
Proceedings of of the ASME 2024
International Mechanical Engineering Congress and Exposition

IMECE2024
November 17-21, 2024, Portland, Oregon, USA

IMECE2024-144920

EFFICIENT AUTONOMOUS NAVIGATION FOR GPS-FREE MOBILE ROBOTS: A
VFH-BASED APPROACH INTEGRATED WITH ROS-BASED SLAM

Amanuel Abrdo Tereda1, Sun Yi1, Xingguang Li1
1North Carolina Agricultural and Technical State University, North Carolina, USA

Department of Mechanical Engineering

ABSTRACT

Simultaneous Localization and Mapping (SLAM) is an au-
tonomous localization technique used for mobile robots without
GPS. Since autonomous localization relies on pre-existing maps,
to use SLAM with the Robotic Operating System (ROS), a map
of the surroundings must first be created, and a controller can
then use the initial map. The first mapping procedure is mostly
carried out manually, with human intervention. When operat-
ing manually, the person operating the robot is responsible for
avoiding obstacles and moving the robot to different sections of
the space to create a full map of the entire environment. The map-
ping process, if done manually, is time demanding, and often not
feasible. To solve this constraint, which is to construct a map of
the environment autonomously without human involvement while
avoiding obstacles, the Vector Field Histogram (VFH) technique
is implemented in this study by integrating it with SLAM. VFH
is a real-time motion planning approach in robotics that uses a
statistical representation of the robot’s surroundings known as
the histogram grid, to place a strong emphasis on handling mod-
eling errors and sensor uncertainty. Furthermore, using range
sensor values, the VFH algorithm determines a robot’s obstacle-
free driving directions. Aside from its real-time obstacle avoid-
ance function, the VFH method is enhanced in this study to col-
laborate with SLAM to create maps and reduce localization com-
plexity. While generating maps, the VFH approach uses a two-
step data-reduction procedure to calculate the appropriate vehi-
cle control directives. The robot’s temporary location is used to
generate a one-dimensional polar histogram, which is the first
stage of the histogram grid reduction process. The polar obsta-

cle density in a given direction is represented by a value in each
sector of the polar histogram. In the second stage, the robot’s
steering is oriented in the direction of the most appropriate sec-
tor, which the algorithm determines from all the polar histogram
sectors with a low polar obstacle density. Following that, further
algorithms, such as Rapidly Exploring Random Tree (RRT) and
A*, can be used to plan autonomous pathways using the map pro-
vided by VFH. In order to put the concept into practice, MATLAB
and ROS are used together in collaboration to autonomously and
simultaneously map the environment and localize the robot. The
combination of MATLAB and ROS provides many advantages be-
cause of their extensive feature set and ability to integrate with
each other. Finally, a simulation and a real-time robot are uti-
lized to analyze and validate the study’s findings.

Keywords: VFH (Vector Field Histogram); SLAM (Si-
multaneous Localization and Mapping); autonomous naviga-
tion; histogram grid, Polar Obstacle density; Masked Polar His-
togram; obstacle avoidance; RRT

1 INTRODUCTION
These days, the field of robotics that deals with mobile

robots is one of the fastest growing. Due to their ability to move
independently, mobile robots can help humans in numerous in-
dustries. When a robot can decide how to carry out an action
while using a perceptual system to help it, it is considered au-
tonomous [1]. The fundamentals of autonomous mobile robots
include locomotion, perception, cognition, and navigation [2].
Within the frame of reference, robot navigation is the ability
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of the robot to identify its position and orientation. Navigating
around its surroundings is essential for any mobile device since it
helps prevent unpredictable events like collisions as well as haz-
ardous situations. Determining the robot’s current position and
the planned location inside the same frame of reference or set of
coordinates is an essential requirement for path planning, which
is an extension of localization [3].

The primary application of the global positioning system
(GPS) has been precise navigation since the invention of the
atomic clock. After that, it developed into the best navigation
system that can be used in every location on Earth, regardless
of the time of day or the type of weather [4]. It has been noted
that GPS guidance works well for mobile robots in several per-
tinent surrounding circumstances, such as agricultural location,
formation movement or search, and item loading and unload-
ing [5]. However, GPS is not always applicable, as there are
numerous indoor applications where GPS is ineffective owing to
signal limitations. In these cases, it is necessary to look for other
navigation approaches.

