
PAW: A Deep Learning Model for Predicting
Amplitude Windows in Seismic Signals
Ariana M. Villegas Suarez*, Delaine Reiter†, Jonathan Rolfs†, and Abdullah Mueen*

* Department of Computer Science, University of New Mexico, USA
† Applied Research Associates, USA

E-mails: arianavillegas@unm.edu, dreiter@ara.com, jrolfs@ara.com, mueen@unm.edu

Abstract—Subsurface earthquakes and explosions generate
seismic wavefields that are recorded as time-domain signals on
sensor networks around the world. To compute key character-
istics such as the magnitude of these seismic events, analysts
must detect and select the cleanest indicators of seismic phase
amplitudes and periods in noisy signals.

Existing automated systems designed to pick seismic phase
amplitudes and periods require frequent adjustments by human
analysts, which becomes a nuisance when the volume of data to
process grows large. To address this problem, we have developed a
neural network model that accurately replicates the performance
of a human analyst 80% of the time and shows potential for
decreasing the correction workload for analysts by over 40%.
We have performed multiple tests on the model and report on
its performance compared to existing deep learning techniques.

Index Terms—Period, Time Series, Windows, Seismic Signal,
Transformer

I. INTRODUCTION

The accurate selection of seismic phase amplitudes and pe-
riods is a crucial data-processing task required to characterize
underground events such as earthquakes, mining explosions,
and nuclear tests. Although automated signal-processing al-
gorithms exist to pick amplitudes and periods, human ana-
lysts must adjust measurements frequently. Figure 1 shows
examples of seismic phases, where three existing algorithms
(DETPRO [1], ALLSSA [2] and EQT [3]) fail to pick the
amplitude window (i.e. the largest and the most uninterrupted
half-cycle). A human analyst must identify the right amplitude
window in order to properly measure the amplitude and period
of the seismic signal, followed by a correct estimation of the
magnitude of the event. The number of manual adjustments
required to generate a high-quality event bulletin highlights the
ongoing need for improved automated methods for accurate
amplitude and period determination. To explain the industrial
impact of the proposed model, consider a monitoring network
such as IMS (International Monitoring System) that uses the
DETPRO method to detect the amplitude windows [1]. The
CTBTO (Comprehensive Nuclear-Test-Ban Treaty Organiza-
tion) employs human analysts for three shifts a day to adjust
the machine detection so that a high-quality bulletin can be
produced daily. Often times the analysts experience backlogs
due to major earthquakes and analyst shortages. This project
aims at reducing this dependency on humans in a seismic
monitoring network.

Fig. 1: Amplitude window contains the largest uninterrupted
half-cycle (shaded as a red rectangle in each 5-second signal
window). Although it is easy for a human to pick the cor-
rect half-cycle, existing algorithms frequently fail to find the
ground truth by picking interrupted and/or partial cycles.

The challenge in learning from the analyst-labeled data is
that the analysts make many heuristic choices depending on
events that have happened before, geography of the earth,
noise content of the signal, etc. In addition, there are sub-
jective biases among the human analysts. Therefore, despite
a straightforward definition of an amplitude window (as the
largest and most uninterrupted half-cycle), the goal is to learn
the heuristics analysts use in their decision-making process
as opposed to devising an algorithm to find the half-cycle
matching a mathematical definition.

In this paper, we design a deep architecture, PAW, to predict
the amplitude window of a signal that contains what analysts
identify as the cleanest half-cycle. This architecture is specif-
ically designed to reduce the number of human interventions
over existing automated predictions in a monitoring network.
The architecture takes an encoder-decoder approach with large
filter banks and a CNN-LSTM-Transformer combo in between
the encoder and decoder. In addition, we exploit a dataset of
over eighty thousand analyst-adjusted windows to calculate
a loss function involving the amplitudes and periods derived
from these windows. We demonstrate the proposed model can
reproduce the windows picked by the analysts more than 80%
of the time, and more importantly, can reduce the analysts’
correction workload by 43.69%.

The uniqueness of our approach is that the proposed method
is adaptive to the nuances analysts consider, while existing
methods are deterministic to the signal. This is made possible
by our special dataset of over one hundred thousand analyst-
annotated signals and a very specific encoder-decoder architec-

20
24

 IE
EE

 1
1t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
Sc

ie
nc

e
an

d
Ad

va
nc

ed
 A

na
ly

tic
s (

DS
AA

) |
 9

79
-8

-3
50

3-
64

94
-1

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I:

10
.1

10
9/

DS
AA

61
79

9.
20

24
.1

07
22

78
4

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on November 05,2025 at 21:52:34 UTC from IEEE Xplore. Restrictions apply.

ture, wider than existing models, that can capture the heuristics
used by the analysts.

Our contributions are highlighted below and discussed in
the following sections 1:

• A high-quality proprietary dataset containing thousands
of labeled half-cycles in equal-sized seismic time series.

• An encoder-decoder neural network model (PAW) that
automatically detects an amplitude half-cycle in a seismic
waveform.

• A custom loss function named Amper Loss to augment
the learning of the model against multiple target metrics.

• Detailed sensitivity analysis regarding seismic sensor
locations and signal properties.

• Comparison of our model against several state-of-the-art
methods in terms of prediction performance.

II. BACKGROUND

A. Seismic Signal Time Windows

For the data in our study, we extracted five-second windows
that start at the onset time of the first-arriving compressional
wave (i.e., a P or Pn arrival). Our labeled metadata also
contains the start time of the phase amplitude window, which
occurs either at or later than the onset time and should contain
a clean amplitude half-cycle (i.e. cosx to cos(π + x), where
x → 0 or x → π). This start time is initially generated
by an existing algorithm named DETPRO. A human analyst
examines the automatically picked start time and decides
whether to adjust the amplitude window in favor of another
window. This review process produces the label for each five-
second signal window that consists of the final amplitude
window start time, period, and amplitude (peak-to-trough or
vice versa). The amplitude measurement window starts at
amptime and ends at amptime + 1

2 per. We note that the
start time of the period (amptime - 1

2 per) may not align
precisely with the peak or trough of the signal. Figure 2 shows
a visual representation of the amplitude window and period
measurement.

