L)
Py Towards SLO-Compliant and Cost-Effective Serverless

Computing on Emerging GPU Architectures

Vivek M. Bhasi Aakash Sharma Rishabh Jain
The Pennsylvania State University The Pennsylvania State University The Pennsylvania State University

vmb5204@psu.edu abs5688@psu.edu rishabh@psu.edu
Jashwant Raj Gunasekaran Ashutosh Pattnaik Mahmut Taylan Kandemir
Adobe Research Arm The Pennsylvania State University

jgunasekaran@adobe.com ashutosh13@gmail.com mtk2@psu.edu
Chita Das
The Pennsylvania State University
cxd12@psu.edu
Abstract ACM Reference Format:

Vivek M. Bhasi, Aakash Sharma, Rishabh Jain, Jashwant Raj Gunasekaran,
Ashutosh Pattnaik, Mahmut Taylan Kandemir, and Chita Das. 2024. Towards
SLO-Compliant and Cost-Effective Serverless Computing on Emerging GPU
Architectures. In 25th International Middleware Conference (MIDDLEWARE
'24), December 2—6, 2024, Hong Kong, Hong Kong. ACM, New York, NY, USA,

Serverless platforms are supporting an increasing variety of ap-
plications (apps). Among these, apps such as Machine Learning
(ML) inference serving can benefit significantly from leveraging
accelerators like GPUs. Yet, major serverless providers, despite

having GPU-equipped servers, do not offer GPU support for their 14 pages. https:/doi.org/10.1145/3652892.3700760

serverless functions. While recent works have attempted to bridge

this gap, they are agnostic to the capabilities of new-generation 1 Introduction

GPUs, thereby, overlooking several performance optimization op- Over the years, serverless platforms have risen in popularity,

portunities. .) with an increasing variety of apps being deployed on them [5,
To address this, we leverage unique features of newer NVIDIA 51, 52, 87]. The adoption of serverless computing in apps such

GPU architectures (specifically, their Multi-Instance GPU (MIG) as Amazon Alexa skills [30], Facebook Messenger Bots [31], and
and Multi-Process Service (MPS) capabilities) to devise a serverless

framework, PROTEAN, that can guarantee a higher degree of Service
Level Objective (SLO) compliance than that offered by state-of-the-
art works. Moreover, PROTEAN also proposes to host its components
on a combination of both on-demand (reliable) VMs and heavily ministered under strict SLOs in terms of response time deadlines
discounted VMs to reduce costs to the end consumer, while offering [56, 66, 94, 100]. Achieving a low tail latency is also critical for these
high service availability. We extensively evaluate PROTEAN using 22 apps [34, 36, 45, 46].

ML inference workloads with real-world traces on an 8xA100 GPU
cluster. Our results show that PROTEAN significantly outperforms
state-of-the-art works in terms of SLO compliance (up to ~93%
more) and tail latency (up to 82% less), while reducing cost by up
to 70%. We also maintain reasonable tail latencies (< 200 ms) for
best effort requests.

Optical Character Recognition (OCR) [32], are not only testament
to this, but are also indicative of the rising number of serverless
use cases that are based on ML inference. Such ML inference apps
are typically deployed in user-facing settings and hence, are ad-

It is well known that such inference apps can benefit, performance-
wise, by leveraging accelerators like GPUs, that are becoming in-
creasingly prevalent in cloud datacenters [39, 88, 89, 101]. Despite
this fact, major serverless providers do not currently offer GPU
support for their serverless functions. This is likely due to the chal-
lenges of effective GPU sharing between fine-grained serverless
CCS Concepts tasks and the high demand for GPU-equipped instances. Recent
works have attempted to address this through GPU-accelerated

.C t t izati Cloud ting. .
omputer systems organization — Cloud computing serverless functions [48, 53, 75, 81, 82, 86, 100]. However, as we

Keywords will demonstrate in this paper, these frameworks fail to remain
serverless, heterogeneous, GPU, scheduling, spot instances, resource- performant when deployed on the recent MIG-enabled NVIDIA
management GPU architectures (Ampere and Hopper [20, 23]) since:

o The majority of the aforementioned works are not designed to be
SLO compliant. This includes frameworks like Molecule [48], which,
currently, does not use any GPU spatial sharing technologies such

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation as NVIDIA MPS [25] and hence, can suffer from queuing delays
on the first page. Copyrights for components of Fh?s work_ owned by others the?n the when serving workload batches, one after the other, on the GPU(s)
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or .. hari

republish, to post on servers or to redistribute to lists, requires prior specific permission via time sharing.

and/or a fee. Request permissions from permissions@acm.org. e Even works like INFless [100] and Llama [82], that use MPS to
MIDDLEWARE ’24, December 2-6, 2024, Hong Kong, Hong Kong spatially share GPUs (and possibly improve SLO compliance), dete-
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM. . te i £ . th lid . Kload
ACM ISBN 979-8-4007-0623-3/24/12. .. $15.00 riorate 1 perrormance, Sice tney consotl ate excessive workloal
https://doi.org/10.1145/3652892.3700760 batches on individual GPUs, which leads to high job interference.

211

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3652892.3700760&domain=pdf&date_stamp=2024-12-02

MIDDLEWARE 24, December 2-6, 2024, Hong Kong, Hong Kong

This is also driven by the fact that INFless and Llama are agnostic to
the GPU’s MIG capabilities that allow it to be physically partitioned
into different GPU instances (GPU slices or simply, slices) across
which workloads can be scheduled with performance isolation'.

Note that addressing these challenges using both MPS and MIG is
non-trivial: (i) GPUs must be dynamically configured in advance ac-
cording to incoming requests, and (ii) requests should be scheduled
across GPU slices to effectively trade off job interference arising due
to co-location and performance degradation due to the slices hav-
ing lesser resources (henceforth, known as the resource deficiency
effect).

The above performance challenges faced by these works can also
potentially impact customer costs [87]. In fact, given that serverless
costs are tied to the cost of host VMs (offered by an IaaS provider)
[103], these frameworks do not utilize heavily-discounted VM tiers
(such as spot VMs [7, 8, 17]), which could make the offering more af-
fordable. Such cost savings can be critical, given that GPU host VMs
are typically more expensive than their CPU counterparts. However,
since spot VMs are susceptible to evictions, hosting a serverless
framework on them is challenging because such revocations can
adversely affect performance.

To address the above concerns, we propose PROTEAN, a highly
SLO-compliant, cost-effective and GPU-enabled serverless frame-
work that can be deployed on recent NVIDIA GPUs with minimal
effort. To our knowledge, PROTEAN is the first serverless framework
that improves performance (especially SLO compliance) by lever-
aging both the MPS and MIG capabilities of GPUs. PROTEAN uses
these architectural capabilities to intelligently configure GPUs and
schedule workloads in a performance-aware fashion across the slices
so as to trade off between job interference and resource deficiency. Ad-
ditionally, PROTEAN also employs request batching and reordering
to prioritize the service of requests with strict SLO targets while
utilizing the GPU effectively. This is coupled with conservative con-
tainer provisioning and keep-alive policies to minimize the effects
of cold starts on performance.

As a cost saving measure, PROTEAN proposes to leverage the
short-running nature of GPU serverless workloads (< 1s [100])
and the buffer time afforded by spot eviction notifications (30-120s
[7, 8, 17]) to employ spot VM offerings to host its components, as
and when they are available. To prevent performance degradation
due to revocations, PROTEAN uses on-demand (reliable) VMs during
spot VM unavailability. While similar cost optimizations have been
proposed in traditional (CPU-based) serverless [103], PROTEAN
is the first GPU-enabled serverless framework to do so. Table 1
compares PROTEAN against related works.

We perform an extensive evaluation of PROTEAN on an 8XA100
GPU cluster with real world traces using 22 ML inference workloads
in the domains of vision and language. Our results show that Pro-
TEAN significantly outperforms state-of-the-art works in terms of
SLO compliance (up to ~93% more) and tail latency (up to 82% less),
while reducing cost by up to 70%. We achieve these results while
also maintaining reasonable tail latencies (< 200 ms) for requests
with no explicit latency targets also.

!ElasticFlow [53], while designed for ML training, also only uses MPS, and would
behave similarly to these schemes, if repurposed for inference.

212

V. M. Bhasi, A. Sharma, R. Jain, J. R. Gunasekaran, A. Pattnaik, M. T. Kandemir, C. Das

o
2
] = =
= = Ry - g o
= 2 = ==

R EEEEEREEE
EREA R IR el I P R N el R
Slzls|2|E|l2&]|212]2|518|%]5
SISIE|IS|E|S|B|&IS|2|5|E|2]¢2
Features £ |E|2 |5 |5]&|T 5| < |8 & &
Serverless framework X | VI V| /| V|V V|V XX V| XV |V
GPU-enabled VXX X[VIVI|IVIX| VIV X/
Overall SLO C: VIVIVIVIVIX| /I /X /XY
Cost-effective X X| V| X| V| X| VX[x| x|V |X|Xx]|V
Space-sharing via MPS VXXXV X[/ x[x [/ [x [/ x|/
Space-sharing via MIG XXX X[X[X[X[X[V]| X[Xx|Xx]|[Xx]|V/
i GPU reconfiguration XXX | X | X | X | x| x|V |Xx|Xx|vV|Xx]|V
Perfor GPUjobscheduling | / | X | X | X | X [X | X | X |/ |/ | X | X[/ |V
High GPU resource utilization VXX X[VIX| /] X| /| /X[/| /Y
Satisfactory tail latency VIivIivIivIiXx|x|vvI]Xx|x|/]|V]X]|V

Table 1: Comparison of PROTEAN against related works. The features listed
here are only promised by the works (excluding PROTEAN) and may not reflect
in the results shown in our evaluation (Section 6).

2 Context and Opportunities

This section sets the context for our work by examining the
current state-of-the-art in GPU-enabled serverless frameworks and
other relevant technologies. Through this, we arrive at the oppor-
tunities that underpin our work.

2.1 Serverless Computing on GPUs

In serverless computing, developers upload their code (composed
of function(s)) to the serverless provider and have their functions
invoked by events (such as user requests) to run them in sandbox
environments (henceforth, containers will be the default) inside
Virtual Machines (VMs) [38, 99]. Here, function execution may
be preceded by a container bootup latency (called the cold start),
which can take up to tens of seconds [3, 4]. Typically, the developers
are billed only for the resources consumed during function execu-
tion. Serverless computing also mitigates resource management
overheads for developers, while offering instantaneous scalability.
These factors have led to serverless becoming a prime candidate
for deploying latency-critical, user-facing apps on the cloud.
Why GPU serverless? Many latency-critical apps (especially ML
inference apps) can achieve greater performance using specialized
accelerators [49, 93] as well as datacenter GPUs [39, 89, 90]. With
enough users, we envision a GPU serverless platform to receive
enough requests to: (a) be performant, as a larger number of jobs
can more effectively be served on GPUs versus CPUs [18] and (b)
utilize GPUs more effectively, especially using new GPU spatial
sharing features such as MPS and MIG. We believe this is realis-
tic as existing inference serving frameworks such as the Azure
ML Inference router [9] report receiving request rates up to 5k
requests per second (rps) from users. Moreover, improving inter-
connect technologies continue to lower data movement costs of
GPUs, thus, facilitating inference serving on them [22, 27]. Despite
these reasons, major commercial serverless platforms including
AWS Lambda [6], Microsoft Azure Functions [19] and Google Cloud
Functions [16] do not offer GPU support for their functions. Recent
research works [37, 48, 50, 53, 67, 75, 81, 82, 86, 100], however, have
attempted to remedy this by proposing various GPU-accelerated
serverless frameworks. Note that, while there are also GPU-enabled
serverless startups, such as Banana [10], Beam [12], Replicate [28],
Runpod [29], Cerebrium [13], and trainML [33], their job schedul-
ing techniques are not public, thus, preventing us from drawing
comparisons against them.

