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ABSTRACT Channel extrapolation in the frequency domain is an important tool for reducing overhead
and latency in frequency division duplex (FDD) wireless communications systems. Over the past years,
various machine learning (ML) techniques have been proposed for this goal, but their effectiveness is
usually evaluated only for a limited number of examples. This paper presents an extensive investigation of
the impact of various parameters, both of the system and of the underlying channels, on the performance
of three types of ML algorithms, namely K-nearest neighbor (KNN), convolutional multilayer perceptron
(CNN/MLP), and autoencoder structures (AE). We analyze the impact of channel coherence bandwidth
and coherence distance, and the number of multipath components, as well as system bandwidth, number
of subcarriers, duplex distance, and signal-to-noise ratio (SNR) in uplink and downlink. We also consider
both complex and magnitude normalized mean-square error (NMSE) as training and evaluation metrics.
Physical interpretations of the obtained results are given. Most importantly, we find that the NMSE can vary
by 10 dB or more over physically reasonable ranges of parameters but often shows saturation behavior over
part of those ranges. We also find that, in particular, KNN results can be quantitatively and qualitatively
different from CNN/MLP and AE. These investigations thus provide insights into meaningful parameter
choices for the performance evaluation of new ML algorithms for frequency-domain channel extrapolation.

INDEX TERMS Channel Extrapolation, Coherence Bandwidth, Frequency Domain Duplexing, Machine
Learning

I. INTRODUCTION

A. Background and Motivation

T
RANSMISSION schemes have become considerably
more adaptive as wireless communications systems

have evolved to fifth-generation (5G). While, for example,
the second-generation (2G) standards used fixed modulation
order and scheduling, fourth-generation (4G) and 5G use
orthogonal frequency-division multiplexing (OFDM) with
adaptive modulation and coding, adaptive scheduling, and
more [1, Chap. 30-32]. This trend is expected to continue and
become even more pronounced in sixth-generation (6G) [2].

Such adaptivity requires knowledge, at the base station (BS),
of the channel state information (CSI) for both uplink (UL)
and downlink (DL), the latter of which constitutes CSI at
the transmitter (CSIT).1

The most straightforward way for acquiring CSIT occurs
when the DL CSI can be directly obtained from the pilot

1Generally, the problem can be formulated as knowledge of CSIT, which
for the DL means CSI at the BS, while for the UL it means CSI at the user
equipment (UE). However, in 4G and 5G, all decisions - both for UL and
DL - are made by the BS. We thus henceforth exclusively consider the case
of CSIT at the BS.
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signals in the UL, i.e., the UL and DL channels are identical
(or, at a minimum, highly correlated). The conditions for this
to be fulfilled are, in the time division duplex (TDD) case,
that UL and DL have to occur within less than a coherence
time of the channel, while for a frequency division duplex
(FDD) system, they must be spaced less than a coherence
bandwidth apart. While the former condition is generally
fulfilled for current systems, the latter assumption is never
fulfilled in practice: typical frequency duplex distances are
tens or hundreds of MHz, while coherence distances are in
the low MHz or even KHz range [1, Chap. 16]. While the
pros and cons of FDD or TDD for CSIT acquisition have
been the subject of numerous papers, e.g., [3], the debate is to
a certain extent moot: government regulators have assigned
particular frequency bands for use with FDD (paired bands),
and this assignment cannot be changed in the foreseeable
future.2

When no direct inference is possible, CSIT must be
acquired via feedback, i.e., the DL CSI is measured at the
user equipment (UE), e.g., based on pilot signals embedded
in the DL signal, and this information is fed back (possibly
in a quantized and/or compressed form) to the BS. While
this method is simple and easy to implement, it leads to
significant overhead (when little compression is used) and/or
significant performance loss when high compression is used,
such as with the codebook-based approach of 3GPP [4].
The situation is worse in fast-varying channels, which not
only leads to the need to spend a larger percentage of
available capacity on feedback but also increases the impact
of feedback latency, i.e., the CSIT is outdated.

Thus, schemes that would allow us to accurately infer,
in an FDD system, the DL CSI directly from the UL
pilot signals are of great interest. Such a problem, which
is sketched in Fig. 1, is called the CSI extrapolation in
the frequency domain (for simplicity of notation, we will
simply refer to it as CSI extrapolation henceforth). Due to
its practical importance, much research has been performed
on this topic. Various methods ranging from least-square es-
timates to extrapolations based on high-resolution parameter
estimation have been proposed [5], [6], [7], [8]. For example,
one of these proposed approaches (see, e.g., [8]) has the
advantage of direct connection to the propagation physics,
relies on the extraction of the parameters of the multipath
components from the UL measurements and synthesizing
their interaction at the DL frequency. However, in real-
ity, nonspecular components, generally modeled as diffuse
multipath components (DMC), also play a role [9]. Other

2Recently, the FCC has introduced the 3.5 GHz band to promote more
efficient and flexible spectrum usage, especially for TDD-based wireless
communications. However, this does not change the fact that a significant
portion of the most valuable spectrum, particularly in sub-3 GHz bands,
remains assigned to paired frequency allocations and will continue to be,
due to the favorable propagation characteristics and established FDD infras-
tructure in these bands. Thus, determining CSIT for FDD is a practically
relevant topic and will remain important for the foreseeable future.

studies, e.g., [10], [11], [12], focus on second-order statistics,
such as the transformation of the DL covariance matrix
from the observed UL covariance matrix by interpolation,
which, while valuable, does not provide the full benefits that
instantaneous CSIT provides. In this paper, however, we will
solely focus on machine learning (ML) based techniques,
whose popularity has skyrocketed over the past years.

FIGURE 1: Frequency extrapolation framework.

