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Abstract 

The search for the genetic basis of phenotypes has primarily focused on single nucleotide polymorphisms, often overlooking structural variants 
(SVs). SVs can significantly affect gene function, but detecting and characterizing them is challenging, even with long-read sequencing. More- 
over, traditional single-reference methods can fail to capture many genetic variants. Using long reads, we generated a Capuchino Seedeater 
( Sporophila ) pangenome, including 16 individuals from 7 species, to investigate how SVs contribute to species and coloration differences. Lever- 
aging this pangenome, we mapped short-read data from 127 individuals, genotyped variants identified in the pangenome graph, and subsequently 
performed FST scans and genome-wide association studies. Species divergence primarily arises from SNPs and indels ( < 50 bp) in non-coding 
regions of melanin-related genes, as larger SVs rarely overlap with divergence peaks. One exception was a 55 bp deletion near the OCA2 and 
HERC2 genes, associated with feather pheomelanin content. These findings support the hypothesis that the reshuffling of small regulatory 
alleles, rather than larger species-specific mutations, accelerated plumage evolution leading to prezygotic isolation in Capuchinos. 
Keywords: Capuchino Seedeaters, FST outlier scan, genome-wide association study (GWAS), Sporophila , structural variants, transposable elements 
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Introduction 

Genetic variation, the raw material on which evolutionary 
forces act, exists in different forms with unique properties.
These include single and multi-nucleotide polymorphisms 
(SNPs and MNPs), small insertion/deletions (indels), and dif- 
ferent types of structural variants (SVs)—which encompass 
insertions, deletions, duplications, inversions, or transloca- 
tions generally larger than 50 bp. These variant types differ 
in aspects such as their frequency in the genome, their over- 
all size (i.e., the number of nucleotide bases involved in the 
variant), and their potential evolutionary impact ( Mérot et 
al., 2020 ). For instance, because recombination within in- 
versions is mostly suppressed, multiple genes can co-evolve 
as a unit, forming what is known as a supergene, which 
can shape complex phenotypes ( Schwander et al., 2014 ). In 
contrast, the influence of multiple SNPs on a given pheno- 
type can be broken apart by recombination, hindering the 
ability of such variants to collectively shape a trait unless 
recombination and/or gene flow are suppressed. Neverthe- 
less, key questions related to the evolutionary significance 
of SVs, such as whether larger variants tend to drive more 
complex evolutionary changes, remain unanswered ( Mérot 
et al., 2020 ). 

The different types of genetic variants available for evo- 
lution are also shaped by their genomic context and the un- 
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erlying mechanisms by which they are formed. For exam- 
le, a copy number mutation in a repetitive region of the
enome may be more likely (through replication slippage) 
han a point mutation ( Pumpernik et al., 2008 ). Transpos-
ble elements (TEs), mobile segments of DNA that can copy
hemselves and integrate in different parts of the genome,
ontribute to generating mutations and shaping genome evo- 
ution ( Bourque et al., 2018 ). TE-derived mutations are not
ecessarily random, as TEs can preferentially integrate in 
ertain genomic regions and be more prevalent in certain 
enomes versus others ( Wells & Feschotte, 2020 ; Zhang et
l., 2020 ). Therefore, the rate of genetic change may depend
n the type of genetic variants involved, and the availabil- 
ty of genetic variants will partially determine the pace of
he evolutionary process. Rapid speciation may be fueled 
y the availability of novel genetic variation, a process that
an be further accelerated by gene flow and recombination.
ike mutations, these mechanisms can also introduce genetic 
ariants into different genomic backgrounds, providing new 

enomic variation for evolution to act on ( Marques et al.,
019 ). It is generally unknown whether certain types of mu-
ations can more rapidly lead to the evolution of new traits
nd species, although there is a growing literature on the evo-
utionary importance of chromosomal inversions ( Mérot et 
l., 2020 ; Wellenreuther & Bernatchez, 2018 ). 
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Despite this diversity of variant types, SNPs remain the
ost commonly used genetic markers in genomic studies of
on-model organisms, largely due to technological and an-
lytical limitations ( Campagna & Toews, 2022 ; Mérot et
l., 2020 ). Some of these limitations stem from challenges
n reference genome construction . The prevalence of short-
ead sequencing technologies complicates the assembly of
omplex repetitive regions of the genome, as these reads
ypically do not span such regions, leading to incorrect as-
emblies ( Kellogg, 2015 ). Consequently, repetitive areas like
hose rich in TEs are either incorrectly assembled or split
nto many small scaffolds, resulting in these types of genomic
egions (and genetic changes) being underrepresented in ge-
omic studies. Additionally, limitations also arise from the
ommon reliance on a single reference genome, either from
he focal study species or a closely related one, to which pop-
lation level whole-genome re-sequencing data of a larger
umber of individuals are mapped ( da Fonseca et al., 2016 ).
his process can introduce what is known as reference bias,
issing SVs that are absent from the reference genome, as
ariants in a given population or species that are not rep-
esented in this reference (for example, an insertion) will
e lost in the alignment process ( Recuerda & Campagna,
024 ). Finally, although small indel mutations can still be re-
overed from short-read sequencing data, most of the bioin-
ormatics pipelines and population genomic software for
ownstream analyses are designed for SNP data, on which
any researchers tend to focus ( Pool et al., 2010 ). Thus, the
rowing number of genomic studies on non-model organ-
sms have primarily focused on SNPs in non-repetitive re-
ions of the genome to assess patterns of genetic variation.
evertheless, it is increasingly possible to detect SVs in rese-
uencing datasets using a combination of methods (reviewed
n Mahmoud et al., 2019 ). However, it remains technically
hallenging to detect long or complex SVs and those embed-
ed within repetitive regions ( Mahmoud et al., 2019 ). There-
ore, our understanding of how genetic changes other than
NPs contribute to evolution remains limited, particularly in
on-model systems. 
The use of long-read sequencing technologies can pro-
uce higher quality reference genomes and improve SV dis-
overy by spanning repetitive regions and thus improving
enomic assemblies ( Kellogg, 2015 ). Moreover, the use of
hese technologies with approaches that leverage the combi-
ation of several reference genomes into a pangenome can
apture a more complete representation of the genomic vari-
tion in a species or population ( Wang et al., 2022 ). Ideally, a
angenome represents the full spectrum of genetic variation
resent in an individual or the entire sample under study,
uch as a population or multiple closely related species. The
se of pangenomes has the potential to help mitigate the bias
gainst genetic variants that have been traditionally harder
o detect in evolutionary studies of non-model organisms,
ffering a more comprehensive view of genetic variation, in-
luding rare and population-specific SVs. 
In this study, we focus on a rapid radiation of 12
ird species in the genus Sporophila known as the Ca-
uchino Seedeaters, which originated during the Pleistocene,
oughly within the last million years ( Campagna et al.,
012 , 2013 ; Lijtmaer et al., 2004 ). Capuchinos differ pri-
arily in adult male vocalizations and plumage, traits
hat in these species mediate assortative mating, yet show
ow genome-wide genetic differentiation between species
 FST ∼0.008; Campagna et al., 2017 ). Song evolution is a
ostly cultural process in songbirds (but see Wheatcroft
 Qvarnström, 2017 ), while coloration differences are in-
erited genetically. Male coloration differences between Ca-
uchino species follow a modular pattern, with distinct
atches (e.g., throat, belly, cap) consistently varying in a se-
ies of colors (e.g., black, cinnamon, white). For example, the
ark-throated Seedeater ( Sporophila ruficollis ), the Tawny-
ellied Seedeater ( Sporophila hypoxantha ), and the Marsh
eedeater ( Sporophila palustris ) differ by having black, cin-
amon, or white throats, respectively. Despite the overall ge-
omic homogeneity, previous studies have identified a small
umber of narrow genomic regions with elevated differ-
ntiation, many of which are near genes involved in the
elanogenesis pathway ( Campagna et al., 2017 ; Estalles et
l., 2022 ; Turbek et al., 2021 ), and have undergone selec-
ive sweeps ( Hejase et al., 2020 ). Genetic changes in these
egions containing melanogenesis genes are strongly associ-
ted with variation in the composition of melanin pigment
ypes and their deposition across different body parts in the
apuchinos ( Estalles et al., 2022 ). 
The genetic variants that are candidates for controlling
lumage coloration are predominantly non-coding SNPs
ear otherwise conserved pigmentation genes ( Campagna et
l., 2017 ; Estalles et al., 2022 ). These non-coding regions
re in some cases conserved across more distantly related
pecies, suggesting they could serve important regulatory
unctions ( Campagna et al., 2017 ). The outlier regions are
epeatedly involved in the divergence between different Ca-
uchinos and generally do not contain species-specific vari-
nts but rather have shared haplotypes among species in
nique combinations across the different divergence peaks
 Campagna et al., 2017 ; Turbek et al., 2021 ). For example,
he Iberá Seedeater ( Sporophila iberaensis ) and S. ruficollis ,
oth with black throats, share genotypes near the TYRP1
ene, yet differ in a genomic region close to the HERC2 and
CA2 genes, which is in turn also shared between S. iberaen-
is and other Capuchinos ( Turbek et al., 2021 ). The unique
ombinations of genotypes across multiple outlier regions
ay underlie the emergence of novel coloration phenotypes