Towards SLO-Compliant and Cost-Effective Serverless Computing on Emerging GPU Architectures

partitioned

shared partitioned
i
22 g
22
228
2 (2]
HAa
22 |

°
o
4
S

<
@
+

.
5}
<

2

k=

B
t
5

a

2 slices (A, B+C)

(c) MPS+MIG.

Y
3 slices (A, B,C)

(b) MIG.

O slices

(a) MPS.
Figure 1: GPU spatial sharing methods between apps A, B, C.

SLO compliance in GPU serverless: GPU-enabled inference sys-
tems have been employed in industrial settings with SLO (latency)
targets [56, 64, 66, 80]. However, only one of the GPU serverless
startups mentioned earlier, Banana, offers any SLO guarantees —
though it is at least 13X worse than PROTEAN [11]. Note that meet-
ing SLO targets can be critical to the reliability and operational
stability of user-facing apps and can make the serverless offering
more appealing to the end user [1, 36, 65]. The majority of GPU
serverless research works are also not designed to be SLO com-
pliant. Even works like INFless [100] and Llama [82], which are
designed for this objective, fail to meet SLOs when employed on
newer GPU architectures, as we will demonstrate in this paper. This
is primarily because such works fail to exploit the unique features
afforded by new-generation GPUs, which are described in the next
subsection.

2.2 GPU Resource Sharing

Although multiple apps can share one GPU via time sharing,
the GPU can be severely under-utilized, especially when executing
typical light-weight serverless tasks [71]. NVIDIA introduced the
below two key capabilities to address this: Multi-Process Service
(MPS): MPS [25], introduced from the Kepler-based NVIDIA GPUs,
enables co-operative multi-process CUDA apps (such as A, B, and C
in Figure 1) to be processed concurrently on the GPU via software-
based spatial sharing. As shown in Figure 1a, MPS partitions the
GPU compute units, Streaming Multiprocessors (SMs), into multi-
ple partitions such that each partition is dedicated to a user app.
However, the resulting co-location of apps is not interference-free
because the memory bandwidth, caches and capacity are all shared
between the concurrent MPS processes [14]. Note that INFless [100]
and Llama [82] rely solely on this technique to enable concurrent
task execution on GPUs.
Multi-Instance GPU (MIG): MIG [24], introduced in the recent
NVIDIA Ampere architecture, allows GPUs to be partitioned (via
hardware + software support) into a maximum of 7 GPU slices. MIG
provides performance isolation between apps running on separate
GPU slices (Figure 1b). This is because unlike MPS, which only
partitions GPU SMs between apps, MIG also partitions GPU caches
and memory, while isolating memory bandwidth per slice [24]. MIG
can even be used with MPS to allow multiple apps to share each
slice, further improving resource utilization. For example, apps B
and C share a GPU slice with MPS, thus, getting exclusive SMs, but

shared memory resources (Figure 1c).
However, MIG does have its limitations:

(1) As shown in Table 2, each MIG partition (called a profile) can
have only a fraction of the total SMs and memory, thus, potentially
degrading the performance of a task running on it (versus running
it on the whole GPU (7g)). We refer to this as the resource deficiency

213

MIDDLEWARE 24, December 2-6, 2024, Hong Kong, Hong Kong

Slice Compute fraction | Memory | Cache fraction CMax
ount
7g.40gb (‘7g") Full 40 GB Full 1
4g.20gb (‘4g) 477 20 GB 4/3 1
3g.20gb (3g) 377 20 GB 4/3 2
2g.10gb (2g) 217 10 GB 2/8 3
1g.5gb (° lg) 1/7 5 GB 1/8 7

Table 2: Possible MIG instance profiles on an A100 GPU.

effect. Note that any configuration with a combination of profiles is
referred to as a geometry.

(2) Re-configuring the current MIG geometry requires all slices to
be idle without any running processes. However, the resource parti-
tioning among processes are adjusted dynamically in MPS without
requiring an idle GPU.

Quantifying the tradeoffs: To appreciate the above discussion,
we conduct an experiment comparing various schemes subjected to
constant request traces of ML inference workloads using: (i) Simpli-
fied DLA [102] (500 rps, batch size: 128), and (ii) AIBERT [69] (6 rps,
batch size: 4). The workloads run on a single A100 GPU. Here, 50%
of requests (strict requests) have a strict SLO deadline of 3x the
batch execution latency on 7g, while the other 50% are Best Effort
(BE) requests with no deadline. Henceforth, SLO compliance will
refer to the percentage of strict requests meeting their SLO targets.
The schemes evaluated are described below.

® No MPS or MIG executes each workload batch on the entire GPU
using only time-sharing (similar to Molecule [48]).

e MPS Only spatially shares the entire GPU among all the work-
loads using MPS only (as in INFless/Llama [82, 100]).

e MIG Only uses MIG to create GPU slices and time-shares them
among requests equally scheduled across them.

o MPS+MIG uses MIG GPU slices and spatially shares them (via
MPS) among requests equally scheduled across them.

e ‘Smart’ MPS+MIG is similar to MPS+MIG, except that it sched-
ules strict and BE requests on separate slices, while also ensuring
strict requests get the largest slice.

For this experiment, we select the (4g, 3g) geometry for all MIG-
enabled schemes as they have the most resources and hence, yield
the best possible performance for the requests. For instance, choos-
ing a 1g to schedule requests on instead of 3g can lead to a slowdown
of up to 4x.

While analyzing these results, note that the performance degra-
dation due to interference is closely tied to the number and charac-
teristics of all co-located tasks [40]. From Figure 2, we observe that
‘Smart’ MPS+MIG has the highest SLO compliance (up to 98% more)
and the least tail latency (up to 72% less). This is because it isolates
the strict requests from the other (low priority) BE requests, thus,
minimizing the job interference from them (by up to 83%).

For Simplified DLA (Figure 2a), all schemes except No MPS or
MIG, and MIG Only are highly (99% or higher) SLO-compliant. This
is because both No MPS or MIG, and MIG Only time share either the
entire GPU or GPU slices, respectively, instead of spatially sharing
them using MPS. Thus, they incur queuing overheads of up to 80%.
Here, MPS Only suffers from higher (up to 6x as much) interference
than the MIG-enabled schemes as the strict requests are co-located
with all the BE requests. MPS+MIG, despite not fully isolating strict
and BE requests, reduces the overall interference experienced by
strict requests by evenly splitting the request batches among the
available slices.

MIDDLEWARE 24, December 2-6, 2024, Hong Kong, Hong Kong

80
100.00%
c
7% 75.00% =
E £
‘9 40 50.00% §
2 00% 8
= (o]
20 25.00% @
0 0.00%
No MPS or MPS Only MIG Only MPS+MIG 'Smart'
MIG . MPS+MIG
(a) Simplified DLA.

300 100.00%
_ 75.00% S
2200 E’
- 50.00% ©
E 100 8
= 25.00%

53
0 0.00%

‘Smart’
MPS+MIG

No MPS or MPS Only MIG Only MPS+MIG

MIG
(b) AIBERT.
M Min Possible Time [J Queueing B Resource Deficiency
@ Interference —=-SLO Compliance

Figure 2: Breakdown of tail (P99) latencies vs. SLO compliance for the con-
sidered schemes. Here, ‘Min possible time’ refers to the execution time of a
workload batch when run on 7g.

For AIBERT (Figure 2b), most schemes except ‘Smart’ MPS+MIG
have worse performance than earlier. As we will see in Section
3, this is mainly due to the resource-intensive nature of AIBERT.
In particular, MPS Only is the worst-affected by the interference
due to co-locating all requests on the single GPU (taking up to
70% of the latency), thus, not satisfying the SLO for even a single
request. While MPS+MIG has a similar P99 latency to that of MPS
Only, it only suffers SLO violations for the strict requests that it
schedules on the smaller slice. No MPS or MIG, despite its high tail
latency, satisfies the SLO for strict requests that are earlier in the
queue, since they execute on the whole GPU without interference
from other requests. MIG Only, similarly, also does not suffer from
interference as it time shares the GPU slices. However, AIBERT
exacerbates resource deficiency effects, thus, increasing its batch
execution time by 2.15X which, in turn, adversely affects its queuing
overhead. ‘Smart’ MPS+MIG performs the best (at both metrics) as
it isolates strict requests on the largest slice, thus, minimizing the
interference from BE requests (up to 30% versus others), while also
reducing resource deficiency effects (up to 9%). Note that ‘Smart’
MPS+MIG is only a straw man version of the framework we wish to
implement. This is because for the framework to remain performant
for varying request rates and mixed workloads, (i) the requests will
have to be scheduled with more thought, balancing the effects of
resource deficiency and interference in a dynamic scenario, and (ii)
the geometry will have to be changed dynamically, in advance, as
well.

Opportunity 1: Intelligently scheduling requests using both
MPS and MIG in a GPU-enabled serverless framework can
significantly improve SLO compliance.

2.3 The GPU ‘Spot’ Market

In addition to performance guarantees, affordable pricing can
make a serverless platform more compelling to potential customers.
Since serverless providers are required to provision, manage and
pay its Iaa$ provider for the VMs that host its platform, the cost of

V. M. Bhasi, A. Sharma, R. Jain, J. R. Gunasekaran, A. Pattnaik, M. T. Kandemir, C. Das

214

the serverless platform is heavily influenced by that of the under-
lying VMs, as claimed in [103]. Fortunately, most IaaS providers
offer their surplus resources as VMs at heavy discounts. One class
of such VMs, which we will refer to as Spot Instances/VMs (from
[7, 8, 17]), are those that trade off their lower cost for relaxed avail-
ability guarantees, i.e., they can be preempted/evicted at any time.
From Table 3, we see that cost savings attainable from Spot VMs
can go up to ~71% versus on-demand VMs.

TaaS Provider | On-Demand Price | Spot Price | Cost Savings
AWS 32.7726 9.8318 69.99%
Microsoft Azure | 32.7700 18.0235 45.01%
Google Cloud 30.0846 8.8147 70.70%

Table 3: On-demand and spot hourly pricing (in dollars per hour) for an
8xA100 GPU instance for the three main laaS providers (by marketshare [63])
averaged across the US-east and west regions (at the time of writing).

The challenge in leveraging Spot VMs is that they can be revoked
at any time by the provider, thus potentially reducing the number
of effective worker nodes available to service the incoming request
load. This can adversely affect the system SLO compliance and tail
latency. However, providers do notify the Spot VM users just before
revocation (ranging from 30s to 120s in advance [7, 8, 17]). Since
GPU serverless workloads typically run for less than a second [100],
on receiving the revocation notification, we can potentially wait
for all running requests on the Spot VM (in danger of eviction) to
finish as a new VM (either on-demand or spot, depending on spot
VM availability) is spun up to replace the soon-to-be-evicted VM.
In this paper, we explore the scope of possible cost savings that can
be achieved by employing such a system while it is subjected to
spot VM evictions.

Opportunity 2: Employing both On-Demand and Spot VMs
smartly can reduce costs significantly while ensuring high
service availability and performance.

3 Modeling Job Slowdown for Smart Scheduling

As seen in the previous section, isolating strict and BE requests
can be integral to SLO-compliant request scheduling. However, it
is still unclear as to what geometry to choose and where to place
what requests, especially for dynamic scenarios. As the first step
towards addressing this, we attempt to model job slowdowns (here
‘job’ is a generic term that can also refer to request batches) by
considering two main causal factors: job interference and resource
deficiency.

