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Abstract: Motivated by the long-term goal of finding holographic descriptions for N = 1
and N = 2 super QCD, we revisit the subject of “noncritical” superstring theory. Focus-
ing on string models with 6d super Poincaré invariance, we provide a careful worldsheet
derivation of the leading-order effective theories for the lowest modes. We identify them
as seven-dimensional, maximally supersymmetric gauged supergravities: the SO(4) theory
for noncritical IIA and the ISO(4) theory for noncritical IIB. The same theories also arise
as consistent truncations on S3 of the 10d IIB and IIA supergravities, respectively, where
the chirality flip is as expected from T-duality. These effective supergravities should be
interpreted in the following sense. The noncritical string can be viewed as a special case
of a discrete series of backgrounds labelled by an integer k (which counts the number of
NS5 branes in a certain duality frame); the “noncritical” value is k = 2, while for k → ∞
one recovers a weakly-curved 10d target space. The effective supergravities described here
give an accurate description of the interactions among the lowest modes for k → ∞, with
higher derivative corrections suppressed by powers of 1/k. We discuss BPS solutions of the
7d gauged supergravities and their uplift to 10d solutions. In particular, we find a novel
class of solutions with RR flux, parametrized by a function of three variables that solves
an elegant PDE. While we cannot solve the PDE in closed form except in trivial cases, we
confirm that our solutions correspond to a 10d IIA Hanany-Witten setup with continuous
distributions of both “color” D4 branes and “flavor” D6 branes.
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1 Introduction

In this work we study the interplay between the worldsheet and spacetime descriptions of
noncritical superstring theory [1–9], focusing on the d = 6 case.1 Our main results are a
careful derivation of the effective supergravity that captures the lightest modes, a thorough
understanding of half-BPS solutions with NSNS charges, and a preliminary exploration of
RR backgrounds. Noncritical superstrings are an old but still underappreciated subject,
and the intricate web of relationships between noncritical worldsheet backgrounds, gauged
supergravities and consistent truncations that we explore here would be worth studying in
its own right. Our long term motivation is however more physical: we wish to extend the
gauge/string duality to more realistic models.

Motivation: noncritical holography

The promise implicit in the seminal work of ’t Hooft’s [10] is that any large N gauge theory
should admit a dual string theory description in the large N limit, with the string coupling
scaling as gs ∼ 1/N . This vision has been realized in many beautiful examples, which are
however all rather close cousins of the paradigmatic case of N = 4 super Yang-Mills theory,
as they all arise from the decoupling limit of D3 branes2 in critical string theory. While
one can partially break supersymmetry (e.g. by placing the branes at a local singularity),
all models that are under analytic control retain in some way the additional degrees of
freedom associated to the six transverse directions. Extending the gauge/string duality to
genuinely more minimal theories, such as pure N = 1 SYM (and, in the fullness of time,
to ordinary Yang-Mills) remains an outstanding challenge. To be clear, there are several
well-known constructions (e.g. [11–14]) that yield e.g. N = 1 SYM at low energies3 (to stick
for concreteness to this important example), but within the supergravity approximation they
inevitably depart from it at energies larger than ΛQCD. A full-fledged dual of the “pure” theory
will necessitate a spacetime description that incorporates all α′-corrections, or equivalently
a worldsheet description that is intrinsically strongly coupled as a two-dimensional sigma
model. Indeed, unlike the canonical example of N = 4 SYM, there is no exactly marginal
deformation that allows to reach the weakly-curved large volume limit, and the worldsheet
CFT is expected to be an isolated fixed point.

The most direct route to the pure N = 1 and N = 2 SYM theories,4 and to their
variations with fundamental flavor, is within noncritical string theory. “Noncritical” is a

1As we will elaborate momentarily, we mean the case with R1,5 Poincaré symmetry and sixteen real super-
charges.

2For definiteness, we focus this discussion to four-dimensional gauge theories.
3See also [15–21] for the inclusion of fundamental flavor.
4Alternative approaches to this problem are possible for the case with eight supercharges as well: for pure

N = 2 SYM, [14, 22, 23] consider D5 branes wrapped on S2, while [24, 25] use fractional D3 branes. The
inclusion of flavor was considered, e.g., in [26] for the former setup and in [27] for the latter.
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bit of a traditional misnomer. Noncritical backgrounds are perfectly critical as cancellation
of the worldsheet Weyl anomaly goes, but with a Liouville mode carrying a larger amount
cL of the anomaly, such that the “matter” central charge cM associated to the “spacetime”
dimensions (e.g. to the standard Poincaré invariant background Rd−1,1, with cM = d) can
be smaller, d = 26 − cL for the bosonic string and d = 10 − cL for the superstring. In the
bosonic case, as well as in the superstring case with N = 1 worldsheet supersymmetry, one
is restricted to cM ≤ 1, as superLiouville theory is otherwise not well-defined. Fortunately,
there is a generalization with N = 2 worldsheet supersymmetry that makes perfect sense
for any even spacetime dimension d. The appropriate N = 2 version of Liouville theory is
the Kazama-Susuki coset SL(2,R)k/U(1), which is equivalent to the supersymmetric cigar
sigma model [8, 28–31]. The worldsheet CFTs

R1,d−1 × SL(2,R)k
U(1) , (1.1)

where the level k of the coset is adjusted to cancel the total Weyl anomaly, k = 4/(8− d),
define consistent superstring models for any even d ≤ 8. (The case d = 8 is just the usual
R1,9 “critical” background in disguise.) A suitable GSO projection makes the spacetime
supersymmetric, with 2d/2+1 real supercharges.

The role of the Liouville mode in the putative string dual of large N Yang-Mills has
long been emphasized by Polyakov [32–34]. While formulating a suitable worldsheet theory
remains a tall order in the fully non-supersymmetric case, a blueprint for how this could
be accomplished for N = 1 and N = 2 SYM has been proposed in [35, 36].5 The idea is
to imitate the logic that leads to the standard AdS/CFT duality for N = 4 SYM. One
should study the decoupling limit of a stack of D3 branes, but in the noncritical backgrounds
that we have just described, rather than in ten-dimensional flat space. To realize N = 1
SYM, the starting point is the noncritical IIB background with d = 4. A D3 brane is defined
by a certain exact boundary state for N = 2 superLiouville (semiclassically, it is a brane
localized near the tip of the cigar geometry) tensored with the standard Neumann boundary
state for R1,3. One checks that the massless spectrum and supersymmetry are those of the
N = 1 vector multiplet [41, 42]; the absence of “geometric” transverse directions to the D3
branes dovetails with the absence of scalar fields in the multiplet. One can then attempt to
imitate the familiar logic [43]. In the limit α′ → 0, the massive open string modes decouple,
while on the dual closed string side one is instructed to take the near-horizon limit of the
backreacted geometry. The string dual of pure N = 1 SYM is then identified with the closed
string sigma model in the corresponding RR background. Similarly, to realize pure N = 2
SYM one considers a stack of D3 branes in the noncritical background (1.1) with d = 6.
The boundary state consists again of the localized brane at the tip of the cigar, tensored
with Neumann boundary conditions on R1,3 ⊂ R1,5 and Dirichlet boundary conditions on
the transverse R2 directions. The massless spectrum and supersymmetry are now those of
the N = 2 vector multiplet, with the two real scalars corresponding to the two transverse
directions. Again, one is led to identify the dual string theory with the closed string sigma
model on the near-horizon backreacted background. In both the N = 1 and N = 2 cases,
fundamental flavor can be included by adding D5 branes extending in the cigar directions —
see tables 1 and 2 and for a summary of the brane configurations.

5Various extensions and generalizations have also been considered, see e.g. [37–40].
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R1,3 SL(2,R)1/U(1)
Nc D3 × × × ×
Nf D5 × × × × × ×

Table 1. Distribution of D-branes in (4+2)-dimensional type IIB noncritical string theory cor-
responding to a 4d N = 1 SU(Nc) gauge theory with Nf fundamental and Nf antifundamental
chiral multiplets.

R1,3 R2 SL(2,R)2/U(1)
Nc D3 × × × ×
Nf D5 × × × × × ×

Table 2. Distribution of D-branes in (6+2)-dimensional type IIB noncritical string theory corre-
sponding to a 4d N = 2 SU(Nc) gauge theory with Nf fundamental hypermultiplets.

While this is a compelling physical picture, there are obvious technical challenges in
turning this cartoon into a precise proposal. The requisite spacetime backgrounds have string-
scale curvature, so that two-derivative supergravity is not expected to be a valid approximation.
To circumvent this problem, one can aim for a full-fledged worldsheet description of the
backreacted closed string backgrounds. However, a worldsheet approach faces the usual
predicament that RR backgrounds are unwieldy in the standard RNS formulation, and an
alternative worldsheet formalism (e.g. using pure spinors [44, 45]) might need to be developed.
Perhaps the way forward will be a spacetime approach capable of systematically incorporating
α′-corrections, such as string field theory, along the lines of [46, 47].

In this paper, we will achieve a thorough understanding of the effective supergravity that
captures the low-lying modes of the noncritical string (1.1), starting with the d = 6 case.
As we have just emphasized, supergravity alone cannot be the final tool, but it should still
be very useful as a stepping stone. In fact, the first motivation of this work was to put on
a firmer footing the approach of [35, 36] to noncritical holography. In particular, starting
from a somewhat ad hoc six-dimensional bosonic effective action (in our notation, this is the
d = 4 case, with the two extra dimensions corresponding to the cigar directions), Klebanov
and Maldacena [36] found some intriguing solutions in rough qualitative agreement with the
physics of N = 1 SQCD in the conformal window. Their strategy was to make an ansatz
in terms of first order equations, derived from a “fake superpotential”,6 which in a more
complete analysis should correspond to actual supersymmetry variations. Our goal is to
obtain the correct and complete effective supergravity from the underlying microscopic string
theory, and to derive and study the corresponding BPS equations.

Supergravity for the d = 6 noncritical superstring

In this work, we will focus on the d = 6 noncritical superstring, with an eye towards holography
for N = 2 SQCD. The d = 4 case, relevant for N = 1 SYM, is morally similar but presents
several additional complications and is the subject of ongoing work [50]. Following [5–7],

6The term was introduced in [48], see also [49] for comments on the relation between this approach and
“honest” supergravity in the case of 5d N = 2 supersymmetry.
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we will find it both technically useful and conceptually insightful to view the “noncritical”
background as a special case of an infinite discrete family, defined by the worldsheet CFTs

R1,5 ×
(SL(2,R)k

U(1) × SU(2)k
U(1)

)/
Zk , k ≥ 2 . (1.2)

Apart from the six flat directions, the background comprises both the supersymmetric
cigar SL(2,R)k/U(1) CFT and the supersymmetric parafermion CFT SU(2)k/U(1), which
semiclassically has the geometric interpretation of a sigma model into the disk. The total
matter central charge has the correct critical value for any k. For k = 2, the parafermion
CFT trivializes and one recovers the noncritical background (1.1) with d = 6. By contrast,
for k large both the cigar and the disk sigma models are weakly coupled and one recovers
the flat 10d critical string. This family of backgrounds arises naturally by considering the
near-horizon limit of k parallel NS5 branes, separated in a symmetric configuration around
a (contractible) circle [6, 7]. More precisely, the CFT (1.2) is T-dual to such NS5 brane
configuration [51, 52], see figure 1. Although we are most interested in the noncritical value
k = 2, it is both easy and useful to keep k generic. For large k, there is a clear sense in which
two-derivative supergravity provides a good effective field theory description for the lowest
modes, with higher-derivative corrections suppressed by inverse powers of k.7

One of our main results is a careful derivation of the effective supergravity. As we are
only interested in the continuum of delta-function normalizable states, the worldsheet analysis
can be performed by replacing the cigar background SL(2)/U(1) with its asymptotic region as
ρ→ ∞, where it simplifies to the free theory of a linear dilaton Rρ times a compact boson S1.
For both the IIB theory (the one relevant for the holographic dualities of 4d gauge theories
discussed above) and the IIA theory, the effective theory that describes the lowest modes
turns out to be a seven-dimensional, maximally supersymmetric gauged supergravity.

Both features (7d and maximal supersymmetry) may appear surprising at first sight. For
starters, one might have anticipated an eight-dimensional supergravity description, as the
noncritical background comprises the six Minkowski directions and the two cigar directions
Rρ × S1. What goes wrong with dimensionally reducing the backgrounds (1.2) on the disk
SU(2)/U(1) to find an eight-dimensional effective theory? The problem is that while the full-
fledged worldsheet theory (1.2) enjoys 16 spacetime supercharges, the corresponding solution of
10d type II supergravity breaks supersymmetry completely. Supersymmetry is instead manifest
in the T-dual picture,8 corresponding to a configuration of NS5 branes, which asymptotically
reduce to the CHS [57, 58] background R1,5 ×Rρ×S3. Dimensionally reducing on S3 yields a
valid, but seven-dimensional, supergravity description. The corresponding supergravities have
been identified before, as certain gaugings of the maximally supersymmetric theory. To wit,
the reduction of 10d IIA on S3 yields a 7d sugra with ISO(4) gauging, while the reduction of

7Looking ahead at the application to noncritical holography, we can envision a family of RR backgrounds
where k is a parameter, which become weakly-curved for large k; equivalently, the corresponding 2d worldsheet
theories are weakly-coupled for large k. For each k, there is a dual 4d N = 2 field theory, which reduces to
N = 2 SYM for k = 2.

8The fact that T-duality can break manifest supersymmetry at the supergravity level is not unfamiliar [51, 53–
56]: it happens whenever the Lie derivative of the Killing spinors with respect to the T-duality direction is
non-zero.
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10d IIB yields the 7d sugra with SO(4) gauging. Because of the T-duality involved, we identify
the ISO(4) and SO(4) gauged supergravities as the appropriate descriptions of noncritical
IIB and IIA, respectively. In fact, in both cases there is a full-fledged nonlinear consistent
truncation ansatz that allows to uplift any 7d solution to a 10d solution. A strong hint that
such a consistent truncation must be possible comes from the worldsheet analysis, where the
vertex operators for the lowest modes are seen to form a consistent subsector.

The other perhaps surprising feature is the counting of supercharges. The point is that
while the SO(4) and ISO(4) 7d gauged supergravities are maximally supersymmetric, they do
not admit maximally supersymmetric Minkowski or AdS solutions. The simplest background
is instead the half-BPS linear dilaton solution R5,1 × Rρ. This agrees with the counting of
supercharges from the worldsheet description of the noncritical string.

We perform a detailed analysis of the worldsheet spectrum. On the worldsheet, only 6d
super Poincaré invariance (with 16 supercharges) is manifest, and some care is needed in
organizing the spectrum of BRST classes from a 7d perspective. Several technical subtleties
enter the comparison between the worldsheet and the supergravity descriptions, especially in
the RR sector, but when the dust settles we find a perfect match. In particular, there is a
sense in which the lowest states that we focus on are “massless”, namely gauge invariance,
even if, as we have emphasized, there is no parametric separation of scales to the higher levels.

We also review the construction of boundary states [41, 42, 59–61] and identify which of
low-lying closed string vertex operators have non-zero one-point functions. We find that it is
the same set for both the “color” D3 branes and the “flavor” D5 branes, but with different
asymptotic rates of fall off in the radial cigar direction ρ → ∞.

Supergravity solutions

The consistent truncation ansatz gives a powerful recipe to find 10d solutions by uplifting
solutions of the 7d gauged supergravities. For purely NSNS backgrounds, these solutions
have been obtained before. They correspond to the backreacted geometries of various
(smeared) configurations of NS5 branes. We revisit these solutions from our perspective
of noncritical string theory. We also discuss an 8d effective action (of the type introduced
in [35, 36], but limited to NSNS fields) for the noncritical string, showing how to relate
the 8d “fake superpotential” approach to the genuine 7d BPS equation arising from the
gauged supergravities.

Our real interest is in the putative RR backgrounds corresponding to the configurations
of branes that realize N = 2 SYM with flavor. We consider a truncation of the 7d ISO(4)
supergravity that retains the fields sourced by the color and flavor branes and manifests the
SU(2)R R-symmetry expected on the gauge theory side. Making an ansatz that preserves
super Poincaré invariance in R1,3, we are able to reduce the full set of BPS equations to
a single master equation, the elegant nonlinear PDE (6.13) for a single function K(r, ~y) of
the three transverse coordinates. For any such solution K, we can write the general uplift
to a BPS solution of 10d IIA supergravity.

Unfortunately, we have only been able to find very special, rather trivial explicit solutions
of our master equation. We can however observe some general characteristics that hold
for any K. We confirm that our class of 10d solutions does indeed correspond to a IIA
Hanany-Witten setup, comprising NS5 branes, “color” D4 branes and “flavor” D6 branes. A
first, inevitable feature is that a large number k of NS5 branes are present, while to engineer
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N = 2 SQCD we need k = 2. But this is something that we were expecting all along: the
two-derivative approximation corresponds to large k, and in fact we wish to regard 1/k as
the parameter that controls the higher derivative corrections. Note that in our 10d solutions
the SU(2)R symmetry is realized geometrically: the k → ∞ NS5 branes are (continuously)
distributed on a segment, rather than on a circle, as in the exact worldsheet backgrounds (1.2)
that only preserve the Cartan of SU(2)R. Of course, there is no difference for the k = 2 case
which is our ultimate target. From our perspective it is useful to preserve SU(2)R for any k,
but by making this choice we have lost (for k > 2) the connection with the exact CFT (1.2).
It would be very interesting to find an exact worldsheet description for the specific linear
distribution of NS5 branes that appears in our solutions.

A second feature is that all our solutions inevitably contain both D4 and D6 branes, as
both types of RR flux originate from the 10d uplift of the same 7d RR one-form. A calculation
of the fluxes (valid for generic K) shows that the ratio of the numbers of D4 and D6 branes
is irrational, so that they cannot both be quantized. We interpret this unpleasant feature in
terms of a partial smearing of the D4 branes along the S2 that realizes geometrically SU(2)R.
Finally, we find that the asymptotic behavior of RR fields in our solutions is very reminiscent
of what we obtain in section 3 from a boundary states analysis, despite the caveat that our
worldsheet analysis was performed for the noncritical value k = 2.
The detailed outline of the paper is best apprehended from the table of contents. In section 2,
after a short self-contained review of d = 6 noncritical superstrings, we perform a detailed
worldsheet analysis of the low-lying spectrum, which we organize from a 7d perspective. In
section 3 we review the relevant boundary states of the SL(2)/U(1) cigar CFT, determine
which of the low-lying physical closed string states have nonzero overlaps with them and
investigate the asymptotic behavior of these disk one-point functions. In section 4 we identify
the effective 7d actions for the low-lying states with two maximally supersymmetric gauged
supergravities, namely the SO(4) gauged sugra for noncritical IIA and ISO(4) gauged sugra
for noncritical IIB. We perform a detailed match with the worldsheet analysis and explain
how the same result could have been anticipated by KK reduction on S3 in a T-dual picture.
In section 5 we review BPS solutions with only NSNS flux from our noncritical perspective.
We also explain the connection of the 7d BPS equations with an 8d “fake superpotential”
approach. In section 6 we begin an exploration of BPS solutions with RR flux. We look for
solutions of the 7d BPS equations that uplift to a 10d IIA Hanany-Witten setup. We find a
general class of them, parametrized by solutions of a single nonlinear PDE, and investigate
their general properties. We conclude in section 7 with a brief outlook. We relegate to five
appendices some of the more technical material.

2 Noncritical superstring theory

2.1 A brief overview

The main theme of this paper is d-dimensional noncritical superstring theory [2, 3], which
we now briefly review. This is a rich topic that has been studied by several authors from a
variety of different perspectives, and we will not attempt an exhaustive overview here. Rather,
we shall focus on aspects that are instrumental to our main goal: finding a supergravity
theory that captures the interactions between string states in a subsector at the lowest mass
level, mimicking the relation between ten-dimensional superstring theory and supergravity. In
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this section we will review some relevant aspects of noncritical superstring theory in general
dimension d ≤ 8, but eventually specialize to d = 6 which is the main focus of this paper.
Most of the calculations presented here have already appeared — in some version — in
the literature, and we shall give appropriate references when relevant. Besides reviewing
relevant material, the purpose of this section is to present (for d = 6) the calculation of
the spectrum at the lowest level from a new, seven-dimensional, perspective. Namely, we
interpret the spectrum as arising from the linearized fluctuations of a seven-dimensional theory
whose Poincaré symmetry is spontaneously broken to six dimensions by the linear dilaton
background. Such interpretation sheds light on the underlying maximal supersymmetry of
the spectrum, allows to distinguish the type IIA and IIB GSO projections and ultimately
leads to uniquely identifying the corresponding two-derivative supergravity.

Linear dilaton and cigar. Let us consider a worldsheet CFT containing d free bosons
Xα, d free fermions ψα, with α = 0, . . . , d − 1, as well as the usual ghost system of the
ten-dimensional critical superstring. For generic d, the total central charge

3d
2 − 15 < 0 (2.1)

is not zero and the theory is not critical. The conformal anomaly can be cancelled by adding
a Liouville mode [1]. Following [2, 3] we also require N = 2 worldsheet supersymmetry,
which combined with the GSO projection is enough to ensure spacetime supersymmetry [62].
One is thus led to consider a worldsheet CFT obtained by tensoring N = 2 superLiouville
theory, containing bosonic fields (ρ, θ) and fermions (ψρ, ψθ), together with the (Xα, ψα) free
fields. The simplest worldsheet CFT with this field content is the so-called linear-dilaton
background, where we think of the Liouville field ρ as a geometric direction and the dilaton
field varies linearly with ρ,

Φ = −Q2 ρ , (2.2)

in such a way that the ρ → +∞ region is weakly coupled. We shall discuss how to deal
with the strongly coupled region at negative ρ momentarily. The corresponding geometric
background is

ds2 = ds2(R1,d−1) + dρ2 + dθ2 , θ ∼ θ + 4π
Q
, (2.3)

where the periodicity of θ is dictated by the choice of conventions made in what follows. To
cancel the Weyl anomaly, we must tune the parameter Q of the linear dilaton in such a way
that the total central charge of the system is zero. Given that

cmatter =
3d
2 , cghosts = −15 , csLiouville = 3(1 +Q2) , (2.4)

we find that this is a consistent background for string propagation, that is

ctot = cmatter + cghosts + csLiouville = 0 , (2.5)
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d 2 4 6 8
Q

√
3

√
2 1 0

k 2/3 1 2 ∞

Table 3. Values of the parameters Q and k for the noncritical superstring theories of interest. The
value d = 8 corresponds to the critical case.

when [2]

Q =
√

8− d

2 . (2.6)

Critical superstring theory corresponds, in this language, to the case d = 8, where Q = 0
and (ρ, θ) become two additional flat direction. The other cases that are interesting for us
are those that preserve N = 2 worldsheet supersymmetry, which only happens for even d,
leaving us with the three interesting cases d = 2, 4, 6, the latter being the focus of this paper.

A problem of the description above is that, as already pointed out, it develops a strong
coupling singularity as ρ→ −∞. This can be cured by replacing the linear dilaton theory
with the so-called “cigar CFT” [63, 64], i.e. the Kazama-Susuki coset SL(2,R)k/U(1) [30],
which is dual (via mirror symmetry) to N = 2 Liouville theory [8, 28, 31]. The level k of
the coset9 is related to the parameter Q of the linear dilaton model by

c
[

SL(2,R)k)
U(1)

]
= 3

(
1 + 2

k

)
= 3(1 +Q2) = csLiouville , ⇐⇒ k = 2

Q2 . (2.7)

The values of Q and k that are relevant for the interesting supersymmetric models are
summarized in table 3. The corresponding d+ 2-dimensional target space geometry is

ds2 = ds2(R1,d−1) + dρ2 + tanh2 Qρ
2 dθ2 , θ ∼ θ + 4π

Q
,

Φ = − log cosh Qρ
2 .

(2.8)

The geometry is that of a cigar that caps off smoothly at ρ = 0 (where curvature and string
coupling are finite), which fixes the periodicity of θ. On the other hand, as ρ → +∞ the
geometry is well approximated by a cylinder and the background reduces to the linear-dilaton
one, introduced in (2.3).

Embedding in critical string theory and dualities. While the models introduced above
represent consistent backgrounds for the propagation of noncritical strings, they are inherently
d+ 2-dimensional, so they are not immediately embedded into critical string theory (except
for the trivial case d = 8). However, for the purposes of this paper it will be particularly
useful to have such explicit embedding, and we now review how this can be achieved. The
key idea can be described as follows, following [5, 6, 65]. For a fixed value of d, imagine to
keep k (or Q) generic, and tensor the linear dilaton or cigar model with a new CFT M,

9Here k is the “supersymmetric level”, meaning that we consider the N=2 supersymmetric cigar CFT.
This corresponds to the bosonic SL(2,R)k+2 WZW model plus three fermions, where a supersymmetric U(1)
current is gauged.
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which admits a parameter that we can use to set the total central charge to zero. The new
worldsheet CFT is then of the form

R1,d−1 × SL(2)k
U(1) ×M . (2.9)

Requiring that the background (2.9) is ten-dimensional we find

dim(M) = 2(n− 1) = 8− d , 2n ≡ 10− d . (2.10)

We are assuming that M admits a semi-classical (geometrical) limit and by dim(M) we
mean the dimension of its target space geometry. The condition that the total central
charge vanishes in (2.9),

ctot = cmatter + cghosts + c
[
SL(2,R)k)
U(1)

]
+ cM = 0 , (2.11)

fixes the central charge cM,

cM = 3
2(8− d)− 3Q2 = 3

2(8− d)− 6
k
. (2.12)

When k approaches one of the values listed in table 3 the central charge of M vanishes, and
the worldsheet theory is described by (2.8). This is often interpreted as “losing” the 8− d

spacetime dimensions described in (2.10): hence the name “noncritical”, intended as a string
theory defined in d+ 2 < 10 dimensions. Despite the name, this is still a “critical” theory in
the sense that the total central charge (including the ghosts) vanishes, as described by (2.11).
On the other hand, when considering the ten-dimensional string theory (2.9), k is a tunable
parameter and we can consider the limit k → ∞. In this limit, the CFT M is weakly coupled
and indeed its central charge (2.12) in this regime is the appropriate one for a non-linear
sigma model with a target space of dimension as in (2.10).

The proposal of [5] is to take M to be a N = 2 Landau-Ginzburg (LG) SCFT with
n+ 1 chiral superfields za, a = 1, . . . , n+ 1, with superpotential W = F (za), where F is a
quasi-homogenous polynomial with weight one under

za → λwa za , (2.13)

that is

F (λwa za) = λF (za) , λ ∈ C . (2.14)

The central charge of this theory is

cM = 3(n− 1− 2w̄) , w̄ ≡ −1 +
n+1∑
a=1

wa , (2.15)

so eq. (2.12) fixes

Q2 = 2w̄ . (2.16)
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String dualities provide useful alternative descriptions of this setup [5], which can be reached
after performing certain T-dualities. Let us then refer to the one described so far as the
duality frame Fcig and explore the other two frames that will be relevant for this paper.
A convenient way to present the other frames is to start with critical string theory at a
Calabi-Yau (CY) singularity

R1,d−1 × CYn , (2.17)

where CYn is a non-compact singular CY n-fold, described as the hypersurface singularity
F (z1, . . . , zn+1) = 0 in Cn+1. Sending the string coupling gs → 0 with fixed string length `s
then leads to a theory without gravity describing the interaction between the modes localized
near the singularity of CYn (located at za = 0) [5]. We refer to this frame as the CY frame
FCY. The proposal of [5] is that this should be dual to the string background

R1,d−1 × Rρ ×N , (2.18)

where N = CYn/R+, the action of R+ being given by (2.13) with λ ∈ R+. Here ρ is a
linear dilaton direction, which makes it closer to the setup we started with. We refer to
this frame as FNS5, since as we shall discuss in the case of interest it can be realized with
a certain configuration of NS5 branes.

The final duality, which brings us back to the frame Fcig we started with, is realized by
observing that choosing λ ∈ R+ in the quotient above still leaves a leftover U(1) symmetry
given by (2.13) with |λ| = 1. The analysis of [5] focuses on cases where

N ' U(1)× N
U(1) , (2.19)

where the product above needs not be a direct product, and the U(1) used in this decomposition
is the leftover U(1) action just discussed. We then arrive to the background

R1,d−1 × Rρ × U(1)× N
U(1) , (2.20)

which corresponds to the large ρ (i.e. linear dilaton) limit of (2.9) if we identify

M = N
U(1) , (2.21)

that is the quotient N/U(1) in the N = 2 LG model with superpotential W = F (za). In the
following, a major role will be played by the two frames Fcig, which is our original definition
of noncritical string theory, as well as the dual frame FNS5, which will be instrumental to
relate our supergravity description of the low-energy fluctuations of the noncritical string to
the critical setup discussed above. A visual representation of the three frames can be found
in figure 1, which focuses on the case d = 6 described in the next subsection.