Mobile robots need to be able to create a map of their en-
vironment and simultaneously localize within it in the absence
of external referencing systems like GPS. Over the last twenty
years, one of the most frequently studied problems in mobile
robotics has been the simultaneous localization and mapping
(SLAM) problem. Several efficient methods have been devel-
oped to address this problem [6]. In robotics, SLAM is a tech-
nique for determining the 3D structure of an unknown environ-
ment as well as sensor movements inside that environment. This
technique was initially presented to achieve autonomous control
of robots [7].

Even though SLAM is extremely useful for autonomous
navigation, it is dependent on pre-existing maps. To use SLAM
with the Robotic Operating System (ROS), a map of the sur-
roundings is first constructed, and then a controller captures the
original map. The first mapping process is mostly carried out
manually with human intervention, and subsequently, it will be-
come suitable for autonomous navigation. When controlling the
robot manually, the operator is responsible for avoiding obstacles
and moving the robot to various portions of the space in order to
create a complete map of the entire environment. To overcome
this limitation, which is to shift the map-making process from
human involvement to a point where the robot can construct the
map on its own, a Vector Field Histogram (VFH) technique of
autonomous navigation is integrated with SLAM in this study.

The VFH is a real-time motion planning system in robotics
that was first presented by Koren and Borenstein in 1991 [8].
Since the VFH makes use of the so-called histogram grid to pro-
vide a statistical representation of the robot’s surroundings, it is
imperative that modeling mistakes and sensor uncertainty be ad-
dressed [9]. In contrast to alternative obstacle avoidance algo-
rithms, VFH considers the robot’s dynamics and structure and
provides platform-specific steering directives [10]. Robustness,

insensitivity to misreading, and computational efficiency were
the main goals of developing the Vector Field Histogram. When
navigating heavily crowded obstacle courses, the VFH algorithm
has shown to be reliable as well as fast in practice [11].

The VFH algorithm was also suggested by Pappas et al., as
a solution to the problem of safely and effectively navigating re-
motely operated robots in uncontrolled and hazardous situations.
The VFH+ obstacle avoidance navigation module’s commands
are combined with teleoperation orders sent by an operator via a
joypad to create a shared control technique [12].

Chen et al. developed a technique that adheres to the fun-
damental ideas of the VFH algorithm and employs a global path
point produced by the A* algorithm as a temporary goal point.
To control the movement of the omnidirectional mobile robot to
the target place, a speed control method is also provided, based
on the optimal obstacle avoidance direction obtained in the sug-
gested methodology [13].

Lluvia et al. surveyed to compile an overview of various
active mapping and robot exploration techniques, focusing on
the major advancements made in the field of indoor mobility
robotics. The main concepts of the study center on actively com-
puting trajectories to investigate the region and provide an error-
free map. SLAM approaches tackle the challenge of creating an
environment map using one or more sensors in the methods that
are covered [14].

For differential-drive mobile robots, Ghamri et al. presented
a navigation system that combines obstacle avoidance and tra-
jectory monitoring. Sonar range sensors are used for obstacle
detection, and kinematic control and the VFH approach are used
for navigation. In their paper, they provide an example of a robot
that tracked a trajectory while dodging obstacles in a simulated
environment [15].

Kiat Tee et al. deployed ROS-based SLAM libraries on an
experimental mobile robot equipped with a 2D LIDAR module,
an IMU, and wheel encoders to examine and compare common
2D SLAM methods in an indoor static environment. Overall, the
study outlines the benefits and drawbacks of SLAM algorithms
and illustrates the differences through created maps, since it is
crucial to choose the best system for the intended use and pin-
point prospective avenues for further optimization [16].

