Biometrika (2025), 112, 3, asaf037 https://doi.org/10.1093/biomet/asaf037
Advance Access publication 26 May 2025

Consistent and scalable composite likelihood estimation of
probit models with crossed random effects

By R. BELLIO

Department of Economics and Statistics, University of Udine,

Via Tomadini, 30/ A, 33100 Udine, Italy
ruggero.bellio@uniud.it

S. GHOSH, A. B. OWEN

Department of Statistics, Stanford University,
Sequoia Hall, Stanford California 94305, U.S. A.

gswarnadip@gmail.com owen@stanford.edu

AND C. VARIN

Department of Environmental Sciences, Informatics and Statistics,
Ca’ Foscari University, Via Torino 155, 30172 Venice, Italy

cristiano.varin@unive.it

SUMMARY

Estimation of crossed random effects models commonly incurs computational costs that
grow faster than linearly in the sample size N, often as fast as Q (N3/?), making them unsuit-
able for large datasets. For non-Gaussian responses, integrating out the random effects to
obtain a marginal likelihood poses significant challenges, especially for high-dimensional
integrals for which the Laplace approximation may not be accurate. In this article we develop
a composite likelihood approach to probit models that replaces the crossed random effects
model with some hierarchical models that require only one-dimensional integrals. We show
how to consistently estimate the crossed effects model parameters from the hierarchical
model fits. We find that the computation scales linearly in the sample size. The method is
illustrated by applying it to approximately five million observations from Stitch Fix, where
the crossed effects formulation would require an integral of dimension larger than 700 000.

Some key words: Adaptive Gauss—Hermite quadrature; Binary regression; E-commerce; High-dimensional data.

1. INTRODUCTION

In this article we develop a new composite likelihood approach to handling probit
models with two crossed random effects. The initial motivation was to obtain point and
interval parameter estimates at a computational cost that grows only linearly with the sam-
ple size N. Standard algorithms for crossed random effects typically have superlinear cost,
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commonly Q(N3/?), making them unsuitable for modern large datasets. A second issue is
that the marginal likelihood in a crossed random effects model is an integral over R?, where
D is large enough to make the integration problem challenging. Our scalable estimation
method replaces this D-dimensional integral by D integrals of dimension one.

The common notation for mixed effects models combines fixed and random effects
through a formula such as X + Zb involving matrices X and Z of known predictors with
unknown coefficient vectors  and b, where b happens to be random. This formulation is
simple and elegant, but hides some extremely important practical differences. As discussed
above, the crossed setting leads to one high-dimensional integral while the hierarchical one
uses many low-dimensional integrals. For Gaussian responses we can use generalized least
squares on the response vector, without explicitly solving an integral. Even in that case,
the crossed setting is harder. A hierarchical model has a block-diagonal covariance matrix
for the response vector, resulting in a linear cost. For unbalanced crossed random effects,
generalized least squares typically has a superlinear cost.

With the size N of datasets growing rapidly, it is not possible to use estimation methods
with a cost of Q(N3/2); ideally the cost should be O(N). The present work is motivated by
electronic commerce problems with large datasets. Consider a company that has customers
i = 1,...,R, to which it sells items j = 1,...,C. The company might be interested in
modelling how a response Y;; depends on some predictors x;; € R”. If the model does not
account for the fact that Yj; and Y; are correlated because of a common customer 7 or that
Y;; and Y,; are correlated because of a common item j, an inefficient estimate will result.
This flaw is less serious when N is large. What is very concerning is that the company will
get unreliable standard errors for their estimates. In a setting where accounting for random
effects is computationally impossible, it is expected that many users will simply ignore them,
thus obtaining very naive variance estimates and finding too many things to be significant.

A typical feature of data in our motivating applications is very sparse and imbalanced
sampling. Only N <« RC of the possible (x;;, Y;;) values are observed. There is generally no
simple structure in the pattern of which (i, j) pairs are observed. It is common for the data
to have very unequal sampling frequencies in each of the row and column variables.

The scaling problem is easiest to describe for generalized least squares solutions to linear
mixed models, based on results of Gao & Owen (2020). They noted that the algorithm for
generalized least squares involves solving a system of R+ C equations in R 4+ C unknowns,
which has a cost of Q{(R+C)3} in standard implementations. If RC > N, then max(R, C) >
N2 and so (R + C)® > N3/2. The average number of observations per level is N/(RC).
This ratio is well below 1 in our motivating applications, and as long as it is o(N'/3), the
cost of standard algebra will be superlinear.

Standard Bayesian solutions run into a similar difficulty. For an intercept plus crossed
random effects model, Gao & Owen (2017) showed that the Gibbs sampler takes Q(N'/?)
iterations that each have a cost proportional to N, for an Q (N3/2) cost overall. Several other
Bayesian approaches they considered also encountered difficulties.

There has been recent progress on scalable algorithms for crossed random effects prob-
lems, improving upon both the frequentist and the Bayesian approaches. For regression
problems, Ghosh et al. (2022a) replaced standard equation solving by a backfitting algo-
rithm that has O(N) cost per iteration and gave conditions under which the number of
iterations to convergence is O(1) as N — oo. See also Ghandwani et al. (2023) for regres-
sion with random slopes. Papaspiliopoulos et al. (2020) used a collapsed Gibbs sampler and
gave conditions under which it has linear cost in NV for the intercept-only crossed random
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effects regression model. Ghosh & Zhong (2021) did the same after weakening a stringent
balance assumption.

Here we consider a binary response requiring a generalized linear mixed effects model
with crossed random effects that encounters the high-dimensional integration problem
mentioned above. Fewer scalable solutions are available for this problem. There is a fre-
quentist approach due to Ghosh et al. (2022b) and a Bayesian approach developed by
Papaspiliopoulos et al. (2023). The all-row-column probit presented here is simpler than
those two approaches and uses much weaker sampling assumptions.

Ghosh et al. (2022b) developed a penalized quasilikelihood approach to logistic regres-
sion on fixed effects and two crossed random effects. Their method involves iterations
costing O(N) each, and empirically the number of iterations is O(1). They used estimating
equations from Breslow & Clayton (1993), which were based on work by Schall (1991) to
maximize the marginal likelihood using a Laplace approximation. The quantity being esti-
mated is not exactly the maximum likelihood estimate; it is a posterior mode corresponding
to a not-very-informative prior, using some plugged-in weights, a quantity that goes back
to Stiratelli et al. (1984). Penalized quasilikelihood has a bias that can prevent it from being
consistent. Even with just the intercept and one random effect, it requires the number of
levels of that effect and the number of observations at each of those levels to diverge to
infinity in order to yield a consistent estimate. With sample sizes of R = N” and C = N*
for p,x € (0,1), penalized quasilikelihood requires max(p + 2x,2p + k) < 2, and the
observation probability for (x;;, Y;;) can vary over only a narrow range.