Fig. 2: Example showing a sample time window with the phase
arrival onset time (black vertical line), start and end time of
the selected amplitude window (red rectangle), and the end
time of window (black dashed vertical line).

1We provide the dataset and the source code of PAW at https://github.com/
ArianaVillegas/PAW.

(a) 3C Station: STA6 (b) Array Beam: STA15

Fig. 3: Examples of unintuitive amplitude cycles in time-
windowed seismic signals for 3C and array stations.

Although the amplitude measurement process is fairly
straightforward, complications can arise (e.g. complex wave
propagation velocities, inconsistencies across sensors in an
array, etc.) that cause expert analysts to pick not-so-clean
amplitude cycle windows. For example, in Figure 3 we show
two time-window examples with unusual amplitude labels. We
note that we do not have complete knowledge of the processing
pipeline that produced these not-so-clean cases. However, the
occurrences of these cases offer valuable insights into the
variability of the amplitude selection process and challenge
our learning system.

B. Our Dataset

Our dataset comprises multiple seismic event bulletins for
years 2017 and 2018, each of which lists quantitative features
extracted from seismic waveforms that were used to confirm
seismic events at a particular location and time. The features
in the test dataset are extracted from waveforms recorded on
a global network of individual three-component (3C) stations
and single-component, multi-station arrays. 3C stations record
seismic data at one location on three channels oriented along
vertical, north-south, and east-west directions, while arrays
record data on a network of sensors arranged in a regular
geometric pattern. Figure 4 shows the global distribution of
seven 3C stations and eight arrays with usable information in
our dataset.

Fig. 4: Map showing the global distribution of arrays and 3-
C stations in our curated dataset. The geographic locations of
global seismic events from 2017 and 2018 are plotted as green
dots.

To identify the waveform time windows needed to train
our model, we filtered the fully automated and final analyst-

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on November 05,2025 at 21:52:34 UTC from IEEE Xplore. Restrictions apply.

reviewed bulletins to find amplitude measurements that met
several criteria, such as a certain type of amplitude measure-
ment, seismic phase label, and other characteristics in the
bulletin information. In our dataset, we have 80,648 seismic
signal windows coming from 15 stations worldwide. To be
specific, 10.67% of the data comes from 3C stations, while
89.33% comes from array beams. Additional details about the
dataset is presented in Table I.

Min 25th 50th 75th Max
Start Time (s) 0.000 0.500 0.900 1.775 4.775
End Time (s) 0.175 0.850 1.250 2.150 5.000

Period (s) 0.300 0.550 0.700 0.800 1.450
Amplitude (nm) 0.000 0.900 1.990 5.470 3.263×104

Magnitude 3.500 3.780 4.030 4.380 6.710

TABLE I: Summary of dataset characteristics: start time, end
time, period, amplitude, and magnitude features of seismic
signal windows.

III. DEEP LEARNING MODEL DESCRIPTION

A. Model Input
Our model input consists of a signal (i.e. one-dimensional

time series), which we select following established guidelines
for a specific station type. For 3C stations, we select the
vertical-component channel. For arrays, we compute a beam
signal that combines all array element (sub-station) signals
according to an accepted shift-and-sum recipe. Each signal
window has a five-second duration (i.e. 0 sec to 5 sec with
respect to the phase onset time) to which we add a half
additional second before and after the 5-second window,
producing an input time series with 240 samples based on
the waveform sample rate of 40 Hz.

B. Model Output
The output from the deep learning model is a step function

with the same 240-sample length as the input, which is non-
zero only where the model predicts a high probability of a
clean amplitude half-cycle. This approach was decided after
considering different output strategies, such as preserving the
original input waveform values within the amplitude window
or predicting a Gaussian distribution with its mean value in
the middle of the amplitude window. We evaluated each output
model empirically and concluded that a step-function produces
the most accurate results (details are in the Experimental
Results section).

To generate the final prediction for the amplitude window,
we identify the maximum value in the predicted output to
start the construction of the window. Then, we start building
the window by extending both the left and right sides until
we reach a value that is less than 0.5. Instead of choosing
the maximum, one may consider learning a mapping function
from the continuous prediction to the discrete windows, which
we leave for future work to keep the proposed method simple.

C. Baselines
a) CNN Autoencoder.: The architecture, shown in Figure

5, consists of an encoder and a decoder. It processes a single-
channel sequence of 240 inputs. The encoder includes three

CNN blocks with output channels of 32, 64, and 32, using
a kernel size of 13 and padding of 6. The decoder mirrors
the encoder’s structure, employing the same kernel sizes and
number of output channels (32, 64, 32).

b) LSTM Autoencoder.: The architecture, depicted in
Figure 6, comprises an encoder and a decoder. It handles a
single-channel sequence of 240 inputs. The encoder consists of
three one-directional LSTM blocks with two recurrent layers,
having 64, 128, and 32 features in the state of each LSTM
cell, respectively. The decoder mirrors the encoder’s structure,
utilizing LSTMs with hidden sizes of 32, 128, and 64.

D. Model Architecture

a) PAW (Predicting Amplitude Window).: Figure 7 shows
the architecture of the PAW (Predicting Amplitude Window)
model. It consists of an encoder and a decoder, with three
block transformations in the latent space. The encoder pro-
cesses a single-channel sequence with a length of 240. It in-
cludes two CNN blocks, with 32 and 64 output channels and a
kernel size of 13. The output of the encoder is a feature vector
of 60×64, which then undergoes additional transformations in
the latent space. These transformations include a CNN block
with 64 output channels and a kernel size of 13, followed by an
LSTM block with 64 features in the hidden state, and end with
a transformer block with 2 layers, each containing 8 heads.
The decoder mirrors the structure of the encoder, maintaining
the same number of layers and filter properties, but in reverse
order. The main advantage of this model over previous ones
lies in its latent space transformations, which prioritize width
over depth. This design enriches the model’s representations
to boost performance while also enhancing parallelization by
prioritizing width, leading to reduced forward time.

