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A switching based approach using multiple parallel redundant controller implementations is developed
to improve resiliency of cyber-physical systems (CPSs). Hardware/software redundancy is known to
be a powerful technique for resiliency to mitigate effects of adversaries who infiltrate and maliciously
modify a subset of the redundant subsystems. While redundant subsystems are typically combined
using fail-over/backup and voting mechanisms, the proposed approach considers a time-division
multiplexer using which one of multiple controller implementations is selected at each time instant to
drive the input of the controlled system. Through detailed analysis of the switched system, it is shown
that time-division multiplexing between redundant controllers can be used to mitigate the impact
to stability and/or performance of the closed-loop CPS due to adversarial modifications of subsets
of controllers. Additionally, we show that adversarial impact to the closed-loop CPS can be reduced
over time by switching among the controllers in a probabilistic manner (rather than round-robin) and
by dynamically adapting probabilities of switching to each controller. The efficacy of the proposed
adaptive randomized switching algorithm is shown through simulation studies on two illustrative
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examples: a simple third-order system and a more real-world single-machine-infinite-bus system.
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1. Introduction

Cyber-security for industrial control systems (ICSs) and other
cyber-physical systems (CPSs) are becoming increasingly criti-
cal [2-8]. While increasing programmability and remote connec-
tivity of controller devices (e.g., Programmable Logic Controllers
— PLCs) in modern CPSs provide significant benefits in terms of
ease of use and maintenance, they also increase the potential
attack surface for a cyber-adversary [9-13]. Hence, to detect
and prevent attacks, several approaches have been developed
in the literature including hardware, software, network-based
and process-aware methods, which can be combined in various
ways to achieve robust multi-layer security [2-6,14-23]. In com-
bination with these approaches, a generally useful ingredient in
achieving resiliency (both against cyber-adversaries and possible
malfunctions, etc.) is redundancy.
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Redundancy can be introduced into a CPS at multiple lev-
els including communication channels, software, and hardware
(e.g., multiple redundant sensors, actuators, or computing nodes),
etc. [24-35]. Several off-the-shelf CPS devices integrate redun-
dancy in recent years based on integrity verification and voting
methods (e.g., the PLC-level ControlLogix Redundancy System
[36], the compiler-level CODESYS redundancy toolkit [37]). The
basic concept in introducing redundancy is that effects of failures/
malfunctions/cyber-attacks of a subset of parallel subsystems
may be mitigated due to the other redundant subsystems that
are operating normally. Redundant subsystems can be combined
using multiple approaches such as using subsystems as fail-
over (i.e., as backup to primary subsystems), comparing out-
puts/behaviors of subsystems at real-time (e.g., continuous
integrity verification between parallel redundant subsystems),
or by aggregating the outputs/behaviors of parallel subsystems
(e.g., using voting to determine the “majority opinion”)
[24-29,31-35]. In the context of cyber-security, redundancy can
be combined with heterogeneity at various levels (e.g., by im-
plementing redundant controller instantiations using different
processor architectures, operating systems, communication net-
work connectivities, etc.) to pose additional challenges to the
adversary and limit the number of subsystems that could be
realistically simultaneously infiltrated. Such combinations of re-
dundancy and heterogeneity can be viewed in the context of
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moving-target defense. Additionally, dynamic moving-target de-
fense approaches [38-40] can be integrated (e.g., dynamically
changing parameters of the system, system dynamics by
introducing additional external states or using sensor nonlin-
earities, communication parameters protocols, hardware or soft-
ware configurations, etc.) to pose further challenges to attackers.
While such moving-target defenses introduce dynamic variations
(i.e., switching) to introduce an aspect of unpredictability to
the attacker, switching-based methods have also been applied
[41-43] to design stabilizing controllers for systems with un-
certainties such as time-varying delays and constraints such as
actuator saturation. An adaptive round-robin switching scheme
has been developed in [44] in the context of observer design for
linear systems under sensor spoofing attacks. By using the mea-
sured observer errors under different combinations of utilized
sensors as a performance index, the method in [44] steps through
different candidate subsets of sensors to be utilized to eventually
detect and disable the corrupted sensors.