2.2 The d = 6 noncritical superstring theory

So far, our discussion has been pretty general. From now on, we specialize to the case of
d = 6 (or n = 2). In this case, the central charge cM reads

cM = 3(1− 2w̄) < 3 , (2.22)
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Figure 1. T-duality frames in the case d = 6. In the frame FCY we have type II string theory on
a Taub-NUT space with k monopoles. T-duality along the circle parametrized by ψ in the picture
gives a set of parallel NS5 branes localized at points in a circle in R4 [4] in the frame FNS5. A further
T-duality along the direction of such circle, parametrized by ξ in the picture, gives the worldsheet
CFT (2.25) in the frame Fcig [52].

as from (2.16) we find that w̄ > 0. All unitary 2d N = 2 SCFTs with c < 3 are classified and
they correspond to N = 2 minimal models [66], so the only possibility is [67]10

M = SU(2)k
U(1) , (2.23)

where SU(2)k denotes the N = 1 supersymmetric WZW model at level k with central charge
c[SU(2)k] = 9

2 − 6
k . Gauging a supersymmetric U(1) gives rise to the N = 2 supersymmetric

CFT (2.23), which is often referred to as the parafermion disk CFT and has central charge

c

[
SU(2)k
U(1)

]
= 3

(
1− 2

k

)
, (2.24)

in agreement with (2.12) for d = 6. We then obtain the worldsheet CFT

R1,5 ×
(SL(2,R)k

U(1) × SU(2)k
U(1)

)/
Zk , (2.25)

which is a N = 2 SCFT and as described above for general d, the dependence of (2.24)
on k cancels with that of the cigar CFT given in (2.7), so that the model (2.25) has zero
central charge for any value of k.11 Notice the Zk orbifold in (2.25). This is necessary for
the U(1) R-charge of the N = 2 on the worldsheet to be integer quantized, and hence to
be used to impose the GSO projection, leading to an N = 2 supersymmetric spectrum in
spacetime. At various places in the manuscript we will consider the worldsheet CFT (2.25)
at level k = 2. At this value of the level, the supercoset (2.23) has vanishing central charge,
see eq. (2.24), and the worldsheet CFT (2.25) reduces to

R1,5 × SL(2,R)2
U(1)

/
Z2 . (2.26)

10Note that N = 2 minimal models are in one-to-one correspondence with ADE singularities: the CY
twofold CY2 is then an ALE space with the corresponding ADE singularity, which is the description in the
frame FCY [68, 69].

11More precisely, one should say that the CFT (2.25) has cental charge 15, which is therefore exactly
canceled by the usual ghost system of 10d superstring theory.
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Notice that the string background R1,5 × SL(2,R)2
U(1) , where no orbifold is present, is also a

consistent string background, see e.g. [41]. However, as we shall see below, the presence of
the Z2 orbifold is important for us: it allows in the spectrum cigar primaries which would
otherwise not be present [70, 71], resulting in an N = 2 theory in spacetime.

Although, as previously discussed, the cigar resolves the strong coupling singularity of
the linear dilaton CFT, we will still frequently find it useful to work in the large-ρ region
of the cigar geometry, where the linear dilaton provides a good approximation. In this
limit, the CFT (2.25) becomes

R1,5 × Rρ ×
(
U(1)θ ×

SU(2)k
U(1)

)/
Zk , (2.27)

where the U(1) is a circle (parametrized by a coordinate θ) of radius 2/Q, as in (2.3). We
note that at k = 2, we have Q = 1: this is the free fermion radius and the U(1) symmetry
is enhanced to SU(2).12 This not only implies the existence of an extra symmetry, but also
extra vertex operators which can be used to build states as we shall soon see.13 Moreover,
using the relation [72, 73]14

SU(2)k '
(
U(1)θ ×

SU(2)k
U(1)

)/
Zk , (2.28)

we obtain the description of (2.27) in the frame FNS5, which is just the Callan-Harvey-
Strominger (CHS) background [57]

R1,5 × Rρ × SU(2)k , (2.29)

arising in the near-horizon limit of a stack of k NS5 branes. In terms of the description (2.18),
this identifies N = SU(2)k in the case d = 6, where (2.28) (respectively (2.29)) is just a
more precise version of (2.19) (respectively (2.20)).

This gives a complete picture of the three T-duality frames for d = 6, in the linear dilaton
limit. In FCY we have type II string theory on an ALE space, say R4/Zk, which is T-dual to
the CHS background (2.29) describing the near-horizon region of a stack of k localized NS5
branes, which is why we refer to this frame as FNS5 [4].15 Finally, the T-duality (2.28) relates
this to the linear-dilaton geometry (2.27) in the frame Fcig, where the parameter k is related
to the background charge Q of the linear dilaton CFT by Q =

√
2
k as in (2.7). As we have

seen, it is convenient to think of the linear dilaton as a limit of the cigar CFT (2.25), which
has the advantage that the curvature and string coupling are always finite and asymptotes
the linear dilaton in a suitable limit (ρ → +∞). It is then interesting to wonder what

12Note that this is not enough, on its own, to guarantee the existence of an SU(2) symmetry in spacetime.
In this case, all the vertex operators that generate the SU(2) are BRST invariant, which is what turns such
worldsheet SU(2) into a spacetime symmetry.

13See appendix E of [71] for more details on the relation between this and the symmetries of the supergravity
and of the dual field theory (once D-branes are added).

14See e.g. [70] for the precise relation between vertex operators in the two models, including a detailed
discussion of supersymmetry and the various orbifolds.

15See [74–76] for a description of the role played by worldsheet instantons in the T-duality between the CY
frame and that with localized NS5 branes.
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this corresponds to in the other T-duality frames. In the frame FNS5, the string coupling
singularity of the linear dilaton can be seen as a result of the fact that the NS5 branes are
coincident. A way to solve this problem is to separate the branes by a suitable distance R
and then take a suitable scaling limit where the distance between the NS5 branes is again
taken to zero, but so is the string coupling gs, in such a way that the ratio geff = gs/R is kept
constant, thus defining an effective string coupling geff [6]. The string length `s is kept fix in
the procedure. As first observed in [51, 52] — see also [77, 78] for interesting comments —
if the NS5 branes are separated by spreading them symmetrically on a circle of radius R,
then this is precisely dual to the cigar background (2.25). We will be more precise about this
relation in section 5.1, where we will also comment on other ways to separate the NS5 branes.
Finally, in the frame FCY replacing the linear dilaton with the cigar amounts to a blow-up
of the ADE singularity, which is replaced by a Taub-NUT geometry — see figure 1 for a
pictorial representation of the relation between the three frames. An interesting question is
where the singularities of the geometry are localized in the different frames: clearly there
are magnetic monopoles in FCY, localized at the fixed points of the circle action generated
by ∂

∂ψ in figure 1. After T-duality, in FNS5 such singularities are replaced by localized NS5
branes, near which the geometry becomes singular. The situation is more subtle in Fcig,
where at a generic point in the disk the cigar geometry is completely regular. However, the
target space of the parafermion disk CFT is not a regular geometry but rather a T-fold:
it is only regular when transition functions between charts are combined with T-duality
transformations [79] — see [80] for a modern perspective.

The worldsheet CFT. The main goal of this section is to investigate the low-lying spectrum
of the string theory (2.25), which we will do for arbitrary value of the level k. We begin
by presenting more details of the worldsheet theory. Since we are ultimately interested
only in the quantum numbers of the states that we analyze, we will simplify the details
of the presentation by considering the limit ρ → +∞ of the cigar geometry, where the
CFT (2.25) reduces to (2.27), which is in turn equivalent to the CHS background (2.29).
While the spectrum of the cigar CFT contains both states localized at the tip of the cigar
and a continuum of delta-function normalizable scattering states, this is possible because
we are only interested in the latter, which are in one-to-one correspondence with the vertex
operators of the CHS background.

Let us spell out the conventions we are going to use in the following for the CFT (2.29).
We work at α′ = 2 and denote the six Minkowski free bosons and fermions by ∂Xα and ψα
respectively, where α ∈ {0, 1, . . . 5}. They obey the OPEs

∂Xα(z) ∂Xβ(0) ∼ −ηαβ
z2 , (2.30)

and
ψα(z)ψβ(0) ∼

ηαβ
z
. (2.31)

For the linear dilaton ∂ρ and its superpartner ψρ we have

∂ρ(z)∂ρ(0) = − 1
z2 , ψρ(z)ψρ(0) ∼ 1

z
, (2.32)
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while the three free fermions ψ±, ψ
ϑ of the supersymmetric SU(2)k WZW model in (2.29)

(in the adjoint of SU(2)) obey

ψϑ(z)ψϑ(0) ∼ 1
z
, ψ+(z)ψ−(0) ∼

1
z
. (2.33)

In the following it will prove useful to bosonize the worldsheet fermions as16

1√
2(±ψ0 + ψ1) = e±φ0 , 1√

2(ψ2 ± iψ3) = e±iφ1 , (2.34)
1√
2(ψ4 ± iψ5) = e±iφ2 , 1√

2(ψ
ρ ± iψϑ) = e±iH , (2.35)

ψ± = e±iϑ . (2.36)

The holomorphic N = 1 superalgebra on the worldsheet is realized as

T = Tm + T βγ + T bc , G = Gm +Gβγ +Gbc , (2.37)

where Gbc and Gβγ are the usual ghost and superghost supercurrents. The matter stress
tensor and supercurrent entering eq. (2.37) are given by

Tm = Tflat + Tρ + Tsu ,

Gm = Gflat +Gρ +Gsu ,
(2.38)

with
Tflat = −1

2 (∂Xα∂X
α + ψα∂ψα) , Gflat = i ∂Xαψα ,

Tρ = −1
2
(
(∂ρ)2 +Q∂2ρ+ ψρ∂ψρ

)
, Gρ = i ∂ρψρ + iQ∂ψρ ,

(2.39)

and
Tsu = −1

2
(
(∂ϑ)2 + ψϑ∂ψϑ

)
+ Q2

4 (K+K− +K−K+ + 2K3K3) ,

Gsu = iQ∂ϑψϑ +Q

(
K+ψ− +K−ψ+

√
2

+K3ψϑ
)
.

(2.40)

In eqs. (2.38) and (2.39), Ka with a = +,−, 3 denote the bosonic SU(2) currents at level
k − 2. We bosonize the β and γ superghosts as usual,

γ = eϕ η , β = ∂ξ e−ϕ , (2.41)

with

η(z) ξ(0) ∼ 1
z
, ∂ϕ(z)∂ϕ(0) ∼ − 1

z2 . (2.42)

Let us also introduce the picture charge operator

P =
∮ dz

2πi (−∂ϕ+ ξη) . (2.43)
16Note that we are using ϑ to denote the bosonization of the two fermions ψ± of the SU(2)k WZW model.

This is related to, but not the same as, the coordinate θ appearing in (2.27), parametrizing the circular
direction of the cigar, and entering the bosonization of the bosonic sl(2,R)k+2 Cartan j3 = i ∂θ. In particular,
for k = 2 the worldsheet CFT reduces to (2.26) and θ and ϑ can be identified. From the perspective of
eq. (2.26), the SU(2)2 fermions ψ± arise from the fermionization of the compact coordinate θ of the cigar,
i ∂θ = ψ+ψ−. Similar comments apply to ψϑ vs ψθ (superpartner of ∂θ in the cigar theory).
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Spacetime supercharges. Let us construct spacetime supercharges following [2, 3]. We
consider the R sector states

S~ε (z) = e−
ϕ
2 e

1
2 (iεϑϑ+iεHH)Vε̂ , (2.44)

where
~ε = (εϑ, εH , ε̂) ∈ (2Z+ 1)⊗5 , ε̂ = (ε0, ε1, ε2) ∈ (2Z+ 1)⊗3 , (2.45)

play the role of spinor indices in 10d (~ε ) and 6d (ε̂), respectively, and

Vε̂ = e
1
2 (ε0φ0+iε1φ1+iε2φ2) , (2.46)

is a vertex operator which can be thought of as a 6d spinor from the spacetime perspective.
Spacetime supercharges should be physical and map physical states to physical states. We
should then require that

L0 S~ε (z) = S~ε(z) , Ln S~ε (z) = 0 , n > 0 , (2.47)

and
Gm
n S~ε(z) = 0 , n ≥ 0 . (2.48)

Eq. (2.47) implies

ε2H + ε2ϑ + ε20 + ε21 + ε22 = 5 , (2.49)

hence
|εH | = |εϑ| = |ε0| = |ε1| = |ε2| = 1 . (2.50)

When (2.50) is obeyed, worldsheet fermions have the following OPEs with S~ε,

ψα(z)S~ε (0) ∼
e−

ϕ
2 e i

2 (εϑϑ+εHH) [V (0) · γα]ε̂√
2 z 1

2
, (2.51a)

ψρ(z)S~ε (0) ∼ ε0ε1ε2
e−

ϕ
2 e i

2 (εϑϑ−εHH) Vε̂(0)√
2 z 1

2
, (2.51b)

ψϑ(z)S~ε (0) ∼ i ε0ε1ε2εH
e−

ϕ
2 e i

2 (εϑϑ−εHH) Vε̂(0)√
2 z 1

2
, (2.51c)

where the factors of ε0, ε1, ε2, εH in (2.51) are guarantee that worldsheet fermions anti-
commute. In (2.51a), γα are 6d gamma matrices which appear with one of their spinor
indices contracted with the vertex operator V .

In type II flat space string theory, eq. (2.48) would not imply any further constraint. On
the other hand, we will see momentarily that the presence of iQψϑ∂ϑ + iQ∂ψρ in (2.38)
leads to a different result for us. In fact, from (2.51) it follows

(ψϑ∂ϑ+ ∂ψρ)(z)S~ε(0) ∼
ε0ε1ε2(εHεϑ − 1)

2
√
2z 3

2
e−

ϕ
2 e

i
2 (εϑϑ−εHH)Vε̂ , (2.52)

which in turn implies

εH = εϑ . (2.53)
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Left-moving supercharges Right-moving supercharges
Type IIA S+(z) S̃−(z̄)
Type IIB S+(z) S̃+(z̄)

Table 4. For each choice of GSO projection, we list left-moving and right-moving mutually local
spacetime supercharges.

A further constraint on the supercharges comes from the GSO projection, imposing
mutual locality. Since the OPE of two states of the form (2.44) reads

S~ε (z)S~τ (0) = O(z
1
4 (−1+~ε·~τ)) , (2.54)

a necessary condition for mutual locality is

−1 + ~ε · ~τ = 0 mod 4 . (2.55)

It is easy to check that, when eqs. (2.50) and (2.53) and their analogues for ~τ are obeyed,

−1 + ~ε · ~τ = 1− ε0ε1ε2 τ0τ1τ2 mod 4 . (2.56)

Constructing holomorphic spacetime supercharges as

S+ = e−
ϕ
2 e

iεϑ
2 (ϑ+H)e

1
2 (ε0φ0+iε1φ1+iε2φ2) , with ε0ε1ε2 = 1 ,

S− = e−
ϕ
2 e

iεϑ
2 (ϑ+H)e

1
2 (ε0φ0+iε1φ1+iε2φ2) , with ε0ε1ε2 = −1 ,

(2.57)

where the + or − sign denotes the chirality, eq. (2.56) shows that only supercharges of the
same chirality are mutually local.

To sum up, we started in the holomorphic sector with 25 candidate supercharges. These
were halved by the physical state condition and further halved by the GSO projection. Simi-
larly, for the anti-holomorphic sector. In total, we obtain 8 supercharges in the holomorphic
sector and 8 supercharges in the anti-holomorphic sector, for a total of 16 supercharges, as
expected. In analogy with flat space, we will refer to the noncritical string theory as type IIA
when different chiralities are chosen in the holomorphic and anti-holomorphic sectors and as
type IIB when instead the same chirality is chosen in both sectors, see table 4.

We are now going to build physical states in the lowest level. We will impose GSO
projection by requiring mutual locality with the supercharges.

2.3 Spectrum

We finally turn to the main point of this section: the analysis of the low-lying spectrum of the
noncritical string. As anticipated, we focus on delta-function normalizable states of the cigar
for generic k and perform our analysis in the CHS background (2.29), which is an asymptotic
limit of the cigar geometry (up to T-duality). We are only interested in the states at the
lowest mass-level, which we will then identify with the fields of a certain gauged supergravity
in section 4. A similar analysis for the spectrum has been performed in various references on
noncritical string theory [9, 71, 81, 82], compared to which we add two novel elements:
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• Rather than just studying the massless spectrum of the noncritical string theory (2.26),
which is defined for k = 2, we perform an analysis valid more in general for the
CFT (2.25), at a generic value of the level k, adopting the asymptotic description (2.29).
For general k, vertex operators of the supersymmetric SU(2)k WZW model are obtained
combining the three free fermions (ψ±, ψ

ϑ) with vertex operators of spin j associated
with the bosonic SU(2)k−2. In order to minimize the value of the mass, one is forced
to only consider the identity operator for SU(2)k−2 (j = 0), so that the states we
are interested in are built using only vertex operators of the linear dilaton CFT plus
three free fermions. This makes the study of the low-lying spectrum for general k
just a simple generalization of that for k = 2 (in which case SU(2)k reduces to the
supersymmetric U(1)θ in (2.28)). From this perspective, our analysis can be seen as an
in-depth investigation of the simplest subsector of the spectrum of double-scaled little
string theory [6] (see also, e.g., [7, 70, 83, 84]).

• The worldsheet theory (2.29) only manifests 6d Poincaré invariance, since translations
in the ρ direction are broken by the presence of the linear dilaton. Nonetheless, our
goal is to interpret this spectrum as associated with a 7d supergravity theory admitting
the linear dilaton background as a specific solution, in the spirit of [32, 33]. With
this in mind, we will adopt a 7d perspective, thinking of our results as coming from
the spontaneous breaking of 7d Poincaré invariance to 6d, due to the choice of a
specific vacuum (the linear dilaton). In fact, as we shall see, something similar holds
for supersymmetry, which is also spontaneously broken by the choice of vacuum from
thirty-two supercharges to the sixteen discussed in the previous subsection. Note that
adopting this 7d perspective will be particularly important in the RR sector, since the
type IIA and IIB theories are only distinguishable in 7d but become identical in 6d,
much like critical type IIA and IIB superstring theory compactified on a circle.

Keeping in mind a 7d perspective is crucial in order to make contact with a 7d supergravity
description, which we do in section 4. Moreover, we will find that such a two-derivative
theory is only trustworthy in the limit of large k, hence the importance of performing the
analysis for general k.

At various points in our analysis it will appear natural to refer to certain states as
“massless” or “massive”, because of certain constraint imposed by the GSO projection and
BRST invariance on the corresponding polarizations and momenta. As just discussed, however,
the string is quantized in a vacuum which does not enjoy the 7d Poincaré invariance we are
advocating for, and as a result the concept of mass is not well-defined. In analogy with the
massless states of the ten-dimensional critical superstring, we will refer to the subsector of the
lowest modes as massless. In fact, we are going to see that the holomorphic sector includes a
7d vector subject to an equivalence relation that we interpret as a gauge invariance condition
in the linear dilaton vacuum. Similarly, once holomorphic and anti-holomorphic sectors are
assembled, we find a graviton and a Kalb-Ramond two-form (as well as other vectors), whose
polarizations also contain BRST exact states naturally interpreted as “pure gauge”. As a
result, the natural candidate for a field-theoretical description of the interactions between
such states involves massless representations of the 7d Poincaré group. However, this is not
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the end of the story. Firstly, the supergravity theory that we are led to consider is a gauged
supergravity (see e.g. [85] for a review), and as well known the gauging introduces mass terms
in the Lagrangian (namely, quadratic terms in the fields). Secondly, typical vacua for gauged
supergravity are not flat and may contain vacuum expectation values for some of the scalars.
Both of these facts contribute to the value of the masses of the linearized fluctuations in a
certain vacuum. It is therefore possible for two fields — whose physical polarizations satisfy
the constraints that are typical of massless and massive fields respectively — to appear at
the same mass level. We anticipate here that this is exactly what happens in our case, where
the states in the NSNS sector are subject to the gauge invariance conditions described above
and are therefore more naturally interpreted as massless. On the other hand, in the RR
sector we shall find fields whose equations of motion naively appear massive, although such
states appear at the same mass level as the massless graviton in the NSNS sector. A familiar
case in which something analogous happens is the 10d supergravity multiplet in AdS5 × S5,
where the interactions by the fluctuations at the lowest level are described by 5d N = 8
supergravity with SO(6) gauging: the various fields in the 5d supergravity multiplet have
different masses in the AdS5 vacuum, despite the maximal supersymmetry and the common
origin from a single massless multiplet — see e.g. [86].

Before moving on to the details, we also wish to make a comment for the reader with
some experience in supergravity. We anticipate here that the 7d supergravities associated
with the type IIA/B version of (2.29) turn out to be those arising as a consistent truncation
of 10d type IIA/B supergravity on S3 (the target space geometry of SU(2)k). Consistent
truncations typically involve the identification of a subsector of states in the Kaluza-Klein
(KK) decomposition which are not constrained by setting to zero all other states in the
equations of motion. However, such states generally have different masses and some of the
KK modes which one might naively expect to contribute to the spectrum actually turn out
to be pure gauge degrees of freedom. With these comments in mind, we wish to emphasize
that from the worldsheet perspective we can identify a very precise criterion to select which
fields should be kept in the truncation, since they are at the same mass level and they are all
built from singlet vertex operators of the bosonic SU(2)k−2. Note that this does not imply
that they are SU(2) singlets, since they can sit in non-trivial SU(2) representations inherited
by the free fermions of the supersymmetric SU(2)k.

2.3.1 NS sector

We begin by considering the left-moving NS sector and we build physical states by combining
the usual flat space vertex operators (and ghosts) with those of the cigar (in the linear dilaton
approximation). We should choose one set of spacetime supercharges from those described
in (2.57) (either S+ or S−) and first of all require that the vertex operators are mutually
local with them, which amounts to the GSO projection. In the case of the NS sector, the
result is the same regardless of whether we choose to work with S+ or S− (as for the 10d
critical string). So far as the lowest-lying states are concerned, the first implication of this
requirement is that the simplest vertex operator that one can build, the tachyon e−ϕejρeiq·X ,
is excluded from the spectrum. The next-to-lightest states, which are actually compatible
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with the GSO projection, have the form

e−ϕψAejρeiq·X , (2.58)

where j = −Q
2 +is, s ∈ R and the indices A,B run over A,B ∈ {α, ρ,+,−, ϑ} and α = 0, . . . , 5

labels R1,5 flat coordinates. In the following, it will be useful to also introduce a 7d index

µ = (α, ρ) , (2.59)

and an SU(2) index

i = (+,−, ϑ) , (2.60)

for a total of ten candidate states. We must now require that physical states are annihilated
by Gm

1
2

and that they are not BRST exact. The states built using only ψi in (2.58) are three
scalars from the 7d perspective (an SU(2) triplet), and they satisfy both conditions. On
the other hand, those built using ψµ = (ψα, ψρ) identify a 7d vector, but not all of them
are physical. As in [71], this can be conveniently seen by saturating the target space index
with a polarization vector εµ, namely we consider the vertex operator

εµe−ϕψµejρeiq·X . (2.61)

The requirement that this is annihilated by Gm
1
2

imposes the condition

εαq
α − i(j +Q)ερ = 0 (2.62)

on the polarization of physical states, which we will interpret as a transversality condition
in section 5. Moreover, we note that the choice of polarization

εα = i qα ερ = j , (2.63)

leads to a BRST exact state, as it can be shown using

0 = Gm
− 1

2
ejρeiq·X = (i qαψα + jψρ)ejρeiq·X . (2.64)

Hence, out of the seven states generically described by (2.61), only five are physical: their
polarizations are subject to the transversality condition (2.62) and identified under the
equivalence relation

(εα, ερ) ∼ (εα, ερ) + (i qα, j) , (2.65)

which in section 5 we will recognize as the condition for gauge invariance on a 7d vector.
We conclude that among the ten states described by (2.58) only eight are physical: an

SU(2) triplet of 7d scalars and an SU(2) singlet which is a 7d “massless” vector. By massless
here we mean that it is a gauge field, as shown by the fact that its polarizations are identified
by the equivalence relation (2.65). The mass-shell condition for such states can be argued
from the requirement that L0 = 1, resulting in the constraint

q2 + s2 + Q2

4 = 0 , or q2 − j(j +Q) = 0 . (2.66)
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Equivalently, we can introduce a 7d “momentum”

pµ ≡ (qα, s) , pµ ≡ (qα, s) , (2.67)

which allows to rephrase the mass-shell condition (2.66) more compactly as

p2 + Q2

4 = 0 . (2.68)

Naively, this looks like the condition satisfied by the momentum of a massive field, but as
described above we should not read too much into this because of the broken translation
invariance in the linear dilaton direction. Rather, we consider the gauge invariance rela-
tion (2.65) to be a fundamental principle and insist in calling this the massless level. This
will be supported by the derivation of these states from a 7d gauged supergravity in section 4.

In the semiclassical limit Q→ 0 (or, k → ∞) the slope of the linear dilaton vanishes and
this is a honest 7d momentum since Poincaré invariance is restored along the ρ direction. In
this limit, we indeed obtain a massless momentum. Finally, let us write the physical states
using the notation ab, where a denotes the dimension of the corresponding representation
of the massless 7d little group SO(5), while b denotes the dimension of the corresponding
SU(2) representation. In the NS sector, we find

51 ⊕ 13 . (2.69)

2.3.2 R sector

In the R sector, we consider the candidate vertex operators for physical states

e−
ϕ
2 e

i
2 (εϑϑ+εHH)Vε̂ ejρeiq·X , (2.70)

where Vε̂ is defined in (2.46) and

εϑ, εH , ε0, ε1, ε2 = ±1 . (2.71)

The implications of the GSO projection in the R sector now do depend on which set of
supercharges is chosen among those in (2.57). Locality with S+ (respectively S−) requires
εϑεHε0ε1ε2 = 1 (respectively εϑεHε0ε1ε2 = −1). Let us begin by analyzing the states that are
compatible with S+, and only at the end comment on what would have changed if we had
chosen S− instead. We can organize the states (2.70) compatible with S+ as

Ψ+
ε̂ e

−ϕ
2 e

i
2 (ϑ+H)Vε̂ ejρeiq·X ,

Ξ+
ε̂ e

−ϕ
2 e−

i
2 (ϑ+H)Vε̂ ejρeiq·X ,

Ψ−
ε̂ e

−ϕ
2 e

i
2 (ϑ−H)Vε̂ ejρeiq·X ,

Ξ−
ε̂ e

−ϕ
2 e−

i
2 (ϑ−H)Vε̂ ejρeiq·X ,

(2.72)

where we are summing over the repeated index ε̂, which plays the role of a spinor index.
Here Ψ±

ε̂ and Ξ±
ε̂ are 6d symplectic Majorana-Weyl spinor polarizations of fixed chirality,

related by the symplectic Majorana condition

χ±,a = ΩabD(χ±,b)∗ , χ±,a =
(
Ψ±

Ξ±

)
, (2.73)
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in terms of the Sp(2) doublets χ±,a, where a, b = 1, 2, D is the intertwiner for complex
conjugation in 6d (D−1γα6dD = (γα6d)∗) and Ω is the two-index antisymmetric tensor. One
can think of the degrees of freedom as being carried by complex Ψ+ and complex Ψ−, with
Ξ+ and Ξ− fixed in terms of the latter by the symplectic Majorana condition (2.73). For
simplicity, in the following we will then neglect Ξ+ and Ξ− and work in terms of Ψ+ and
Ψ− only. We find 16 off-shell real degrees of freedom.

The mass-shell condition L0 = 1 implies again p2 + Q2

4 = 0 as in (2.68), i.e. the same
level as the states we discussed in the NS sector. We should also require that physical states
are annihilated by Gm

0 , so we consider the action of the latter on a generic combination of
the R-sector vertex operators (2.70). For the reasons that we just discussed, it is sufficient to
consider the Ψ± polarizations (and their complex conjugates), and we find

0=Gm
0

[
e−

ϕ
2
(
Ψ+
ε̂ e

i
2 (ϑ+H)+Ψ−

ε̂ e
i
2 (ϑ−H))Vε̂ ejρeiq·X

]

=e−
ϕ
2
[(
/qΨ+

ε̂ +i(j+Q)Ψ−
ε̂

)
e

i
2 (ϑ+H)+

(
/qΨ−

ε̂ −ijΨ+
ε̂

)
e

i
2 (ϑ−H)

]
Vε̂ ejρeiq·X ,

(2.74)

which in turn implies the two conditions

i /qΨ+ − (j +Q)Ψ− = 0 , i /qΨ− + jΨ+ = 0 . (2.75)

Notice that, as expected from (Gm
0 )2 = Lm

0 , the system (2.75) admits solutions only when
the mass-shell condition (2.68) is satisfied. Eq. (2.75) reduces the (holomorphic) degrees of
freedom from the initial 16 to 8, matching the number of degrees of freedom in the NS sector.

