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ABSTRACT

Serverless Computing has garnered significant interest for
executing High-Performance Computing (HPC) applications
in recent years, attracting attention for its elastic scalabil-
ity, reduced entry barriers, and pay-per-use pricing model.
Specifically, highly parallel HPC apps can be divided and
offloaded to multiple Serverless Functions (SFs) that exe-
cute their respective tasks concurrently and, finally, their
results are stored/aggregated. While state-of-the-art user-
side serverless frameworks have attempted to fine-tune task
division amongst the SFs to optimize for performance and/or
cost, they have either used static task division parameters or
have only focused on minimizing the number of SFs through
task packing. However, these methods treat the HPC code
as a black-box and usually require significant manual inter-
vention to find the optimal task division. Since a significant
portion of the HPC applications have a loop structure, in
this work, we try to answer the following two questions: (i)
Can modifying the loop structure in the HPC code, origi-
nally optimized for monolithic (non-serverless) frameworks,
enhance performance and reduce costs in a serverless archi-
tecture?, and (ii) Can we develop a framework that allows
for an efficient transition of monolithic code to serverless,
with minimum user input?

To this end, we propose a novel framework, FAASTLOOP,
which intelligently employs loop-based optimizations (as
well as task packing) in SF containers to optimally execute
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HPC apps across SFs. FAASTLoOP chooses the relevant op-
timization parameters using statistical models (constructed
via app profiling) that are able to predict the relevant perfor-
mance/cost metrics as a function of our choice of parameters.
Our extensive experimental evaluation of FAASTLOOP on the
AWS Lambda platform reveals that our framework outper-
forms state-of-the-art works by up to 3.3%X and 2.1X, in terms
of end-to-end execution latency and cost, respectively.
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1 INTRODUCTION

A growing number of organizations are turning to cloud plat-
forms for deploying High-Performance Computing (HPC)
applications [10, 13, 27, 30, 43, 48], driven by the need for
continuously-updated and -managed hardware, software,
and tools provided by cloud vendors [1, 4, 25]. Among the
public cloud services, serverless computing has seen sub-
stantial growth [3, 5, 45], due to its scalability and pay-as-
you-go model. In recent years, increasing number of works
have used Serverless Functions (SFs) in various HPC appli-
cations, including data-parallel scientific computation, ma-
chine learning (ML), and parallel video processing [8, 11-
14, 22, 28, 31, 34, 36, 38]. This surge in adoption can be at-
tributed to several compelling advantages that SFs offer to
highly parallel HPC applications: 1) Burst-parallel compute
on demand: SF’s ability to scale computing resources elasti-
cally and quickly, which is ideal for many HPC apps, which
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can experience varying levels of parallelism, depending on
the size of the input; 2) Fine-grained billing: SF’s pay-per-use
billing model is particularly advantageous for HPC applica-
tions with sporadic requests of high-resource demands; and
3) Simplified management: SF lowers the barriers to entry
imposed by the high costs of maintaining and upgrading
clusters.
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(a) Normalized execution time with respect to (w.r.t) Oracle
(optimal run from offline parameter sweep) comparison for
different input matrix sizes (N) with same parallelization
strategy. A strategy reasonable for N=2K (0.5 over Oracle),
is significantly worse for N=8K (3.3x over Oracle).

& 30
20

10

E2E Tine (in

|

OUTER OUTER
LOOP(k) LOOP(i)

0

(b) End-to-end time comparison of VM optimized paralleliza-
tion strategy (OUTERLOOP(k)) with another paralleliza-
tion strategy (OUTERLOOP(i)). VM optimized parallelization
strategy (OUTERLOOP(Kk)) is at least 2x worse in SF architec-
ture.

Figure 1: Exploring the complexities of parallelization
strategies in serverless architectures, using the exam-
ple of GEMM.

But deploying HPC applications on SFs introduces unique
challenges distinct from traditional monolithic or distributed
setups: 1) Resource Constraints: SFs are subject to limitations
in resources, e.g. maximum execution time per SF, making it
challenging to divide the parallel tasks of HPC app among
them, since the work per SF should be such that it can be
completed within the time limit etc.; 2) Location-Agnostic
Statelessness: Unlike classical algorithms that utilize peer-to-
peer communication and capitalize on the locality of data
and computation, each SF requires individual data transfers
to and from cloud storage [35], making code optimized for
monolithic architectures often run inefficiently on SFs due to
increased data exchanges; and 3) Scaling Time: While higher
concurrency can yield more ‘workers’ (function instances)
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for the app, the time between the start of the first function
instance and that of the last instance (referred to as Scaling-
Time(ST)) can be prohibitively large and becomes worse
with higher concurrency [9, 37]. With multiple such factors
affecting performance and cost in varied ways, it becomes
challenging to optimize for these metrics.

Previous works to adapt HPC for SFs have primarily cen-
tered on integrating SFs within parallel workflow frame-
works to address their time constraints [6, 19, 44, 56, 66].
Some have attempted to compress more tasks into a single
SF to mitigate scaling times [9, 37], and a few have focused
on optimizing task division by manually adjusting and fix-
ing the “block sizes” (work per SF) [47]. However, these ap-
proaches often require significant manual effort to find the
optimal work division (or “parallelization strategies”) among
SFs (as they are workload-agnostic), and, to the best of our
knowledge, no previous study has tried to directly — and
automatically — modify the HPC code itself to effectively
address the above SF challenges.

Algorithm 1 A parallel blocked GEMM [21], where BLK refers to
the block size and A;, By s and Cjj, of size (BLK,BLK), are blocks
of (N,N) A, B, andC matrices, respectively.

for k < 0 to L%J do parallel > OUTER-LOOP

for j « 0to | 77 | do > MID-LOOP

fori < 0to | 77| do > INNER-LOOP

Cijk = Aik . Bk] > KERNEL

C= % Cijk » REDUCE
ij.k

To illustrate that modifying the HPC code carefully can
improve performance, we parallelized a blocked matrix mul-
tiplication (GEMM), a widely-used kernel in HPC, as depicted
in Algorithm 1. We opted for OUTER-LOOP(k) as our de-
fault parallelization strategy (i.e., iterations of loop k are
distributed across parallel workers) for GEMM on a VM, a
widely preferred approach [21, 33]. This approach is quite
popular due to its effectiveness in optimizing both temporal
and spatial locality in traditional VM settings.

In Figure 1a, we evaluated the impact of using a block size
(BLK) optimized for one input matrix size (N), i.e., 2K, on a
different N, i.e., 8K. As illustrated, the performance of N =
8K is more than 3X that of Oracle!. This is because varying
N could lead to different bottlenecks in the SF framework
(details in Section 3). For instance, it directly influences the
number of parallel workers (N/BLK), affecting the scaling
time of the SFs [9, 37, 47]. Therefore, users need to manually
adjust block sizes and parallelization strategies to optimize
performance across different input sizes, even within a single
application. It is also notable that BLK=2K is 0.5X higher
than Oracle, indicating potential for further enhancements.

1Oracle represents an “optimal run” for a given input size, determined by
manually exploring all potential combinations of parameters.
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As shown in Figure 1b, with identical BLK and N values,
the VM-optimized loop order (OUTERLOOP(k)) does not
give the best results; OUTER-LOOP(i), which is another loop
order, outperforms it by 2X. This occurs due to the additional
“data movement” in OUTERLOOP(k), a consequence of the
“stateless” nature of SFs (details in Section 3). Therefore, mod-
ifying the HPC code for a serverless architecture, even for a
single application with varying inputs, is non-trivial. That is,
the performance of a serverless version of a kernel computa-
tion depends strongly on how it is parallelized. While these
experiments focus on end-to-end time, similar patterns also
manifest with regards to cost (i.e., how much is the cost of
running a serverless application in cloud).

As mentioned in [37], the resources allocated to SFs tend
to be underutilized during the data transfers, a frequent
issue due to SFs’ stateless nature. This situation presents an
opportunity to try and pack more parallel “tasks” of a “job”
within a single SF container, which reduces the number of
SFs invoked in parallel. Such “task packing” within an SF can
decrease the number of SFs needed to run in parallel, directly
reducing both the scaling time and cost associated with SFs,
as also discussed in [9, 37]. However, “over-packing” can
cause potential performance degradation due to interference
between the tasks, impacting the overall time/cost. Thus, it
is important to prudently trade off performance degradation
with overall time/cost benefits while packing.