E. Loss Functions

a) Binary Cross-Entropy (BCE): It is a loss function that
measures the difference in each point between the output label
y (the step function) and the predicted output ŷ. It is expressed
as equation 1, where N is the length of the sequence.

BCE = − 1

N

N∑
i=1

yi · log(ŷi) + (1− yi) · log(1− ŷi) (1)

b) Amper Loss.: Our loss function has two elements:
the BCE loss and the Euclidean norm of two distinct loss
components related to the period and amplitude. These com-
ponents are the Mean Squared Error (MSE) computed between
the expected and predicted values of the normalized period
(denoted as per loss) and the MSE between the expected
and predicted values of normalized amplitude (denoted as
amp loss). Mathematically, the Amper loss is expressed as
equation 3, where α is a hyperparameter that modulates the
influence of the Euclidean norm component:

MSEtot = [MSEamp,MSEper] (2)

Amper Loss = BCE(ŷ, y) + α||MSEtot||2 (3)

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on November 05,2025 at 21:52:34 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Base CNN autoencoder consists of an encoder and a corresponding decoder. The encoder is constructed with 3 CNN
blocks, while the decoder mirrors the structure of the encoder blocks.

Fig. 6: Base LSTM autoencoder consists of an encoder and a corresponding decoder. The encoder is constructed with 3 LSTM
blocks, while the decoder mirrors the structure of the encoder blocks.

Fig. 7: PAW consists of an encoder, its corresponding decoder, and transformations in the latent space. The encoder is designed
with 2 CNN blocks. In the latent space, there are CNN blocks, an LSTM block, and a transformer block with 8 heads.

The rationale behind adding the errors in predicted period
and amplitude is to consider situations where we might predict
the right amplitude but at the wrong time, or vice versa,
predicting the wrong amplitude with the correct time window.

F. Model Performance Metrics

a) Window Root Mean Square Error (WRMSE): This
metric computes the norm of errors between the predicted
output (ŷi) and the label output (yi). Equation 4 shows the
formula we use to compute WRMSE. A lower WRMSE
signifies a better fit between predicted and true values.

WRMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2 (4)

b) Window Accuracy (WA): The window accuracy metric
measures the percentage of an output window that is pre-
dicted with an error no greater than a specified threshold
(0.1 sec in our experiments). We compute WA by summing
the differences between the predicted and true start times

(start err) and the predicted and true end times (end err)
of the amplitude window, as shown in equation 5.

CORRECT PREDICTION =

{
1 if (start err + end err) ≤ 0.1

0 otherwise

WA =
CORRECT PREDICTIONS

ALL PREDICTIONS
(5)

The value of window accuracy decreases as the predicted
start or end time for the output amplitude window deviates
from the true window start or end.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

To train and evaluate our deep learning models, we filtered
out all accepted amplitude windows; i.e., we trained our
models to learn the analyst-adjusted behaviors rather than
the existing automated system predictions. We divide the
remaining dataset (48,589 seismic signals) into three distinct
subsets, with the following distribution: 70% for training,
20% for validation, and 10% for testing. Each experiment
was repeated ten times, and we subsequently computed both

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on November 05,2025 at 21:52:34 UTC from IEEE Xplore. Restrictions apply.

Model details RMSE Window Accuracy

Name Size (MB) Forward (ms) Loss Train Time Window Amp Per (s) Mag Test Adj Acc
Classical Methods
DETPRO [1] - - - - 0.1596 0.1143 0.3818 0.4572 64.20% 18.30% 100.00%
ALLSSA [2] - 1.7232 - - 0.2173 0.2415 0.6930 0.8975 28.37% 27.28% 30.29%
Regressors
GDP [4] 6.958 1.2328 MSE 0:28:41 0.2529 0.2608 0.5715 1.0049 20.30% 17.50% 23.76%
DPP [5] 0.492 0.9678 MSE 0:31:17 0.2844 0.3597 0.4147 1.0847 14.08% 12.04% 16.76%
Autoencoders
Basic AE [6] 0.134 0.8181 BCE 0:57:18 0.1582 0.1117 0.4442 0.5056 62.45% 56.67% 70.21%

Amper 0:34:37 0.1575 0.1097 0.4332 0.4549 64.41% 58.79% 72.10%
GPD AE [4] 7.278 1.3313 BCE 0:22:27 0.1591 0.1079 0.3826 0.4287 68.87% 64.48% 76.95%

Amper 0:20:31 0.1581 0.1076 0.3794 0.4523 69.04% 64.72% 77.05%
DPP AE [5] 0.540 0.9034 BCE 0:31:04 0.1649 0.1125 0.4226 0.4684 62.44% 56.02% 69.70%

Amper 0:28:21 0.1605 0.1119 0.4828 0.4714 62.64% 55.95% 70.55%
CRED [7] 1.108 0.9526 BCE 0:32:41 0.1513 0.1008 0.2513 0.3844 74.62% 66.23% 82.66%

Amper 0:25:56 0.1522 0.1000 0.2494 0.3814 75.44% 67.43% 82.89%
EQT [3] 1.508 1.0031 BCE 0:45:10 0.1605 0.1162 0.4004 0.5074 60.84% 55.46% 68.19%

Amper 0:39:53 0.1586 0.1116 0.3897 0.4994 64.31% 58.44% 72.58%
Dyna [8] 16.2 6.1167 BCE 6:27:49 0.1594 0.1563 0.1802 0.3832 73.99% 68.17% 78.57%

Amper 5:38:59 0.1586 0.1542 0.1799 0.3795 74.51% 68.12% 80.97%
SeisT [9] 1.513 2.1663 BCE 1:30:31 0.1527 0.1040 0.2014 0.3746 74.78% 68.33% 81.17%