B. Previous Work on ML Extrapolation

While the above-mentioned approaches do reduce the CSI
extrapolation overhead, they all have limitations, both from
a theoretical perspective (e.g., the validity of the amplitude of
MPCs being the same in UL and DL) and from a practical
perspective (e.g., the need for precision array calibration).
Furthermore, some of these algorithms become unrealisti-
cally complex when the number of multipath components
(MPCs) becomes large or when the amount of CSIT in-
creases, such as in massive MIMO, or when the UE is mov-
ing fast, so that the frequent computations become necessary,
such as estimation of the DL covariance matrix from the UL
covariance matrix within the coherence time of the channel.
Due to the success of ML in different challenging applica-
tions, the wireless communication community has seen a new
perspective on several classical wireless problems. There-
fore, much research has exploited ML to perform frequency
extrapolation. Studies such as [13] have proposed ML to
define a mapping that allows direct extrapolation to infer
CSI information from one set of massive MIMO radiation
patterns to another set of patterns, or [14] has shown how
ML can determine the relationship between the UL CSI
to the DL CSI in FDD systems, and [15] has suggested
ML extrapolate CSI information from the sub-6 GHz to
the millimeter wave band. All of which reduce the CSI
extrapolation overhead. Some studies employ convolutional
neural networks (CNN) [15], [16] or multi-layer perceptron
networks (MLP) [13], [14], [17] to perform this mapping.
More recent studies have taken advantage of improvements
in ML tools to further improve the neural network used
for CSI extrapolation. For example, [18] proposes a 3D
complex-valued convolutional neural network, [13] proposes
a complex MLP, and [19] suggests a complex domain CNN
architecture named SCNet to improve the complex-valued
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CSI extrapolation. As a natural extension, combinations of
CNN and MLP neural networks, convolutional multilayer
perceptron (CNN/MLP) [20], [21], along with combinations
of CNN and a long short-term memory network (LSTM-net)
network have been suggested to perform CSI extrapolation
directly [22].

As ML network architectures evolve in other fields, the
wireless communication community has also explored these
ML architectures’ CSI extrapolation capabilities. Autoen-
coder (AE) and variational autoencoders (VAE) have been
shown capable of performing the regression prediction tasks
necessary for CSI extrapolation [23]–[25]. Recurrent neural
networks (RNN) have been introduced [26], along with
Bayesian neural networks (BNNs) [27] as a method to
mitigate uncertainty in rapidly changing CSI during the
CSI extrapolation. Modifications of generative adversarial
networks (GANs) have also been explored, [28] proposes
a deep generative model (DGM), and [29] developed a con-
ditional generative adversarial network (CGAN) to perform
CSI extrapolation.

While all of these studies exhibit great promise in lowering
the overhead of CSI extrapolation, very few address the
actual impact of varying wireless propagation environments
or varying system parameters. For example, Doshi et al.
[30] discusses the impact of pilot tone signal-to-noise ratios
(SNR) while training their ML network; many others assume
noiseless pilot tones. Furthermore, our search of recent
articles on CSI extrapolation or CSI estimation found that
few studies discuss the propagation environment, and only
very few studies [19], [30] explicitly determine their results
as a function of the propagation environment’s parameters.
Finally, several studies specified how and with what density
they obtained training data (e.g., [20]), but none provided
guidelines on their effect on extrapolation performance.

C. Contributions of this Paper

From the above survey, we see that a wide range of ML
techniques has been brought to bear on the problem of CSI
extrapolation in FDD systems. However, the performance
evaluations are generally done with specific settings for
the wireless systems and the propagation channels, which
makes the generalizability of both the absolute performance
numbers and, even potentially, the relative merits of different
ML schemes difficult to assess. The main point of this paper
is to analyze the impact of different system and channel
parameters on the performance of generic ML systems. We

emphasize that we do not provide new ML algorithms or ar-

chitectures but rather focus on insights into the interactions

of the channel and system parameters with ML algorithms.

The results of this paper are thus intended to serve as
guidelines for meaningful channel/system simulation settings
in the performance evaluation of future (or existing) ML
algorithms for frequency extrapolation.

Specifically, we provide the error performance of the
frequency extrapolation of DL CSI for the following:

• various ML algorithms: we compare performance with
generic K-nearest neighbor (KNN), CNN/MLP, and AE
algorithms;

• different error measures: we consider the normalized
mean square error for both complex CSI and its mag-
nitude for both training and evaluation;

• different system parameters: we analyze (i) duplex
distance, (ii) bandwidth, (iii) number of subcarriers and
subcarrier density, (iv) UL and DL error metrics;

• different channel parameters; we consider different co-
herence bandwidth (Bcoh) and coherence length (Lcoh),
as well as different numbers of MPCs in the system.

Note that all the analysis is for single-input single-output
(SISO) systems; we refrain from the use of MIMO to avoid
an excessive number of system and channel parameters.

D. Structure of the Paper

The remainder of the paper is organized as follows: in
Section II, we discuss ML evaluation metrics and the three
ML configurations. Section III describes our dataset gen-
eration, followed by a discussion of synthesizing wireless
environments. Section IV is the core of this paper, elucidat-
ing how the characteristics of the wireless channel impact
the ML based frequency extrapolation. Section V provides
concluding remarks.

II. ML MODELS

A. Evaluation Metric

All of our three ML methods rely on supervised training,
which in turn use the UL and DL CSI, more precisely,
the channel’s complex transfer functions

{
H

UL,HDL
}

. The
Normalized Mean Square Error (NMSE) metric is a common
performance metric used to define the error of the ML’s
ability to estimate the DL CSI. The NMSE metric with our
complex UL and DL transfer functions is defined as,

NMSE =

Eωk,εl

∣∣∣HDL
ωk,εl

→H
D̂L
ωk,εl

∣∣∣
2

Eωk,εl

∣∣HDL
ωk,εl

∣∣2
(1)

where: E is the expectation operator over both spatial lo-
cation (ωk) and sub-carrier frequency (εl). The H

DL
ωk,εl

and
H

D̂L
ωk,εl

are the actual and estimated complex values of the
DL channel’s transfer function respectively.

When considering the error of the magnitude of the
transfer function, the NMSE is defined as

NMSE =

Eωk,εl

∣∣∣|HDL
ωk,εl

|→ |H
D̂L
ωk,εl

|

∣∣∣
2

Eωk,εl

∣∣HDL
ωk,εl

∣∣2
(2)

The choice of the type of error function or distance metric
shown in the numerator of (1) and (2) is an important
parameter in all three ML methods. In the KNN algorithm,
it is important not only in determining NMSE performance
but also in determining the desired type of DL CSI, i.e.,
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how we define the ”nearest neighbor”. Specifically, we might
consider the full (complex) transfer function H

UL or its
(real) magnitude value. Table I is a summary of these
metrics, along with their mathematical expressions and their
names used in this paper.

