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Abstract—Personalized recommendation is a ubiquitous appli-
cation on the internet, with many industries and hyperscalers
extensively leveraging Deep Learning Recommendation Models
(DLRMs) for their personalization needs (like ad serving or movie
suggestions). With growing model and dataset sizes pushing com-
putation and memory requirements, GPUs are being increasingly
preferred for executing DLRM inference. However, serving newer
DLRMs, while meeting acceptable latencies, continues to remain
challenging, making traditional deployments increasingly more
GPU-hungry, resulting in higher inference serving costs. In this
paper, we show that the embedding stage continues to be the
primary bottleneck in the GPU inference pipeline, leading up to
a 3.2× embedding-only performance slowdown.

To thoroughly grasp the problem, we conduct a detailed
microarchitecture characterization and highlight the presence of
low occupancy in the standard embedding kernels. By leveraging
direct compiler optimizations, we achieve optimal occupancy,
pushing the performance by up to 53%. Yet, long memory latency
stalls continue to exist. To tackle this challenge, we propose spe-
cialized plug-and-play-based software prefetching and L2 pinning
techniques, which help in hiding and decreasing the latencies.
Further, we propose combining them, as they complement each
other. Experimental evaluations using A100 GPUs with large
models and datasets show that our proposed techniques improve
performance by up to 103% for the embedding stage, and up to
77% for the overall DLRM inference pipeline.

Index Terms—Recommendation Systems, Multi-threading,
Warp-Level-Parallelism, Embeddings, memory-latency bound,
Long latency load stalls, Prefetching, Cache residency control

I. INTRODUCTION

Recommendation Systems are the driving force for many
internet applications such as social networks [1]–[3], en-
tertainment [4]–[6], and e-commerce [4], [7], [8]. Modern
recommendation systems provide personalized suggestions
to enhance user experience through Deep Learning Recom-
mendation Models (DLRM) [9]. The growing importance
of DLRMs is evident in their widespread deployment by
hyperscalers for both training and inference. This translates to
a significant portion of AI inference cycles being dedicated to
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Fig. 1: Shown is the degradation in inference performance
as hotness lowers (working footprint decreases) from left to
right. The numbers inside the bars indicate the embedding
stage contributions. Here, OptMT provides higher WLP which
enhances performance over off-the-shelf PyTorch (base). Yet,
a significant gap continues to exist compared to the fastest
loads (one item case). We cite this as the research gap.

DLRMs [10], while being deployed on a variety of platforms
including CPUs( [10]–[14]), GPUs( [13], [15]–[18]), and ac-
celerators( [18]–[24]). With the ever-increasing compute and
memory requirements of DLRMs, it is increasingly being pre-
ferred to execute them on GPUs [13], [18] due to their efficient
parallel processing capabilities. However, with growing model
and dataset sizes, efficient utilization of GPUs for improving
the performance of inference applications, as will be shown
in this paper, is insufficiently investigated.

DLRMs primarily comprise four stages: embedding, bottom
multi-layer perceptron (MLP), feature interaction, and top
MLP. The latter three stages are marked as non-embedding
stages. Prior works [10]–[12], [15], [17] have shown that the
embedding stage is memory intensive (due to frequent and
irregular memory accesses) and the non-embedding stages are
compute intensive.
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Using the latest off-the-shelf PyTorch-based embedding bag
CUDA kernels over an A100 GPU, we conduct an extensive
characterization study over the latest DLRMs with produc-
tion datasets. These experiments reiterate that the embedding
stage continues to bottleneck the inference performance as
shown in Figure 1. GPUs are well-known for their Multi-
Threading (MT) or Warp-Level-Parallelism (WLP)1 support to
hide memory latencies with computation [25]. Unfortunately,
the available parallelism is not enough. We observe up to
3.2× embedding-only performance slowdown when compar-
ing ‘random’ with the ‘one item’ case (referring to the fastest
case where all embedding accesses point to one row in a
table, leading to ∼100% cache hits). This sub-optimal MT is
observed in both ready-made packaged and source-compiled
PyTorch implementations as they suffer from register pressure
(details mentioned in Section III-C).

To test if increasing the parallelism can address this issue,
we synthetically increased the parallelism level to an optimal
amount (Optimal MT (OptMT)).2 We did so by lowering the
register allocation per warp using available compiler optimiza-
tions. Although it did improve the performance (reduction in
batch latency) by 53%, as seen in Figure 1, OptMT is insuf-
ficient as a significant performance gap continues to remain
between the ‘one item’ and ‘random’ cases. Looking under
the hood with detailed profiling (described in Table IV), we
observe that both off-the-shelf PyTorch and OptMT implemen-
tations underutilize the “warp issue slots” and “average HBM
read bandwidth”, demonstrating that the kernel is memory
latency bound.

Previous DLRM-based works have cited the memory-bound
issue arising due to embeddings, and have developed het-
erogeneous platform-based scheduling frameworks [15]–[17],
[26], distributed inference strategies [27], [28], accelerator
designs [18]–[24], and algorithmic-system designs [29]–[32].
However, they are limited to either using out-of-the-box
kernels or highly skewed (exhibiting high temporal reuse)
datasets, and none of the prior solutions address the long
latency load stalls arising on a GPU platform. Towards
this, we explore easy-to-adopt design solutions by asking the
following question: Given the high adoption of GPUs by
hyperscalars [33] even while being expensive, can we develop
cost-friendly software techniques that are both application-
and architecture-aware to alleviate the memory bottleneck?

Building on our understanding of the unique characteristics
of DLRMs, we leverage the features of modern GPUs to make
the following contributions:

• To the best of our knowledge, ours is the first work
to study the architectural implications of DLRM infer-
ence on GPUs and to point out the microarchitectural
inefficiencies leading to memory latency bottleneck (our
research gap). Our in-depth characterization shows that
out-of-the-box PyTorch DLRM implementation has sev-

1We use MT and WLP interchangeably in the paper.
2Note that due to register spilling optimal MT may not be the maximum

WLP supported by the GPU. We quantify this effect in Figure 6.

eral performance-related inefficiencies. First, out-of-the-
box kernel is plagued with long latency load stalls (later
described as long scoreboard stalls), leading to a signif-
icant performance gap across the spectrum of memory
access patterns. Second, the kernel suffers from register
pressure leading to limited WLP. The number of hardware
registers is simply not enough to support the maximum
number of warps allowable. Even if we allow an optimal
number of warps by reducing register allocation per warp,
there is plenty of scope for reducing latency further. That
is, even optimal number of warps is simply not enough
to hide the long memory latencies.

• We show that memory latency (not bandwidth) is a major
performance-limiting issue for DLRM performance (em-
bedding bag CUDA kernel). On top of optimal WLP, we
present two plug-and-play hardware-software co-design
based optimizations: (i) by leveraging the bandwidth
headroom of modern GPUs, their hardware-supported
scoreboarding, and multiple memory resources as buffer
stations, we perform Prefetching to hide memory latency
stalls, and (ii) by taking advantage of known apriori
power-law distribution in embedding accesses, we per-
form L2 Cache Pinning to pin the most frequently
accessed entries by exploiting the new L2 cache residency
control feature on GPUs. Further, we show these two
designs can complement each other.

• We evaluate and compare the benefits of the proposed
techniques. In isolation, prefetching and L2 pinning im-
prove embedding lookups by up to 97% and 62%, and
end-to-end inference by up to 73%, and 48%, respec-
tively. Moreover, pinning and prefetching complement
each other, and when combined, improve embedding
lookups by up to 103%, and end-to-end inference by 77%.
Finally, with their synergy, the worst-case performance
gap significantly lowers by 163% over base PyTorch, and
53% over OptMT. Also, we believe our proposed designs
can be generally applied to a wide range of memory-
bound kernels.

II. BACKGROUND

In this section, we discuss (1) the architecture of a mod-
ern recommendation system, (2) the key microarchitectural
features of the latest GPUs, and (3) the related works on
improving the DLRM and memory-bound kernel for GPUs.