Papaspiliopoulos et al. (2023) extended the collapsed Gibbs sampler to obtain scalable
Bayesian inference in generalized linear mixed models with crossed random effects using a
reparameterization called local centring. They included an intercept and K > 2 crossed
random effects, while also discussing how fixed effects could be incorporated. Their
approach requires a stringent balance assumption. For our data we would need N;, = N/C
forallrowsi =1,...,Rand N,; = N/Rforallj = 1,..., C. Under this condition, their
cost per iteration is O(N + R + C) in our notation. The total cost is this cost per itera-
tion times a relaxation time. For K = 2 random effects and a discrete response like the
one we study, they introduced an auxiliary relaxation time 73,x and showed that the cost
is O[max(N, R + C)min{2N /(R + C), Taux}]. Our problem has max(R, C) < N, and then
their cost is linear in N if and only if Thyx = O(1). They get Taux = O(1) when the obser-
vation pattern is uniformly distributed over all patterns with N;; = N/C and N,; = N/R.
Both R and C must grow linearly with N. They then require N;, = O(1) and N,; = O(1).

Our balance criteria are minimal. The main results require max(max; N;,, max; No;)/N =
o(1). Both R and C can grow with N at different rates. Our simulations, but not our theory,
use a balance condition with nearly equal values among the N;, and nearly equal values
among the N,;.

We study the probit model because its Gaussian latent variable is a good match for Gauss-
ian random effects. The probit and logit link functions are nearly proportional outside tail
regions (Agresti, 2002, pp. 246-7), so they often give similar results.

Crossed models also differ from hierarchical models in that only recently has the maxi-
mum likelihood estimate for generalized linear mixed models been shown to be consistent
for crossed random effects. This was accomplished by the subset argument of Jiang (2013),
showing that the score equations have a root that is consistent for the parameter. One of
the main open questions in generalized linear mixed models, such as the ones we consider
here, is at what rate the estimators of the model parameters converge. Intuitively, one might
expect O(N~1/2) or O{min(R, C)~'/2}, in accordance with the results for nested designs
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(Jiang et al., 2022). In some settings estimators for different parameters converge at differ-
ent rates. See Jiang (2013) for some discussion and Lyu et al. (2024) for recent work assuming
balanced sampling.

2. THE ALL-ROW-COLUMN METHOD
2.1. Preliminaries

We consider two crossed random effects. There is a vector ¢ € RR with elements @; and
another vector b € R€ with elements b;. Conditionally on a and b, the Y; are independent
with

pr(Yy = 11a,b) = OCGS +ai + b)), (1)

where ®(-) is the standard normal cumulative distribution function. In these models,
random effects are typically assumed to be uncorrelated, a ~ N0, 0311 r) independently
of b ~ N(0, aélc), where I, is the n x n identity matrix; see, for example, McCullagh &
Nelder (1989, p. 444). The probit model has a representation in terms of latent variables
gj ~N(0,1) as

Yij = Hxyp + ai + bj + e > 0}, )

where 1{£} is the indicator function of the event E. The probability (1) and the likelihoods
derived from it are all conditional on the values of x;;.

Wewrite S C {1,...,R}x{1,..., C}for the set of (7, ) pairs where (x;;, Y;;) was observed.
We also work conditionally on S. In our motivating applications, the pattern of observa-
tion or missingness could be informative. Addressing that issue would necessarily require
information from outside the data. Furthermore, the scaling problem is still the subject of
ongoing research even in the noninformative missingness setting. Therefore, we consider
estimation strategies without taking account of missingness.

The likelihood for & = (B7,03,52)" is a cumbersome integral of size R + C,

C

R i b,
L) = O-A_RO-I;C/H%R+C L(p|a,b) 1_[(/) <:—A) Hgo (é) dadb, (3)
i=1

j=1

where ¢ (-) is the standard normal probability density function and L(f | a, b) is the con-
ditional likelihood of f, given the random effects. The conditional likelihood we need is

LB lab)= [] ©CE +ai+ b)Y id(—x[p — a; — by)' =7,
(iy)es

and L(#) is commonly called the marginal likelihood.

The first-order Laplace approximation is a standard approach to approximating the inte-
gral in the marginal likelihood. The Laplace algorithm maximizes the logarithm of the
integrand in the marginal likelihood (3) over a € R and b € R for fixed 6. It then multi-
plies the maximum value of the integrand by det{H~'/2(9)}, where H(0) € RE+O*(R+C) jg
the Hessian of the log integrand with respect to @ and b for fixed 8. The result is an approxi-
mate marginal likelihood L(0) that is optimized to obtain 8; see, for example, Ogden (2021)
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or Shun & McCullagh (1995). If the square root of the inverse Hessian is computed by stan-
dard methods, then that alone has a cost of Q(N3/2) by the argument for generalized linear
models discussed in § 1. Similarly, if the inner optimization is done using Newton steps, that
will have a cost of Q(N?3/%) per iteration. We return to this issue in § 3.2, where a Laplace
approximation is shown to have a superlinear cost that is o(N>/2).

Even if the Laplace approximation were computable for large N, it would not provide
asymptotically valid results in our context, because the size of the likelihood integral cor-
responds to the number of random effects Q(N'/2), and therefore grows too fast with the
sample size to ensure consistent results. See Shun & McCullagh (1995), Ogden (2021) and
Tang & Reid (2025) for discussions of the conditions that must be satisfied to make the
Laplace approximation reliable when the size of the integral grows with the sample size.