It is instructive to rewrite (2.75) in terms of the 7d momentum pµ introduced in (2.67).
To do so, we define a 7d Dirac spinor Ψ combining the two opposite chirality 6d Weyl
spinors Ψ± as

Ψ = Ψ+ +Ψ− . (2.76)

The 7d gamma matrices γµ7d are as usual obtained adding the chirality matrix γ7
6d to the

6d gamma matrices γα6d:

γµ7d = (γα6d, γ7
6d) , (2.77)

so that γ7
6dΨ± = ±Ψ±. The two equations in (2.75) can then be rewritten in a more

compact form as (
i qαγα6d + i s γ7

6d −
Q
2
)
Ψ = 0 , (2.78)

or equivalently

i /pΨ = Q

2 Ψ , where /p ≡ pµγ
µ
7d , (2.79)

in terms of 7d quantities only. Once again, the Dirac equation (and the corresponding
mass-shell condition) naively appear to be massive, but we remind the reader that these
states are at the same level of the NS vector, which we refer to as the massless level.
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Finally, we can go back to the question of what would change if we chose R-sector
states that are mutually local with the supercharges S− in (2.57), instead of S+ as we did
above. The answer is very simple: we would obtain a Dirac equation which looks very similar
to (2.79), but with the opposite sign for the mass term:

i /pΨ = −Q2 Ψ . (2.80)

We note a significant difference between the fermions in 10d critical string theory and here.
In the former case, a choice of chirality of the supercharges implies opposite chiralities for the
physical massless spinors of the theory. Here, on the other hand, any choice of supercharges
leads to spinors of both chiralities in 6d (Ψ±). What distinguishes the two cases (S+ vs
S−) is simply a sign in the mass term of the corresponding Dirac equations, a fact that can
be expressed in a simple way when writing the equations in 7d language, for a single Dirac
spinor Ψ = Ψ+ + Ψ− — see (2.79) vs (2.80). While this different sign for the mass term
does not affect the type of representation in the holomorphic and anti-holomorphic sector
independently, we will see the importance of this sign when considering the closed string
states and the difference between the type IIA and IIB GSO projections.

To summarize, we find eight physical states in the R-sector for either choice of supercharges
(S+ or S−), like in the NS sector. Using the notation introduced for that case, they can
be expressed as

42 , (2.81)

that is an SU(2) doublet of 7d Dirac spinors.17

2.3.3 Closed string spectrum

Since we are only interested in finding the SO(5)LG and SO(4) ' [SU(2)+ × SU(2)−]/Z2
representations of the massless closed string states, instead of considering the full vertex
operators as we have done so far we can limit ourselves to studying the result of taking the
tensor products between two copies of the polarizations for the massless states described above.
The two copies represent of course the left- and right-moving sector of the string. We will now
write the states as a(b+,b−), where a is again the dimension of the SO(5)LG representation, b+
(resp. b−) is the dimension of the SU(2)+ (resp. SU(2)−), where SU(2)+ and SU(2)− are two
copies of the SU(2) mentioned above, one for the left and one for the right sector.

NSNS sector. In the NSNS sector, we consider(
5(1,1)⊕1(3,1)

)
⊗
(
5(1,1)⊕1(1,3)

)
=14(1,1)⊕10(1,1)⊕1(1,1)⊕5(3,1)⊕5(1,3)⊕1(3,3) , (2.82)

consisting in the usual string triplet — the graviton, the Kalb-Ramond two-form and the
dilaton — all SO(4) singlets, as well as six 7d massless vectors in the adjoint representation
of SO(4) and nine 7d scalars, in the rank two symmetric traceless representation of SO(4).

17The SU(2) doublet structure is given by the ϑ dependence in (2.70).
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We note that a direct consequence of the transversality (2.62) and gauge invariance (2.65)
conditions in the left- and right-moving sectors is that the physical polarizations for the
graviton, two-form and vector described above are subject to analogous conditions, which
can be argued directly from taking tensor products. One can then verify that assembling the
corresponding closed string vertex operators using tensor products of polarizations subject
to those conditions, all the states that are obtained are indeed physical. The mass-shell
condition is of course still (2.68), and we have a total of 64 states.

RR sector. The situation in the RR sector is more interesting. Naively proceeding as
for the NSNS sector we find

4(2,1) ⊗ 4(1,2) = 10(2,2) ⊕ 5(2,2) ⊕ 1(2,2) , (2.83)

corresponding to a fundamental of SO(4) of massless two-forms, massless vectors and massless
scalars. From this perspective, there seems to be no difference between the type IIA and
IIB GSO projections. However, we can obtain more insight on the RR sector by considering
explicitly the tensor product between spinor polarizations from the left (Ψ) and right (Ψ̃)
moving sector. Using the 7d Fierz identity, we can write18

F ≡ Ψ⊗ (Ψ̃TC) = 1
8

[
F(0) + [F(1)]µγµ7d −

1
2! [F(2)]µνγµν7d − 1

3! [F(3)]µνσγµνσ7d

]
, (2.84)

where

[F(n)]µ1...µn = Ψ̃T C (γ7d)µ1...µn Ψ , (2.85)

C is the intertwiner for transposition

C−1γµ7dC = −(γµ7d)
T , (2.86)

and (γ7d)µ1...µn ≡ (γ7d)[µ1 . . . (γ7d)µn]. The F(n) are differential forms encoding the off-shell
degrees of freedom in the RR sector. To study on-shell physical states, one should impose
the Dirac equation of Ψ and Ψ̃, working out the consequences on the differential forms F(n),
as for the 10d critical string. Here is when we finally observe a difference between the type
IIA string, where one uses (2.79) for Ψ and (2.80) for Ψ̃, and the type IIB string, where
instead the same Dirac equation (2.79) is used for both Ψ and Ψ̃, according to our definition
in table 4. In other words, the R sector equations of motion read(

i /p− Q
2

)
Ψ = 0 ,

(
i /p+ s Q

2

)
Ψ̃ = 0 , (2.87)

where s = +1 and s = −1 respectively denote type IIA and type IIB. This results in the
following equations of motion for the bi-spinor F in (2.84)19(

i /p− Q
2

)
F = 0 = F

(
i /p− sQ2

)
, (2.88)

18We are neglecting the dependence on ϑ. Since we have a doublet of Ψ in the left sector and a doublet of
Ψ̃ in the right sector, one should imagine using (2.84) (and the equations derived from it) for each of the four
states forming a fundamental of SO(4).

19Note the sign change in the second equation compared to (2.87), which is a result of taking the transpose
and using (2.86).
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which we analyze in what follows for the two choices of sign of s.
In the type IIA case (s = +1), we find that the equations of motion for the spinor

polarizations in the two sectors impose

dF(1) =0 , ?d?F(2) =0 , dF(3) =0 ,

dF(0) =
Q

2 F(1) , ?d?F(1) =−Q2 F(0) , dF(2) =
Q

2 F(3) , ?d?F(3) =−Q2 F(2) ,
(2.89)

where we have moved to position space so as to be able to use a more compact differential
form notation, which follows from replacing i pµ → ∂µ. Combining the equations in (2.89),
we find that the sixteen on-shell degrees of freedom contained in (2.84) are organized, in the
IIA case, into a scalar F(0) and a two-form F(2), with equations of motion

?d ? dF(0) = −Q
2

4 F(0) , ?d ? dF(2) = −Q
2

4 F(2) , (2.90)

while F(1) and F(3) are related to the above via F(1) = 2
QdF(0) and F(3) = 2

QdF(2). As a
consequence of its equations of motion, the polarization for F(2) is transverse with respect
to the 7d momentum pµ:

?d ? F(2) = 0 . (2.91)

On the other hand, for type IIB (s = −1) we impose the same equations of motion
on both sides of (2.84) and obtain the system

dF(0) = F(0) = 0 , ?d ? F(1) = 0 , dF(2) = 0 , ?d ? F(3) = 0 ,

dF(1) = −Q2 F(2) , ?d ? F(2) = −Q2 F(1) , ?dF(3) = −Q2 F(3) .
(2.92)

Combining these equations, we find that now the degrees of freedom are arranged in a vector
F(1) and a self-dual three-form F(3), subject to the equations of motion

?d ? dF(1) =
Q2

4 F(1) , dF(3) =
Q

2 ? F(3) , (2.93)

while F(2) = − 2
QdF(1) and F(0) simply vanishes. As a consequence of their equations of

motion, both F(1) and F(3) have polarizations that are transverse with respect to pµ, or

?d ? F(1) = 0 , ?d ? F(3) = 0 . (2.94)

Of course, the same exact analysis can be repeated for each state in the SU(2)+ doublet
of spinors in the left sector, tensored with each state in the SU(2)− doublet of spinors in the
right sector, so we end up with a fundamental of SO(4) of the fields described above.

Once again, a comment about the concept of mass is in order. As apparent from (2.90)
and (2.93), with both GSO projections the fields in the RR sector are differential forms
of various degrees, whose polarizations F(p) are subject to constraints that are naturally
interpreted as equations of motion for massive fields, where one can read off a common value
for the mass of Q/2. Despite this fact, the states considered here satisfy the same mass-shell
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conditions as the graviton in the NSNS sector, which we have called massless due to the
presence of a local gauge symmetry. As we explained, these two facts are not contradictory:
rather, their coexistence will be explained in section 4, where we introduce two 7d gauged
supergravities (SO(4) and ISO(4)) and study their spectrum in the linear dilaton background.

To conclude, let us comment on the relation between this discussion and the states listed
in (2.83), which from a spacetime perspective are classified using the massless little group
SO(5). In the case of type IIA, (2.90) describe the degrees of freedom of a massive scalar
and a massive two-form, carrying one and fifteen degrees of freedom respectively. The former
is obviously not a problem, since a scalar always has one degree of freedom independently
of its mass, while the fifteen degrees of freedom of the massive two-form can be thought of
as arising from a description in terms of a massless vector and a massless two-form (the 5
and the 10 in (2.83), respectively), coupled à la Stückelberg, so that they can collectively
be thought of as a single massive two-form. On the other hand, in the type IIB case (2.93)
describe the polarizations of a massive vector and a massive self-dual three-form,20 carrying
six and ten degrees of freedom respectively. The six from the massive vector can again be
thought of in terms of a Higgs mechanism, this time between the 1 and the 5 in (2.83), while
the degrees of freedom of a self-dual massive three form are the same as those of a massless
two form (the 10 in (2.83)) in seven dimensions. We note that this interpretation in terms of
massless fields with Stückelberg couplings, which might appear arbitrary from the worldsheet
perspective, is exactly what arises from the supergravity description of section 4.

Finally, we note that insisting on a 7d interpretation of the RR states proved instrumental
in distinguishing the type IIA and IIB GSO projections, at least at this mass level. Indeed,
one could in principle only focus on 6d Poincaré invariance and consider the 6d Fierz identity
in (2.84). The result would give a set of differential forms (Fa,b,`,m in (A.3)) with coupled
equations of motion which is both hard to disentangle and very similar in the IIA and IIB
case.21 On the other hand, grouping the various states in 7d polarizations gives much cleaner
results and reveals the difference in field content between the two GSO projections, which in
the language of 7d supergravity corresponds to two different choices of gauging.

NSR and RNS sectors. The fermionic states are contained in the RNS and NSR sectors,
where the relevant tensor products of polarizations are

4(2,1) ⊗
(
5(1,1) ⊕ 1(1,3)

)
⊕
(
5(1,1) ⊕ 1(3,1)

)
⊗ 4(1,2) = 16(2,1)⊕(1,2) ⊕ 4(2,1)⊕(2,1) ⊕ 4(3,2)⊕(2,3) ,

(2.95)

corresponding to four gravitini and sixteen matter fermions. The physical state conditions
for the matter fermions are the same as those worked out for the R sector, which can be

20Self-duality in odd dimensions for massive forms is common in gauged supergravity, as first described
in [87] — see also [88] for a notable instance of this. In d = 2k + 1 this corresponds to a k-form S satisfying
first order equations of motion dS ∼ m ?S, which implies the massive k-form equations ?d ? dS ∼ m2S. Since
the latter are first-order, they only give rise to half of the usual

(2k
k

)
degrees of freedom of a massive k-form in

d = 2k + 1 dimensions.
21Indeed, the circle reduction of the corresponding 7d supergravities leads to two indistinguishable 6d

theories, like in the case of 10d type IIA/B supergravity on a circle. This statement is related to T-duality and
in fact an analogous symmetry was observed between the SO(4) and ISO(4) supergravities that are relevant
here, see [89].
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field sector SU(2)+ × SU(2)−
graviton NSNS (1, 1)
2-form NSNS (1, 1)
vectors NSNS (1, 3)⊕ (3, 1)
scalars NSNS (1, 1)⊕ (3, 3)
0-forms RR (2, 2)
1-forms RR (2, 2)
2-forms RR (2, 2)
spinors NSR, RNS (2, 3)⊕ (3, 2)⊕ (1, 2)⊕ (2, 1)

gravitini NSR, RNS (1, 2)⊕ (2, 1)

Table 5. Lowest excited states of the worldsheet model (2.25), classified according to the massless
7d little group. Note that the two GSO projections lead to two indistinguishable sets of states
from this (massless) perspective, so the results summarized here hold for both the IIA and the IIB
noncritical superstring.

summarized by the 7d Dirac equation (2.79) (or (2.80), according to the set of supercharges
that one chooses), while those for the gravitini can be obtained by combining those for the
vector in the NS sector — (2.62) and (2.65) — with the Dirac equation and projecting out
the spin-1/2 degrees of freedom as usual. We have a total of 128 degrees of freedom, equal to
the sum of 64 NSNS and 64 RR physical states. Note that the counting in (2.95) uses the
massless 7d little group, but much like in the RR sector these degrees of freedom combine to
give rise to massive-looking equations of motion. One should then consider the four matter
fermions in the (2, 1)⊕ (1, 2) as contributing to the degrees of freedom of massive (2, 1)⊕ (1, 2)
gravitini, by means of a super Higgs mechanism. As a result, one has (2, 1)⊕ (1, 2) massive
gravitini and (3, 2) ⊕ (2, 3) massive fermions. Once again, while here this might appear
highly conjectural and the meaning of mass might look misleading, a precise justification
of these statements will be given in section 4.

Comments on supersymmetry. Our results for the closed string spectrum are summarized
in tables 6 and 7, respectively. We would now like to organize the states at the lowest level
in supersymmetry multiplets. As we discussed, the issue of the mass of the states is subtle
due to the spontaneously broken Poincaré invariance. However, for the purpose of analyzing
the supermultiplets, we can think of the states in terms of representations of the 7d little
group, as we did in eqs. (2.82), (2.83) and (2.95). Let us then classify here the states in
terms of massless 7d supersymmetry multiplets and postpone the discussion of how certain
masses are acquired to section 5. The results, which from this massless perspective are
common for the IIA and IIB GSO projections are summarized in table 5. As discussed
earlier in this section, the worldsheet CFT (2.25) contains eight spacetime supercharges in
each sector (holomorphic and anti-holomorphic), for a total of sixteen for the closed string.
Insisting on our 7d interpretation, it would then seem appropriate to consider multiplets of
7d half-maximal supersymmetry. It is indeed possible to classify the states above in this
way, with the result that one has 1 graviton + 2 gravitino + 3 vector massless multiplets
of 7d half-maximal supersymmetry. However, as observed in [71], this is not the end of the
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Type IIA
field sector SU(2)+ × SU(2)− |mass|

graviton NSNS (1, 1) 0
2-form NSNS (1, 1) 0
vectors NSNS (1, 3)⊕ (3, 1) 0
scalars NSNS (1, 1)⊕ (3, 3) 0
0-forms RR (2, 2) Q/2
2-forms RR (2, 2) Q/2
spinors NSR, RNS (2, 3)⊕ (3, 2) Q/2

gravitini NSR, RNS (1, 2)⊕ (2, 1) Q/2

Table 6. Lowest excited states of the worldsheet model (2.25) with the type IIA GSO projection,
from a 7d perspective. We describe irreducible representations of SO(4) ' [SU(2)+ × SU(2)−]/Z2
using their dimension. Recall that all fields are at the same mass level, but we are reporting the value
of the mass term appearing in the equations of motion for RNS, NSR and RR fields.

story as these states can actually be thought of in terms of 7d maximal supersymmetry. As
first conjectured in [71] we will then proceed to interpret this spectrum as arising from a 7d
maximal supergravity, which admits the linear dilaton background as one of its solutions.
The full theory is then fully diffeomorphism invariant in 7d and preserves 32 supercharges,
and only the choice of vacuum spontaneously breaks 7d Poincaré invariance to 6d as well as
16 of the 32 supercharges. In the standard formulation of string theory one has to choose a
vacuum, and in this case this choice breaks some symmetries which we conjecture to actually
exist in the supergravity theory. We will see in section 5 that the gauged supergravity that
we associate with the d = 6 noncritical superstring theories indeed do not admit maximally
supersymmetric vacua, but only at most 1/2-BPS domain wall solutions, the simplest of
which corresponds to the linear dilaton background (2.29). As we discussed at the beginning
of this section, a combination of this choice of vacuum and the gauging in the 7d supergravity
is responsible for the fact that, while all fields appear at the same mass level, the RNS, NSR
and RR fields satisfy “massive-looking” field equations. Precisely which fields appear to be
massive and the value of the mass term is crucial in the identification of the correct gauging
for the corresponding 7d supergravities and moreover distinguishes the IIA and IIB GSO
projections. For this reason, we find it useful to describe again the states from this perspective
in table 6 and 7, this time emphasizing which fields have polarizations satisfying the physical
state conditions typical of massive fields. When comparing the results summarized here
to the discussion of section 4, one should think of the states listed in table 5 as the naive
spectrum of maximal 7d ungauged supergravity. A gauging of such theory is a deformation
which has the effect, among others, to introduce mass terms for some of the fields. Our
results show that the SO(4) and ISO(4) gaugings introduce precisely the mass terms listed
in table 6 and 7 for type IIA and IIB, respectively — see section 4.3.

3 Boundary states for noncritical strings

In this section, we consider the boundary states of the d = 6 noncritical superstring the-
ory (2.26). In particular, we study BPS D3 branes localized at the tip of the cigar and
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Type IIB
field sector SU(2)+ × SU(2)− |mass|

graviton NSNS (1, 1) 0
2-form NSNS (1, 1) 0
vectors NSNS (1, 3)⊕ (3, 1) 0
scalars NSNS (1, 1)⊕ (3, 3) 0
1-forms RR (2, 2) Q/2

s.d. 3-forms RR (2, 2) Q/2
spinors NSR, RNS (2, 3)⊕ (3, 2) Q/2

gravitini NSR, RNS (1, 2)⊕ (2, 1) Q/2

Table 7. Lowest excited states of the worldsheet model (2.25) with the type IIB GSO projection,
from a 7d perspective. We describe irreducible representations of SO(4) ' [SU(2)+ × SU(2)−]/Z2
using their dimension. Recall that all fields are at the same mass level, but we are reporting the value
of the mass term appearing in the equations of motion for RNS, NSR and RR fields.

BPS D5 branes extended along the cigar in type IIB theory. As we are going to discuss in
section 6, the number of D3 branes captures the amount of colors of the dual gauge theory
while the D5 branes capture the flavor of the boundary theory. Our goal here is to obtain a
worldsheet computation of the backreaction generated by the inclusion of D-branes, to which
we can compare the supergravity solutions with RR fields that we present in section 6. The
comparison will necessarily be qualitative: while the computations of this section are carried
out in the k = 2 noncritical superstring (2.26), the supergravity solutions of section 6 can
only be trusted at large level k. We will comment in more detail about this in section 6.

In sections 3.1 and 3.2, we construct D3 and D5 brane boundary states for the noncritical
string theory (2.26). The discussion there is a simple adaptation to the d = 6 setup of the
analysis carried out in [41, 42, 61] for the d = 4 noncritical superstring R1,3 × SL(2,R)1

U(1) and
in [59, 60] for the 10d critical superstring. We proceed in section 3.3, where we analyze which
of the low-lying states identified in section 2 admit non-zero overlaps. To the best of our
knowledge, the analysis of section 3.3 did not appear elsewhere. In section 3.4, adapting the
techniques developed in [41, 61] to the (2.26) setup, we investigate the asymptotic behavior
of the graviton backreaction in the ρ → ∞ limit. While we devote most of this section to
the type IIB GSO projection, we comment on the type IIA case in section 3.5. Finally, in
section 3.6 we briefly summarize our findings.

3.1 D3 branes

Let us discuss the construction of the boundary state corresponding to a type IIB D-brane
extended along four flat directions and localized at the tip of the cigar. Semiclassically,
the brane configuration is

IIB R1,3 R2 Cigar
D3 ××××

(3.1)

where × denotes a spacetime direction along which the brane is extended. These branes,
which we will refer to as “D3 branes”, are BPS and preserve momentum around the cigar.
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While the boundary state in the NSNS sector will be constructed in the canonical (−1,−1)
picture, in the RR sector we consider boundary states in the (−1

2 ,−
3
2) picture. Analogously,

when computing RR sector overlaps we will consider vertex operators in the (−3
2 ,−

1
2) picture.

This asymmetric choice in the picture is necessary to saturate the ghost background charge
independently in the holomorphic and anti-holomorphic sector and to conserve the superghost
current on the brane, see [41, 60] for more details on this point. The D3-brane boundary
state reads [41, 42, 59, 60]

||D3〉〉 = ||D3,+〉〉NS − ||D3,−〉〉NS + ||D3,+〉〉R + ||D3,−〉〉R , (3.2)

where η = ± labels the choice of spin structure and

||D3, η〉〉NS,R = T

2 ||BX〉〉 ||D0, η〉〉cigNS,R ||Bψ, η〉〉NS,R ||Bgh〉〉 ||Bsgh, η〉〉NS,R . (3.3)

In eq. (3.3), T denotes the overall normalization. Its precise value will not be relevant for us.
The linear combination entering (3.2) is chosen by imposing the type IIB GSO projection.
Before explaining the various ingredients entering eq. (3.3), notice that the same choice of spin
structure η must be made in each factor of (3.3) in order to have a well-defined periodicity
for the total N = 1 worldsheet supercurrent [41, 42]. In eq. (3.3), ||BX〉〉 is the Ishibashi
state constructed out of the flat space free bosons [90],

||BX〉〉 = δ(x4) δ(x5) exp
[
−

∞∑
n=1

1
n
αα−n Sαβ α̃

β
−n

]
|0〉 , α, β = 0, . . . , 5 , (3.4)

Sαβ =

ηαβ α, β = 0, . . . 3
−δαβ α, β = 4, 5

, (3.5)

implementing Neumann boundary conditions along the flat directions α, β = 0, . . . , 3 and
Dirichlet boundary conditions along α, β = 4, 5. The Ishibashi state ||Bψ, η〉〉NS,R captures
the dependence on the six free fermions ψα along the flat directions, as well as the cigar
free fermions ψρ and ψθ. It reads [41, 59, 60, 90]

||Bψ, η〉〉NS = exp
[
i η

∞∑
m= 1

2

ψµ̂−m Sµ̂ν̂ ψ̃
ν̂
−m

]
|0〉 , (3.6a)

||Bψ, η〉〉R = exp
[
i η

∞∑
m=1

ψµ̂−m Sµ̂ν̂ ψ̃
ν̂
−m

]
|Bψ, η〉

(0)
R , (3.6b)

Sµ̂ν̂ =

ηµ̂ν̂ µ̂, ν̂ = 0, 1, 2, 3, ρ, θ
−δµ̂ν̂ µ̂, ν̂ = 4, 5

, (3.6c)

where the coordinate labels µ̂, ν̂ run over all eight spacetime directions µ̂, ν̂ = 0, . . . , 5, ρ, θ.
Notice that we choose Neumann boundary conditions for the cigar free fermions ψρ, ψθ. We
will review how this comes about momentarily. The R-sector vacuum |Bψ, η〉

(0)
R cannot be

written as a tensor product of Ishibashi states for the flat directions and the cigar. It has
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to be selected by requiring the zero mode gluing conditions(
ψα0 − i η ψ̃α0

)
||Bψ, η〉〉

(0)
R = 0 , for α = 0, 1, 2, 3 , (3.7a)(

ψα0 + i η ψ̃α0

)
||Bψ, η〉〉

(0)
R = 0 , for α = 4, 5 , (3.7b)(

ψρ0 − i η ψ̃ρ0

)
||Bψ, η〉〉

(0)
R = 0 , (3.7c)(

ψθ0 − i η ψ̃θ0

)
||Bψ, η〉〉

(0)
R = 0 . (3.7d)

The construction of this vacuum state is standard in the literature, see [41, 59, 60]. The state
||D0, η〉〉cigNS,R in (3.3) corresponds to the D0-brane localized at the tip of the bosonic cigar.22

For each sector and choice of spin structure, the wavefunctions read [41, 91–98]

ΨD0(s,m) ≡ 〈Φjm,m̄| ||D0,±〉〉cigNS,R ∼ δm,m̄ ν
j+ 1

2
Γ(−j +m)Γ(−j −m)
Γ(−2j − 1)Γ

(
1− 1+2j

k

) , (3.8)

where Φj
m,m̄ denotes a primary of the bosonic cigar coset CFT (at level k+2) with spin j and

charge m (respectively m̄) under the purely bosonic current j3 (respectively j̃3). In eq. (3.8)
∼ denotes equality up to phases independent of j and factors of k not playing a role in our
analysis. In eq. (3.8), ν denotes the worldsheet cosmological constant, see e.g. [99, 100]. In
the cigar theory, the bosonic charges m, m̄ are related to momentum and winding as

m = 1
2 (n+ wk) , m̄ = −1

2(n− wk) , n, w ∈ Z , (3.9)

and hence at level k = 2 obey

m− m̄ ∈ Z , and m+ m̄ ∈ 2Z . (3.10)

The effect of the orbifold in (2.26) is to relax the second condition in eq. (3.10), so that
instead of (3.10) m and m̄ obey (see e.g. [70])

m− m̄ ∈ Z and m+ m̄ ∈ Z (3.11)

in the Z2-orbifolded theory. Finally, in eq. (3.3) ||Bgh〉〉 and ||Bsgh, η〉〉NS,R denote respectively
the contribution of the b, c ghosts and of the β, γ superghosts. Their form is as in the flat
space string and explicit expressions can be found e.g. in [60].

Neumann boundary conditions for the cigar free fermions. Since this has important
consequences for us, let us review why Neumann boundary conditions must be chosen for
the cigar free fermions ψρ, ψθ. N = 2 superalgebras admit two distinct gluing conditions,
known as A- and B-type. Different references interchange their naming, and we follow the
conventions of [94]. A-type gluing conditions read(

JR
n − J̃R

−n

)
||B, η〉〉 = 0 ,

(
G±
r − iη G̃∓

−r

)
||B, η〉〉 = 0 , (3.12)

22Note that the boundary states of the cigar CFT are Euclidean branes, so the D0 branes mentioned here
are genuinely localized from the cigar perspective. Similarly, the D2 branes of the cigar mentioned in the next
subsection are extended along two directions. This should be contrasted with Lorentzian Dp branes, whose
worldvolume includes p Euclidean directions as well as one time direction.
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while B-type gluing conditions correspond to(
JR
n + J̃R

−n

)
||B, η〉〉 = 0 ,

(
G±
r − iη G̃±

−r

)
||B, η〉〉 = 0 , (3.13)

with JR and J̃R denoting the R-currents. In both cases, G = G+ + G− obeys the gluing
conditions necessary to preserve N = 1 supersymmetry on the worldsheet,(

Ln − L̃−n
)
||B, η〉〉 = 0 ,

(
Gr − iηG̃−r

)
||B, η〉〉 = 0 , (3.14)

where Ln denote the modes of the total stress tensor and Gr the modes of the worldsheet
N = 1 supercurrent. For the case of the N = 2 worldsheet cigar CFT, the D0-brane localized
at the tip of the cigar corresponds to B-type boundary conditions based on the identity
representation23 and R-currents can be written as

JR = 2
k
J3 + ψ++ψ−− = 2

k
j3 + k + 2

k
ψ++ψ−− = 2

k
j3 − i k + 2

2k ψρψθ , (3.15a)

J̃R = −2
k
J̃3 + ψ̃++ψ̃−− = −2

k
j̃3 + k + 2

k
ψ̃++ψ̃−− = −2

k
j̃3 + i k + 2

2k ψ̃ρψ̃θ , (3.15b)

where J3 = j3 + ψ++ψ−− is the N = 1 sl(2,R) Cartan at level k, j3 is the bosonic sl(2,R)
Cartan at level k + 2 and24

ψ±± = 1√
2
(ψρ ± iψθ) , ψ̃±± = 1√

2
(ψ̃ρ ∓ iψ̃θ) . (3.16)

The choice of B-type boundary conditions implies Neumann boundary conditions along
the angular direction of the cigar [41, 42, 94, 97],(

j3
n − j̃3

−n

)
||B, η〉〉 = 0 , (3.17)

which in turn implies Neumann boundary conditions also for the cigar free fermions ψθ and ψρ,(
ψρr − i η ψ̃ρ−r

)
||B, η〉〉 = 0 ,

(
ψθr − i η ψ̃θ−r

)
||B, η〉〉 = 0 . (3.18)

To make contact with the notation of section 2, we can re-express eqs. (3.17) and (3.18)
respectively as25

(
∂θ + ∂̄θ̃

) ∣∣∣
z=z̄

||B〉〉 = 0 , (3.19)

and (
∂H − ∂̄H̃

) ∣∣∣
z=z̄

||B〉〉 = 0 . (3.20)

23In fact, no BPS boundary states can be constructed out of A-type identity representation Ishibashi states,
see [42, 77, 91, 94, 97, 98, 101].