A. DLRM Inference Using GPUs

Many industries use GPUs to execute DLRM inference
[13], [15], [16], [18]. The primary steps in inference involve
(1) a one-time loading of the complete model onto the GPU
memory, (2) feeding the input batches (each batch is large and
comprises a group of samples) to the GPU, and (3) executing
the inference to predict the top-k items for each sample within
a batch. For large models exceeding the memory capacity of
one GPU, multiple GPUs/nodes are used with model and data
parallelism [34], [35]. Regardless of the number of GPUs

1218

Authorized licensed use limited to: Penn State University. Downloaded on November 06,2025 at 20:10:17 UTC from IEEE Xplore.  Restrictions apply. 



	������

��	����	���

���������� ����

����	
����

�����������
��
�����

�
�������
��
��
�����

Fig. 2: A schematic of a DLRM architecture. The continuous
features (e.g., age, location) are processed by Bottom MLP,
and categorical features (e.g., movie genre, item ID) by the
Embedding Stage. Their outputs are combined in the Feature
Interaction Stage, and then fed into the Top MLP, which
predicts top-k items with highest Click Through Rate (CTR).

used, each GPU executes one or more embedding tables
serially [36], [37].

Figure 2 shows a simplified diagram of a typical DLRM [9],
[10]. Each sample comes with continuous (e.g., age, location)
and categorical features (e.g., movie genre, item id). Former
are fed to the Bottom MLP stage while latter are fed to
the Embedding Stage. The feature interaction stage merges
(concatenation/dot product) the outputs of the previous two
stages, and feeds it to the Top MLP stage, generating the
top-k items with the highest predicted CTR (Click-Through
Rate). Several past works highlight the embedding stage to
be memory intensive ( [11], [12], [19], [22], [29]) and non-
embedding stages to be compute intensive [15].

B. Key Properties of GPU Microarchitecture
GPUs, also known as throughput processing engines, con-

tain a hierarchical array of compute cores (CUDA cores).
Figure 3 shows a simplified diagram of the GPU organi-
zation. Modern GPUs (Nvidia based) contain 100s of SMs
(Streaming Multiprocessors) [38], [39], and each SM offers 4
SMSP (Streaming Multiprocessor Sub-Partition). Each SMSP
is associated with a warp scheduler and provides the capability
to issue one eligible warp every cycle while maintaining a
queue of resident warps, thus facilitating WLP or MT. Further,
a scoreboarding mechanism [40] is adopted in the core pipeline
to promote instruction level parallelism (ILP). The memory
organization of each SM consists of: (1) a large register
file storing the context of all resident warps, allowing zero
overhead warp switching and (2) a private cache shared among
all residing warps. All SMs share an L2 cache and an off-
chip memory. Additionally, Nvidia GPUs (Ampere generation
and onwards) provide a unique programmer-controlled L2
access management for setting-aside a region for persisting
accesses [41]. Section IV-C guides on how we take advantage
of this feature for a performant embedding stage execution.

The efficiency of DLRM execution is heavily influenced by
the unique properties of GPUs. All the stages have parallel
implementations to reap benefits of the massive number of
CUDA cores. Also, the high bandwidth memory (HBM)
helps in meeting the heavy off-chip access requirements for
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Fig. 3: Simplified Nvidia A100 GPU organization.

the embedding stage. Additionally, a modest on-chip cache
hierarchy helps in capturing the locality in memory accesses.
Table I shows the access latencies [42] for different access
locations. Note that fetching data is more costlier compared
to CPUs. Table II shows the L1 and L2 cache capacities in
server-grade and powerful GPUs. Note that the cache sizes
are much larger in the latest GPUs. For example, (1) A100
offers 1.5x and ∼7x large sizes over V100 for L1 and L2,
respectively, and (2) RTX 4090 offers ∼12x large L2 cache
over RTX 3090 Ti.

TABLE I: Access Latencies for various levels of the A100
GPU memory hierarchy based on [42].

Access Location Access Latency (cycles)
Register 1

Shared Memory 29
L1D cache 37.9
L2 cache 261.5

Global Memory 466.3

TABLE II: Cache capacities for server-grade GPUs.
Device LLC cache size (MB) L1 cache size (KB)
A100 40 192
H100 50 256
L40 96 128

RTX4090 72 128

C. Related Works
DLRM Optimizations: Prior works [15]–[17], [26] have

looked into scheduling frameworks and heterogeneous plat-
forms for inference serving and [27] discusses the system
design for effective distributed inference. [29]–[31] considers
highly skewed (exhibiting high temporal reuse) dataset cases
and proposes algorithmic and system designs for effectively
using GPU’s main memory. However, none of the prior works
have studied the microarchitectural implications of DLRM
inference on a GPU. Our work improves the embedding table
performance via on-chip optimizations for a diverse set of
access patterns(Figure 5), making it orthogonal, and thus it
can be combined the prior works.

Accelerator designs: [18]–[24] have proposed targeted
custom solutions for MLP and embedding stages in DLRMs.
However, these proposals require substantial time and ef-
fort to commercialize, making it difficult to adopt with the
fast changing model parameters. With GPUs being widely
adopted [33], our plug-and-play solutions can be instantly
leveraged (Section IV).
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Scheduling and Virtualization: Several warp and CTA
scheduling works have been proposed in the past [43]–[45]
to improve GPU performance by hiding memory latencies
effectively. Most of these works focused on improving cache
and memory contention or finding optimal thread-level paral-
lelism. We show that even on the recent A100 GPUs, latency
hiding capability is limited due to the limited register file
(Section III-C). Register-file virtualization techniques [46]–
[48] have been proposed in the past to address the issues
related to limited register file. However, they are implemented
in GPU hardware and often have non-trivial overheads. In
contrast, we provide a complementary software-only solution
(prefetching and pinning) that is aware of both GPU applica-
tion and underlying hardware (Section IV).

Prefetching on GPUs: Given that GPU memory bandwidth
is limited, data prefetching needs to be done carefully to
result into any performance benefits. Prior works on GPU
prefetching [49]–[52] consider this issue and show perfor-
mance improvements. However, to the best of our knowledge,
there is no prior work that considers software prefetching in
GPUs that is particularly tailored for emerging applications
such as DLRM (Section IV-B).

L2 Cache Management: Recently, with Nvidia’s Ampere
architecture and onwards [38], [39], the GPUs feature a
CUDA/PTX-based programmer control for L2 cache man-
agement [41]. [53]–[55] uses the L2 cache control for
improving GEMM, LSTM, fully-connected and convolution-
based kernels. In contrast, our paper proposes to apply this
feature for embedding stage by pinning the most frequently
accessed embeddings (Section IV-C).

III. DISSECTING EMBEDDING BAG EXECUTION ON A GPU

For better understanding the inference behavior on GPUs,
this section discusses: (1) the parallel implementation, work
partitioning, and mapping of the embedding stage on CUDA
threads; (2) a quantitative study of memory access patterns
used in production deployments; and (3) the architectural
implications of off-the-shelf and optimal-MT PyTorch-based
DLRM inference on GPUs, catering to a variety of memory
accesses. Finally, we conclude that memory latency continues
to remain a challenge, and motivate towards optimizations
addressing this issue to achieve better performance.

A. Parallel Implementation of the Embedding Bag Operator
The embedding stage of DLRM involves numerous parame-

ters, and understanding how each one affects the performance
is crucial. To illustrate this, Algorithm 1 highlights the high-
level working of the embedding stage. Arriving queries create
“batches”, where each batch is expected to meet the SLA
target. For each table, the batch contains a batch size (BS)
number of samples, and each sample involves a pooling factor
(or lookups per sample) amount of work over the embedding
vectors of length equal to the embedding dimension (ED).
At the core, each sample does a gather (load) and reduce
(accumulation) operation. The amount of data processed in
each table can be calculated as (BS) × (average lookups per
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Fig. 4: Parallel implementation of embedding stage by work
partitioning across CUDA threads. Here, 1000s of CUDA
threads independently work on one output matrix element.

sample) × (ED) × (precision). For example, for our chosen
configuration (described in Section V), the amount of data
processed per table is 2048 × 150 × 128 × 4B = 150
MB. Consequently, the complete embedding stage processes
37.5 GB of data. With the inference running on a GPU, the
gather-reduce operations are executed in a Single-Instruction-
Multiple-Threads (SIMT) manner, thus exploiting parallelism.