2.2. Scalable composite likelihood inference

Our approach to obtaining a consistent and scalable estimator in high-dimensional probit
models with crossed random effects combines estimates for three misspecified probit models.
Each of them is constructed through the omission of some random effects. By combining
(1) and (2), we find that marginally

pr(Yy = 1) = d(xfy) 0

fory = p/(1 +ai +o é)l/ 2 The proposed method begins with estimation of y from the naive
model (4) that omits both of the random effects through maximization of the likelihood

Lai() = [] @Gy y7e (=) . (5)
(ij)esS

Maximization of this likelihood requires neither high-dimensional integrals nor expensive
algebra, and it is observed to take O(N) computation in our examples. We then need esti-
mates of o j and o 12;, to get the scale right. Our analysis of (4) will also account for within-row
and within-column correlations among the Y;;. While sign(yx) = sign(fy) (k = 1,...,p),
confidence intervals for y; based on model (4) would be naive if they did not account for
the dependence among the responses.

Consider the reparameterization y = (y 7, 72, 73)", where

2 2
_ p 22— _%4 22— _%8
A+024+0)12 471462 P 1442

y (6)

After dividing xl-Tj,B +a;+bj+¢; by (1 + 05)1/2 or by (1 + aé)l/z, model (2) implies that

pr(Y; =1]a) = ®(x;y4 + ), (7)
pr(Yy;=11b) = ®(x;y5+ ), 8)

where u ~ N(0,731g) and v ~ N(0,731¢) for y4 = y (1 + 1)/ and yp = y (1 + ) !/%.
Given y, the maximizer of (5), we proceed with estimation of ¢ 31 and 1123 from the two probit
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models (7) and (8) that each omit one of the random effects. Fitting models (7) and (8)
involves simpler integrals than (1) since the latent variable representations of these models,

Yij=Hxjra+ui+e; >0}, Yy=1lxyrp+v+e;> 0},

have hierarchical (not crossed) error structures. This is where we are able to replace the
(R+ C)-dimensional integral (3) by R+ C univariate ones. Model (7) is fitted by maximizing
the row-wise likelihood

Lrow(TA) =Ty K 1_[/ Lis(4 | up)o ( ) du;, )

where L;q(7 4 | u;) is the conditional likelihood of y4 = 7 (1 + rj)l/z, given u;,

Lt 00 = [T 035+ 10—,
Jli

where j | i = {j: (i,j) € S} is the set of indices j such that (x;;, Y;) is observed. The row-
wise likelihood (9) is a product of R one-dimensional integrals and is a function of ¢ A% only,
because we fix y at the estimate y obtained from the maximization of the all likelihood
in the previous step. Rows with a single observation do not contribute to estimation of 72 4
because pr(Y; = 1) = <I>(xyy) which does not depend on 72 4~ Reversing the roles of the
rows and columns, we get a column-wise likelihood L.y, which we maximize to obtain an
estimate flzg of 1123.
Finally, we invert the equations in (6) to get

A 22 A% 2 22147 ) Ly Tp(14+179)
B=70+65+6p"° &5= % Cp= "
—T47R 1 — 7473

By the definitions in (6), ri rﬁ, < 1. In our computations, we have never encountered a
setting where 7 A% T 123 > 1, so our estimates & i and &l% have never been negative.

We call our method the all-row-column method. The name comes from model (4),
which uses all the data at once, model (7), which combines likelihood contributions from
within each row, and model (8), which combines likelihood contributions from within each
column. Figure 1 illustrates these models for a dataset of N = 39 observations in R = 10
rows and C = 10 columns. In each of three misspecified probit models, points in different
boxes are assumed to be independent. Figure 1(a) shows the a// model with independent
data. Panels (b) and (c) illustrate the row and column hierarchical models, respectively. We
combine fits from these three misspecified models to get consistent scalable formulas despite
the dependencies involved. This approach can be viewed as a new form of composite like-
lihood (Lindsay, 1988; Varin et al., 2011). An earlier version of composite likelihood that
was applied to crossed random effects is discussed by Bellio & Varin (2005). They considered
a standard pairwise likelihood which is, however, not scalable, and thus inappropriate for
our problem. Instead, our all-row-column method has O(N) cost per iteration and achieves
O(N) cost empirically.

Computation of the row- and column-wise likelihoods requires the approximation of
up to R and C univariate integrals of a standard hierarchical probit model. Since R and
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Fig. 1. The all-row-column method for N = 39 observations (marked ) in R = 10 rows and C = 10 columns:
(a) the all model; (b) the row hierarchical model; (c) the column hierarchical model.

C are large in the applications that motivate this work, accurate approximation of the
one-dimensional integrals is crucial. Otherwise, the accumulation of approximation errors
could induce serious biases in the estimation of 7 A% and rlz;. Our intensive numerical studies
have indicated that accurate approximation of the integrals can be achieved by the well-
established adaptive Gauss—Hermite quadrature (e.g., Liu & Pierce, 1994) with a suitable
choice of the number of quadrature nodes.

The next theorem establishes the weak consistency of the maximizer y of the all likeli-
hood (5) with respect to the value y in (6). First we introduce some notation. Let Z; = 1
if (xj, Yj) is observed and Z; = 0 otherwise. The number of observations in row i
1S Nje = chzl Zjj, and similarly column j has N,; = Zle Z;; observations in it. Let
€r = max; Nj,/N and ec = max; N,;/N. We assume that max(eg,ec) — 0as N — oo. We
take Z;; to be deterministic with at most one observation for any (i, /) pair. In our motivating
applications one would seldom, if ever, have multiple observations for any (i, ) pair. Even
then, one might only use the most recent of those observations. The x;; are not dependent
on the Z;;. Finally, the Y;; are sampled from their probit distribution conditionally on x;;.

THEOREM 1. Let Yj; € {0, 1} follow the crossed random effects probit model (1) with true

value yq for the parameter y = f/(1 + ai + 0123)1/ 2. Let the number of observations N — 00
while max(eg, ec) — 0. Suppose that x;; € RP satisfy the following conditions:

(1) IIXUII B < o0;
(i) N™ Zl] Z,jxljxij — V € RPXP where V is positive definite;
(iii) there is no nonzero vector v € RP such that v'x; > 0 for all (i,j) with Z; = 1
and y;=1and v'x; <0 forall (i,j)with Zj=1and y;=0.

Let 7 € R? be any maximizer of (5). Then for any € > 0,

pr(ly —yoll > €) > 0 as N — oo.

The proof is given in the Supplementary Material and was obtained by adapting the proof
strategy of Lumley & Mayer Hamblett (2003) to our setting. The balance condition that no
single row or column have a nonvanishing fraction of data is much weaker than the norm
in the crossed random effects literature.
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Now we consider consistent estimation of ¢ j and 7 lzg from the row and column likelihoods,

respectively. These provide consistent estimates of ¢ j and o é, with which one can then adjust
the consistent estimate of y to get a consistent estimate of .