The publications reviewed in this paper, as well as the major-
ity of the studies in this domain, focus on using a previously con-
structed map to apply SLAM algorithms, whereas other works
that use VFH do not integrate VFH’s obstacle avoidance advan-
tage with autonomous mapping. Thus, combining the benefits of
VFH and SLAM is advantageous for indoor mobile robot appli-
cations, and this study addresses this approach. In the proposed
method, a map is built autonomously using VFH and the SLAM
algorithm, and the resulting map is used for subsequent navi-
gation utilizing additional path planning methodologies such as
RRT and A*.

The methodology used to conduct the research as well as the
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procedures followed to carry it out are discussed in Section 2 of
the paper. Section 3 explains the results of the study and the fi-
nal section summarizes the entire study and proposes prospective
areas for further research.

2 METHODOLOGY
2.1 VFH algorithm

The VFH algorithm generates obstacle-free steering direc-
tions for a robot using range sensor readings. A two-dimensional
Cartesian histogram grid is used as the world model to accom-
plish its objective. Range data collected by onboard range sen-
sors is regularly updated in this world model. The appropriate
control commands for the vehicle are then calculated by the VFH
approach using a two-stage data-reduction procedure. A one-
dimensional polar histogram is created around the robot’s tran-
sient location in the initial stage of the histogram grid reduction
process. In the polar histogram, the polar obstacle density in
a given direction is represented by a value in each sector. The
robot is then steered in the direction of the most appropriate sec-
tor, which the algorithm has determined to be among all polar
histogram sectors with a low polar obstacle density [8].

To compute steering directions, information regarding the
robot’s size and driving capabilities should be provided. The
VFH algorithm requires four input parameters from the robot:
Robot Radius, Safety Distance, Minimum Turning Radius, and
Distance Limits. Robot Radius defines the smallest circle’s ra-
dius that may include every component of the robot. By setting
this radius, the robot is guaranteed to avoid obstacles according
to its size. The term Safety Distance refers to an extra space be-
yond the robot’s radius. When navigating an area, this feature is
employed to increase safety. The robot moving at the intended
speed has an appropriate turning radius, which is specified by
the Minimum Turning Radius. At high speeds, the robot might
not be able to make sudden turns. This characteristic allows it to
avoid obstacles and provides sufficient space for movement. The
distance range that must be taken into account to avoid obstacles
is specified by distance limits.

A two-element vector with a lower limit and an upper limit
must have its bounds specified. Sensor noise, short-range sensor
errors, and sensor intersections with robot components are all ig-
nored by setting the lower limit. The upper limit is dependent on
the application that has been defined or the effective range of the
sensor by taking into account the obstacles in the whole sensor
range. VFH treats each active cell’s contents as an obstacle vec-
tor in the histogram grid, with the direction of each obstacle vec-
tor being defined by the direction ‘β ’ from the cell to the Vehicle
Center Point (VCP). The important VFH method parameters are
displayed in Figs. 1 and 2.

Trigonometry is used to determine the direction of β from a
cell to the VCP. The cell’s coordinates and the VCP are required
to compute the direction of beta. If the coordinates of the ve-

FIGURE 1. Robot Radius and Safety Distance.

FIGURE 2. Distance Limits, Minimum Turning Distances, and VCP

hicle’s center point are written as (x vehicle,y vehicle), and the
coordinates of the cell are written as (x cell,y cell), the direction
of β can be computed using the equation:

β = tan−1
(

y vehicle− y cell
x vehicle− x cell

)
(1)

The distance between the cell of interest and the vehicle’s
center point is usually represented by the magnitude of β (|β |).
It is frequently used to assess whether a cell can serve as a nav-
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igational aid or an obstruction. The Euclidean distance formula,
which determines the separation between two points in a two-
dimensional space as indicated in the equation below, can be used
to determine the magnitude of β (|β |).

|β |=
√
(y vehicle− y cell)+(x vehicle− x cell) (2)

The distance between active cells and the VCP (|β |), the
certainty value of active cells (Ci j), the current coordinates of the
VCP (x0,y0), the coordinates of the active cell (i, j), and positive
constants (a and b) can all be used to determine the magnitude
of the obstacle vector (mi j) at any cell. The value of mi j can be
computed as follows by utilizing these values:

mi j = (Ci j)
2(a−b|β |) (3)