We re-purpose the interference model for co-located MPS jobs
from Prophet [40] so as to model job slowdowns for a hybrid MPS-
MIG scenario. Note that, unlike Prophet[40], which focuses on MPS
interference modeling, our framework focuses on scheduling re-
quests and dynamically reconfiguring the GPU(s) to maintain high
performance using both MPS and MIG, while leveraging our re-
purposed slowdown model. In Prophet’s interference model, con-
current MPS jobs are found to be slowed down mainly due to
memory bandwidth contention. The execution time, Ty, of a job, J,
co-located with other jobs, Ji, J2,..Jn is given by:

n
Tj. = Solog. X max{bwk X smy + Z (bw; X sm;), 1} o)

i=1

Towards SLO-Compliant and Cost-Effective Serverless Computing on Emerging GPU Architectures

£ os
w
3 os
E o4
2 02
0
ORI RN RS S RN IR
T E L L E L& fy
S VS P FFE LTSS
& 43'0°¢9°$‘5¢‘ '904\(}&“2\\
& ~ é“@(\‘é@

Figure 3: Normalized FBRs of inference-based workloads. Yellow and Orange
bars correspond to LI and HI models, respectively.

Here, Soloy is the execution time of Ji when run in isolation
on the concerned GPU, (bw; X smj) is the Fractional Bandwidth
Requirement (FBR) of job J;, where bw; represents its FBR per SM
and sm; is the number of SMs used by it. For example, an FBR of 0.2
indicates that the job requires 20% of the global memory bandwidth.
We observe that Soloy is slowed down chiefly in proportion to
27 (bw; x sm;) for typical request rates and workloads [9, 82].
Note that the above discussion provides the rationale for isolating
strict requests from BE ones on separate slices (Section 2.2): strict
requests will be slowed down in proportion to the overall contention
for bandwidth on the slice.

Next, the slices for request scheduling have to be chosen. This de-
cision is influenced by both resource deficiency and job interference
effects. From our experience, larger slices, owing to having larger
fractions of total resources, tend to have the least job slowdowns
due to resource deficiency, whereas smaller slices suffer the most
slowdowns due to having lesser resources. This is also corroborated
by prior work [71]. Since BE requests do not have a latency target,
co-locating as many BE requests on as few, small slices as possible
will not impact the overall SLO compliance despite the slowdown
suffered by these requests. This can leave the larger slices in the
selected geometry to be occupied by the strict requests. Therefore,
the geometry should be chosen with this in mind.

Guideline 1: BE requests may be ‘packed’ onto the fewest,
smallest slices with no effect on SLO compliance, thus, leaving
larger slices for strict requests.

While scheduling all strict requests on the largest slice may seem
to be the ideal decision to minimize SLO violations, there is a tradeoff
between picking the largest slice, and load balancing jobs across slices
to reduce interference. Below, we formulate our equation that takes
both these factors into account while determining job slowdown.

With knowledge of Solo; and (bwxsm) for the possible jobs, J;,
on all viable slices (Equation 1), we can estimate the job execution
times on those slices. For the current job, Ji, consider the ratio of

Soloy. on the current slice to that on 7g to be the Resource Deficiency
Solocurrent?slice

Factor (RDF), i.e., RDF = k

Solo!?
ideally schedule a strict job on the slice with the minimum slowdown
factor, n, where:

. Therefore, we should

n
n = RDF X max{bwk X smy + Z (bw; X sm;), 1} . 2)

i=1
For example, an RDF value of 1.3 indicates that the ‘solo time’ of
the job increases by 30% when run on the concerned slice. RDF can
be calculated by finding the required ratio of execution times on
the concerned slice. (bw; x sm;) (FBR) for any job J; can also be

215

MIDDLEWARE 24, December 2-6, 2024, Hong Kong, Hong Kong

laas
Cost-aware |
procurement

0g® Feavests il Garouay

I 4

Dispatcher Manager Node

Reordering [
+ Batching OO

b

=
> 000
—i[b[b[s[s]... [s] b .
Requests Nemmm NS
Worker Nodes
Containers 49 39

=
v i*looo | __@‘
L—L[s[o[s]b] .. [b] isfb]bb]s] .i.
v

Request Priority Q'ueue Head

Figure 4: A schematic depicting PROTEAN’s design.

estimated by averaging the values obtained from solving the linear
equations derived from Equation 1 for multiple co-locations of J;.
Figure 3 depicts the normalized FBR values of some of our work-
loads. For the purposes of our later experiments, we categorize the
workloads’ models into Low Interference (LI) and High Interference
(HI) models, based on the values in Figure 3.

Guideline 2: Strict requests should be scheduled on the
appropriate (large) slice by accounting for both FBRs of all
potentially co-located jobs as well as the RDF of the incoming
Jjob for the considered slice.

The above insights lay the foundation for the scheduling policies
that are incorporated into our design.

4 Overall Design of PROTEAN

Figure 4 outlines the overall design of PROTEAN. The Gateway @
provides a point of access to user requests to our serverless frame-
work. These requests are load-balanced across the worker nodes by
the Dispatcher @, thereby routing them to the appropriate nodes.
Before invoking the respective workloads, the requests are first re-
ordered @ by prioritizing strict requests to improve SLO compliance.
After this, requests are serviced as batches @ by GPU-accelerated
containers. The Autoscaler @ appropriately scales containers up
or down such that there is at least one container to service each
incoming request batch. The containers use the Job Distribution
logic @ to schedule jobs on different slices in the current GPU ge-
ometry such that BE requests are packed into the fewest, smallest
possible slices while distributing strict requests among the large
slices to balance the tradeoff between resource deficiency and job
interference (Equation 2). The GPU Reconfigurator @ selects the
appropriate geometry to facilitate the above scheduling by con-
figuring the GPU on-the-fly. Here, the worker nodes are acquired
from the IaaS provider by the Cost-aware Procurement Module @
to provision Spot instances whenever possible, thereby reducing
costs. We detail the key design features of PROTEAN below.

4.1 Request Reordering and Batching
To enable high throughput and GPU resource utilization, we
enable requests to be batch-served @ [91, 100] by GPU-accelerated

MIDDLEWARE 24, December 2-6, 2024, Hong Kong, Hong Kong

containers. Provided there are multiple batches, the end-to-end
latency of a request batch, t, is given by t = t;414 + tqueue + texecs
where fc,4 is the cold start time, tgyeye is the queuing delay in-
curred by a batch waiting to be served behind other batches at a
container, and fexec represents the batch execution time. Assuming
that we are able to avoid cold starts using ‘warm’ containers (which
will be discussed in the next subsection), the end-to-end latency, ¢,
can be minimized by reducing the queuing delay, tgyeve-

To improve SLO compliance, we prioritize strict requests by re-
ordering requests @ accordingly before batch-serving them with
containers (total overhead < 1ms). This allows strict requests to
be served earlier, thereby reducing the queuing delay and, hence,
potentially improving SLO compliance. Note that provisioning a
sufficient number of containers (one per batch) without reordering
requests can also potentially eliminate queuing. However, unpre-
dictable request surges can find the system underprovisioned with
containers, thus, potentially reintroducing queuing delays. Our
request reordering policy can potentially negate this as well.

4.2 Autoscaling

PROTEAN has an auto-scaling module @ to scale containers to
service incoming requests. Here, we re-purpose existing techniques
to better suit inference apps to prevent SLO violations due to con-
tainer under-provisioning:
Reactive scale-up — Containers are scaled up such that there is
one container spawned for each batch of requests received (versus
many traditional (CPU-based) autoscaling policies that spawn a
container per request [6, 95]). This helps negate queuing effects
(seen in Section 4.1). Thus, the number of containers spawned, n,

is given by n¢e = Z:l:"{ I-#%
of models invoked, n,(m;) is the total number of incoming requests
for a particular model, m;, and batch_size(m;) is the model batch
size. Note that, because of the relatively high batch sizes used, we
can tolerate most request load variations without spawning more
containers (and incurring cold starts).

Delayed termination — For increased SLO compliance, we termi-
nate active (warm) containers only after an extended (tunable) pe-
riod of time (~10 minutes) elapses throughout which some contain-
ers (which will eventually be shut down) are consistently deemed to
be ‘surplus’ by the reactive scale-up policy (similar to existing keep-
alive policies [99]). This, combined with request batching, reduces
the number of cold starts by up to 98% versus scaling down containers
immediately in response to temporary request load reduction.

4.3 Job Distribution

The containers spawned by the autoscaling module employ the
Job Distribution logic @ to effectively schedule jobs across the avail-
able GPU slices. This is done with the scheduling criteria discussed
in Section 3 in mind: whenever possible, all BE requests are isolated
from the strict requests on the fewest, smallest slices whereas strict
requests are scheduled on the larger slices such that they suffer
minimal slowdown due to both job interference and resource defi-
ciency (Equation 2). To this effect, the Job Distributor implements
Algorithm 1.

Here, slices (in ascending order of resources) are associated with
a tag_value @, indicating what fraction of its memory will be occu-
pied by BE requests (default tag_value = 0). Then, the Distribute_Jobs

-‘, where n,, is the total number

V. M. Bhasi, A. Sharma, R. Jain, J. R. Gunasekaran, A. Pattnaik, M. T. Kandemir, C. Das

Algorithm 1 Scheduling Jobs using Job Distribution logic

1: from request_reordering_module get BE_mem
2: for slice in geometry.sorted(ascending) do
3: if BE_mem > 0 then

4: tag value — min(],m{/fiﬂ%)e

5: BE_mem <« max(0, BE_mem - slice.available_mem)
6: tag(slice, tag_value)

7: else

8: break

9: Distribute_Jobs(V batch € sorted_batch_queue)
10: procedure DISTRIBUTE_JoBs(batch)

11: if batch is strict then

12: chosen_slice < choose_strict_slice(batch) Q)

13: else

14: chosen_slice < choose_best_effort_slice(batch) @

15: schedule(batch, chosen_slice)

procedure schedules jobs on the slices chosen by helper methods @,
@ based on job latency targets (or lack thereof). choose_strict_slice(
) @ chooses slices which will not be completely occupied by BE
requests (tag_value < 1), and will yield the least slowdown factor,
17, (Equation 2) when the job is scheduled on it. This also consid-
ers potential slowdown due to occupancy by BE requests using
tag_values. In contrast, choose_best_effort_slice() @ packs BE re-
quests in as few, small slices as possible via First Fit Bin Packing [68].
Here, prerequisites, such as FBRs, are estimated through profiling.

4.4 GPU Reconfigurator

As per Algorithm 2, the GPU Reconfigurator configures the
GPU geometry to enable arriving requests to be served using the
heuristics discussed previously. Using the number of BE requests
predicted (via the light-weight EWMA model [95]) @, their total
memory requirement is calculated @. This is done so that the GPU
is configured in advance to serve requests arriving after its recon-
figuration time (~2s) has elapsed.

Once the future ‘BE memory footprint’ is estimated, the final
geometry is decided by finding the set of slices with the minimum
total memory that can accommodate it @. As a consequence, the
remaining larger slices are also selected. We schedule (most) strict
requests on them as seen in Section 4.3. To avoid using a sub-optimal
geometry in corner cases (very few or high BE requests), we iden-
tify ‘threshold values’ for BE request occupancy for the smaller
slices (using profiling information, predicted occupancy, etc.). Here,
Tjo+ @ determines the number of BE requests below which consol-
idating both strict and BE requests on a 3g is preferred since the
performance offered by the 3g outweighs any interference caused
by BE requests in this case. Similarly, Ty;45 @ is the number of BE
requests above which the slowdown (due to resource deficiency and
interference) in (2g,1g) would be too high whenever strict and BE
requests get co-located. If the chosen slices are out of the threshold
bounds or if they cannot fit all BE requests, we use the (4g, 3g)
geometry @, which, in our experience, is the most effective in such
scenarios. Finally, our choice of geometry is compared against the
current one and the GPU is reconfigured if there is a mismatch and
similar mismatches have happened repeatedly (3 times at least) @
(indicating a trend in the request trace variation, thus justifying the
(brief) downtime for GPU reconfiguration). Note that only ~30% of
GPUs (on average) are allowed to be reconfigured simultaneously
to keep overall GPU downtime low.