Algorithm 1 Simplified memory access loop for the embedding
stage on GPU.
for v in 0 ... num batches do

for w in 0 ... num tables do
for x in 0 ... batch size do

for y in 0 ... lookups per sample do
SIMT load accm on register;
for z in 0 ... embedding dim do

SIMT load row block on register;
SIMT add accm, row block;

SIMT store accm to memory;

To better understand the incorporated parallelism, Fig-
ure 4 breaks down the embedding stage execution into three
parts. First, for any number of embedding tables to be
completed by one GPU, they are processed sequentially.
Second, the embedding bag operator is used to process a
table (using PyTorch’s backend CUDA kernel ”Embedding-
Bag updateOutputKernel sum mean” [56]), which generates
an output matrix of dimension (BS) × (ED). Intuitively, we can
visualize that, within a batch, each sample and each embedding
element is independent of the other. Thus, a CUDA thread
works on each embedding element. In this off-the-shelf kernel,
we note a static execution launch configuration with a grid size
of (1024,1,1) and a block size of (32,8,1). This results in a
large number of CUDA threads, and thus, fully uses all the
SMs provided in the latest GPUs (e.g., the 108 SMs in A100).
Warps are automatically formed in the GPU by combining
adjacent CUDA threads. For example, with an embedding
dimension of 128, 4 warps are formed to process a sample.
Third, Algorithm 2 (Figure 4) highlights the work within a
thread which encapsulates a “number of lookups” amount of
gather-reduce operations (thus each thread partially completes
the two innermost loops in Algorithm 1). Fundamentally, the
gather is similar to a pointer-chasing operation as we access
a series of arrays to complete it (the offset array, followed by
the indices array, followed by the embedding table). Thus, this
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Fig. 5: Coverage study for different memory access patterns:
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operation results in the irregular loads which have a significant
impact on (and causes variation in) the performance of the
embedding stage (Figure 1).

B. Quantitative Study of the Memory Access Patterns
Embedding accesses in DLRMs follow a “power-law” dis-

tribution where a small portion of embedding table entries ser-
vices a large fraction of accesses [10], [11], [15]. In our study,
we use the datasets from a recent work [11], which extracts
homogeneous datasets using Meta’s production traces [57].

Building on prior works [10], [11], [15], [58], we investigate
various memory access patterns encountered in real-world
industrial settings and categorize them based on their degree
of ”hotness”. To understand hotness, we define two metrics
that classify memory access patterns within datasets: unique
access % and coverage study. For a given table, unique access
% represents the proportion of distinct accesses compared
to the total number of accesses. Essentially, it measures the
variety across memory locations accessed within the table.
Thus, considering a total of R accesses (number of rows in a
table) and U unique accesses, the unique access % is calculated
as U×100/R. Table III shows each dataset’s unique access %.
Note that one item and random are “synthetic” datasets; the
former corresponding to the case where all indices match and
point to the same entry in a table, whereas the latter means
all indices are uniformly distributed within a range of [0, R).
Thus, unique accesses range between 0 to 100%, being lowest
for one item and highest for random.

TABLE III: Unique access % in each dataset.
Datasets one item high hot med hot low hot random

unique access% 0.0002 4.05 20.50 46.21 63.21

Further, the distribution of the unique accesses influences
the actual memory access pattern. Figure 5 shows the coverage
study by noting how much total accesses get covered by a
given number of % unique access. For example, in the one
item case, one embedding covers all 100% accesses (making
the trend across x-axis uniform), whereas, in the high hot
case, 10% of the total unique items are sufficient to capture
68% of the total accesses. Regardless of the hotness, it is
important to note that the total memory access count remains
the same in each of these datasets. Thus, it is fair to compare
the performance of different datasets while ensuring the same
amount of observed loads. Using these two metrics, it can be

noted that, for a given table, the hotness decreases from ’one
item’ to ’random’, causing an increase in the working set size
and total number of irregular loads.

C. Architectural Implications of Embedding Bag on a GPU

Previous subsections have highlighted the amount of par-
allelism offered in the embedding bag operator and how it
leverages the GPU for execution. Modern GPUs [59], [60]
provide larger caches and HBM capacity, which directly help
embeddings data reuse behavior and bandwidth needs. In this
spirit, various previous works [15]–[17], [34], [58], [61] have
used GPUs for DLRM inference and training. However, to our
knowledge, no prior work has conducted a detailed profiling to
study the ’microarchitecture behavior’ of DLRM execution on
GPUs. Specifically, given that DLRMs are generally memory
bound [10], [11], [15], it is important to thoroughly verify
whether the primary application kernel is effectively utilizing
the GPU’s resources. With this motivation, we carefully inves-
tigate the embedding bag kernel Figure 4 [56] using Nvidia’s
Nsight Compute Tool (NCU) on an A100 80 GB GPU. Since
various memory access patterns affect the memory-bound
behavior, we evaluate multiple datasets (Table III).

TABLE IV: Microarchitectural characterization of Base Py-
Torch on various datasets. With 74 registers allocated to each
CUDA thread, the WLP is limited due to the register pressure.

NCU metrics/datasets one
item

high
hot

med
hot

low
hot

random

Kernel time (us) 138 237 341 428 442
#load insts (M) 2.47 2.47 2.47 2.47 2.47
SM Throughput % 71.45 41.27 26.65 21.23 20.42
warp cycles per executed inst 7.06 11.7 17.56 21.94 22.86
long scoreboard stall (cycles) 1 7.2 13.1 17.7 18.6
issued warp per scheduler per cycle 0.77 0.47 0.31 0.25 0.24
Global L1$ hit rate % 98.7 42.74 30.11 20.36 19
L2$ hit rate % 99.46 93.96 59.5 18.71 7.7
Device Memory size read(MB) 0 4.87 45.96 122 144.57
Avg HBM Read BW(GBps) ∼0 20.8 135 286.5 329.5
Avg HBM Read BW Utilization (%) ∼0 1.04 6.75 14.33 16.5

Table IV describes the off-the-shelf PyTorch characteriza-
tion using various NCU metrics. Recall that Figure 1 high-
lighted that random performs 3.2× slower than the fastest one
item case, even though both observe the same number of loads.
This is because the SM or compute throughput is heavily im-
pacted by random accesses. With the decrease in hotness (one
item to random), the data reuse gets reduced [11], causing an
increase in the warp cycles per executed instruction. As each
CUDA thread performs a pooling factor amount of gather-
reduce operations, a load-use dependency arises. We look into
the breakdown of warp cycles and inspect the long scoreboard
stall cycles to exactly capture these dependency stalls. For
all datasets except one item, the warp cycles are mainly
constituted from the long scoreboard stalls. The absolute stall
cycles are impacted by the amount of data captured by the
caches. Note that both warp cycles per executed instruction
and long scoreboard stalls are averaged over all executed
instructions, and so they cannot be directly compared to the
memory latency values in Table I. As one item dataset has a
minimal working set (512B), it experiences much lower stalls
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due to best cache locality. However, both L1 and L2 cache hit
rates significantly drop as the hotness lowers, increasing the
amount of data read from the device memory. Therefore, the
average bandwidth demand is significantly higher towards the
random dataset, reaching up to 329.5GBps. Further, the peak
read bandwidth (measured using Nvidia Nsight Systems [62])
achieved is 510GBps for the random case. However, this
observed bandwidth is small compared to the theoretical peak
bandwidth of HBM (2TBps). This significant disparity makes
us suggest that the Embedding Bag operator is a memory
latency-bound kernel.