 Marques et al., 2019 ; Turbek et al., 2021 ). Taken together,
hese findings suggest that the sharing and reshuffling of reg-
latory alleles at pigmentation genes (e.g., Wallbank et al.,
016 ) may have been the engine behind the generation of
ovel plumage patterns. These phenotypic differences func-
ion in mate recognition, leading to the establishment and
aintenance of species boundaries early in the speciation
rocess ( Turbek et al., 2021 ). Additionally, the Z sex chro-
osome plays a disproportionate role in species differences

 Campagna et al., 2017 ), potentially contributing to rapid
volution, as has been described in other systems ( Irwin et
l., 2018 ). 
However, these findings are based on genomic studies that

mployed a single reference genome from a S. hypoxantha
ale sampled in the Esteros del Iberá, Argentina, which was
rimarily assembled using short-read sequences ( Campagna
t al., 2017 ). Moreover, the FST outlier scans and genome-
ide association studies (GWAS) were conducted exclu-
ively using SNPs. It is therefore possible that the variation in
on-coding SNPs near melanogenesis genes in the Capuchi-
os is accompanied by other, yet undetected genetic changes,
uch as species-specific SVs (perhaps generated by TE activ-
ty) absent in the S. hypoxantha individual used to assem-
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ble the reference genome. A preliminary analysis using long- 
read sequences to compare a pool of three Pearly-bellied 
Seedeaters ( Sporophila pileata ) to the S. hypoxantha refer- 
ence genome found ∼500 SVs between these two individu- 
als, four of which were small inversions ( ∼450 bp) located 
within the much larger areas of genomic divergence (with an 
average length of ∼243 kb) ( Campagna et al., 2017 ). This 
result shows that SVs may be present in at least some diver- 
gence peaks, but their prevalence and level of differentiation 
across species remain unknown. 

Here, we aim to assess the relative contribution of dif- 
ferent types of mutations to the evolution of Capuchi- 
nos, with the goal of achieving a better understanding of 
the genomic changes promoting rapid speciation. To this 
end, we assembled a pangenome from 16 individual ref- 
erence genomes generated de novo through high-coverage 
Pacific Biosciences long-read sequencing. This Capuchino 
pangenome combined information from males and females 
of the seven species present in the area showing the highest 
sympatry in this group, the Esteros del Iberá in the Province 
of Corrientes, Argentina ( Campagna et al., 2017 ; Turbek et 
al., 2021 ). We subsequently combined this pangenome with 
information from previously published and new short-read 
whole genome resequencing data for all Capuchinos, obtain- 
ing genotypes for these individuals for SNPs, indels, and SVs.
We used this information in FST outlier scans and coloration 
GWAS to ask how the different types of markers contribute 
to species divergence and coloration differences. We find that 
the differences in the previously identified divergence peaks 
among Capuchinos are primarily shaped by SNPs and small 
indels ( < 50 bp). Although we can detect larger SVs, these 
tend to segregate at low frequencies and generally do not 
associate with divergence peaks. Our study strengthens the 
hypothesis that the shuffling of regulatory alleles between 
Capuchinos has promoted the rapid evolution of plumage 
traits, which leads to prezygotic reproductive isolation early 
in the speciation process. 

Materials and methods 

Sampling and sequencing 

Long-read sequencing for pangenome construction 
We generated a pangenome by selecting 16 individuals, in- 
cluding between one and four individuals from seven highly 
sympatric species of Capuchino Seedeaters: S. palustris (3),
S. ruficollis (2), S. pileata (1), S. iberaensis (4), S. cinnamomea 
(2), S. hypoxantha (3), and S. hypochroma (1) ( Table S1 ). We 
extracted high molecular weight DNA using the Zymo Re- 
search Quick-DNA HMW MagBead Kit and sequenced all 
individuals using one PacBio HiFi Revio SMRT Cell per indi- 
vidual at the Novogene (Sacramento, CA) and Cornell Weill 
(New York, NY) sequencing centers. The average sequenc- 
ing yield was 72 Gb per sample (range 36–89 Gb) with a 
mean read length of 15,596 bp (range of 11,376 to 19,637 
bp; Table S1 ). Further details on DNA extraction, library 
preparation, and sequencing platforms are provided in the 
Supplementary Methods . 

Short-read (Illumina) sequencing for population-level geno- 
typing 
We also used previous whole-genome resequencing data 
from 121 individuals of 10 species ( Table S2 ), and gener- 
ted new data for 41 individuals ( Table S3 ). Sequencing was
erformed in two batches using an Illumina NovaSeq X—
aired end x 150 bp lane from Novogene and one from the
iotechnology Resource Center at the Cornell Genomics Fa- 
ility ( Table S3 ). The two sequencing batches yielded an aver-
ge of 90.4 and 214.6 million raw reads, respectively ( Table
3 ). Details on DNA extraction and library preparation are
rovided in the Supplementary Methods . 

enome assemblies and annotations 

e novo genome assemblies from PacBio HiFi reads 
he PacBio HiFi reads were used for de novo genome assem-
lies. We produced primary and alternate assemblies with hi- 
asm v0.19.9 ( Cheng et al., 2021 ), followed by the removal
f haplotigs using purge_dups v1.2.6 ( Guan et al., 2020 ).
enome size and heterozygosity were estimated using Jelly- 
sh v2.3.0 ( Marçais & Kingsford, 2011 ) and GenomeScope 
2.0 ( Vurture et al., 2017 ). GenomeScope predicted a similar
eterozygosity and genome length across all assemblies, with 
n estimated heterozygosity of ∼1.2% and an initial esti- 
ated genome size of ∼0.99 Gb ( Table S4 , Figure S1 ). We as-
essed assembly metrics using assembly-stats v.1.0.1 ( https: 
/github.com/sanger-pathogens/assembly-stats ) ( Table S5 ),
erqury plots ( Figure S2 ), and QV scores (Quality Value;
able S5 ) obtained with Merqury v1.3. The quality and com-
leteness of the assemblies were further evaluated with the 
enchmarking Universal Single-Copy Orthologs (BUSCO 

5.5.0) pipeline ( Simão et al., 2015 ) using the Aves database
aves_odb10; Table S6 ). Further details can be found in the
upplementary Methods .Table S2 

eference genome selection 
e used the genome HYPOXB009684 as the reference for 

ubsequent analyses requiring a single reference and for an- 
horing the pangenome to a coordinate system. We selected 
his genome because it belongs to the same species ( S. hypox-
ntha ) as the original reference genome (Genbank Assembly 
CA_002167245.1) described by Campagna et al. (2017 ),
nd because it has slightly higher contiguity among the three
vailable assemblies from this species. 

epeat masking and gene annotation 
e built a custom repeat library for the Capuchino 
eedeaters using RepeatModeler v2.0.1 ( Smit et al., 2019 ).
o complement this custom library, avian repeat families 
ere retrieved from the Dfam 3.8 database ( Hubley et al.,
016 ) and merged with the custom Capuchino repeat li- 
rary. Finally, the combined repeat library was applied to 
oft-mask repetitive regions of each Capuchino genome as- 
embly using RepeatMasker v4.0.7 with the RMBlast engine 
 Smit et al., 2015 ). 
We predicted genes in all primary assemblies us- 

ng BRAKER3 ( Gabriel et al., 2024 ), with a custom
rotein database combining OrthoDB and the Zebra 
nch proteome ( UniProt Consortium, 2019 ). To refine 
ene models, we used annotations from the chicken 
nd the Zebra finch (GCF_000002315.6_GRCg6a and 
CF_003957565.2_bTaeGut1.4) and processed them with 
eMoMa v1.9 ( Keilwagen et al., 2019 ), initially predict- 

ng around 51,380 ± 2,078 (SD) genes. We then used the
eMoMa GAF tool to merge predictions and apply filtering 
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 Table S7 ). Details on gene prediction, GeMoMa usage, and
ltering are provided in the Supplementary Methods . 