The positive constants ‘a’ and ‘b’ are essential in forming
the potential field that directs the robot’s motion. The attractive
potential of the VFH algorithm is associated with the constant ‘a’
and it establishes the degree of attraction to the objective point.
The increased value of ‘a’ intensifies the attraction force, pro-
pelling the robot in the direction of the objective point. Con-
versely, a lower value of ‘a’ produces a weaker attraction, which
permits the robot to travel through more paths before arriving at
the destination. The constant ‘b’ is associated with the repul-
sive potential of the VFH algorithm, and it regulates the degree
of resistance to obstacles. The robot will avoid obstacles more
insistently if ‘b’ is larger since it will have a stronger repelling
force. On the other hand, if ‘b’ is smaller, the repulsive force is
smaller, which would enable the robot to go closer to obstacles.
Various sections of the histogram grid are shown in Fig. 3.

The behavior of the VFH algorithm can be modified to suit
various navigation scenarios and robot capabilities by varying
the values of ‘a’ and ‘b’. In situations with few barriers and
well-defined paths, higher values of ‘a’ and ‘b’ might be appro-
priate for safe and straightforward travel towards the goal. Lower
values of ‘a’ and ‘b’ advance careful navigation in congested
surroundings with small paths, allowing the robot to maneuver
through confined regions without colliding. The structure of the
VHS algorithm is given in Table 1.

2.2 Overall approach
The MATLAB and ROS platforms collaborate to create a

map of the environment and navigate the robot autonomously.
Because of their wide feature set, built-in toolboxes, and ability
to connect, MATLAB and ROS give numerous benefits. MAT-
LAB offers an environment for numerical calculation, data anal-
ysis, and visualization, whereas ROS provides a versatile frame-

TABLE 1. STRUCTURE OF THE VHS ALGORITHM

Algorithm 1: Autonomous Navigation Using VFH Algorithm

Input: Lidar scan data

Output: Velocity commands

1 Initialization

Initialize a subscriber to receive LiDAR scan data

Initialize a publisher to send velocity commands

2 VFH Setup

Define the input parameters:

Distance Limits, Robot Radius, Minimum
Turning Radius, Safety Distance

3 Main Loop

while (time < maxtime)

Receive LiDAR scan data and convert it to a
LiDAR Scan object

Compute steering direction based on scan data
and target direction

Calculate desired linear and angular veloci-
ties based on steering direction:

If steering direction is valid:

Set desired velocity to constant linear velocity

Calculate angular velocity based on steering
direction

If steering direction is invalid:

Stop robot

Set desired velocity to backward velocity

Set angular velocity to constant value

4 Sending Velocity Commands

Set linear and angular components of velocity
message based on calculated desired velocities

Send velocity message using publisher

5 Stop the robot

Send zero-velocity command to stop the robot
after main loop
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FIGURE 3. Histogram grid of the VHS algorithm

work for robot control, simulation, and communication. Further-
more, MATLAB’s Robotics System Toolbox and ROS support
package allow for smooth communication between MATLAB
and ROS, allowing users to integrate the benefits of both plat-
forms in a single workflow and making it simple to prototype,
test, and deploy robotic systems.

The process begins by connecting MATLAB to ROS. There
are several ways to accomplish this, including using a Windows
or Mac operating system and running ROS from an Ubuntu ma-
chine on another computer or within the same computer via a
virtual machine. When using a virtual machine, it is necessary to
assign an IP address to the virtual machine or another computer
where ROS is installed. However, when running both MATLAB
and ROS on the same machine with the UBUNTU operating sys-
tem, connecting via IP address is not required.

After running MATLAB and ROS, the connection can be
enabled using MATLAB’s ‘rosinit’ function, which allows users
to transmit commands straight from MATLAB to ROS. starts
the global ROS node with the default MATLAB name and at-
tempts to connect to a ROS master operating on localhost and
port ‘11311’. If the global ROS node is unable to connect to the
ROS master, ‘rosinit’ launches a ROS core in MATLAB, which
includes a ROS master, a ROS parameter server, and a ‘rosout’
logging node [17].