216

Towards SLO-Compliant and Cost-Effective Serverless Computing on Emerging GPU Architectures

Algorithm 2 GPU Reconfigurator

: for Every Monitor_Interval = W do
from curr_request_queue get curr_queue_info
GPU_Reconfigurator(current_queue_info)

1

2

3

4: procedure GPU_RECONFIGURATOR(curr_queue_info)

5: init: final_geometry : null

6: small_slice_set : [[1g, 2g], [3g]]

7 found : False

8: pred BE_num « predict_num_BE(curr_queue_info, history_info)@
9: pred_BE_mem «— mem(BE_model, pred_BE_num) @

10: for slice_set in small_slice_set do

11: if sum_max_mem(slice_set) >= pred BE_mem then @

12: chosenSS « slice_set

13: update_pot_occupancy(chosenSS, pred_BE_num, BE_model)

14: Tiow < calc_Lthresh(chosenSS, pred_BE_num, BE_mode)@

15: Thign < calc_Hthresh(chosenSS, pred_BE_num, BE_mode)@®

16: final_geometry.append(chosenSS.members)

17: found — True

18: break

19: if found is False or pot_occupancy[chosenSS] < Tjph OF
pot_occupancy|[chosenSS] > Thigh, then @

20: final_geometry «— [4g, 3g]

21: else

22: if found is True then

23: final_geometry.append(4g)

24: if curr_geometry is not final_geometry then

25: if wait_ctr >= wait_limit then (2]

26: reconfigure_GPU(final_geometry)

27: else

28: wait_ctr < wait_ctr+ 1

29: if curr_geometry is final geometry then

30: wait_ctr < 0

4.5 Cost-aware Procurement

With serverless costs being closely linked to VM costs of the
hosting IaaS provider(s) [103], we propose to acquire inexpensive
spot VMs to host key components of our framework whenever pos-
sible. However, as relying solely on spot VMs can inevitably lead
to server downtimes resulting from spot VM evictions, we employ
reliable on-demand VMs as a backup hosting platform. On receipt
of the eviction notification, we retry for another spot VM and only
issue an on-demand VM request if the spot request fails. Once the
new VM (spot/on-demand) is acquired, we redirect the incoming
traffic to it. Two key factors enable this optimization: (i) The evic-
tion notification arrives at least 30s prior [7, 8, 17], thus, affording
us enough time to recover. (ii) As GPU serverless workloads are
typically short-running (< 1s [100]), the remaining requests on the
soon-to-be-evicted VM can finish before the eviction. Note that our
system can also provision only on-demand instances (with higher
availability, but higher prices), if the user so desires.

5 Implementation and Experimental Setup

PROTEAN's real-system implementation has modules (as shown
in Figure 4) which are primarily implemented as daemon processes
(in Python), achieving their functionalities (described in Section
4) by using MPS [25], MIG [24], GPU-accelerated containers [21]
(with PyTorch v1.1 [77]), etc. We use Docker (v20) swarm [15] to
manage the cluster. Here, we emulate only the spot/on-demand VM
worker aspect (the pricing and revocations) by projecting the total
cost (including scheduling/profiling costs) based on running time
(including keep-alive and execution times) using average AWS spot
and on-demand pricing. There is one spot/on-demand VM per node
in the cluster, each VM image being 512GB. We generate revocation

217

MIDDLEWARE 24, December 2-6, 2024, Hong Kong, Hong Kong

notifications at each worker node at fixed time intervals based
on revocation probability (Pre,) values derived from [76]: (i) High
spot VM availability (Prey = 0); (ii) Moderate spot VM availability
(Prey = 0.354); and (iii) Low spot VM availability (Prep = 0.708).
Below, we detail some aspects of the experimental setup.
Hardware: PROTEAN is set up on a 9 node (multi-GPU) cluster
(including a dedicated manager node). Each of the 8 worker nodes
is equipped with an NVIDIA A100 40GB GPU, an AMD EPYC
Rome CPU (48 cores), 128 GB of RAM, and 1 TB of storage and is
connected via a 100 Gigabit Infiniband connection. We measure
GPU utilization (percentage non-idle time) and GPU memory usage
using NVIDIA-smi [26].
Workloads: We use 22 diverse ML inference workloads from the vi-
sion and language domains with varying memory footprints (from
~2 to 14 GB per batch) and resource requirements. For our primary
experiments, we use image classification workloads based on the
following models: ResNet 50 [57], GoogleNet [96], DenseNet 121 [61],
DPN 92 [41], VGG 19 [92], ResNet 18 [57], MobileNet [59], MobileNet
V2 [84], SENet 18 [60], ShuffleNet V2 [73], EfficientNet-B0 [97], and
Simplified DLA [102]. We use a batch size of 128 and the ImageNet
1k [83] dataset. As a part our sensitivity study, we use sequence
classification workloads that are based on Large Language Models
(LLMs) (including modern generative LLMs) with very high FBRs,
namely, AIBERT [69], BERT [47], DeBERTa [58], DistilBERT [85],
FlauBERT [70], Funnel-Transformer [44], RoBERTa [72], Squeeze-
BERT [62], OpenAI GPT-1 and GPT-2. Here, batch size = 4 and the
dataset is the Large Movie Review Dataset [74]. ‘Strictness’ of all
requests is assumed to be user-annotated. We set all workload SLOs
(for strict requests) to be 3x higher than its execution time [54] on
7g. Also, our batch sizes are selected so that their execution latency
on 7g is between ~50-200ms, similar to the inference requests in
China’s largest local life service website [100].
Request Traces: We use real-world traces from Wikipedia [98] as
they resemble the diurnal request arrivals of ML inference work-
loads [55]. We also consider the Twitter trace [2] which is erratic,
and has a large peak-to-mean ratio (4561:2969) versus the Wiki
trace (316:303). We also scale the request rates of the Wiki and Twit-
ter traces so that their mean and peak rates, respectively, are ~5000
requests per second (rps) (as seen in [9]), for the vision models. For
the language models, we use a much lower rate of 128 rps. We use
a 50-50 mix of strict and BE requests for all experiments, unless
specified. Here, the strict requests correspond to either a (fixed) LI
or HI model, and the BE request varies randomly (every ~20s), to
correspond to models from the opposite category (HI/LI), where
applicable.
Evaluated schemes: We compare PROTEAN against schemes
which employ the request serving policies of state-of-the-art GPU-
enabled serverless frameworks, namely, INFless [100], Llama [82],
and Molecule [48]. Despite being different frameworks, INFless and
Llama both employ MPS to schedule multiple request batches onto
the available GPU while being agnostic of its MIG capabilities. We
refer to the corresponding scheme as INFless/Llama. Molecule (beta)
is the scheme representative of Molecule, which offers minimal GPU
support without MPS to consolidate requests on GPU(s). Instead, it
executes workload batches on the GPU(s) via time sharing. Finally,
we introduce a scheme, Naive Slicing, which spatially shares (via
MPS) static MIG slices among requests, load-balanced according

MIDDLEWARE 24, December 2-6, 2024, Hong Kong, Hong Kong

V. M. Bhasi, A. Sharma, R. Jain, J. R. Gunasekaran, A. Pattnaik, M. T. Kandemir, C. Das

100.00%

75.00%

50.00%

25.00%

% SLO Compliance

0.00%

ResNet 50 GoogleNet DenseNet 121 DPN 92 VGG 19

ResNet 18

MobileNet V2

MobileNet SENet 18

@Molecule (beta) ®Naive Slicing ®INFless/Llama @ Protean

Figure 5: Comparison of SLO compliance of all schemes for all vision models.

to slice memory, without any of the intelligence of PROTEAN. Note
that we omit a ‘MIG Only’ scheme from our experiments for brevity
since MIG Only performs worse than our proposed scheme for the
considered models (Section 2).

6 Evaluation

This section presents a thorough evaluation of PROoTEAN. Unless
mentioned otherwise, the plots presented here pertain to the Wiki
trace with vision workloads. For individual examples, similar results
are seen for other workloads as well.

6.1 Primary Results

6.1.1 SLO compliance and Tail Latency Figures 5 and 6 depict
the percentage of strict requests satisfying their SLO target and
the P99 latency of strict requests, respectively, for the specified
vision models. As can be observed, PROTEAN outperforms all other
schemes with up to 62% more of its requests being SLO-compliant
(Figure 5). Similarly, we observe PROTEAN to also have the least
tail latency (up to 73% lower than others) (Figure 6). These results
can be attributed primarily to PROTEAN leveraging the MPS and
MIG capabilities of underlying GPUs dynamically and scheduling
requests intelligently so as to ensure strict requests are scheduled
by considering the tradeoff between interference and resource defi-
ciency. Now, let us delve into the specific reasons for each scheme’s
performance, by considering the breakdown of tail (P99) latencies
plotted in Figure 6.

INFless/Llama consolidates all requests (to a node) on the same in-
dividual GPU using MPS, regardless of their latency targets (Section
5). This, as shown in Figure 6, can lead to increased job interference
between the co-located requests, thus degrading their collective
performance (particularly that of strict requests, as discussed in
Section 3). For instance, for VGG 19 (Figure 6c¢), 75% of the tail
latency of INFless/Llama is due to the cumulative job interference
of all co-located requests, including the BE requests. Consequently,
for the same model, these schemes have an SLO compliance of only
73.76% (Figure 5). In comparison, PROTEAN has 99.74% SLO compli-
ance here. This is partly due to the reduced interference (47% lesser)
suffered by strict requests (Figure 6¢), due to a) being scheduled
intelligently on the available larger slice(s), and b) being isolated
from the BE requests.

In comparison to Naive Slicing, which apportions requests among
GPU slices without prioritizing strict requests in any form, PROTEAN
has better SLO compliance (up to 32% more) and tail latency (up to
36% less) (Figures 5, 6). This is due to PROTEAN ensuring that strict
requests are scheduled on the largest slice with the least slowdown
factor (Equation 2). In contrast, Naive Slicing may schedule strict
requests without considering the impact of resource deficiency
and/or job interference.

As mentioned in Section 5, Molecule (beta) does not spatially
share GPU(s), but instead, relies on time sharing to service work-
load batches. Thus, despite Molecule (beta) not suffering from job
interference or resource deficiency like the other schemes, a signif-
icant proportion of the requests served by it (many of which are
strict requests) are plagued by queuing delays. PROTEAN, on the
other hand, strategically leverages both the MPS and MIG capabili-
ties of the underlying GPU (as discussed previously) and thereby,
outperforms Molecule (beta) in terms of both SLO compliance (up
to 62% more) (Figure 5) and tail latency (up to 73% less) (Figure 6).
Demonstration: To illustrate the effects of PROTEAN’s dynamic
GPU reconfiguration, we show a snippet of its execution in Figure 7.
Compared to other schemes, PROTEAN remains well within the SLO
target by appropriately scheduling requests across the slices (4g
and 2g) and via request reordering. As per Algorithm 2, PROTEAN’s
initial geometries of all GPUs are set to (4g,2g,1g). At @ in Figure 7,
when the BE model changes to DPN 92 (with up to a 2.74x larger
memory footprint than that of previous models), the latency rises,
since (2g, 1g) cannot collectively hold all DPN 92 requests, leading
to their ‘spillage’ to 4g, in turn, causing interference to its resident
strict requests also. Now, PROTEAN detects that changing 2 GPUs’
geometries to (4g, 3g) can remedy this situation according to Algo-
rithm 2. Once PROTEAN’s waiting limit elapses (@ in Algorithm 2),
it initiates the geometry change at @ in Figure 7, thereby, lowering
the latency.

6.1.2 End-to-End Latency Distribution An analysis of the end-
to-end latency distribution can shed more light on the observed
performance of each of the schemes (Figure 8). PROTEAN has a
relatively flat distribution curve which remains within the SLO
for the entire range (till P99). The low variation in latency values
can be attributed to the isolation of BE and strict requests (largely)
enforced by PROTEAN. Here, both INFless/Llama as well as Naive
Slicing exceed the SLO at not only the tail (P99), but around P80 as
well, due to the reasons discussed in Section 6.1.1. The CDF curve
for Molecule (beta) rises progressively, due to queueing effects faced
by strict requests.