Amper 1:13:43 0.1502 0.1021 0.1946 0.3708 76.06% 69.52% 82.74%
Our Autoencoders
CNN AE 0.431 1.0183 BCE 0:31:10 0.1515 0.1056 0.1813 0.3931 73.37% 65.32% 82.30%

Amper 0:21:39 0.1510 0.1024 0.1739 0.3914 73.93% 66.27% 83.47%
LSTM AE 0.189 3.2514 BCE 5:09:39 0.1681 0.2249 0.2770 0.5277 45.53% 48.56% 48.47%

Amper 1:39:48 0.1635 0.2235 0.2568 0.5218 55.65% 48.75% 61.55%
PAW 2.596 1.3640 BCE 0:59:02 0.1463 0.1002 0.1704 0.3760 79.22% 72.60% 86.16%

Amper 0:37:03 0.1445 0.0983 0.1686 0.3573 80.04% 73.28% 87.28%

TABLE II: Method comparison: classical methods, state-of-the-art methods (regressors and autoencoders), and our autoencoders
(including PAW). Results cover various loss functions (MSE, BCE, Amper) and metrics like model size, training time, window
RMSE, amplitude RMSE, period RMSE, magnitude RMSE, and window accuracy (within 0.1 seconds error). The PAW model,
using the Amper loss function, achieves superior performance across the evaluated metrics.

the average and standard deviation of our results. To ensure
consistency, the same seed was used for each repetition,
resulting in identical subset distribution and network initial-
ization. We utilized several metrics for evaluation, including
window RMSE, amplitude RMSE, period RMSE, and Window
Accuracy on the test set, which we divided into adjusted and
accepted subsets. We performed all computations on a desktop
computer equipped with an Intel Core i7 processor running at
3.40 GHz.

We used Python 3 and the PyTorch library to develop and
test the models. The hyperparameters of the model were fine-
tuned through empirical selection via random search on the
validation set. We trained for a maximum of 200 epochs,
utilizing a batch size of 32 and we configure the Adam
optimizer with an initial learning rate of 0.001, β1 = 0.9,
β2 = 0.999, and ϵ = 1e−7. Finally, we saved the model with
the lowest validation WRMSE for further evaluation.

B. Model Comparison

To evaluate the performance of our PAW model, we com-
pared it against seven state-of-the-art methods (GDP [4], DPP
[5], Basic AE [6], CRED [7], EQTransformer [3], DynaPicker
[8], SeisT [9]), along with basic CNN and LSTM autoencoders
for reference. GDP and DPP were utilized as regressors for
predicting the start and end times of the amplitude window,
both trained with the MSE loss function. Additionally, we
adapted GDP, DPP, CRED and DynaPicker to serve as au-

toencoders, while using the existing autoencoder architecture
of Basic AE, EQTransformer and Seist. These autoencoders
were trained using both the BCE loss function (1) and our
Amper loss function (3).

Fig. 8: Comparison of test window accuracy, including state-
of-the-art methods (Basic AE, GPD AE, DPP AE, CRED,
EQT, DynaPicker, SeisT) and our autoencoder models (CNN
AE, LSTM AE, PAW) under BCE and Amper loss functions.

The preliminary findings of window accuracy for the au-
toencoder models are shown in Figure 8, trained using both
BCE loss and our custom Amper loss. GDP AE, CRED,
DynaPicker, SeisT, CNN autoencoder, and the PAW model
achieved higher test window accuracy compared to DETPRO.
However, Basic AE, DPP AE, and EQT models intersected

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on November 05,2025 at 21:52:34 UTC from IEEE Xplore. Restrictions apply.

with DETPRO’s window accuracy, while the LSTM AE model
performed worse than the automated system, suggesting these
methods didn’t surpass DETPPRO and displayed greater vari-
ability. Overall, our Amper loss function consistently outper-
formed the BCE loss function.

In specific, our PAW model trained with Amper loss
achieves the highest window accuracy (80.04%) among all
methods. Although domain experts must verify all predictions,
the increased accuracy of our model reduces the number of
incorrect predictions they encounter. As a result, the time and
effort required to correct these errors decreases significantly,
which reduces the proportion of measures needing adjustment
from 36% with DETRO to 20%, and thus reduces the correc-
tion workload by 43.69%.

Fig. 9: Critical difference diagram comparing test window
accuracy. The results are from the model using the loss
function (Amper loss, BCE loss, MSE loss) that achieved the
highest mean test accuracy across 10 repetitions.

Figure 9 illustrates the critical difference (CD) diagram
comparing test accuracy based on average ranks, shown in
brackets. The PAW model stands out with the highest rank of
1.0, showing its superior performance. Horizontal bars indicate
statistically significant differences. Models connected by a line
do not differ significantly, while those without a connecting
line do. The absence of connecting lines for the PAW model
highlights the statistical significance of its performance.

Table II expands the comparison between the PAW model
and other existing methods, including the automated system
and a frequency domain method called ALLSSA [2], as well as
state-of-the-art models (regressors and autoencoders), and our
autoencoders. The model details used for comparison include
the model size, forward time, training time, and loss functions.
Additionally, performance metrics such as window RMSE,
amplitude RMSE, period RMSE, magnitude RMSE, and test
Window Accuracy are included. The division into adjusted
and accepted subsets for Window Accuracy allows for a more
comprehensive assessment of the results.

Furthermore, our evaluation covers RMSE analysis across
various aspects of the results. Firstly, we focus on WRMSE,
which reflects the error in the methods’ output. Secondly, we
analyze amplitude, period, and magnitude RMSE, which hold
greater significance in the magnitude detection task. Across
all these RMSE metrics, our PAW model with the Amper
Loss achieves the best results. The PAW model with BCE loss
follows closely, outperforming the others in RMSE metrics,
except for the case of amplitude RMSE.