Which of those quantities is more related to the system
performance? The choice depends on the wireless application
for which the estimated downlink H

DL is used. For example,
if it is for scheduling or power control, the magnitude
of the DL signal may be all that is required. However,
if it is for beam forming, the real and imaginary values
of the DL estimate are required. In contrast, the AE and
CNN/MLP networks treat the real and imaginary transfer
function component

{
H

UL,HDL
}

as separate data points
and are thereby treated independently during the supervised
training.

Error Distance Metric NMSE Expression

Complex
∣∣∣HDL

ωk,εl →H
D̂L

ωk,εl

∣∣∣
2 Eωk,εl

∣∣∣HDL

ωk,εl →H
D̂L

ωk,εl

∣∣∣
2

Eωk,εl

∣∣HDL

ωk,εl

∣∣2

Magnitude
∣∣∣|HDL

ωk,εl|→ |H
D̂L

ωk,εl|

∣∣∣
2 Eωk,εl

∣∣∣|HDL

ωk,εl|→ |H
D̂L

ωk,εl|

∣∣∣
2

Eωk,εl

∣∣HDL

ωk,εl

∣∣2

TABLE I: Error metrics, distance metrics, and NMSE ex-
pressions.

Notation: Eωk,εl denotes the expectation over spatial lo-
cation ωk and sub-carrier frequency εl. The terms H

DL
ωk,εl

and H
D̂L
ωk,εl

denote the true and estimated complex-valued
downlink channel transfer functions, respectively.

B. Considered Machine Learning Algorithms

This subsection describes the three ML architectures we use
in our evaluation. Overall, our goal is to choose typical,
widely used ML network structures that allow us to analyze
the impact of different systems and channel parameters
on the performance of such systems, rather than structures
optimized for particular applications.

With this in mind, we chose the KNN algorithm because
it can be viewed as similar to a lookup table, relying on
the similarities between data points. This simplicity makes
KNN an excellent benchmark for understanding how well a
model learns patterns and whether it is learning beyond mere
memorization, offering insights into the impact of system and
environmental parameters on performance.

Autoencoders (AE) and Variational autoencoders (VAE)
have been shown to be capable of performing regres-
sion/prediction tasks [23]–[25]. Based on our survey of
previous works, we chose a basic AE architecture that allows

us to easily implement supervised learning from the KNN
ML method.

The architecture of our CNN/MLP neural network orig-
inates, in part, from our recognition that frequency ex-
trapolation would benefit from the regression capabilities
of an MLP neural network. Also, motivated by the CNN-
based network’s success in image pattern recognition and the
well-known fact that CNN captures local correlation better
than MLP, we configure a neural network that consists of
both a convolutional section and a multilayer perceptron
section (CNN/MLP). Furthermore, a similar CNN/MLP was
introduced in [16], [20]. Again, We stress that they are not
intended to be innovative, but rather generic structures that
show the fundamental behavior of these algorithms.

1) KNN Machine Learning Algorithm
Our KNN method is a supervised learning algorithm trained
using the UL transfer function values distance to its K UL
neighbors as a criterion to estimate the DL CSI (in our case,
we choose K = 1, see Sec. IVA for rational). Our KNN
ML methodology is shown as an algorithm flow diagram
in Algorithm 1. Algorithm 1 comprises two “for loops”.
An outer loop (lines 2-10) that cycles through each H

UL

transfer function at their specified test locations. An inner
loop (lines 3-7) that calculates the distance between each test
H

UL transfer function and the H
UL transfer function for all

training locations. The distance metrics shown in lines 4 and
5, along with the MSE metrics shown in lines 8 and 9 of
Algorithm 1, are defined in Table I and are chosen according
to the desired type of wireless application as discussed in
Sec. IIA.

2) AE Neural Network
The overall AE configuration used for the regression task
of estimating the DL CSI from the UL CSI is shown in
Fig. 2(a). As shown, the AE neural network consists of
an encoder and decoder with a latent or bottleneck layer
interconnecting them. The encoder and decoder are identical,
fully connected MLP neural networks with ReLU activation
functions, while the latent layer is a linear layer with 64

neurons. The parameters of the AE are shown in the Table
II.

3) CNN/MLP Neural Network
The configuration of a neural network that consists of both
a convolutional section and perception layers CNN/MLP, as
shown in Fig. 2(b). The input to the CNN portion of the
CNN/MLP network are the real and imaginary components
from the transfer functions,

{
H

UL,HDL
}

and represent two
input channels of the CNN/MLP. The remaining details of
the neural network are as follows. The CNN network consists
of two 1D convolutional layers with associated pooling and
dropout layers. Each of the 1D CNN layers has a kernel size
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of 2 and a tanh activation function. A flattened layer provides
the interface between the CNN and MLP portions of the
CNN/MLP. The subsequent MLP layers are three identical,
fully connected perceptron layers, each with 128 neurons and
a ReLU activation function. The CNN/MLP network details
are shown in Table III and closely follow those described
in [20].

Layer Params Output Dim Generic Dim

Input 0 2 (Re/Im) 2F

Dense 131,584 512 4F

Dense 32,832 64 F
2

Dense 33,280 512 4F

Dense 131,328 2 (Re/Im) 2F

TABLE II: Autoencoder architecture with trainable parame-
ters, output, and generic dimensions.

Layer Params Output Dim Generic Dim

Input 0 128→2 (Re/Im) F→2

Conv1D 160 127→32 (F↑1)→32

AvgPool 0 63→32
(

F→3
2 + 1

)
→32

Conv1D 1,040 62→16 F→3
2 →16

AvgPool 0 31→16
[
0.5

(
F→3

2 ↑ 2
)
+ 1

]
→ 16

Flatten 0 496
(

F→5
4 + 1

)
·16

Dense 63,616 128 F

Dense 16,512 128 F

Dense 16,512 128 F

Dense 33,024 128→2 (Re/Im) F→2

TABLE III: CNN/MLP architecture with trainable parame-
ters, output, and generic dimensions.