After establishing the connection, the workflow began by
scanning the area with a ground robot’s Lidar. To start the Li-

FIGURE 4. Block diagram of the overall procedure

dar on the ground robot, a ROS launch file to launch the robot’s
gazebo simulation file or an actual ground robot is used. In this
study, a ground robot named Jackal is employed for both gazebo
simulation and actual testing. In addition to launching the gazebo
file, another program named ‘gmapping’ is launched to activate
the SLAM. The ‘gmapping’ package includes a ROS wrapper
for SLAM mapping. The ‘gmapping’ package includes laser-
based SLAM as a ROS node named ‘slam gmapping’. Using
‘slam gmapping’, it is feasible to produce a 2-D occupancy grid
map (like a building floorplan) using laser and pose data gathered
by a mobile robot [18].

This is where the VFH algorithm comes in practical, assist-
ing the robot with simultaneous obstacle avoidance and mapping.
MATLAB is used to run the VFH algorithm. Because MATLAB
can now publish and subscribe to ROS nodes, it is possible to ob-
tain detailed map information and view the results in MATLAB.
The VFH algorithm guides the robot through the environment
by detecting obstacles in real time. While navigating, the ROS
node ‘tf’ is launched automatically, allowing the robot to per-
form direct coordinate frame transformations. Using the coordi-
nate frames from ‘tf’, the ‘ROS-gmapping’ continuously records
data, which is then utilized to create a full map of the environ-
ment. Figure 4 shows a block diagram that outlines the overall
process.

3 Results and Discussions
The overall process is tested and validated using a simula-

tion and real-time robot named Jackal. Jackal is an entry-level
robotics research platform equipped with an Inertial Measure-
ment Unit (IMU), GPS, and onboard computer that are linked
with ROS to enable autonomous operation. First, the test is
carried out using a pre-built simulation environment based on
a simulator called a Gazebo. Gazebo is an open-source 2D/3D
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FIGURE 5. Overall computation graph from the ‘rqt graph’ tool

FIGURE 6. Mapping environment (a), polar obstacle density and
masked polar histogram (b), and map generated by VHS (c) at the mid-
dle of the map-making process.

robotics simulator that combines simulation with a set of devel-
opment frameworks and cloud services. It also provides the ca-
pability to approximate a range of robots in complex indoor con-
ditions [19].

A ROS tool known as ‘rqt graph’ can be used to visualize
the complete workflow of the overall autonomous mapping and
localization process. The computation graph can be viewed us-
ing a GUI plugin included in the ‘rqt graph’ package of ROS. All
the nodes (/gazebo, /matlab global node, /robot state publisher,
/gmapping) launched by MATLAB and ROS are listed in the
graph, along with the topics (/joint states, /scan, /tf, /map) that
are subscribed to and published. Figure 5 displays the overall
computation graph.

Using the approach mentioned in the methodology the jackal
ground robot is allowed to navigate and create a map of the envi-
ronment based on the VFH algorithm and SLAM. Figures 6 and
7 depict the simulation environment to be explored with the cur-
rent robot position in (a), the Polar Obstacle Density and Masked
Polar Histogram in (b), and the map generated by the VHS and
SLAM methods in (c). The figures provide the previously spec-
ified details at the middle and finale of the map-making process,
aiding in the analysis of various case scenarios.

A Polar Density Histogram is computed over angular sec-

FIGURE 7. Mapping environment (a), polar obstacle density and
masked polar histogram (b), and map generated by VHS (c) at the fi-
nale of the map-making process.

tors in VFH using the range sensor data gathered from the Li-
dar. The angular sectors are shown in blue on this histogram,
while the histogram thresholds are shown in pink. The lower
and upper values of the Masked Histogram are determined by
the two-element vector known as the Histogram Thresholds at-
tribute. In the Masked Histogram, Polar Obstacle Density values
greater than the upper threshold are shown as occupied space
(1). Free space is displayed for values that are less than the lower
threshold (0). The values in the previous binary histogram are ap-
plied to values that fall between the bounds, with free space (0)
being the default. A Masked Polar Histogram plot corresponds to
the Polar Density Plot. This plot displays the target and steering
directions, range readings, and distance limits at various parts of
the explored environment.