24We choose this notation to distinguish from the fermions in eq. (2.36).
25We have j3 = i ∂θ, j̃3 = −i ∂̄θ and ∂H = ψρψθ, ∂̄H̃ = ψ̃ρψ̃θ.
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3.2 D5 branes

BPS D5 branes extended along the cigar and corresponding to the semiclassical configuration

IIB R1,3 R2 Cigar
D5 ×××× ××

(3.21)

can be constructed out of B-type continuous representations, similarly to the D3 branes we
just described. D5 branes are built as a linear combination of the Ishibashi states

||D5, P,M, η〉〉NS,R = ||BX〉〉 ||D2, P,M, η〉〉cigNS,R ||Bψ, η〉〉NS,R ||Bgh〉〉 ||Bsgh, η〉〉NS,R .

(3.22)
The precise linear combination can be determined by carrying out a modular bootstrap
analysis for k = 2, taking into account the Z2 orbifold in (2.26) and imposing the GSO
projection. While we bypass this analysis, the form of the Ishibashi states (3.22) will suffice
for us. The Ishibashi states ||BX〉〉, ||Bψ, η〉〉NS,R, ||Bgh〉〉 and ||Bsgh, η〉〉NS,R are defined as
in the case of the D3 brane described above while for M = 0, 1

2 and P ∈ R the D2 brane
of the cigar theory has overlaps [42, 61, 91–97]

〈Φj
m,m̄| ||D2,P,M,±〉〉cigNS,R ∼ δm,m̄ ν

j+ 1
2

Γ(2+2j)Γ
(

2j+1
k

)
Γ(1+j+m)Γ(1+j−m) cos

(
4πsP
k

)
, (3.23)

where we remind that j = −1
2 + is and as above ∼ denotes equality up to phases that do

not depend on j and factors of k not playing a role in our analysis. Notice that since the
cigar D2 branes entering eq. (3.22) are built out of B type boundary conditions — as it
was the case for D0 branes entering eq. (3.3) — the cigar free fermions ψρ and ψθ obey
Neumann boundary conditions. As we will see momentarily, the fact that for both D3 and
D5 branes the cigar free fermions obey Neumann boundary conditions makes it more difficult
to distinguish between D3 branes and D5 branes than what experience of the flat space
10d critical string theory would naively suggest.

3.3 Non-vanishing backreaction

In section 2 we derived the low-lying spectrum of the string theory (2.26). The analysis there
was carried out in the linear dilaton regime, for which the worldsheet CFT effectively reduces
to the CHS background (2.29) with k = 2. As already discussed, vertex operators in the
linear dilaton regime are in one to one correspondence with vertex operators constructed out
of continuous representations in the string theory (2.25). Given the analysis of the previous
sections, we are now ready to understand which of the low-lying vertex operators listed in
eqs. (2.82) and (2.83) admit non-zero overlaps with D3 and D5 branes. We first discuss
overlaps in the NSNS sector and then proceed with the RR sector.

D3 branes and NSNS sector backreaction. Adopting the 7d jargon of section 2, in the
NSNS sector we identified the following states: graviton, antisymmetric Kalb-Ramond field,
dilaton, six massless 7d vectors and nine scalars. See table 7. From eq. (3.6), it is easy to see
that the off-diagonal components of the graviton, the Kalb-Ramond field and the 7d vectors
all have zero overlaps. Moreover, only three of the nine 7d scalars V (z, z̄) satisfy(

∂θ + ∂̄θ̃
) ∣∣∣

z=z̄
V (z, z̄) ∼ 0 , and

(
∂H − ∂̄H̃

) ∣∣∣
z=z̄

V (z, z̄) ∼ 0 , (3.24)
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and hence admit non-vanishing overlaps. Notice that the three scalars admitting non-zero
overlaps preserve the rotational symmetry around the axis of the cigar, as one would naively
expect from the semiclassical cartoon of D3 branes localized at the tip of the cigar.

D3 branes and RR sector backreaction. As already anticipated, in order to compute
overlaps in the RR sector, one needs to consider vertex operators in the (−3

2 ,−
1
2) picture.

These were constructed in appendix A in the linear dilaton regime and are in one-to-one
correspondence with vertex operators constructed out of continuous representations in the
string theory (2.26). We will then slightly abuse the notation and identify states in terms
of the “potentials” Aa,b,`,m introduced in appendix A. In the RR sector we can repeat the
argument carried out around eq. (3.24) to deduce that only

A++,±,∓ and A−−,±,∓ , (3.25)

in equation (A.6) admit nonzero overlap. Since Aa,b,`,m is related to Aa,b,−`,−m by complex
conjugation as in (2.73), we then have only two independent components. In addition, the
free fermion gluing conditions (3.7) impose that only 7d five-forms have non-zero overlap.
The degree of the form sourced by the brane is dictated by the number of free fermions
obeying Neumann boundary conditions. The computation is analogous to the one performed
for a D5 brane in type IIB critical string theory [59], see also [41] for a (4+2)d noncritical
setup. Dualizing 7d five-forms as 7d two-forms and making use of the decomposition carried
out in appendix A, we find that the fields with non-zero overlap are the two-forms Ã(2).

D5 brane backreaction. The analysis of states admitting non-zero overlaps with D5 branes
is quite similar to the one just carried out for D3 branes. In fact, exactly the same free
fermion boundary state (3.6) enters both eqs. (3.3) and (3.22) and both the overlaps (3.8)
and (3.23) vanish for m 6= m̄. As a result, the vertex operators admitting non-vanishing
overlaps with the D5 brane are exactly those having non-zero overlaps with the D3 brane:
the diagonal component of the graviton, the dilaton, 7d two-forms, and the three 7d scalars
neutral under the U(1)θ rotational symmetry of the cigar.

3.4 Backreaction asymptotics

We just observed that differently from 10d flat string theory, in the noncritical string
theory (2.26), color D3 and flavor D5 branes source the same fields. The functional form
of one-point functions is however different, as one can observe comparing eq. (3.8) with
eq. (3.23). Following the paradigm of [41, 61], in this section we compute the linearized
backreaction sourced by D3 and D5 branes of the noncritical string theory (2.26) in the
ρ → ∞ limit. We concentrate on the graviton backreaction, as the computation for the
other fields is completely analogous.

D3 branes. The metric backreaction sourced by Nc parallel D3 branes is computed by
inserting a closed string propagator in the overlap of the graviton with the boundary state (3.2),

1
Nc

δh̃D3
µν (q, s) = 〈Vµν |Dcl||D3〉〉 ∼ Sµν

δ(q0)δ(q1)δ(q2)δ(q3)
q2 − j(j + 1) ΨD0(s, 0) , (3.26)
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where Vµν denotes the graviton vertex operator, ΨD0(s,m) was introduced in eq. (3.8) and
we remind that µ, ν run over 0, . . . , 5, ρ. The position space dependence is obtained by
folding with the eight-dimensional Laplacian

ei qαxα φ(j, ρ) , (3.27)

and by “Fourier transforming” as

1
Nc

δhD3
µν (x, ρ) =

∫
dq0 . . . dq5

∫ ∞

0
ds ei qαxα φ(j, ρ) 〈Vµν |Dcl||D3〉〉

∼ Sµν

∫
d2`

∫ ∞

0
ds

νi s ei ~̀·~y φ(j, ρ) Γ
(

1
2 − i s

)2(
`2 + s2 + 1

4

)
Γ(−2 i s) Γ(1− i s)

. (3.28)

In eqs. (3.27) and (3.28), we introduced the compact notation

~y = (x4, x5) , ~̀= (q4, q5) , `2 = q4q4 + q5q5 , ~̀ · ~y = q4x4 + q5x5 , (3.29)

and φ(j, ρ) denotes the cigar theory Laplacian, which in the k = 2, ρ→ ∞ limit reads [41, 91]

φ(j, ρ) ∼ eρ(2 i s−1) +
Γ(−2 is) Γ

(
1
2 + is

)2
Γ(1− is) ν−i s

Γ(2 is)Γ
(

1
2 − is

)2
Γ(1 + is)νi s

e−ρ(2 i s+1) . (3.30)

Notice that this is simply the sum of incoming and outgoing wave-functions. In fact, the
ratio of Gamma functions in front of e−ρ(2 i s+1) in eq. (3.30) is the reflection coefficient a
plane wave gets when scattering off the linear dilaton potential, see e.g. [102]. Eq. (3.30)
is valid at large ρ and corrections are exponentially suppressed. The linearized graviton
backreaction (3.28) can thus be rewritten as

1
Nc

δhD3
µν (x, ρ) ∼ Sµν

∫
d2`

∫ ∞

−∞
ds

νi s ei ~̀·~y eρ(2 i s−1) Γ
(

1
2 − i s

)2(
`2 + s2 + 1

4

)
Γ(−2 i s) Γ(1− i s)

. (3.31)

Notice that the integrand in (3.31) has poles in s with non-zero residue only at

s = ±i
√
`2 + 1

4 . (3.32)

We should emphasize that, as was noticed in [41], expressions like (3.31) for the graviton back-
reaction should be taken with caution. In [41] the authors carried out a similar computation
at level k = 1 in the noncritical string theory

R3,1 × SL(2,R)1
U(1) . (3.33)

They noticed that the analogue of the s integral in (3.31) needs a precise contour prescription
to be well-defined. They suggested that a good approximation to compute the graviton
backreaction of D3 branes localized at the tip of the k = 1 cigar is to deform the integration
contour in such a way that only the residue of the pole in the upper half plane contributes.
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We believe that, when computing the backreaction of D3 branes, this prescription makes
sense also for the k = 2 noncritical string theory (2.26) and accordingly we find

1
Nc

δhD3
µν (x, ρ) ∼ e−ρ Sµν

∫
d2`

ν−
√
`2+ 1

4 ei ~̀·~y e−2ρ
√
`2+ 1

4 Γ
(

1
2 +

√
`2 + 1

4

)2

Γ
(
2
√
`2 + 1

4 + 1
)
Γ
(√

`2 + 1
4 + 1

) , (3.34)

where again we neglect factors of 2, π etc. Adopting polar coordinates and making use of
the identity ∫ 2π

0
dφ ei ` y cosφ = 2πJ0(`y) , (3.35)

we obtain

1
Nc

δhD3
µν (x, ρ) ∼ e−ρSµν

∫ ∞

0
d`
` ν−

√
`2+ 1

4 J0(`y) e−2ρ
√
`2+ 1

4 Γ
(

1
2 +

√
`2 + 1

4

)2

Γ
(
2
√
`2 + 1

4 + 1
)
Γ
(√

`2 + 1
4 + 1

) , (3.36)

where J0 denotes the Bessel function of the first kind. The asymptotic large ρ behavior of
the integral (3.36) can be computed by the Laplace approximation, see appendix E for a
brief review. We find an asymptotic expansion of the form

1
Nc

δhD3
µν (x, ρ) ∼ Sµν e−2ρ

∞∑
n=0

Pn(y2)
ρn+1 , (3.37)

where Pn(y2) are polynomials in y2 of degree n, e.g.

P0 = 1
2
√
πν

, P1 = −
y2 + 4 log ν + 4ψ

(
3
2

)
16
√
πν

, (3.38)

and ψ(z) is the digamma function. The sum in (3.37) is asymptotic and is not meant to be
resummed. As we observed above, the expression (3.30) for the cigar Laplacian is only valid
at large ρ→ ∞ and corrections decay exponentially. As a result, also (3.37) should only be
trusted up to subleading, exponentially suppressed, corrections.

D5 branes. Let us now investigate the asymptotic behavior of the D5 graviton backreaction.
Proceeding along the lines of the analysis carried out above for the D3 brane, we find the
backreaction

1
Nf

δhD5
µν (x,ρ)∼Sµν

∫
d2`

∫ ∞

−∞
ds ν

is ei ~̀·~y eρ(2 is−1)Γ(1+2is)Γ(is) cos(2πsP )(
`2+s2+ 1

4

)
Γ
(

1
2+is

)2 . (3.39)

Let us list the poles of the integrand with non-zero residues. As in the case of the D3
brane, we find poles at

s = ±i
√
`2 + 1

4 . (3.40)

In addition, we also find a pole at s = 0. Following at k = 2 the prescription formulated
in [41, 61] for k = 1, and hence estimating the integral (3.39) by its residue at s = i

√
`2 + 1

4 ,
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we would obtain a backreaction decaying as ρ−1e−2ρ. Exactly as in the case of the D3 brane
discussed above. Comparing the semiclassical configurations (3.1) and (3.21), one would
instead expect the D5 graviton backreaction to decay at large ρ more softly than the D3
brane backreaction. We thus believe that the correct prescription to evaluate the D5 graviton
backreaction is to include the contribution of the pole at s = 0 (more precisely its principal
value), which is dominant over the contribution coming from the pole at s = i

√
`2 + 1

4 . We find

1
Nf

δhD5
µν (x, ρ) ∼ Sµν e−ρ

∫
d2`

ei ~̀·~y

`2 + 1
4
∼ Sµν e−ρK0

(
y

2

)
, (3.41)

where K0 is the modified Bessel function of the second kind. As it was the case above,
eq. (3.41) should only be trusted up to subleading, exponentially suppressed corrections.

3.5 D2 and D4 branes in type IIA

It is not difficult to extend the analysis of the previous sections to describe in the type
IIA noncritical string theory (2.26) D2 and D4 branes, corresponding to the semiclassical
configurations

IIB R1,2 R3 Cigar
D2 ×××

(3.42)

and
IIB R1,2 R3 Cigar
D4 ××× ××

(3.43)

respectively. Let us briefly mention the few differences with respect to the analysis carried
out above for D3 and D5 branes.

D2 branes. The boundary state for D2 branes corresponding to the semiclassical configura-
tion (3.42) can be constructed similarly to the D3 brane boundary state (3.2), by defining
Dirichlet instead of Neumann boundary conditions for the free boson X3 and its superpartner
ψ3. For each choice of spin structure, eq. (3.3) is replaced by

||D2, η〉〉NS,R = T ′

2 ||BX〉〉 ||D0, η〉〉cigNS,R ||Bψ, η〉〉NS,R ||Bgh〉〉 ||Bsgh, η〉〉NS,R , (3.44)

where now ||BX〉〉 is

||BX〉〉 = δ(x3) δ(x4) δ(x5) exp
[
−

∞∑
n=1

1
n
αα−n Sαβ α̃

β
−n

]
|0〉 , α, β = 0, . . . , 5 , (3.45)

Sαβ =

ηαβ α, β = 0, 1, 2
−δαβ α, β = 3, 4, 5

, (3.46)
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and ||Bψ, η〉〉NS,R reads

||Bψ, η〉〉NS = exp
[
i η

∞∑
m= 1

2

ψµ̂−m Sµ̂ν̂ ψ̃
ν̂
−m

]
|0〉 , (3.47a)

||Bψ, η〉〉R = exp
[
i η

∞∑
m=1

ψµ̂−m Sµ̂ν̂ ψ̃
ν̂
−m

]
|Bψ, η〉

(0)
R , (3.47b)

Sµ̂ν̂ =

ηµ̂ν̂ µ̂, ν̂ = 0, 1, 2, ρ, ϑ
−δµ̂ν̂ µ̂, ν̂ = 3, 4, 5

. (3.47c)

In the R sector, eq. (3.7) for α = 3 is now replaced by(
ψ3

0 + i η ψ̃3
0

)
||Bψ, η〉〉

(0)
R = 0 . (3.48)

Expressions for the ghosts contribution can again be found in [60], while ||D0, η〉〉cigNS,R is still
constructed as in eq. (3.8). The analysis of overlaps with the “massless” spectrum proceeds
as in the previous sections and in the NSNS sector we find again that only the diagonal
component of the graviton, the dilaton, and the three scalars preserving the U(1)θ symmetry
of the cigar admit non-vanishing overlaps. In the R-sector, only 7d three-forms (dual to 7d
four-forms) of the form (3.25) feature a non-zero backreaction. The asymptotic behavior
of the graviton can be estimated by the integral

1
Nc

δhD2
µν (x, ρ) ∼ Sµν

∫
d3`

∫ ∞

0
ds

νi s ei ~̀·~y φ(j, ρ) Γ
(

1
2 − i s

)2(
`2 + s2 + 1

4

)
Γ(−2 i s) Γ(1− i s)

, (3.49)

where now ` and y are defined according to
~y = (x3, x4, x5) , ~̀= (q3, q4, q5) ,
`2 = q3q3 + q4q4 + q5q5 , ~̀ · ~y = q3x3 + q4x4 + q5x5 .

(3.50)

Proceeding as in the previous sections, we find the asymptotic behavior
1
Nc

δhD2
µν (x, ρ) ∼ Sµν e−2ρ

∞∑
n=0

P ′
n(y2)
ρn+ 3

2
, (3.51)

where P ′
n are polynomials of degree n.

D4 branes. Similarly to what we just discussed for D2 branes, boundary states for D4 branes
corresponding to the semi-classical configuration (3.43) can be constructed by replacing, in
the expressions for the D5 brane discussed above, the Neumann boundary conditions for X3

and ψ3 with Dirichlet boundary conditions. The “massless” fields with non-zero backreaction
are the same that we found in the analysis of the D2 brane. The backreaction of the graviton
can be computed by the integral

1
Nf

δhD4
µν (x,ρ)∼Sµν

∫
d3`

∫ ∞

−∞
ds ν

is ei ~̀·~y eρ(2 is−1)Γ(1+2is)Γ(is) cos(2πsP )(
`2+s2+ 1

4

)
Γ
(

1
2+is

)2 , (3.52)

resulting in the asymptotic ρ → ∞ behavior

1
Nf

δhD4
µν (x, ρ) ∼ Sµν

e−ρ e−
|y|
2

|y|
. (3.53)
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3.6 Summary

Let us take stock and summarize the results of this section. We analyzed the worldsheet
construction of boundary states for D3 color branes and D5 flavor branes in the noncritical
type IIB string theory (6.2) and of D2 and D4 branes in type IIA.

D3 and D5 branes in type IIB. We observed that D3 and D5 branes source the same
background fields. Adopting the 7d perspective described in section 2, in the NSNS sector
the fields with non-zero backreaction are the diagonal component of the graviton, the dilaton,
and three scalars. We observe that the three scalars with non-zero backreaction preserve
the U(1)θ symmetry of the cigar. In the RR sector, the only non-vanishing backreaction is
given by the 7d two-form Ã(2). While D3 and D5 branes cannot be distinguished according
to which fields they source, the asymptotic behavior of their backreaction for ρ → ∞ is
different: compare eqs. (3.37) and (3.41).

D2 and D4 branes in type IIA. Similarly to what happens in type IIB for D3 and D5
branes, in type IIA the D2 and D4 branes (3.42) and (3.43) source the same fields. The
fields backreacting are in the NSNS sector again the diagonal component of the graviton,
the dilaton, and three scalars preserving the U(1)θ symmetry. Instead, in the RR sector D2
and D4 branes source 7d three-forms. The asymptotic behavior of the graviton backreaction
for D2 and D4 branes is given by eqs. (3.51) and (3.53) respectively.

4 The 7d supergravity

We would now like to identify a two-derivative gauged supergravity that captures the
interactions between the massless26 degrees of freedom of the 6d noncritical string at low
energy. The simplest vacuum of such theory should be the linear-dilaton background, hence
why our requirement that it should be a gauged supergravity: this is only possible if a scalar
potential is present. What is less clear is whether it should be a 7d theory (thus incorporating
the Minkowski directions as well as the linear dilaton direction) or an 8d one (including
also the circle direction parametrized by θ in (2.3)). We suggest that a description with
manifest supersymmetry is only possible in 7d supergravity, which can be justified in terms
of the embedding of the noncritical string in ten-dimensional string theory. As we reviewed
in section 2, there are three equivalent descriptions: let us focus in particular on the frames
that we called FNS5 (corresponding to a distribution of NS5 branes) and the frame Fcig (the
cigar). The two frames correspond to exact solutions of the 10d equations of motion, that
in the asymptotic ρ → +∞ region are

FNS5 : R1,5 × Rρ × S3 , Fcig : R1,5 × Rρ × U(1)× SU(2)
U(1) , (4.1)

and are related by a T-duality. It is then natural to guess that one can obtain a 7d theory
by reducing type II supergravity on S3, or an 8d theory reducing on SU(2)/U(1). Naively,
since the two backgrounds are T-dual the two procedures should be somehow equivalent from
the point of view of string theory. However, at the level of supergravity, it turns out that

26In the sense described in section 2.3.
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only the geometry FNS5 is supersymmetric (preserving 16 supercharges), but supersymmetry
is completely broken by the T-duality which relates this frame to Fcig. The crucial point,
as already observed by various authors [51, 53, 55, 56, 103], is roughly speaking that the
Killing spinors in the supersymmetric geometry FNS5 depend on the direction of the T-duality
(see the discussion in [104] for more details). While at the level of the worldsheet this leads
to a non-locally realized supersymmetry [54], from the perspective of the supergravity the
background after T-duality does not preserve any Killing spinors. The bottom line is that
the disk SU(2)/U(1) is a non-supersymmetric geometry and there is little hope to obtain
a supergravity by performing this dimensional reduction. On the other hand, all of the
supersymmetry is manifest in the frame FNS5, and reducing 10d supergravity on S3 does
indeed give rise to a supergravity in 7d [105].

Another indication for the fact that the correct description is in terms of a 7d theory
is to actively look for a putative 8d gauged supergravity that serves our purposes. As
discussed in the previous sections it should be a maximally supersymmetric theory (see the
discussion at the end of section 2), so the spectrum is fixed, and all gaugings of maximal 8d
gauged supergravity have been classified [106–109]. A basic requirement on the putative 8d
supergravity is that it admits a supersymmetric linear dilaton solution as a vacuum, that is a
background of the form (2.27), excluding the SU(2)/U(1) part. Supersymmetric domain walls
of maximal 8d supergravity with general gauging are classified in [107], and none of them
is compatible with a linear dilaton solution. One can also check this by direct inspection
making an ansatz, even without requiring supersymmetry.

For these reasons, the rest of the paper will be devoted to the study of certain 7d gauged
supergravities and their supersymmetric solutions. We start in this section with a general
review of maximal 7d gauged supergravity, mostly based on [110]. We will then identify two
gaugings that are particularly interesting for our purposes, and discuss the corresponding
supergravities more in detail. Both gaugings admit a linear dilaton solution and in the
final part of the section we present one of our main results: a precise matching between the
spectrum of the SO(4) and ISO(4) gauged supergravitiy in the linear dilaton vacuum, and
the low-lying spectrum of the d = 6 noncritical superstring presented in section 2.3, with
type IIA and IIB GSO projection respectively.

4.1 Review of maximal 7d gauged supergravity

Let us now briefly review the maximal 7d supergravities. It is convenient to think of a gauging
as a certain deformation of the ungauged theory, by means of a parameter g, the gauge
coupling. All gaugings of maximal 7d supergravity were classified in [110], which we review
here. Let us start with the case of maximal 7d ungauged supergravity, whose field content is
given by the vielbein e m

µ , 4 gravitini ψaµ, 5 two-forms BM,µν , 10 vectors AMN
µ = A

[MN ]
µ , 16

matter fermions χabc and 14 scalars parametrizing the coset space SL(5)/SO(5) via the matrix
U ab
M . Here µ, ν, . . . = 0, . . . , 6 are spacetime indices, m,n, . . . = 0, . . . , 6 are frame indices,
M,N, . . . = 1, . . . , 5 are indices of the SL(5) global symmetry and finally a, b, . . . = 1, . . . , 4
are indices of the SO(5)R ' USp(4)R/Z2 R symmetry. We follow the same group theory
conventions as [110] (see also appendix B) and in table 8 we summarize the field content
with the respective representations under SL(5), USp(4)R and the 7d massless little group
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fields e m
µ ψaµ BM,µν AMN

µ χabc U ab
M

SO(5)LG 14 16 10 5 4 1
USp(4)R 1 4 1 1 16 5

SL(5) 1 1 5 10 1 5
# d.o.f. 14 64 50 50 64 14

Table 8. Field content of the 7d maximal ungauged supergravity, organized in representations of the
little group SO(5)LG, R-symmetry group USp(4)R and global symmetry group SL(5).

SO(5)LG. Ungauged supergravities do not have a potential for the scalar fields, only have
abelian gauge groups (under which none of the fermions are charged) and do not require a
specific choice of duality frame for the p-form gauge fields of the theory. A gauging of the
theory, on the other hand, is a deformation that changes these facts as follows:

• A subset of the 10 vector fields AMN
µ is used to gauge a subgroup G0 of the global

symmetry group SL(5), with ordinary derivatives replaced by G0-covariant derivatives.27

Given a set of generators tMN of SL(5), the generators XMN of G0 are conveniently
identified using the so-called embedding tensor ΘMN,P

Q as

XMN = ΘMN,P
Q tPQ . (4.2)

The embedding tensor is subject to a set of linear constraints, which restrict its form to28

ΘMN,P
Q = δQ[MYN ]P − 2εMNPRSZ

RS,Q , (4.3)

as well as non-linear constraints which ensure the closure of the Lie algebra g0 of G0.

• The gauged theory has a potential for the SL(5)/SO(5) scalars U N
M , which is proportional

to the gauge coupling squared g2 and is completely specified by the embedding tensor
(or, equivalently, by YMN and ZMN,P ).

• A choice of gauging also fixes a certain distribution of degrees of freedom among the
p-form gauge fields. The gauge fields involved in the gauging remain massless, while
the others can be either rendered massive with a Higgs mechanism that involves some
of the scalars, or they can in turn provide the longitudinal degrees of freedom that are
necessary to make some of the two-forms massive. Another option that is realized in
seven dimensions is that the massless two-forms Bµν are dualized to massive self-dual
three-forms Sµνρ — see footnote 20 for more details.

More details on maximal 7d gauged supergravity can be found in [110], including the
general form of the action and supersymmetry transformations for arbitrary choice
of gauging.

27Note that the SO(5) ⊂ SL(5) appearing in the SL(5)/SO(5) scalar coset is identified with the R-symmetry
SO(5)R. Hence, even fields that are singlets under SL(5) can become charged under the gauge symmetry if
they belong to non-trivial representations of SO(5)R. This is the case, for instance, for the gravitini.

28The tensors Y and Z parametrize the 15 and 40 representations of SL(5), respectively. As such, they
satisfy YMN = Y(MN) and ZMN,P = Z [MN ],P = Z [MN,P ].
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4.2 The relevant gaugings

As we discussed in section 2.2, the embedding of the 6d noncritical string in 10d type II
theories can be discussed in terms of distributions of NS5 branes, whose near-horizon geometry
is the CHS background (2.29). As it turns out, both type IIA and type IIB supergravity
admit a consistent truncation on S3, as first observed in [105, 110]. Such truncation leads to
two maximal 7d gauged supergravities with ISO(4) and SO(4) gauging for the IIA and IIB
reduction, respectively. As we shall discuss in greater detail in the rest of this section, both
theories admit a linear dilaton solution that breaks half of the supersymmetry which uplifts to
the CHS background, only distinguished by the 6d chirality of the respective Killing spinors.
Moreover, we shall soon provide a detailed analysis of the spectrum of linearized fluctuations
on the linear dilaton background for the two 7d supergravities, which turns out to match
precisely our findings from the worldsheet perspective. Note that because of the T-duality
that relates the two frames Fcig and FNS5, our proposal is that the ISO(4) theory obtained
reducing 10d type IIA supergravity should provide the low energy description of type IIB
noncritical string theory, while the SO(4) theory arising from 10d type IIB should describe
type IIA noncritical strings. Finally, the gauge groups of the two supergravities of interest
have a common maximal compact subgroup SO(4), which naturally can be thought of

SO(4) ' [SU(2)+ ⊗ SU(2)−]/Z2 , (4.4)

so the 7d fields can be arranged into irreps of the groups SU(2)±, which can be identified
with the SU(2) symmetry of the SU(2)k WZW model appearing in the worldsheet description
of 6d noncritical strings in the left and right sector.

In the next two paragraphs we describe the bosonic field content of the ISO(4) and
SO(4) gauged theories.

ISO(4) gauged supergravity: IIB noncritical strings. We find that the theory de-
scribing the massless fluctuations of type IIB noncritical superstrings in 6d is maximal 7d
ISO(4)-gauged supergravity, which can be obtained from a consistent truncation of type
IIA supergravity in ten dimension on S3 — for details see [105], where uplift formulas
for the bosonic sector are also given. The Lagrangian and supersymmetry transformation
for this theory can be extrapolated from the results of [110] once the embedding tensor
is fixed using (4.3) with

YMN = diag(1, 1, 1, 1, 0) , ZMN,P = 0 . (4.5)

Note that the choice of gauging breaks SL(5) covariance and it is therefore convenient to
split M,N, . . . indices as

M = (i, 0) , i = 1, . . . , 4 , (4.6)

where now i, j, . . . = 1, . . . , 4 are fundamental indices of SO(4), the compact part of the gauge
group ISO(4). The technical details on the Lagrangian and Killing spinor equations can be
found in [110], while here we describe some general features. We begin by discussing the effect
of the gauging on the distribution of degrees of freedom, while also labelling the fields of the
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NSNS fields (massless) two-forms one-forms scalars
ISO(4) 1 6 10
SO(4) 1 6 10

Table 9. NSNS fields of the ISO(4) and SO(4) gauged supergravities. All fields have a massless
action at the linearized level.

theory as NSNS or RR, according to their origin from the fields of type IIA supergravity. As
we shall see, such labeling also corresponds to the one obtained by comparing the spectrum
in the linear dilaton background to that of type IIB noncritical superstrings.