C. Computational Complexity

We use the number of floating-point operations (FLOPS)
as a measure of the computational complexity of the three
models. Table IV presents the FLOPS for these models. We
use the open-source PyTorch library to calculate the FLOPS
for the two neural networks (NN). For KNN, we manually
compute the number of operations required to determine the
NMSE per training point.

We can use generic dimensions for the three models to
further generalize these numbers. Let F represent the number
of subcarriers at the input of the NN model, and let the
number of spatial locations of 21, 843 be designated D
(dataset size). Then, one can calculate the FLOPS for AE
for the model in Table II to be (roughly) 40F 2, which is
O(F 2

).
For the CNN/MLP shown in Table III, the complexity

(roughly) equal to 16F 2
+ 1264F 2

→ 4356, i.e., O(F 2
).

For KNN, it is 6FD, where 2F subtraction, 2F multipli-
cation (to calculate the square), and 2F addition are needed;
this has to be repeated D times. The KNN complexity then
can be written as O(FD). For small D, the KNN has lower
complexity, but high spatial data point density might be

necessary to achieve good accuracy, causing KNN to scale
poorly as D increases. While both AE and CNN/MLP are
O(F 2

), the proportionality constant for CNN/MLP scales is
smaller.

We determine the training/inference time per spatial point
for the three ML algorithms by timing the necessary train-
ing/inference calculations on a MSI Creator Z16 laptop with
NVIDIA RTX 3060 GPU on our typical dataset size of
21, 843 for our nominal number of epochs of 750 and show
them in Table V.

Model Number of Parameters FLOPs General Complexity

AE 329k 655.4k O(F 2)

CNN 130.9k 427.7k O(F 2)

KNN 0 16,769k O(FD)

TABLE IV: Model complexity in terms of parameter count,
floating-point operations (FLOPs), and theoretical runtime.

Time (s) KNN AE MLP

Training N/A 165.092 976.514

Inference N/A 0.101 → 10→3 0.117 → 10→3

Total 5.6 165.093 976.515

TABLE V: Training and inference time for the three ML
methods.

To further evaluate the three ML methods’ performance,
we add the NMSE performance to the computational com-
plexity metrics of each ML method. Fig. 3(a) and Fig. 3(b)
show the NMSE performance versus training and inference
time, respectively, for our three ML methods. The NMSE
shown in the figures is the mean NMSE across all the
simulated values of Bcoh and Lcoh of each ML method.
These plots show the trade-offs between NMSE, training
requirements, and prediction speed, providing insight into
implementing each ML method. Note that because the KNN
method is non-supervised, the training and inference times
are equal.

III. DATA-SET GENERATION

Our dataset comprises the wireless channel UL and DL trans-
fer functions. These functions are complex-valued matrices
H

UL and H
DL calculated over a specified spatial area at a

specified sample density. We also synthesize these functions
for a specified number of UL and DL subcarriers within a
specific RF bandwidth of the wireless channel. The math-
ematical basis for these synthesized functions is the 3GPP
model described by [31].3 Because this model is statistical,
it allows for defining multiple statistical instantiations within
a specified wireless environment.

The model of [31] allows one to choose either a macrocell
or microcell wireless environment. We choose the former,

33GPP has developed multiple channel models over the years. We
consciously selected this early (and thus simple) model, as its lower number
of channel parameters allows us to more easily isolate specific physical
effects.
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(a) Autoencoder Neural Network

(b) Convolutional/Multilayer Perception Neural Network

FIGURE 2: Autoencoder and Convolutional/Multilayer Perception Neural Network configurations
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(a) NMSE vs Training Time
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FIGURE 3: Comparison of NMSE against training and
inference time for three ML methods.

which creates a set of six multipath clusters with paths
(Npath) of distinct angles of arrival (ϑn,AoA), delays (ϖn),
and path powers (Pn) within an overall power delay profile
(PDP ). Each of these paths is then decomposed into 20 sub-
paths (Nsub), characterized by defined angular offsets with
respect to the cluster centers. While we use this framework,

Algorithm 1: The KNN Method Algorithm
Input : Uplink/Downlink channel transfer function:{

H
UL
ωk,εl

,HDL
ωk,εl

}
,

ωk = Spatial Index ; εl = Subcarrier Index

Output: NMSEεl

1 Initialization: N(number of points) = Ntest +Ntrain

Nsc = number of subcarriers

2 for ωk ↑ Ntest do

3 for ϑj ↓= ωk ↑ Ntrain do

4 ϖj =
Nsc∑

εl=1

∣∣∣|HUL
ωk,εl

|→ |HUL
ϑj ,εl

|
∣∣∣
2

Magnitude

5 ϖj =
Nsc∑

εl=1

∣∣∣HUL
ωk,εl

→H
UL
ϑj ,εl

∣∣∣
2

Complex

6 ϑj = ϑj + ϑj+1

7 ϑ̂j = argmin(ϖj)

8 MSE
DL
ωk,εl

=

∣∣∣∣|H
DL
ωk,εl

|→ |HDL
ϑ̂j ,εl

|
∣∣∣∣
2

Magnitude

9 MSE
DL
ωk,εl

=

∣∣∣∣H
DL
ωk,εl

→H
DL
ϑ̂j ,εl

∣∣∣∣
2

Complex

10 ωk = ωk+1

11 return NMSEεl =
Eωk [MSE

DL
ωk,εl

]

Eωk

∣∣∣HDL
ωk,εl

∣∣∣
2

we impose the following particular coherence bandwidths
and coherence distances that are consistent with the model
but are not specifically defined target values of the model as
described in [31].

