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1. Introduction

Leiner et al. (2025) introduce the data �ssion technique, which
uni�es and generalizes multiple methods in selective inference.
We congratulate the authors on this impactful work and elegant
idea. For a broad class of parametric distributions, it o�ers a gen-
eral recipe by exploiting a clever analogy to Bayesian inference to
split a single data pointW into two components f (W) and g(W),
such that the marginal distribution of f (W) and the conditional
distribution of g(W) given f (W) are both known distributions,
up to the knowledge of the parameter. This property allows
the researcher to use f (W) for model selection and g(W) for
statistical inference, without the need to adjust for selection.

Is the data �ssion procedure sensitive to parametric assump-
tions? In this discussion, we make an attempt in answering this
question for �xed-design regressions with non-Gaussian errors
and unknown error variance. To set up the notation, we let
X ∈ R

n×p be a �xed matrix and

Y = μ + ε ∈ R
n, ε1, . . . , εn

iid∼ F, var(εi) = σ 2 > 0, (1)

where the error variance σ 2 is unknown. Let σ̂ 2 be any estimate
of σ 2. For instance, we can set σ̂ 2 to be the residual sum of
squares from the regression of Y on X, that is,

σ̂ 2 = 1

n − p
YT(I − X(XTX)−1XT)Y . (2)

We de�ne the data �ssion procedure as follows, where τ > 0
and (X,Y , σ̂ ) are user inputs.

Step 1. Sample Z ∼ N(0, In);
Step 2. Compute f (Y) = Y + τ σ̂Z, g(Y) = Y − τ−1σ̂Z;
Step 3. Select a subsetM ⊂ {1, . . . , p} based on f (Y);
Step 4. Choose a vector ηM that depends on M in the column

span of X;
Step 5. Construct a con�dence interval for ηTMμ as [ηTMg(Y) ±

z1−α/2

√
1 + τ−2σ̂‖ηM‖], where z1−α/2 is the (1 −

α/2)th quantile of the standard normal distribution.

In Step 4, a common option is ηM = XM(XT
MXM)−1ej

where XM is the submatrix of X formed by columns in M and
ej is the jth canonical basis in R

|M|. Our result can be easily
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generalized to multidimensional parameters but we focus on
unidimensional parameters for ease of exposition.

Let e(Y ,Z, σ̂ ) be the indicator that the con�dence interval in
Step 5 covers the true parameter ηTMμ, that is,

e(Y ,Z, σ̂ ) = I
(

ηTMμ ∈ [ηTMg(Y) ± z1−α/2

√

1 + τ−2σ̂‖ηM‖]
)

.

Our target is to show the unconditional coverage is (asymptoti-
cally) at least 1 − α, that is,

E[e(Y ,Z, σ̂ )] ≥ 1 − α + o(1). (3)

Leiner et al. (2025) o�er a heuristic argument in Appendix
B.5 for the case where μ is linear in X, εi is Gaussian, and σ 2

is estimated using the method described above. However, it is
hard to make the argument rigorous because f (Y) and g(Y)

are n-dimensional vectors and a slight estimation error in σ

would result in a large deviation in the joint distribution. Rasines
and Young (2023) establish a central limit theorem of ηTMg(Y)

conditional on M = S for a given model S, provided that
the probability of selecting S is not too small and σ 2 can be
estimated consistently with data splitting. While it implies the
conditional coverage for each given S satisfying the condition,
the lack of uniformity makes it di�cult to apply their result to
prove the unconditional guarantee (3). Moreover, they require
the selection rule to be convex, that is, the selection event {y :
M(X, y) = S} is convex for any S ⊂ {1, . . . , p}. However, this
event is o�en a union of convex sets or “too complicated to be
explored analytically”(Rasines and Young 2023).

In this discussion, we study a broad class of selection rules
that depends on f (Y) through XT f (Y), which includes many
practical selection rules.Weprove the asymptotic coverage guar-
antee (5) when σ̂ 2 is consistent (Theorem 2.1), and establish
a uniform lower bound when σ̂ 2 is asymptotically conserva-
tive (Theorem 2.2). Both results allow the dimension to grow
with the sample size. Furthermore, we explore how additional
restrictions on the selection rule can be leveraged to improve
the bounds. In particular, when the selection events are sim-
ple convex sets, as de�ned in Chernozhukov, Chetverikov, and
Kato (2017), we can allow the dimension to grow linearly in
n in certain cases. By contrast, when the selection events are
merely assumed to be convex as in Rasines and Young (2023),
we are unable to achieve better dimension dependence than
those obtained for selection rules without further constraints.
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All technical proofs are presented in Appendix A of online
supplementary material.

2. Main Results

Throughout the commentary we impose the following con-
straint on the selection rule.

Assumption 2.1. The selected subset M depends on f (Y)

through XT f (Y).