ynteny among assemblies and gene PAV analysis 

e used the GENESPACE v1.3.1 ( Lovell et al., 2022 ) R
ackage in R version 4.2.3 ( R Core Team, 2017 ) to infer
nd visualize synteny blocks among the thirty longest scaf-
olds from all the primary assemblies. We note that because
ur genome assemblies vary in quality, it is hard to distin-
uish large-scale structural changes like translocations from
ssembly artifacts. 
We assessed gene-level variation using two complemen-

ary approaches. First, we compared gene lists from each
FF file, identifying 13,573 common genes. Second, we used
angene v1.1 ( Li et al., 2024 ), which aligns protein-coding
xons with miniprot, to construct a pangenome graph and
dentified 11,760 shared genes. Unique genes per individual
ere compared across methods, and the overlapping genes
etween these methods were considered robust presence ab-
ence variation (PAV) candidates and further validated us-
ng BLAST v2.16.0 ( Altschul et al., 1990 ). Visualization was
one using ggVennDiagram v1.5.2 ( Gao et al., 2024 ) and
pSetR v1.4.0 ( Conway et al., 2017 ). We combined the in-
ividual lists of genes per species for the Venn diagram plots.
oth methods found a similar number of unique genes per
pecies, though overlap across methods was limited, high-
ighting challenges in annotation ( Figures S3 , S4 ). Only 13
enes were detected to be uniquely present in certain species
y both methods but then were recovered using BLAST in
he rest of the species ( Table S8 ). Therefore, we do not have
trong evidence for genes that are present or absent in cer-
ain species, although not all genes are represented in ev-
ry individual annotation. Further details are provided in the
upplementary Methods . 

dentifying and genotyping SVs using long read 

ata 

e performed direct SV calling from long reads as a comple-
entary strategy to the pangenomic approach (see below).
e used our PacBio HiFi reads to characterize SVs longer

han 50 bp (commonly considered the lower size limit for
Vs and the size range the SV callers are optimized for),
mploying three SV calling methods: PBSV v2.6.2 ( Pacific
iosciences, 2021 ), Sniffles v2.2 ( Sedlazeck et al., 2018 ), and
VIM-asm v.1.0.3 ( Heller & Vingron, 2020 ). Depending on
he strategy, either reads or assemblies were aligned to the
YPOXB009684 reference genome, and SVs were called per
ample. PBSV detected the most SVs ( ∼244K), about 2–2.5
imes more than the other callers ( Table S9 ). We merged SVs
rom all three tools using SURVIVOR v1.0.7 ( Jeffares et al.,
017 ) retaining only the shared calls (within 1 kb). This con-
ervative approach ( De Coster et al., 2021 ) recovered ∼55K
Vs/sample and was robust to parameter changes. Merged
Vs per individual were further combined into a final dataset
f variants > 50 bp, merged within 1 kb and classified by
ype and size. See Supplementary Methods for alignment pa-
ameters, merging options, and classification details. 

angenome graph construction and variant 
ecomposition 

e built the Capuchino pangenome using the Cactus
angenome pipeline v2.8.0 ( Hickey et al., 2024 ), starting
ith a GFA graph generated by minigraph v0.20 from
2 haplotypes (16 individuals). Assemblies were re-mapped
nd processed with Cactus to generate a multi-format
angenome graph. We calculated pangenome metrics, in-
luding core and accessory genome lengths, using Pana-
us v0.2.3 ( Parmigiani et al., 2024 ). Variant types were an-
otated from VCF files using vcf-annotate from VCFtools
0.1.16 ( Danecek et al., 2011 ) and classified as SNPs or
NPs if all alternate alleles matched those types, as inser-

ions or deletions, or as complex if they mixed types or were
abeled complex by vcf-annotate. While a direct compari-
on between SVs derived from the long-read data and the
angenome is challenging due to differences in variant rep-
esentation, both approaches identified a similar number of
Vs > 50 bp ( ∼182 and ∼231 thousand with long reads
nd the pangenome, respectively) with ∼70% overlap. See
upplementary Methods for graph construction, variant an-
otation, and comparison of SV workflows. 

apping short-read data to the pangenome 

e used the vg toolkit v1.53.0 ( Garrison et al., 2018 ) for
angenome-based variant calling and genotyping. Short-
ead data from 161 individuals were mapped to the
angenome using vg giraffe ( Sirén et al., 2021 ). Read sup-
ort was computed with vg pack (quality threshold: -Q 5),
nd genotypes were called using vg call ( Hickey et al., 2020 )
o produce VCF files per individual. We note that we ran
g call without adding new paths to the pangenome graph
rom the short read data but rather only found support for
nown SVs, sometimes adding new alleles due to SNPs or
ndels embedded within the SVs. In highly variable regions
his can result in sites with large numbers of alleles that may
artially derive from methodological artifacts, even though
he graph was originally built from 32 haplotypes. Detailed
teps are provided in the Supplementary Methods . 

iltering and genotyping quality control 
e retained only individuals with > 4X average depth of
overage, resulting in 127 individuals in this dataset ( Table
10 ). We tested for coverage-related bias by correlating het-
rozygosity and coverage, finding no statistically significant
ssociation (Pearson’s r = 0.079, p = .38). VCFs were in-
exed and merged using BCFtools v1.20 ( Danecek et al.,
021 ), then filtered to retain sites with 4–50X depth, < 80%
issing data, and a non-reference allele count ≥ 4. Addi-
ional details can be found in the Supplementary Methods . 

eneration of genetic variant datasets 
he resulting VCF file was divided to generate five datasets:
1) SNPs and MNPs (referred to as the SNP dataset); (2)
hort SVs (SVs < 50 bp) also referred to as indels; (3) SVs
onger than 50 bp; and (4–5) all SNPs and SVs combined
rom categories 1–3, reclassified based on whether they fall
ithin (4) or outside (5) annotated repetitive elements and
Es identified with RepeatModeler, referred to as “repeat-
ssociated” and “non-repeat-associated,” respectively. Then
he SNP dataset was further filtered by a minor allele count
f 4. For the GWAS analysis we generated a dataset with
ll SVs (merging datasets 2 and 3) and colored the resulting
lots according to the variant length (greater or smaller than
0 bp). 
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Allele frequency and SV summary statistics 
We calculated variant length as the average length of all al- 
ternative alleles at each site, defined as any allele that dif- 
fers from the reference genome used in the variant calling 
step. Allele frequencies and allele counts were computed us- 
ing VCFtools ( Danecek et al., 2011 ) and visualized as his- 
tograms. For SVs with multiple alternative alleles, we tested 
different allele frequency calculations, which yielded similar 
distributions, and present results using the average among 
all alternative alleles. Relationships between SV length, fre- 
quency, and count were visualized with 2D hexbin plots 
in ggplot2 v3.5.1 ( Wickham, 2016 ) after log-transforming 
SV lengths. Additional details are in the Supplementary 
Methods . 

Assessing mapping quality and differences in coverage across 
the genome 
To investigate the lower number of variants recovered from 

short-read mapping to the pangenome, we analyzed map- 
ping quality. We aimed to determine if lower mapping qual- 
ity of short-read data in repetitive or divergent regions ex- 
plained discrepancies in the number of variants and to assess 
biases in variant detection with these data. Using vg surject,
we generated BAM files from GAM alignments of five indi- 
viduals ( Table S10 ), then extracted per-site mapping quality 
with SAMtools v1.20 ( Danecek et al., 2021 ). Regions were 
grouped by coverage ( < 1 vs. ≥ 1 per 50 kb window), and the 
larger group was downsampled for comparison. A Wilcoxon 
rank-sum test was used to compare the distribution of map- 
ping quality between the two groups. Additional details are 
in the Supplementary Methods . 

Detection of large inversions using local PCA 

We scanned for large inversions using local PCA with the R 

package lostruct ( Li & Ralph, 2019 ) and short-read data 
mapped to the pangenome. The method computes PCAs 
across SNP windows and uses multidimensional scaling to 
detect outlier regions. Analyses were run on scaffolds > 1 
Mb with 1,000-SNP windows, and PCAs were visualized 
using SNPRelate v1.36.1 ( Zheng et al., 2012 ). Additional 
details are in the Supplementary Methods . 