A. Creating Specific Wireless Environments

We first specify a desired Bcoh ↑ [0.162 MHz, 16.2 MHz]
and Lcoh ↑ [0.5 ϱ, 5.0 ϱ]. We then search for an associated
set of statistical macrocell environmental parameters consis-
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Algorithm 2: Environmental Parameters Algorithm
Input : Desired: Bcoh and Lcoh; Iteration: Iter = 2, 000;

Spatial Area = 5 m trajectory at 16 samples/ϱ

Output: Channel Parameters:{PDP,AoA, ς}

1 Initialization: φDS (5); φAS (6)

2 for i ↑ Iter do

3 Calculate the delay ς path elements, ςn, (7)
4 Calculate the PDP path elements Pn , (8)
5 Calculate the AoA path angles ↼n,AoA, (9)
6 Generate the complex-valued H

UL(x, y, z) at each spatial area
point for all subcarriers in the RF UL bandwidth (10)

7 Derive the frequency autocorrelation function Rε(ς)

8 Derive the spatial autocorrelation function Rω(ς)

9 Determine the Bcoh,i and Lcoh,i from Rε(ς) and Rω(ς)

10 if |Bcoh →Bcoh,i| ↑ .1Bcoh ↔ |Lcoh →Lcoh,i| ↑ .1Lcoh then

11 Return: Channel Parameters
{
Pn, ↼n,AoA, ςn

}

12 i = i+ 1

tent with the model structure of [31] (Algorithm 2: lines
1-12): path ϑn,AoA, path Pn, and path ϖn which results in
a channel that is within a specific accuracy (typically 90%)
with our desired coherence bandwidth (Bcoh) and desired
coherence distance (Lcoh). The H

UL transfer function is
then calculated as described in [31].

We verify our synthesized H
UL transfer function solution

by computing the frequency autocorrelation function (Rε(ϖ))
and spatial autocorrelation function (Rω(ϖ)) and ensuring
that Rε(ϖ) and Rω(ϖ) are equal to 0.5 at the desired Bcoh

and Lcoh (Algorithm 2: lines 7-9).
The details of the synthesis of H

UL transfer function are
outlined in the Algorithm 2 and the equations shown and
referenced in Algorithm 2 are defined in Appendix A.

IV. SYSTEM STUDY AND RESULTS

This section describes the results of our simulations concern-
ing the impact of the various system and channel parameters.
To present results systematically, we will vary one parameter
at a time and fix the other parameters to the default values
given in Table VI, unless stated otherwise.

Each data point shown in Fig. 4 through Fig. 12 in this
work is generated by taking the mean across fifteen environ-
mental instantiations as described in Sec. III, and an NMSE
error bar is generated at each data point, showing plus/minus
one standard deviation (with respect to the ensemble of the
fifteen instantiations). In addition, the NMSE value of each
environmental instantiation is the mean across ten training
simulations of the two neural networks, AE and CNN/MLP;
this averages out the stochastic variations of these networks.

A. Impact of the Distance Metric

As we described in Sec. IIA, and shown in Table I, one may
define the distance or error metric by assuming the transfer
function at each subcarrier is represented as a complex value

TABLE VI: Nominal channel and system parameters

Channel Parameters Value

UL carrier frequency 1.25 GHz
DL carrier frequency 1.275 GHz

RF Bandwidth 20 MHz
Spatial area 5 m by 1 m

Coherence bandwidth 0.162 MHz
Coherence distance 3.0 ϱ

Transmit/Receive antennas Omni-directional
Number of paths (clusters) 6

Number of sub-paths 20

Number of subcarriers 128

UL SNR 50 dB
DL SNR 50 dB

or simply as a (real) magnitude value, depending on the
application. While, in principle, any combination of distance
metric and error metric is possible, it is generally desirable
to be consistent in the choice of complex vs real magnitude
between the distance metric used during the training and
the error measure characterizing performance (note, however,
that the distance metric during training is the MSE, while the
performance evaluation is done in terms of the NMSE). Fig.
4 demonstrates the effect of the two distance/performance
metric combinations for our three ML networks. Each sub-
plot within Fig. 4 shows how both complex and magnitude
NMSE varies, as the Lcoh increases from 0.5 ϱ to 5.0 ϱ at a
constant Bcoh of 0.162 MHz for each of our ML networks.

The KNN network is the most sensitive to the choice
of distance metric. This can be explained as follows: the
algorithm does not actually know the location of the UE; it
assesses the nearest neighbor purely based on the CSI. Still,
generally speaking, frequency extrapolation works best if the
“nearest neighbor” is at a close-by physical location to the
true physical location. The KNN algorithm then determines
the NMSE between the nearest neighbor DL and the ground
truth DL. In the case of the magnitude distance metric (2),
the NMSE is determined solely by the magnitude distance.
However, in the case of the complex distance metric (1),
the NMSE is determined by both the magnitude and phase
distance between the two DL signals. Because the “nearest
neighbor” generally is the closest physical location, the phase
difference of the two DL signals is determined by the min-
imum distance between the two. Thus, the phase difference
creates an additional error when the complex distance metric
is used as compared to the magnitude distance metric. An
additional consequence of the phase error created when the
nearest neighbor increases in physical distance is the choice
of how many neighbors (K) to consider. Due to the fact that
the phase error increases and thus the NMSE as the physical
distance increases between the two UL signals, we have
chosen to keep K=1 when comparing the KNN performance
to that of the CNN/MLP and AE neural networks.
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We also see that the NMSE decreases as a function of the
coherence length. This will be discussed in more detail in
subsection C

In contrast, the AE and CNN/MLP networks treat the real
and imaginary transfer function component

{
H

UL,HDL
}

as separate data points, as shown in Fig. 2. This allows
these networks to train separately on the real and imaginary
components, yielding a nearly constant 3 dB degradation
in performance when using the complex error metric for
performance evaluation

However, when comparing all three networks’ NMSE per-
formance trends, the magnitude distance and associated error
metric demonstrate consistency across the three networks.
Consequently, in the remainder of this paper, we use the
H

UL magnitude value when calculating the KNN nearest
neighbor distance metric and the HDL magnitude value when
calculating the MSE error for all NMSE calculations.

B. Training Environment: Dataset Spatial Area and

Density

We next examine the effect of dataset sample density and
dataset spatial area by simulating NMSE performance. The
sample density is varied from 2 samples/ϱ to 16 samples/ϱ
while for each of those sample densities, the spatial area is
varied by changing the width of a rectangle of 5 m in length
from 0 m to 3 m. Fig. 5 shows how the NMSE changes
under these conditions for all three of our ML networks.

All three of our ML networks have the same qualitative
behavior, i.e., performance improves in more or less equal
steps as the sample density goes from 2 to 4, 8, and 16

samples per wavelength. This behavior can be expected
intuitively for the KNN since the closer the nearest neighbor
location is to that of the ground truth, the better the ex-
trapolation will work. It is somewhat surprising for the AE
and the CNN/MLP network since the coarsest sampling is
the Nyquist rate.4 Thus, from a classical signal processing
point of view, no additional information is conveyed by
the denser sampling rate. Given that neural networks can
approximate any function, including interpolation functions,
it is surprising that performance continues to improve with
higher sample density. Of course, from a practical point of
view, obtaining training data with such an extremely high
sampling rate can be difficult or even prohibitive.