Problem. To efficiently parallelize a given HPC job (e.g., a
multi-dimensional loop nest) in an SF architecture a user
needs to: (i) decide how to restructure the code after under-
standing the target SF architecture; (ii) how to effectively
determine the optimal parameters for parallelizing the code
to handle varying inputs; and (iii) how many tasks to pack in
a single SF. For an HPC user, to do this manually for each job
and each input to the job would be quite tedious and require
expert knowledge of the SF framework.

Key Idea. To achieve high performance and/or cost savings
(as specified by the user), an automated framework that can
restructure a monolithic HPC code for an SF deployment,
for varying inputs, is needed. We start by observing that,
in many popular HPC kernels [9, 16, 41, 47] (e.g., GEMM),
the computationally-intensive loop-nests are parallelized to
accelerate the job execution. Thus, loop optimization strate-
gies, typically applied by compilers to improve loop execu-
tions [24, 49, 54], can be used here to explore different code
structures for an HPC job in an SF framework. Furthermore,
even greater performance and cost benefits can be achieved
by efficiently packing tasks, which reduces the number of
SFs spawned. On the other hand, to pick up the right code
structure, parameters, and task packing per SF, we need a
model capable of predicting the latency components and the
overall cost of an SF implementation of an HPC app as a
function of the loop parallelization parameters. Finally, the
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task packing degree can guide the selection of an appropri-
ate “parallelization strategy” and task packing. Note however
that, since the tradeoffs in a serverless environment regard-
ing which loop(s) should be parallelized and which tasks
could be packed together are in general different from those
in a monolithic environment (as both parallelization/packing
costs and cloud cost are different in the serverless case), one
cannot simply adopt and use the strategies developed in the
monolithic context.

Contributions:

o First, we characterize the impact of loop optimizations
(different parallelization strategies) and task packing on the
end-to-end time and cost of an HPC app on SFs (Section 3).
e Second, based on this characterization, we build an “an-
alytical model” designed to rank the different latency and
cost of an SF deployment for a given set of parallelization
strategies and packing parameters (Section 4).

o Third, we design FAASTLOOP, the first framework, to the
best of our knowledge, to deploy HPC workloads on Server-
less Functions (SFs) using loop-based optimization techniques
to optimize performance and/or cost (user-specified) (while
using additional optimizations like task packing) (Section 5).
o Finally, we evaluate our framework with multiple HPC
workloads (Section 7) on AWS Lambda. This evaluation re-
veals that our proposed FAASTLOOP outperforms the alter-
nate schemes tested by up to 3.3x and 2.1X when optimizing
for end-to-end latency and cost, respectively.

2 BACKGROUND
2.1 Serverless Architecture

Serverless Functions (SF), or Function-as-a-Service (FaaS),
revolutionized cloud computing by offering unparalleled
scalability, parallelism, and a pay-per-use billing model that
optimizes costs. However, serverless functions are “stateless”,
necessitating data transfers, and have resource limitations,
with respect to concurrency, execution time and memory, im-
posed by serverless platforms. Additionally, adapting mono-
lithic applications to serverless-ready code can be very chal-
lenging as the users need to understand SF-specific coding
practices.

We depict the workflow of a serverless application using
Figure 2. Here, “VM” refers to the user’s computing envi-
ronment, which can be a cloud-hosted VM or a personal
laptop. @ Parallel user requests to SFs are triggered by API
calls or events. @ The API gateway auto-scales SF containers
and schedules the incoming requests onto them. @ Once
the SF starts, it downloads the data needed for subsequent
computation. @ The SF then performs its computation on
the data (we call this “kernel execution”). @ If required, the
result of the computation is uploaded into storage. @ Addi-
tionally, if needed, the results of all the SFs are downloaded
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Figure 2: Serverless workflow and associated latency
terms.

by the user(s), after which @ additional post-processing can
be applied. Note that for the apps we consider, this post-
processing is in the form of a ‘many-to-one’ reduce step. The
associated latency for each step is shown in Table 1.

From the latency components shown in Table 1, the total
end-to-end latency for this workflow, T, is given by:

Tege = ST + (DST + KT + UST) + DVT +RT. (1)

ST denotes the time spent by the serverless platform to
scale containers to serve the parallel requests. DST, KT, and
UST collectively represent the average runtime of a single
SF (also denoted as SFT). And, DVT and RT are time spent
in user’s VM to assimilate the results. Based on these, the
cost equation for the workflow would be:

Costeze = (Mg - CCsf - (DST + KT + UST) + RCsF) * NReg, (2)

where Mgr is the memory of an SF, CCsp and RCsp are,
respectively, the compute and request constants of the SF
framework (constants used by SF platforms to calibrate cost) [2]
and Ngeq is the number of SF requests. While these equa-
tions are representative of AWS’s framework, there are only
minor variations in the equations across different server-
less platforms [23, 39]. As can be observed from Equations 1
and 2, longer end-to-end execution time may not necessarily
result in higher costs. This is because end-to-end time could
increase because of higher scaling time (ST) or downloading
results to VM time (DVT), but this may not affect cost, as cost
is only dependent on SF runtime (SFT) and Ngeq. Therefore,
designing an SF application for different objectives, such as
minimizing cost or latency, can lead to significantly different
code structures.
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Table 1: Serverless latency terms and descriptions.

Time Description

ST Time from request initiation to all parallel requests running on SF
DST Average data download time for an SF
KT Average kernel execution time by an SF

UST Average data upload time for an SF
DVT Data download time to a VM
RT Time to aggregate various results

2.2 Related Works

Various studies have explored integrating serverless archi-
tectures with HPC applications to leverage the scalability,
cost-efficiency and ease of management of SFs.

A significant portion of the literature has focused on using
SFs within a parallel workflow management framework to
manage the parallel threads of HPC applications [6, 19, 44, 56,
66]. These efforts often focus on reducing cost, developing
fault-tolerant systems or managing the inherent limitations
of SFs (such as caps on execution time, maximum resource
allocations, etc.). [42, 66] introduce checkpointing mecha-
nisms to maintain state across SF executions, ensuring that
long-running HPC tasks can resume after hitting execution
time limits. In comparison, [64] has optimized scheduling
the threads on serverless platforms to be sensitive to both
performance and cost. Some works try to find the ideal SF
size [17, 65] that balances performance and cost. However,
they overlook other serverless architecture optimizations
for performance, such as scaling issues and statelessness,
and use the code as-is without modifications for serverless
environments.

A few recent works [9, 37, 47], have attempted to address
some of the above challenges. More specifically, [47] man-
ages data partitioning and parallel SF execution through loop
blocking/tiling, adhering to the resource limits of serverless
environments. However, it sets a static block size for each
application, which either remains unchanged for different
inputs or requires manual recalibration by an expert for each
new input. This fixed block size approach is inefficient —
too large a block size underutilizes potential parallelism for
smaller inputs, while too small a block size increases scaling
time for larger inputs due to excessive concurrency. On the
other hand, other studies, like [9, 37], focus on reducing scal-
ing time and adhering to the concurrency limits in SFs by
packing more tasks into each SF container. This strategy opti-
mizes task interference and addresses the underutilization of
computational resources during data loading and unloading,
a common issue due to the stateless nature of SFs. However,
such studies do not determine the optimal block size or mod-
ify the HPC code to fit the serverless architecture. Without
these adjustments, task packing alone may not effectively
reduce time and costs (as we will demonstrate in Section 7).

While the above works offer valuable strategies for opti-
mizing serverless architecture knobs for parallel HPC tasks,
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they overlook the possibility of adapting the HPC applica-
tion code for serverless environments. Additionally, these ap-
proaches often require significant manual effort and/or learn-
ing a new domain-specific language to achieve efficient run-
time. In contrast, our work focuses on automatically restruc-
turing code by recognizing that loop structures are a funda-
mental aspect of many HPC apps and, in turn, leveraging
existing research on loop optimizations [7, 24, 40, 49, 54, 61].
We explore the effectiveness of the loop optimization tech-
niques for a serverless architecture and try to answer the
following question: can loop optimizations help optimize
performance and cost for a SF deployment? We auto-
mate the restructuring process for SFs by utilizing a compiler
that automatically converts monolithic code into FaaS-ready
code. Additionally, we also automate SF task packing so as to
spawn the optimal number of SFs that also efficiently trades
off scaling time and task interference.