GWAS using SNPs and SVs 

We performed GWAS using PLINK v2 ( Chang et al., 2015 ) 
on 127 individuals from the 10 southern Capuchino species 
( Table S10 ), combining all SVs regardless of size (datasets de- 
scribed in the Generation of genetic variant datasets section).
Sporophila minuta and S. castaneiventris were excluded due 
to their comparatively higher divergence ( Campagna et al.,
2012 ; Lijtmaer et al., 2004 ). SVs with > 254 alleles were re- 
moved, as PLINK cannot process sites exceeding this limit of 
alternative alleles (excluding 3,444 sites for the SVs dataset 
and 1,103 and 2,341 for the datasets including SNPs and 
SVs that are repeat-associated and non-repeat-associated, re- 
spectively) affecting primarily SVs > 50 bp (99.7%) ( Table 
S11 ). These hypervariable variants were still included in FST 
scans but did not produce values exceeding 0.75, which was 
the threshold we designated for considering a variant as an 
outlier. However, our current data limit the ability to draw 

robust conclusions about the relevance—or lack thereof—
of such regions to species differentiation. Complex vari- 
ants represented as multiallelic SVs will have reduced sta- 
istical power relative to biallelic SNPs in our GWAS and
ST analyses due to their low allele frequencies, limiting di- 
ect comparisons between variant types. Phenotypes were 
pecies-level mean eumelanin and pheomelanin concentra- 
ions across six plumage patches ( Estalles et al., 2022 ), re-
ulting in 12 GWAS. We accounted for population structure 
sing the first 10 principal components from a PCA includ-
ng all samples and applied a Bonferroni-corrected signifi- 
ance threshold of p ≤ 2.65 × 10−9 . Outliers were clustered 
nto peaks ( < 50 kb apart), with isolated hits reported in
able S12 . We obtained similar results analyzing SNPs and
Vs separately and all variant types jointly, opting to present
hose from the former strategy as this was our initial work-
ow. Further details are in the Supplementary Methods . 

ST scans using SNPs and SVs 

e performed FST scans with VCFtools ( Danecek et al.,
011 ) on all five variant datasets (see Generation of ge-
etic variant datasets section) per-site and in 10 kb win- 
ows ( Table S11 ). Analyses included 95 individuals from
ix species and 15 pairwise comparisons ( S. cinnamomea , S.
beraensis , S. hypoxantha , S. hypochroma , S. melanogaster ,
nd S. ruficollis ), excluding the Copper Seedeater ( S. bou-
reuil ) due to its higher overall divergence ( Campagna et
l., 2013 ). While methods combining multiple populations 
ould reduce the number of comparisons, our pairwise ap- 
roach allows us to assess genetic differentiation associated 
ith phenotypic divergence at focal plumage patches (e.g.,
hroat). Outlier windows were defined as those in the top
.1% of weighted FST and containing at least one variant 
ith FST > 0.75. Consecutive outliers were merged into 
eaks, and additional outlier windows are listed in Table 
13 . We note that complex variants represented as mul- 
iallelic SVs, with generally lower allele frequencies, will 
roduce lower FST values than biallelic SNPs, limiting di- 
ect comparisons between marker types. See Supplementary 
ethods for more details. 

E and SV content in outlier peaks 

e compared TE and SV content per kb in outlier peaks to
he genome-wide distribution using permutation tests based 
n 1 kb windows from the 30 longest scaffolds (excluding
he terminal 50 kb). Observed values did not deviate sig-
ificantly from the genome-wide distribution (outside the 
op/bottom 2.5%). To visualize linkage disequilibrium (LD),
e used LDBlockShow v1.40 ( Dong et al., 2021 ) to gener-
te D’-based LD plots for peak variants with FST ≥ 0.75 
nd no missing data. See Supplementary Methods for more 
etails. 

esults 

igh similarity among reference genome 

ssemblies from seven Capuchino species 

e recovered two genome assemblies per diploid individ- 
al: a higher-quality primary haplotype and an alternate one.
rimary assemblies were longer (1.14 Gb vs. 1.09 Gb on av-
rage), more contiguous (315 vs. 1,075 scaffolds), and had 
 tenfold higher N50 (31 Mb vs. 2.9 Mb) and an eight-
old smaller L50 (13 vs. 112 scaffolds) than alternate as-
emblies ( Figure 1A ). These metrics were consistent across
pecies, and the primary assemblies showed high synteny 
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Figure 1. Genome assemblies and statistics for structural variants (SVs) called from long-read data. (A) Length and contiguity statistics for the primary 
and alternate assemblies. (B) Synteny representation of the 30 longest scaffolds across all primary assemblies generated using GENESPACE. (C) 
Composition of transposable elements (TEs) in the primary assemblies. (D) Evaluation of gene annotations through BUSCO analyses. Mean BUSCO 

scores for all primary and alternate assemblies, as well as the annotations for primary assemblies. (E) Cumulative unique gene count per haplotype 
using the annotations, showing actual data (dashed line) and the expected curve based on 1,0 0 0 permut ations (solid line), with variation depicted by the 
bars. The circle at haplotype 0 represents the number of core genes shared by all haplotypes. (F and G) SV statistics from long-read sequencing data. (F) 
SV length distribution per SV type, based on results from Sniffles2 supported by three SV callers (Sniffles2, PBSV, and SVIM-asm). (G) SV counts per 
individual, showing the number of structural variants present in 1–15 individuals (the reference genome HYPOXB009684 is not included), with most SVs 
found in only a single individual. 
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among Capuchinos ( Figure 1B ). Repetitive elements and TEs 
accounted for ∼16% of each genome, ∼11% of which were 
retrotransposons, with similar composition across species 
( Table S14 , Figure 1C ). Gene content showed an average of 
14,666 ± 46 (SD) genes per assembly, with little variation 
across individuals and species ( Table S7 ). Gene completeness 
was high across all assemblies and annotations, yet slightly 
higher in primary assemblies (96.5% single-copy orthologs; 
Tables S6 , S15 ; Figure 1D ). A total of 13,573 core genes 
were shared across all primary assemblies, and the cumu- 
lative gene discovery from adding genomes sequentially to 
our analysis plateaued at 15,788 unique genes ( Figure 1E ).
Initial analyses of gene PAV suggested there are several genes 
present uniquely in each species (e.g., 25 in S. pileata and 100 
in S. iberaensis ; Figures S3 , S4 ). However, BLAST searches 
recovered fragments or complete gene sequences for these 
putatively missing genes in the other assemblies, indicating 
that their apparent absence likely reflects assembly or anno- 
tation limitations ( Table S8 ). 

The landscape of structural variation and the 

Capuchino Seedeater pangenome 

We identified an average of ∼55 K structural variants 
(SVs > 50 bp) per individual from long-read data, supported 
by three SV callers, totaling 182,213 SVs across all individ- 
uals. Insertions (54.6%) and deletions (45.3%) dominated,
while inversions and duplications were comparatively rare 
( ≤ 0.05%) ( Figure 1F ). Most SVs were small; however, in- 
versions were more common in the 200 bp–5 kb range and 
absent from the smallest size class ( Figure 1F ). About 38% 

of SVs were private to single individuals, while only 3.5% 

were shared by all ( Figure 1G ). For example, just one of 
95 inversions was shared across all individuals. Species with 
more representatives contributed more unique SVs, though 
these were often found in single individuals within those 
species ( Figure S5 ). To detect shared SV patterns, we built 
a pangenome using all assemblies. 

The pangenome spanned 1.5 Gb, measured in the total 
number of unique base pairs recovered from all individu- 
als (i.e., all alternative paths), with 66% forming the core 
genome and 48% of nodes shared across all individuals 
( Figure 2A , S6 ). The pangenome contained 59.2 million vari- 
ants, with 7.6 times more SNPs than SVs ( Figure 2B ). Al- 
though less frequent, SVs covered 184.4 Mb compared to 
the 52.3 Mb spanned by SNPs/MNPs. Both types of genetic 
variants are represented (by the reference or alternative al- 
leles) in a similar number of samples, with an average of 
15.7 samples for SNPs and 15.3 for SVs. Nearly half of the 
variants (45%) were rare, appearing only once as the alter- 
native allele among the 16 individuals. Most SVs (96.5%) 
were indels ( < 50 bp) ( Figure 2B ). To understand the pat- 
terns of differentiation of these markers among the different 
Capuchino species, we used short-read data to genotype 127 
individuals across 10 species using the pangenome as a ref- 
erence, enabling GWAS and FST analyses using both SNPs 
and SVs. 