We next consider the impact of the rectangle’s width in
which training is performed (remember that the length is
kept constant at 5 m). For the KNN algorithm, the width
does not have a significant impact, which is expected based
on the operating principle of the KNN algorithm: as the
KNN algorithm is only concerned about the distance to its
nearest neighbor at any specific spatial location, increasing
the number of spatial locations does not improve the NMSE.
For the AE and CNN/MLP algorithms, we firstly note that

4actually, the Nyquist rate for the case that the MPCs are coming from
all directions; with the limited angular spread corresponding to Lcoh = 3ϱ,
even 2 samples per wavelength is higher than Nyquist.

at the small dimension of the rectangle, the performance of
AE and CNN/MLP is slightly worse than KNN, especially
for low sampling density: for example, -15 dB (vs -20
dB for KNN) at 2 samples per wavelength, while for 16

samples per wavelength, performance is similar. Increasing
the rectangle’s width first does not change the NMSE, then
leads to an improvement of around 0.125 m, and then
saturates at around 0.5 m. This can be interpreted by the fact
that increasing the rectangular width increases the number
of available training samples, but only to a limited amount.

As a consequence of this simulation, we choose to perform
all of our remaining simulations with a sample rate of
16 samples/ϱ and a rectangular spatial area of 5 m by 1

m.

C. Channel Parameters: Coherence Distance and

Coherence Bandwidth

We examine next how the NMSE performance for all three
ML methods is affected by the environment’s Lcoh and Bcoh.
In this investigation, we increase the Lcoh from 0.5 ϱ to 5 ϱ,
while Bcoh takes on 3 possible values, 0.162 MHz, 1.62
MHz, and 16.2 MHz.

These NMSE values for the three ML methods are plotted
in Fig. 6. For all three ML methods, the NMSE performance
improves as Lcoh increases. The variations of the NMSE as
a function of Lcoh are greater for the KNN method than for
AE and CNN/MLP networks; actually, the NMSE is larger
(→15 vs →20 dB) for Lcoh = 0.5 ϱ and smaller (→45 vs
→38 dB) for Lcoh = 5 ϱ. The reason for the higher NMSE
at low Lcoh is that the MPCs create distinct transfer functions
in close proximity. At larger Lcoh, due to the slower spatial
variations of the transfer function, it is more likely (assuming
constant sampling density) to find a training point that is
“very close” (in terms of H

UL) to the test point. For the
AE and CNN/MLP networks, the increased Lcoh facilitates
the training and makes the results less sensitive to small
variations so that there is still some improvement.

When varying the Bcoh, Fig. 6 shows the NMSE per-
formance to be similar for Bcoh = 0.162 MHz and 1.62
MHz, but exhibiting a drastic performance loss at 16.2
MHz, i.e., when approaching the RF bandwidth of 20 MHz
for all three ML methods. As the Bcoh increases to a
value close to the RF bandwidth, the 128 subcarriers within
that bandwidth become highly correlated. This effectively
decreases the number of features (subcarriers) the three ML
methods have available to improve their learning, which
leads to higher NMSE. This is especially problematic for the
KNN method due to its parameterless nature. In essence, the
KNN can identify the UL channel only by a single number,
the magnitude of the transfer function (which, due to the
correlation, is essentially the same for all subcarriers); it
is thus sometimes possible to find the “nearest neighbor”,
i.e., a training point with a similar UL magnitude, at a
completely different location in the training area; of course,
the associated DL channel then also takes on a completely
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(a) KNN NMSE (b) AE NMSE (c) CNN/MLP NMSE

FIGURE 4: NMSE performance comparing the complex distance metric with a magnitude distance metric

(a) KNN NMSE (b) AE NMSE (c) CNN/MLP NMSE

FIGURE 5: NMSE performance as the training sample density (samples/ϱ) increases as a function of spatial rectangle size

different value. To confirm this hypothesis, we extracted the
cumulative distribution function of the distance error for
different coherence bandwidths; as shown in Fig. 7, there
is indeed a relatively high probability of very large distance
errors.

A very large Bcoh also causes the standard deviation
across the 15 environmental instantiations to increase sig-
nificantly for all ML methods.

D. System Parameters: UL and DL Frequency Separation

Our first system parameter investigation consists of deter-
mining the NMSE while increasing the separation of the UL
and DL center frequencies from our standard of 25 MHz up
to 610 MHz.

It is worth remembering that for deterministic frequency
extrapolation based on high-resolution parameter estimation,
the NMSE increases as a function of this separation, satu-
rating at very high values (around 0 dB) [8], [32]. This is
because such a method extracts the parameters of the MPCs
from the UL channel, computes the additional phase shift
when approaching the DL frequency, and synthesizes the
DL channel. Any error in the delay estimation in the UL
creates a phase error of the MPC in the DL that scales
with the frequency offset. As shown in Fig. 8, AE and
CNN/MLP neural networks’ frequency extrapolation perfor-

mances behave very similarly to the deterministic frequency
extrapolation. The NMSE increases as a function of this
separation, saturating at high values (around →4 dB). This
is due to the increasing difficulty of the neural network in
extrapolating the DL parameters from the UL parameters as
their frequency separation increases.

In contrast, we find that the KNN method shows an NMSE
performance that is nearly identical and remains constant
over the specified UL and DL separation when Bcoh is much
less than the RF bandwidth of 20 MHz. This behavior is
intuitive since it simply performs a mapping between UL
and DL channels based on a table of results at the training
points and thus does not care about how the mapping is
created, including the frequency separation.