6.1.3 Cost Savings Let us consider Figure 9. Here, we have an
additional scheme, Spot Only, which is a variant of our scheme that
attempts to aggressively reduce costs by employing only spot VMs.
PROTEAN, by only using spot VMs when available, and switching to
on-demand VMs during periods of spot VM unavailability, achieves
cost savings (up to 70% more) compared to the other schemes (which
use only on-demand VMs) while also having better SLO compliance
(up to 99% more). While Spot Only has lower costs than PROTEAN
(35% on average, with up to 71% savings), its SLO compliance is
adversely affected under scenarios with limited spot VM availability
due to sufficient number of workers being unavailable to service the
arriving requests, thereby increasing the load on the few available

218

Towards SLO-Compliant and Cost-Effective Serverless Computing on Emerging GPU Architectures

MIDDLEWARE 24, December 2-6, 2024, Hong Kong, Hong Kong

100

~
(3]

50

Time (ms)

25

(a) ResNet 50. (b) GoogleNet.

minterference mResource deficiency DO Queueing ®=Min possible time

(c) VGG 19.

(d) Simplified DLA.

= = SLO

Figure 6: Breakdown of job tail (P99) latencies for all schemes for a subset of the vision models.

Strict:
BE:

ShuffleNet V2
DenseNet 121 GoogleNet DPN 92

Molecule (beta) —— INFless/Llama ——— Naive Slicing

——Protean

(4g,2g,1g) x 6
(4g,3g) x 2

130

(4g,2g,1g) x 8 (4g,28,1g) x 8

©
o

[3.)
o

eeessesccssccsccssnssne

Averaged Latency (ms)

10

0 20 40

Time (s)

Figure 7: Snapshot showing the effects of PROTEAN’s dynamic geometry selec-
tion for the ShuffleNet V2 model. PROTEAN’s geometry for all GPUs for each
BE model is indicated in the body of the graph. The other schemes are shown
for reference.

=== Molecule (beta) Naive Slicing — - -INFless/Llama _ -
® 120 -~
£ Protean = ---ee- sLo Prad
£
= 80
3
0
S
o 40
]
[}
4
0
0.2 0.4 0.6 0.8 1
CDF

Figure 8: Cumulative Distribution Function (CDF) of the end-to-end job laten-
cies for all schemes for the SENet 18 model.

workers. This can degrade the performance of Spot Only, especially
for HI models (Section 3). For instance, for ResNet 50, Spot Only
has only 8.76% and 0.68% SLO compliance under medium and low
spot VM availability compared to PROTEAN’s 99.35% (Figure 9b).
Given these results, we believe our strategy of relying on both spot
and on-demand VMs strikes the appropriate balance between cost
savings and SLO compliance.

6.1.4 Analysis of other Key Benefits Here, we evaluate Pro-
TEAN with respect to other metrics.

Throughput Here, throughput refers to the total number of strict
requests served on average per GPU per second. We observe that
PROTEAN has up to 24% higher throughput than other schemes
(Figure 10a). Given that the average number of strict requests and

219

—= Normalized Dollar Cost —e—SLO Compliance

1 = 100% 1 100%
i 8 B 3
8 0.8 80% & 508 80% 2
o

> 06 60% 5w 0.6 60% S
T 04 40% E Boa 40% €
502 H I H 20% o s02 |'| |'| 20% 2
s 0 2 0% 3 § 0 0% 2
2 53588538 < |s3sBilsEsl *

= = = S -|= -|= -

Other | Spot |Protean Other | Spot |Protean

t Only h Only
(a) VGG 19. (b) ResNet 50.

Figure 9: Normalized Dollar Cost vs. SLO compliance for other schemes (aver-
aged across them), Spot Only and PROTEAN for high, medium, and low spot

VM availability.

4500 100%

3000 75%

1500 50%

Throughput (rps)

% Utilization

25%

o

P & ¢ %
NI SN e .
¥ e & < Molecule Naive Slicing INFless/Llama Protean
& & \é(\“ (beta)
mMemory Utilization ~ mGPU Utilization
(a) Throughput. (b) GPU Utilization.

Figure 10: PROTEAN’s other key benefits: Throughput (for DenseNet 121), and
Resource Utilization (for EfficientNet-B0).

batch sizes used are the same across the schemes, throughput is
determined by the batch execution latency of strict requests. Thus,
the higher throughput of PROTEAN is due to its policies that priori-
tize strict requests. Note that PROTEAN also achieves the highest
combined throughput (strict and BE) here as well (up to ~2.5%
more), closely followed by INFless/Llama (2% lesser)?.

GPU Utilization As per Figure 10b, PROTEAN, similar to INF-
less/Llama and Naive Slicing, maximizes GPU utilization (i.e., mini-
mizes GPU idle time), owing to the collective compute requirements
of co-located request batches. PROTEAN achieves 39% memory uti-
lization, which is very similar to that of both Naive Slicing (39%)
and INFless/Llama (42%). The slightly lower memory utilization of
PROTEAN here is due to an observed decrease in workload memory
footprint when scheduled on smaller slices. In comparison to these
schemes, Molecule (beta) achieves only 49% GPU utilization and 8%
memory utilization due to executing one request batch at a time
on the whole GPU, without spatially sharing it.

MIDDLEWARE 24, December 2-6, 2024, Hong Kong, Hong Kong

mmm Min possible time ==2Qi
@ Interference —e=SLO Compliance

100.00%

75.00%

50.00%
! 1 o
0.00%

Naive Slicing INFless/Llama Protean

80

Time (ms)

40

% SLO Compliance

Molecule
(beta)

Figure 11: Tail latency breakdown vs. SLO compliance for all schemes for
MobileNet when subjected to an erratic trace (Twitter trace).

Tail Latency of BE Requests Since our scheduling and GPU
reconfiguration policies are designed to minimize tail latency for
strict requests, we observe that the other policies can achieve up
to 42% lower tail latency than ProTEAN for BE requests?. Despite
this, PROTEAN successfully keeps their performance degradation
in check, with the tail latency of all BE requests remaining under
200ms 2 (within the expected latency for user-facing inference tasks
[36,100]). This is likely due to PROTEAN conservatively provisioning
containers, thus, being able to serve BE requests with minimal
queuing.

6.2 Sensitivity Study

Now, we evaluate PROTEAN under varied settings from those of
the previous experiments.
Erratic trace Consider Figure 11 that depicts the performance
of all schemes for the Twitter trace. Note that since we scale the
request rates of Twitter to have a peak of ~5000 rps (as per Sec-
tion 5), we obtain a resultant mean rate of ~3000 rps, which is
35% lower than that used previously for the Wiki trace. Despite
this, INFless/Llama and Naive Slicing are adversely affected by the
sudden request surges here as this can find these schemes under-
provisioned with containers, thus causing them queuing overheads
(up to 24% of their P99 latency). While PROTEAN is also affected by
similar circumstances, it minimizes queuing effects (by ~69% ver-
sus INFless/Llama and Naive Slicing) by prioritizing strict requests
through request reordering (Section 4.1). Combining this with our
other policies, PROTEAN achieves much higher SLO compliance
(99.90%) versus other schemes.
Very High Interference (VHI) models Here, we consider large
language models with high FBRs (59% higher on average versus the
vision models). We refer to them as Very High Interference (VHI)
models. The schemes which use MPS to co-locate the VHI models
(all except Molecule (beta)) suffer more from job interference due to
the high FBRs of the workloads (Figure 12). PROTEAN, despite using
MPS, almost always outperforms all others in terms of SLO compli-
ance (by as much as ~93%) by virtue of all its policies that prioritize
strict requests through intelligent request scheduling and GPU re-
configuration. INFless/Llama, in particular, is the worst-affected,
with an average SLO compliance of only 5.92% for the VHI models
due to the high interference from ‘MPS-only’ co-location. Generally,
Molecule (beta) has lower SLO compliance than PROTEAN due to
time sharing GPUs (resulting in queueing), except for FlauBERT,
where the relative queueing delays are lower.

2Not shown in Figures/Tables due to space constraints

V. M. Bhasi, A. Sharma, R. Jain, J. R. Gunasekaran, A. Pattnaik, M. T. Kandemir, C. Das

Performance of Modern Generative LLMs: As part of the VHI model
analysis, we also study the performance of generative LLMs (Ope-
nAI GPT-1, [78] and GPT-2 [79]) (Figure 13). Here, the strict requests
correspond to a GPT model, whereas the BE requests correspond to
the previously-seen LLMs (varied at random). Due to the especially
high FBRs of the GPT models (up to 42% versus the previous LLMs),
the SLO compliance is further reduced for all MPS-based schemes,
especially for INFless/Llama, which fails to satisfy the SLOs for any
request due to the higher interference resulting from MPS-based
co-location of all requests. PROTEANs performance degradation, on
the other hand, is limited primarily because it co-locates both BE
and strict on the smaller GPU slice to reduce the total interference
experienced by the majority of strict requests on the larger slice(s).
Doing so helps it achieve (the highest) SLO compliance of 90% on
average across GPT-1 and GPT-2. This reiterates the fact that Pro-
TEAN does not always merely isolate strict and BE requests, but
instead, carefully determines the ideal request co-location levels for
the available slices. Molecule (beta), in this case, achieves better SLO
compliance for GPT-2 (~79%) than GPT-1(61.45%), due to the lower
queueing delays for GPT-2 relative to its (high) execution latency.

Varied Strictness Ratios

Here, we study the perfor-

OMolecule (beta) O Naive Slicing

mance of all schemes under DINFless/Llama OProtean
two scenarios with varied §1°0%

‘strictness’ ratios: (i) Strict %_ 75%

skewed: 75% strict and 25% § 50%

BE requests, (ii) BE skewed: g 25%

25% strict and 75% BE re- @ gy, O

quests. & GPT1 GPT2

In the Strict skewed case,
PROTEAN achieves an SLO
compliance of 99.99% and
93.78% for the ShuffleNet V2 and DPN 92 models, respectively,
thereby, outperforming all other schemes (Figure 14a). For Shuf-
fleNet V2, we observe that all MPS-based schemes (including Pro-
TEAN) achieve at least ~89% SLO compliance. This is due to the
lower FBRs (and low interference) of ShuffleNet V2, which composes
the majority of the request trace. Conversely, for DPN 92, since its
requests form the majority, the job interference experienced in
MPS-based schemes is high (as DPN 92 is an HI model).

For BE skewed, PROTEAN, yet again, achieves the highest SLO
compliance (at least 99.96%) for both models (Figure 14b). For Shuf-
fleNet V2, Naive Slicing achieves a high SLO compliance (97.86%)
because of its request scheduling across slices and since Shuf-
fleNet V2 is barely affected (< 2%) by resource deficiency effects
for those slices. For DPN 92, all schemes perform well, with at least
98.56% SLO compliance, since BE requests (corresponding to LI
models) form the majority of requests, causing minimal interfer-
ence/queueing.

Extreme Skewed Cases: As part of the above study, we also analyze
cases where the requests are either 100% strict or 100% BE. Table
4 shows the SLO compliance for all schemes for a 100% strict case
with the ResNet 50 model. Note that this (no BE requests) is the
‘default’ scenario for which works like INFless/Llama were designed
for. Since all the requests here correspond to an HI model (versus
previous experiments with both HI and LI models), the resultant

Figure 13: SLO Compliance for modern
generative LLMs.