3 MOTIVATIONAL ANALYSIS

One can observe from Section 2 that the manner in which
task partitioning/division (parallelization) of an HPC appli-
cation/job between SFs is done is critical to serverless perfor-
mance and cost due to its influence on the scaling delay, data
movement, and kernel execution time (from Equation 1). On
top of that, task division must also comply with the resource
constraints imposed by SF platforms. Previous works have
typically relied on a fixed code structure per task. In con-
trast, in this work, we examine optimization strategies that
modify code structure and enhance resource utilization of
SFs, assessing their impact on the overall execution time and
cost of HPC workloads.

3.1 Loop Optimizations for Serverless Task
Sizing
It is well-known that many HPC applications/kernels have
loop nests which can be parallelized [15]. While loop opti-
mization techniques have been studied extensively in the
realm of HPC [7, 24, 29, 40, 49, 54, 61], they have yet to
be applied within the context of serverless task sizing. Mo-
tivated by this observation, this section explores the po-
tential of finding the optimal task division (partitioning)
using three specific loop optimization strategies, namely,
Loop Blocking/Tiling, Loop Interchanging, and Multi-Level
Parallelism. To this end, we conduct experiments using the
Matrix-Multiplication (GEMM) algorithm, as it encapsulates
common characteristics and computational patterns found
in a broad range of HPC algorithms [57]. Algorithm 1 il-
lustrates a simplified version of a Parallel Blocked GEMM
algorithm [21, 50] that will be used. While we used GEMM
as an example, these methods are applicable to any nested
loop-based applications without inter-loop dependencies. For
instance, consider a workload doing pairwise human protein
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comparisons [41]. This process uses two nested loops, with
the inner kernel executing the Smith-Waterman algorithm,
significantly differing from GEMM operations. As shown in
section 7, we have assessed FAASTLOOP’s performance on
Smith-Waterman and other loop-based applications, demon-
strating its applicability beyond GEMM to a wide range of
loop-based scenarios.

Algorithm 2 OUTERLOOP Parallelization, where the OUTER-
LOOP of GEMM from Algorithm 1 runs in parallel using SFs.
In SF:

function SF_WORKER(i)
Download_Partition(A;, B)

for j « 0to | 5h | do > MID-LOOP
fork — 0to | 5= | do > INNER-LOOP
Ci+ = Ak - Brj > KERNEL

Upload_Partition(C;)

In VM:
fori < 0to I_%J do parallel
SF_WORKER(i)
Download_All_Partitions()
// Compute C via a sum reduction
C=2GC;
1

> OUTER-LOOP

3.1.1 LOOP BLOCKING. Loop blocking (also known as
"tiling") is a widely-used technique for granularity control
of parallelism and data movement/reuse optimization for
HPC workloads [26, 52, 59, 62]. It segments the problem
(set of computations within a loop nest) into smaller blocks
which can, in turn, be distributed among different parallel
processing units. Further, by using sufficiently small (itera-
tion) blocks, data can be made to fit in the processor’s cache
which helps decrease the frequency and volume of data move-
ments.
While state-of-the-art server-
less works [9, 47] attempt to
perform task division of HPC [
k

jobs across SFs (similar to block-

ing), they use a fixed block size B

for an application (which may 4 k \: E
have been chosen by an expert- j T I =1

user for a particular input size C- ---l

for that application). Below, we i Al i c

demonstrate, how using a fixed
block size (BLK) across all in-
puts for an application (GEMM,

—N—

Figure 3: Loop Block-
ing: Impact of Block-

in our example) can lead to sub- ;. (BLK) on Data Divi-
optimal task division, thereby, ¢jon in OUTER-LOOP
affecting performance as well as  p, allelized GEMM for

cost.
As seen in Algorithm 2, we
run the OUTER-LOQP (i-loop) in parallel. Here, the ‘i-loop’

an Input Size (N).
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corresponds to running %( parallel SFs, where N is the in-
put size and BLK is the block size. Each SF worker downloads
the necessary data (A;x, By ;) for computing their portion
of the matrix multiplication using the loops k and j (loop
variables within the SF). Following the computation, the SF
worker uploads the result to storage. Figure 3 shows the
data partition for a single SF for Algorithm 2. As matrix A is
indexed by (i, k) (as shown in the kernel of Algorithm 2), SF
needs to download A[i,:] which is of size BLKXN. Similarly,
as matrix B is indexed by (k, j), SF needs to download B[:,:],
which is of size NXN (Figure 3). Finally, the result matrix C,
which is of size BLKXN, is uploaded. Building upon this, we
define five SF performance metrics that would help us in
analyzing how BLK affects latency and cost.

Opspersk = RangeOf (jloop) - RangeOf (kloop) - Ops(innerKernel)

N N 3
=—.— .BLK’=N-N-BLK
BLK BLK
®)
DDpersk = Sizeof (A[i,:]) + Sizeof (B[:,:]) = N-BLK + N - N

(4)
DUpersy = Sizeof(Cli,:]) = N - BLK )
SF=R OUTERLOOP) = —— 6
num angeof ( ) Bk (6)
DDy = numSF - Sizeof (C[i,:]) =N - N @)

Here, Opspersr, DDpersr, and DU, sF refer to operations
per SF, data downloaded per SF, and data uploaded per SF, re-
spectively. numSF is the total number of parallel SFs formed
and DDy is the data downloaded by the VM. Ops,ersr can be
determined by multiplying RangeOf{jloop), RangeOf{kloop)
(i-e., the loops inside an SF, from Algorithm 2), and Ops (in-
nerKernel). Since the innerKernel is a GEMM (matrix multi-
ply) operation, the number of operations (Ops(inner Kernel))
is BLK3. DDyersr is dependent on the partitioning of matri-
ces A and B, downloaded by an SF. As shown in Figure 3,
the partition size of matrix A equals NXBLK and matrix B
equals NxN. Similarly, DU,.,sr depends on the partition size
of matrix C equals NxBLK. numSF denotes the count of par-
allel SFs, which is determined by the range of the outer loop
(iloop) in Algorithm 2, calculated as %. DDy refers to
the data downloaded by the VM which comprises the results
produced by all parallel SFs. It is determined by multiply-
ing the number of parallel SFs (i.e., numSF) and each result
(Sizeof (C[i,:]) = NxBLK).

From the above equations, we observe that BLK can affect
performance/cost in various ways. Firstly, increasing BLK
can effectively reduce the number of parallel SFs (numSF),
which in turn, helps in lowering the scaling time. Secondly,

decreasing BLK can reduce the data download/upload (DD, sF/

DUjersr), thereby reducing the data transfer time. Thirdly,
given the resource constraints imposed by an SF provider,
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tuning BLK can help to adhere to those limits on concur-
rency (numSF), memory (DDpersr/ DUpersr) and execution
time (Opspersr). Fourthly, for any change in input size (N),
adjusting BLK allows for effective optimization of task sizing
in response to the new N, since most terms are a function of
N and BLK.

To demonstrate the validity of the above reasoning, we
deployed Algorithm 2 on AWS using EC2 (8 vCPUs) and
Lambdas. We experimented with varying block sizes (BLK)
for different input sizes (N) (Figure 4). The results collected
clearly indicate that achieving minimum end-to-end execu-
tion time requires different BLK values for different N values.
As an example, when N=2K or 4K, a BLK of 512 is optimal
for minimizing end-to-end execution latency, whereas, for
N=8K, a BLK of 256 performs the best. Similarly, we also
observe that, for optimizing cost, different N values prefer
different values for the BLK parameter.?