The behavior of all the ML algorithms changes as the
Bcoh increases in value towards the RF bandwidth of 20

MHz. At Bcoh = 16.2 MHz, the NMSE performance as a
function of frequency separation remains similar in shape
to that of the lower Bcoh of 0.162 MHz and 1.62 MHz.
However, the overall NMSE performance has degraded,
and the standard deviation of the NMSE across the 15

environmental instantiations increases for all ML methods.
The reason for this NMSE degradation and the increased
standard deviation is the same as described in Sec. IVC.
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(a) KNN NMSE (b) AE NMSE (c) CNN/MLP NMSE

FIGURE 6: NMSE performance for multiple Bcoh as a function of Lcoh

(a) Bcoh = .162 MHz (b) Bcoh = 1.62 MHz (c) Bcoh = 16.2 MHz

FIGURE 7: KNN cumulative distribution function for multiple Bcoh

(a) KNN NMSE (b) AE NMSE (c) CNN/MLP NMSE

FIGURE 8: NMSE performance as a function of UL and DL frequency separation for each of the three ML methods

E. System Environment: Effect of RF Bandwidth and

Subcarrier Spacing

We next explore the impact of increasing the RF bandwidth
from 20 MHz to 160 MHz while maintaining the upper edge
of the UL frequency band and the lower edge of the DL
frequency band at a constant separation of 5 MHz. Due to
this constraint, the separation between the center frequencies

of the UL and DL increases with increasing RF bandwidth.
It is again easiest to interpret the results for KNN, as

shown in Fig. 9(a). For most configurations, the NMSE is
independent of the bandwidth since the KNN identifies the

“pattern” of the UL transfer function as previously discussed:
KNN matches it to a training transfer function (whose
physical location will be close to that of the testing location)
and identifies the corresponding DL channel. The NMSE is
thus determined by the sampling density and the coherence
length, both kept at the default values in this simulation. For
the case of Bcoh approaching the RF bandwidth, the NMSE
is much larger due to the lack of a uniquely identifiable UL
transfer function that can be associated with a DL transfer
function, again as discussed in Sec. IVC. Increasing the
RF bandwidth creates more frequency selectivity and, thus,
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better identifiability. As seen in Fig. 9, an RF bandwidth of
approximately 3 times the Bcoh is sufficient to obtain an
NMSE that is practically indistinguishable from that of even
larger bandwidths.

Interestingly, the behavior of AE and CNN/MLP is funda-
mentally different. For smaller Bcoh, the NMSE performance
decreases as the RF bandwidth increases. This degradation is
due to our imposed constraint of maintaining the upper edge
of the UL frequency band and the lower edge of the DL
frequency band at a constant separation of 5 MHz. Due to
this constraint, the separation between the center frequencies

of the UL and DL increases with increasing RF bandwidth.
The amount of degradation we observe is the same amount
of degradation we observed as we increase the frequency
separation between the UL and DL, as shown in Fig. 8.

The above simulations varied the system bandwidth while
keeping the number of subcarriers constant. To more closely
investigate the impact of the subcarrier spacing, we increase
the RF bandwidth and simultaneously vary the number of
subcarriers from 64 to 128, 256, and 512. The subcarriers are
spread uniformly across each RF bandwidth while maintain-
ing the upper edge of the UL band and the lower edge of the
DL frequency band constant, as in the previously described
simulations. We perform this simulation with a constant Bcoh

of 0.162 MHz and Lcoh at a constant of 3.0 ϱ.
As shown in Fig. 10, increasing the RF bandwidth, the

NMSE increases for the AE and CNN/MLP neural networks,
while the KNN method’s NMSE remains constant due to the
effects described above. In addition, all three ML methods
show NMSE performance degradation when adding subcar-
riers to a given RF bandwidth; however, the amount of this
additional error is only on the order of 1 → 2 dB. We can
thus conclude that the number of subcarriers and subcarrier
spacing have very little impact on the overall NMSE.

F. System Environment: Number of MPCs

The 3GPP model described in Section III consists of 6

clusters (paths) with 20 MPCs (sub-paths) associated with
each of the clusters. We examine the effect of decreasing the
number of MPCs to 6 and increasing the number of MPCs
per cluster to 80 for the Lcoh of 1 ϱ, 3 ϱ, and 5 ϱ. Fig. 11
shows the results of this simulation for all three of our ML
methods. As shown, the NMSE remains fairly constant as the
number of MPCs varies from 6 to 80. The most significant
NMSE variation occurs when the Lcoh changes from 1 ϱ
to 5 ϱ. This NMSE performance change is consistent with
the NMSE change shown in Fig. 6. Both Fig. 6 and Fig. 11
show a NMSE increase of approximately 10 dB as the Lcoh

decreases from 1 ϱ to 5 ϱ.

G. System Environment: UL and DL Pilot Tone SNR

We examine the system effect of UL and DL pilot tones’
SNR on NMSE performance. Since the UL SNR is de-
termined by the wireless user terminal and the DL SNR
is determined by the base station, their SNRs can differ.

Furthermore, the noise realizations experienced by the re-
spective receivers are independent. We, therefore, modify
the channel model of Sec. III by adding an independent
complex Gaussian noise component to the complex UL and
DL transfer functions.

H
DL
ωk,εl

=

Nsub∑

n=1

H
DL
ωk,εl,n +Nωk,εl (3)

H
UL
ωk,εl

=

Nsub∑

n=1

H
UL
ωk,εl,n +Nωk,εl (4)

where: Nsub = number of sub-paths and, Nωk,εl ↓

CN (0,ς2
), with a variance ς2 depending on the desired

SNR. An independent Nωk,εl is added for each spatial
position and subcarrier. It should be noted that since the DL
SNR is being varied to values much below our default value
of 50 dB, the normalization factor in our NMSE calculations
(2) has been adjusted to be noise-free under these noisy
signal conditions. As shown in Fig. 12, the UL and DL SNR
affect all three ML methods’ NMSE performance. In the
KNN algorithm, due to its parameterless nature, the DL SNR
dominates NMSE, which nearly becomes 0 dB at low DL
SNR. In contrast, the AE and CNN/MLP neural networks’
performance with varying UL and DL SNRs also varies as
the DL SNR decreases, but not to the same extent. This
is because the neural networks are being trained with UL
and DL noisy signals, and the networks are adjusting their
parameters to compensate for the noise. Additionally, the UL
SNR has the effect of raising the NMSE as its SNR decreases
for all three ML methods. This is explained by noting that
the CSI extrapolation is performed with a noisy UL signal
as input.