Our PAW model, trained with the Amper loss function,
emerges as the top performer across all metrics, surpassing

previous transformer based models like EQT and SeisT in
the state-of-the-art. Despite its larger size, our model achieves
similar training times than previous models and a lower
forward time than SeisT. This efficiency is due to our focus on
width over depth. Prioritizing width simplifies parallelization
during training, resulting in faster training. When we prioritize
width over depth, it means that while EQT has 2 blocks
of 4 layers with 4 heads each after fine-tuning, and SeisT
consists of 4 blocks of 2 layers with 4 heads, our model
consists of 1 transformer block with 2 layers, and 8 heads. In
addition, when utilizing the Amper loss function, the training
is accelerated, leading to quicker convergence and improved
window accuracy.

Moreover, it is important to highlight the value of accurate
predictions for both amplitude and period. Any inaccuracies
in either of these aspects can significantly impact the overall
magnitude estimation, leading to incorrect global results. Ad-
ditionally, our comparison emphasizes the consistent challenge
of predicting adjusted windows compared to accepted ones.
This difficulty likely stems from human bias introduced by
analysts when adjusting amplitude windows.

C. Window Accuracy Error

To further highlight the window accuracy of the new PAW
model in predicting correct amplitude windows versus the
existing automated system, we computed the window accuracy
error between labeled (i.e., ’true’) analyst-adjusted windows
versus windows produced by DETPRO and those predicted
by the PAW model. Figure 10 shows the results of this
comparison, which demonstrate that the PAW model consis-
tently outperforms the existing automated system DETPRO
in predicting the amplitude windows, regardless of specific
window error tolerance levels. Further, the PAW model starts
to achieve high performance at a low window-error level. At
higher window error levels, the PAW model converges towards
a window accuracy plateau of approximately 80%. We also
note that the PAW model’s standard deviation on window
accuracy remains notably low across most values.

Fig. 10: Predicted Window Accuracy (WA) as a function of
amplitude measurement window (in seconds) for DETPRO
versus the PAW model. These values are computed between
the analyst-adjusted amplitude windows and the respective
models for different window error thresholds (in seconds).

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on November 05,2025 at 21:52:34 UTC from IEEE Xplore. Restrictions apply.

D. Station Holdout Tests

To assess the generalization capabilities of the PAW model
to new stations, we performed a station holdout evaluation.
This involved excluding all window samples from a particular
station and using the remaining data from all other stations
for training. We then evaluated the performance of the PAW
model on the station left out of training.

STA Adjusted Accepted Proportion WA
3C Stations

STA1 33.91% 66.09% 1.74% 78.84%
STA2 36.36% 63.64% 0.99% 71.77%
STA3 26.61% 73.39% 1.24% 82.92%
STA4 25.44% 74.56% 1.14% 81.55%
STA5 33.75% 66.25% 1.60% 76.12%
STA6 25.00% 75.00% 1.68% 80.67%
STA7 28.95% 71.05% 2.28% 79.05%

Array Stations
STA8 34.81% 65.19% 22.84% 84.49%
STA9 32.97% 67.03% 4.64% 76.05%
STA10 51.92% 48.08% 10.17% 66.32%
STA11 37.11% 62.89% 15.17% 77.04%
STA12 36.61% 63.39% 4.89% 80.35%
STA13 34.42% 65.58% 16.50% 81.17%
STA14 33.89% 66.11% 7.82% 77.58%
STA15 33.01% 66.99% 7.30% 79.93%

TABLE III: Station labels, their respective percent distribution
of analyst-adjusted versus accepted amplitude windows, pro-
portion of the dataset, and their results from station holdout
tests. PAW was trained using analyst-adjusted windows while
systematically holding out each station. The window accuracy
at each held-out station shows the capability of the model to
generalize effectively.

Table III displays the percent distribution of amplitude
windows for each of the 15 stations in our data archive as
a function of ‘accepted’ (analyst agreed with the automated
selection) and ‘adjusted’ (analyst adjusted the automated selec-
tion). A higher proportion in the fourth row indicates a greater
number of window amplitude samples. Approximately 89.33%
of our dataset comes from the arrays, with STA8, STA11,
and STA13 stations dominating the overall distribution. In
addition, 3C stations have a higher proportion of amplitude
measurements produced by the automated system.

In this experiment, PAW achieved an average window accu-
racy of 78.26%, surpassing the automated system DETPRO.
We note an interesting effect on model accuracy derived
from the ratio of adjusted to accepted amplitude windows.
Station STA10 shows lower window accuracy, mainly because
it has a higher percentage of analyst-adjusted windows (52%)
compared to accepted ones (48%), which introduces human
biases. PAW trained without STA10 windows correctly pre-
dicts 66.3 % of the STA10 amplitude windows. Despite this
challenge, PAW still significantly improved upon the 48%
window accuracy of the automated system at STA10.

In contrast, station STA8 outperformed other stations in
station-holdout tests, because it has a low percentage of
adjusted windows. This result suggests that analyst window

adjustments for this station were aligned closely with the other
stations used in training, although further investigation into this
case is needed to uncover underlying factors.

E. Output Design Strategy

To shape the decoder’s output, we aim for a strategy that
highlights the amplitude window. We experiment with three
different options:

• Waveform: f(x) = x, if x is in the window, and 0
otherwise.

• Gaussian: f(x) = 1
σ
√
2π

e−(x−µ)2/2σ2

, if x is in the
window, and 0 otherwise. Here µ = start+end

2 and
σ = 3 · period

2
• Step: f(x) = 1, if x is in the window, and 0 otherwise.

The results are shown in the Table V. The Step func-
tion outperforms Waveform and Gaussian outputs in window
RMSE, magnitude RMSE, and test window accuracy (split into
adjusted and accepted subsets). Additionally, Table V confirms
consistency with previous findings, highlighting that predicting
adjusted windows is more challenging than predicting accepted
windows that the existing method had already predicted cor-
rectly.