Parameter tuning can also be used to prototype the obsta-
cle avoidance application. For instance, it is advised to change
the histogram thresholds to the proper values in the Polar Obsta-
cle Density plot if specific obstacles are absent from the Masked
Polar Histogram display. The range sensor values, indicated in
red, should line up with spots in the masked histogram (blue)
once the modifications have been made to the Masked Polar His-
togram plot. Additionally, the person using it can specify the
goal direction and access the steering directions in the Masked
Polar Histogram.

Since the steering direction is the primary output of the VFH
algorithm, fine-tuning the final steering direction output can be
achieved by varying the Cost Function Weights. Based on the
present, prior, and target directions, the VFH algorithm takes into
account several steering directions. The robot’s steering behavior
can be adjusted by adjusting the attributes for Current Direction
Weight, Previous Direction Weight, and Target Direction Weight.
Modifying these weights has an impact on the robot’s respon-
siveness and obstacle-reaction capabilities. The Target Direction
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FIGURE 8. Autonomous path planning using RRT.

Weight is set greater than the total of the other weights to direct
the robot toward its destination. To guarantee that the computed
steering direction is near to the target direction, a high Target
Direction Weight value is used.

Using the map that the VFH and SLAM algorithms simulta-
neously created, the RRT path planning approach uses it to nav-
igate autonomously from the start point to the completion point
while avoiding obstacles. Alternative path planning techniques,
such as A*, can also be used for this kind of path planning. The
autonomous path planning using the RRT method is displayed
in Figure 8. The path that the ground robot takes to get to the
destination is indicated by the curved line in Fig. 8.

The next step is to assess how well the methodology per-
forms in a real-world scenario after using it in a simulation envi-
ronment. Real-time testing is conducted using a Ground Robot
called Jackal that has a robotic arm called Kinova Gen2 mounted
on it. Even though it is not used in this study, the robotic arm can
increase the ground robot’s capabilities to the point where both
can be used in the same application.

It should be noted that the results of the study do not guar-
antee that any solution developed for the simulation environment
would directly work for a real robot and ground surface. When
using real-time applications, there are a few things to consider,
one of which is the friction between the ground robot and the
ground surface. When working in a simulation environment, a
rough ground surface with a coefficient of friction of one is typ-
ically assumed. But in actual ground conditions, this is not the
case, and the ground robot’s tires’ friction with the ground must

FIGURE 9. Jackal ground robot with Kinova Gen2 robotic arm (a);
3D point cloud visualization of the environment (b); map created by
the VHS and SLAM methods (c); Masked Polar Histogram and Polar
Obstacle Density at the robot’s current position (d).

be taken into account.

The nature of the ground has an impact on the mapping pro-
cess as a whole, particularly when turning the robot or applying
angular velocity. For instance, if the robot is expected to turn 5
degrees per second for 5 seconds, the intended result is 25 de-
grees and, in a simulation setting, the same outcome is achieved.
On the other hand, in real-time testing, if the ground surface is
comprised of a ceramic floor, a rotation of less than 25 degrees
is typically reached after 5 seconds. In this study, the ceramic
floor is replaced with a high-friction mat to solve this problem,
and the outcome is pretty much what was intended. However, the
outcome is still not as pleasing as the simulation, which has an
impact on the robot’s ability to avoid obstacles and create a map
promptly. This provides valuable information for future studies
that will enable the inclusion of a coping mechanism for the in-
tegrated method that accounts for friction between the robot and
the ground.

Figure 9 displays the jackal ground robot with the Kinova
Gen2 robotic arm (a); the 3D point cloud visualization of the en-
vironment (b); the map created by the VHS and SLAM methods
(c); and the Masked Polar Histogram and Polar Obstacle Density
plots at the robot’s current position (d).
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4 CONCLUSION
The objective of this study is to provide a technique that

uses the VFH approach in conjunction with the SLAM algo-
rithm to generate a map autonomously while avoiding obstacles.
The SLAM approach and the VFH algorithm are effectively in-
tegrated, and the outcome is examined and verified using both
a real-time robot and a simulation. Furthermore, the generated
map is employed for further autonomous navigation using an ad-
ditional path-planning technique known as RRT.