From this larger dataset, we recovered ∼35.5 million vari- 
ants, which after filtering was roughly half of the origi- 
nal pangenome set (31.8M). Regardless, the proportions be- 
tween SNPs and SVs remained similar, with 8 times more 
SNPs than SVs (28.3M vs. 3.5M), and only 2.7% of vari- 
ants > 50 bp ( Figure 2C ). We identified ∼5.9M variants that 
ere absent from the pangenome, likely due to increased 
ampling. However, ∼29.6M pangenome variants were lost 
n the short-read dataset due to mapping limitations in com-
lex, repetitive regions. These regions showed significantly 
ower mean mapping quality (3.86 ± 6.53 vs. 55.3 ± 7.64; 
ilcoxon W = 127, p < 2.2e–16) and were often near scaf-

old ends enriched for TEs and showing lower coverage even
n the pangenome dataset, suggesting they are inherently 
ard to resolve across sequencing platforms ( Figure S7 ). De-
pite their lower prevalence, SVs still spanned a greater por-
ion of the genome than SNPs ( ∼31.8 Mb vs. 28.3 Mb),
ith similar mean coverage (9.5X SVs, 9.3X SNPs). In this
ataset, the difference in bases covered by SVs and SNPs is
ess pronounced than in the pangenome alone, likely due to
he loss of long SVs. 
We filtered SVs to retain only those present in ≥ 80% of

ndividuals (discarding variants in fewer than 102 individ- 
als) for GWAS and FST scans. Both the SNP and SV al-
ernative allele frequencies were characterized by a higher 
bundance of loci with low-frequency alleles, with a grad- 
al decline in abundance of loci toward intermediate and 
igh frequencies of alternative alleles ( Figures 2D , 2E , S8A ).
he lowest allele frequency bin was underrepresented due to 
issing data and allele count filters ( Figure S8B,C ). SV den-
ity decreased with length, and longer SVs had lower allele
requencies and counts ( Figure 2E , 2F ). Most low-frequency
ariants were short SVs ( Figure 2F ). The alternative allele
requency distribution shows that low-frequency variants 
re prevalent across all SV lengths, particularly at shorter 
engths ( Figure 2E ). Allele count distributions across vari-
nt types in both the pangenome and short-read datasets 
howed that SNPs and indels were predominantly biallelic,
hereas SVs were more frequently multiallelic, with 75% of 
V sites having more than two alleles ( Figure S9 ). The same
attern emerged within species: while SNPs and indels re- 
ained largely biallelic, SVs showed a greater proportion of 
ultiallelic sites, although biallelic SVs still represented the 
ingle most common class ( Figure S10 ). 

utlier genomic regions associated with plumage 

oloration 

e conducted GWAS across six plumage patches using eu- 
elanin and pheomelanin concentrations as phenotypes and 
artitioned the dataset by variant type (e.g., SNPs, SVs).
e identified seven strong outlier peaks repeatedly associ- 
ted with pigment concentration across body parts ( Figure 
 , Figures S11 –S16 ). These peaks were consistently observed
n different combinations depending on the plumage patch 
nd pigment type. Five peaks were shared across SNP and SV
atasets and included melanogenesis genes ( OCA2/HERC2 ,
SIP , TYRP1 , SLC45A2 ) and genes involved in amino acid
etabolism ( AHCY , GPT2 ). The remaining two peaks were
xclusive to the SNP dataset and lacked annotated genes 
 Table 1 , Table S16 ). We did not observe strong associations
ith eumelanin in the head and pheomelanin in the throat

 Figures S13 , S16 ). Most peaks were identified through
NPs, with only a few associated with indels (SVs < 50 bp).
 single larger SV—a 55 bp deletion—was found within a
eak associated with pheomelanin concentration in the belly 
lumage patch ( Figure 3 ). Repeat-associated genetic variants 
ecovered fewer peaks compared to non-repeat-associated 
ariants ( Figure 3 , Figures S11 –S16 ). The GWAS results also

https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf188#supplementary-data
https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf188#supplementary-data
https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf188#supplementary-data
https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf188#supplementary-data
https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf188#supplementary-data
https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf188#supplementary-data
https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf188#supplementary-data
https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf188#supplementary-data
https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf188#supplementary-data
https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf188#supplementary-data
https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf188#supplementary-data
https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf188#supplementary-data
https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf188#supplementary-data
https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf188#supplementary-data
https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf188#supplementary-data
https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf188#supplementary-data
https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf188#supplementary-data
https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf188#supplementary-data
https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf188#supplementary-data
https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf188#supplementary-data
https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf188#supplementary-data
https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf188#supplementary-data
https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf188#supplementary-data
https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf188#supplementary-data
https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf188#supplementary-data
https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf188#supplementary-data
https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf188#supplementary-data
https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf188#supplementary-data
https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf188#supplementary-data
https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf188#supplementary-data
https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf188#supplementary-data
https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf188#supplementary-data
https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf188#supplementary-data
https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf188#supplementary-data
https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf188#supplementary-data


8 Recuerda et al

Ta
b
le
 
1
. 
G
en

om
e-
w
id
e 
as

so
ci
at
io
n 
st
ud

ie
s 
(G

W
A
S
) a

nd
 
F S

T 
ou

tli
er
 
pe

ak
s.
 

Pe
ak

 
1∗

Pe
ak

 
2 

Pe
ak

 
3∗

Pe
ak

 
4∗

Pe
ak

 
5∗

Pe
ak

 
6 

Pe
ak

 
7 

Pe
ak

 
8∗

Pe
ak

 
9 

Pe
ak

 
10

 

Sc
af
fo
ld
 

10
 

14
 

21
 

7 
9 

41
 

7 
3 

7 
7 

C
hr
om

os
om

e 
10

 
11

 
20

 
Z
 

6 
Z
 

Z
 

4 
Z
 

Z
 

St
ar
t 
co
or
di
na

te
s 
(b
p)

 
6,
19

0,
00

1 
13

,9
50

,0
01

 
13

,5
45

,4
22

 
25

,2
60

,0
01

 
15

,0
10

,0
01

 
10

8,
18

0 
5,
26

0,
23

4 
9,
95

0,
00

1 
5,
56

0,
00

1 
5,
73

0,
00

1 
E
nd

 
co
or
di
na

te
s 
(b
p)

 
6,
25

0,
00

0 
13

,9
90

,0
00

 
13

,7
00

,0
00

 
25

,3
20

,0
00

 
15

,0
30

,0
00

 
11

2,
14

1 
5,
27

2,
12

5 
9,
99

0,
00

0 
5,
58

0,
00

0 
5,
75

0,
00

0 
Pe
ak

 
le
ng

th
 
(b
p)

 
59

,9
99

 
39

,9
99

 
15

4,
57

8 
59

,9
99

 
19

,9
99

 
3,
96

1 
11

,8
91

 
39

,9
99

 
19

,9
99

 
19

,9
99

 

G
W
A
S/
 F S

T
 

G
W
A
S/
 F S

T
 

G
W
A
S/
 F S

T
 

G
W
A
S/
 F S

T
 

G
W
A
S/
 F S

T
 

G
W
A
S/
 F S

T
 

G
W
A
S 

G
W
A
S 

F S
T
 

F S
T
 

F S
T
 

G
en

e1
 

H
E
R
C
2 

G
P
T
2 

A
SI
P
 

T
Y
R
P
1 

SL
C
45
A
2 

A
L
B
 

SP
E
F2

 

G
en

e2
 

O
C
A
2#

 
C
D
C
A
9 

A
H
C
Y
 

L
O
C
11
25
30
52
0 

SN
Ps
# 

1,
37

5 
1,
16

1 
2,
68

3 
1,
40

2 
33

5 
10

4 
13

3 
26

9 
18

0 
26

9 
SV

s#
 

18
1 

14
9 

34
2 

16
1 

49
 

15
 

20
 

31
 

19
 

32
 

R
ep
ea
t-
as
so
ci
at
ed

 
SN

Ps
# 

14
7 

19
 

98
4 

26
3 

23
 

52
 

7 
36

 
37

 
12

 

R
ep
ea
t-
as
so
ci
at
ed

 
SV

s#
 

19
 

4 
15

3 
40

 
3 

10
 

1 
12

 
4 

6 
R
ep
ea
t#

 
pe

r 
pe
ak

 
25

 
8 

12
2 

39
 

8 
4 

5 
31

 
12

 
8 

L
en
gt
h 
T
E
s 

5,
14

9 
60

2 
54

,3
32

 
10

,6
65

 
97

3 
1,
54

3 
61

1 
4,
66

5 
3,
86

9 
61

0 
L
en
gt
h 
re
pe
at
-a
ss
oc
. S
V
s 

21
7.
55

 
6 

3,
59

4.
4 

19
6.
6 

17
 

25
 

1 
79

 
41

5 
78

.8
 

SN
Ps

 
co
di
ng

 
47

 
23

 
12

 
12

 
0 

0 
9 

8 
0 

7 
SN

Ps
 
co
di
ng

 
F S

T
 
>
 
0.
75

 
1 

1 
0 

2 
0 

0 
0 

4 
0 

0 
SV

s 
co
di
ng

 
0 

1 
(1

 
bp

 
IN

S 
C
D
C
A
9)

 

0 
0 

0 
0 

0 
0 

0 
0 

#S
V
s 

>
 
50

 
bp

 
3 

1 
4 

1 
0 

0 
0 

0 
1 

0 
#S

V
s 

>
 
50

 
bp

 
F S

T
 
>
 
0.
75

 
1 
(D

E
L
 
55

 

bp
) 