220

Towards SLO-Compliant and Cost-Effective Serverless Computing on Emerging GPU Architectures

MIDDLEWARE 24, December 2-6, 2024, Hong Kong, Hong Kong

100.00%
80.00%
60.00%
40.00%
20.00%

0.00%

AIBERT BERT DeBERTa

OMolecule (beta)

DistilBERT
@ Naive Slicing

FlauBERT RoBERTa SqueezeBERT

SINFless/Llama

Funnel_Transformer

B Protean

Figure 12: Comparison of SLO compliance of all schemes for the shown large language (VHI) models.

@ Molecule (beta) = Naive Slicing INFless/Llama @ Protean

100.00% 100.00%

75.00% 75.00%
50.00% 50.00%
25.00% 25.00%
0.00% 0.00% =

ShuffleNet V2 DPN 92 ShuffleNet V2 DPN 92

(a) Strict skewed. (b) BE skewed.

Figure 14: SLO compliance for skewed strictness ratios.

interference due to MPS is noticeably higher, thus, degrading the
performance of all MPS-based schemes, including PROTEAN. In par-
ticular, INFless/Llama is adversely affected by this, achieving <1%
SLO compliance. However, PROTEAN minimizes interference due to
co-location amongst the strict requests with its intelligent policies,
and achieves the highest SLO compliance (94.19%).

[Molecule (beta) [Naive Slicing [INFless/Llama [PROTEAN]

[60.12% [54.31% [0.42% [9419% |
Table 4: SLO Compliance for 100% strict case.

For the 100% BE case (Table 5), the corresponding models are
varied at random from the pool of HI models. Since SLO compli-
ance is not a valid metric for BE requests, we compare the median
(P50) and tail (P99) latency values of the schemes in this case. We
observe that, while PROTEAN achieves the best median latency for
BE requests (up to 48.5% lesser), other schemes outperform it in
terms of P99 latency (by up to 28%). This is because PROTEAN gives
BE requests lower priority (unlike other schemes which are ag-
nostic to request strictness) and hence, schedules many of them
on smaller GPU slices, in addition to putting them at the back of
request queues, thus degrading tail latency. However, optimizing
request scheduling for both P50 and P99 latency for such corner
cases (100% BE) is worth looking into as part of future work.

[Molecule (beta) [Naive Slicing [INFless/Llama [PROTEAN]
| (68, 165) [(50,99) [(57,130) [(35,138) |
Table 5: (P50, P99) latency (in ms) for 100% BE case.

Tight SLO Target This ex-
periment studies the perfor-
mance of all schemes under

OMolecule (beta)
DINFless/Llama

O Naive Slicing
OProtean

‘ 100%

a tighter SLO target (2X the £ 75%

minimum execution latency). £ ggo,

Due to this, the SLO compli- & 25% HHH HH
o 0

ance of the other schemes 2 0% H

degrade considerably (over- = ResNet 50 MobileNet

all, by up to 22%) versus Pro-
TEAN (which degrades up to
~5%) (Figure 15). Here, for

Figure 15: SLO Compliance when SLO
target is tightened.

221

ResNet 50, PROTEAN drops as low as 94.38%, likely due to it be-
ing an HI model, coupled with the enforcement of the tight SLO
bounds. Despite this, these results demonstrate the resilience of
PROTEAN (especially at the tail of the response time distribution)
that is a consequence of its intelligent policies.

Comparison against strate-

gic MPS-only usage Pro- § 100% OGPUlet OProtean
TEAN uses the default MPS g 40,
configuration, which allows §
the co-running workloads to 8 80% H H
decide their fraction of SMs. @ 70%

® DenseNet 121 SENet 18

However, to compare against
a scheme with carefully-
allocated SM partitions via
MPS (GPUlet [42]), we use an
MPS execution mode, which
sets an upper bound on the fraction of SMs used by a workload.
Here, the limits on SM fractions are set according to the SLO of
the model and the point of diminishing returns of performance.
Thus, we set a ~60-65% upper bound on the SM usage for strict re-
quests, with the remaining used by the BE requests. From Figure 16,
PROTEAN is seen to have up to ~16% more SLO compliance versus
GPUlet. GPUlet, despite prioritizing strict requests by giving them
a larger potential fraction of SMs, suffers from job interference (up
to ~2X overhead?), due to the cache and memory bandwidth still
being shared (Section 2.2). PROTEAN, in comparison, maintains an
average SLO compliance of 99.65% here, as a result of the much
lower overheads (~88% lesser?), due to its policies that intelligently
leverage both MPS and MIG.

Comparison versus
Oracle Finally, we

Figure 16: SLO Compliance of Pro-
TEAN versus GPUIet (Strategic MPS-only
scheme).

= Tail Latency —e—SLO Guarantee 3

(=2}
=3

100%

Protean Oracle |Protean Oracle

mn
£ c
. = S
compare PROTEAN with 340 9% 3
. e 99% E

Q
Oracle, a scheme Wlt}'l £ 20 os% O
all of PROTEAN’s poli- =0 97% 9
s 7]
B

cies, but with knowl-
edge of the ideal GPU
configurations and job
scheduling on slices
to minimize strict re-
quest slowdowns (due to being done offline). As shown in Fig-
ure 17, Oracle only outperforms PROTEAN by up to 0.42%, and in
terms of tail latency by up to 17%. This difference in performance
is largely because a) Oracle performs multiple offline configura-
tion/scheduling sweeps b) Oracle does not suffer from GPU re-
configuration overheads. Note that PROTEAN remains competitive
despite not knowing the workloads and request rates beforehand.

VGG 19 GoogleNet

Figure 17: P99 latency and SLO compliance versus
Oracle.

MIDDLEWARE 24, December 2-6, 2024, Hong Kong, Hong Kong

7 Discussion

Below, we provide additional insights and clarifications regard-
ing key aspects of PROTEAN, informed by the context established
throughout the paper.
Generalizability: PROTEAN can work for equivalent GPU shar-
ing mechanisms of other vendors also since it does not depend
on NVIDIA-specific features. Rather, it models common system
overheads: (i) the job interference of co-located requests due to
contention for shared resources, (in an MPS-like scenario) and (ii)
resource deficiency due to partitioning a resource. (in a MIG-like
scenario).
Revisiting Novelty: As demonstrated in the above Evaluation Sec-
tion, we improve upon key performance and cost metrics compared
to existing GPU-enabled serverless frameworks by being the first to
intelligently leverage both MPS and MIG. As mentioned already, the
problem we solve is not one of only isolating strict requests on larger
slices. In fact, we use our slowdown models (Section 3) to prudently
trade off interference versus resource deficiency (overcrowding larger
slice(s) versus taking a lesser-occupied, yet smaller slice) when
scheduling requests. Moreover, the GPUs have to be dynamically
‘sliced” ahead of time to facilitate request scheduling by predicting
the request mix that will arrive later (no prior work does the above).
Finally, our work is the first to show the applicability of using spot
instances intelligently (in the context of GPU-enabled serverless),
to yield cost savings without compromising on performance.
Statistical Significance: For all experiments, for both the vision
and NLP models/LLMs considered, we observed the following:
Confidence Intervals: Narrow ranges were seen (<0.1%), indicating
that the true mean performance metric for each scheme likely falls
very close to the shown estimates.
P-Values: All p-values were ~0.0, indicating that the differences be-
tween the compared scheduling schemes are statistically significant
at the 0.05 level.
Effect Sizes (Cohen’s d): Large to very large Cohen’s d values were
observed (7.80 to 304.37), indicating substantial differences in per-
formance between the scheduling schemes. PROTEAN significantly
outperforms the other schemes, with a particularly large effect
when compared to Molecule (beta) (for vision models), and INF-
less/Llama (for NLP models/LLMs).

8 Concluding Remarks

The unique features of new-generation hardware and major
cloud provider offerings must be leveraged to develop an SLO com-
pliant and cost-effective GPU-based serverless framework. To this
end, we design, implement, and evaluate PROTEAN, a GPU-enabled
serverless framework which employs policies that intelligently
leverage the MPS and MIG capabilities of recent NVIDIA GPU
architectures (to improve SLO compliance), while using a hybrid
spot/on-demand VM setup to host its key components (to reduce
costs). Our evaluation results show that PROTEAN significantly out-
performs state-of-the-art works, in terms of SLO compliance (up
to ~93% more) and tail latency (up to 82% less), while reducing the
costs by up to 70%.

9 Acknowledgement

This research was partially supported by NSF grants #1931531,
#2149389, and #2122155. All product names used here are for iden-
tification purposes only and may be trademarks of their respective

V. M. Bhasi, A. Sharma, R. Jain, J. R. Gunasekaran, A. Pattnaik, M. T. Kandemir, C. Das

companies. We are grateful to our anonymous reviewers and our
shepherd, Djob Mvondo, for their insightful comments and guid-
ance, which significantly improved this work. Finally, the lead au-
thor would like to express his deepest gratitude to his mother, Jerly
PV, for her invaluable support, from staying with him during most
of the paper’s development (and helping out in countless ways) to
offering continuous moral encouragement.

References

[1] 2020. Establishing Effective SLOs.
establishing-service-level-objectives/.

[2] 2020. Twitter Stream traces. https://archive.org/details/twitterstream. Accessed:
2020-05-07.

[3] 2021. AWS Lambda Cold Starts. https://mikhail.io/serverless/coldstarts/aws/.

[4] 2021. Azure Functions Cold Starts. https://mikhail.io/serverless/coldstarts/
azure/.

[5] 2022. The State of Serverless. https://www.datadoghq.com/state-of-serverless/.

[6] 2024. AWS Lambda. https://aws.amazon.com/lambda/.

[7] 2024. AWS Spot Instances. https://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/using-spot-instances.html.

[8] 2024. Azure Spot Virtual Machines. https://learn.microsoft.com/en-us/azure/
virtual-machines/spot-vms.

[9] 2024. AzureML Inference Router. https://learn.microsoft.com/en-us/azure/

machine-learning/how-to-kubernetes-inference-routing-azureml-fe.

2024. Banana. https://docs.banana.dev/banana-docs/.

2024. Banana Latency Guarantees. https://www.banana.dev/.

2024. Beam. https://www.beam.cloud/.

2024. Cerebrium. https://docs.cerebrium.ai/introduction.

2024. CUDA Concurrency Mechanisms. https://docs.nvidia.com/datacenter/

tesla/mig-user-guide/#cuda-concurrency.

2024. Docker Swarm. https://docs.docker.com/engine/swarm/.

2024. Google Cloud Functions. https://cloud.google.com/functions.

2024. Google Spot VMs. https://cloud.google.com/compute/docs/instances/

preemptible.

2024. GPUs vs CPUs for deployment of deep learning models.

https://azure. microsoft.com/en-us/blog/gpus-vs-cpus-for-deployment-

of-deep-learning-models/.

[19] 2024. Microsoft Azure Serverless Functions. https://azure.microsoft.com/en-

us/services/functions/.

2024. NVIDIA A100 Tensor Core GPU. https://www.nvidia.com/en-us/data-

center/a100/.

[21] 2024. NVIDIA-Docker. https://github.com/NVIDIA/nvidia-docker.

[22] 2024. NVIDIA Grace Hopper Superchip Architecture In-Depth.

https://developer.nvidia.com/blog/nvidia-grace-hopper-superchip-

architecture-in-depth/.

2024. NVIDIA H100 Tensor Core GPU. https://www.nvidia.com/en-us/data-

center/technologies/hopper-architecture/.

2024. NVIDIA Multi-Instance GPU. https://docs.nvidia.com/datacenter/tesla/

mig-user-guide/index.html.

2024. NVIDIA Multi-Process Service. https://docs.nvidia.com/deploy/mps/

index.html.

2024. NVIDIA-smi. https://developer.nvidia.com/nvidia-system-management-

interface.

2024. PCle Special Interest Group PCle 6 Specification. https://pcisig.com/pci-

express-6.0-specification.

2024. Replicate. https://replicate.com/docs.

2024. Runpod. https://www.runpod.io/serverless-gpu.

2024. Serverless Application Lens: Alexa Skills. https://docs.aws.amazon.com/

wellarchitected/latest/serverless-applications-lens/alexa- skills.html.