One of the difficulties this research has encountered is the
amount of time required to make maps. Because the VHS ap-
proach only uses the robot’s lidar and previously mapped data
as input to create new portions of the map, the robot may re-
peatedly go through an area without realizing it has already been
navigated. Since the robot builds maps by coming from sev-
eral locations and lacks a prediction ability that would allow it to
avoid mapping the same locations repeatedly before arriving at a
position, it realized it was mapping the same area after navigating
the environment. It is advised to use a nonlinear model predic-
tive control (NLMPC) technique in conjunction with the SLAM
and VHS algorithms to get around the time issue [20] [21]. By
providing the robot with a prediction about the places it needs to
go based on the data it has already collected, this integrated strat-
egy will assist the robot avoid exploring the same sites and will
significantly reduce the time it takes to obtain the whole map.

The ground robot Jackal is equipped with a robotic arm
known as Kinova Gen2, as seen in the results section. By us-
ing the robotic arm with the ground robot, its capabilities can
be improved to the point where both can be used in the asso-
ciated operation, and this is a useful step with a wide range of
applications such as pipe inspection [22]. The collaboration be-
tween the ground robot and the robotic arm can also be applied in
transporting goods, picking and placing objects, rescuing people,
and operating in hazardous environments such as nuclear plants
by using the map produced by the VHS and SLAM methods in
combination with a technique that can be used for path planning
and sensing of robot manipulators [23]. Through the integration
of machine learning, the collaboration between the ground robot
and the robotic arm makes a substantial contribution to the appli-
cation’s risk assessment and consumption prediction [24].

ACKNOWLEDGEMENTS
The work is supported by NSF Engineering Research Cen-

ter (EEC-2133630), Hybrid Autonomous Manufacturing Moving
from Evolution to Revolution (HAMMER), and Oak Ridge Na-
tional Lab. This work is also supported by the Department of En-
ergy Minority Serving Institution Partnership Program (MSIPP)
managed by Savannah River National Laboratory under BSRA
contract 0000602156.

REFERENCES
[1] F. Rubio, F. Valero, and C. Llopis-Albert, “A review of mo-

bile robots: Concepts, methods, theoretical framework, and
applications,” International Journal of Advanced Robotic
Systems, vol. 16, no. 2, p. 1729881419839596, 2019.

[2] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza, Intro-
duction to autonomous mobile robots. MIT press, 2011.

[3] C. Stachniss, Robotic mapping and exploration, vol. 55.
Springer, 2009.

[4] R. J. Aughey, “Applications of gps technologies to field
sports,” International journal of sports physiology and per-
formance, vol. 6, no. 3, pp. 295–310, 2011.

[5] R. Willgoss, V. Rosenfeld, and J. Billingsley, “High pre-
cision gps guidance of mobile robots,” in Proceedings of
the the 2003 Australasian Conference on Robotics and Au-
tomation (ACRA 2003), University of Southern Queens-
land, 2003.

[6] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard, “A
tutorial on graph-based slam,” IEEE Intelligent Transporta-
tion Systems Magazine, vol. 2, no. 4, pp. 31–43, 2010.

[7] R. Chatila and J. Laumond, “Position referencing and con-
sistent world modeling for mobile robots,” in Proceedings.
1985 IEEE International Conference on Robotics and Au-
tomation, vol. 2, pp. 138–145, IEEE, 1985.

[8] J. Borenstein, Y. Koren, et al., “The vector field histogram-
fast obstacle avoidance for mobile robots,” IEEE transac-
tions on robotics and automation, vol. 7, no. 3, pp. 278–
288, 1991.

[9] M. B. Alatise and G. P. Hancke, “A review on challenges
of autonomous mobile robot and sensor fusion methods,”
IEEE Access, vol. 8, pp. 39830–39846, 2020.