We performed a fine-grained analysis to see why BLK
affects performance/cost. For this, we observe the dis-
tinct latency components of end-to-end execution time for
a fixed input size, N=4k (as shown in Figure 5), for a sweep
across various BLKs. For smaller block sizes (BLK), where
numSF(Equation 6) is higher, the scaling time (ST) becomes

2Not shown due to space constraints.
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Figure 6: Impact of interchanging loop i and loop k
with different block sizes in OUTER-LOOP Parallelized
GEMM, for an input size of N=4096. Minima of each
line, depicted by the red dot, is different.

Table 2: Comparing OUTER-LOOP(i) and OUTER-
LOOP(K).

Metric | OUTER-LOOP(i) OUTER-LOOP(k)
Opspersk | N -N - BLK N N -BLK
DDpersg | N-BLK+N-N N -BLK + N - BLK
DUpersr | N -BLK N-N

numSF % %

DDyy | N-BLK - g =N-N [ N-N- %

the primary bottleneck. Conversely, for larger BLKs, the run-
time of SF (comprising DST, KT, and UST) increases as the
task size increases. Thus, a user needs to carefully trade off
these metrics to find an “optimum point” where end-to-end
latency is minimized. Note also that the minimum latency
is reached with a BLK of 512, yet the most cost-effective
solution is achieved with a BLK of 4096, indicating that the
selection of BLK depends on the user’s specific objective
(minimizing latency versus cost).

Takeaway 1: Adjusting block size is crucial for “balancing”
SF runtime and scaling time across different input sizes, and
it varies based on whether the goal is to minimize cost or
latency.

In a typical setup for VMs, the Loop Interchange opti-
mization technique is used to rearrange nested loops at the
compiler level to improve data locality and efficiency. How-
ever, for SFs, this optimization must be adapted to cater to
the short-lived and distributed characteristics of serverless
computing, diverging from the static and centralized nature
of VMs.

3.1.2 LOOP INTERCHANGE. How are the five perfor-
mance metrics affected by loop interchange? Table 2
presents a comparison of the five performance metrics (from
Egs. 3, 4, 5, 6, and 7) for a scenario where the i loop vari-
able (OUTER-LOOP(i)) in Algorithm 2 is interchanged with
the k loop variable (OUTER-LOOP(k)). We can observe that,
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even though the total Operations per SF (Ops,ersF), total
data movement per SF (DDjersp + DUpersp) and number of
parallel SF (numSF) remain the same for both the algorithms,
the total data downloaded by the VM increases by a factor of
% for OUTERLOOP(k). To grasp the shift in data division
when moving from OUTERLOOP(i) to OUTERLOOP(k), we
compare the data layout of OUTERLOOP(i) (from Figure 3),
with that of OUTERLOOP(k) (in Figure 7). It can be observed
that the data partition size of matrix A remains the same
(N - BLK), but the partition sizes for matrices B and C have
been interchanged. For OUTERLOOP(k), the size of matrix
C increases from N - BLK to N - N. Matrix C, being the result
matrix, is downloaded by the VM for each and every parallel
SF, which has a significant impact on the overall end-to-end
latency.

To validate the
above argument, we
execute OUTER-LOOP(i) \ Blk,:]
and OUTER-LOOP(K) /f\‘—

for N = 4K on AWS. v k
—t» k \I !

The result across

different block sizes T

is shown in Fig- J rBTK‘

ure 6. We observe ijaEK] A

that OUTERLOOP(k) —_n—  —j

exhibits higher la-

tency versus OUTER- Figure 7: Impact of interchanging
LOOP(i). Furthermore,loop i and loop k on data divi-
as mentioned above, sion in OUTER-LOOP Parallelized
the difference in la- GEMM for input size N.

tency between the

two loop structures, proportional to %, decreases with
larger block sizes (Figure 6).

Here, we make an interesting observation: the ideal block
size for achieving the lowest latency may differ based on the
specific loop structure used. Note that the cost for both runs
remains the same as the runtime of SF and the number of
parallel SFs is the same for both the loop structures.

(Takeaway 2: Depending on the loop structure, modifying\
the loop order may affect a subset of the SF performance
metrics, but each change in loop structure requires recali-
brating the block size to minimize overall time/cost. Some
loop structures will perform worse than others, irrespective

kofthe input size.

J

3.1.3 MULTI-LEVEL PARALLELISM. Multilevel paral-
lelism is a technique where the compiler applies loop co-
alescing optimization that combines two or more nested
loops into a single loop to allow multilevel parallelism. As
mentioned in [58], employing coalescing increases the paral-
lelism opportunities as more than one loop can effectively
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Table 3: Comparing OUTER-LOOP, MIDDLE-LOOP and
INNER-LOOP for LOOP order ijk of GEMM.

Metric | OUTER- MID-LOOP INNER-LOOP
LOOP
Opspersr| N.N.BLK N.BLK.BLK BLK.BLK.BLK
DDpersp| N.BLK+N.N | 2.N.BLK 2.BLK .BLK
DUpersr | N.BLK BLK? BLK?
N N 2 N 3
numSF BLK BLK, BLK ,
DDyy | 3% -N.BLK % -BLK? 5% -BLK.BLK
— 2 — 2 _ 2 N
=N =N = N2.

run in parallel if there are no dependencies across the loops
(i.e., no loop-carried dependency). When we coalesce the
middle loop with the outer loop (called MID-LOOP parallel),
as shown in Algorithm 3, the parallelism increases by a factor
of % over the OUTER-LOOP parallelization (Algorithm 2).
Similarly, when we coalesce all three loops (referred to as

INNER-LOOP parallel), the parallelism increases by a factor

of %(2 over OUTER-LOOP parallelization.
How are the five performance metrics affected by mul-
tilevel parallelism? To understand how each level of paral-
lelism influences the performance and cost, we compare the
previous 5 performance metrics in Table 3. We observe that,
as each new level of parallelism is introduced, the metrics as-
sociated with "per SF" (i.e., Opspersr, DDpersr and DUpersF)
become more sensitive to change in block size (BLK). Since
BLK is less than N, the metrics associated with "per SF"
generally decrease with additional parallelism. However, the
number of parallel SFs (numSF) shows an exponential in-
crease. The total amount of data downloaded by the VM
(DDy ) depends on (i) the data uploaded by the SF (DUp.rsF),
which decreases with more parallelism, and (ii) the number
of parallel SF (numSF), which, in contrast, increases with
each additional level of parallelism. At first, these increasing
and decreasing trends neutralize each other; for instance, the
initial increase in parallelism levels (from OUTER-LOOP
to MID-LOOP) results in no change in DDyy;. However,
in the case of INNER-LOOP, the exponential increase in
numSF notably elevates the DDy, scaling it by a factor of
BLLK. Similarly, Cost, which depends on the runtime of SF
(Opspersr + DDpersr + DUpersr) and the number of parallel
SF (numSF), also follows a similar trend as DDy ;.

Given the above ways in which multi-level parallelism
influences the various performance metrics of serverless
execution, it can, therefore, help navigate the complexities
of the SF infrastructure. It can (i) regulate the number of
parallel SFs (numSF), which is closely tied to the scaling time;
(ii) impact data transfer times by modulating data uploads
and downloads; and, (iii) ensure compliance with SF resource
constraints (through our choice of parallelism level).
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Algorithm 3 MIDLOOP Paralle]l GEMM

In SF:
function SF_WORKER(, j)
Download_Partition(A;, B;)
N
for k < 0 to LWJ do
Cij+ = Ajx - By

Upload_Partition(C;)

In VM:
fori,j«— 0to L%J do parallel
SF_wORKER(E, j)
Download_All_Partitions()
// Compute C via a sum reduction
C=XCij
ij

> MID-LOOP

©

=¥~ INNERLOCP
MIDLOOP
=¥ OUTERLOOP
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~

End to End Time (in s)
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Figure 8: Impact of Multilevel Parallelism with differ-
ent Blocksizes in GEMM on End-to-End Latency for
input size, N = 4096. Minima of each line is depicted by
the red dot. Cost (in $) for each minima is written.