[31] 2024. Serverless Facebook Messenger Bot. https://github.com/pmuens/

serverless-facebook-messenger-bot.

2024. Serverless Optical Character Recognition (OCR) Tutorial. https://cloud.

google.com/functions/docs/tutorials/ocr.

2024. trainML. https://docs.trainml.ai/.

Daniel S. Berger, Benjamin Berg, Timothy Zhu, Siddhartha Sen, and Mor Harchol-

Balter. 2018. RobinHood: Tail Latency Aware Caching — Dynamic Reallocation

from Cache-Rich to Cache-Poor. In 13th USENIX Symposium on Operating Sys-

tems Design and Implementation (OSDI 18). USENIX Association, Carlsbad, CA,

195-212. https://www.usenix.org/conference/osdi18/presentation/berger

Vivek M. Bhasi, Jashwant Raj Gunasekaran, Aakash Sharma, Mahmut Taylan

Kandemir, and Chita Das. 2022. Cypress: Input Size-Sensitive Container Pro-

visioning and Request Scheduling for Serverless Platforms. In Proceedings of

the 13th Symposium on Cloud Computing (San Francisco, California) (SoCC

"22). Association for Computing Machinery, New York, NY, USA, 257-272.

https://doi.org/10.1145/3542929.3563464

https://www.datadoghq.com/blog/

[10

—_
=
AU R

[14

[15

r—w
=
o

[17

[18

[20

[23

[24

[25

[26

[27

[28
[29
[30

[32

[33
[34

[35

222

Towards SLO-Compliant and Cost-Effective Serverless Computing on Emerging GPU Architectures

[36] Vivek M. Bhasi, Jashwant Raj Gunasekaran, Prashanth Thinakaran, Cyan Subhra

Mishra, Mahmut Taylan Kandemir, and Chita Das. 2021. Kraken: Adaptive
Container Provisioning for Deploying Dynamic DAGs in Serverless Platforms.
In Proceedings of the ACM Symposium on Cloud Computing (Seattle, WA, USA)
(SoCC ’21). Association for Computing Machinery, New York, NY, USA, 153-167.
https://doi.org/10.1145/3472883.3486992

Vivek M. Bhasi, Aakash Sharma, Shruti Mohanty, Mahmut Taylan Kandemir,
and Chita R. Das. 2024. Paldia: Enabling SLO-Compliant and Cost-Effective
Serverless Computing on Heterogeneous Hardware. In 2024 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). 100-113. https://doi.
org/10.1109/IPDPS57955.2024.00018

Marc Brooker, Andreea Florescu, Diana-Maria Popa, Rolf Neugebauer, Alexan-
dru Agache, Alexandra Iordache, Anthony Liguori, and Phil Piwonka. 2020.
Firecracker: Lightweight Virtualization for Serverless Applications. In NSDIL.
Adrian M Caulfield, Eric S Chung, Andrew Putnam, Hari Angepat, Jeremy
Fowers, Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-
Young Kim, et al. 2016. A cloud-scale acceleration architecture. In 2016 49th
Annual IEEE/ACM international symposium on microarchitecture (MICRO). IEEE,
1-13.

Quan Chen, Hailong Yang, Minyi Guo, Ram Srivatsa Kannan, Jason Mars, and
Lingjia Tang. 2017. Prophet: Precise QoS Prediction on Non-Preemptive Acceler-
ators to Improve Utilization in Warehouse-Scale Computers. SIGARCH Comput.
Archit. News 45, 1 (apr 2017), 17-32. https://doi.org/10.1145/3093337.3037700
Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin, Shuicheng Yan, and Jiashi
Feng. 2017. Dual Path Networks. https://doi.org/10.48550/ARXIV.1707.01629
Seungbeom Choi, Sunho Lee, Yeonjae Kim, Jongse Park, Youngjin Kwon, and
Jaehyuk Huh. 2022. Serving Heterogeneous Machine Learning Models on
Multi-GPU Servers with Spatio-Temporal Sharing. In 2022 USENIX Annual
Technical Conference (USENIX ATC 22). USENIX Association, Carlsbad, CA, 199—
216. https://www.usenix.org/conference/atc22/presentation/choi-seungbeom
Marcus Chow, Ali Jahanshahi, and Daniel Wong. 2023. KRISP: Enabling Kernel-
wise RIght-sizing for Spatial Partitioned GPU Inference Servers. In 2023 IEEE
International Symposium on High-Performance Computer Architecture (HPCA).
624-637. https://doi.org/10.1109/HPCA56546.2023.10071121

Zihang Dai, Guokun Lai, Yiming Yang, and Quoc V. Le. 2020. Funnel-
Transformer: Filtering out Sequential Redundancy for Efficient Language Pro-

MIDDLEWARE 24, December 2-6, 2024, Hong Kong, Hong Kong

Processing Using Thousands of Tiny Threads. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17). USENIX Association,
Boston, MA, 363-376. https://www.usenix.org/conference/nsdi17/technical-
sessions/presentation/fouladi

Diandian Gu, Yihao Zhao, Yinmin Zhong, Yifan Xiong, Zhenhua Han, Peng
Cheng, Fan Yang, Gang Huang, Xin Jin, and Xuanzhe Liu. 2023. ElasticFlow: An
Elastic Serverless Training Platform for Distributed Deep Learning. In Proceed-
ings of the 28th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Volume 2 (Vancouver, BC, Canada)
(ASPLOS 2023). Association for Computing Machinery, New York, NY, USA,
266-280. https://doi.org/10.1145/3575693.3575721

Arpan Gujarati, Sameh Elnikety, Yuxiong He, Kathryn S. McKinley, and Bjérn B.
Brandenburg. 2017. Swayam: Distributed Autoscaling to Meet SLAs of Machine
Learning Inference Services with Resource Efficiency. In USENIX Middleware
Conference.

Jashwant Raj Gunasekaran, Cyan Subhra Mishra, Prashanth Thinakaran, Bikash
Sharma, Mahmut Taylan Kandemir, and Chita R. Das. 2022. Cocktail: A Multidi-
mensional Optimization for Model Serving in Cloud. In 19th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 22). USENIX Associ-
ation, Renton, WA, 1041-1057. https://www.usenix.org/conference/nsdi22/
presentation/gunasekaran

Udit Gupta, Samuel Hsia, Vikram Saraph, Xiaodong Wang, Brandon Reagen,
Gu-Yeon Wei, Hsien-Hsin S. Lee, David Brooks, and Carole-Jean Wu. 2020. Deep-
RecSys: A System for Optimizing End-to-End at-Scale Neural Recommendation
Inference. In Proceedings of the ACM/IEEE 47th Annual International Sympo-
sium on Computer Architecture (Virtual Event) (ISCA °20). IEEE Press, 982-995.
https://doi.org/10.1109/ISCA45697.2020.00084

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep Residual
Learning for Image Recognition. https://doi.org/10.48550/ARXIV.1512.03385
Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. 2020. DeBERTa:
Decoding-enhanced BERT with Disentangled Attention. https://doi.org/10.
48550/ARXIV.2006.03654

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. MobileNets:
Efficient Convolutional Neural Networks for Mobile Vision Applications. https:
//doi.org/10.48550/ARXIV.1704.04861

cessing. https://doi.org/10.48550/ARXIV.2006.03236 [60] Jie Hu, Li Shen, Samuel Albanie, Gang Sun, and Enhua Wu. 2017. Squeeze-and-
Jeffrey Dean and Luiz André Barroso. 2013. The Tail at Scale. Commun. ACM Excitation Networks. https://doi.org/10.48550/ARXIV.1709.01507
56, 2 (feb 2013), 74-80. https://doi.org/10.1145/2408776.2408794 [61] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger.

(45

=
&

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. 2007. Dynamo: Amazon’s Highly Available Key-Value Store.
In Proceedings of Twenty-First ACM SIGOPS Symposium on Operating Systems
Principles (Stevenson, Washington, USA) (SOSP "07). Association for Computing
Machinery, New York, NY, USA, 205-220. https://doi.org/10.1145/1294261.
1294281

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
https://doi.org/10.48550/ARXIV.1810.04805

Dong Du, Qingyuan Liu, Xueqiang Jiang, Yubin Xia, Binyu Zang, and Haibo
Chen. 2022. Serverless Computing on Heterogeneous Computers. In Proceed-
ings of the 27th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (Lausanne, Switzerland) (ASP-
LOS °22). Association for Computing Machinery, New York, NY, USA, 797-813.
https://doi.org/10.1145/3503222.3507732

Murali Emani, Zhen Xie, Siddhisanket Raskar, Varuni Sastry, William Arnold,
Bruce Wilson, Rajeev Thakur, Venkatram Vishwanath, Zhengchun Liu,
Michael E. Papka, Cindy Orozco Bohorquez, Rick Weisner, Karen Li, Yongning
Sheng, Yun Du, Jian Zhang, Alexander Tsyplikhin, Gurdaman Khaira, Jeremy
Fowers, Ramakrishnan Sivakumar, Victoria Godsoe, Adrian Macias, Chetan
Tekur, and Matthew Boyd. 2022. A Comprehensive Evaluation of Novel Al
Accelerators for Deep Learning Workloads. In 2022 IEEE/ACM International
Workshop on Performance Modeling, Benchmarking and Simulation of High Per-
formance Computer Systems (PMBS). 13-25. https://doi.org/10.1109/PMBS56514.
2022.00007

Henrique Fingler, Zhiting Zhu, Esther Yoon, Zhipeng Jia, Emmett Witchel, and
Christopher J. Rossbach. 2022. DGSF: Disaggregated GPUs for Serverless Func-
tions. In 2022 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). 739-750. https://doi.org/10.1109/IPDPS53621.2022.00077

Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee, Christos
Kozyrakis, Matei Zaharia, and Keith Winstein. 2019. From Laptop to Lambda:
Outsourcing Everyday Jobs to Thousands of Transient Functional Containers.
In 2019 USENIX Annual Technical Conference (USENIX ATC 19). USENIX As-
sociation, Renton, WA, 475-488. http://www.usenix.org/conference/atc19/
presentation/fouladi

Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki Bal-
asubramaniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George
Porter, and Keith Winstein. 2017. Encoding, Fast and Slow: Low-Latency Video

2016. Densely Connected Convolutional Networks. https://doi.org/10.48550/
ARXIV.1608.06993

Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer. 2020.
SqueezeBERT: What can computer vision teach NLP about efficient neural
networks? https://doi.org/10.48550/ARXIV.2006.11316

Syed M. Igbal, Haley Li, Shane Bergsma, Ivan Beschastnikh, and Alan J. Hu.
2022. CoSpot: A Cooperative VM Allocation Framework for Increased Revenue
from Spot Instances. In Proceedings of the 13th Symposium on Cloud Computing
(San Francisco, California) (SoCC °22). Association for Computing Machinery,
New York, NY, USA, 540-556. https://doi.org/10.1145/3542929.3563499
Rishabh Jain, Scott Cheng, Vishwas Kalagi, Vrushabh Sanghavi, Samvit Kaul,
Meena Arunachalam, Kiwan Maeng, Adwait Jog, Anand Sivasubramaniam,
Mahmut Taylan Kandemir, and Chita R. Das. 2023. Optimizing CPU Perfor-
mance for Recommendation Systems At-Scale. In Proceedings of the 50th Annual
International Symposium on Computer Architecture (Orlando, FL, USA) (ISCA
’23). Association for Computing Machinery, New York, NY, USA, Article 77,
15 pages. https://doi.org/10.1145/3579371.3589112

Ram Srivatsa Kannan, Lavanya Subramanian, Ashwin Raju, Jeongseob Ahn,
Jason Mars, and Lingjia Tang. 2019. GrandSLAm: Guaranteeing SLAs for Jobs
in Microservices Execution Frameworks. In EuroSys.