0 
0 

0 
0 

0 
0 

0 
0 

0 

M
ax

 
le
ng

th
 
SV

s 
pe
ak

 
(b
p)

 
14

6 
64

 
73

98
§

97
 

15
 

10
 

9 
43

 
38

9 
42

 

M
ea
n 
le
ng

th
 
SV

s 
pe
ak

 
(b
p)

 
11

.9
 

10
.6
 

12
6.
7 

9.
1 

2.
8 

2.
8 

2.
7 

4.
3 

24
.0
 

8.
9 

To
ta
l l
en
gt
h 
SV

s 
(b
p)

 
95

1.
2 

50
7.
2 

48
39

.9
 

57
1.
5 

13
9.
5 

41
.0
 

57
.0
 

16
0.
5 

50
2.
0 

14
0.
6 

D
et
ai
ls
 
fo
r 
th
e 
10

 
m
ai
n 
ou

tl
ie
r 
re
gi
on

s 
id
en
ti
fie
d 
us
in
g 
bo

th
 
st
ra
te
gi
es
, i
nc
lu
di
ng

 
pe

ak
 
co
or
di
na

te
s 
(s
ca
ff
ol
d,
 
st
ar
t,
 
en
d,
 
an

d 
le
ng

th
),
 
th
e 
ch
ro
m
os
om

al
 
lo
ca
ti
on

 
ac
co
rd
in
g 
to
 
th
e 
Z
eb
ra
 
fin

ch
 
ge
no

m
e,
 
w
he
th
er
 
th
e 
pe

ak
 

w
as
 
id
en
ti
fie
d 
as
 
a 
G
W
A
S 
an

d/
or

 
F S

T
 
ou

tl
ie
r, 
th
e 
nu

m
be
r 
an

d 
ty
pe

 
of
 
va
ri
an

ts
 
[s
in
gl
e-
nu

cl
eo
ti
de

 
po

ly
m
or
ph

is
m
s 
(S
N
Ps
) 
an

d 
st
ru
ct
ur
al
 
va
ri
an

ts
 
(S
V
s)
] 
an

d 
th
ei
r 
ov

er
la
p 
w
it
h 
tr
an

sp
os
ab

le
 
el
em

en
ts
 
(T
E
s)
 
an

d 
co
di
ng

 

re
gi
on

s,
 
an

d 
th
e 
ge
ne
s 
w
it
hi
n 
ea
ch

 
pe
ak

. A
dd

it
io
na

lly
, t
he

 
ta
bl
e 
pr
ov

id
es
 
th
e 
m
ax

im
um

, m
ea
n,
 
an

d 
to
ta
l l
en
gt
h 
of
 
th
e 
SV

s 
w
it
hi
n 
ea
ch

 
pe
ak

. P
ea
ks

 
de
te
ct
ed

 
w
it
h 
bo

th
 
SN

Ps
 
an

d 
SV

s 
ar
e 
hi
gh

lig
ht
ed

 
in
 
bo

ld
, w

hi
le
 
th
os
e 

de
te
ct
ed

 
on

ly
 
w
it
h 
SN

Ps
 
ar
e 
in
 
re
gu

la
r 
fo
nt
. T

he
 
pe
ak

s 
m
ar
ke
d 
w
it
h 
an

 
as
te
ri
sk

 
(∗
) 
ar
e 
th
os
e 
th
at
 
w
er
e 
al
so

 
re
co
ve
re
d 
by

 
th
e 
re
pe
at
-a
ss
oc
ia
te
d 
va
ri
an

ts
. (
#)
 
In
 
pe

ak
 
1,
 
w
e 
re
fe
r 
to
 
th
e 
O
C
A
2 /
 H
E
R
C
2 
ge
ne

 
pa

ir,
 
w
hi
ch

 

is
 
in
vo

lv
ed

 
in
 
m
el
an

og
en
es
is
, y

et
 
th
e 
sp
ec
ifi
c 
ge
ne

 
in
 
th
e 
pe

ak
 
is
 
H
E
R
C
2 .
 
In
 
pe

ak
 
3,
 
th
e 
to
ta
l l
en
gt
h 
co
ve
re
d 
by

 
SV

s 
is
 
sh
or
te
r 
th
an

 
th
e 
m
ax

im
um

 
le
ng

th
 
(§
),
 
be
ca
us
e 
th
e 
lo
ng

es
t 
va

ri
an

t 
is
 
no

t 
fu
lly

 
co
nt
ai
ne
d 
w
it
hi
n 

th
e 
pe
ak

—
3,
54

4 
bp

 
ex
te
nd

 
be
yo

nd
 
it
s 
bo

un
da

ri
es
. 

D
ow

nloaded from
 https://academ

ic.oup.com
/evolut/advance-article/doi/10.1093/evolut/qpaf188/8262272 by C

ornell U
niversity user on 15 O

ctober 2025



Evolution (2025), Vol. 0, No. 0 9

Figure 2. The Capuchino pangenome and variant genotyping using short-read data. (A) Overview of statistics describing the pangenome, including the 
shared sequence length (Gb) across varying numbers of haplotypes as computed with Panacus, total length, number of nodes and edges, and the 
lengths and counts of core and secondary genome nodes. (B) Length distribution and composition of structural variants (SVs) in the pangenome, 
highlighting total numbers and percentages of single-nucleotide polymorphism (SNPs) and SVs. SVs are further categorized into insertions, deletions, 
and complex rearrangements. (C) Length distribution and composition of variants genotyped for 127 individuals from short-read data mapped to the 
pangenome, showing total numbers and percentages of SNPs and different types of SVs. (D) Alternative allele frequency distribution for SNPs identified 
from short-read data mapped to the pangenome (see Figure S8A for the equivalent plot for SVs). (E) Relationship between SV length (in log scale) and 
alternative allele frequency, and (F) alternative allele count. In both E and F, the density of data points is represented by a color gradient, with darker and 
lighter shading indicating lower and higher densities, respectively. 
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identified 217 isolated SNPs and SVs (representing 24.5% of 
all significant GWAS hits) not included in the more promi- 
nent outlier peaks ( Table S12 ). 

Outlier genomic regions associated with species 
differences 

Similar to the GWAS, FST scans revealed eight recurrent 
differentiation peaks across species comparisons ( Figure 
4 , Figures S17 –S30 ). Four peaks were shared between 
SNP and SV datasets: three included melanogenesis genes 
(as in the GWAS, except for the absence of the peak 
containing SLC45A2 ), and one contained the gene ALB 

( Table 1 , S16 ). The remaining four peaks were SNP- 
pecific, and two contained annotated genes ( SPEF2 , GPT2 ,
nd CDCA9 ). As in the GWAS, we observed only a few
trong outlier peaks per pairwise comparison ( Figure 4 ,
igures S17 –S30 ). Two comparisons (the Rufous-rumped 
eedeater, Sporophila hypochroma , vs. S. hypoxantha and 
. hypochroma vs. the Chestnut Seedeater, Sporophila cin- 
amomea ) lacked outlier windows or peaks, suggesting sub- 
ler differentiation patterns ( Figures S18 , S19 ). As with
WAS, SNPs and non-repeat-associated variants accounted 
or most peaks ( Table S17 ). The 55 bp deletion on scaf-
old 10 detected in the GWAS was the only SV > 50 bp
ound within a peak, present in the S. hypoxantha vs. S.
beraensis comparison ( Figure 4 ). Additionally, we identi- 
ed 85 isolated FST outlier windows outside major peaks 
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Figure 3. Genome-wide association study for the pheomelanin content in the belly plumage patch. The analysis includes four datasets, displayed from 

top to bottom: (A) single-nucleotide polymorphism (SNPs), (B) structural variants including indels ( < 50 bp) and long variants ( > 50 bp in orange), (C) 
repeat-associated variants [SNPs and structural variants (SVs)], and (D) non-repeat-associated variants (SNPs and SVs). The y -axis represents the 
−log10( p -value) obtained in the genome-wide association studies (GWAS), and the horizontal line is the Bonferroni-corrected threshold of statistical 
significance (for all comparisons and variants) , corresponding to a p -value of 2.65 ×10−9 . Scaffolds are ordered by decreasing size and represented in 
alternating shading. Peaks are highlighted with rectangles, and known genes are labeled above the peaks. The genes marked with an asterisk (∗) belong 
to the melanogenesis pathway. The peaks associated with pheomelanin content in the belly include TRYP1 on scaffold 7, which is detected only by the 
SNPs dataset; OCA2 / HERC2 on scaffold 10, which is detected by all datasets, including the long SVs; and the peak containing the ASIP and AHCY genes 
on scaffold 21, which is detected by the SNPs and the non-repeat-associated variants datasets. The single large SV with a statistically significant 
association is marked with an arrow. 
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12.9% of all outlier windows; Table S13 ), showing that
here are areas of the genome with more subtle patterns of
ifferentiation. 