To demonstrate the above, we executed OUTER-LOOP,
MID-LOOP, and INNER-LOOP, for N = 4K on AWS. The re-
sults, across different block sizes, are plotted in Figure 8. We
can see that for smaller block sizes (BLK), OUTER-LOOP out-
performs MID and INNER-LOOP. This is primarily because
the number of parallel SFs (numSF), which is dependent on
the ratio %, increases exponentially with more parallelism.
However, as BLK increases, a balance is struck between the
decreasing % ratio and the rising "per SF" performance
metrics for MID and INNER-LOOP. This minimizes end-to-
end latency, with larger BLKs reducing the number of SFs
and enhancing per SF efficiency, for better overall perfor-
mance. Here, we display the cost for minimum end-to-end
latency for each level of parallelism. Even though all paral-
lelism levels show similar minimum latency, the MID-LOOP
stands out as being nearly 40% more cost-effective. In the
OUTER-LOOP, numSFs is low, but runtime increases for
each SF. Conversely, in the INNER-LOOP, there is a cubic
increase in numSF even though the runtime per SF might be
shorter. The MID-LOOP strikes an optimal balance between
these two factors, leading to its higher cost efficiency.
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Figure 9: For Input Size N = 4096, impact of task packing
on different block sizes (BLK =64 and 512) for GEMM
on End-to-End Latency and Cost. Min cost is depicted
by the red dot.

Takeaway 3: Parallelizing different loops offers more pre-
cise task sizing control beyond just adjusting block size, en-
abling significant cost reductions even with similar latencies.

Note that we have focused on HPC applications with perfectly-
nested loops devoid of inter-loop dependencies (since this is
representative of many HPC workloads [20, 41, 47]). We limit
the scope of our work to the loop-based techniques suitable
for such applications and will explore other methods, such
as loop fission and fusion (which may address more intricate
loop structures), as part of our future work.

3.2 In-SF Optimization: Task Packing

So far, our focus has been on loop optimizations for address-
ing the challenges inherent in adapting HPC code to the
serverless framework, specifically targeting issues like scal-
ing time, data transfer time, and resource constraints. How-
ever, beyond these loop-level adjustments, we can also turn
to system-level optimizations, such as "task packing", as SFs
are underutilized during the data transfer phases. Specifically,
by packing more parallel tasks of a job within a single SF con-
tainer, we can effectively reduce the number of parallel SFs
(numSF). This directly affects scaling time and aids in manag-
ing resource constraints, such as concurrency. Through task
packing, more tasks can fit into a single SF, which can de-
crease numSF, potentially improving both latency and cost.
However, if an SF container is over-packed, the tasks can
interfere with each other, which can negatively impact the
SF runtime, leading to performance and cost degradation.
Therefore, it is crucial to find a "balance” in task packing that
minimizes scaling time without reaching a point where the
task interference becomes counterproductive.

To demonstrate the effect of task packing on latency and
cost, we executed GEMM OUTERLOOP(i) of input size N =
4K on AWS. The results for two block sizes (BLK=64, 512)
are shown in Figure 9. The minimum time and cost for each
BLK are depicted by a red bar and circle, respectively. For
BLK = 64, although packing does not reduce costs, it im-
proves overall time due to a significant reduction in scaling
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time, which accounts for over 80% of the total time as shown
in Figure 5. The benefits of reduced scaling time at Pack-
ing Degree (PD)=2 offset the increased runtime from task
interference. However, for PD greater than 2, the gains from
reduced scaling time diminish and overall time increases
due to escalating task interference. Conversely, the cost at
PD=2 does not benefit similarly; the savings from halving the
number of SFs are negated by the longer SF runtime caused
by task interference. In the case of BLK = 512, the dynam-
ics change as the scaling time is more effectively balanced
with SF runtime. Increases in SF runtime directly extend the
overall runtime since reductions in scaling time are mini-
mal. However, for cost considerations, reducing the number
of SFs at PD=2 proves economical despite increased task
interference, as the cost savings from fewer SFs outweigh
the downsides. Therefore, the effectiveness of packing in
reducing cost or latency depends crucially on the specific
bottlenecks encountered.

Takeaway 4: The impact of task packing on cost and la-
tency varies significantly based on the parallelization strat-
egy employed and its system bottlenecks.

As established, finding the right task size for parallelizing
an HPC application via SFs is not trivial: a user needs to man-
ually sweep across several block sizes, reorder loops, decide
which level to parallelize and choose a packing degree (tak-
ing into account SF-specific bottlenecks and cloud costs), to
determine the best “parallelization/optimization parameters”
to deploy the application. Thus, the size of parameter search
space for a single input for an application is the product of (i)
number of block sizes, (ii) number of nested parallelizable loops,
(iii) number of distinct loop orders, and (iv) possible packing
degrees. This space is clearly quite large, and motivated by
this observation, our proposed FAASTLOOP automates the
process of efficiently exploring this search space by leveraging
profiling to model different latency components of serverless
for an application with respect to different inputs. We discuss
this in the next section.

4 ANALYTICAL MODELING

As highlighted in the previous section, finding the right par-
allelization strategy for optimally distributing a job across
SFs, whether to minimize time or cost, involves exploring a
vast search space, even when considering just a single input
size for an application. In fact, manually adjusting these pa-
rameters for each input per application is impractical due
to the significant time and cost it involves. This motivates
us to form an analytical model based on meticulously col-
lected offline profiled data that would help in identifying the
optimal parameters for executing a loop-based application
on SFs, either for reducing cost/latency while staying within
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the SF’s constraints. We also update our models periodically
at runtime.
Recall from Section 2.1 that, the equations for end-to-end
latency (Teze) and cost (Costeze) are:
® Tooe =ST + (DST+ KT +UST) + DVT +RT.
e Costee = (Mgp-CCsp - (DST+KT+UST) +RCsr) - numSF.
Additionally, many SF frameworks (like AWS, Azure, etc.)
also impose certain resource constraints that these equa-
tions also have to comply with, such as:
® SFThax >= DST + KT + UST.
o Mypax >= Msr.
o numSFy,q >= numSF.

Here, SFT,,4x represents the maximum allowable runtime
per SF, My,,4x denotes the maximum memory allocation for a
single SF, and numSF,,, specifies the maximum SF concur-
rency permitted per user per region. Thus, to rank the T,
and Cost,y, of different “parallelization strategies”, we model
the various latency components of an SF-based HPC app
(described in Section 2.1 and Figure 2). Building on the in-
sights from Section 3, the five performance metrics, namely,
i) Operations per SF, ii) Data Download per SF, iii) Upload
per SF, iv) Number of Parallel SFs, and v) Data Download
to VM, enable us to model the various latency components
effectively.

4.1 Modelling Individual Latency
Components

We model the latency components using profiled data from
GEMM experiments on AWS EC2 (8 vCPU) and Lambdas
(3400MB). We expect these models to suit other serverless
frameworks with minimal modifications (probably with mi-
nor changes such as those to constant terms). We gauge
model accuracy by employing the adjusted R-squared score
(>0.8), which offers valuable insights into variable dependen-
cies.

4.1.1 SCALING TIME (ST ). From our experiments conducted
with different AWS Lambda memory configurations and re-
quest rates, we observe that the Scaling Time (ST) is primar-
ily influenced by the number of parallel SF requests (Njq),
a point also affirmed in [9]. Thus, we construct a “linear
model” of the form ST = B.N,¢4 + , to capture this relation-
ship, where « and f are SF platform-dependent constants.

4.1.2 SERVERLESS FUNCTION TIME (SFT). Serverless Func-
tion Time (SFT) is formed by three components, namely,
i) Data Download Time by SF (DST), ii) Kernel Execution
Time (KT), and iii) Data Upload Time by SF (UST): SFT =
DST + KT + UST. Data Download and Upload per SF Time
(DST & UST) are directly dependent on the size of the data
being downloaded (DD,sF) or uploaded (DUpe,sr). We ob-
serve from our profiling results that the data transfer time
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(both DST and UST) is linearly dependent on the data size
(albeit slight fluctuations), for a fixed SF configuration. Thus,
both DST and UST have the same linear model represented
by Tyownioad = f-DataSize+a, where Tyounioad is either DST
or UST, and DataSize is DDpersp and DUpe,sF correspond-
ing to DST and UST, respectively. On the other hand, we ob-
served Kernel Execution Time (KT) is dependent on the num-
ber of operations in each serverless function (Opsyersr). We
construct the corresponding model as KT = B.0pspersr + a.