THEOREM 2. Under the assumptions of Theorem 1, there is a root of the row likelihood
equation that is a consistent estimator for ri, and there is a root of the column likelihood
equation that is a consistent estimator for leg.

The proof of this theorem is also presented in the Supplementary Material. It uses the
subset argument of Jiang (2013) to show Cramer consistency of the maximum row like-
lihood estimator of ri and, equivalently, of the maximum column likelihood estimator
of 7123'

2.3. Robust sandwich variance

After a customary Taylor approximation, the variance of 8 is var(d) = Dvar(y)D",
where D is the Jacobian matrix of the reparameterization from 6 to y. Letting yo denote
the true value of w and uyc () the score vector of the all-row-column estimator constructed
by stacking the scores of the three misspecified likelihoods, the asymptotic variance of v is

avar(y) = Zort (W0) V are (W0) Zare (90),

where Zyrc(w) = —E{Ouarc(w)/0w} and Vare(w) = var{ua.(w)} are the expected infor-
mation and score variance for the all-row-column estimator. These two matrices are not
equal because the second Bartlett identity does not hold for the misspecified likelihoods
that constitute the all-row-column method. While estimation of the bread matrix Z,.. of
the sandwich is not problematic, direct computation of the filling matrix V. is not fea-
sible in our large-scale set-up because it requires the approximation of a large number of
multi-dimensional integrals with a cost that does not meet our O(N) constraint.

Since all-row-column estimates require O(N) computations, we can estimate the vari-
ance of  with a parametric bootstrap. However, it is preferable to evaluate the estimation
uncertainty without assuming the correctness of the fitted model, for example by using the
nonparametric pigeonhole bootstrap described in Owen (2007). In that approach, the rows
in the dataset are resampled independently of the columns. So if a row is included twice
and a column is included three times, the corresponding element is included six times. The
resulting bootstrap variance for a mean (such as one in a score equation) overestimates
the random effects variance by an asymptotically negligible amount. It does not require
homoscedasticity of either the random effects or the errors.

We now describe a convenient approach that we have developed to estimate the vari-
ance of f in O(N) operations without the need of resampling and repeated fitting as
in the bootstraps mentioned above. The partitioned expected all-row-column information
matrix 18

E{0%Can/(0y 0y ™)} 0 0
Tarc(w) = — | E{0%Crow/(0y 073} E{0%Crow/(075077)} 0 :
E{0%eo1/ (07 03)} 0 E{0%Ce01/(03073)}
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where €, = log Ly (y) from (5), {row = log Lrow(ri) from (9) and €., = log Lcol(rlzg). Since
Tarc(w) is triangular, the asymptotic variance for 7 is

avar() = Z' (7o) Van(70) g (70), (10)

where Z;(y) = —E{0%*C,/(0y 8y ™)} and Vy(y) = var(d€y;/dy) are the Fisher expected
information and the score variance of the all likelihood. The asymptotic variance (10) for
7 1is thus the same as that of the estimator that maximizes the all likelihood when the nui-
sance parameters 7 j and 1123 are known. The robust sandwich estimator of the variance of
7 is obtained by replacing Z,;(yo) and Vy(yo) with some estimators that are consistent
and robust to misspecification. The expected information is naturally estimated with the
observed information,

5 < o (i) + 71 D (A7)
i) =2 2o i) {y TR
i nij

o (i) — 7ij ©(—=1;7) T
+ (1 _y) - XjiXi:,
v O (—77)? I

where 7;; = xl-Tjj? . Estimation of V,j(yo) is more involved. This matrix can be decomposed
into the sum of three terms,

Van(yo) = Y Y ZyZrsE {uy(yo)uyy(y0) }

i

=Y ZyZisE {uy(yo)u(vo)} + Y ZiZ,jE {uij(VO)”;Tj(VO)}

ijs ijr

— Y ZE {Uij(VO)“}}(VO)} ,
.

where u;;(y ) is the score for a single observation Yj;,

o () i — Dy )i
D (xj7 )@ (=)

u(y) =

The corresponding estimator of Vy(yo) is
Vai(7) = VaG) + VBG) = Vans(?),

whose components are computed by grouping the individual scores with respect to each
random effect and their interaction,

Va@) =Y uie@uj(),  Ve() =Y ui(Mubi (7). Vans(F) =Y Zijuy(Fuj(9),
: ; -

g

where u;o(y) = Zj Zijuii(y) and uej(y) = Y_; Zjju;i(y ). Estimators of the form IA/aH(j?) are
used in statistical modelling of data clustered within multiple levels in medical applications
(Miglioretti & Heagerty, 2004) and in economics (Cameron et al., 2011), where they are
known as two-way cluster-robust sandwich estimators.
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Finally, we approximate the variance of 4 by plugging in the estimates & A% and ¢ é,
Var(B) = (1+ 63 + 63) var() = (1 + 65 + 6 Jy D V(D)W ). (A1)

A limitation of this approach is that it neglects the uncertainty in the estimation of the
variance components: although we do not expect a substantial impact in high-dimensional
applications, it could be possible to adjust (11) for the variability of the variance components
through bootstrapping the row-wise and column-wise estimates ffl and 7 é.

3. SIMULATIONS
3.1. Simulation settings

We simulate from the probit model with crossed random effects (1) and compare the per-
formance of the all-row-column estimator with that of the traditional estimator obtained
by maximizing the first-order Laplace approximation of the likelihood. Another method
considered is an infeasible oracle estimator that uses the unknown true values of ¢ j and aé

to estimate the regression parameters as ﬁ’orade =71+ aj + aé)l/ 2. The all-row-column
method instead corrects 7 using estimates of the variance components. All methods were
implemented in the R (R Development Core Team, 2025) language. The package TMB (Kris-
tensen et al., 2016) was used for the Laplace approximation, with the n1minb optimization
function employed for its maximization. We did not use the popular glmer function from
the R package 1me4 (Bates et al., 2015) because the current version of TMB is substan-
tially more computationally efficient, thus allowing us to compare our method with the
first-order Laplace approximation at larger dimensions than would otherwise be possible
with glmer. The row- and column-wise likelihoods were coded in C++ and integrated in R
with Rcpp (Eddelbuettel, 2013) and were optimized by Brent’s method as implemented in
the optimise function.