To describe the field content, it is convenient to break SL(5) covariance to the SO(4)
subgroup which represents the maximal compact part of the two gaugings. Focusing on
bosonic fields, we write

U → (U, bi, φ0) , AMN
µ → (A[ij]

µ , Aiµ) , BM,µν → (Bi,µν , B0
µν) , (4.7)

where U ∈ SL(4)/SO(4) is a new scalar coset representative, bi is a 4 of SO(4) of scalars and
φ0 is a singlet. For the one-forms we have used 10 → 6 ⊕ 4 and for the two-forms 5 → 4 ⊕ 1
under SO(5) → SO(4). The gauge fields A[ij]

µ are NSNS and gauge the SO(4) ⊂ ISO(4),
while the Aiµ are RR and gauge the R4 ⊂ ISO(4). The RR two-forms Bi,µν are dualized to
massive self-dual three-forms Si,µνρ, while B0

µν is NSNS and remains massless. Finally, the
9+1 scalars (U, φ0) are NSNS, while the bi are RR and do not appear in the scalar potential.
Moreover, they have a Stückelberg coupling to the gauge fields Aiµ, thus effectively making
the latter massive, at least at the linearized level.

SO(4) gauged supergravity: IIA noncritical strings. We find that the supergravity
that is relevant for type IIA noncritical superstring theory is maximal 7d SO(4)-gauged
supergravity, which can be obtained from a consistent truncation of type IIB supergravity
in ten dimension on S3, as first observed in [110] — see [89] for the uplift formulas. Again
all details can be worked out directly from the general results of [110] when the embedding
tensor is specified. The choice that leads to SO(4) gauging is

YMN = 0 , ZMN,P = δ5[MδN ]P . (4.8)

This suggests again a split of SL(5) indices as in (4.6), so once again we relabel the fields
as in (4.7). The theory with SO(4) gauging is completely equivalent to ISO(4) gauged
supergravity in the NSNS sector, while the two differ in the RR sector, as one could have
anticipated given the respective ten-dimensional origins of the two theories. The bi in this
case have a massive scalar action, while the Aiµ have a Stückelberg to the two-forms Bi,µν
so that the two sets of fields can be viewed as four massive two-forms.

The bosonic field content of the two theories is summarized in table 9 for the NSNS
sector and table 10 for the RR sector: note that they reproduce the states obtained from the
worldsheet analysis of section 2, which are summarized in tables 6 and 7 for type IIA (SO(4)
gauged supergravity) and IIB (ISO(4) gauged supergravity) noncritical strings, respectively.
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RR fields (massive) three-forms two-forms one-forms scalars
ISO(4) 4 0 4 0
SO(4) 0 4 0 4

Table 10. RR fields of the ISO(4) and SO(4) gauged supergravities. All fields have a massive action
at the linearized level.

4.3 Spectrum in the linear dilaton background

As we just discussed, the NSNS sector is common to both theories. Here we consider the
simplest truncation, where only the metric tensor and the 7d dilaton φ0 are non-trivial.
The Lagrangian in this sector is

L = R− 20(∂φ0)2 + g2

4 e4φ0 . (4.9)

This is enough to describe the simplest solution of our 7d supergravities: the linear dila-
ton vacuum

ds2
7 = e−4φ0

[
ds2(R1,5) + dρ2

]
,

φ0 = −Q

10ρ ,
(4.10)

which uplifts to the linear dilaton vacuum of type II supergravity (in the string frame)

ds2
10 = ds2(R1,5) + dρ2 + 4

Q2ds
2(S3) ,

H3 = 8
Q2 vol(S3) ,

Φ = −Q2 ρ ,

(4.11)

describing the near-horizon region of a stack of k NS5 branes, with

Q =
√

2
k
, (4.12)

as in section 2.2, and we have identified the gauge coupling with the number of NS5 branes as

g2 = 8
k
. (4.13)

The only difference between the solution in the ISO(4) and SO(4) gauging is in the structure
of the 16 Killing spinors that the solution preserves, as we shall review in the next subsection
in the context of more general solutions. Here we consider the linearized equations of motion
in this background for the various fields appearing in the two 7d supergravities of interest,
showing that they reproduce the spectrum of the associated noncritical superstring theories,
which we have reviewed in section 2.2. To this end, it is useful to introduce a notion of 7d
string frame, in which the worldsheet results have been obtained. We set

gSµν = e4φ0gµν , (4.14)
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where gµν is the 7d Einstein frame metric. Apart from this section, we will always work in
the Einstein frame in 7d, so we only specify the superscript S for the string frame but do
not add a superscript E since it is understood that we are working in the Einstein frame
unless otherwise specified.

Now, given a generic field F in 7d supergravity we consider its linearized action in the
linear dilaton background (4.10) in the string frame, and write it in terms of a polarization
tensor F̄ times a plane-wave dependence on the 7d coordinates xµ = (xα, ρ) which mimics
that of the vertex operators on the worldsheet.29 For example, for each NSNS field F we set

FNSNS = F̄NSNS ei q·x+j ρ ≡ e−
Q
2 ρ F̄NSNS ei p·x , (4.15)

where as in section 2.3 we set j = −Q
2 + is, s ∈ R, kµ denotes the 6d momentum and we have

introduced a 7d momentum pµ = (qα, s). The story for RR fields is slightly different, as we
shall see. We will now consider the quadratic action for all (bosonic) fields F, as dictated by
7d gauged supergravity, and show that the equations of motion that follow from it reproduce
the massless spectrum of 6d noncritical superstrings. The story is slightly different for the
NSNS and RR sector, so we consider the two separately.

NSNS sector. Let us start from the NSNS sector, which contains scalars, vectors, a two-form
and the metric. We observe that in the 7d string frame (which is defined by (4.14)), the
action for the NSNS fields takes the form

LNSNS = e−10φ0 L′
NSNS , (4.16)

where L′
NSNS does not depend on the 7d dilaton φ0, except for the kinetic term of the

dilaton itself. To study the spectrum in the background (4.10), it suffices to expand the
Lagrangian to the quadratic level. Moreover, since via a standard construction one can
build the graviton and Kalb-Ramond two-form states from the tensor product of two vectors,
we shall consider for simplicity only the Lagrangian for NSNS scalars and vectors in the
background (4.10). We begin by observing that any NSNS scalar field ϕ has an action which,
once expanded to quadratic order, reads

Sϕ =
∫

d7x eQρ∂µϕ∂µϕ , (4.17)

so that imposing the equations of motion

∂µ
[
eQρ∂µϕ

]
= 0 , (4.18)

on an ansatz of the form (4.15) with F ≡ ϕ gives the mass-shell condition

−p2 ≡ −q2 − s2 = Q2

4 , or − q2 + j(j +Q) = 0 , (4.19)

29Note that by an abuse of notation we denote with the same symbol x both the 6d and the 7d coordinates.
Since these appear mostly contracted with momenta, it should be clear that k · x refers to a 6d contraction
(since we denote the 6d momentum with kα) while p · x refers to a 7d contraction (since we denote the 7d
momentum with pµ).
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which reproduces precisely the result (2.68). The quadratic action for any of the NSNS
massless vectors A, on the other hand, is

SA =
∫

d7x eQρFµνFµν , F = dA , (4.20)

which gives the equations of motion

∂µ
[
eQρFµν

]
= 0 . (4.21)

Using the ansatz (4.15) with F ≡ A, (4.21) can be expressed as[
−p2 − Q2

4

]
Aµ + (q,−i j)µ (q,−i(j +Q))νAν = 0 . (4.22)

To interpret this, we note that since A is a massless vector its action (4.20) is of course
invariant under gauge transformations A→ A+ dλ, which writing λ as in (4.15) with F ≡ λ

can be expressed as the condition on polarizations

Āµ ∼ Āµ + i λ̄(q,−i j)µ , (4.23)

which is equivalent to (2.65). We can then use gauge transformations to fix the Lorenz
gauge, which sets the divergence of A to zero. The covariant divergence of A in the linear
dilaton background gives

∂µ
[
eQρAµ

]
= 0 , ⇒ (q,−i(j +Q))νAν = 0 , (4.24)

which sets to zero the second term in (4.22), thus reproducing the same mass-shell condition as
for the scalar. Moreover, we note that (4.24) is equivalent to the tranversality condition (2.62)
found from the worldsheet analysis.

The analysis for the other fields in the NSNS sector, the graviton and the Kalb-Ramond
two-form, works in a similar way, with the usual transversality and gauge invariance conditions
replaced by suitable generalizations of (4.23) and (4.24). After unphysical states are projected
out, all NSNS fields F have equations of motion that can be expressed as

∂µ
[
eQρ∂µF

]
= 0 , (4.25)

which appears massless but still gives rise to the massive-looking mass-shell condition (4.19)
due to the presence of the warping factor eQρ sitting in front of the NSNS Lagrangian in
the string frame, see (4.16).

RR sector. For RR fields, we note two important differences. First, in the 7d string frame
the RR Lagrangian is independent of the 7d dilaton φ0. Second, the quadratic Lagrangians for
all RR fields in both 7d supergravities appear to be massive (after all Stückelberg mechanisms
have been suitably taken into account). From the worldsheet perspective, we can see this
as a consequence of the fact that in each open R sector we have massive-looking Dirac
equations (2.79). Nonetheless, the mass-shell condition is still the same as the one for NSNS
fields (4.19), since we are considering states at the same level.
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In order to reproduce the equations of motion for RR states derived from the worldsheet,
it turns out to be necessary to use a slightly modified version of (4.15), where the dependence
on the ρ direction only includes the momentum s and not the overall warping e−

Q
2 ρ. This is

due to fact that for NSNS fields this term is necessary to compensate the dilaton-dependent
warping in (4.16), while the RR Lagrangian does not contain powers of the dilaton. Then,
for RR fields we set

FRR = F̄RRei(q·x+sρ) = F̄RRei p·x . (4.26)

Let us begin from the RR sector of the ISO(4)-gauged theory, where the fields are four
pairs (Aµ, b) of vectors and scalars with a Stückelberg coupling (so that effectively we have
four massive vectors, at the quadratic level), as well as four self-dual massive three-forms
Sµνρ. In a gauge which sets the scalars b = 0, we find the quadratic Lagrangian

LISO(4)
RR ∼ ?

[
dA ∧ ?dA+ Q2

4 A ∧ ?A
]
+ ?

[
S ∧ ?S + Q

2 S ∧ dS
]
, (4.27)

where the contractions and the Hodge dual are computed with respect to a flat 7d metric. Note
that the mass terms in the original action of 7d supergravity appear with powers of the gauge
coupling g, which here we have replaced using (4.13). The corresponding equations of motion

?d ? dA = Q2

4 A = 0 , dS = Q

2 ? S , (4.28)

which are the same as (2.93) upon identifying A↔ F(1) and S ↔ F(3). From (4.28) it also
follows that the polarization tensors associated with A and S are tranvserse with respect to
the 7d momentum (2.67), which is the same condition arising from the worldsheet analysis.

The story is very similar for the SO(4)-gauged theory, where the RR fields are four pairs of
two-forms and vectors (Bµν , Aµ) with Stückelberg couplings at the quadratic level, as well as
four scalars b with a massive quadratic action. Gauging away the vectors yields the Lagrangian

LSO(4)
RR ∼ ?

[
dB ∧ ?dB + Q2

4 B ∧ ?B
]
+ ?

[
db ∧ ?db+ Q2

4 b ∧ ?b
]
, (4.29)

which gives the equations of motion

?d ? dB = −Q
2

4 B , ?d ? db = −Q
2

4 b . (4.30)

These can be now identified with the physical state conditions (2.90) found from the worldsheet
in the RR sector of the noncritical IIA theory, upon identifying b ↔ F(0) and B ↔ F(2).
Again, the mass-shell condition is the usual one (4.19) and the polarizations are transverse
with respect to the 7d momentum (2.67).

To summarize, the difference between the NSNS and the RR sector is that in the former
case we have massless quadratic Lagrangians, but with a warping factor (in the string frame)
due to the dilaton φ0, which contributes to the mass term in the mass-shell condition (4.19) in
the linear dilaton background. On the other hand, in the RR sector there is no warping, but
after taking into account the various Stückelberg mechanisms determined by the gauging, one
obtains a massive Lagrangian which leads to the same condition (4.19) as in the NSNS sector.

We shall not discuss the case of fermions in detail.
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5 NSNS backgrounds

Let us now turn to study solutions of the 7d gauged supergravities introduced in the previous
section where the only non-trivial fields are associated with states in the NSNS sector of
the noncritical string. Since this sector is common to the two GSO projections, we do
not need to distinguish between the ISO(4) and the SO(4) theory. While this section is
mostly a review of domain-wall solutions already discussed in the supergravity literature,
we present an interpretation of those results with our perspective on noncritical string
theory in mind. Moreover, in subsection 5.3 we discuss the relation between the 7d guaged
supergravities introduced in the previous section and an 8d effective action for the noncritical
string that has been used by various authors [36, 38, 39], showing a connection between
the 8d “fake superpotential” approach [49, 111, 112] and the genuine 7d BPS equations
arising from supergravity.

5.1 Distributions of NS5 branes from 7d

Here we consider solutions of 7d gauged supergravity that describe distributions of flat NS5
branes on 10d. This is analogous to the setup originally considered in [113] for D3 branes
from 5d gauged supergravity and in [114] for M2 and M5 branes from 4d and 7d gauged
supergravity respectively. The case of general sphere reductions was considered in [115], while
comments on the specific case of NS5 branes were presented in [116]. In this subsection we
essentially review the ideas discussed in those works, specializing them to the present setup.
We consider the common NSNS sector of the two 7d supergravities discussed in this paper
and further truncate to only the metric and the ten NSNS scalars. We can then use the SO(4)
symmetry to diagonalize the scalar coset representatives U and U . It is convenient to write

MMN ≡ U UT =
(
e−2φ0Mij 0

0 e8φ0

)
, Mij ≡ U UT = e10φ0 diag(e2f1 , e2f2 , e2f3 , e2f4) ,

(5.1)

where the dilaton φ0 is given in terms of the four scalars fi as

φ0 = − 1
20

4∑
i=1

fi . (5.2)

The action for the scalars fi is

S =
∫

d7x

[
R− 1

4tr
(
M−1∂M

)2
+ g2

32e
4φ0

(
tr(M−1)2 − 2tr(M−2)

)]
(5.3)

We are interested in solutions describing flat NS5 branes, so we make an ansatz

ds2
7 = e−4g

[
ds2(R1,5) + e2hds2

]
, (5.4)

with g, h and fi functions of s only. We find a family of 1
2 -BPS solutions where the scalars

are given by

e2fi = s2 + `2i , (5.5)
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and `i are four parameters whose interpretation we shall soon discuss. It is worth noting that

e−40φ0 =
4∏
i=1

(s2 + `2i ) , (5.6)

which is the only combination of the scalars appearing in the final expression of the metric

ds2
7 = e−4φ0ds2(R1,5) + e16φ0 16 s

2

g2 ds2 . (5.7)

Several comments are in order. First, we note that the 16 Killing spinors ε preserved by
this solution satisfy the projection

γs ε =

ε , ISO(4) ,
τ5 ε , SO(4) ,

(5.8)

where we remind that ε is a (8,4) of Spin(1, 6)⊗ USp(4)R and τ5 is a SO(5) ' USp(4)/Z2
gamma matrix, as reviewed in appendix B.1. From the point of view of R1,5, the spacetime
gamma matrix γs plays the role of the chirality matrix, and of course τ5 has eigenvalues ±1.
So we can interpret the projection (5.8) as the statement that the supercharges preserved by
the solution all have the same chirality in the ISO(4)-gauged theory, while they come in pairs
with opposite chirality in the SO(4)-gauged supergravity. This is of course in agreement that
the former comes from the reduction of type IIA, while the latter arises from a consistent
truncation of type IIB ten-dimensional supergravity.

Second, we note that in the limit s → +∞ (or equivalently setting all `i = 0), after
the change of coordinates

s→ e
g
4ρ , (5.9)

the metric (5.7) reduces to that of the linear dilaton solution which we presented in (4.10),
and moreover all scalars fi are identical in this limit and given by fi = −5φ0, where φ0
is also the same as that appearing in (4.10), up to the identification (4.13) between the
gauge coupling g and the parameter Q.

Finally, we can obtain an interpretation for this solution and for the parameters `i
studying the uplifted version of the solution in ten dimensions. Using the uplift formulas
of [105] one finds that the ten-dimensional solution in the string frame can be written as

ds2
10 = ds2(R1,5) + e2Φ

[ 4∑
i=1

(
e−2fi(µi)2

)
s2 ds2 +

4∑
i=1

(
e2fi(dµi)2

)]
,

H3 = −2 ?
[
dΦ ∧ vol(R1,5)

]
,

e2Φ = 16
g2

∏4
i=1 e−fi∑4

i=1 (e−2fi(µi)2)
,

(5.10)

where ∑i(µi)2 = 1 hence the µi parametrize S3 ⊂ R4. The interpretation of this becomes
clear after introducing four coordinates zi which parametrize R4 via

zi = efi µi , (5.11)
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which allow to rewrite the solution as

ds2
10 = ds2(R1,5) +H ds2(R4) ,

H3 = −2 ?
[
dΦ ∧ vol(R1,5)

]
.

e2Φ = H ,

(5.12)

In eq. (5.12), H is fixed by comparing the expression of the dilaton between (5.10) and (5.12)
and it satisfies ∆4H = 0, where ∆4 is the Laplacian in R4 parametrized by Cartesian
coordinates zi. This is simply the 1

2 -BPS solution of type II supergravity describing a
distribution of NS5 branes extended along R1,5 and localized in R4, where their location is
identified by the singularities of the function H, whose expression can be given as

H = 4
Q2

∫
R4

d4z′
ρ(z′)

|z − z′|4
. (5.13)

In eq. (5.13), ρ is the normalized density of NS5 branes in R4 and we have “dropped the
1” in the expression of the harmonic function H since 7d supergravity only captures the
near-horizon region of solutions. Note that while every choice of H that is harmonic in R4

is such that (5.12) solves the equations of motion and Killing spinor equations of type II
supergravity, only functions H (hence, distributions of branes) of the form fixed by the dilaton
in (5.10) can be obtained from the uplift of solutions in 7d supergravity. This constraint
on the form of H was understood in [113, 114] (see also [115, 117]) as arising from the
requirement that the spectrum of fluctuations around these vacua should be computable
equivalently from the 10d and from the 7d metric, as a consequence of the fact that the
truncation is consistent. The relation between the parameters `i (see eq. (5.5)) determine
the isometries of the distribution of NS5 branes in R4. In all cases we have a continuous
distribution, and the cases which preserve a continuous group of symmetries were analyzed
in [118], which we now briefly review. One of the `i can be set to zero with a shift of s2

and a redefinition of the other parameters, so without loss of generality we can set `4 = 0.
Then, the minimal choice that preserves a continuous subgroup of SO(4) is `3 = 0, which
in [118] was proved to correspond to the normalized density

ρ(z) = 1
π `1 `2

δ

(
1− z2

1
`21

− z2
2
`22

)
δ(z3)δ(z4) , (5.14)

describing a continuous distribution of NS5 branes on an ellipsis with axes `1 and `2 lying in
the (z1, z2) plane. The symmetry of this distribution is U(1)⊗Z2, corresponding to rotations
in the transverse plane to the ellipsis and to swapping the two axes, respectively. It was
argued in [118] that this model should admit an exact worldsheet CFT description, and that
it corresponds to a marginal deformation of the CHS background. Interesting observation on
the dual worldsheet description can be found in [119–121], which have a holographic spirit
similar to the one advocated in our work. Moreover, there is a number of limiting cases,
which likewise are expected to (or actually already do) have a worldsheet description. We
list them below as they play a role in this paper.

• `1 = `2 ≡ `: in this limit the ellipsis degenerates into a circle of radius `, along which
the branes are uniformly distributed. The preserved symmetry is U(1) ⊗ U(1). The
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worldsheet description of this supergravity background is the CFT (2.25), given by
a product of the Euclidean cigar and the parafermion disk CFT, as first observed
in [52]. Given its importance in this context, we discuss this case in detail in the next
subsection.

• `1 ≡ `, `2 → 0: this case corresponds to a denegerate limit in which one of the two axes
of the ellipsis collapses and the branes are distributed on a segment of length 2` along
the z1 axis. The density of branes in this case is not uniform and is given by

ρ(z) = 1
π `

(
1− z2

1
`2

)−1/2

δ

(
1− z2

1
`2

)
δ(z2)δ(z3)δ(z4) . (5.15)

Introducing spherical coordinates for S3 via

µ1 = cosψ , µ2 = sinψ cos θ , µ3 + iµ4 = sinψ sin θ eiα , (5.16)

we can express the metric in the R4 transverse to the branes as

Q2

4 H ds2(R4)=

√
1+ `2

s2

[
ds2

s2+`2 +dψ2+ s2 sin2ψ

s2+`2 sin2ψ
(dθ2+sin2 θdα2)

]
. (5.17)

• `1 ≡ `, `2 → ∞: this is a different degenerate limit in which the branes are uniformly
distributed along two infinitely extended bars located at z1 = ±`. The corresponding
density is

ρ(z) = lim
L→∞

Θ(L− |z2|) [δ(z1 − `) + δ(z1 + `)] δ(z3)δ(z4) , (5.18)

and it turns out that this solution is T-dual to the Eguchi-Hanson metric with two nuts
at z1 = ±`, as detailed in [118].

• `1 = `2 = 0: this is the simplest case, in which the branes are localized at the origin of
R4 and the coordinate transformation r → egρ/4 shows that the solution in this case
reduces to the CHS background (2.29).

5.2 Branes on a circle, cigar and T-duality

In this subsection we consider more in detail the case in which the NS5 branes are uniformly
distributed on a circle, since it is particularly relevant for the worldsheet description of
noncritical strings. The solution presented here was originally obtained in [51] in the study of
the interplay between supersymmetry and T-duality, which plays a crucial role in this work.
In [52] it was then obtained from a distribution of k localized branes on a circle of radius
R, in a limit of large k and in the decoupling limit [6] — see also [77]

gs, R→ 0 , `s,
R

gs
= fixed , (5.19)

where gs is the string coupling and `s the string length. The result can be obtained directly
from (5.10) by setting `1 = `2 ≡ ` and `3 = `4 = 0, changing coordinates using

s→ ` sinh ρ , (5.20)
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and choosing angular coordinates for S3 via

µ1 + iµ2 = sin η eiξ1 , µ3 + iµ4 = cos η eiξ2 , (5.21)

which allow to express the full 10d solution as

ds2
10 = ds2(R1,5) + 4

Q2

[
dρ2 + dη2 + tan2 η dξ2

1 + tanh2 ρ dξ2
2

1 + tan2 η tanh2 ρ

]

B2 = 4
Q2

dξ1 ∧ dξ2

1 + tan2 η tanh2 ρ
,

e2Φ = 8
Q2(cos 2η + cosh 2ρ) .

(5.22)

Note that this solution, where the NS5 branes are uniformly distributed along a circle
(parametrized by ξ1), preserves U(1)×U(1) isometries in the R4 transverse to the worldvolume
of the branes. One should think of this space as R4 = C⊕C, where the branes lie on a circle
in the first copy of C, while they are localized at the origin of the second. The Killing vectors
∂ξ1 and ∂ξ2 generate U(1) rotations around the origin of the first and second copy, respectively.
Note that they are both Killing vectors only in the limit of a uniform distribution of branes,
while for a finite number k of NS5 branes localized at points along a circle (which is the
starting point of [51, 52]) the isometry generated by ∂ξ1 is broken to Zk. In terms of the SO(4)
compact part of the gauge group of the two supergravities that we consider, which as in (4.4)
we think of as [SU(2)+ ⊗ SU(2)−]/Z2, ∂ξ1 and ∂ξ2 correspond to the sum and difference of
the Cartan generators of the two copies of SU(2), not the Cartan generators themselves.

Using the standard rules of T-duality, it is straightforward to show that T-dualizing
along ∂ξ1 and changing coordinates with

ξ1 → 4
Q2ψ1 , ξ2 → ψ1 + ψ2 , (5.23)

gives rise to

ds2
10 = ds2(R1,5) + 4

Q2

[
dρ2 + tanh2 ρ dψ2

1 + dη2 + cot2 η dψ2
2

]
B2 = 0 ,

e2Φ = 1
sin2 η cosh2 ρ

,

(5.24)

while a T-duality along ∂ξ2 together with the change of coordinates

ξ2 → 4
Q2ψ2 , ξ1 → ψ1 − ψ2 , (5.25)

leads to

ds2
10 = ds2(R1,5) + 4

Q2

[
dρ2 + coth2 ρ dψ2

1 + dη2 + tan2 η dψ2
2

]
B2 = 0 ,

e2Φ = 1
cos2 η sinh2 ρ

.

(5.26)
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Both (5.24) and (5.26) are equivalent target space descriptions of the worldsheet CFT

R1,5 × SL(2)
U(1) × SU(2)

U(1) , (5.27)

where the “cigar” SL(2)
U(1) is parametrized by coordiantes (ρ, ψ1) and the “disk” SU(2)

U(1) is spanned
by (η, ψ2) — see also [77] for a description of the geometry (5.22) from the point of view of
the cigar CFT and a study of its boundary states. The two descriptions are related by further
T-dualities along ∂ψ1 and ∂ψ2 , which leave the structure of the solution unaltered except
for replacing (cosh ρ, sinh ρ) → (sinh ρ, cosh ρ) and (cos η, sin η) → (sin η, cos η), respectively.
Clearly, in the limit ρ → +∞ we recover the linear dilaton CFT

R1,5 × Rρ × U(1)ψ1 ×
SU(2)
U(1) . (5.28)

We note here that while the application of a T-duality to the geometry (5.22) does indeed
reproduce the target space geometry (5.24) of the cigar CFT (2.25), this only happens in the
limit k → ∞ where the k NS5 branes are uniformly distributed along a circle. On the other
hand, the worldsheet CFT (2.25) is well-defined for any finite integer value of k ≥ 2 and in
particular as evident from (2.24) (see also the comments below (2.12)) the disk CFT decouples
for k = 2 since its central charge vanishes, thus defining an 8d target space geometry.30 This
fact emphasizes one of the shortcomings of our attempt to provide a supergravity description
for the interaction between the massless modes of the noncritical string: the latter is defined
for k = 2, but the supergravity provides a good description only in the limit of large k.

An interesting feature of the relationship between the distribution of branes on a circle
and the background (5.27) is that the specific direction that one has to choose to perform
T-duality completely breaks supersymmetry, as already observed in [52]. This justifies the
statements made at the beginning of this section and explains why we are forced to work in 7d
to have a manifestly supersymmetric description. It is also tempting to generalize the lesson
learned from the distribution of NS5 branes on a circle to the more general distributions
discussed earlier in this section, since they can all be thought as arising from a similar
decoupling limit to that described in [52]. This is particularly interesting for the distribution
of branes on a segment considered in (5.17), since that model preserves an SU(2) symmetry
geometrically, which corresponds to the diagonal SU(2)D subgroup of SU(2)+ ⊗ SU(2)−,
see appendix B.3. When considering configurations with D-branes in section 6, this SU(2)
corresponds to (part of) the R-symmetry of the dual field theory living on the worldvolume
of the branes, so having a model which explicitly preserves it geometrically31 is particularly
convenient. The SU(2) model (5.17) is similar to the distribution of branes on a circle in the
sense that applying a T-duality along the Cartan of SU(2) to (5.17) one goes to a frame with
no Kalb-Ramond field and completely broken supersymmetry (at least from the supergravity
perspective). However, while this procedure applied to (5.22) gives rise to (5.24), which is
the target space of a well-known and studied CFT, the result of the same T-duality applied

30See section 3 of [78] for some interesting comments on why the smearing is necessary from the supergrav-
ity perspective.

31In the cigar model the SU(2) would only be preserved for k = 2, so it arises as a stringy effect rather than
a geometric one.
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to (5.17) naively gives rise to a complicated metric, which we were not able to identify with
the target space of any known 2d CFT. It would be very interesting to further investigate
this model and gain a better understanding of the worldsheet CFT in the frame with no
Kalb-Ramond field as described above.

We end by considering a version of (5.3) which is tailored to the problem of obtaining
the solution (5.22) upon uplift to 10d, since this will be useful for the next subsection. If
in (5.3) we set

f1 = f2 ≡ −5φ0 − φ1 , f3 = f4 ≡ −5φ0 + φ1 , (5.29)

we obtain the action

S =
∫

d7x
√
−g

[
R− 20(∂φ0)2 − 4(∂φ1)2 + g2

4 e4φ0

]
, (5.30)

which has a supersymmetric solution of the form

ds2
7 = e−4φ0

[
ds2(R1,5) + 16

g2 dρ
2
]
,

e−10φ0 = `2

2 sinh(2ρ) , e2φ1 = tanh ρ ,
(5.31)

whose uplift is precisely (5.22).