F. Ablation Study.

To further demonstrate the capabilities of the PAW model,
we conducted an ablation study to evaluate individual com-
ponents of the model and assess their impact on overall
performance. To do this, we subdivided the PAW model into its
individual CNN-autoencoder, CNN, LSTM, and transformer
components. We also assessed the need for a symmetric
structure and skip connections within the PAW model. Our
evaluation compared window RMSE, amplitude RMSE, period
RMSE, window accuracy in the test subset, window accuracy
in analyst-adjusted amplitude windows, and accepted ampli-
tude window accuracy. Table IV summarizes the results of this
ablation study.

Our findings indicate that each model learning component
contributes to the PAW model’s overall performance and abil-
ity to generalize effectively in predicting accepted amplitude
windows in new seismic signals. In addition, the PAW model
has the lowest values for all RMSE metrics and the highest
window accuracy across the three testing scenarios, which
demonstrates its robustness. We also observe the strongly
detrimental effect on model performance incurred by symme-
try, which highlights the benefits of the asymmetric structure
incorporated into the PAW model. While skip connections
appear to have a negative impact, further investigation with
a larger dataset is necessary to fully understand their effects.

G. PAW Model Limitations.

Figure 11 presents another view of the results from our
study, in which we compare histograms of key outputs from
the existing automated system DETPRO, the labeled (analyst-
adjusted) data, and the PAW model. The outputs shown in

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on November 05,2025 at 21:52:34 UTC from IEEE Xplore. Restrictions apply.

PAW Model Components RMSE Window Accuracy

CNN AE LSTM Transformer Symmetry Skip Connections Window Amp Per (s) Mag Test Adj Acc

✓ 0.1537 0.1015 0.2158 0.3804 75.54% 71.05% 80.48%
✓ ✓ 0.1526 0.0999 0.2024 0.3783 76.83% 72.25% 80.14%
✓ ✓ 0.1514 0.0994 0.2107 0.3792 76.04% 69.92% 82.19%
✓ ✓ ✓ 0.2712 0.2864 0.5386 1.0083 18.31% 14.43% 22.67%
✓ ✓ ✓ ✓ 0.1493 0.1091 0.2015 0.3632 77.64% 71.19% 84.11%
✓ ✓ ✓ 0.1445 0.0983 0.1686 0.3573 79.84% 73.28% 87.28%

TABLE IV: Results from the PAW model ablation study, including evaluation of window RMSE, amplitude RMSE, period
RMSE, magnitude RMSE, test window accuracy, adjusted window accuracy, and accepted window accuracy. The presence of
a specific PAW model component is indicated by an ’✓’.

Fig. 11: Comparative histograms of period, start time, and end time for the existing automated system method DETPRO,
analyst-adjusted (ground truth), and the PAW model.

RMSE Window Accuracy

Function Window Mag Test Adj Acc

Waveform 0.1621 0.4857 61.08% 60.01% 61.29%
Gaussian 0.1517 0.3798 76.52% 74.03% 77.49%
Step 0.1445 0.3573 79.84% 73.28% 87.28%

TABLE V: Comparison of the output design strategies (wave-
form, gaussian, step) for the PAW model using the Amper
loss function. Evaluation includes window RMSE, magnitude
RMSE, and test window accuracy (divided into adjusted and
accepted subsets).

the figure include the period, start time, and end time for
the amplitude windows. The results exhibit a close match
between the PAW model and adjusted selections, particularly
for amplitude-window start times. However, we also notice
slight differences in the period distributions, where our model
shows smaller gaps between peaks and troughs. This discrep-
ancy might be caused by several factors, including learning
model errors or inaccuracies in the original labels, and we
will continue to investigate its cause.

Figure 12 shows that correct and incorrect predictions have
similar distribution proportions across different values of mag-
nitude, depth, or distance. While small differences exist, the
overall trend suggests that amplitude window predictions are
independent of these factors (magnitude, depth, or distance).
In addition, we observe that magnitude values are primarily
clustered between 3.5 to 4.5, depth values are concentrated in
the range of 0 to 50, and distance values are centered around
5000 and 10000.

The PAW model sometimes predicts the amplitude window
incorrectly. Figure 13 shows four cases of inaccurate model

Fig. 12: Histograms comparing the frequency of correct and
incorrect predictions based on varying conditions such as
magnitude, depth, and distance.

behavior, chosen to highlight different types of PAW model
failures. For example, in Figure 13a, our model confidently
predicts a longer period and amplitude, while Figure 13c
illustrates a case where the model chooses a window with a
shorter amplitude but higher confidence, while also displaying
some confidence in the labeled window as a secondary option.
Figure 13b highlights a case where the model shows uncer-

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on November 05,2025 at 21:52:34 UTC from IEEE Xplore. Restrictions apply.

(a) Example from STA13 (b) Example from STA9

(c) Example from STA12 (d) Example from STA14

Fig. 13: Examples of inaccurate amplitude results predicted
by the PAW model; (a) PAW predicted a longer period and
amplitude than the labeled value; (b) PAW predicted a shorter
amplitude than the labeled value; (c) PAW picked an amplitude
window with a larger period and higher amplitude; (d) PAW
predicted a larger amplitude window containing the labeled
window.

tainty in its decision. Lastly, Figure 13d illustrates a scenario
where the model predicts a larger amplitude window, primarily
driven by the lack of confidence to select an exact half-cycle
window. Many of these cases may be caused by differences in
the data-processing techniques we used to generate our 240-
sample inputs for the PAW model compared to those used to
prepare the event bulletins.

V. RELATED WORK

Deep learning plays an important role in seismology, par-
ticularly in earthquake pattern recognition [10], [11] and pre-
diction of seismic indicators [12]–[16]. Feed-forward models
combined with decision trees [17], [18] achieved high accuracy
in detecting seismic features with Chilean data. Likewise,
in regional contexts like Indonesia, earthquake magnitude
prediction with deep neural networks and hierarchical K-
means clustering [19] achieved varying success.