We consider eight different settings defined by combining three binary factors. The first
factor is whether the simulation is balanced (i.c., equal numbers of rows and columns) or
imbalanced (with very unequal numbers of rows and columns) like we typically see in appli-
cations. The second factor is whether the regression model is null apart from a nonzero
intercept or has nonzero regression coefficients. The third factor is whether the random
effect variances are set at a high level or at a low level. Given R and C, the set S is obtained by
independent and identically distributed Bernoulli sampling with probability 1.27 x N/(RC).
The value 1.27 is the largest for which Ghosh et al. (2022a) could prove that backfitting takes
O(1) iterations. This sampling makes the attained value of N random, but with a very small
coefficient of variation.

We denote by R = N” and C = N* the numbers of rows and columns in the data
expressed as powers of the total sample size N. The two levels of the balance factor are
termed balanced, with p = k = 0.56, and imbalanced, with p = 0.88 and x = 0.53. The
balanced case was used in Ghosh et al. (2022b), and the imbalanced case is similar to the
Stitch Fix data in § 4. Because p +x > 1, the fraction of possible observations in the data is
N/(RC) = N'=P=% — 0as N — oo, providing asymptotic sparsity in both cases. While the
first choice has R/C being constant, the second choice has R/C — oo with N. We believe
that this asymptotic behaviour provides a better description of our motivating problems
than either a setting with C fixed as R — oo or the setting that is common in random matrix
theory (Edelman & Rao, 2005), where R and C diverge with R/C approaching a constant
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Table 1. Summary of the eight simulation settings

Setting Sparsity Predictors Variances

P K (o] OB
BAL-NUL-HI1 0.56 0.56 All zero 1.0 1.0
IMB-NUL-H1 0.88 0.53 All zero 1.0 1.0
BAL-LIN-H1 0.56 0.56 Not all zero 1.0 1.0
ImB-LIN-H1 0.88 0.53 Not all zero 1.0 1.0
BaL-NuL-Lo 0.56 0.56 All zero 0.5 0.2
ImB-NuUL-Lo 0.88 0.53 All zero 0.5 0.2
BaL-LIN-Lo 0.56 0.56 Not all zero 0.5 0.2
ImB-LIN-LO 0.88 0.53 Not all zero 0.5 0.2

value. When p = 0.88 and « = 0.53, the condition max(p + 2x,2p + k) < 2 invoked for the
estimator in Ghosh et al. (2022b) does not hold.

We consider seven predictors generated from a multivariate zero-mean normal distribu-
tion with covariance matrix ¥ corresponding to an autocorrelation process of order 1, so
that the (k, 1) entry of X is ¢/*~/I. We set ¢ = 0.5 in all the simulations. We always use the
intercept fo = —1.2 because in our applications pr(Y = 1) < 1/2 is typical. For the pre-
dictor coefficients we consider two choices, referred to as null, with p; = 0, and linear, with
Be=—-12+0.3¢( =1,...,7). The first choice is a null setting where x is not predictive at
all, while the second has modestly important nonzero predictors whose values are in linear
progression.

The two choices for the variance component parameters are termed high variance, with
o4 = land o = 1, and low variance, with o 4 = 0.5 and o3 = 0.2. We choose the first setting
to include variances higher than those typically observed in applications. The second setting
is closer to what is seen in data such as in § 4. We represent the eight settings with mnemonics
as shown in Table 1. For example, IMB-NUL-HI means row-column imbalance (p = 0.88 and
x = 0.53) with all predictor coefficients being zero and the main effect variances being large
(c4=1landop =1).

For each of these eight settings, we consider 13 increasing sample sizes N in the interval
from 103 to 10° obtained by taking 13 equispaced values on the log;, scale. As will be seen
next, the Laplace method has a cost that grows superlinearly, so to keep costs reasonable we
only use sample sizes up to 10° for that method. For each of the 13 sample sizes and each
of the eight settings, we simulate 1000 datasets.

As suggested by a referee, we experimented with different values for the number of
quadrature nodes k to approximate the univariate integrals of the row- and column-wise
likelihoods; see also the work of Bilodeau et al. (2024). The value k = 1, which corresponds
to the Laplace approximation, produced estimates of o4 and op affected by substantial
downward bias even at large N. The bias disappeared upon increasing k. With k = 5, we
obtained results that were not affected by bias and essentially indistinguishable from those
with k& = 25. Therefore, the results discussed in the rest of this section are those obtained
with £ = 5 nodes.

Graphs comparing the computational costs, the statistical properties and the scalability
of the three estimation methods for all eight settings are reported in the Supplementary
Material. To save space, here we present graphs for only one of the settings, IMmB-NUL-HI,
and merely summarize the other settings. This chosen setting is a challenging one. It is not
surprising that imbalance and large variances are challenging. The binary regression setting

GZ0Z J8qWBAON GO UO Jasn Aielqi] me umold uaqoy Aq G816+ 1L8//E0lese/s/Z | L /ojonie/jawolg/woo dnosoiwspese//:sdny wolj papeojumoq


https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaf037#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaf037#supplementary-data

12 R. BELLIO ET AL.

(a) (b)
¢ Laplace , » Laplace
- 10“ 1 -
I~ 200 —~ 1 - ARC
= i = 10" 1 ‘
g 150 g «Oracle
= . -5 100 »>
5 1004 5
By &0
© 501 ' ©
- ARC -2 .
. —° 10 "
0 »—e Oracle .
10° 10* 10° 10° 10° 10* 10° 10°
Sample size N Sample size N

Fig.2. (a) Computation time in seconds versus sample size N for the ImB-NUL-HI setting for the Laplace,
all-row-column and oracle methods. (b) The same plot with times displayed on the log,, scale.

is different from linear modelling, where estimation difficulty is unrelated to predictor coef-
ficient values. The main reason to highlight this setting is that it illustrates an especially bad
outcome for the Laplace method’s estimate of o4. Similar, but less extreme, difficulties for
the Laplace method’s estimates of o4 arise in the IMB-NUL-Lo setting.