5.3 The cigar from an 8d effective action

Previous approaches to the problem of finding a supergravity description of noncritical string
theories are mostly based on the so-called fake superpotential approach [49, 111, 112]. After
formulating a guess for a putative effective action, where the supersymmetry of the string
model is not manifest, in some cases one is able to derive the corresponding (second order)
equations of motion from some first order equations. The latter involve an object — the
fake superpotential — which mimics the behavior of the superpotential of a supersymmetric
theory, hence the name. This is the approach adopted, for instance, in [36, 38, 39]. The
shortcoming of this method is that it is not systematic and it is not based on an actual
understanding of the underlying supersymmetry (if any). Moreover, the effective action is
simply guessed, rather than derived from a microscopic description as in our work. Despite
these shortcomings, some progress has nonetheless been made using this approach and here we
would like to show that, at least for certain NSNS solutions, what makes it possible to obtain
a fake superpotential at all is the supersymmetry of the theory after dimensional reduction.

To be concrete, consider the 8d effective action

S8d =
∫

d8x̂
√
−ĝ(S) e−2ϕ̂

[
R̂(S) + 4(∂ϕ̂)2 +Q2

]
, (5.32)

where the superscript “S” is meant as a remark of the fact that we are in the string frame, while
the hat notation is used for 8d quantities (which will be soon reduced to 7d ones, without hats).
We can move to the Einstein frame with the Weyl rescaling (we omit the “E” superscript)

ĝ
(S)
µ̂ν̂ = e

2
3 ϕ̂ĝµ̂ν̂ , (5.33)
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leading to

S8d =
∫

d8x̂
√
−ĝ(S)

[
R̂− 2

3(∂ϕ̂)
2 +Q2 e

2
3 ϕ̂
]
. (5.34)

Any solution of this model which admits a Killing vector ∂ψ can be reduced to 7d by means
of the standard formulas for Kaluza-Klein circle reduction (see, e.g., section 3.1 of [122])

ds2
8 = e2αφ ds2

7 + e2βφ (dψ +A)2 ,

ϕ̂ = ϕ ,
(5.35)

where the fields without hats (gµν , Aµ, ϕ and φ) are now 7d fields, and the choice

β = −5α , α2 = 1
60 ,

(5.36)

gives an Einstein frame action in 7d with canonical normalization for φ. The further change
of variables

ϕ = 5φ0 − φ1 , φ = 1
3α(φ0 + φ1) , (5.37)

leads to the action

S =
∫

d7x

[
R− 20(∂φ0)2 − 4(∂φ1)2 − 1

4e
−4(φ0+φ1)F 2 +Q2 e4φ0

]
, (5.38)

where F = dA, which matches precisely (5.30) after identifying g = 2Q using (4.13) and
setting the gauge field A to zero. Hence, even without an understanding of the putative Killing
spinor equations underlying the 8d action proposed in (5.32), since its dimensional reduction
gives rise to a subsector of the 7d gauged supergravities that we consider in this section we
have a very precise notion of supersymmetry. One simply has to solve the Killing spinor
equations in 7d and then uplift back in 8d, where the uplift of (5.31) with the formulas (5.35),
once translated back to the string frame, is (recall that A = 0 for this solution)

ds2
8 = ds2(R1,5) + 4

Q2

[
dρ2 + coth2 ρ dψ2

1

]
,

e2ϕ̂ = 1
`2 sinh2 ρ

,
(5.39)

which is the cigar solution in 8d and we have redefined ψ → 2
Qψ1. This same solution

can also be obtained from the reduction of (5.26) on the disk SU(2)/U(1). The situation
is exemplified in figure 2.

The same chain of dualities and reduction holds, of course, for the linear dilaton solution,
since this arises as the ρ→ ∞ limit of the cigar. We can illustrate the above mechanism in
another example, namely the solution found in [22, 23] describing NS5 branes wrapped on
S2 inside a K3 surface: this is the top-left corner of figure 2. Such solution was originally
obtained from the uplift of a solution to the 7d model (5.38), which in turn is a subsector of
both relevant gaugings of 7d supergravity. The 7d solution and its uplift are of the form

R1,3 × Rρ × S2 −→ R1,3 × S2 × R2 × R̃2 , (5.40)
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10d type II A/B

S3

reduction

10d type II B/A

Disk
reduction

7d ISO(4)/SO(4) sugra

8d effective action

S1

reduction

T-duality

Figure 2. Chain of reductions and T-dualities that relate type IIA/B supergravity in 10d to 7d
ISO(4)/SO(4) gauged supergravity and to the 8d effective action (5.32), at least in the subsector
of interest.

where we write the 10d solution as in eq. (2.26) of [14], emphasizing the fact that R̃2 is fibered
over S2 and together they give the backreacted metric of the K3 surface. It was already
observed in [123] that a suitable T-duality of the 10d solution in (5.40) leads to the background

R1,3 × KKL4 ×
SU(2)
U(1) , (5.41)

where KKL4 is a representative of the family of exact string theory backgrounds KKL2m
found in [53], which admit a worldsheet description in terms of N = 2 Landau-Ginzburg
models. The case m = 1 corresponds to the parafermion disk CFT: KKL2 ≡ SU(2)/U(1).
The target space of the KKL4 CFT is of the form

KKL4 = Rρ × S̃3 = Rρ × S2×̃U(1) , (5.42)

where S̃3 is known as the Berger sphere: a certain squashing of S3 preserving SU(2)× U(1)
isometries (for a review see, e.g., [124]), and ×̃ represents a fibration of the U(1) over S2. This
background sits on the top-right corner of figure 2 and the only non-trivial fields are metric
and dilaton, but no Kalb-Ramond field. Reducing on the disk SU(2)/U(1) is trivial since the
solution is factorized, and it gives rise to a solution of the 8d model (5.32), again with only
metric and dilaton (the bottom-right corner of figure 2). Further reducing along the U(1)
appearing in (5.42) using the formulas (5.35) gives back the 7d solution found in [22, 23],
sitting in the bottom-left corner of the diagram in figure 2. Note that the fibration in (5.42)
is responsible for a non-zero gauge field in 7d, which in turn allows the NS5 branes to wrap
S2 in a supersymmetric way, via a partial topological twist.

It would be interesting to extend this relation to other fields or solutions of the 7d
supergravity, and in particular to the RR sector.

6 RR backgrounds

We now proceed to consider solutions of the gauged supergravities discussed in the previous
section which include RR fields. This section contains almost exclusively original results,
although unfortunately our conclusions are less clear-cut than in the rest of the paper.
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Our long-term goal is to understand how supergravity can be used to obtain a worldsheet
formulation of 4d gauge theories such as pure N = 2 SYM or N = 2 SQCD, using noncritical
string theory. While this is certainly an ambitious program, steps in this direction (or for
the similar case of 4d N = 1 gauge theories) have been made by various authors, both from
a worldsheet perspective [41, 42, 61, 65, 77, 101] and using a supergravity approach [33–
39, 125–127]. In this paper we were able to obtain a supergravity formulation of the
noncritical superstring in which curvature corrections are actually suppressed for large k (as
opposed to previous approaches where they were simply ignored, although non-negligible),
while also having a formal derivation of first-order BPS equations based on the underlying
supersymmetry of the theory.

It is also worth pointing out that the very same 4d N = 2 gauge theories that we
wish to describe with the noncritical superstring have been investigated from a supergravity
perspective in various papers, where they are realized with different brane setups from the one
considered here. For instance in [14, 22, 23, 128] 4d N = 2 SYM is realized from D5 branes on
a two-sphere32 (flavor was also included in [26]), while an approach with fractional D3 branes
is put forward in [24, 25, 128] (with flavor included in [27]). See also [11–13, 15–21, 130] for
the case of N = 1 supersymmetry as well as [131–135] for analogous investigations in the case
of 3d gauge theories. While these are interesting ways of addressing this problem, we stress
that they all focus on the Calabi-Yau frame FCY discussed in section 2, which is related to
noncritical strings on the cigar backgrounds by a series of two T-dualities. T-duality is of
course a symmetry of the full string theory, but some information is lost when only focusing
on the supergravity approximation, which makes it non-trivial to explicitly relate these
approaches to the solutions described in this paper. Understanding such relation remains
however an important problem for the future, since it might also help clarify some of the
shortcomings of the solutions discussed in this section.

6.1 Gauge theories from noncritical strings

Let us begin by discussing the brane setup that one would hope to describe. As we shall
soon discuss, the actual solutions that we present here are not expected to reproduce this
precise setup, but it is still interesting to discuss it and keep it in mind as a reference. Let us
consider the case of 4d N = 2 gauge theories first, from which the 3d case can be obtained
in a trivial way. Our initial ambition was to obtain a supergravity description for theories
defined by k = 2 NS5 branes plus D-branes, such as pure N = 2 SYM or N = 2 SQCD.
The distribution of branes corresponding to these theories is represented in table 11, where
pure SYM corresponds to Nf = 0 while SCQCD is the case Nf = 2Nc. Note that we have
included the SU(2)/U(1) disk CFT in the picture, but recall that this is only present for
general k, while its central charge vanishes for the intereseting case of k = 2, which is why
the color branes are referred to as D3-branes: one should have in mind an eight-dimensional
spacetime. These are precisely the boundary states described in section 3: the D3-branes are
D0-branes of SL(2)/U(1), localized at the tip of the cigar, tensored with a suitable boundary
state of the Minkowski part (and of the disk, for k > 2), while the D5-branes are D2-branes
of SL(2)/U(1), extended along the cigar, tensored with the same boundary state in R1,3

x ×R2
y.

32See also [129] for the case of D5 wrapped on a spindle and a recent discussion of wrapped fivebrane solutions.
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R1,3
x R2

y SL(2)/U(1) SU(2)/U(1)
Nc D3 × × × × × ×
Nf D5 × × × × × ×

Table 11. Distribution of D-branes in type IIB noncritical string theory describing a 4d N = 2
SU(Nc) gauge theory with Nf hypermultiplets.

R1,3
x R2

y Ru R3
v

k NS5 × × × × × ×
Nc D4 × × × × ×
Nf D6 × × × × × × ×

Table 12. HW setup in type IIA critical string theory that is T-dual to the configuration of table 11.

From the perspective of the 4d field theory living on the common worldvolume directions
(R1,3

x ), Nc is the number of colors while Nf is the number of flavors.
As described in the previous section, a supergravity description for noncritical string

theories is only possible in the T-dual frame where the cigar is replaced by a distribution
of NS5 branes of type IIA. Similarly, the same T-duality replaces the D3 with D4 branes
and the D5 with D6 branes, thus realizing a Hanany-Witten (HW) setup in type IIA [136] —
see [137] for a discussion of the equivalence between the two frames and [138–140] for more
details on the relation between configurations of branes of this type and the dual gauge
theories. The corresponding configuration of branes is described in table 12. For k = 2 this
should be interpreted as follows: there are two NS5 branes localized in R4 = Ru × R3

v, where
u is the direction of a line connecting the two. The D4 branes are suspended between the
two NS5 branes, with a worldvolume of finite extent along the u-direction, while the D6
branes are localized along u and extended along the transverse R3

v. Due to the HW effect,
one could trade the D6 branes for semi-finite D4 branes which extend along u between the
NS5 branes and infinity. From the point of view of the dual 4d gauge theory, R2

y represents
the Coulomb branch. If written in polar coordinates,

ds2(R2
y) = dy2 + y2 dα2 , (6.1)

solutions where ∂α is an isometry realize the U(1)r symmetry of a 4d N = 2 QFT geometrically.
As well known, for N = 2 asymptotically free SU(Nc) gauge theory with Nf hypermultiplets
(Nf < 2Nc), the chiral anomaly breaks the U(1)r to a Z2(2Nc−Nf ) subgroup [141], which
moreover is completely spontaneously broken at a generic point on the Coulomb branch. It is
an interesting question how this picture should be reproduced in supergravity. So far as the
spontaneous breaking is concerned, as discussed the R2

y plane is identified with the Coulomb
branch and at this level we can choose whether to consider solutions for which ∂α is a Killing
vector (that is, theories at the origin at the Coulomb branch) or not. A different question is
how the breaking due to the anomaly can be captured by the supergravity description. In
a related context, the gravity counterpart of the chiral anomaly was identified in solutions
where the geometry does possess a U(1) isometry, which however is broken by the RR fields
to a discrete subgroup [14, 22]. While we shall not be able to explicitly demonstrate that
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R1,2
x R3

y SL(2)/U(1) SU(2)/U(1)
Nc D3 × × × × ×
Nf D5 × × × × ×

Table 13. Distribution of D-branes in type IIA noncritical string theory describing a 3d N = 4
SU(Nc) gauge theory with Nf hypermultiplets.

R1,2
x R3

y Ru R3
v

k NS5 × × × × × ×
Nc D3 × × × ×
Nf D5 × × × × × ×

Table 14. HW setup in type IIB critical string theory that is T-dual to the configuration of table 13.

the same happens here, in our solutions we will also find RR fields extended along the R2
y

plane, so it is plausible that an analogous mechanism can be invoked here.
Aside from this comment, we also note that writing

ds2(R3
v) = dv2 + v2 ds2(S2

R) , (6.2)

solutions that preserve the isometries of S2
R realize the SU(2)R symmetry geometrically, and

here we shall work under this assumption.
A completely analogous story (except for the chiral anomaly, of course) holds for D

branes of type IIA noncritical string theory, which are T-dual to a NS5-D3-D5 HW setup
of type IIB critical string theory describing 3d N = 4 gauge theories. This can be obtained
from a trivial T-duality of the configurations described above, performed along one of the
space-like directions in R1,3

x . The resulting setup in type IIA noncritical string theory is
described in table 13, while its T-dual description as a HW setup in critical type IIB is
represented in table 14. Note that for 3d N = 4 gauge theories the Coulomb branch is now
R3
y, which we can write in polar coordinates as

ds2(R3
y) = dy2 + y2 ds2(S2

L) , (6.3)

where the isometries of S2
L realize geometrically the SU(2)L part of the SO(4) ' SU(2)L ×

SU(2)R R-symmetry, while the SU(2)R part is realized by the isometries of a two-sphere
S2
R in R3

v as in (6.2).
While this represents our original ambition, one has to deal with the fact that in the

context of two-derivative supergravity it is not possible to obtain a T-dual description of the
cigar background with localized NS5 branes, as we have reviewed in the previous section.
Rather, the only geometrical description available in the frame FNS5 includes a large number
k → ∞ of NS5 branes arranged on a circle. This is closely related to the fact that the
curvature of the solutions scales with k−1, so that supergravity is only trustworthy for large k.
When adding boundary states, the gauge theories that we end up describing are complicated
by the fact that the D4-branes are now stretched between an infinite number of smeared NS5
branes and are therefore also smeared. We can imagine the existence of a family of 4d gauge
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theories parametrized by an integer k (in the spirit of, e.g., [142]), with our supergravity
description valid for k → ∞ while theories such as N = 2 pure SYM and SQCD are defined
for k = 2, where the supergravity description fails.

6.2 Backgrounds with RR fields: noncritical type IIB

We would now like to consider a solution of 7d ISO(4) gauged supergravity which realizes
the HW setup of table 12 after uplift to 10d type IIA supergravity. While in table 11 we
have provided the T-dual description in noncritical type IIB superstring theory in terms of
boundary states of the cigar, here we encounter a problem. As discussed in the previous
section, the supergravity realization of the cigar involves an arrangement of an infinite number
of NS5 branes on a circle, which only preserves a U(1)×U(1) isometry in the space transverse
to the branes. If, on the other hand, we wish to realize the SU(2)R symmetry of the dual 4d
N = 2 gauge theory geometrically, we are forced to choose a different arrangement, namely
the branes on a segment described in section 5.1. This has the advantage that we are dealing
with a larger group of isometries, which simplifies the ansatz in gauged supergravity, but the
drawback that the worldsheet CFT corresponding to this configuration of NS5 branes is not
understood from the perspective of noncritical string theory and therefore we do not have
a good understanding of its boundary states. The two descriptions of course agree in the
limit k = 2, where there are only two NS5 branes and the SU(2)R in the SL(2)2/U(1) CFT
arises at the worldsheet level because the cigar is at the free fermion radius for this value of
k: unfortunately, though, this aspect cannot be captured by the supergravity description.

6.2.1 A truncation of ISO(4) gauged supergravity

We would like to find a truncation of the gauged supergravity that preserves Poincaré
invariance on R1,3

x as well as the SU(2)R isometry of S2
R upon uplift to 10d type IIA

supergravity.33 Out of the 14=10(NSNS)+4(RR) scalars of the theory, there are 2 NSNS
singlets of SU(2)R (f1 and f4 in (5.1), with f2 = f3 = f1) and 1 RR singlet b. None of
the NSNS vectors preserves SU(2)R, while there is a single RR vector which is invariant,
which we call Aµ. The requirement that our solution should preserve Poincaré invariance
on R1,3

x implies that all self-dual massive three-forms should vanish, while in principle there
is still room for the NSNS two-form B0

µν appearing in (4.7), since it is a singlet of SO(4).
However, a non-trivial B0

µν would be associated with the existence of NS5 branes in type
IIA that are extended along some directions in R4 = Ru × R3

v, on top of the distribution of
NS5 branes extended along R1,3

x × R2
y which is present just by virtue of considering solutions

of this specific gauged supergravity. For this reason, we set B0
µν = 0. So we end up with a

trunctation of our 7d guaged supergravity containing two NSNS scalars φ0, φ1,34 one RR
scalar b and one RR vector Aµ, where we would like to interpret the latter two fields as those
sourced by the D5 and D3 branes in table 11, respectively, or the D6 and D4 branes in the
dual picture of table 12. As we shall soon see, however, this is not quite accurate. The action

33This SU(2)R is the group called SU(2)D in appendix B.3. In terms of the SO(4) index i = 1, . . . , 4
introduced in (4.6), SU(2)R generates rotations in the space i = 1, 2, 3. In other words, it is the SU(2) ⊂ SO(4)
such that under SO(4) → SU(2), the branching rule for the fundamental representation is 4 → 1 + 3.

34In terms of the four scalars fi of (5.1), f1 = f2 = f3 = φ1 − 5φ0 and f4 = −3φ1 − 5φ0.
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for this model, which can be obtained from either [105] or [110], is

S =
∫
d7x

√
−g

[
R+ V − 20(∂φ0)2 − 12(∂φ1)2 − 4e6(φ0−φ1)F 2 − 1

2e
10φ0+6φ1(db+ g A)2

]
,

(6.4)

where g is the 7d gauge coupling, F = dA and the potential is

V = g2

32e
4(φ0−φ1)

(
3 + 6e8φ1 − e16φ1

)
. (6.5)

We note that, as anticipated in section 4.3, the RR scalar b does not appear in the potential
and moreover it is coupled à la Stückelberg to the gauge field A: we can set b = 0 with a
gauge transformation and work with a massive gauge field A. Solutions of (6.4) preserve
supersymmetry if the following Killing spinor equations (KSEs) are satisfied35

0 =
[
∇µ −

g

80e
2(φ0−φ1)(3 + e8φ1)γµ

+
(
g

4e
5φ0+3φ1 Aµ +

1
10e

3(φ0−φ1)(γ νλ
µ + 8γνδλµ)Fνλ

)
τ45

]
ε ,

0 =
[
/∂φ0 +

g

80e
2(φ0−φ1)(3 + e8φ1)−

(
g

8e
5φ0+3φ1 /A− 3

20e
3(φ0−φ1) /F

)
τ45

]
ε ,

0 =
[
/∂(φ0 − φ1) +

g

20e
2(φ0−φ1)(2− e8φ1) + 2

5e
3(φ0−φ1) /F τ45

]
ε ,

(6.6)

where ε is a spinor of Spin(1, 6) as well as of USp(4) ' SO(5), while τ45 = τ[4τ5], where
an explicit representation for the flavor gamma matrices τM , M = 1, . . . , 5, is given in
appendix B.1.

6.2.2 Solutions with eight supercharges

We are now ready to make an ansatz for our solution. The metric should be of the form

ds2
10 = e−4φ0

[
eg1 ds2(R1,3

x ) + 4 eg2

g2
dr2

r2 + eg3 ds2(R2
y)
]
, (6.7)

where gi (i = 1, 2, 3) are functions of r and ~y, with r playing the role of a linear-dilaton
direction (at least asymptotically). The two scalars φ0 and φ1 are also arbitrary functions
of r and ~y, and we take

A = A1 dy1 +A2 dy2 +Ar dr , (6.8)

for arbitrary A1, A2 and Ar. We look for solutions preserving eight supercharges, which
we think of as realizing the 4d N = 2 super-Poincaré algebra on R1,3

x . We find that this
requires the spinor ε to satisfy the projections

γrε = ε , τ45ε = γy1y2ε , (6.9)
35We only display the independent components of the more general KSEs which can be obtained setting to

zero the fermions in the supersymmetry transformations given in [110]. The two algebraic KSEs are obtained
from δχabc of [110] as two independent linear combinations of (τ4)d

c(τ4)abδχ
abc and (τ5)d

c(τ5)abδχ
abc.
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where the first is the same projection satisfied by the domain walls presented in section 5.1,
while the second further reduces the supersymmetry by a half and is dictated by the structure
of the KSEs. The corresponding BPS equations allow to express all the functions appearing
in the ansatz in terms of a unique function (up to some convenient gauge choices) which we
call K ≡ K(r, ~y), as we now describe. The BPS equations set Ar = 0 and fix the massive
vector A to be of the form

A = 1√
r
?y dyK ≡ −∂y2K dy1 + ∂y1K dy2√

r
, (6.10)

where ?y and dy refer to the hodge star and exterior derivative taken in R2
y with a flat metric

ds2(R2
y) = dy2

1 + dy2
2. The metric functions are fixed in terms of K by

e−g1−g2 = g K , e−g1+g2 = g (K − 2r ∂rK) , g3 = −g1 , (6.11)

while the scalars φ0 and φ1 are conveniently expressed in terms of g1 and g2 as

φ0 = 1
5g1 +

1
20g2 +

1
10 log r , φ1 = 1

4g2 . (6.12)

The function K is then constrained by a second-order non-linear partial differential equation
(PDE) which reads

∆yK + g3

8 r
2 ∂2

rK
2 = 0 . (6.13)

Similar PDEs have appeared in related contexts, see e.g. [143–146]. This equation appears
to be complicated to solve in general, but let us make a comment on the simplest case,
where explicit solutions reduce to backgrounds that we have already studied. If we drop the
dependence on ~y, that is we assume that K(r, ~y) ≡ f(r), we find the general solution

f(r) =
√
c1 + c2 r , (6.14)

for some integration constants a and b. The RR field Aµ is set to zero by this choice, so we
end up with purely NSNS solutions. In particular, we note that setting c2 = 0 and c1 = g−1,
or K = g−1, reproduces the linear dilaton solution (4.10), provided that we set r = e−

g
2ρ. On

the other hand, keeping both a and b we find that the choice K = g−1√1 + `2 r gives the
distribution of NS5 branes on a segment discussed around (5.17), after setting s = 1/

√
r.

Even without solving the PDE (6.13) explicitly, it is clear that AdS5 solutions do not
exist — we shall comment more on this at the end of this section.

6.2.3 Uplift to 10d type IIA supergravity

To interpret the 7d solution above it is convenient to consider the uplift to ten dimensions,
for which we can use the expressions in [105]. The resulting string frame solution reads
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(see appendix C for our conventions)

ds2
10 = eg1 ds2(R1,3

x ) + e−g1ds2(R2
y) + eg2 4

g2
dr2

r2 + 16
g2

[
e−g2dψ2 + 1

Ω sin2 ψ ds2(S2
R)
]
,

C1 = 4 cosψA ,

B2 = 16
g2

(
ψ − eg2 sin 2ψ

2Ω

)
vol(S2

R) ,

C3 = 64e−g2 sin3 ψ

g2 Ω A ∧ vol(S2
R) ,

e2Φ = e2g1

Ω r ,

(6.15)

with A is the 7d massive vector and

Ω = eg2 cos2 ψ + e−g2 sin2 ψ , (6.16)

where the S3 transverse to the NS5 branes is parametrized by ψ ∈ [0, π) and polar coordinates
(θR, φR) for the S2

R.36 To discuss the structure of the solution, it is useful to consider an
alternative set of coordinates, namely we introduce37

u = 1√
r
cosψ , v = 1√

r
sinψ , (6.17)

with u ∈ R while v ∈ R+ as a consequence of ψ ∈ [0, π). In these coordinates, the metric
and dilaton of (6.15) can be rewritten as

ds2
10 = eg1 ds2(R1,3

x ) + e−g1ds2(R2
y) +

16
g2

1
u2 + v2

[
Ω−1 ds2(R3

v) + ΩDu2
]
,

e2Φ = e2g1

u2 + v2 Ω−1 ,

(6.18)

where now

Ω = eg2u2 + e−g2v2

u2 + v2 , (6.19)

and

Du = du+ eg2 − e−g2

Ω
u v

u2 + v2dv , ds2(R3
v) = dv2 + v2 ds2(S2

R) . (6.20)

To understand the meaning of these coordinates, it is useful to consider solutions which
asymptote the linear dilaton, that is

K = g−1 + . . . , (6.21)
36Here there is only one S2, so the subscript R is irrelevant. We keep it nonetheless since in the 10d type IIB

solution dual to 3d gauge theories there is also an additional S2 in the internal space, which we refer to as S2
L.

37Another, similar, change of coordinates is also interesting: setting

x1 = 4
√
r

g

ψ

sinψ , x2 = 4
g
√
r

sinψ , x3 = y1 , x4 = y2 ,

one obtains the coordinates x1, . . . , x4 used in [144] for the classification of R1,3 solutions with eight supercharges
and geometric SU(2)R symmetry in type IIA. In particular, our solutions belong to the class analyzed in
section 4.3, see also appendix C.
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where the ellipsis denote corrections that come in (possibly non-integer) powers of r, with
~y-dependent coefficients. In this case, since asymptotically

eg1 ' eg2 ' 1 , Ω ' 1, Du ' du , (6.22)

we see that in this limit the part of the metric in square brackets in (6.18) reduces to that
of R4 written as

ds2(R4) = du2 + ds2(R3
v) . (6.23)

The main advantage of the coordinates u, v introduced in (6.17) is that they allow for a
clearer understanding of the configuration of branes. In particular, following the conventions
outlined in the last paragraph of appendix C.2 for the introduction of electric potentials,
we note that a suitable choice of gauge exists such that

B6 = eg1−2Φvol(R1,3
x ) ∧ vol(R2

y) ,

C5 = 4
g
eg1 Ωvol(R1,3

x ) ∧Du ,

C7 = 64
g3 e

2Φvol(R1,3
x ) ∧ vol(R3

v) .

(6.24)

From the expressions above we can read off the fact that, if the solution is asymptotic to the
linear dilaton according to (6.22), then the brane setup is precisely that described in table 12.

We can now consider the problem of quantizing the fluxes. For this purpose, it would
be interesting to have explicit solutions describing the intersection between localized branes,
which would allow one to study explicitly the compact cycles in the geometry. However, it
is rather challenging to find solutions to the PDE (6.13) and we have not found a solution
that realizes this setup. However, we can still make some interesting comments by working
under the conditions (6.22), which correspond to the assumption that we can study the
geometry “far enough” from the D-branes, so that their backreaction is negligible. Note that
this is the opposite regime from the near-horizon limit that one would like to take to explore
holographically the dual QFTs, but it is still sufficient to determine the number of branes
involved in the solution. Let us then proceed by assuming that the explicit solution for K is
of the type (6.21), implying the behavior (6.22), so that the geometry “at infinity” looks like

ds2
10 ' ds2(R1,3

x ) + ds2(R2
y) +

16
g2

1
u2 + v2

[
du2 + ds2(R3

v)
]
. (6.25)

The simplest analysis is for the three-form flux H3, which is sourced magnetically by NS5
branes. As clear from (6.24), the latter are extended along R1,5

‖ ≡ R1,3
x × R2

y, so they are
localized at points in the transverse R4

⊥ ≡ Ru×R3
v. We can then identify a three-cycle setting

x = y = 0 (the origin of R1,5
‖ ) and surrounding the NS5 branes with a three-sphere in R4

⊥,
which can be done by setting u = s cosψ and v = s sinψ, with s ∈ R+ and ψ ∈ (0, π):38

the resulting three-sphere is the same S3 used for the uplift, parametrized by ψ and S2
R.

Integrating H3 on this cycle gives

k ≡ 1
(2π)2α′

∫
S3
H3 = 8

g2 , (6.26)

38Note that change of coordinates is the same as in (6.17), with r = s−2.
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where we have set α′ = 2 and consistently with the notation adopted in the rest of the paper
we call k the number of NS5 branes. This fixes the relation between the gauge coupling
of the supergravity and the number of NS5 branes as we have already discussed in (4.12)
in terms of the parameter Q = g/2.