4.1.3 DATA DOWNLOAD TIME BY VM (DVT) and REDUC-
TION TIME (RT). Data downloaded by VM is dependent on
the number of parallel SF requests (N,.q) and the data size
uploaded by each SF (DUpe,sr). The total amount of data
that is downloaded is Nyeq.DUpersr, but we download it in
parallel. This reduces the overall download time because
we can fetch multiple chunks of data concurrently. To ac-
count for this effect, we introduce a parameter y to calibrate
the influence of parallel downloading on the download time.
Specifically, we model it as DVT = .DUpersp.(Nreg — ) +a.
The reduction time step is a synchronization step where a
many-to-one reduction is performed. Thus, we observe that
it depends on the total data that is being reduced, modeled
as RT = B.DDpersp-(Nyeq) + .

4.1.4 ACCOUNTING FOR PACKING DEGREE (PD). In ad-
dition to the influence of the loop-based optimizations on
the serverless latency components, we must also consider
how task packing (mentioned in Section 3) affects them. We
take inspiration from the model described in [9] for mod-
eling the influence of packing degree (which is simply the
number of tasks packed per SF container) on SFT. Thus,
when packing multiple tasks into an SF, SFT is modeled as
SFT; = a* ((SFT; — p) xeV*(Mi=9)) 4 ¢ where SFT; is SFT for
PD of 1 (as shown previously in the calculation of SFT) and
M,; is the memory used by the SF for Packing Degree (PD) of i.

Forming the Latency, Cost and Resource Constraint
Models: We extract the five performance metrics from the
application’s profiled data. These metrics are then used to
fine-tune the time models, ensuring they accurately reflect
the application’s performance. The time model equation
(Teze) is formed by aggregating all the individual time models
(Equation 1). The cost model equation (Cost.z) is created by
integrating specific elements from the time model equations
(SFT) with the performance metrics (Msr and Nyq). The
resource constraint equations are also derived from the per-
formance metrics. it is to be noted that these equations are
critical in defining the boundaries within which the app can
function optimally. We get (Teze) and (Costeze) for each pro-
filed combination of parameters (block size, parallelization
strategies, and packing degree), for different inputs. Here,
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for each input, the top 10 configurations for each user objec-
tive (minimizing Tepe and Costege) are saved. By having these
configurations readily available, the runtime optimizer can
quickly choose the most effective parameters for any given
input.

5 OVERALL DESIGN OF FAASTLOOP

Putting together all the optimizations discussed thus far,
we propose a novel serverless user-side framework, FAAST-
Loop, which automates optimal task divisioning across SFs,
to optimize for a user-specified cost/latency goal. We give
an overview of FAASTLOOP’s design in Figure 10.
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2 o) — @ - Code Performance 7y
c = :
E %: (op i, Compiler Versions Profiler 3
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Figure 10: Overview of FAASTLOOP.

End-to-End Workflow: Before deployment, @ Users anno-
tate their code for parallelization, preparing it for compila-
tion by the FAASTLOOP compiler. @ Compiler then applies
loop optimizations to generate various static versions of
the code @. @ Each version is subsequently profiled across
different block sizes and packing degrees to assess perfor-
mance. Based on this profiling, @ latency and cost models
are developed, which serve to guide optimizations during
runtime.

During runtime, @ the user inputs the size and specific ob-
jectives—such as minimizing cost or latency—of the current
run. Using these inputs, @ the runtime optimizer examines
the parameter space, guided by the previously formed mod-
els and static code versions, to identify the most efficient
execution plan ( @). Finally, @ the optimized code version
is deployed on the Serverless Function (SF) according to
the user’s goals, ensuring that the code runs optimally in a
serverless environment. Additionally, during each runtime
session, we update our model parameters to adapt to fluctu-
ations from the cloud provider, which tend to be minor over
short periods.

Detailed functionalities of the key components of FAAST-
Loop framework are summarized below:

User annotations: Users can annotate their code to optimize
loop execution, similar to how they might use OpenMP [55]
for parallel programming. They can use the pragma ’faast-
loop’ to decorate a dependency-free loop, also specifying
some expected input sizes (N), as shown in Figure 10. Even
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though FAASTLOOP can handle new unseen inputs, the ex-
pected input size specification helps to restrict the search
space during runtime. Since the pragma is applied in a man-
ner akin to OpenMP, HPC users will find it intuitive and
beneficial for scaling code without requiring additional train-
ing.

Compiler: As part of its offline profiling phase, FAAST-
Loop employs a compiler that processes user-submitted HPC
app code, consisting of blocked loops annotated with user-
provided pragmas that specify the part of the code that is to
be executed using SFs. It generates various "code versions"
(akin to the methods described in [51]) from the user code,
each implementing a combination of loop optimizations as
detailed in Section 3, that are ready for FaaS deployment.
These code versions (which also have lightweight profiling
"hooks") will then be used by the Performance Profiler to
explore the search space of optimization parameters.
Performance Profiler: Performance Profiler carefully col-
lects profile data of the different code versions (each hav-
ing different loop optimization combinations) for a range of
(likely) input sizes, block sizes and packing degrees. Here,
the user provides the input sizes in the pragma as a list of
expected inputs (N). The profiler varies the block size (start-
ing from input size N) by dividing it by successive powers
of 2, while also ensuring that the parameters chosen com-
ply with all the platform-specific resource constraints. For
packing degree, starting at 1, it multiplies it with successive
powers of 2, also adhering to the resource limitations. This
exploration stops when a local minimum is reached. Thus,
by essentially performing a sweep across likely input sizes
and using relevant combinations of optimization parameters,
it collects relevant and sufficient profile data which we then
use to construct models for latency and cost.

Latency and Cost Model: As mentioned, the Latency and
Cost Models are constructed using the relevant data from the
Performance Profiler, thus allowing the framework to rank
EZ2E latency and cost as a function of optimization parameters
(as explained in detail in Section 4). In our current approach,
we save the top 10 parameter configurations for each input to
facilitate future search space exploration. Note that we also
perform online updates on the model using current runtime
metrics to keep it up-to-date.

Runtime Optimizer: All components discussed thus far
mostly work offline (before the actual app execution). When
a user provides an input and an optimization objective to
our system to run an (already-profiled) app, the Runtime
Optimizer picks the best loop optimization and packing pa-
rameters to meet the goal by consulting the constructed
performance/cost models. For unseen input sizes, the op-
timizer initiates a search space exploration for this unique
input, starting from a ‘seed’ established by the nearest known
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input size, and leveraging our models to arrive at a local min-
ima. To expedite this, the exploration is conducted in parallel
(across 100 distinct points).

6 IMPLEMENTATION AND
EXPERIMENTAL SETUP

FAASTLOOP is implemented using Python. Our compiler
support is implemented using the Python’s AST module
where we integrated the loop optimizations using previous
works like [24, 49, 54] with [51] that converts a VM-based
code to an SF version. We evaluated FAASTLOOP on AWS
using c5n.2xlarge (8 vCPU with high network bandwidth)
EC2 machines and Lambdas with 3400MB.

Workloads: We assessed FAASTLOOP across 4 HPC work-
loads: i) General Matrix Multiplication(GEMM) [47] (lin-
ear algebra), a kernel which is pivotal in many other HPC
workloads that multiplies two matrices; ii) N-body Simu-
lations [18] (scientific computing), an algorithm used fre-
quently in astrophysics, simulating gravitational interactions
among multiple celestial bodies; iii) Smith-Waterman [41]
(bioinformatics), that performs local sequence alignment,
crucial for comparing DNA, RNA, or protein sequences and
understanding genetic relationships; and iv) Map-Reduce
Sort [32], an efficient big data processing kernels used in
various application domains.