ultiple sources of genetic variation in Capuchino 

eedeaters 

cross both the GWAS and FST outlier strategies, we iden-
ified 10 outlier peaks averaging 43 kb in length (range:
4–155 kb; Table 1 , S16 ). Except for peak 10 ( Table 1 ),
hese were previously reported using SNPs and a single ref-
rence genome ( Campagna et al., 2017 ; Estalles et al., 2022 ;
urbek et al., 2021 ). Five peaks were shared across GWAS
nd FST scans, representing our strongest candidates. Of
hese, four (peaks 1–4) were detected in both SNP and SV
 < 50 bp) datasets and included the melanogenesis genes
CA2/HERC2 , ASIP , and TYRP1 ( Table 1 , S16 ), while
eak 5 was SNP-specific and lacked annotated genes. Three
eaks did not contain genes but may harbor regulatory loci
nfluencing the expression of nearby genes ( Table S16 ). Out-
ier detection was largely driven by SNPs and indels outside
f repetitive regions or TEs. SVs > 50 bp were mostly absent
rom peaks, except for the 55 bp deletion on scaffold 10. We
lso found eight additional SVs with FST > 0.75 outside the
eaks ( Table S18 ), including two insertions overlapping in-
rons of SDHB (207 bp, scaffold 34) and TPM4 (73 bp, scaf-
old 38), both genes linked to reproductive traits in chickens
 Kramer et al., 2025 ; Zhang et al., 2017 ). The remaining SVs
ere located 280 bp to ∼90 kb from the nearest gene ( Table
18 ). Lastly, a windowed PCA analysis detected a possible
arge inversion on the Z chromosome ( Figure S31 ), but it
as not associated with species differences or outlier peaks.

enetic variant and TE composition within peaks 

ithin outlier peaks, SNPs were more frequent and cov-
red a greater proportion of bases than SVs, with mostly
on-coding variants ( Figure S32A , Table 1 ). Repetitive ele-
ents and TEs accounted for 1.4% to 37% of peak regions,
ith no consistent pattern in their overlap with variant types

 Figure S32A , Table 1 ). TE composition within peaks mir-
ored the genome-wide distribution ( Figure 1C ), dominated
y retrotransposons, particularly LINEs and LTRs ( Figure
32B ). While SV and TE levels in peaks were not extreme
elative to the rest of the genome, TE composition varied
ore across peaks than SV content ( Figures S32C , S32D ).
otably, half of the peaks were located on the Z chromo-
ome ( Table 1 ), consistent with patterns observed previously
n this ( Estalles et al., 2022 ) and other systems ( Bourgeois et
l., 2020 ). 
Only 1.5% (118 SNPs) of SNPs (irrespective of their level
f differentiation) were coding variants, suggesting a minor
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Figure 4. FST scan in 10 kb windows for the comparison between S. hypoxantha and S. iberaensis . The analysis includes five datasets, displayed from 

top to bottom: (A) single-nucleotide polymorphisms (SNPs), (B) structural variants < 50 bp, (C) structural variants > 50 bp, (D) repeat-associated variants 
[SNPs and structural variants (SVs)], and (E) non-repeat-associated variants (SNPs and SVs). Orange dots mark outlier windows within identified 
differentiation peaks, defined as the top 0.1% of the FST distribution and containing at least one variant with FST > 0.75. Scaffolds are ordered by 
decreasing size and represented in alternating shading. Peaks are marked with rectangles, and the known genes are labeled on top of the peaks. The 
genes marked with an asterisk (∗) belong to the melanogenesis pathway. There are three peaks in this comparison: one containing TYRP1 on scaffold 7, 
detected only by the SNP dataset; another containing OCA2 / HERC2 on scaffold 10, detected by all datasets; and the third containing GPT2 and CDCA9 
on scaffold 14, detected by all datasets except the long SVs and the repeat-associated variants. 
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role for coding differences overall. However, among the cod- 
ing variants, eight SNPs with FST values above 0.75 (four of 
which were found in multiple comparisons) likely play an 
important role in driving color/species differentiation ( Table 
S19 ). The Black-bellied Seedeater ( Sporophila melanogaster ) 
is involved in 9 out of the 13 comparisons, and the genes 
affected were TYRP1, ALB, GPT2 , and HERC2 ( Table 
S19 ). We detected a single coding indel (a 1 bp insertion in 
CDCA9 ), but it was not highly differentiated among species 
( Table 1 ). SVs accounted for 11% of variants within peaks,
with only 10 longer than 50 bp, of which 1 (the 55 bp non- 
coding deletion on scaffold 10 located 12.8 kb from the 
HERC2 gene) had an FST value above 0.75 in the compari- 
son between S. hypoxantha and S. iberaensis ( Table 1 , Figure 
S33A and S33B ). In this species pair, most individuals from S.
iberaensis are homozygous for the deletion (1/1), with some 
cases of heterozygosity, whereas S. hypoxantha individuals 
are predominantly homozygous without the deletion (0/0),
although there are two 1/1 individuals ( Figure S33C ). This 
variant is not species-specific, as S. palustris , the Black-and- 
tawny Seedeater ( Sporophila nigrorufa ), and S. hypochroma 
exhibit genotypes similar to S. hypoxantha at this site, while 
the remaining five species share the deletion with S. iberaen- 
sis . The deletion is in high LD with SNPs and indels within 
the peak, showing how different types of variants share their 
genomic signal ( Figure 5 ). We do, however, observe species- 
specific patterns when assessing variation across all peaks 
combined. The genotypes of variants (SNPs, indels, and the 
5 bp deletion) with FST > 0.75 within the peaks show clear
enetic differentiation among species, with distinct clusters 
eflecting species-specific allele combinations in these highly 
ifferentiated regions ( Figure 5 ). Among these regions, the
wo comparisons without significant peaks—S. cinnamomea 
s. S. hypochroma and S. hypoxantha vs. S. hypochroma —
merge as the least differentiated species overall. However,
ome comparatively more subtle differences are still present 
n certain regions, such as peaks 1, 3, and 8, where S. hy-
oxantha and S. cinnamomea predominantly exhibit (0/0) 
nd (1/1) genotypes, respectively. Additionally, each compar- 
son includes other more subtly differentiated regions that 
o not meet our peak thresholds. For example, the peak on
caffold 7, which contains the SLC45A2 gene, includes 19 
nd 23 variants with FST > 0.5 in the S. hypoxantha vs. S.
ypochroma and S. hypochroma vs. S. cinnamomea compar- 
sons, respectively. 

iscussion 

everaging a pangenome to study rapid speciation 

ur study provides the most comprehensive view to date 
nto the genetic changes associated with rapid speciation in 
apuchino Seedeaters, using a pangenome built from 32 de 
ovo genome assemblies. By integrating this resource with 
hort-read whole-genome sequencing data from ten species 
including three previously underrepresented species: S. bou- 
reuil , S. cinnamomea , and S . hypochroma ), we refined the
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Peak 1 2 3 4 5 8