The quantization of D-brane charges is a bit more subtle. Let us begin with D6 branes,
which are extended along R1,3 × R3

v according to (6.24), so to find a two-cycle where to
integrate F2 we set x = v = 0 and we need to identify a two-sphere in the transverse
R3

D6 ≡ R2
y × Ru, which from (6.25) has a metric

ds2(R3
D6) = ds2(R2

y) +
16
g2

du2

u2 . (6.27)

We can then set

u = e
g
4 r6 cos η6 , ~y = y

(
cosα
sinα

)
= r6 sin η6

(
cosα
sinα

)
, (6.28)

which identifies a two-sphere S2
D6 surrounding the origin r6 = 0 of R3

D6, parametrized by
η6 ∈ (0, π) and α ∈ (0, 2π). We are from now on going to assume that ∂

∂α is a Killing vector,
which implies that the U(1)r part of the R-symmetry of the dual 4d QFT is unbroken. We
find that setting v = 0 one has

F2|v=0 = dA|v=0 , (6.29)

where A is the 7d massive vector introduced in (6.10). We can then compute the total
number of D6 branes via

ND6 ≡ 1(
2π

√
α′
)
gs

∫
S2

D6

F2 =
√
2

π gs
ID6[A] , ID6[A] ≡

∫
S2

D6

dA|v=0 . (6.30)

The logic is similar for D4 branes, which according to (6.24) are extened along R1,3
x × Ru,

so we need to identify a four-cycle inside R5
D4 ≡ R1,3

x × R3
v. The metric on this space,

following from (6.25), is

ds2(R5
D4) = ds2(R2

y) +
16
g2

[
dv2

v2 + ds2(S2
R)
]
, (6.31)

which is actually of the form R3 × S2
R, with the R3 parametrized by ~y and v. The four-cycle

ΣD4 needed to integrate the four-form RR flux is then given by the product of a two-sphere
S2

D4 surrounding the origin of this R3 and the two-sphere S2
R dual to SU(2)R: ΣD4 = S2

D4×S2
R.

Here S2
D4 is identified in a similar way to S2

D6, that is after the change of coordinates

v = e
g
4 r4 cos η4 , ~y = y

(
cosα
sinα

)
= r4 sin η4

(
cosα
sinα

)
, (6.32)

it is the sphere surrounding the origin r4 = 0 and parametrized by η4 ∈ (0, π) and α ∈ (0, 2π).
We note that generally speaking the number of D4 branes in this context is a Page charge,
which can be obtained integrating either F̃4 (which is gauge-invariant, but not closed) or
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F4 (which is closed, but not gauge invariant) — see appendix C for our conventions. In
particular, in principle one could perform a large gauge transformation of B2 which changes
the D4 branes charge. However, since this would affect F4 in the form of a term F2 ∧ B2
which vanishes in the limit (6.22) and after setting u = 0, we find that such ambiguity does
not affect the computation of the charge in this case. Indeed, we find

F̃4
∣∣∣
u=0

= dC3|u=0 = 64
g2 vol(S

2
R) ∧ dA|u=0 , (6.33)

from which we can finally compute the flux

ND4 ≡ 1(
2π

√
α′
)3
gs

∫
ΣD4

F̃4 =
√
2k

π2 gs
ID4[A] , ID4[A] ≡

∫
S2

D4

dA|u=0 . (6.34)

Note that in (6.30) and (6.34) we have introduced two integrals ID6[A] and ID4[A], whose
evaluation determines the final result for the fluxes. We cannot evaluate those integrals
directly because that would require an explicit solution to the PDE (6.13), but some comments
are in order. First, we note that although we have given two distinct definitions for these
integrals, they actually evaluate to the same result for any solution arising from the uplift of a
7d gauged supergravity solution. This is because they are only distinguished by setting either
u = 0 or v = 0, but the massive 7d vector A only depends on the combination r = (u2 + v2)−1

— see (6.10) — so for the solutions discussed here we actually have ID6[A] = ID4[A] ≡ I[A].
This fact also has another implication: our solutions do not allow to have only color (D4)
branes without flavor (D6) branes. This is related to the fact that the massive 7d gauge field
A sources both F2 and F4 in ten dimensions, but we do not have an interpretation for this
fact from the perspective of noncritical string theory. Another comment is related to the fact
that the ratio between ND4 and ND6 is irrational and more precisely given by k/π, so that
only one of the two types of D-brane charges can actually be quantized. We believe that
the reason for this is that there is a smearing in the distribution of D4 branes along S2

R, so
that they are not fully localized. This fact is manifest in the metric on the space transverse
to the D4 branes, (6.31), which is not R5 but rather R3 × S2

R.

6.2.4 Solving the PDE

To conclude this subsection, let us comment on possible solutions to the PDE (6.13). As we
already discussed, the simplest choice K(r, ~y) ≡ f(r) gives the distribution of NS5 branes
on a segment found in (5.17) and as such has vanishing RR fields. Thus, here we focus on
solutions with non-trivial dependence on both r and ~y, which we would like to interpret
as distributions of D4 and D6 branes on top of the arrangement (5.17) of NS5 branes. In
doing so, we remind the reader of the analysis carried out in section 3 for the backreaction of
the boundary states of the cigar on the metric. While that analysis strictly speaking only
holds for the cigar at level k = 2 (that is, two NS5 branes), and as such does not apply to
the solutions considered here (that is, branes on a segment for large k), we can still take
away two qualitative lessons that we shall compare our results with. The first is that the
backreaction of color branes in (3.37) is subleading compared to that of flavor branes (3.41)
in an expansion for large ρ. The second is the type of functions of ~y that appear in this
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expansion around the linear dilaton solution differs qualitatively for the two types of branes:
we find polynomials of ~y for color branes and Bessel functions for flavor branes.

Since all the information that we were able to extract from the analysis of the boundary
states is in the form of an asymptotic expansion around the linear dilaton region, recalling
that in such regime the coordinate r used in this section maps to the usual ρ used for linear
dilaton solution and in the worldsheet analysis via r = e−gρ/2, so that it is natural to consider
an expansion in (possibly fractional) powers of r. One can then try an ansatz of the form

K =
∞∑
n=0

rn/afn(~y) , (6.35)

for a priori arbitrary values of a > 0. The PDE (6.13) then constrains the functions fn(~y) via

∆yfn(~y) +
g3

8a2n(n− a)
n∑
j=0

fj(~y)fn−j(~y) = 0 , (6.36)

that can be solved order by order. While this does not seem particularly instructive, and
indeed we are not generally able to find closed-form expressions for general solutions or even
just a specific criterion to fix integration constants arising at each order, we do find that
for a specific value of a a truncated solution exists. Setting a = 2, which corresponds to
an expansion in powers of

√
r, we find that39

K = g−1 +
√
r h(~y) , with ∆yh(~y) =

g2

16 h(~y) ,
(6.37)

solves (6.13) exactly. If, for simplicity, we assume rotational invariance in R2
y so that h

only depends on y ≡ ||~y||, solutions to the resulting ODE for h in (6.37) that are regular
as y → ∞ are of the form

h(y) = K0
(g

4y
)
, (6.38)

where K0 is the same modified Bessel function of the second kind appearing in (3.41), which
we note corresponds to the expression of the Yukawa potential in 2d with mass Q/2. Note
that this is exactly the mass of the RR particles of the theory, as found from the worldsheet in
table 7 and from the 7d supergravity in (4.28). One could of course continue the asymptotic
expansion including higher powers of

√
r, but it is pretty remarkable that a truncated solution

exists at all and, to the best of our knowledge, such solution has not previously appeared in
the literature. We have not been able to carry out a detailed analysis for the quantization of
the fluxes in this case, probably due to the (at least partial) smearing of the D-branes, but
we certainly think that this solution is worth of a more careful investigation in the future.

Another interesting type of solutions arising from an expansion of the type (6.35) is of
polynomial type, which remind of the type of functions appearing in the backreaction of
D3 branes in (3.37), although here we are only including an expansion in exponentials of ρ,

39Note that while any constant at leading order would work simply from the perspective of solving (6.13),
we set it to g−1 to reproduce the linear dilaton asymptotics. Interestingly, as we comment in what follows this
specific value gives a Yukawa-type potential with the same mass as the RR fields.
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without any power-law behavior. We find that solutions exist where fn(y) (still assuming
rotational invariance for simplicity) is a polynomial in y of degree 2n − 2, and it is even
possible to fix the integration constants consistently in such a way that

fn(y) = cn y
2n−2 , with cn = − g3

32a2
n(n− a)
(n− 1)2

n−1∑
k=1

ckcn−k . (6.39)

This is a non-linear recursion relation that unfortunately appears hard to solve for any a,
although note that its expression slightly simplifies for a = 1. We note that c0 = 0, so that
in this case the leading order is not the one leading to a linear dilaton asymptotics. The
meaning of this solution is unclear, although given its particularly simple structure it would
be interesting to further investigate possible interpretations and look into a closed form
expression for the coefficients cn, at least for a = 1.

Finally, we would like to mention possibly the simplest non-trivial solution to (6.13),
which arises from an ansatz with separation of variables. Namely, setting

K(r, ~y) = f(r)g(~y) (6.40)

solves the PDE if

f(r) = g−1
√
1 + `2r , (6.41)

as in the solution (5.17) describing NS5 branes on a segment, for any harmonic function g(~y).
As opposed to the ones listed so far, the interpretation of this solution is quite clear and is
discussed in appendix D: it describes a configuration where the distribution of D-branes is
fully smeared in such a way as to respect the symmetries of the distribution of NS5 branes on a
segment. As a consequence of the smearing, it is not possible to quantize the associated fluxes.

6.3 Backgrounds with RR fields: noncritical type IIA

We now consider the analogue of the problem considered in section 6.2, but in the 7d
SO(4) gauged supergravity associated with type IIA noncritical string theory. The spirit is
precisely the same as that of the previous section, and so are the considerations regarding
the NSNS fields. On the other hand, in the RR sector the one SU(2)R-invariant massive
vector considered in section 6.3 is now replaced by a massive two-form Bµν . In principle,
one could then work out the action and Killing spinor equations for these fields and classify
supersymmetric solutions as done for the ISO(4) gauged supergravity. However, since at the
end of the day most of the insights on the solution in that case were gained from the uplift to
ten dimensions, we can take a shortcut. Namely, we start from the solution (6.15) in 10d type
IIA supergravity and perform a T-duality along one of the spacelike R1,3 directions. This
gives solution in 10d type IIB supergravity which is smeared along the T-duality direction,
but its localized version (along that direction) is straightforward to guess. For this reason we
shall work directly in ten dimensions, but we will give the expression of the corresponding
seven-dimensional massive two-form Bµν .
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In the string frame, the ten-dimensional solution in type IIB supergravity corresponding
to the procedure outlined above can be expressed as40

ds2
10 = eg1 ds2(R1,2

x ) + e−g1ds2(R3
y) + eg2 4

g2
dr2

r2 + 16
g2

[
e−g2dψ2 + 1

Ω sin2 ψ ds2(S2
R)
]
,

C2 = 4 cosψB ,

B2 = 16
g2

(
ψ − eg2 sin 2ψ

2Ω

)
vol(S2) ,

Cm
4 = 64 e−g2 sin3 ψ

g2 Ω B ∧ vol(S2) ,

e2Φ = eg1

Ω r ,

(6.42)

where

Ω = eg2 cos2 ψ + e−g2 sin2 ψ , (6.43)

while the 7d massive two-form B is given by

B = 1√
r
?y dyK , (6.44)

in terms of a function K ≡ K(r, ~y). Now we have a three-dimensional Coulomb branch
parametrized by three coordinates ~y. The R-symmetry of the dual 3d gauge theory is
SO(4) ' (SU(2)R × SU(2)L)/Z2, where the SU(2)R part is always realized geometrically
in (6.42), while the SU(2)L part is visible in the metric if we write

ds2(R3
y) = dy2 + y2 ds2(S2

L) , (6.45)

and assume that the solution preserves the SU(2)L isometry of S2
L, i.e. the functions only

depend on the radial direction y. With the definitions above, (6.42) is a solution to the
equations of motion of type IIB supergravity preserving eight supercharges (thus realizing 3d
N = 4 supersymmetry of R1,2

x ) if and only if the function K satisfies the PDE

∆yK + g3

8 r
2 ∂2

rK
2 = 0 , (6.46)

which is completely analogous to (6.13), with the only difference that now ∆y is the 3d
Laplacian. As a consequence, the structure of the solutions is also closely related to that
discussed for (6.13) in section 6.2.4 and we shall not repeat it here (note that again we
do not find AdS4 solutions). The only comment that we wish to make is that a truncated
solution (in the small r expansion) also exists here, which has the same structure as (6.37)
but with ~y coordinates on R3

y and ∆y a 3d Laplacian. As a consequence, the analogue of the
solution (6.38) is now (assuming rotational invariance as in that case)

h(y) = 1
y
e−

g
4y , (6.47)

40We follow the conventions outlined in the last paragraph of appendix C.3 and denote with Cm
4 the magnetic

four-form potential. The five-form flux entering the equations of motion and Killing spinor equations in C.3 is
then F̃5 = (1 + ?)(dCm

4 −H3 ∧ C2).
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which is the 3d Yukawa potential with mass g/4 = Q/2. Once again, this is the same mass
as that of the RR fields and moreover h(y) above is the same function appearing in the
study of the asymptotic backreaction of flavor branes on the cigar geometry, see (3.52). It
would be worth studying this exact solution more in detail in the future, as to the best of
our knowledge it has not previously appeared in the literature.

Much like in the IIA case, under the assumption that there is an asymptotic linear dilaton
limit the geometry is conveniently analyzed introducing coordinates u and v as in (6.17),
in terms of which the metric and dilaton are

ds2
10 = eg1 ds2(R1,2

x ) + e−g1ds2(R3
y) +

16
g2

1
u2 + v2

[
Ω−1 ds2(R3

v) + ΩDu2
]
,

e2Φ = e2g1

u2 + v2 Ω−1 ,

(6.48)

with Ω, Du and ds2(R3
v) as in (6.19)–(6.20). Using the conventions of appendix C.3, we

introduce the electric RR potentials in a suitable gauge

B6 = e−2Φvol(R1,2
x ) ∧ vol(R3

y) ,

Ce
4 = 4

g
eg1Ωvol(R1,2

x ) ∧Du ,

C6 = 64
g3 e

2Φvol(R1,3
x ) ∧ vol(R3

v) ,

(6.49)

showing that the configuration of branes is precisely the one described in table 14.
Much like everything else in this solution, the quantization of the charges associated with

the various branes proceeds in a completely analogous way to the type IIA solution. The
quantization of the flux of H3 follows exactly the same reasoning and also leads to g =

√
8/k.

The fluxes of D3 and D5 branes are computed in the same way as those for D4 and D6 branes
in the previous subsection, with the only difference that the massive vector A is replaced
by the massive two-form B and R2

y with R3
y. The flux F3 associated with D5 branes is then

integrated on a three-sphere S3
D5 surrounding the origin of R3

y × Ru located at v = 0 via

ND5 ≡ 1(
2π

√
α′
)2
gs

∫
S3

D5

F3 = 1
2π2gs

ID5[B] , ID5[B] ≡
∫
S3

D5

dB|v=0 . (6.50)

On the other hand, the number of D3 branes can be obtained integrating equivalently F̃5 of
F5 over a five-cycle ΣD3 = S3

D3 × S2
R, where S3

D3 is identified as a three-sphere surrounding
the origin of R4 = R3

y × Rv, similarly to what happens for D6 branes. We then obtain

ND3 ≡ 1(
2π

√
α′
)4
gs

∫
ΣD3

F̃5 = k

2π2gs
ID3[B] , ID3[B] ≡

∫
S3

D3

dB|u=0 . (6.51)

The same observations made for the solution in type IIA also apply here.

6.4 Comments on the solutions

We conclude this section with some comments on the solutions that we have found, comparing
them with our initial goal and discussing the problems that we have encountered.
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We begin by emphasizing a point that we have already made at the start of this section.
Namely, in order to realize geometrically the SU(2)R symmetry of the 3d/4d N = 2 QFTs dual
to our supergravity backgrounds, one is forced to study solutions that implicitly correspond
to adding D-branes to the distribution of NS5 branes on a segment discussed around (5.17).
One issue with this is that the worldsheet CFT associated with that distribution is not known
and currently there is no understanding of the associated boundary states, which makes it
hard to give an interpretation of our solutions in terms of branes of the noncritical string
theory. On the other hand, D-branes in the cigar background (2.8) have been investigated
thoroughly in the literature (see section 3 for references), but the dual distribution of NS5
branes on a circle (5.22) only preserves a U(1) ⊂ SU(2)R, thus breaking the R-symmetry
of the dual field theory explicitly.

In our two-derivative supergravity approximation, we are inevitably describing smeared
distributions with a large number k NS5 branes. When adding D-branes to the picture, as
we did in this section, these are also going to be smeared, complicating the interpretation of
the dual field theory. This smearing is also likely to be responsible for the fact that, as we
discussed, the ratio between the number of D-branes turns out to be irrational for both the
IIA and the IIB solution. This situation should be contrasted with more standard case of
holography, such as AdS5 × S5: in that case, one achieves small curvature by taking a large
number of D3 branes localized at the same point in the transverse space. On the other hand,
here we need a large number of smeared NS5 branes to begin with, which makes it hard to
obtain solutions of 7d supergravity with localized D-branes. It might be possible that such
solutions can be found directly in ten dimensions, in which case they would belong to the
classification of [144], but such question is beyond the scope of this paper.

From the perspective of noncritical superstring theory, it is natural to imagine that
one should be able to tune the two paramters Nc and Nf in tables 11 and 13 (representing
the number of colors and flavors of the dual gauge theories, respectively) independently.
Keeping in mind the 4d case for definiteness, a concrete goal would be that of obtaining string
backgrounds describing N = 2 pure SYM (Nf = 0) or SCQCD (Nf = 2Nc), which could
allow in the future to explore the large Nc regime of those theories using a 2d sigma model.
This does not seem to be possible in our solutions, and moreover while our R1,3 ansatz41

allows, at least in principle, for AdS5 backgrounds, the conditions imposed by supersymmetry
seem to rule out such conformal solutions. This seems to be at odds with the expectation
that N = 2 SCQCD could be studied in this context, but it should not be surprising since
the branes are partially smeared and quantizing the color and flavor fluxes independently
seems problematic, as already mentioned.

At a technical level, the reason for the lack of independence between Nc and Nf can be
traced back to the couplings between RR fields in the two-derivative supergravity. Among
the RR fields at the lowest level that we described in section 2, the only ones compatible with
the isometries of R1,3 are the four 7d massive vectors, so that the same field is necessarily
associated with color and flavor branes. This is reflected in the fact that the scalar b and
the gauge field A in (6.4) are coupled à la Stückelberg, so that effectively one has a massive

41Let us focus on the 4d case for definiteness, since completely analogous comments apply to the 3d case
as well.
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vector. Moreover, from the uplift formulas of [105] it is easy to see that both the RR scalars
and the RR vectors appear in the expression of both two- and four-form field strength in
ten dimensions, thus making it impossible to have solutions where only one is vanishing,
but not the other, as it can also be seen comparing the expressions (6.30) and (6.34) for
the number of branes. As discussed in section 3 from the worldsheet perspective and at the
end of section 6.2 from the point of view of supergravity, what seems to distinguish between
color and flavor branes is the strength of the backreaction on the supergravity fields for large
values of the coordinate ρ. This makes it particularly important to find exact solutions to
the PDE (6.13) (or its 3d analogue (6.46)), as they would allow to gain further insight on
the configuration of branes as well as the dual field theory by considering the asymptotic
expansion of K both far from and near the branes.

7 Outlook

Noncritical superstrings offer a promising route to holographic dualities for the more “minimal”
gauge theories outside the universality class of N = 4 SYM, such as N = 1 and N = 2
SQCD. With this motivation, we have thoroughly revisited the spacetime description of
noncritical superstring theory, focusing in this paper on the cases with 6d super Poincaré
invariance. Building on previous literature, we have identified the effective supergravities
that govern the lowest modes of the noncritical IIA and IIB strings. A salient point is
that a manifestly supersymmetric description is only possible in seven dimensions. We have
recognized the effective theories as the maximally supersymmetric SO(4) and ISO(4) gauged
supergravities, respectively for the noncritical IIA and IIB strings. The simplest vacuum
solution of these theories is the linear dilaton background, which preserves 6d super Poincaré
invariance with half-maximal supersymmetry, in agreement with the expected counting of
supercharges. As we have emphasized throughout, the two-derivative approximation is not
really justified for the noncritical models, but can be viewed as the first term of a systematic
higher-derivative expansion controlled by 1/k, where k ≥ 2 is an integer (the number of NS5
branes in a certain duality frame) parametrizing a family of string backgrounds, with the
noncritical case corresponding to k = 2. This perspective is supported by the qualitative
agreement between the supergravity solutions we discuss (strictly speaking only valid for
large k) and the linearized backreaction we computed from the worldsheet in terms of the
boundary states of the k = 2 noncritical theory.

We have discussed BPS solutions of the seven-dimensional gauged supergravities and
their uplift to ten dimensions by the consistent truncation ansatz. Solutions with only NSNS
flux are under complete analytic control, but we have only a partial understanding of the
backgrounds with RR flux, which are our target for holographic applications. We have found
an intriguing class of solutions, parametrized by the solution of a simple-looking PDE, which
merits further study. We have argued that this class describes a Hanany-Witten setup with
continuous distributions of D-branes which are moreover partially smeared, but it would be
interesting to find explicit solutions of the PDE to solidify this interpretation. In hindsight,
it is not too surprising that we were not able to find solutions with localized branes. The
same issue has been encountered in several other attempts to find holographic duals of
four-dimensional gauge theories with eight supercharges [14, 22–24, 27, 147, 148].
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In the search for a supergravity description of N = 2 gauge theories it was natural to
demand that the SU(2)R symmetry be realized geometrically, which lead us to focus on a
distribution of NS5 branes on a segment. It would be interesting to develop an understanding
of the dual CFT and the associated boundary states, as it would allow us to obtain a more
precise intuitive picture of what the solutions of section 6 exactly describe. More generally,
while the cigar CFT (T-dual to a distribution of NS5 branes on a circle) has received much
attention in the literature, other distributions of NS5 branes appear to be on the same footing,
at least from a supergravity perspective. However, not much is known in the literature about
the associated worldsheet CFTs — see [118–121] for comments in this directions.

We are currently pursuing [50] an analogous approach to d = 4 noncritical superstring
theories, targeting gauge theories with four supercharges.42 This case is more promising
for a number of reasons. The intuition developed in this paper suggests that the correct
description for the d = 4 noncritical superstring should be in terms of a five-dimensional
gauged supergravity. This is a great technical simplification because an ansatz with super
Poincaré invariance in R1,3 leads to ordinary differential equations in the only transverse
direction. What’s more, there is now a clean separation between color branes filling R1,3

and flavor branes filling the entire 5d spacetime (recall table 1 in the Introduction) and as
such modify the supergravity action. This should allow to control separately the number
of colors and of flavors, and in particular to target pure N = 1 SYM theory. Finally, we
observe that the study of N = 2 gauge theories with fundamental matter using holography
(in the duality frame FCY) has long known to be complicated by the presence of a so-called
enhançon singularity in the supergravity description [147, 149, 150]. On the other hand, an
analogous approach to N = 1 theories has not presented such problem [11, 14]. Although
at this stage we do not have a precise understanding of the counterpart of the enhançon
singularity in our description, the frame FCY used by other authors and the frame FNS5
adopted here are simply related by T-duality. Therefore it seems reasonable to speculate that
some of the technical difficulties encountered here are somehow related to such singularity
and therefore will not be present when studying N = 1 theories.

From a narrower technical perspective, part of our work can be viewed as an investigation
of the worldsheet mechanism behind consistent truncations in supergravity. While consistent
truncations associated with AdS backgrounds and the corresponding gauged supergravities
have received more attention in the literature due to the great accomplishments of the
AdS/CFT correspondence, the presence of RR fluxes notoriously complicates the problem of
performing worldsheet computations in such models. Here, on the other hand, we only have
NSNS flux while still having a consistent truncation to a gauged supergravity. This allows
a thorough investigation of the spectrum from a worldsheet perspective, which makes the
selection of the states participating in the truncation significantly more transparent: in our
case, all vertex operators are singlets of the bosonic SU(2)k−2 CFT associated with the three-
sphere in the geometry. It will be interesting to consider other cases in which a similar analysis
is also possible, identifying the worldsheet mechanism underlying consistent truncations.

We regard this work as the first installment of a long-term research program. The
next goal (perhaps more likely to be achieved in models with four supercharges) is to find

42The distributions of NS5 branes studied in [80] should be relevant for this purpose.
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supergravity solutions for the noncritical brane setup that capture at least the qualitative
physics of the dual gauge theories. This was the case for the analysis of [36], where the
authors found a qualitative description of the conformal window of 4d N = 1 SQCD in the
“fake superpotential” approach. We hope that applying the ideas of this paper to theories
with four supercharges will allows us to obtain similar qualitative results, but in a top-down
string theory framework where in particular we have a solid understanding of the underlying
supersymmetry. One would then incorporate higher-derivative corrections as a systematic
1/k expansions, where k labels a family of gauge theories that reduces to the target theory
for the noncritical value of k. The ultimate aspiration is a full-fledged worldsheet description
of the strongly coupled sigma model with RR flux. The supergravity approach that we
have begun to develop here cannot be the final tool for noncritical holography, but it should
serve as an essential stepping stone.
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A Picture changing and RR sector low-lying states

In section 2 we constructed low-lying RR sector states in the (−1
2 ,−

1
2) picture. In sec-

tion 3 we also need their expression in the (−3
2 ,−

1
2), which we construct in this appendix

following [59, 60].

BRST charge. In the following, it will be easier to work in the BRST formalism. Let
us then introduce the BRST charge

Q = Q0 +Q1 +Q2 , (A.1)

where
Q0 =

∮ dz
2πic(z)[T

m(z) + T βγ + ∂c(z)b(z)] ,

Q1 = −1
2

∮ dz
2πi e

ϕ(z)η(z)Gm(z) ,

Q2 = 1
4

∮ dz
2πib(z)η(z)∂η(z)e

2ϕ(z) .

(A.2)

It is convenient to explicitly reintroduce the dependence on all the four polarizations enter-
ing (2.72) and to rewrite low-lying RR sector states in the (−1

2 ,−
1
2) picture as

Os =
∑

a,b,`,m=±
(Fa,b,`,mC)ε̂τ̂ c e−

ϕ
2 e

i`
2 (ϑ+aH) Vε̂ c̃ e−

ϕ̃
2 e

im
2 (ϑ̃−s bH̃) Ṽτ̂ ejρ eiq·X , (A.3)
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where the various components of Fa,b,`,mC can be identified with tensor products of the
various polarization spinors entering eq. (2.72) while s = +1 and s = −1 denote the type IIA
and type IIB noncritical superstring theory, respectively. It is easy to check that requiring
the state (A.3) to be BRST closed implies as expected the mass-shell condition (2.68) and
the equations of motion for the “field strengths” Fa,b,`,m,43

i /qFa,b − a(j +Q1+a
2 )F−a,b = 0 ,

iFa,b
/q + b(j +Q1−s b

2 )Fa,−b = 0 .
(A.4)

Proceeding along the lines of [60], we consider the following ansatz for the low-lying
RR sector states (A.3) in the (−3

2 ,−
1
2) picture,

O(− 3
2 ,−

1
2)

s = 2
√
2 aM

∞∑
M=0

W (M) , (A.5)

where

W (0) =
∑

a,b,`,m=±

(
A−a,b,`,mC

)
ε̂τ̂
c e−

3
2ϕ e

i`
2 (ϑ+aH) Vε̂ c̃ e−

ϕ̃
2 e

im
2 (ϑ̃−s bH̃) Ṽτ̂ ejρ eiq·X , (A.6)

and for M ≥ 1

W (2M) =
∑

a,b,`,m=±

(
A−a,b,`,mC

)
ε̂τ̂
∂2Mξ . . . ∂ξ c e(−

3
2−2M)ϕ e

i`
2 (ϑ+aH) Vε̂

× ∂̄2M−1η̃ . . . ∂̄η̃ η̃ c̃ e(−
1
2 +2M)ϕ̃e

im
2 (ϑ̃−s bH̃) Ṽτ̂ ejρ eiq·X , (A.7)

W (2M−1) =
∑

a,b,`,m=±

(
Ba,−b,`,mC

)
ε̂τ̂
∂2M−1ξ . . . ∂ξ c e(−

1
2−2M)ϕ e

i`
2 (ϑ+aH) Vε̂

× ∂̄2M−2η̃ . . . ∂̄η̃ η̃ c̃ e(−
3
2 +2M)ϕ̃e

im
2 (ϑ̃−s bH̃) Ṽτ̂ ejρ eiq·X , (A.8)

while the numerical coefficients aM will be specified later.

BRST invariance. Let us first verify that the ansatz (A.5) is BRST invariant. Noticing that

∂M−1η . . . ∂η η c e(−
1
2 +M)ϕ and ∂̄M ξ̃ . . . ∂̄ξ̃ c̃ e(−

3
2−M)ϕ̃ (A.9)

have conformal dimension −5
8 for any M , it is easy to check that the commutators with Q0

and Q̃0 imply the mass-shell condition (2.66). The same holds for W (0). Moreover, since
the OPEs of bη∂ηe2ϕ and b̃η̃∂̄η̃e2ϕ̃ respectively with the first and second state in (A.9) are
regular, the commutators of (A.5) with Q2 and Q̃2 vanishes identically. The commutator

[Q1,W
(0)] = 0 (A.10)

also vanishes identically and the only non-trivial commutators are

[Q1,W
(2M)] =− (2M)!