3.2. Computational cost

Figure 2 shows the average computation times, in seconds, for the three methods, obtained
using a 16-core 3.5 GHz AMD processor equipped with 128 GB of RAM. It also shows
regression lines of log cost versus log N, marked with the regression slopes. The all-row-
column and oracle methods both have slopes that are nearly 1, as expected. The Laplace
method’s slope is clearly larger than 1, and as mentioned above, we curtailed the sample sizes
used for that case to keep costs reasonable. If we extrapolate the Laplace cost to N = 108,
comparable to the Netflix data (Bennett & Lanning, 2007), then the cost grows to more
than 12.9 days, while the all-row-column cost grows only to about 45 minutes. The compu-
tational cost of the all-row-column method can be further reduced with parallel computing
by distributing the approximations of the R + C one-dimensional integrals across multiple
cores.

Similar estimated computational costs were obtained for the all-row-column method in
the other seven settings, as summarized in Table 2, which shows estimated computational
cost rates very close to 1 for all eight cases. The oracle method’s slope is consistently close
to 1 in imbalanced settings and somewhat greater than 1 in balanced settings. The Laplace
method’s slope is consistently greater than 1; it tends to be higher for balanced settings,
although one of the imbalanced cases also has a large slope.

We have investigated the data behind the oracle method slopes, but cannot yet explain the
mild superlinearity that is sometimes seen. The number of Fisher-scoring iterations used by
the oracle method varies at small sample sizes, but is consistently near 7 at larger sample
sizes for which the superlinearity is more prominent. We have seen some outliers in the
computation times at small sample sizes, but not at large sample sizes. Replacing the means
at different N by medians does not materially change the slopes. We consider the amount
of unexplained nonlinearity to be small, but not negligible. For example, when going from
N =103 to N = 10°, a rate such as N9 yields a roughly 1500-fold cost increase instead of
the expected 1000-fold increase. The anomaly is concentrated in the balanced simulations,
but knowing this has not been enough to identify the cause.
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Table 2. Computational cost for all eight settings. linear regression
slopes for log(CPU time in seconds) versus log(N)

Setting Oracle All-row-column Laplace
BAL-NUL-HI 1.06 1.01 1.30
BAL-NUL-Lo 1.05 1.01 1.24
BAL-LIN-Hi1 1.06 1.00 1.29
BAL-LIN-Lo 1.07 0.99 1.26
IMB-NUL-HI1 0.98 1.00 1.23
ImB-NUL-Lo 0.98 1.00 1.13
IMB-LIN-HI 1.02 0.99 1.15
IMmB-LIN-LoO 0.98 1.00 1.15

3.3. Regression coefficient estimation

Next, we turn to estimation of the regression coefficients, treating the intercept differ-
ently from the other coefficients. The intercept poses a challenge because it is somewhat
confounded with the random effects. For instance, if we replace £y by o + /4 while replac-
ing a; by a; — A, then the Y;; are unchanged. Large 4 would change a = (1/R) Zﬁl a; by
an implausible amount that should be statistically detectable, given that a; ~ N'(0, o j). On
the other hand, |1| = O(c4R!/?) would be hard to detect statistically. The other regres-
sion parameters are not similarly confounded with main effects in our settings. Ghosh et al.
(2022b) observed that a categorical predictor that is a function of just the row index i or just
the column index j leads to a similar confounding.

Because of the confounding described above, we anticipate that the true mean square
error rate for the intercept cannot be better than O{min(R, C)}, which is O(N~3) in
our imbalanced settings and O(N~9%) in our balanced settings. For the other coefficients,
O(N~1) is not ruled out by this argument. In the Supplementary Material we report the
mean square errors for the intercept and the coefficient of the first predictor estimated at
different sample sizes, for the three estimators under study in the ImB-NuUL-HI setting. We
present the plot for only the first predictor, because the mean square errors of the estimates
of the seven regression coefficients were essentially equivalent. All three estimators show a
mean square error very close to O(N 1) for 1. Where we anticipated a mean square error
no better than O(N~%33) (imbalanced) or O(N %) (balanced) for the intercept, we saw
slightly better mean square errors with slopes between —0.57 and —0.61, confirming our
expectation that the intercept would be harder to estimate than the regression coefficients.

3.4. Variance component estimation

In this subsection we look at the estimation errors in the variance component param-
eters 0/21 and 0123. The oracle method is given the true values of these parameters and so
the comparison is only between the all-row-column and Laplace methods. For the variance
parameter o /21, the data only have Rlevels ay, . .., ag. If these were observed directly, then we
could estimate ai by (1/R) ZZR: ) ai2 and have a mean square error of O(R™1). In practice,
the a; are obscured by the presence of the signal, the noise ¢;; and the other random effects
b;. Accordingly, the best rate we could expect for o 31 is O(R™1) = O(N~"), and the best we
could expect for aé is O(C~" = O(N 7).

Figure 3 plots the mean square errors for estimation of o4 and o by the all-row-column
and Laplace methods in the IMB-NUL-HI setting. Because of the imbalance, our anticipated

GZ0Z J8qWBAON GO UO Jasn Aielqi] me umold uaqoy Aq G816+ 1L8//E0lese/s/Z | L /ojonie/jawolg/woo dnosoiwspese//:sdny wolj papeojumoq


https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaf037#supplementary-data

14 R. BELLIO ET AL.

ARC Laplace ARC Laplace
(slope =—0.91) (slope =—0.41) (slope =—0.63) (slope = —0.54)
. 10*1.5 .
—2.0
(,g 10 \\ (,E 10720 \
st 10730 o 10723
2 Z —3.0
P> 00 = 10
10*3.5 : : ’ : : : i
100 10 10°  10° 100 10 10°  10° 100 10 10°  10° 100 10 10°  10°
Sample size N Sample size N

Fig.3. Mean square errors and estimated convergence rates for o4 and o5 for the all-row-column (ARC) and
Laplace methods in setting IMB-NUL-HI. The dotted line in the plots for the Laplace method represents the
convergence rate of the all-row-column method.

rates are O(N~88) for 64 and O(N~93) for 6. The all-row-column method does slightly
better than these rates. The Laplace method almost attains the predicted rate for op, but
does much worse for o 4. We can understand both of these discrepancies in terms of biases,
described next.

Figure 4 shows boxplots for the parameter estimates of o4 and op with the all-row-
column and Laplace methods. We can compare the centres of these boxplots to the reference
line at the true parameter values; this shows that the all-row-column estimates have a bias
decreasing at a faster rate than the width of the boxes, which explains the slightly better-
than-predicted rates seen for the all-row-column method. In contrast, the Laplace method
has a substantial bias that only decreases very slowly as N increases, giving the Laplace
method a worse-than-expected rate, especially for o 4.