The Nvidia A100 GPU is based on compute capability
8 [59], meaning that one SM houses up to a maximum of 64
resident warps. These resident warps enable WLP primarily
helping in hiding any kinds of stalls. We observe that the
PyTorch CUDA kernel [56] uses a high number of registers
(74), and thus suffers from the register pressure, leading to a
low theoretical occupancy of 37.5% (or 24 resident warps per
SM). Figure 3 indicated that one SM contains a total of 4 warp
schedulers, meaning that each scheduler gets to work with only
6 warps, even though the hardware supports a maximum of 16
warps. The metric “issued warp per scheduler per cycle” (also
called as “issue slot utilization”) captures the number of issued
warps every cycle, which is a function of both WLP and warp
cycles per issued instruction. Similar to the SM throughput,
it decreases as the hotness lowers. Thus, even though the
CUDA kernel encounters significant long scoreboard stalls,
the application lacks in providing effective WLP, limiting the
hardware’s capability to hide these stalls.

Since higher WLP could potentially better mitigate the
memory latency, we force the compiler to strategically limit the
allocated registers during compilation, resulting in more warps
to be resident in one SM, eventually improving the WLP.
To achieve this, we compile PyTorch with “-maxrregcount
maxreg” [63] flag, where the “maxreg” amount of allocated
registers is enforced by the compiler. However, with lower
registers in use, now register spilling occurs. The compiler
spills the registers to local memory which in turn penalizes
the performance. By varying the number of registers, we
can sweep through different WLP configurations as seen in
Figure 6. Here, we capture the performance improvement over
different datasets. Higher WLP helps in gaining performance
with maximum gain at 40 resident warps (denoted as OptMT).
Also, higher improvements are seen for low hot and random
cases as they require more latency hiding. Further, even though
48 and 64 resident warps provide better WLP, the performance
drops due to an increase in register spilling. The impact of
register spilling is measured in terms of local memory loads.
In the baseline PyTorch (24 warps per SM), all loads/store
accesses go to the global memory and none to the local
memory, meaning that all the embedding accesses are served
from the global memory. However, with an increase in WLP,
the register spilling increases, causing an increase in the local
memory loads which hurts performance. Thus, there is a clear
tradeoff between WLP and the spilling penalty. For instance,
in the high hot case, 64 resident warps per SM underperform
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Fig. 6: Synthetically varying the number of registers allocated
to improve WLP. The primary y-axis is speedup over off-the-
shelf PyTorch, and the secondary y-axis is the register spilling
penalty based on extra local memory loads (in millions).
OptMT refers to the highest speedup at 40 warps.

(compared to the baseline) as the spilling penalty overshadows
the potential benefits from multi-threading.

TABLE V: Microarchitectural characterization of Optimal-
Multithreading (OptMT) PyTorch on various datasets. With
42 registers allocated to each CUDA thread, the register
pressure lowers and the WLP significantly improves. Still, a
performance gap exists between the fastest and slowest loads.

NCU metrics/datasets one
item

high
hot

med
hot

low
hot

random

Kernel time (us) 135 189 250 282 290
#load insts (M) 3.54 3.54 3.54 3.54 3.54
SM Throughput % 71.89 54.93 39.3 34.72 33.84
warp cycles per executed inst 10.61 15.2 20.93 24.74 25.44
long scoreboard stall (cycles) 1.33 8.6 15.3 19.6 20.4
issued warp per scheduler per cycle 0.79 0.59 0.42 0.36 0.35
Global L1$ hit rate% 98.7 37 27.2 19.85 19
L2$ hit rate % 85.36 92.3 56.51 16.48 7.1
Device Memory size read(MB) 0.3 7.5 54.1 131.9 151
Avg HBM Read BW(GBps) 2.57 43 226.5 485.4 547.5
Avg HBM Read BW Utilization (%) ∼0 2.2 11.3 24.3 27.4

Table V describes the microarchitectural characterization for
OptMT. For one item, the performance matches the off-the-
shelf PyTorch. For the remaining datasets, the performance
significantly improves with the rise in SM throughput. The
metric “warp cycles per executed inst” is slightly higher
compared to the baseline for two reasons: (1) with the increase
in more resident warps, there exist times when multiple warps
are ready and not selected, thus causing an increase in the
“Stall Not Selected” stalls; (2) with the increase in warp
switching and local memory accesses, more cache thrashing
occurs for global accesses as visible with a slight decrease
in cache hit rates, leading to a slight increase in the “long
scoreboard stalls”. Based on the latter reason, the total reads
from device memory also slightly increases. Finally, the HBM
read bandwidth increases to meet the higher demand from
WLP. While our approach using limited register allocation
demonstrates performance gains compared to the baseline, the
“issue slot utilization” for the lower hotness cases remains
significantly less than the one-item case. This observation
suggests that even with the enhanced warp-level parallelism
(WLP), memory latency continues to be a bottleneck.

D. GPU-specific Key Microarchitectural Insights
The following key insights emerge from the preceding

microarchitectural characterization study on an A100 GPU:
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• Due to the variations in memory access patterns, a sig-
nificant performance gap could exist across the spectrum
of memory access patterns. In the baseline (or off-the-
shelf) PyTorch, this gap is visible and arises from the
long scoreboard stalls due to high cache misses.

• Although GPUs are equipped with high multi-threading
support, the off-the-shelf CUDA kernel suffers from
register pressure and fails to provide enough WLP.

• The WLP can be increased by forcing the compiler to
lower the allocated registers. However, it comes at the
cost of a performance penalty from register spilling. Peak
performance gain is seen with 40 resident warps (marked
as OptMT).

• OptMT lowers batch latency by up to 53% over the
baseline with visible benefits in the SM throughput. Yet,
the “issue slot utilization” continues to see a high gap
between the fastest and slowest loads.

• The average read memory bandwidth increases with
OptMT, yet it remains small compared to the peak of
HBM. Thus, we can conclude that the embedding bag
operator is memory latency bound on the GPU.

Thus, the best WLP contained within an application is
insufficient in fully hiding the long latency loads. In the
following section, we discuss two complementary techniques
to minimize the memory latency further.

IV. OPTIMIZATIONS TO IMPROVE THE WARP SCHEDULER
ISSUE SLOT UTILIZATION

For bridging the gap in the issue slot utilization across the
ends of the memory access spectrum, in this section, we first
describe the limitations of existing hardware and software
approaches. We then propose an application-driven software
prefetching strategy and discuss how it can take advantage
of various memory resources as buffering stations. Following
that, we propose an L2 pinning strategy to overcome the
potential shortcomings of prefetching. Finally, we describe
how prefetching and pinning can work synergistically.
A. Limitations of Off-the-Shelf Solutions

To deal with memory bound kernels, GPUs employ: (1)
WLP and zero-overhead context switching to keep executing
useful work even when a warp stalls; (2) large cache line
sizes (128 bytes) which help in exploiting spatial locality;
(3) a scoreboarding mechanism which helps to issue and
execute consecutive instructions without stalling the pipeline
until a dependent instruction is reached; and (4) scratch-pad
memory and L2 cache with explicit programmer control for
intelligent data placement and reuse. While the off-the-shelf
CUDA kernel takes advantage of (1), (2) and (3), it still lacks
in performance, as previously highlighted in Section III-D.

To take advantage of (3) and (4), an optimizing compiler or
application-specific software development can help. An opti-
mizing compiler would try to come up with a valid reordering
of instructions to improve performance. For instance, compiler
could hoist independent instructions between a load and use
dependency and thus promote scoreboarding to minimize
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Fig. 7: Buffer locations used for various prefetching schemes.
A CUDA thread is shown executing SMPF, a batch of 10
prefetches(P) are launched every 10th iteration, and a re-
duce(R) operation every iteration.

pipeline stalls. In this direction, loop unrolling could be useful
as it broadens the scope of finding independent instructions
using later iterations. However, when testing the optimal
compiler (in O3 level), we note that inserting “#pragma unroll”
does not have any positive impact on performance because of
the runtime-dependent loop bounds (Figure 4). Furthermore,
the compiler cannot directly manage the scratch pad or L2. We
believe these challenges open the door for application-specific
software optimizations which can take advantage of specific
hardware features of GPUs.