2
√
2

∑
a,b,`,m=±

∂2M−1ξ . . . ∂ξ c e(−
1
2−2M)ϕ e

i`
2 (ϑ+aH)Vε̂(

(/qA−a,b − i a(j +Q1+a
2 )Aa,b)C

)
ε̂τ̂
∂̄2M−1η̃ . . . ∂̄η̃ η̃ c̃

e(−
1
2 +2M)ϕ̃e

im
2 (ϑ̃−s bH̃) Ṽτ̂ ejρ eiq·X , (A.11)

43Here and in the following, to lighten the notation we frequently omit the labels `,m.
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[
Q̃1,W

(2M−1)
]
=− 1

2
√
2(2M − 1)!

∑
a,b,`,m=±

∂2M−1ξ . . . ∂ξ c e(−
1
2−2M)ϕe

i`
2 (ϑ+aH) Vε̂(

(Ba,−b/q + i b(j +Q1−s b
2 )Ba,b)C

)
ε̂τ̂
∂̄2M−1η̃ . . . ∂̄η̃ η̃ c̃

e(−
1
2 +2M)ϕ̃ e

im
2 (ϑ̃−s bH̃) Ṽτ̂ ejρ eiq·X , (A.12)

for M ≥ 1 and
[
Q̃1,W

(2M)
]
= 1
2
√
2(2M)!

∑
a,b,`,m=±

∂2Mξ . . . ∂ξ c e(−
3
2−2M)ϕ e

i`
2 (ϑ+aH) Vε̂(

(A−a,b
/q − i b(j +Q1+s b

2 )A−a,−b)C
)
ε̂τ̂
∂̄2M η̃ . . . ∂̄η̃ η̃ c̃

e(
1
2 +2M)ϕ̃ e

im
2 (ϑ̃−s bH̃) Ṽτ̂ ejρ eiq·X , (A.13)[

Q1,W
(2M+1)

]
=(2M + 1)!

2
√
2

∑
a,b,`,m=±

∂2Mξ . . . ∂ξ c e(−
3
2−2M)ϕe

i`
2 (ϑ+aH) Vε̂(

(/qBa,−b + i a(j +Q1−a
2 )B−a,−b)C

)
ε̂τ̂
∂̄2M η̃ . . . ∂̄η̃ η̃ c̃

e(
1
2 +2M)ϕ̃ e

im
2 (ϑ̃−s bH̃) Ṽτ̂ ejρ eiq·X , (A.14)

for M ≥ 0. Choosing the coefficients aM as

aM+1 = − aM
M !(M + 1)! , (A.15)

we find

a2M−1
[
Q̃1,W

(2M−1)
]
+ a2M [Q1,W

(2M)] = 0 , (A.16)

a2M
[
Q̃1,W

(2M)
]
+ a2M+1[Q1,W

(2M+1)] = 0 , (A.17)

provided that

/qA−a,b − i a(j +Q1+a
2 )Aa,b = Ba,−b/q + i b(j +Q1−s b

2 )Ba,b ,
A−a,b

/q − i b(j +Q1+s b
2 )A−a,−b = /qBa,−b + i a(j +Q1−a

2 )B−a,−b .
(A.18)

Hence, eqs. (2.66) and (A.18) are sufficient for the state (A.5) to be BRST closed.

Picture change. We should also require that the vertex operator (A.5) is related to (A.3)
by picture changing, i.e. that

Os =
[
Q+ Q̃, ξ(z)O(− 3

2 ,−
1
2)

s

]
. (A.19)

Only W (0) contributes and one obtains the condition

Fa,b =
(
i /qA−a,b + a(j +Q1+a

2 )Aa,b
)
. (A.20)
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A.1 Interpreting the conditions

7d language. Let us repackage eqs. (A.4), (A.18) and (A.20) in the more compact 7d
notation introduced in section 2. We decompose F , A and B into a sum over polarization
and write e.g.

F =
∑
a,b=±

Fa,b , Fa,b = 1 + aγ7
6d

2 F 1− bγ7
6d

2 . (A.21)

It is easy to check that

a(j +Q1−a
2 )Fa,b =

(
(j + Q

2 )γ
7
6d −

Q
2

) 1 + aγ7
6d

2 F 1− bγ7
6d

2 (A.22)

and using that {/q, γ7
6d} = 0, eqs. (A.4), (A.18) and (A.20) can be rewritten as

(
i /p− Q

2

)
F = F

(
i /p− sQ2

)
= 0 , (A.23)

(i /p+ Q
2 )A = B(i /p+ sQ2 ) , (A.24)

A(i /p+ sQ2 ) = (i /p+ Q
2 )B , (A.25)

F =
(
i /p+ Q

2

)
A . (A.26)

Identification of the potentials A and B. From equations (A.23)–(A.26), we see a
good ansatz is

B = sA . (A.27)

Replacing this into (A.25) leads to the condition

/pA = sA/p , (A.28)

which is now a constraint on the differential forms arising in the decomposition of A. Moreover,
note that the ansatz (A.27) makes the two equations (A.24) and (A.25) equivalent and is
hence consistent. We also have

F =
(
i /p+ Q

2

)
A = A

(
s i /p+ Q

2

)
, (A.29)

which determine the forms in F in terms of those in A and are compatible by virtue of (A.28).
Note also that (A.23) requires that p2 = Q2

4 for F as well as for A, so we shall always use
this. To have a more concrete understanding of these constraints we shall now analyze them
component by component, which requires to consider the two values of s independently.
Note that we can decompose A using the Fierz identity (2.84) in a completely analogous
way to F , just replacing the differential forms F(n) appearing in (2.84) with a new set of
forms A(n), n = 0, . . . , 3.
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Type IIA: s = +1. In this case the condition (A.28) gives

dA(1) = 0 , ?d ?A(2) = 0 , dA(3) = 0 , (A.30)

which combined with (A.29) lead to

F(0) =
Q

2 A(0) − ?d ?A(1) , F(1) =
Q

2 A(1) + dA(0) ,

F(2) =
Q

2 A(2) − ?d ?A(3) , F(3) =
Q

2 A(3) + dA(2) .

(A.31)

One can check that the equations above, combined with the mass-shell condition, are enough
to guarantee that (A.23) are satisfied. We can also go one step further and notice that
we can further reduce the number of degrees of freedom carried by A in this description.
To see this, let

Ã1 = A(1) +
2
Q
dA(0) , Ã3 = A(3) +

2
Q
dA(2) , (A.32)

which using again the mass-shell condition as well as (A.30) allow to rewrite the condi-
tions (A.31) as

F(0) = − ? d ? Ã(1) , F(1) =
Q

2 Ã(1) ,

F(2) = − ? d ? Ã(3) , F(3) =
Q

2 Ã(3) ,

(A.33)

which are equivalent to just setting A(0) = A(2) = 0 in (A.31). This is clearly compatible
with (A.30), since we are changing closed forms by exact terms. Finally, note that using the
mass-shell condition combined with the conditions (A.30), we can observe that dÃ1 = dÃ3 = 0
can be solved simply by

Ã(1) =
4
Q2dF(0) , Ã(3) =

4
Q2dF(2) . (A.34)

Type IIB: s = −1. In this case the condition (A.28) gives

dA(0) = 0 , ?d ?A(1) = 0 , dA(2) = 0 , ?d ?A(3) = 0 , (A.35)

where the first can be replaced with A(0) = 0, and combined with (A.29) this leads to

F(0) = 0 , F(1) =
Q

2 A(1) − ?d ?A(2) ,

F(2) =
Q

2 A(2) − dA(1) , F(3) =
Q

2 A(3) − ?dA(3) .

(A.36)

One can check that the equations above, combined with the mass-shell condition, are enough
to guarantee that (A.23) are satisfied. Also in this case, one can further reduce the number
of degrees of freedom carried by A in this description. To see this, let

Ã(2) = A(2) −
2
Q
dA(1) , Ã(3) = A(3) , (A.37)
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which using again the mass-shell condition as well as (A.35) allow to rewrite the condi-
tions (A.36) as

F(0) = 0 , F(1) = − ? d ? Ã(2) ,

F(2) =
Q

2 Ã(2) , F(3) =
Q

2 Ã(3) − ?dÃ(3) ,
(A.38)

which are equivalent to just setting A(1) = 0 in (A.36), which clearly is compatible with (A.35)
since we are changing closed forms by exact terms. Finally, note that using the mass-shell
condition combined with the conditions (A.35), we can observe that dÃ2 = 0 can be solved
simply by

Ã(2) = − 4
Q2dF(1) . (A.39)

B Group theory

B.1 SO(5) vs USp(4)

In the formulation of maximal 7d supergravity, it is often useful to be able to convert from
SO(5) to USp(4) indices when working with representations of the R-symmetry group. This is
particularly true when dealing with fermions, which transform in spinorial representations of
SO(5), or ordinary representations of its double cover USp(4). We use indices M,N = 1, . . . , 5
for the fundamental of SO(5) and a, b = 1, . . . , 4 for the fundamental of USp(4), and adopt the
same notation and conventions as [110], which we summarize and expand here for convenience.
USp(4) indices are raised and lowered using complex conjugation, which for pseudoreal
representations is equivalent to acting with the invariant two-form Ω satisfying

Ωab = Ω[ab] , (Ωab)∗ = Ωab , ΩabΩcb = δca , (B.1)

and in particular we pick

Ωab = Ωab = iσ2 ⊗ σ1 =


0 0 0 +1
0 0 +1 0
0 −1 0 0
−1 0 0 0


ab

. (B.2)

To convert SO(5) into USp(4) indices we introduce a set of gamma matrices (τM ) b
a , which

we define as (with this specific position for the USp(4) indices)

τA = σA ⊗ σ3 , (A = 1, 2, 3) , τ4 = 1⊗ σ1 , τ5 = 1⊗ τ2 . (B.3)

We note that their version with both indices raised, (τM )ab = Ωac(τM ) b
c , is antisymmetric

and Ω-traceless in the USp(4) indices:

(τM )ab + (τM )ba = 0 = Ωab(τM )ab . (B.4)

Besides the obvious Clifford algebra

(τM ) c
a (τM ) c

a (τN ) b
c = 2δMNδ

b
a , (B.5)
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they satisfy

(τM )ab(τM )cd = 2δ c
a δ

d
b − 2δ d

a δ
c
b − ΩabΩcd , (B.6)

where the SO(5) index M is raised with the flat Euclidean metric. To give a simple example,
a vector

vM = (v1, . . . , v5) , (B.7)

can be expressed as a 4 × 4 matrix with USp(4) indices as

vab = vM (τM )ab = 1
2


0 −(v1 + iv2) v4 + iv5 v3

v1 + iv2 0 −v3 v4 − iv5

−(v4 + iv5) v3 0 v1 − iv2

−v3 −(v4 − iv5) −(v1 − iv2) 0

 , (B.8)

which is antisymmetric and Ω-traceless according to (B.4), thus giving the correct number
(5) of degrees of freedom. Using (B.6), one also has the inverse relation

vM = 1
2(τ

M )abvab . (B.9)

B.2 SL(5) → SL(4) ⊗ SO(1,1)

The choice of gauge group in both 7d theories breaks SL(5) invariance as SL(5) → SL(4)⊗
SO(1, 1): the SO(4) part that is the common maximal compact subgroup to both gauge
groups is a subgroup of SL(4) that is gauged. In terms of generators

(tMN ) Q
P = δMP δ

Q
N − 1

5δMNδ
Q
P , (B.10)

we identify the SL(4) generators as those obtained restricting the values of the indices M,N

to M,N = 1, . . . , 4. The remaining generators are ti ≡ tα0 with i = 1, . . . , 4 transforming in
the fundamental representation of SL(4) and t0 ≡ 5 t55 generating SO(1, 1). The non-compact
R4 generated by the ti is only gauged in the ISO(4) theory. Finally, the generator t0 is
associated with the 7d dilaton field φ0.

B.3 The SO(4) gauged symmetry

The 7d theories that we consider share a common compact subgroup of the gauge group:
an SO(4) that is embedded in SL(5) in a way that naturally follows from (4.6), for which
we use indices i, j = 1, . . . , 4. Its generators are

(Tij)kl = δikδjl − δilδjk , (B.11)

satisfying

[Tij , Tkl] = −δikTjl − δjlTik + δilTjk + δjkTil , (B.12)

and since SO(4) = SU(2)+ ⊗ SU(2)− we can identify two sets of commuting SU(2) generators

J±
1 = T13 ± T42 , J±

2 = ±T14 + T23 , J±
3 = T14 ± T34 , (B.13)
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which satisfy

[J±
i , J

±
j ] = −2εijkJ±

k , [J±
i , J

∓
j ] = 0 . (B.14)

The diagonal SU(2)D subgroup of SO(4) is generated by

JDi = J+
i + J−

i , (B.15)

and corresponds to SO(3) ' SU(2)/Z2 rotations in the directions 1,2,3 (with the Cartan
JD3 generating rotations in the 1-2 plane).

C Type II A/B conventions

When considering solutions of type IIA/B supergravity, we always work in the string frame.
Our conventions for the equations of motion and supersymmetry variations are those of [151],
which we present here in a more physicist-friendly notation for the reader’s convenience,
alongside with some general conventions used here and throughout the paper. Lorentz indices
for spacetimes of various dimensions have already appeared in various places and we remind
the reader that we have used:

• α, β, . . . = 0, . . . , 5 for 6d spacetimes,

• µ, ν, . . . = 0, . . . , 6 for 7d spacetimes,

• µ̂, ν̂, . . . = 0, . . . , 7 for 8d spacetimes,

while here we are going to use

A,B, . . . = 0, . . . , 9 (C.1)

for ten-dimensional indices.

C.1 General conventions

We write the actions in terms of the ten-dimensional Newton’s constant

16πG(10)
N = 2κ2

10 = (2π)7 (α′)4 , (C.2)

in terms of the Regge slope α′ = `2s. When quantizing the flux associated with a Dp-branes,
we consider the magnetic RR flux F8−p, which we integrated over a compact cycle Σ8−p
to define the number NDp of Dp-branes via

NDp =
1

2κ2
10TDp

∫
Σ8−p

F8−p =
1

(2π`s)p−7 gs

∫
Σ8−p

F8−p , (C.3)

in terms of the Dp-brane tension TDp = [(2π`s)p gs `s]−1 and the string coupling gs. On the
other hand, the tension for NS5 branes has an additional factor of gs, TNS5 = [(2π`s)p g2

s `s]−1,
and the flux quantization condition reads

NNS5 = 1
2κ2

10TNS5

∫
Σ3
H3 = 1

(2π`s)2

∫
Σ3
H3 . (C.4)
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Given a p-form ωp, we introduce the contractions

|ωp|2 ≡ 1
p! (ωp)A1...Ap(ωp)A1...Ap , 〈ωp, ωp〉AB ≡ 1

(p− 1)!(ωp)AC2...Cp(ωp)
C2...Cp

B , (C.5)

while for their contractions with elements of the Clifford algebra we introduce (k < p)

(/ωp)A1...Ak
≡ 1

(p− k)! (ωp)A1...AkBk+1...BpΓBk+1...Bp , (C.6)

where Γ are Clifford algebra elements and we use ΓA for 10d gamma matrices, with Γ?
the chirality matrix.

C.2 Type IIA

The bosonic action for type IIA supergravity in our conventions reads

S(IIA) = S
(IIA)
NSNS + S

(IIA)
RR + S

(IIA)
CS ,

S
(IIA)
NSNS = 1

2κ2
10

∫
d10x

√
−g e−2Φ

[
R+ 4|dΦ|2 − 1

2 |H3|2
]
,

S
(IIA)
RR = − 1

4κ2
10

∫
d10x

√
−g

[
|F2|2 + |F̃4|2

]
,

S
(IIA)
CS = − 1

4κ2
10

∫
B2 ∧ F4 ∧ F4 ,

(C.7)

in terms of the dilaton Φ and the field strengths

H3 = dB2 , F2 = dC1 , F4 = dC3 , (C.8)

while the gauge-invariant combination entering the equations of motion is

F̃4 = F4 − C1 ∧H3 . (C.9)

The Einstein and dilaton equations of motion can be written as

RAB = −2∂AΦ∂BΦ+ 1
2〈H3, H3〉AB

+ 1
2e

2Φ
[
〈F2, F2〉AB − 1

2gAB|F2|2 + 〈F̃4, F̃4〉AB − 1
2gAB|F̃4|2)

]
,

2Φ = 2|dΦ|2 − 1
2 |H3|2 +

1
4e

2Φ
[
3 |F2|2 + |F̃4|2

]
,

(C.10)

while the Maxwell equations for the fluxes read
d ? F2 = H3 ∧ ?F̃4 ,

d ? F̃4 = −H3 ∧ F̃4 ,

d
[
e−2Φ ? H3

]
= 1

2 F̃4 ∧ F̃4 − F2 ∧ ?F̃4 .

(C.11)

The conditions for supersymmetry, which come from the vanishing of the gravitino and
dilatino supersymmetry variations, are

0 =
[
∇A − 1

4(
/H3)A Γ? +

1
8e

Φ
(
−/F 2 Γ? + /̃F 4

)
ΓA
]
ε ,

0 =
[
/∂ΦΓ? −

1
2
/H3 −

1
4e

Φ
(
3/F 2 + /̃F 4 Γ?

)]
ε ,

(C.12)

where ε is a 10d Dirac spinor.
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All the solutions we are interested in have

F̃4 ∧ F̃4 = H3 ∧ F̃4 = 0 , (C.13)

which facilitates the introduction of dual potentials. In particular, in the main text we consider
solutions describing a system of NS5-D4-D6 branes, for which the magnetic potentials are B2,
C3 and C1, respectively, but it is useful to consider the associated electric potentials too. We
start with the electric potential C5 for D4 branes, which we introduce observing that under
the assumptions (C.13) we have d ? F̃4 = 0, which locally allows us to write

?F̃4 ≡ F6 = dC5 . (C.14)

We choose to define the other electric pontentials in terms of C5. The electric potential C7
associated with D6 branes can be introduced via

?F2 −H3 ∧ C5 ≡ F8 = dC7 , (C.15)

while the electric potential B6 for NS5 branes is defined by

e−2Φ ? H3 − F2 ∧ C5 ≡ H7 = dB6 . (C.16)

C.3 Type IIB

The bosonic action for type IIB supergravity in our conventions reads

S(IIB) = S
(IIB)
NSNS + S

(IIB)
RR + S

(IIB)
CS ,

S
(IIB)
NSNS = 1

2κ2
10

∫
d10x

√
−g e−2Φ

[
R+ 4|dΦ|2 − 1

2 |H3|2
]
,

S
(IIB)
RR = − 1

4κ2
10

∫
d10x

√
−g

[
|F1|2 + |F̃3|2 +

1
2 |F̃5|2

]
,

S
(IIB)
CS = − 1

4κ2
10

∫
C4 ∧H3 ∧ F3 ,

(C.17)

in terms of the dilaton Φ and the fields strengths

H3 = dB2 , F1 = dC0 , F3 = dC2 , F5 = dC4 , (C.18)

while the gauge invariant combinations that enter the equations of motion are

F̃3 = F3 − C0H3 , F̃5 = F5 −
1
2H3 ∧ C2 +

1
2F3 ∧B2 , (C.19)

and moreover we demand that F̃5 is self-dual:

?F̃5 = F̃5 . (C.20)

The Einstein and dilaton equations of motion can be written as

RAB = −2∂AΦ∂BΦ+ 1
2〈H3, H3〉AB

+ 1
2e

2Φ
[
〈F1, F1〉AB − 1

2gAB|F1|2 + 〈F̃3, F̃3〉AB − 1
2gAB|F̃3|2 +

1
2〈F̃5, F̃5〉AB

]
,

2Φ = 2|dΦ|2 − 1
2 |H3|2 +

1
2e

2Φ
[
2|F1|2 + |F̃3|2

]
,

(C.21)
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while the Maxwell equations for the fluxes read

d ? F1 = −H3 ∧ ?F̃3 ,

d ? F̃3 = −H3 ∧ F̃5 ,

d ? F̃5 = H3 ∧ F̃3 ,

d
[
e−2Φ ? H3

]
= F̃3 ∧ F̃5 + F1 ∧ ?F̃3 .

(C.22)

To write the conditions for supersymmetry, it is convenient to write

ε =
(
ε1
ε2

)
, (C.23)

where ε1,2 are 10d spinors. In terms of this, we can express the conditions for supersymmetry as

0 =
[
∇A + 1

4(
/H3)A σ3 + 1

8e
Φ
(
i /F 1 σ

2 − /̃F 3 σ
1 + i

2
/̃F 5 σ

2
)
ΓA
]
ε ,

0 =
[
/∂Φ+ 1

2
/H3 σ

3 − 1
2e

Φ
(
2i /F 1 σ

2 − /̃F 3 σ
1
)]
ε ,

(C.24)

where the Pauli matrices σi, i = 1, 2, 3, act on the two components of ε in (C.23).
In the study of explicit solutions, we find it useful to introduce two four-form potentials

Ce
4 and Cm

4 , respectively electric and magnetic. In terms of these we have F e
5 = dCe

4 and
Fm

5 = dCm
4 , and owing to the fact that our solutions satisfy

F3 ∧ Fm
5 = H3 ∧ Fm

5 = Fm
5 ∧ Fm

5 = F e
5 ∧ F e

5 = 0 , (C.25)

as well as F̃3 = F3 since C0 = 0, we can introduce

F̃ e
5 = F e

5 , F̃m
5 = Fm

5 −H3 ∧ C2 , (C.26)

in terms of which we finally have the self-dual combination F̃5 entering the equations of
motion and Killing spinor equations as

F̃5 = F̃ e
5 + F̃m

5 , (C.27)

since F̃ e
5 = ?F̃m

5 . In terms of these objects, Maxwell’s equations for the four-form potential
can be written as

dF̃ e
5 = 0 , dF̃m

5 = H3 ∧ F3 . (C.28)

D Solutions with smeared branes

In this appendix we present explicit solutions of ten-dimensional type IIA and type IIB
supergravity which describe an intersecting system of NS5-D4-D6 branes (in IIA) or NS5-
D3-D5 branes (in IIB). In these solutions the D-branes are completely smeared in the R4

transverse to the NS5 branes, in a way that respects the isometries of the specific arrangement
of NS5 branes considered. These are not directly interesting for holography, since for that
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purpose one is interested in solutions where branes are (sufficiently) localized. Solutions of this
type arise among the simplest within the ansatz considered in section 6: consider the ansatz

K(r, ~y) = f(r)g(~y) , (D.1)

in (6.13) or (6.46) (with ~y a two- or three-dimensional vector, respectively). Then, for
f(r) =

√
a+ b r we find that g is constrained by

∆yg(~y) = 0 , (D.2)

where ∆y is the Laplacian on R2
y or R3

y, according to whether we are considering type IIA
or type IIB. Replacing this in (6.15) or (6.42) gives a smeared solution as described above,
where f(r) fixes the distribution of NS5 branes and the harmonic function g(~y) determines the
distribution of D-branes. The distribution f(r) =

√
a+ b r is the one describing NS5 branes

on a segment (see (5.17)), but it is straightforward to generalize this setup to a more general
solution of type IIA/IIB supergravity which does not in general arise from the uplift of a
solution in lower dimensions, and generically has no other symmetries than super-Poincaré
invariance on R1,3

x /R1,2
x (in type IIA/IIB) with eight supercharges.

In the string frame and expressing the RR fluxes in terms of electric potentials, the
IIA solution reads

ds2
10 = F−1 ds2(R1,3

x ) + F ds2(R2
y) +H ds2(R4

z) ,

e2Φ = H

F 2 ,

B6 = F

H
vol(R1,3

x ) ∧ vol(R2
y) ,

C5 = F−1vol(R1,3
x ) ∧ dΛ ,

C7 = H

F
vol(R1,3

x ) ∧ ?zdΛ ,

(D.3)

where F ≡ F (~y) and H ≡ H(~z), F̃ is defined via

?ydF̃ = dF , (D.4)

and

Λ ≡ ~λ · ~z , ||~λ||2 = 1 , (D.5)

so that the constant vector ~λ selects a direction in R4
z parametrized by four Cartesian

coordinates ~z. The configuration given in (D.3) solves the equations of motion of type IIA
and preserves eight supercharges provided that the functions F and H satisfy

∆yF = 0 , ∆zH = 0 . (D.6)

The interpretation of the solution is as follows: H is an harmonic function in the R4
z transverse

to a set of NS5 branes, which are fully localized and whose location is identified by the

– 85 –



J
H
E
P
0
1
(
2
0
2
5
)
1
1
7

singularities of H.44 The choice of H selects a certain distribution of NS5 branes in R4
z and

the D4 and D6 branes are completely smeared in those directions, following the distribution
of the NS5 branes. For instance, if the choice of H preserves certain isometries in R4

z, so
will the distribution of D4 and D6 branes. For this reason, the function F governing the
distribution of D-branes is only harmonic on R2

y, which is where the branes are localized.
Moreover, given that dΛ and ?zdΛ are orthogonal, from the electric potentials we can see
that D4 and D6 branes are orthogonal. Hence, with a rotation in R4

z we can set z1 ≡ u and
call R3

v the space parametrized by z2, z3, z4, which reproduces the branes setup of table 12.
An interesting question is which solutions of this type can arise from the uplift of a 7d

gauged supergravity solution. The answer is that the function H is selected precisely in
the same way as described in section 5.1, where purely NSNS solutions with only scalars
are discussed. On the other hand, the additional presence of the function F and of the
RR potentials arises from a choice of massive RR vectors. There are four of them in the
7d ISO(4) gauged supergravity (after a gauge choice is made that eliminate the scalars),
which we can think of as aligned along unit-norm four-vector. The latter is nothing but
~λ introduced in (D.5).

Applying a T-duality along one of the R1,3
x directions and then guessing a form of the

solution which is localized along that direction, it is straightforward to obtain an analogue
of (D.3) describing a system of NS5-D3-D5 branes in type IIB supergravity, with the same
features as the NS5-D4-D6 system described above. With the same caveats as above, the
correspodning solution reads

ds2
10 = F−1 ds2(R1,2

x ) + F ds2(R3
y) +H ds2(R4

z) ,

e2Φ = H

F
,

B6 = F

H
vol(R1,2

x ) ∧ vol(R3
y) ,

Ce
4 = F−1vol(R1,2

x ) ∧ dΛ ,

C6 = H

F
vol(R1,2

x ) ∧ ?zdΛ ,

(D.7)

with the same conditions as above and the only difference that now F ≡ F (~y) depends
on the three Cartesian coordinates ~y of R3

y and is subject to ∆yF = 0 where ∆y is now
the 3d Laplacian.

Finally, we note that the solutions (D.3) and (D.7) can be obtained performing a sequence
of T-dualities on the solutions of [152–154], where an analogous system with F1 strings as well
as D0-D8 branes is analyzed. T-duality of course give a smearing at the level of supergravity,
but it is straightforward to guess the localized form of the solution (at least along the T-duality
directions). The same F1-D0-D8 system is also considered [155], where the author mentions
the expectation that an analogous solution should be possible as a result of an uplift from
7d gauged supergravity. This is precisely what we realized here.

44As usual, one should really think of the equation ∆zH = 0 as valid away from sources.
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E Asymptotic expansion and Laplace approximation

In this appendix we review the Laplace method [156–158] to compute the asymptotic expansion
of integrals of the form

I(ρ) =
∫ b

a
e−ρf(x)g(x)dx , (E.1)

for ρ → ∞. We assume f(x) and g(x) to be continuous functions and that as x → a+,

f(x) ∼ f(a) +
∞∑
k=0

ak(x− a)k+α , (E.2)

g(x) ∼
∞∑
k=0

bk(x− a)k+β−1 , (E.3)

with α > 0 and Re(β) > 0. Moreover, we assume that the only minimum of f(x) in [a, b]
occurs at x = a. Under suitable assumptions (see e.g. [156] for the precise statement), then

I(ρ) ∼ e−ρf(a)
∞∑
n=0

Γ
(
n+ β

α

)
cn

ρ
n+β

α

. (E.4)

The coefficients cn depend on the Taylor coefficients ak and bk entering eqs. (E.2) and (E.3).
For example,

c0 = b0

αa
β/α
0

, c1 = 1
a

(β+1)/α
0

(
b1
α

− (β + 1)a1b0
α2a0

)
, (E.5)

and

c2 = 1
a

(β+2)/α
0

(
b2
α

− (β + 2)a1b1
α2a0

+ ((α+ β + 2)a2
1 − 2αa0a2)

(β + 1)b0
2α2a2

0

)
, (E.6)

and they can be computed as [157, 158]

cn = 1
α

n∑
k=0

bn−k
k!

[
dk

dxk

( (x− a)α
f(x)− f(a)

)(n+β)/α]
x=a

. (E.7)
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