[10] R. Van Breda, Vector field histogram star obstacle avoid-
ance system for multicopters. PhD thesis, Stellenbosch:
Stellenbosch University, 2016.

[11] Y. Rabhi, M. Mrabet, F. Fnaiech, and P. Gorce, “Intelli-
gent joystick for controlling power wheelchair navigation,”
in 3rd International Conference on Systems and Control,
pp. 1020–1025, IEEE, 2013.

[12] P. Pappas, M. Chiou, G.-T. Epsimos, G. Nikolaou, and
R. Stolkin, “Vfh+ based shared control for remotely op-
erated mobile robots,” in 2020 IEEE International Sym-
posium on Safety, Security, and Rescue Robotics (SSRR),
pp. 366–373, IEEE, 2020.

[13] W. Chen, N. Wang, X. Liu, and C. Yang, “Vfh based local
path planning for mobile robot,” in 2019 2nd China Sym-
posium on Cognitive Computing and Hybrid Intelligence
(CCHI), pp. 18–23, IEEE, 2019.

[14] I. Lluvia, E. Lazkano, and A. Ansuategi, “Active mapping
and robot exploration: A survey,” Sensors, vol. 21, no. 7,
p. 2445, 2021.

[15] S. E. Ghamri, N. Slimane, and F. Nezzar, “Trajectory track-
ing and vfh obstacle avoidance for differential drive mobile

8 Copyright © 2024 by ASME



robot,”
[16] Y. K. Tee and Y. C. Han, “Lidar-based 2d slam for mobile

robot in an indoor environment: A review,” in 2021 Inter-
national Conference on Green Energy, Computing and Sus-
tainable Technology (GECOST), pp. 1–7, IEEE, 2021.

[17] MathWorks, “rosinit.” https://www.mathworks.
com/help/ros/ref/rosinit.html, 2024. [On-
line; accessed 16-February-2024].

[18] ROS, “gmapping.” https://wiki.ros.org/
gmapping, 2024. [Online; accessed 17-February-2024].

[19] S. Noh, J. Park, and J. Park, “Autonomous mobile robot
navigation in indoor environments: Mapping, localiza-
tion, and planning,” in 2020 International conference on
information and communication technology convergence
(ICTC), pp. 908–913, IEEE, 2020.

[20] A. A. Tereda and S. Yi, “Predictive control of the ki-
nova gen3 robotic manipulator using a nonlinear model,”
in ASME International Mechanical Engineering Congress
and Exposition, vol. 87639, p. V006T07A021, American
Society of Mechanical Engineers, 2023.

[21] S. C. Dekkata, S. Yi, M. Muktadir, S. Garfo, X. Li, and
A. A. Tereda, “Improved model predictive control system
design and implementation for unmanned ground vehicles,”
Journal of Mechatronics and Robotics, vol. 6, pp. 90–105,
2022.

[22] S. Hamoush, S. Yi, A. Megri, Y. Seong, H. ElSherif,
M. Muktadir, S. Garfo, X. Li, B. Keshinro, H. Khoury,
et al., “Technology of mapping and ndt for pipes inspec-
tion,” tech. rep., North Carolina Department of Transporta-
tion. Research and Development Unit, 2023.

[23] A. A. Tereda, Path Planning and Sensing for Autonomous
Control of Robot Manipulators. PhD thesis, North Carolina
Agricultural and Technical State University, 2021.

[24] Y. Ayalew, W. Bedada, A. Homaifar, and K. Freeman,
“Data-driven urban air mobility flight energy consumption
prediction and risk assessment,” in Intelligent Systems Con-
ference, pp. 354–370, Springer, 2023.

9 Copyright © 2024 by ASME

https://www.mathworks.com/help/ros/ref/rosinit.html
https://www.mathworks.com/help/ros/ref/rosinit.html
https://wiki.ros.org/gmapping
https://wiki.ros.org/gmapping

	INTRODUCTION
	METHODOLOGY
	VFH algorithm
	Overall approach 

	Results and Discussions 
	CONCLUSION