B. Application-Driven Data Prefetching

Data prefetching is a classic technique to improve per-
formance for memory latency-bound kernels and has been
well-adopted in both software [64] and hardware [65], [66].
However, on-chip prefetching in GPUs is uncommon, due to
GPUs extensive reliance on WLP for latency hiding [25].
Also, unlike CPUs, GPUs do not employ dedicated on-chip
hardware-based prefetching engines. Thus, the CUDA pro-
grammer can develop tailor-made prefetching solutions for
their application while minimizing its overhead challenges. To
comprehensively explore the design space of prefetching, we
formulate a series of key questions as discussed next:

What to Prefetch? Recall that Section III-A highlighted the
presence of the gather-reduce operations (forming a load-use
dependency chain) as part of pooling operations performed by
each CUDA thread. Here, the gather operation is an indirect
load (pointer-based load) and spans a variety of memory
access patterns (Table III), which leads to long scoreboard
stalls (Tables IV and V). Thus, this gather operation is our
prefetch target. During the kernel launch of the embedding
bag operator, each CUDA thread receives an offset and indices
array. These two arrays essentially provide each thread with
the complete set of addresses it will need to load data from.
Consequently, by leveraging this knowledge of future access
patterns before the actual loads are required, we can insert
100% accurate prefetches.

Where to Prefetch? Ideally, for the goal of latency hiding,
we would like to prefetch the data as close to the CUDA
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INITIALIZE: bfr0, bfr1, pf_cnt = 0, 
begin = offsets[bag], end = offsets[bag+1];
START:
for (idx:begin Æ end):
  int trigger_prefetch = pf_cnt%2;
  if (trigger_prefetch == 0){
    weightRow = indices[idx];
      bfr0 = weightFeat[weightRow];
      weightRow = indices[idx+1];
      bfr1 = weightFeat[weightRow];
  }
  pf_cnt = pf_cnt + 1;
  switch(trigger_prefetch){
    case 0: weightValue = bfr0;
    case 1: weightValue = bfr1; }
  weightSum += weightValue;

output[bag][featureDim] = weightSum;

INITIALIZE: prefetch_bfr[256][10], 
begin = offsets[bag], end = offsets[bag+1], 
pf_cntr = 0;
START:
for (idx:begin Æ end):
  int trigger_prefetch = pf_cntr%10;
  if(trigger_prefetch==0){
     #pragma unroll
     for (int zz = 0; zz < 10; zz++){
      weightRow = input[emb + zz];
      prefetch_bfr[thread_id][zz] = 

                             weightFeat[weightRow];
     }
    }
  pf_cntr = pf_cntr + 1;
  weightValue = prefetch_bfr[thread_id]
                                      [trigger_prefetch];
  weightSum += weightValue;
output[bag][featureDim] = weightSum;

a) Register-based Prefetching b) Shared Memory-based 
    Prefetching

Fig. 8: Prefetching implementations: (a) RPF (b) SMPF

core pipeline as possible. However, the hardware could be
limited in resources, and thus it is wise to consider a variety of
locations for storing the prefetches (buffer stations). Figure 7
shows a total of 4 buffer stations – register, shared memory,
L1 D$, and local memory. We do not pick L2 since its access
latency is quite high (261.5 cycles [42]). Note that each buffer
station has pros and cons. Specifically, in terms of access
latency, the register is optimal, whereas, in terms of size,
L1 D$ and local memory are optimal locations. Note also
that local memory is the scope of a variable, and the data
can reside in L1/L2/HBM [67]. We design and implement
prefetching for all 4 buffer locations, and use the following
abbreviations: RPF for Register-based Prefetching, SMPF for
Shared memory-based Prefetching, LMPF for Local memory-
based Prefetching, and L1DPF for L1D$ Prefetching.

How and When to Prefetch? Fundamentally, we want
to issue a prefetch much ahead of its demand to hide the
worst-case latency (timeliness property). Also, as mentioned
at the beginning of the section, GPU employs a scoreboard
mechanism for ILP. In the CUDA program, one can take
advantage of it by manually reordering the instruction stream
to pack a batch of needed load instructions. Towards this, for
RPF, SMPF, & LMPF, (1) we mimic prefetching with the
ahead-of-time issue of the demand loads and storing the data
into a buffer station, thus the prefetch becomes the producer
of the data, and (2) when this data is consumed by the reduce
operation, it fetches it from same buffer station. Based on this
understanding, Figure 8 shows a simplified implementation of
the RPF and SMPF schemes on top of Algorithm 2. LMPF
can be similarly implemented. For L1DPF, we use a PTX-
based intrinsic “prefetch.global.L1” [68] to prefetch the data
into L1D$, similar to commonly used CPU intrinsics [64]. To
achieve timeliness (and ultimately optimal performance), we
vary the prefetch distance to find the optimal value. Figure 9
evaluates the prefetch distance for the SMPF scheme over
various datasets and finds the optimal prefetch distance as 10.

Countering the Potential Overheads? As discussed above,
by systematically navigating the search space, prefetching
can find the optimal design points and improve performance.
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Fig. 9: Performance impact of prefetch distance in SMPF.

However, various overheads could arise: (1) With the addition
of software prefetch support, the total instructions executed
could increase, leading to increased computation. For example,
a 37.2% overhead is observed in SMPF. (2) Many prefetch
distance choices could degrade the performance. For example,
in Figure 9, a distance of 1 hurts the performance for all
datasets. Also, similar to [45], a large distance could create
LSU stalls. Furthermore, injected prefetches could hurt the
locality of other parts of the code. (3) With the optimal
prefetch distance of 10 in Figure 9, for random case, while
the long scoreboard stalls significanlty reduce from 18.6
cycles(Table IV) to 4.6 cycles, the remaining stalls suggest
suboptimal timeliness. (4) For a given buffer station, we are
limited by either the size or latency it offers. For example,
while the register access is fastest (Table I), their limited count
can become a bottleneck, as noted with limited WLP and
register spilling (Section III-C).(5) Though not in our case, any
scope of inaccurate prefetching or unavailability in off-chip
bandwidth headroom could hurt performance by causing cache
pollution [52] or throttling of demand memory requests [69].

Therefore, through a combination of profiling-based study
and empirical tuning, we establish a high-performance
prefetching strategy that delivers 100% coverage and accuracy.
Yet, various overheads (like extra instructions and increase in
bandwidth demand) and sub-optimal timeliness could hold. To
resolve these, in the next subsection, we propose L2 pinning
which can complement prefetching.

C. Application-Aware L2 pinning

Traditionally, GPUs have prioritized compute cores over
cache capacities while relying on WLP for tolerating long
latency stalls. However, with the rise of new applications (e.g.,
those based on deep learning) and larger chip areas, modern
GPUs are witnessing an increase in cache capacities (Table II).
Further, Nvidia GPUs (from Ampere architecture onwards)
have recently released support for CUDA programmer-based
L2 cache access management (residency control [41], which
enables a portion of the L2 cache to be used for persistent data
access). Given that off-chip memory accesses are very costly
(Table I), a programmer with the knowledge of the underlying
memory access pattern behavior can mark the persistence of
high-reuse regions that otherwise may suffer from thrashing.
Given that the memory accesses in the embedding stage follow
a Power Law distribution (Figure 5), we propose an L2 pinning
(L2P) design that can benefit from L2 residency control for
the embedding accesses. Towards this, we first discuss the
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1. Offline identification of top 60k hot indices
2. Load top 60k hot indices into GPU’s memory
3. Launch a CUDA kernel to pprefetch and pin
       hot embeddings
4.   Launch the eembedding bag CUDA kernel

…

Fig. 10: High-level design of L2P
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Fig. 11: Detailed study of L2 pinning over various pooling
factors. Speedup is reported over off-the-shelf PyTorch.

design and implementation, and then discuss the performance
expectations and associated overheads.

