a convex polytope for all S, Cs is a convex
polytope with two more facets given by Bs. We can choose C
to be the set of polytopes in R* with at most m facets. These
are “simple convex sets” defined in Chernozhukov, Chetverikov,
and Kato (2017) if m < (np)d for some constant d. When d
is a constant, we prove in Appendix B.4 that, under regularity
conditions on X and ¢,

7/6
(lognp) ) ’ (13)

p(C) =0 ( 16
As long as p < n, Assumption 2.5 holds if |S| = o(n'/®/
(logn)7/®). Thus, Assumption 2.5 is weaker than Assump-
tion 2.4 for small |S]|.
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