3.5. Other settings

The simulation results for all eight settings are reported in full in the Supplementary
Material. We have already discussed the computational cost for the eight settings, referring
to Table 2. Here we make some brief accuracy comparisons. We compare the proposed
all-row-column method with the oracle method, which is infeasible because it requires
knowledge of ¢4 and o5, and with the Laplace method, which becomes infeasible for large
N because it does not scale as O(N). In most settings and for most parameters, the oracle
method was slightly more accurate than the all-row-column method, but not always: the all-
row-column method was slightly more accurate than the oracle method for f; in three of
the eight settings, namely BAL-LiN-Hi (Figure S3), BAL-LiN-Lo (Figure S4) and ImB-LiN-Hi1
(Figure S7).

The figures in the Supplementary Material show some cases where the all-row-column
method has a slight advantage over the Laplace method and some cases where it has a slight
disadvantage. There are a small number of situations where the Laplace method has out-
liers at N = 103 that cause the linear regression slope to be questionable. These are present
in the estimates of o4 and op for setting ImB-LiN-Hi1 (Figure S23). However, the attained
mean square errors at N = 10° do not differ much between the all-row-column and Laplace
methods in that setting (Figure S15). Our conclusion is that, compared to the Laplace
method, the all-row-column method is scalable and robust.

In the Supplementary Material we also compare the all-row-column method with the
maximum pairwise likelihood estimator of Bellio & Varin (2005). Their pairwise likeli-
hood involves all the pairs of correlated observations, i.c., those pairs that share the row-
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Fig. 4. Boxplots of o4 and op estimates for the all-row-column (ARC) and Laplace methods in the setting
ImB-NUL-H1. Horizontal reference lines are drawn at the true parameter values.

or the column-random effect. The pairwise likelihood is not computationally attractive.
The number of pairs of data points far exceeds the O(N) constraint. In a setting with R
rows, the average row has N/R elements in it. If all the rows had that many elements, then
the number of pairs would be Q{R(N/R)?} = Q(N?/R). Unequal numbers of observations
per row can only increase this count. As a result, the cost must be Q{max(N?/R, N?/C)} =
Q{max(N2~7, N>7*)}, so it cannot be O(N).

The comparison is made for the IMB-NUL-HI setting that we have been focusing on. For
that imbalanced setting, the cost of the pairwise likelihood is Q(N27093) = Q(N!'47). We
see in § S3 of the Supplementary Material that the empirical cost of the pairwise compos-
ite likelihood grows as N4, close to the predicted rate. The pairwise method attains very
similar parameter estimation accuracy to the all-row-column method. The most important
difference in this example is that the all-row-column method costs O(N), while pairwise
likelihood is far more expensive and does not scale to large datasets.

4. APPLICATION TO STITCH FIX DATA

In this section we illustrate the all-row-column method on a dataset from Stitch Fix. As
described in Ghosh et al. (2022b):

Stitch Fix is an online personal styling service. One of their business models involves
sending customers a sample of clothing items. The customer may keep and purchase
any of those items and return the others. They have provided us with some of their client
ratings data. That data was anonymized, void of personally identifying information,
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Table 3. Predictors available in the Stitch Fix data

Variable Description Levels
Client fit Client fit profile fitted
loose or oversize
straight or tight
Edgy Edgy style? yes/no
Boho Bohemian style? yes/no
Chest Chest size numeric
Size Dress size numeric
Material Primary material of item artificial fibre

leather or animal fibre
regenerated fibre
vegetable fibre

Item fit Fit of clothing item fitted
loose or oversized
straight or tight

and as a sample it does not reflect their total numbers of clients or items at the time
they provided it. It is also from 2015. While it does not describe their current business,
it is a valuable data set for illustrative purposes.

The Stitch Fix data consist of N = 5000000 ratings from R = 744482 clients on C =
3547 items. The data also include client- and item-specific covariates. In the data, the binary
response Yj; of interest was whether customer i thought that item j was a top-rated fit or
not, with Y;; = 1 for an answer of ‘yes’. The predictor variables we used are listed in Table 3.
There is one block of client predictors followed by a block of item predictors. Some of the
categorical variables in the data had only a small number of levels. The table shows how we
aggregated them.

Some of the observations with Z;; = 1 were nonetheless incomplete with a few missing
entries. Deleting them left us with N = 4 965 960 ratings from 741 221 clients on 3523 items.
The data are not dominated by a single row or column. The customer with the most records
accounts for Neg records, where g = 1.25 x 1075, The item with the most records accounts
for Nec records, with €c = 2.77 x 10~2. The data are sparse because N/(RC) = 1.9 x 1073,

In a business setting, one would fit and compare a wide variety of different binary regres-
sion models in order to understand the data. Our purpose here is to study large-scale probit
models including crossed random effects, so we choose just one model for illustration, pos-
sibly the first model of many that one could consider. We consider the probit model with
crossed random effects whose fixed effects are specified according to the symbolic model
formula

Top ~ Client fit + Edgy + Boho + Chest + Size + Material + Item fit,

where Top is the binary response variable for ‘top-rated’ described earlier. The model has
p = 12 parameters for fixed effects, including the intercept. The first level of each categorical
predictor in alphabetical order (Table 3) is used as the reference level in fitting the model.
Table 4 displays (i) the maximum likelihood estimates of the regression parameters under
a naive probit model that ignores the customer and item heterogeneity, and (ii) the all-row-
column estimates for the probit model with two crossed random effects for the customers
and items. The random effects probit parameter estimate ﬁ equals the naive probit estimate
7 multiplied by (1 + & j +0 12;)1/ 2. Using adaptive Gauss—Hermite quadrature we obtained
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Table 4. Stitch Fix binary regression results, all estimated predictor parameters are multi-
plied by 100; the first level of each categorical predictor in alphabetical order is used as the
reference level

Naive probit Random effects probit
Variable Estimate z-value p-value Estimate z-value p-value
Intercept 43.1 31.64 <0.001 50.9 10.52 <0.001
Client fit loose or oversize 8.7 61.04 <0.001 10.3 10.81 <0.001
straight or tight 5.1 34.30 <0.001 6.0 10.67 <0.001
Edgy yes -3.0 —25.08 <0.001 -35 —7.49 <0.001
Boho yes 8.9 76.25 <0.001 10.5 25.81 <0.001
Chest —0.5 —12.30 <0.001 —0.6 —7.32 <0.001
Size 0.2 10.94 <0.001 0.3 2.99 0.003
Material leather or animal —12.9 —12.99 <0.001 —15.2 —-1.57 0.116
regenerated 2.5 20.06 <0.001 3.0 0.65 0.516
vegetable —12.2 —58.39 <0.001 —14.5 —3.13 0.002
Item fit loose or oversized 9.7 36.15 <0.001 11.4 1.78 0.075
straight or tight =21 —9.55 <0.001 =25 —0.67 0.500

estimates 64 = 0.53 and 6 = 0.34. Following what we learned from the simulation studies,
the estimates on all rows and columns were calculated with k = 5 quadrature nodes. An
earlier conservative calculation used k = 28, but k = 5 gave indistinguishable results.