What, When, and How to Pin? In an A100 GPU, a
maximum of 30MB (75% of L2) can be set-aside for residency
control, while the remaining (at least 10MB) is completely
hardware managed. To promote the highest locality, we pro-
pose using the complete 30MB for storing the most frequent
embedding vectors. Since each embedding vector is of size
512KB, thus a maximum of 60K embedding vectors can
be pinned in L2. Figure 10 shows the high-level design
for L2P. We conduct an offline profiling to identify the top
60K hot indices present for each dataset which are used as
candidate embedding entries for pinning. In the beginning
of the inference server, these indices can be loaded into the
GPU’s main memory. The embedding tables are processed
sequentially, and each table follows two steps: (1) launch
a CUDA kernel that prefetches and pins embedding vectors
corresponding to the hot indices, and (2) launch the default
embedding bag CUDA kernel. We use the inline PTX in-
struction ”prefetch.global.L2::evict last” [68], which takes an
address as input, loads the associated cache line into L2, and
marks the eviction policy as “evict last”. Setting this eviction
policy allows the marked/chosen data to persist in L2 over
others. For instance, during an eviction event in L2 for a
set, the marked cache lines are less likely to be kicked out.
Thus, the embedding stage is expected to observe lower access
latency for a majority of the memory accesses (261 cycles over
466 cycles from Table I).

Performance Expectations and Overheads? Although
hardware caches capture hotness to an extent (Table IV), we
expect L2 pinning to further enhance locality by avoiding: (1)
L2 cold misses for hot indices, and (2) thrashing of highly
reused embeddings. Moreover, the effectiveness of hardware
caches is impacted by the batch and pooling sizes (based on
the model and scheduling policy) where smaller sizes lead to
lower reuse situations. As expected, L2P improves over the
baseline, yielding more benefits in lower pooling cases, and
performs slightly better for the med hot case (Figure 11).

Clearly, embedding access patterns can change over time,
potentially reducing the effectiveness of L2 pinning. To ad-

dress this challenge, similar to prior research [70], we can
update the pinned data periodically. This ensures that the L2
cache always stores the most frequently accessed elements,
maximizing the benefit of pinning. The overhead of storing
the top 60K indices for every table on a GPU is minimal.
For example, for 250 tables, it would be 250×60K×8B =
∼120MB. Finally, the overhead of the L2P kernel is small and
can be hidden by overlapping it with the CPU pre-processing
required before the embedding bag kernel launch.
D. Synergy between Prefetching and Pinning

In this subsection, we discuss how prefetching and pin-
ning can symbiotically work with each other, and thus fur-
ther improve upon embedding bag’s memory-latency bound
regime. While prefetching hides the long load latency by
bringing the demand loads ahead of time near the CUDA
core pipeline (registers, shared memory, or L1D$), it still
suffers from suboptimal timeliness and puts pressure on the
off-chip bandwidth. Similarly, even though pinning lowers the
load latency by bringing and holding the frequently-accessed
embeddings in the L2 cache, it still lacks because (1) 30MB
of L2 set-aside cannot fully cover the working set required by
the datasets, especially in the low hot and random cases, and
(2) access latency with L2 is significantly high (261.5 cycles;
see Table I), compared to registers, shared memory, or L1D$.
When combined, prefetching strengthens pinning by providing
100% coverage and faster access to the CUDA core pipeline,
and pinning bolsters prefetching by improving the timeliness
while cutting down on HBM requests.

V. METHODOLOGY

Hardware: Table VI captures the hardware properties of
our real-system evaluation setup.

TABLE VI: System specifications used for evaluation
CPU AMD EPYC 7763
RAM 1 TB
GPU Nvidia A100-SXM4-80GB

# SMs 108
Register File per SM 64K × 32 bit

L1D Cache size 192KB
Shared Memory size up to 164KB

L2 Cache size 40MB
Device Memory 80GB, HBM2e

HBM Bandwidth 1.94TB/s

Software: PyTorch (v2.1.0) [71] is source-compiled
on a Linux/Ubuntu machine with CUDA Driver Version:
535.129.03, and nvcc version 12.2. Here, source-compiled Py-
Torch matches off-the-shelf packaged PyTorch in performance.
“nvcc” compilation is highly optimized with O3 flag [72].

Model: Taking inspiration from [10], [11], [15], [35],
we pick model configurations which are representative of
industrial inference settings. Following are used: (1) Bottom
MLP dimensions are ”1024-512-128-128” (2) Embedding
stage has 250 tables, each table having 500,000 rows and 128
embedding dimensions (3) Top MLP dimensions are ”128-
64-1”. 4-byte precision is used which makes each embedding
vector of size 512KB. The total model weight is of size
∼60 GB which can completely fit within one GPU’s memory
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while the remaining memory is used for computations across
intermediate layers. Unless mentioned otherwise, all tables are
homogeneous in hotness. Table VII describes a mixture of
tables for heterogeneous evaluation.

TABLE VII: Heterogeneous Mixture of Model configuration
Mixture/Datasets high hot med hot low hot random

Mix1 (#tables) 100 75 50 25
Mix2 (#tables) 62 63 63 62
Mix3 (#tables) 25 50 75 100

Datasets: Following an earlier work [11], we use the
publicly released homogenized production traces from Meta
[57], [73]. Thus, we consider a variety of hotness (memory
access patterns): one item, high hot, medium hot, low hot,
and random. Section III-B quantitatively compares these
datasets. To represent a large access pool similar to a real
inference, we calculate the unique access % averaged over 100
measurements (Table III). Inspired by [11], [15], [57], [58],
a large batch size of 2048 and a large “lookups per sample”
(or pooling factor) of 150 is used, .

Nomenclature for combined schemes: Any combined
scheme is denoted using a ‘+’ symbol. For example,
RPF+L2P+OptMT is a combination of 3 schemes, namely,
RPF, L2P, and OptMT.

VI. EVALUATION

Based on real system measurements, we evaluate the
benefits of our proposed latency hiding schemes: OptMT
(Section III-C), Software Prefetching [RPF, SMPF, LMPF,
L1DPF], L2 Pinning (L2P), as well as their combined versions
(Section IV). We first study the key improvements in em-
bedding stage and end-to-end DLRM with micro-architectural
justifications, followed by sensitivity studies. In all our eval-
uations below, off-the-shelf PyTorch [36], [56] (with the
property of 24 theoretical active warps per SM) is used as
the “baseline”, and all the stages of DLRM inference run on
a GPU. Performance is measured as “batch latency”, and all
improvements are reported over off-the-shelf/base PyTorch.
A. Key Results

1) Boost in Embedding Stage Performance: Given our
proposed schemes target the primary bottleneck (Embed-
ding Stage) in DLRM, we first highlight the embedding-
only benefits. Figure 12 evaluates the performance of various
design points across different datasets. As highlighted earlier
in Section III-C, OptMT exploits the GPU’s WLP better,
thus, better hiding the long latency loads. RPF and L2P
complement OptMT by further lowering the latency (note
that we have picked RPF as the winning prefetching scheme
due to it performing slightly better over other schemes; see
Section VI-B1). As L2P is more useful for smaller working
set situations, more improvement is seen with the high/med
hot cases, and as RPF is more suitable for long latency load
situations, more improvement is seen with low hot/random
cases. Finally, we note that RPF and L2P combined further
improves the performance, achieving up to a 2.03× speedup
(random case). Interestingly, the highest benefit is 13.5% in
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Fig. 12: Embedding-only improvement in latency of the pro-
posed techniques with OptMT over off-the-shelf PyTorch.
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Fig. 13: End-to-end improvement in latency of the proposed
techniques with OptMT over off-the-shelf PyTorch.

the med hot case over the previous optimal (RPF+OptMT),
thus maximally complementing each other.