Liu Ke, Udit Gupta, Mark Hempstead, Carole-Jean Wu, Hsien-Hsin S. Lee, and
Xuan Zhang. 2022. Hercules: Heterogeneity-Aware Inference Serving for At-
Scale Personalized Recommendation. In 2022 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). 141-154. https://doi.org/10.
1109/HPCA53966.2022.00019

[67] Jaewook Kim, Tae Joon Jun, Daeyoun Kang, Dohyeun Kim, and Daeyoung Kim.

2018. GPU Enabled Serverless Computing Framework. In 2018 26th Euromicro
International Conference on Parallel, Distributed and Network-based Processing
(PDP). 533-540. https://doi.org/10.1109/PDP2018.2018.00090

Bernhard Korte and Jens Vygen. 2018. Bin-Packing. In Combinatorial Optimiza-
tion. Springer, 489-507.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. 2019. ALBERT: A Lite BERT for Self-supervised
Learning of Language Representations. https://doi.org/10.48550/ARXIV.1909.
11942

Hang Le, Loic Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin
Lecouteux, Alexandre Allauzen, Benoit Crabbé, Laurent Besacier, and Didier
Schwab. 2019. FlauBERT: Unsupervised Language Model Pre-training for French.
https://doi.org/10.48550/ARXIV.1912.05372

MIDDLEWARE 24, December 2-6, 2024, Hong Kong, Hong Kong

[71] Baolin Li, Tirthak Patel, Siddharth Samsi, Vijay Gadepally, and Devesh Tiwari.

2022. MISO: Exploiting Multi-Instance GPU Capability on Multi-Tenant GPU
Clusters. In Proceedings of the 13th Symposium on Cloud Computing (San Fran-
cisco, California) (SoCC °22). Association for Computing Machinery, New York,
NY, USA, 173-189. https://doi.org/10.1145/3542929.3563510

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa:
A Robustly Optimized BERT Pretraining Approach. https://doi.org/10.48550/
ARXIV.1907.11692

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. 2018. ShuffleNet
V2: Practical Guidelines for Efficient CNN Architecture Design. https://doi.
org/10.48550/ARXIV.1807.11164

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng,
and Christopher Potts. 2011. Learning Word Vectors for Sentiment Analysis. In
Proceedings of the 49th Annual Meeting of the Association for Computational Lin-
guistics: Human Language Technologies. Association for Computational Linguis-
tics, Portland, Oregon, USA, 142-150. http://www.aclweb.org/anthology/P11-
1015

Diana M. Naranjo, Sebastian Risco, Carlos de Alfonso, Alfonso Pérez, Ignacio
Blanquer, and German Molté. 2020. Accelerated serverless computing based on
GPU virtualization. J. Parallel and Distrib. Comput. 139 (2020), 32-42. https:
//doi.org/10.1016/.jpdc.2020.01.004

Deepak Narayanan, Keshav Santhanam, Fiodar Kazhamiaka, Amar Phanishayee,
, and Matei Zaharia. [n.d.]. Analysis and Exploitation of Dynamic Pricing
in the Public Cloud for ML Training. VLDB DISPA Workshop 2020 ([n.d.]).
https://par.nsf.gov/biblio/10213411

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In Advances in Neural Information Processing Systems, H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.),
Vol. 32. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2019/file/
bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018.
Improving language understanding by generative pre-training. (2018).

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya
Sutskever, et al. 2019. Language models are unsupervised multitask learners.
OpenAl blog 1, 8 (2019), 9.

Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther
Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark
Charlebois, William Chou, Ramesh Chukka, Cody Coleman, Sam Davis, Pan
Deng, Greg Diamos, Jared Duke, Dave Fick, J. Scott Gardner, Itay Hubara,
Sachin Idgunji, Thomas B. Jablin, Jeff Jiao, Tom St. John, Pankaj Kanwar, David
Lee, Jeffery Liao, Anton Lokhmotov, Francisco Massa, Peng Meng, Paulius
Micikevicius, Colin Osborne, Gennady Pekhimenko, Arun Tejusve Raghunath
Rajan, Dilip Sequeira, Ashish Sirasao, Fei Sun, Hanlin Tang, Michael Thomson,
Frank Wei, Ephrem Wu, Lingjie Xu, Koichi Yamada, Bing Yu, George Yuan, Aaron
Zhong, Peizhao Zhang, and Yuchen Zhou. 2020. MLPerf Inference Benchmark. In
2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). 446-459. https://doi.org/10.1109/ISCA45697.2020.00045

Sebastian Risco and German Molto. 2021. GPU-enabled serverless workflows
for efficient multimedia processing. Applied Sciences 11, 4 (2021), 1438.
Francisco Romero, Mark Zhao, Neeraja J. Yadwadkar, and Christos Kozyrakis.
2021. Llama: A Heterogeneous Serverless Framework for Auto-Tuning Video
Analytics Pipelines. In Proceedings of the ACM Symposium on Cloud Computing
(Seattle, WA, USA) (SoCC "21). Association for Computing Machinery, New York,
NY, USA, 1-17. https://doi.org/10.1145/3472883.3486972

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein,
Alexander C. Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recogni-
tion Challenge. International Journal of Computer Vision (IJCV) 115, 3 (2015),
211-252. https://doi.org/10.1007/s11263-015-0816-y

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. MobileNetV2: Inverted Residuals and Linear Bottlenecks.
(2018). https://doi.org/10.48550/ARXIV.1801.04381

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019.
DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter.
https://doi.org/10.48550/ARXIV.1910.01108

Klaus Satzke, Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein,
Andre Beck, Paarijaat Aditya, Manohar Vanga, and Volker Hilt. 2021. Efficient
GPU Sharing for Serverless Workflows. In Proceedings of the 1st Workshop
on High Performance Serverless Computing (Virtual Event, Sweden) (HiPS '21).
Association for Computing Machinery, New York, NY, USA, 17-24. https:
//doi.org/10.1145/3452413.3464785

Johann Schleier-Smith, Vikram Sreekanti, Anurag Khandelwal, Joao Carreira,
Neeraja J. Yadwadkar, Raluca Ada Popa, Joseph E. Gonzalez, Ion Stoica, and

V. M. Bhasi, A. Sharma, R. Jain, J. R. Gunasekaran, A. Pattnaik, M. T. Kandemir, C. Das

David A. Patterson. 2021. What Serverless Computing is and Should Become:
The next Phase of Cloud Computing. Commun. ACM 64, 5 (apr 2021), 76-84.
https://doi.org/10.1145/3406011

Aakash Sharma, Vivek M. Bhasi, Sonali Singh, Rishabh Jain, Jashwant Raj
Gunasekaran, Subrata Mitra, Mahmut Taylan Kandemir, George Kesidis, and
Chita R. Das. 2022. Analysis of Distributed Deep Learning in the Cloud.
arXiv:2208.14344 [cs.LG] https://arxiv.org/abs/2208.14344

Aakash Sharma, Vivek M. Bhasi, Sonali Singh, Rishabh Jain, Jashwant Raj
Gunasekaran, Subrata Mitra, Mahmut Taylan Kandemir, George Kesidis, and
Chita R. Das. 2023. Stash: A Comprehensive Stall-Centric Characterization of
Public Cloud VMs for Distributed Deep Learning. In 2023 IEEE 43rd International
Conference on Distributed Computing Systems (ICDCS). 1-12. https://doi.org/10.
1109/ICDCS57875.2023.00023

Aakash Sharma, Vivek M. Bhasi, Sonali Singh, George Kesidis, Mahmut T. Kan-
demir, and Chita R. Das. 2024. GPU Cluster Scheduling for Network-Sensitive
Deep Learning. arXiv:2401.16492 [cs.PF] https://arxiv.org/abs/2401.16492
Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong, Matthai
Philipose, Arvind Krishnamurthy, and Ravi Sundaram. 2019. Nexus: A GPU
Cluster Engine for Accelerating DNN-Based Video Analysis. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles (Huntsville, Ontario,
Canada) (SOSP ’19). Association for Computing Machinery, New York, NY, USA,
322-337. https://doi.org/10.1145/3341301.3359658

Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional
Networks for Large-Scale Image Recognition. https://doi.org/10.48550/ARXIV.
1409.1556

Sonali Singh, Anup Sarma, Nicholas Jao, Ashutosh Pattnaik, Sen Lu, Kezhou
Yang, Abhronil Sengupta, Vijaykrishnan Narayanan, and Chita R. Das. 2020.
NEBULA: A Neuromorphic Spin-Based Ultra-Low Power Architecture for SNNs
and ANNs. In 2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA). 363-376. https://doi.org/10.1109/ISCA45697.2020.00039
Sonali Singh, Anup Sarma, Sen Lu, Abhronil Sengupta, Vijaykrishnan
Narayanan, and Chita R. Das. 2021. Gesture-SNN: Co-optimizing accuracy,
latency and energy of SNNs for neuromorphic vision sensors. In 2021 IEEE/ACM
International Symposium on Low Power Electronics and Design (ISLPED). 1-6.
https://doi.org/10.1109/ISLPED52811.2021.9502506

Arjun Singhvi, Arjun Balasubramanian, Kevin Houck, Mohammed Danish
Shaikh, Shivaram Venkataraman, and Aditya Akella. 2021. Atoll: A Scalable
Low-Latency Serverless Platform. In Proceedings of the ACM Symposium on
Cloud Computing (Seattle, WA, USA) (SoCC °21). Association for Computing Ma-
chinery, New York, NY, USA, 138-152. https://doi.org/10.1145/3472883.3486981
Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2014.
Going Deeper with Convolutions. https://doi.org/10.48550/ARXIV.1409.4842
Mingxing Tan and Quoc V. Le. 2019. EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks. (2019). https://doi.org/10.48550/ ARXIV.1905.
11946

Guido Urdaneta, Guillaume Pierre, and Maarten Van Steen. 2009. Wikipedia
workload analysis for decentralized hosting. Computer Networks (2009).

Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and Michael
Swift. 2018. Peeking Behind the Curtains of Serverless Platforms. In ATC.
Yanan Yang, Laiping Zhao, Yiming Li, Huanyu Zhang, Jie Li, Mingyang Zhao,
Xingzhen Chen, and Kegqiu Li. 2022. INFless: A Native Serverless System for
Low-Latency, High-Throughput Inference. In Proceedings of the 27th ACM In-
ternational Conference on Architectural Support for Programming Languages
and Operating Systems (Lausanne, Switzerland) (ASPLOS °22). Association for
Computing Machinery, New York, NY, USA, 768-781. https://doi.org/10.1145/
3503222.3507709

Fuxun Yu, Di Wang, Longfei Shangguan, Minjia Zhang, Chenchen Liu, and
Xiang Chen. 2022. A survey of multi-tenant deep learning inference on GPU.
arXiv preprint arXiv:2203.09040 (2022).

Fisher Yu, Dequan Wang, Evan Shelhamer, and Trevor Darrell. 2017. Deep Layer
Aggregation. https://doi.org/10.48550/ARXIV.1707.06484

Yanqi Zhang, Iiiigo Goiri, Gohar Irfan Chaudhry, Rodrigo Fonseca, Sameh El-
nikety, Christina Delimitrou, and Ricardo Bianchini. 2021. Faster and Cheaper
Serverless Computing on Harvested Resources. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles (Virtual Event, Ger-
many) (SOSP "21). Association for Computing Machinery, New York, NY, USA,
724-739. https://doi.org/10.1145/3477132.3483580

Zhuangzhuang Zhou, Yanqi Zhang, and Christina Delimitrou. 2022. AQUATOPE:
QoS-and-Uncertainty-Aware Resource Management for Multi-Stage Serverless
Workflows. In Proceedings of the 28th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, Volume 1
(Vancouver, BC, Canada) (ASPLOS 2023). Association for Computing Machinery,
New York, NY, USA, 1-14. https://doi.org/10.1145/3567955.3567960