Evaluated Schemes: We compared FAASTLOOP against the
following schemes — NUMPYWREN [47], where a single
block size is manually selected for optimal runtime across
various HPC applications and used for all other input sizes,
ProPack [9], and WISEFUSE [37], where they packed multi-
ple parallel threads in one SF. For each scheme, we chose the
most widely adopted parallelization strategy applicable. For
NUMPYWREN, we manually calibrated the block size for
a smaller input size (N) to optimize performance and cost,
while keeping within the constraints of SF resources, and
the block size remained fixed for other input sizes. On the
other hand, for ProPack/WISEFUSE, we adopted the opti-
mal block size identified from NUMPYWREN and coupled
it with adaptive task packing. This configuration was also
tested on a larger input size, with adaptive task packing in
ProPack/WISEFUSE that adjusts as needed to optimize for
the new input size. We combine WISEFUSE and ProPack as
one scheme because WISEFUSE also implements task pack-
ing in SF as one of its optimizations. As a point of reference,
in many experiments, we compare the performance/cost of
the concerned scheme with respect to an Oracle scheme to
give a notion of how close it is to the ideal choice of pa-
rameters. The Oracle scheme is an “optimal parallelization
strategy” for a given input size for an app, determined by
manually exploring all potential combinations of parameters.
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7 EVALUATION

We evaluate FAASTLOOP, and present key results as ques-
tions that address critical aspects of its performance and cost
efficiency. Unless specified, results shown for performance
and cost are separate experiments, where each scheme is
tuned for the specific goal.

How well does FAASTLOOP perform compared to other
schemes for different applications (scaled across vari-
ous input sizes), with respect to both latency and cost?
Figure 11 shows both the normalized execution time and
cost relative to an Oracle scheme (here 100% refers to the
cost/time of Oracle). Below, we analyze the graphs for each
workload separately.
GEMM: For the smaller input matrix size (N=2K), we ob-
serve that FAASTLOOP achieves similar time and cost effi-
ciency as the Oracle. However, despite manually optimiz-
ing blocksize for NUMPYWREN and packing degree for
PROPACK/WISEFUSE, for N=2K, both perform 1.5X and
1.75X worse in terms of time and cost, respectively, com-
pared to Oracle. A key reason for FAASTLOOP’s efficiency
being close to Oracle is its loop optimizations that alter the
code structure to suit SF architecture better. The typical code
structure employed by most VMs features outer loop paral-
lelism with a k-i-j order. However, when adapting the code
for SFs, the structure shifts to middle-loop parallelism with
an i-j-k loop order which reduces the task size per lambda
and reduces data transfers. Also to note, ProPack/WISEFUSE
has a similar outcome to NUMPYWREN. This occurs because
the packing optimization falls short; the increase in runtime
for each Serverless Function (SF) due to task interference
outweighs the advantages of reduced scaling time from lesser
number of SFs. As a result, the outcomes are similar to those
of NUMPYWREN, which does not utilize this optimization.
Upon scaling the input size to N=8K, FAASTLOOP sub-
stantially outperforms its competitors, achieving a 3.3X im-
provement in end-to-end execution latency when focusing
on latency reduction, and a 2.1X reduction in costs when cost
minimization is the goal. This notable performance gap arises
from the failure of the other schemes to adjust their block
sizes or code structures in response to a larger input size.
Such lack of adaptation not only affects overall efficiency
but also limits the potential benefits that could be derived
from the task packing optimization of ProPack/WISEFUSE.
This highlights the critical need for customizing paralleliza-
tion strategies to match varying input sizes in serverless
environments.

Nbody Simulation: For smaller input matrices (N=4K),
FAASTLOOP and ProPack/WISEFUSE outperform NUMPY-
WREN, exhibiting almost similar improvements - 1.42X bet-
ter latency and 1.94x lower cost. The similar performance
between FAASTLOOP and ProPack/WISEFUSE indicates that
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Figure 11: Comparison of normalized time/cost with re-
spect to the Oracle scheme between FAAStloop vs other
schemes. The left graph focuses on minimizing latency,
whereas the right graph targets cost minimization,
across various input sizes (N) on the x-axis. "NUMPY-
WREN" and "PROPACK/WISEFUSE" were manually
optimized for smaller input sizes and tested for larger
inputs.

the default code structure for parallelization (which features
outer loop parallelism with an i-j loop order and a manually
tuned block size of 128) is well-suited for the SF environment
as well, with task packing (pd = 4) further enhancing effi-
ciency. But FAASTLOOP picks a different order (same block
size as before, but with inner loop parallelism with an i-j loop
order, offering finer-grained work division, thus enabling
efficient packing (pd=8)) which is slightly faster/cheaper.
When scaling up to N=16K, FAASTLOOP continues to out-
perform NUMPYWREN, showing improvements of 1.58x
in time and 2.04X in cost over NUMPYWREN, and also sur-
passes ProPack/WISEFUSE, albeit by a smaller margin of
16% in time and 9% in cost. The smaller gap with ProPack/-
WISEFUSE is attributed to ProPack/WISEFUSE adaptive task
packing and already efficient default code structure for this
particular scenario.
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Smith Waterman: For smaller input (N=4K), adjusting the
block size in the default code structure [9, 41] results in
hitting the concurrency limit set by AWS Lambda (1000)
before reaching the minima. Therefore, we chose a block
size that maximizes concurrency, which, consequently, is the
lowest achievable time and cost point within our exploration
limits. For N=4K, NUMPYWREN is 1.45X slower and 2.12Xx
costlier than FAASTLOOP and ProPack/WISEFUSE. For those
schemes, task packing significantly lowers the number of
parallel SFs (numSF) which, in turn, reduces the cost and
overall time (by reducing the scaling time). However, for
larger inputs (N=16K), maintaining the same block size and
parallelization strategy renders NUMPYWREN infeasible
(crosses in Figure 11c), as it surpasses the concurrency limit
for this block size and its default code structure. Additionally,
despite using task packing optimization, ProPack/WISEFUSE
underperforms versus FAASTLOOP, with a 1.86X longer time
and 2.27x higher cost because to stay within the concurrency
limits, it packs several tasks in each SF, which increases the
job interference, thereby increasing the runtime of each SF.

How much does each of the optimizations contribute?

To answer this, we take the GEMM workload as an ex-
ample and study the resultant improvements of each opti-
mization. As a baseline, we selected the widely used OUTER-
LOOP(k) loop structure typical for monolithic (non-serverless)
architectures [53, 63]. We picked a block size of 1K and an
input size of N=8K. Here, 1K is chosen because it is not
the optimal block size for N=8K, thus, allowing the block-
ing/tiling’ optimization to show its benefits. It is clear from
Figure 12 that loop reordering alone can double the speed of
end-to-end execution, indicating that regardless of adjustment
in block size or task packing (as explored in NUMPYWREN
and ProPack), the loop order plays a crucial role in reduc-
ing time and cost, especially when scaling to larger input
sizes. Another important observation is that the combined
effect of all optimizations surpasses the sum of the individ-
ual improvements (yielding a 3x speedup). This suggests
that certain optimization opportunities only emerge after other
optimizations are applied. For instance, task packing may
not significantly speed up the process on its own, but once
combined with other optimizations, it contributes greatly to
reducing the overall service time.

We can see that relative cost, which primarily depends
on the number of parallel SFs (numSF) and SF runtime, is
reduced by blocking (more significantly) and task packing.
Both blocking and packing achieve this by lowering numSF
while balancing the runtime/task interference effectively.
Again, the final optimization, which combines loop optimiza-
tions and task packing, results in greater cost savings (2.2Xx)
than the individual optimizations alone.
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Figure 12: Relative improvements brought by indi-
vidual optimization over the baseline for minimizing
latency(left) and cost(right) for GEMM(N=8K). Base-
line:OUTERLOOP(k) with BLK=1K and PD=1.

How does FAASTLOOP perform, given a time or cost
tolerance?

FAASTLOOP can adapt its optimization parameters where
user goals are defined to minimize cost within a specified
time tolerance, or conversely, to minimize time within a
set cost tolerance. In this case, we set tolerance margins of
10%, 20%, and 50% above FAASTLOOP’s minimum time/cost
for the respective cost/time budget. This approach aims to
assess how much the secondary metric (cost or time) can be
optimized within these defined tolerance limits. Note that
the time and cost values shown within each plot here pertain
to the same experiment.