2) Boost in End-to-End DLRM Performance: Given that
DLRM is composed of 4 stages (Section II-A) which col-
lectively influence the batch latency, we also evaluate the
benefit of our proposed schemes with respect to the end-
to-end latency (Figure 13). Note that the trends in speedup
remain similar to Figure 12, with a minor degradation in the
final speedups (since embedding is the bottleneck). It can
also be noted that the combined scheme (RPF+L2P+OptMT)
achieves a significant speedup of up to 77% (random case).
Recall Figure 1 highlighted the performance gap between
the fastest (one item dataset) and slowest (random dataset)
loads being 3.2× and 2.1× for off-the-shelf and OptMT
Pytorch, respectively. With the synergistic integration of our
proposed schemes in play, we are able to substantially lower
the performance gap (higlighted in Figure 14) to only 1.57×,
thus decreasing it by 163% and 53% over off-the-shelf and
OptMT PyTorch, respectively. Therefore, with the Embedding
Stage running optimally, its contribution in the end-to-end
execution reduces by up to 10% (random).

3) Microarchitectural Justifications: To better understand
the above gains, we profile the proposed schemes using
NCU [74]. Table VIII and Table IX show the microarchitec-
tural measurements for RPF+OptMT and RPF+L2P+OptMT
designs, respectively. Due to limitations in NCU profiling [75],
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Fig. 14: Embedding stage contribution in the end-to-end
latency.
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we could not measure all the metrics for the integrated scheme.
For the random case, RPF+L2P+OptMT achieves an issue slot
utilization of 44%, thereby improving by 83% over baseline,
and 26% over OptMT. This is because RPF+OptMT better
utilizes the memory bandwidth, reaching up to 700 GBps,
significantly higher than the baseline (329.5 GBps). With L2P
combined, for the high and med hot cases, it lowers the total
amount of data read from the device memory by 71% and
16.2%, thus lowering memory access latencies and saving
memory bandwidth.

TABLE VIII: Microarchitectural details for RPF+OptMT
NCU metrics/datasets high

hot
med
hot

low
hot

rand

Kernel time (us) 177 205 220 224
#load insts (M) 4.43 4.43 4.43 4.43
SM Throughput % 59.3 49.7 44.4 43.3
issued slot utilization (%) 59.17 49.65 44.32 43.5
Device Memory size read(MB) 8.4 53 133 151.8
Avg HBM Read BW(GBps) 51.4 277.7 629.1 699.4
Avg HBM Read BW Utilization (%) 2.6 13.9 31.5 35

TABLE IX: Microarchitectural details for RPF+L2P+OptMT
NCU metrics/datasets high

hot
med
hot

low
hot

rand

Kernel time (us) 167 190 216 217
#load insts (M) 4.43 4.43 4.43 4.43
SM Throughput % 60 49.9 44.5 43.3
issued slot utilization (%) 60.12 50.21 44.64 43.61
Device Memory size read(MB) 4.9 45.6 128 150
Avg HBM Read BW(GBps) 30 240.6 613.2 698
Avg HBM Read BW Utilization (%) 1.5 12.3 30.7 34.9

B. Sensitivity Analysis

1) Winning Prefetching Scheme: Earlier, Section IV pro-
posed 4 different data prefetching schemes based on the buffer-
ing location of the prefetches – register, shared memory, local
memory, or L1 data cache. Because of this, the implementation
of each scheme differs. For each prefetching scheme (on top of
OptMT), we empirically find the optimal “prefetch distance”
by doing a sweep similar to that in Figure 9. Interestingly, we
find that all schemes perform best at a prefetch distance of
2. Figure 15 compares all prefetching schemes in conjunction
with OptMT over the baseline PyTorch. It can be noted that
all schemes improve on top of the baseline, where L1DPF
improves the least and RPF improves the most. However, to
implement prefetching, we modify the CUDA kernel which
results in extra instructions, thus adding overhead by increas-
ing the total raw instructions to be processed. Among all the
schemes tested, we note that L1DPF suffers the most from
this overhead. We further note this overhead becomes more
critical in the high hot cases where the prefetching finds less
opportunity to benefit, resulting in a 15% drop in speedup
when compared to the only OptMT.

RPF, SMPF, and LMPF perform very close in all the
datasets, with RPF marginally winning. This is because the
register file is closest to the execution pipeline when compared
to other buffer locations (Table I). Thus, prefetching achieves
{34%, 66%, 94%, 97%} speedups for the {high, med, low}
hot and random, respectively.
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Fig. 15: Comparison of all prefetching techniques with OptMT
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Fig. 16: Comparison of techniques for off-the-shelf Pytorch.

2) Improvement over Baseline PyTorch without OptMT:
Earlier, Figure 6 highlighted that OptMT improves the per-
formance over baseline PyTorch, and our proposed techniques
can work in conjunction (Figure 12) with OptMT. However,
we also evaluate our proposed schemes directly over baseline
(no OptMT) to validate their effectiveness in the original
situation. Here, we compare all prefetching schemes with their
optimal prefetch distance (i.e., {4,10,10,5} for {RPF, SMPF,
LMPF, and L1DPF}, respectively) (Figure 16.a). Compared to
Figure 15, the winning scheme is not RPF but SMPF. Further,
LMPF performs second, L1DPF third, and RPF fourth. For the
high hot case, RPF and L1DPF underperforms due to higher
instruction overheads. Also, SMPF enhances the performance
of all the datasets. When comparing SMPF to RPF+OptMT, it
matches the performance in the low hot and random datasets,
and slightly underperforms in the high and med hot datasets.
We noticed that nvcc compiles the SMPF implementation
with 32 warps per SM, instead of 24 (as used in off-the-
shelf PyTorch). Using the higher benefit of multi-threading
(Figure 6), this makes SMPF perform better than LMPF, thus
making it winning scheme. In contrast, for RPF, nvcc allocates
more registers per kernel as the prefetch distance increases,
leading to very few (16) warps per SM (for distances >= 5),
thus severely hurting performance.

Considering the winning scheme to be SMPF, Figure 16.b,
highlights the embedding-only improvement of L2P and
SMPF+L2P over the base PyTorch. L2P improves the high
hot and med hot cases by 4.5% and 6.4%, respectively, while
marginally improving for the low hot and random cases.
Further, L2P combines with SMPF and further enhances the
performance over SMPF only. When comparing to the benefit
coming with OptMT (Figure 12), it can be seen that SMPF
+ L2P matches the performance for the low hot and random
datasets while slightly underperforming for the high hot and
med hot cases. This is because OptMT helps in hiding the
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Fig. 17: Embedding-only improvement of the proposed tech-
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latency without adding any instruction overhead. It is also
interesting to note that L2P+OptMT performs quite well over
OptMT, since L2P better holds the data which otherwise could
get evicted due to thrashing across warps.

3) Heterogeneous Table Mixing: Given that DLRMs are
executed in both homogeneous [11], [15] and heterogeneous
settings [22], [58], we evaluate a synthetic case where non-
uniform tables (Table VII) are present within the embedding
stage by having a mixture of hotness. Figure 17 compares
the performance of all proposed schemes in association with
OptMT. In general, all schemes perform better on a higher
mix due to more contributions from the low hot and random
datasets. Further, within any mix, the combined scheme per-
forms the best by improving over any individual scheme.

4) Evaluation on H100 NVL GPU: We also evaluate the
applicability our proposed schemes on an H100-NVL GPU
[76], which is increasingly being embraced by the datacenters
[77], [78]. H100 NVL has 132 SMs (with a total of 16896
CUDA cores), 192KB L1, 50MB L2, 3.84 TBps HBM3 (at 2.7
GHz DDR). The measured base-PyTorch latency values (in us)
are {174, 228, 282, 295} for the {high, medium, low, random}
datasets, respectively. Thus, H100 gives an average 47% uplift
in performance (comparing with (Table IV)). Notably, our
optimization designs on A100 perform 23% faster than the
H100 base performance, thus making it a more cost-effective
solution than simply adopting more expensive GPUs.