This includes a large class of selection procedures. For exam-
ple, all regularized regression in the following form, including
LASSO, satis�es Assumption 2.1:

min
β∈Rp

1

n
‖f (Y) − Xβ‖2 + λρ(β)

⇐⇒ min
β∈Rp

βT

(

XTX

n

)

β − 2

n
βT(XT f (Y)) + λρ(β). (4)

Since the Gram matrix is �xed, the minimization problem only
depends on XT f (Y). Similarly, the Forward Stepwise selection
also satis�es Assumption 2.1. The �xed-X Knocko�s procedure
(Barber and Candès 2015), or its uniformly improved variant
(Luo, Fithian, and Lei 2022), selects variables based on XT f (Y)

and X̃T f (Y) where X̃ is the Knocko�s matrix. We can expand
the design matrix to include X̃ to derive asymptotics.

Next, we assume that σ̂ 2 is asymptotically upwardly-biased.

Assumption 2.2. There exists σ 2
+ ≥ σ 2 such that σ̂ 2 = σ 2

+ +
oP(hn) for some deterministic sequence hn → 0.

For the estimator (2), standard calculation implies

E[σ̂ 2] = σ 2 + 1

n − p
‖(I − X(XTX)−1XT)μ‖2 ≥ σ 2.

When μ is in the span of X, as in standard linear models,
E[σ̂ 2] = σ 2.With a �nite fourthmoment, we show inAppendix
B.1 that Assumption 2.2 holds with σ 2

+ = E[σ̂ 2] and any
sequence hn with

√
nhn → ∞.

Nowwe state a generic result that the unconditional coverage
E[e(Y ,Z, σ̂ )] changes little if σ̂ 2 is replaced by its limit σ 2

+, up to
someminor adjustment. De�ne ehn(Y ,Z, σ+) as the indicator of
coverage when σ̂ is replaced by σ+ in Step 2 and by σ+(1 − hn)
in Step 5, that is,

ehn(Y ,Z, σ+) = I
(

ηTM+μ ∈ [ηTM+g+(Y)

±z1−α/2

√

1 + τ−2σ+(1 − hn)‖ηM+‖]
)

, (5)

whereM+ is obtained based on (f (Y), g(Y)) = (f+(Y), g+(Y))

and

f+(Y) = Y + τσ+Z, g+(Y) = Y − τ−1σ+Z. (6)

Lemma 2.1. Under Assumptions 2.1 and 2.2,

E[e(Y ,Z; σ̂ )] ≥ E[ehn(Y ,Z; σ+)] − √
phn + o(1).

Under the conditions of Proposition B.1, Lemma 2.1 holds
when p/n = o(1). Thus, the e�ect of unknown variance is
negligible if the average sample size per parameter is large.

2.1. Asymptotic Results for General Selection Rules

Consider the Gaussian model Y∗ = μ + ε∗ where ε∗ ∼
N(0, σ 2In). Further, let M

∗ be the selection based on f (Y) =
f+(Y∗) and

ehn(Y
∗,Z, σ+) = I

(

ηTM∗
+
μ ∈ [ηTM∗

+
g+(Y∗)

±z1−α/2

√

1 + τ−2σ+(1 − hn)‖ηM∗
+‖]

)

.

Importantly, we use the same Z in the Gaussianmodel. Since ehn
depends on (Y ,Z) only through (XTY ,XTZ), we can show that

|E[ehn(Y ,Z, σ+)] − E[ehn(Y∗,Z, σ+)]| ≤ dTV(XTY ,XTY∗),
(7)

where dTV(W1,W2) denote the total variation distance between
variablesW1 andW2:

dTV(W1,W2) = sup
A

|P(W1 ∈ A) − P(W2 ∈ A)|

= inf
(W′

1,W
′
2):W

′
1
d=W1,W

′
2
d=W2

P(W′
1 �= W′

2).

To bound dTV(XTY ,XTY∗), we impose assumptions on the
error distribution following Bubeck and Ganguly (2018) in
deriving the Entropic CLT for linear transforms of iid random
variables. In particular, it implies the errors are continuous.

Assumption 2.3. ε1, . . . , εn are iid with the following conditions
satis�ed.

(a) KL(εi/σ‖N(0, 1)) < ∞, where KL denotes the Kullback-
Leibler divergence.

(b) The distribution of εi has spectral gap c in the sense that, for

any smooth function g, E[g(εi)2] ≤ (1/c)E[g ′2(εi)].

The last assumption is on how the covariate dimension p
could grow with n.

Assumption 2.4. As n → ∞,
√
phn = o(1) and pL(X) = o(1)

where

L(X) = max
i

H(X)ii + nmax
i �=j

(H(X)ij)
2,

H(X) = X(XTX)−1XT .

We show in Appendix B.2 that, if p = o(
√

n/ log n), Assump-
tion 2.4 is satis�ed with high probability when X is a realization
of a random matrix with iid sub-Gaussian entries, based on a
similar proof strategy as in Appendix F of Lei and Ding (2021).

With these assumptions, we prove that the data �ssion proce-
dure described in Section 1 produces asymptotically valid con�-
dence intervals for all selection rules satisfying Assumption 2.1
if the estimated variance is consistent.