The z-values reported in the table were computed with the observed information for the
naive probit model and with the two-way cluster-robust sandwich estimator described in
§ 2.3. As expected, ignoring the customer and item heterogeneity leads to large underesti-
mation of the uncertainty in the parameter estimates, and hence in the naive probit all the
predictors are strongly significant, given the very large sample size. Conversely, the crossed
random effects model takes into account the sources of heterogeneity and reveals that the
item fit is not a significant predictor of top rank and that items made from vegetable fibres
are less likely to be ranked as top than clothes made with artificial fibres.

In the Supplementary Material, Figure S29 compares the two-way cluster-robust sand-
wich standard errors with (i) the standard errors from the naive probit fit multiplied by
a+ &fl +o B)l/ 2 = 1.18, to report them in the fixed effects scale of the probit model with
crossed random effects, and (ii) the pigeonhole nonparametric bootstrap standard errors
of Owen (2007), which does not assume correct model specification, as mentioned in § 2.3.
Figure S29 shows how closely the sandwich and pigeonhole standard errors agree. The naive
standard errors, which ignore dependence between items and customers, correspond to vari-
ances underestimated by factors ranging from 3 to 954, depending on the parameter and
only slightly on whether we use sandwich or pigeonhole estimates of the coefficient vari-
ances. Thus, ignoring the dependencies from correlated data makes an enormous difference
here. These standard errors are reported in Table S1 of the Supplementary Material. We also
computed parametric bootstrap standard errors (not shown); these were somewhat lower
than the nonparametric standard errors, as expected.

In an application such as the Stitch Fix data analysis, the typical goal is to make infer-
ence about the probability of an item being ranked top for a specific customer and a specific
item. Such evaluations also require estimating the customer (¢;) and item (b;) random effects.
The estimates of those random effects are a byproduct of the adaptive Gauss—Hermite
quadrature used to approximate the row- and column-wise likelihoods. Figure S30 in the
Supplementary Material shows the distribution of the estimated customer and item random
effects.
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5. DISCUSSION

In Theorem 2 we proved that there exists a root of the row (or column) likelihood equation
that is a consistent estimator of ri (or ré). This form of consistency is commonly called
Cramer consistency. It is the same notion of consistency that Jiang (2013) established for
the maximum likelihood estimate. If one does not find Cramer consistency sufficient, then
it is possible to construct estimators fi and 7 12; that converge in probability to 7 /21 and ¢ 123 as
N — o0. A consistent estimator of ri can be obtained from one or more rows i for which
Njs — 00, and a similar approach works for 1123. In §S1.3 of the Supplementary Material
we show how to construct such a consistent estimator, and we give conditions under which
the number of large rows will diverge to infinity as N — oo; see Theorem 3 there. We prefer
our all-row-column estimator to an approach using just large rows, because it would be
awkward to have to decide in practice which rows to use, and also because we believe that
there is valuable information in the other, smaller, rows.

We have used a probit model instead of a logistic one because a Gaussian latent vari-
able is a very natural counterpart to the Gaussian random effects that are the default in
random effects models. This connection simplified our modelling and computation. Gib-
bons & Hedeker (1997) made the following remark: ‘As in the case of fixed effect models,
selection of probit versus logistic response functions appears to have more to do with cus-
tom or practice within a particular discipline than differences in statistical properties.” An
extension to logistic regression is outside the scope of this paper.

We are confident that our approach of combining multiple misspecified models can be
extended to other settings with Gaussian random effects and latent variables. The code we
use already handles ordinal regression. Extensions to more than two effects or multivariate
responses may well work similarly, but are beyond the scope of this article.

We conclude with some additional references about recent work on inference for data with
a crossed design. Goplerud et al. (2025) developed a variational approximation for scalable
Bayesian estimation using an appropriate relaxing of the mean-field assumption to avoid
underestimation of posterior uncertainty in high dimensions.

Xu et al. (2023) combined variational approximations and composite likelihoods that
consider row-column decomposition in a similar way to ours. Their approach is particu-
larly convenient for Poisson and gamma regression models, because in these cases analytical
calculations allow the approximation of one-dimensional integrals that appear in the com-
posite likelihood to be avoided. In the binary case considered in the present article, the
approach of Xu et al. (2023) requires numerical integration and its consistency has not yet
been established.

Hall et al. (2020) considered message-passing algorithms for generalized linear mixed
models, and their § 6 includes a crossed effects binary regression. However, it has R = 10
and C = 6 in our notation, with three replicates at each (i, ) pair, and it does not address
scalability. Ruli et al. (2016) proposed an improved version of the Laplace approximation
to overcome the potential failure of the usual Laplace approximation and also illustrated it
in the case of generalized linear models with crossed random effects in their § 3.5. However,
their proposal is not scalable, as illustrated by the numerical results in Ruli et al. (2016).

Bartolucci et al. (2017) considered another composite likelihood that combines a row
likelihood with a column likelihood to estimate a hidden Markov model for two-way data
arrays. This approach shares the philosophy of our method, but differs from ours in terms of
the model (latent discrete Markov variables versus crossed random effects), fitting procedure
(EM algorithm versus direct maximization), data structure (balanced versus unbalanced and
sparse) and motivating application (genomics versus e-commerce).
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SUPPLEMENTARY MATERIAL

The Supplementary Material contains proofs of the theorems in § 2, additional simulation
results discussed in § 3, further references to the literature, and a table and two plots about
the Stitch Fix application mentioned in § 4. R code for replicating our results is available
from the public repository https://github.com/rugbel/arcProbit.
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