For the GEMM workload with an input size of N=4K, de-
picted in Figure 13, relaxing FAASTLOOP’S minimum time
tolerance margin results in substantial cost savings. For in-
stance, providing a 20% margin over the minimum achievable
end-to-end time results in a (substantial) 94% drop in cost
(bringing it from being 2.25X to just 29% more than the Ora-
cle), with only a (minimal) 12% increase in time. For a 50%
margin over the minimum time, shows a larger time increase
(about 40%), but the cost doesn’t decrease much more than it
did at the 20% time budget, standing at 105%. Similarly, set-
ting a cost budget by providing a margin over the minimum
time yields a considerable reduction in end-to-end time. For
instance, with a 50% margin, there is a substantial (113%)
reduction in time compared to the minimum cost, albeit at a
29% increase in cost. Thus, using FAASTLOOP, users can opt
for a minimal increase in one metric (time or cost) over the
minimum, to yield significant improvements in the other.

What is the practicality of offloading applications to
SFs via FAASTLOOP versus using large VMs?

We now examine the feasibility of offloading n-body sim-
ulation with a 16K input size using FAASTLOOP compared to
running it on a large VM (specifically a 96vcpu VM, which
takes the same time to execute the app as FAASTLOOP for
a single request). This analysis is illustrated in Figure 15. It
can be observed that offloading to a VM becomes more sen-
sible only if the hourly request rate exceeds 53. Below this
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how relaxing FAASTLOOP’s minimum time margin leads
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tency for GEMM with N=4K. These results demonstrate
how relaxing FAASTLOOP’s minimum cost margin leads
to considerable time improvement.
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Figure 15: Breakeven analysis of FAASTLOOP vs. a Large
96vcpu VM for N-body Simulation of N=16K. Also
shown N=4K."

threshold, it is more advantageous to run the apps on SFs
using FAASTLOOP. As noted in the paper [46], in cloud cen-
ters, 81% of SF invocations typically occur less than 60 times
per hour (which aligns with the above observation). We also
observe that running the n-body simulation with a smaller
input size (4K) on FAASTLOOP is significantly cheaper, al-
lowing for a much higher threshold till which FAASTLOOP is
preferred over the VM execution. Therefore, if there is a vari-
ation in the input size, FAAStloop can handle higher request
rates as well. A hybrid VM-FAAStloop can also be a strate-
gic choice, where a smaller VM is constantly operational to
handle frequent requests of smaller input sizes, while larger,
less frequent input sizes are offloaded to FAAStloop.

How does FAAStloop compare with Oracle?
When comparing FAASTLOOP to Oracle, we conducted
the experiments using the n-body simulation and GEMM
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Figure 16: Comparison of FAASTLoOP and
Oracle for N-Body Simulation(N=16K) and
GEMM(N=8K).FAASTLOOP’s performance closely

matches with a maximum deviation of ~5% in both
time and cost for n-body simulation

workloads. Note that Oracle uses manually tuned (optimal)
combinations of optimization parameters found through an
exhaustive exploration of the parameter search space. The
results here are particularly striking, with very little differ-
ence in cost/time observed between FAASTLOOP and Oracle
(Figure 16). For instance, the most deviation between the
two schemes occurs for n-body simulation, where the dif-
ference (in terms of both execution time and cost) between
FAASTLOOP and the Oracle is ~5%. This is a testament to the
accuracy of the models used by FAASTLOOP and its search
space exploration strategy.

Is FAASTLOOP also effective and scalable for single-loop
apps? Many HPC apps frequently utilize the map-reduce
paradigm, which is often structured around a single-loop
design [9]. Two out of four optimizations (loop reorder and
multi-level parallelism) that FAASTLOOP applies depend on
the presence of a nested loop. Thus, for single loop apps,
only loop blocking and task packing would be FAASTLOOP’S
viable optimizations. To understand how well FAASTLOOP
performs with only two optimizations against other schemes,
we evaluate it on a Map Reduce Sort (henceforth, simply
called Sort) [9, 60] workload by using input sizes starting at
0.5M and scaled to 33M. Consider Figure 17. From the end-
to-end time graph (normalized with respect to FAASTLOOP),
we observe that NUMPYWREN performs significantly worse
(over 3.1x for N = 8M and over 6.5X for N = 33M) than
FAASTLOOP. This is because NUMPYWREN has a fixed block
size for all inputs (unless manually calibrated again for a
new input) and does not employ adaptive task packing. This
observation is consistent with our results for nested loop
apps. ProPack/WISEFUSE scales better than NUMPYWREN
due to its adaptive task packing optimization, but even then,
we see as the input size increases, it performs significantly
worse (over 1.13X for N = 8M and over 1.43X for N = 33M)
than FAASTLOOP.

The normalized cost graph also follows a similar trend,
albeit scaling more gradually. One interesting point to note
is that the cost difference between ProPack/WISEFUSE and
FAASTLOOP initially decreases (as the input size goes from
0.5M to 8M) and later increases (up to 1.12x). This fluctuation
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Figure 17: Sort (Single-Loop) application: Time/cost of
all schemes normalized with respect to that of FAAST-
LOOP.

is linked to the initial block size setting for NUMPYWREN,
which is manually tuned to 0.5M (the most cost-effective
setting without task packing). Since ProPack/WISEFUSE’s
block size is dependent on the one used for NUMPYWREN,
it starts with a block size of 0.5M too, leading to only one
parallel serverless function (SF) being used and no chance
for task packing to reduce costs. Consequently, at 0.5M,
ProPack/WISEFUSE’s inability to utilize task packing makes
it less cost-efficient. However, as the input size increases
beyond 0.5M, the number of SFs grows, allowing ProPack/-
WISEFUSE to employ task packing and optimize costs more
effectively. Nevertheless, FAASTLOOP demonstrates supe-
rior scalability in comparison to both NUMPYWREN and
ProPack/WISEFUSE, even with a limited set of optimizations
available to it. As observed, with the growth in input size, the
performance gap between FAAStloop and the others widens,
highlighting FAAStloop’s robust scaling capabilities.

8 DISCUSSION

In the previous sections, we explored how FAASTLOOP en-
hances loop-based applications using an offline-online pro-
filer to train latency and cost models. This method requires
roughly 100 data points from real-world system evaluations,
which incurs certain costs during the profiling stage. How-
ever, it’s important to note that this is a one-time expense,
recoverable within just a few tens of requests, which should
typically be a much smaller fraction compared to the num-
ber of times the app will be used in a total lifetime. Since
different applications could have different parameters and
runtimes, the profiling cost for each application is different.
For instance, DNA sequencing requires about 75 requests to
offset the $10 cost of offline profiling and N-body Simulation
needs about 36 requests to cover a $4 profiling expense.
Our modeling approach initially relies on offline profil-
ing and is followed by regular online updates to account for
fluctuations in usage patterns. While the approach is com-
prehensive, it could be complex and add additional overhead.
This overhead may become problematic if the total number
of requests is too low to offset the costs of offline profiling.
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Since we lacked prior data on users’ previous requests, we
resorted to offline-online profiling. However, in real-world
applications, we anticipate profiling to occur in real-time
with actual user-requests. This could help us to transition to
a fully online profiling approach, which could substantially
reduce complexity, and significantly save the overheads of
time and costs, as these requests would occur regardless. We
expect these costs to be minimal (in most cases less than 5%
additional cost), making the approach more scalable.

Additionally, in terms of generalizability of this work, we
would also like to highlight that we have explored up to 3
nested loop applications, but if the apps have longer nested
loops, it could increase the parameter search space requiring
>100 runs for the model to converge, thereby potentially
increasing the offline profiling cost.

9 CONCLUDING REMARKS

This paper presents FAASTLOOP, a user-side framework that
deploys HPC applications on a serverless platform using,
for the first time, loop optimizations and task packing to
(almost always) optimally divide tasks amongst serverless
functions. Due to being able to predict the potential impact of
the choice of optimization parameters on the cost/latency us-
ing its analytical models, FAASTLOOP can dynamically adapt
its parameters for different inputs to applications, unlike
prior works. By virtue of these features, FAASTLOOP outper-
forms state-of-the-art frameworks by up to 3.3x and 2.1, in
terms of end-to-end execution latency and cost, respectively.
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