The NMSE results shown in Fig. 12 were calculated
with the UL and DL SNR being equal during training and
testing. This may not always be the case; the UL and DL
SNRs during training and testing can differ. The NMSE
performance with the DL SNR constant at 50 dB, and
varying the UL training and testing SNR is shown in Table
VII. Table VII shows that it is best to train and test with
the same UL SNR rather than always training with the best
possible UL SNR: for example, training with a 50 dB UL
SNR and testing with a 10 dB UL SNR provides a worse

NMSE (-21.8 dB) than training and testing with a 10 dB UL
SNR (-25.7 dB). To mitigate this performance degradation,
we consider training with a mixture of UL SNRs (i.e.,
train with 0 dB, 10 dB, and 50 dB UL SNR) and then
testing at various UL SNRs. As shown in Table VII, such
a mixture training strategy not only increases robustness but
also performs better than training/testing at a specific UL
SNR when the UL SNR is low (e.g., training with a mixture
performs better than training with 0 dB UL SNR when
testing with 0 dB UL SNR). However, note that training
and testing with a high UL SNR (using the same UL SNR)
still perform better than training with a mixture and testing
with a high UL SNR.
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(a) KNN NMSE (b) AE NMSE (c) CNN/MLP NMSE

FIGURE 9: NMSE performance for the three ML methods as a function of RF bandwidth and Bcoh

(a) KNN NMSE (b) AE NMSE (c) CNN/MLP NMSE

FIGURE 10: NMSE performance for the three ML methods as a function of RF bandwidth and number of subcarriers.

(a) KNN NMSE (b) AE NMSE (c) CNN/MLP NMSE

FIGURE 11: NMSE performance for the three ML methods as a function of number of MPCs.

H. System Environment: Training and Evaluation

Environment Mismatch

We also examine the NMSE performance when the training
and evaluation wireless environments are different. Specifi-
cally, we perform simulations when the coherence bandwidth
(Bcoh) and coherence distance (Lcoh) are mismatched. The
simulation results show that the NMSE performance for all
three of our ML methods is poor (↔ →5.0 dB) when either
the Bcoh or Lcoh is mismatched between the training and
evaluation environments.

V. CONCLUSION

In this paper, we have shown how wireless parameters affect
the NMSE when three ML methods perform frequency ex-
trapolation in an FDD system. A summary of our conclusions
is as follows:

• The AE and CNN/MLP neural networks give similar
NMSE. However, the KNN methodology is fundamen-
tally different.

• The difference in performance between the AE and
CNN/MLP neural networks depends on their specific
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(a) KNN NMSE (b) AE NMSE (c) CNN/MLP NMSE

FIGURE 12: NMSE performance for the three ML methods as a function of UL and DL SNR.

Train Uplink (dB) Test Uplink (dB) NMSE (dB)

0 0 -15.1
0 10 -18.1
0 50 -17.8
10 0 -12.4
10 10 -25.7
10 50 -29.8
50 0 -11.4
50 10 -21.8
50 50 -38.1

Mixture 0 -20.6
Mixture 10 -28.2
Mixture 50 -33.3

TABLE VII: NMSE values under varying UL SNRs during
training and testing (with fixed DL SNR at 50 dB).

hyperparameter settings. For the KNN to have accept-
able NMSE performance, we typically need a large
quantity of training samples.

• Having an RF bandwidth comparable to the Bcoh

leads to generally bad performance as well as strong
variations between different instantiations in the same
environment.

• Large Lcoh typically reduces the NMSE, but a mini-
mum number of statistically independent training points
is required.

• NMSE increases as a function of UL and DL frequency
separation, similar to that of deterministic frequency
extrapolation based on high-resolution parameter esti-
mation. The number of subcarriers and their spacing
have little impact on results.

• Simulations comparing different ML structures need to
take these dependencies on parameters into account.
Comparisons with values in the literature must ensure
that all these parameters are the same as the ones we
want to compare against.

APPENDIX

A. Equations Used in Algorithm 2

Approximation for the standard deviation of the delay spread
[1, Chap. 6];

ςDS ↔
1

2φBcoh
(5)

Approximation for the standard deviation of the angular
spread;

ςAS ↔
(.13)(360)

Lcoh
(6)

Calculation of the ϖn;

ϖ ↓n = →rDSςDS ln zn, n = 1, . . . , Npath (7)

where rDS is the proportionality constant defined in [31].
and zn (n = 1, . . . , Npath) are independent identically
distributed (i.i.d) random variables with uniform distribution
U [0, 1).
The ϖ ↓n are then sorted from high to low value, and their min-
imum is subtracted from all such that ϖNpath > . . . > ϖ1 = 0

Calculation of the power delay profile elements Pn

P ↓

n = e
(1→rDS)ωn
rDSεDS · 10

↑0.1ϑn , n = 1, . . . , Npath

Pn =
P ↓
n∑Npath

j=1 P ↓

j

(8)

where ↼n (n = 1, . . . , Npath) are i.i.d Gaussian random
variables with 0 mean and standard deviation ςRND = 3

dB.
Calculation of the path ϑn,AoA elements

ϑn,AoA ↓ N (0, ς2
n,AoA) n = 1, . . . , Npath

ςn,AoA = 104.12↔ · (1→ exp(0.2175 · Pn,dBr))
(9)

where Pn,dBr < 0 is the relative power of the nth path in
dBr with respect to the total power.
Generation of the complex H

UL transfer function for path
n, at a spatial point (x, y, z), and at the UL center frequency
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(fUL).

H
UL
n (x, y, z) =

√
Pn

Nsub
·

Nsub∑

i=1

ej
ϖk·ϖrej!n,iejϱn ,

H
UL

(x, y, z) =

Npath∑

n=1

H
UL
n (x, y, z)

(10)

where:
↽k = k0(cos (⇀n,i,AoA)x̂+ sin (⇀n,i,AoA)ŷ)

k0 = 2φ/ϱ,ϱ calculated at UL frequency

⇀n,i,AoA = ⇁ · (ϑn,AoA +!n,i,AoA)

!n,i,AoA = Table II AoA O”set at UE; [31]

⇁ =
ςAS

68↔
; Table II adjustment for our specific ςAS [31]

#n,i = Npath by Nsub matrix with elements ↓ U[0, 2φ)

φn = 2φ · fUL · ϖn
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