Figure 18 sweeps through possible WLP configurations and
finds maximum gain at 32 resident warps (which is different
from 40 warps for A100). Similar to Figure 6, higher gains
of MT are visible for low hot and random cases. Finally,
Figure 19 shows the performance benefit of RPF+L2P+OptMT
for H100 and compares it with A100. For both OptMT and
integrated schemes, H100 observes a little lower speedup
compared to A100 which is due to the microarchitectural
differences, particularly with H100 having 27% faster SM
clock, 33% larger L1D$, 25% larger L2$, 20% wider HBM
width, and 64% faster HBM clock. Yet, we continue to see
significant speedups for all datasets (up to 84%).

VII. DISCUSSION

A Static Profiling Framework for adoption of our
proposed designs: Achieving the ideal performance (like

0

1

2

3

4

0.8

1

1.2

1.4

1.6

24 32 40 48 64 Lo
ca

l L
oa

d 
in

st
ru

ct
io

ns
 (M

)

Sp
ee

du
p 

ov
er

 b
as

e 
Py

To
rc

h

# Theoretical Active Warps per SM

high hot med hot low hot
random local loads (M)

Fig. 18: On H100 NVL GPU, the number of registers allocated
is varied to find optimal WLP. The primary y-axis is speedup
over off-the-shelf PyTorch and the secondary y-axis is the
register spilling penalty based on extra local memory loads
(in millions). OptMT on H100 refers to the highest speedup
at 32 warps.

0
0.5

1
1.5

2
2.5

OptMT RPF+L2P+OptMT OptMT RPF+L2P+OptMT

H100 EsL A100 SyM4
Sp

ee
du

p 
vs

. B
as

e 
Py

to
rc

h

high hot med hot low hot random

Fig. 19: Comparison of Embedding-only improvement in
latency of the integrated scheme over off-the-shelf PyTorch
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Figure 12) requires finding the optimal design points for multi-
threading and prefetching (where and when to prefetch). We
propose a static profiling framework instead of developing
an analytical model or heuristics. As the default hardware
involves various in-place optimizations like memory-level-
parallelism in conjunction with multi-threading, it makes it dif-
ficult to holistically capture the complexities with a heuristic.
Additional challenges arise with proprietary nvcc and limited
public details on GPU microarchitecture, making the heuristics
susceptible to errors.

Thus, we introduce a static profiling framework aimed
at conducting design space exploration to identify the most
effective design points. The steps are as follows: (i) As-
sess if the kernel is memory latency bound by checking
the memory access patterns, cache misses, and long la-
tency scoreboard stalls. (ii) Assess if the kernel occupancy
is maximum. If not, check the usage of register, shared
memory, and kernel launch configurations. (iii) If register
usage is high, OptMT can be found by varying the allo-
cated registers. Use nvcc compiler flag “-maxrregcount” to
control the assigned registers, where the needed registers are
≤ (max registers per SM)/((desired active warps) ∗
(warp size)). (iv) After applying OptMT, assess if the kernel
is still memory latency bound. If yes, carefully-tuned pinning
and prefetching can help. (v) Assess if there is scope for
applying L2 pinning by checking for any high reuse behavior
towards certain data accesses and comparing the working
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footprint of kernel with the L2 cache size. If yes, sort the data
addresses in descending order based on their reuse amount and
apply the steps shown in Figure 10. (vi) If the performance
is still memory latency bound and memory bandwidth is not
saturated (under 80% usage), use prefetching and evaluate
performance for different buffer locations as guided in Figure 8
by sweeping across the prefetch distances. Note that, when the
MT is low, a higher prefetch distance is expected, and vice
versa. (vii) Combine both prefetching and pinning.

Generalizability: Following the above Static Profiling
Framework, we believe that memory-bound workloads (other
than DLRMs) executing on GPUs can benefit from our key
contributions with potential applications being Graph Neural
Networks [79] and Graph Mining [80].

Scalability and Industrial Adoption: Although we con-
sider model sizes which can fit within one GPU, as our
proposed techniques optimize the embedding table granular-
ity, our solutions are applicable for large-scale distributed
inference scenarios [28]. Further, the forward pass in the
training pipeline [81]–[83] could benefit from our schemes.
By offering a readily deployable and performant solutions
with prefetching and pinning, our work opens doors for wider
industrial adoption of optimized DLRM inference pipelines.

VIII. CONCLUSION

With the ever-increasing compute and memory bandwidth
requirements of DLRMs, they are increasingly getting adopted
on GPUs. However, improving DLRM inference performance
on GPUs needs co-examination of DLRM models and the
underlying architectural artifacts. In this work, we show that
the embedding stage continues to dominate the DLRM in-
ference pipeline, causing a performance gap of up to 3.2×
in the worst case. We show that standard embedding kernels
underutilize the warp level parallelism (WLP) offered by the
GPU hardware, and can be improved via compiler optimiza-
tions. Yet, the optimal WLP is insufficient in fully hiding the
long latency load stalls. To tackle this, we propose specialized
techniques (software prefetching and L2 pinning), and also
combine them. Without requiring any modifications in the
hardware or models, our experimental evaluations on A100
and H100 GPU over large models and a variety of datasets
indicate performance improvements by up to 103% for the
embedding stage, and up to 77% for the overall inference.
We set a new benchmark for any future research, and believe
that our proposed designs can be generally applied to a wide
range of memory-bound kernels.
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APPENDIX

A. Abstract
The artifact covers the complete steps to setup DLRM

inference on GPUs. It provides the codebase for the proposed
schemes: (1) improve WLP by lowering register allocation (2)
various prefetching designs (3) L2 pinning design (4) most
performant combined design (RPF + L2P + OptMT). Also,
the necessary datasets are shared. Overall, the steps are shared
to help reproduce the figures in the results section.

B. Artifact check-list (meta-information)
• Algorithm: DLRM inference
• Program: DLRM implementation from Meta using PyTorch
• Compilation: gcc 11.4.0, nvcc 12.2
• Model: DLRM variants mentioned in Gupta et al – Section V
• Data set: Section V
• Run-time environment: Ubuntu 22.04.4 LTS
• Hardware: CPU: AMD EPYC 7763 64-Core Processor, GPU:

Nvidia A100-SXM4-80G (complete details in Table VI
• Metrics: Batch Latency (ms), Speedup over base PyTorch
• Output: Batch Latency (ms)
• Experiments: Figure 12
• How much disk space required (approximately)?: 80GB
• How much time is needed to prepare workflow (approxi-

mately)?: 2-3 hours
• How much time is needed to complete experiments (approx-

imately)?: Under 1 week
• Publicly available?: Yes

C. Description
1) How to access: The codebase is available on Zenodo

at https://doi.org/10.5281/zenodo.13325108 and Github at
https://github.com/rishucoding/reproduce MICRO24 GPU
DLRM inference

2) Software dependencies: The required software depen-
dencies are outlined in the repository.

3) Data sets: The required dataset files are added to the
repository.

4) Models: Steps to save and load models are added in the
repository.

D. Installation
The detailed installation steps are mentioned in the artifact,

and the following is a high-level summary of the steps:
1) Install Anaconda
2) Install PyTorch
3) Evaluate baseline performance over various datasets.
4) Evaluate OptMT over various datasets.
5) Evaluate RPF+OptMT over various datasets.
6) Evaluate L2P+OptMT over various datasets.
7) Evaluate RPF+L2P+OptMT over various datasets.

E. Experiment workflow
We suggest to follow the README.md file in the above

repository.

F. Evaluation and expected results
Figure 12 can be directly reproduced following the given

steps.

G. Experiment customization
Models, datasets, and optimization designs can be cus-

tomized to evaluate various configurations, and thus reproduce
majority of results shown in Section VI.

H. Notes
Please raise a Github issue for any questions.
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