Time Series Regression Methods. A variety of methods,
comprising CNNs [20]–[22], RNNs [23]–[25], LSTMs [26]–
[28], and transformers [29]–[31], can be applied to time series
regression tasks such as traffic speed prediction, renewable
energy generation modeling, financial market analysis, and
earthquake depth estimation [4], [5]. DeepPhaseNet [5] (DPP)
combines a CNN with two RNNs, it was designed for detecting
and picking local events on a regional seismic network in
Chile. Generalized Phase Detection [4] (GPD) is a CNN model
that can detect seismic events and classify seismic phases on
the Southern California Seismic Network.

Time Series Autoencoders. Autoencoders applied to time
series have diverse applications such as anomaly detection

[32], [33], classification [34], [35], denoising [36], [37], di-
mensionality reduction [38], [39], feature extraction [40], [41]
and earthquake detection [3], [7]. CRED [7] combines CNN
and RNN layers to detect events in signal and noise examples
from northern California. EQTransformer [3] (EQT) is an
attention-based transformer network with CNN and LSTM
layers to both detect and pick events.

VI. CONCLUSIONS

We have developed a novel, autoencoder-based model
(PAW) that accurately replicates analyst selections of seismic
phase amplitudes and periods in a waveform. Assessments of
the window accuracy of the new PAW model indicate that it
achieves an overall window accuracy of nearly 80% in predict-
ing key amplitude characteristics, including the start and end
times of the correct amplitude windows, and amplitude, period,
and magnitude values. This represents a strong improvement
over the performance of the existing automated system. In
future work, we will continue to pursue performance improve-
ments with the PAW model and evaluate its performance on
other labeled seismic phase-amplitude datasets.

REFERENCES

[1] “IDC Documentation Products and Services: Formats and Protocols for
Continuos Data CD-1.0 /,” p. 37 p. :, 2 2002.

[2] E. Ghaderpour, W. Liao, and M. P. Lamoureux, “Antileakage least-
squares spectral analysis for seismic data regularization and random
noise attenuation,” Geophysics, vol. 83, no. 3, 2018.

[3] S. M. Mousavi, W. L. Ellsworth, W. Zhu, L. Y. Chuang, and G. C.
Beroza, “Earthquake transformer—an attentive deep-learning model for
simultaneous earthquake detection and phase picking,” Nature commu-
nications, vol. 11, no. 1, p. 3952, 2020.

[4] Z. E. Ross, M. Meier, E. Hauksson, and T. H. Heaton, “Generalized
Seismic Phase Detection with Deep Learning,” Bulletin of the Seismo-
logical Society of America, vol. 108, no. 5A, pp. 2894–2901, 2018.

[5] H. Soto and B. Schurr, “DeepPhasePick: a method for detecting and
picking seismic phases from local earthquakes based on highly opti-
mized convolutional and recurrent deep neural networks,” Geophysical
Journal International, vol. 227, no. 2, pp. 1268–1294, 2021.

[6] J. Woollam, A. Rietbrock, A. Bueno, and S. De Angelis, “Convolutional
neural network for seismic phase classification, performance demon-
stration over a local seismic network,” Seismological Research Letters,
vol. 90, no. 2A, pp. 491–502, 2019.

[7] S. M. Mousavi, W. Zhu, Y. Sheng, and G. C. Beroza, “Cred: A deep
residual network of convolutional and recurrent units for earthquake
signal detection,” Scientific reports, vol. 9, no. 1, p. 10267, 2019.

[8] W. Li, J. Koehler, M. Chakraborty, C. Quinteros-Cartaya, G. Ruemp-
ker, and N. Srivastava, “Real-time earthquake monitoring using deep
learning: a case study on turkey earthquake aftershock sequence,” 2023.

[9] S. Li, X. Yang, A. Cao, C. Wang, Y. Liu, Y. Liu, and Q. Niu, “Seist:
A foundational deep-learning model for earthquake monitoring tasks,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 62, pp. 1–
15, 2024.

[10] S. Kanarachos, S.-R. G. Christopoulos, A. Chroneos, and M. E. Fitz-
patrick, “Detecting anomalies in time series data via a deep learning
algorithm combining wavelets, neural networks and hilbert transform,”
Expert Systems with Applications, vol. 85, pp. 292–304, 2017.

[11] M. Mirrashid, “Earthquake magnitude prediction by adaptive neuro-
fuzzy inference system (anfis) based on fuzzy c-means algorithm,”
Natural Hazards, vol. 74, pp. 1577–1593, 2014.

[12] F. A. Chowdhury, M. A. Siddiquee, G. E. Baker, and A. Mueen,
“FASER: Seismic Phase Identifier for Automated Monitoring,” in KDD
’21: The 27th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, 2021 (F. Zhu, B. C. Ooi, and C. Miao, eds.), pp. 2714–
2721, ACM, 2021.

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on November 05,2025 at 21:52:34 UTC from IEEE Xplore. Restrictions apply.

[13] S. M. Mousavi, W. Zhu, Y. Sheng, and G. C. Beroza, “CRED: A Deep
Residual Network of Convolutional and Recurrent Units for Earthquake
Signal Detection,” Scientific Reports, vol. 9, p. 10267, 12 2019.

[14] Y. Wang, Y. Chen, and J. Zhang, “The application of rbf neural network
in earthquake prediction,” in 2009 Third International Conference on
Genetic and Evolutionary Computing, pp. 465–468, 2009.

[15] W. S. Hu, H. Wang, and H. L. Nie, “Regional short-term earthquake
prediction model based on bp neural network,” in Progress in Structures,
vol. 166 of Applied Mechanics and Materials, pp. 2309–2314, 2012.

[16] E. Amar, T. Khattab, and F. Zada, “Intelligent Earthquake Prediction
System Based On Neural Network,” International Journal of Earth,
Energy and Environmental Sciences, vol. 8.0, 2015.