OCA2*           GPT2            ASIP*  TYRP1* ALB
HERC2*        CDCA9          AHCY

Genes

S. ruficollis

S. pileata

S. nigrorufa

S. melanogaster

S. iberaensis

S. hypoxantha

S. hypochroma

S. cinnamomea

S. bouvreuil 

S. palustris

0/0 0/1 0/2 1/1 1/2 2/2

D’ color key

0 1

r

Variants within TEs
Variant type

TE no TE SNP
MNP Indels (< 50 bp) SVs > 50 bp

Variants within or outside TEs Variants type Genotype

Figure 5. Capuchinos show species-specific patterns of genetic variation when comparing across all divergence peaks. Genotypes for 456 variants with 
no missing data (for visual simplicity) within peaks 1–5 and 8 with FST values > 0.75 across populations, including the 55 bp deletion (marked in the 
“Variant type” track, see Figure S33C for details), obtained using short-read sequencing data mapped to the pangenome. Peaks 6 and 7 were excluded 
as they were only detected in the genome-wide association studies (GWAS) and do not have variants with FST > 0.75, while peaks 9 and 10 were 
excluded due to having very few variants, which unnecessarily complicate the plot. The peak IDs correspond to those in Table 1 . Rows represent 
individuals from different populations, while columns correspond to genomic sites, grouped by peak. Variants overlapping repetitive elements and 
transposable elements (TEs) are indicated at the top of the plot, with darker shading denoting repeat-associated sites and lighter shading indicating 
non-repeat associated sites. Variant types are also indicated, with single-nucleotide polymorphisms (SNPs) and multi-nucleotide polymorphisms (MNPs) 
in yellow, indels ( < 50 bp) in teal, and the 55 bp deletion (light blue). The genotypes are color-coded: the homozygous reference (0/0) is represented in 
yellow, the heterozygous genotypes (0/1, 0/2, 1/2) are represented in light orange, light blue, and dark red, respectively; and the homozygous alternate 
genotypes (1/1, 2/2) are represented in orange and blue, respectively. The presence of multiple alternate genotypes arises from indels and MNPs, 
where more than one alternative allele is present. Below each peak, the linkage disequilibrium (LD) pattern is displayed based on the D’ method, 
color-coded from yellow to red (0 to 1), with red indicating strong LD. Overall, most peaks exhibit high LD, suggesting that the variants within them are 
inherited in blocks. However, some peaks (e.g., 1, 3, and 4) show distinct LD blocks, indicating potential recombinant haplotypes. Additionally, the genes 
within each peak are listed, with those marked by an asterisk (∗) indicating genes that are part of the melanogenesis pathway. 
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characterization of genetic variants driving species differen- 
tiation, expanding the analysis beyond SNPs to include small 
insertions/deletions and other SVs omitted in past research.
Previous studies on Capuchino Seedeaters have proposed 
that the reshuffling of small regulatory alleles drives rapid 
plumage evolution, which coupled with male song differ- 
ences, promotes prezygotic isolation and speciation ( Turbek 
et al., 2021 ). These insights were based on SNP markers 
and a single ( S. hypoxantha ) reference genome. An alterna- 
tive hypothesis proposes the existence of species-specific SVs 
near these outlier genes. These variants, potentially linked to 
TE activity, may drive differentiation but could have been 
overlooked due to methodological limitations. In this study,
we leverage our pangenome to distinguish these hypotheses.

Improvements over previous genomic studies 

Genome assemblies and gene content 
The high-quality genome assemblies improved on previous 
studies in various ways. Combining several genomes pro- 
duced a higher-quality reference capturing greater sequence 
diversity (approximately 1.5 Gb vs. 1.17 Gb, Campagna et 
al., 2017 ), including alternate haplotypes and structurally 
variable regions that are not present in every individual. This 
approach also captured a larger number of genes (15,788 vs.
14,667, Campagna et al., 2017 ). Assemblies were broadly 
similar across species, but distinguishing between genes that 
are truly missing from an individual from those that are 
absent due to limitations in the genome assembly process 
remains challenging. We therefore recommend using vari- 
ous approaches to assess gene presence/absence. Overall, our 
pangenome recovered genomic regions, genes, and variant 
types missed in earlier work, offering a methodological ad- 
vance that is likely to also benefit other systems undergoing 
similar comparative analyses. 

Relative prevalence of SNPs and SVs 
The pangenome reveals SNPs are nearly eight times more 
common than SVs, with most SVs being < 50 bp (indels),
as seen in other systems (e.g., Lecomte et al., 2024 ). Inser- 
tions and deletions dominated, while inversions and dupli- 
cations were rare and typically found at low frequencies in 
few individuals. Two other studies (on the House Finch and 
Aphelocoma jays) reported 3–4 times more SVs > 50 bp 
than in our data ( Edwards et al., 2025 ; Fang & Edwards,
2024 ), likely due to the more recent diversification and 
higher genomic similarity among Capuchinos ( Campagna 
et al., 2017 ; Turbek et al., 2021 ). For example, a large in- 
version shared by three Haemorhous species dates to ∼10 
million years ago ( Fang & Edwards, 2024 ), far older than 
Capuchino divergence ( Campagna et al., 2013 ). 

Transposable elements 
Improved assembly of complex/repetitive regions enabled 
the annotation of TEs, which showed limited contribution 
to species differentiation. About 16% of the genome con- 
sists of repeats, mainly retrotransposons. This TE content 
is slightly higher than previously reported for most birds 
[4.1–9.8% ( Kapusta & Suh, 2017 )], except for woodpeckers 
[which reach up to 31% ( Manthey et al., 2018 )]. However,
TE detection nearly doubled in sparrows using long-read vs.
short-read data ( Benham et al., 2024 ), and this may also be 
the reason why we find higher TE content. 
imitations in recovering the landscape of 
tructural variation 

ombining the pangenome with short-read data failed to 
ecover ∼29.6 million variants present in the pangenome.
his reduction is probably due to the inherent limitations of
hort-read data in properly mapping to regions containing 
arger SVs and repetitive sequences ( Mahmoud et al., 2019 ),
esulting in variant loss at scaffold ends and other repeti-
ive regions. Although the pangenome now includes these re- 
ions, long-read genotyping of more individuals could help 
esolve possible species differences in these challenging ar- 
as. However, these complex genomic regions will remain 
ifficult to work with, as graph-based genotyping can gener- 
te multiallelic calls that may reflect real biological variation 
ut that can also arise from technical artifacts, potentially 
rroneously inflating the number of alleles. Although many 
ultiallelic loci are included in our FST and GWAS analyses,
apturing the full complexity of these variants in a VCF file
emains challenging ( Edwards et al., 2025 ). Breaking such 
ariants down into many independent low-frequency alleles 
ould mask meaningful relationships among alleles within a 
ocus and reduce statistical power relative to biallelic SNPs 
n outlier scans. These issues are likely more prominent in
ighly variable regions and complicate the direct compar- 
sons of the relative relevance of SNPs and SVs in shaping
henotypes. Such regions and variants may be better ex- 
lored in the future using emerging multiallelic-aware meth- 
ds ( Saitou et al., 2022 ). While our pangenome represents
n improvement over previous studies, some key differences 
elevant to species divergence may still be missed, and these
echnical and biological constraints should be considered 
hen applying these methods in other systems. 

pecies differentiation linked to possible regulatory 

hanges in pigmentation loci 

espite variation in sample sizes and species, GWAS for pig-
ent concentrations and FST scans consistently identified 
he strongest outlier regions containing melanogenesis genes 
 HERC2 / OCA2 , ASIP , TYRP1 , and SLC45A2 ), confirming
revious findings ( Campagna et al., 2017 ; Estalles et al.,
022 ; Turbek et al., 2021 ). This study also confirmed pat-
erns seen in the Capuchino radiation, such as the predom-
nance of non-coding differences and enrichment of outlier 
eaks on the Z chromosome. As seen before ( Turbek et al.,
021 ), species exhibit unique genotype combinations across 
ey outlier peaks, though other regions with subtler differen- 
iation exist genome-wide. Moreover, differentiation levels 
ary across species, suggesting there are differences in gene 
ow and/or the number and extent of genomic regions driv-
ng phenotypic traits. Differentiated regions mainly feature 
NPs and small SVs, with large SVs largely absent. Outlier
egions did not show significantly elevated SV or TE content
ompared to the rest of the genome. Variants within outlier
eaks (SNPs, indels) are generally in high LD, likely acting
ogether to influence phenotype. Integrating chromatin ac- 
essibility and interaction data (e.g., ATAC-seq, Hi-C) with 
ariant analysis will help uncover regulatory networks, espe- 
ially in non-coding regions where over 90% of enhancers—
ey gene expression regulators—are located ( Liang et al.,
024 ). Importantly, we find that differentiation in outlier re-
ions is largely driven by SNPs and small indels rather than
arge species-specific SVs, and we conclude that the reshuf- 
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ing of regulatory alleles remains the most likely mechanism
riving the rapid speciation of the Capuchinos. 

roader implications of the pangenomic approach 

hile SVs do not seem to have strongly shaped Capuchino
eedeater evolution, our results highlight the power of the
angenome framework for studying phenotypic evolution
nd speciation. SVs may play a more prominent role in sys-
ems with longer divergence times, but their evolutionary rel-
vance may currently be overlooked due to methodological
imitations. Pangenomes are beginning to emerge in a wide
ange of organisms beyond plants and bacteria, as advances
n sequencing technologies make these comprehensive ge-
omic studies more feasible. However, these approaches also
ring technical challenges (discussed above), which will re-
uire the development of new methods for future analyses.
oreover, our study points to the importance of combin-

ng pangenomes with population-level long-read sequenc-
ng to overcome the limitations of mapping short-read data,
hich can fail to detect structural variation captured in the
angenome. These developments provide the opportunity to
ntegrate all forms of genetic variation into the search for the
enetic basis of phenotypes in non-model organisms (e.g.,
hen et al., 2023 ; Edwards et al., 2025 ; Fang & Edwards,
024 ; Wang et al., 2024 ; Wei et al., 2024 ), and promise to
ncover previously hidden genetic contributions to pheno-
ypic traits and adaptive evolution. 
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