Theorem 2.1. Under Assumptions 2.1–2.4, if σ 2
+ = σ 2,

E[e(Y ,Z, σ̂ )] ≥ 1 − α + o(1). (8)

When σ+ is a conservative estimate of σ , we can derive lower
a bound on the coverage that is uniform in σ+.
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Theorem 2.2. Under Assumptions 2.1–2.4,

E[e(Y ,Z, σ̂ )]
≥ 1 − α − P

(

2|ηTMZ| ≥
√

τ 2 + 1(1 − hn)‖ηM‖
)

+ o(1).(9)

Theorem 2.2 suggests that the slackness of coverage is small
if the dependence between ηM and Z is limited. For example, if
M can include at most s variables, then

P

(

2|ηTMZ| ≥
√

τ 2 + 1(1 − hn)‖ηM‖
)

≤
∑

M0:|M0|≤s

P

(

2|ηTM0
Z| ≥

√

τ 2 + 1(1 − hn)‖ηM0‖
)

≤ 2ps
{

1 − 


(
√

τ 2 + 1(1 − hn)/2
)}

≤ 2ps exp
{

−(τ 2 + 1)(1 − hn)
2/8

}

,

whenever
√

τ 2 + 1(1 − hn)/2 ≥ 1 since 1 − 
(z) ≤
(1/z) exp{−z2/2}. Thus, the slackness is negligible if τ is chosen
to be C

√

s log p for some universal constant C > 0.

2.2. Asymptotic Results for Restricted Selection Rules

In (7), we bound the coverage di�erence between the raw
model and Gaussian model using the most conservative total
variation distance which works for all selection rules. This
could be tightened under further restrictions on the selection
rule.

Note that we can reformulate the unconditional coverage
E[ehn(Y ,Z, σ+)] as

E[ehn(Y ,Z, σ+)] =
∑

S⊂{1,...p}
P

(

M+ = S, ηTS g+(Y) ∈ [aS, bS]
)

.

(10)
where aS = ηTS μ − z1−α/2

√
1 + τ−2σ+(1 − hn)‖ηS‖ and bS =

ηTS μ+ z1−α/2

√
1 + τ−2σ+(1−hn)‖ηS‖. SinceM+ is a function

of XT f+(Y) and ηS is in the span of X, there are nonrandom sets
AS and BS such that M+ = S ⇐⇒ XT f+(Y) ∈ AS, η

T
S g+(Y) ∈

[aS, bS] ⇐⇒ XTg+(Y) ∈ BS. Note that BS is the intersection of
two half-spaces. Since (XT f+(Y),XTg+(Y)) is a linear transform
of (XTY ,XTZ), we can de�ne CS such that

XT f+(Y) ∈ AS,X
Tg+(Y) ∈ BS ⇐⇒ (XTY ,XTZ) ∈ CS. (11)

We consider the following high-level assumption on the selec-
tion rule.

Assumption 2.5. Let C be a class of subsets in R2p such that CS ∈
S for all S, and

ρ(C) = sup
C∈C

|P((XTY ,XTZ) ∈ C) − P((XTY∗,XTZ) ∈ C)|.

There exists a set S of subsets of {1, . . . , p} such that

P(M∗
+ �∈ S) = o(1), |S| · ρ(C) = o(1).

Remark 2.1. When |M∗
+| ≤ s almost surely, we can choose S to

include all subsets of size no more than s. Then Assumption 2.5
reduces to ps · ρ(C) = o(1).

With the new assumption, we can prove the following result.

Corollary 2.1. Under Assumptions 2.1, 2.2, and 2.5, (9) holds. If
σ+ = σ , (8) holds.

We discuss the implication of Assumption 2.5 for two choices
of C.

Example 1. Rasines and Young (2023) consider the case where
AS is convex for any S. Clearly, CS is also convex since BS is
convex and linear transformationsmaintain convexity. Thus, we
can choose C to be the set of convex sets in R2p. Using a similar
argument as in Rasines and Young (2023), we prove in Appendix
B.3 that

ρ(C) = O

(

p1/4 ·
∑

i

(H(X)ii)
3/2

)

(12)

where H(X) is de�ned in Assumption 2.4. Since
∑

iH(X)ii =
p, by Jensen’s inequality,

∑

i(H(X)ii)
3/2 ≥ p3/2/

√
n. Thus,

Assumption 2.5 implies p = o(n2/7), which is worse than
Assumption 2.4 for the case discussed in Appendix B.2.

Example 2. If AS is a convex polytope for all S, CS is a convex
polytope with two more facets given by BS. We can choose C

to be the set of polytopes in R2p with at most m facets. These
are “simple convex sets” de�ned in Chernozhukov, Chetverikov,
and Kato (2017) if m ≤ (np)d for some constant d. When d
is a constant, we prove in Appendix B.4 that, under regularity
conditions on X and ε,

ρ(C) = O

(

(log np)7/6

n1/6

)

, (13)

As long as p ≤ n, Assumption 2.5 holds if |S| = o(n1/6/
(log n)7/6). Thus, Assumption 2.5 is weaker than Assump-
tion 2.4 for small |S|.
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