[17] E. Florido, G. Asencio–Cortés, J. Aznarte, C. Rubio-Escudero, and
F. Martı́nez–Álvarez, “A novel tree-based algorithm to discover seismic
patterns in earthquake catalogs,” Computers Geosciences, vol. 115,
pp. 96–104, 2018.

[18] J. Reyes, A. Morales-Esteban, and F. Martı́nez-Álvarez, “Neural net-
works to predict earthquakes in chile,” Applied Soft Computing, vol. 13,
no. 2, pp. 1314–1328, 2013.

[19] M. N. Shodiq, D. H. Kusuma, M. G. Rifqi, A. R. Barakbah, and T. Har-
sono, “Neural network for earthquake prediction based on automatic
clustering in indonesia,” JOIV: International Journal on Informatics
Visualization, vol. 2, no. 1, pp. 37–43, 2018.

[20] Y. Wang, X. Li, Z. Wang, and J. Liu, “Deep learning for magnitude
prediction in earthquake early warning,” Gondwana Research, 2022.

[21] A. Gasparin, S. Lukovic, and C. Alippi, “Deep learning for time series
forecasting: The electric load case,” CAAI Transactions on Intelligence
Technology, vol. 7, no. 1, pp. 1–25, 2022.

[22] P. Lara-Benı́tez, M. Carranza-Garcı́a, J. M. Luna-Romera, and J. C.
Riquelme, “Temporal convolutional networks applied to energy-related
time series forecasting,” Applied Sciences, vol. 10, no. 7, 2020.

[23] R. Chandra and S. Chand, “Evaluation of co-evolutionary neural network
architectures for time series prediction with mobile application in
finance,” Applied Soft Computing, vol. 49, pp. 462–473, 2016.

[24] H. M, G. E.A., V. K. Menon, and S. K.P., “Nse stock market prediction
using deep-learning models,” Procedia Computer Science, vol. 132,
pp. 1351–1362, 2018. International Conference on Computational
Intelligence and Data Science.

[25] H. Hewamalage, C. Bergmeir, and K. Bandara, “Recurrent neural net-
works for time series forecasting: Current status and future directions,”
International Journal of Forecasting, vol. 37, no. 1, pp. 388–427, 2021.

[26] H. Chung and K.-s. Shin, “Genetic algorithm-optimized long short-term
memory network for stock market prediction,” Sustainability, vol. 10,
no. 10, 2018.

[27] L. Peng, S. Liu, R. Liu, and L. Wang, “Effective long short-term memory
with differential evolution algorithm for electricity price prediction,”
Energy, vol. 162, pp. 1301–1314, 2018.

[28] Y. Hua, Z. Zhao, R. Li, X. Chen, Z. Liu, and H. Zhang, “Deep
learning with long short-term memory for time series prediction,” IEEE
Communications Magazine, vol. 57, no. 6, pp. 114–119, 2019.

[29] N. Wu, B. Green, X. Ben, and S. O’Banion, “Deep transformer
models for time series forecasting: The influenza prevalence case,”
vol. abs/2001.08317, 2020.

[30] S. Li, X. Jin, Y. Xuan, X. Zhou, W. Chen, Y.-X. Wang, and X. Yan,
Enhancing the Locality and Breaking the Memory Bottleneck of Trans-
former on Time Series Forecasting. 2019.

[31] N. Phandoidaen and S. Richter, “Forecasting time series with encoder-
decoder neural networks,” 2020.

[32] H. Gao, B. Qiu, R. J. Duran Barroso, W. Hussain, Y. Xu, and X. Wang,
“Tsmae: A novel anomaly detection approach for internet of things time
series data using memory-augmented autoencoder,” IEEE Transactions
on Network Science and Engineering, 2022.

[33] C. Yin, S. Zhang, J. Wang, and N. N. Xiong, “Anomaly detection
based on convolutional recurrent autoencoder for iot time series,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 1,
pp. 112–122, 2022.

[34] P. Liu, X. Sun, Y. Han, Z. He, W. Zhang, and C. Wu, “Arrhythmia clas-
sification of lstm autoencoder based on time series anomaly detection,”
Biomedical Signal Processing and Control, vol. 71, p. 103228, 2022.

[35] D.-H. Kang and D.-H. Kim, “1d convolutional autoencoder-based ppg
and gsr signals for real-time emotion classification,” IEEE Access,
vol. 10, pp. 91332–91345, 2022.

[36] A. Sagheer and M. Kotb, “Unsupervised pre-training of a deep lstm-
based stacked autoencoder for multivariate time series forecasting prob-
lems,” Scientific reports, vol. 9, no. 1, p. 19038, 2019.

[37] A. Novoselov, P. Balazs, and G. Bokelmann, “Sedenoss: Separating
and denoising seismic signals with dual-path recurrent neural network
architecture,” Journal of Geophysical Research: Solid Earth, vol. 127,
no. 3, p. e2021JB023183, 2022.

[38] G. Stein, U. Seljak, V. Böhm, G. Aldering, P. Antilogus, C. Aragon,
S. Bailey, C. Baltay, S. Bongard, K. Boone, et al., “A probabilistic au-
toencoder for type ia supernova spectral time series,” The Astrophysical
Journal, vol. 935, no. 1, p. 5, 2022.

[39] S. N. Shukla and B. M. Marlin, “Heteroscedastic temporal variational
autoencoder for irregularly sampled time series,” vol. abs/2107.11350,
2021.

[40] Z. Li, Z. Rao, L. Pan, P. Wang, and Z. Xu, “Ti-mae: Self-supervised
masked time series autoencoders,” 2023.

[41] L. Yang, Y. Song, S. Gao, A. Hu, and B. Xiao, “Griffin: Real-time
network intrusion detection system via ensemble of autoencoder in sdn,”
IEEE Transactions on Network and Service Management, vol. 19, no. 3,
pp. 2269–2281, 2022.

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on November 05,2025 at 21:52:34 UTC from IEEE Xplore. Restrictions apply.