Unlike the above literature, we consider in this paper the
problem of designing a controller switching algorithm to achieve
resiliency under attacks on controller implementations for non-
linear systems. Specifically, based on our initial development in
[1], we consider the problem of temporal switching between mul-
tiple parallel redundant controller implementations connected
using a time-division multiplexer as shown in Fig. 1. The time-
division multiplexer in Fig. 1 is a switching controller that dynam-
ically picks one of the controller nodes as the active controller for
a time interval of a fixed length and utilizes the output signal of
the selected controller node as the input signal to the controlled
system. In this paper, we analyze the behavior of the over-
all closed-loop system under the time-division multiplexing and
design switching schemes to dynamically pick active controller
nodes. We first analyze the simplest switching logic which is a
round-robin switching (RRS) multiplexer that picks the controller
nodes in sequence (in a round-robin pattern) and then develop an
adaptive randomized switching (ARS) scheme.

It will be seen that the time-division multiplexing based ap-
proach provides a very useful design freedom in terms of the
switching logic used for selecting controller nodes. In particular,
it will be seen that even the simplest switching logic, which is
the RRS multiplexer, provides benefits in terms of retaining CPS
stability/performance under adversarial modifications of subsets
of controller nodes and that the closed-loop behavior under RRS
is essentially a balance between how effectively good controllers
can stabilize the system vs. how much damage bad controllers
can inflict. However, we will see that the ARS scheme can enable
much higher resiliency and that specifically, by introspecting the
performance of the selected controller over each time interval, it
is possible to probabilistically determine bad controller nodes and
“tune them out” over time. In particular, by making the switching
between controller nodes probabilistic rather than round-robin
and by adapting the probabilities of switching to each of the
controllers on-line based on the observation of their performance,
the impact to the CPS due to adversarial manipulations of a subset
of controller nodes can be attenuated over time.

It is to be noted that unlike voting-based or fail-over schemes,
the proposed time-division multiplexing based approach does not
use comparison of the outputs of the different controller nodes
at run-time. This yields several advantages. Firstly, this allows
a simpler structure of the multiplexer since it does not need
to compute expected control actions and instead only requires
to feed through the selected controller node output. Secondly,
this approach enables the multiplexer to not require to obtain
outputs of inactive controller nodes (in fact, the inactive con-
troller nodes do not even need to run their computations and
can be disabled or put into low power mode during their inactive
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Fig. 1. Overall architecture of the proposed adaptive randomized controller
switching scheme for CPS resiliency. The controller nodes are indexed by
1,..., N. The time-division multiplexer takes the outputs of the controller nodes
and selects, over each time interval, one of these outputs to pass through as the
control signal to the physical system.

times). Thirdly, since the approach does not require numerical
comparisons between outputs of controller nodes, this approach
provides robustness to noise and other computation variations
between different controller nodes and also allows heterogeneity
in controller designs and implementations. Specifically, numer-
ical comparison between nodes for voting schemes would be
susceptible to various noise/non-idealities such as sensor mea-
surement and quantization noise, numerical variations due to
sensor signal sampling time shifts, and computational variations
between controller nodes (e.g., due to different implementation
methods and processor architectures). On the other hand, the
time-division multiplexer-based scheme is not affected by such
noise/non-idealities since it relies instead on observing the dy-
namic closed-loop behavior of the system and adapting controller
switching likelihoods. Furthermore, the controllers in different
controller nodes can be different and independently designed in
the proposed scheme (e.g., controllers based on different sets of
assumptions or based on slightly different physical models of the
controlled system).
The novel contributions of this paper include:

e Analysis of the dynamic behavior of the closed-loop sys-
tem under the time-division multiplexing based switching
controller.

e Development of the ARS scheme that dynamically adapts
probabilities of switching to each controller using the on-
line observed “goodness” of controller nodes.

e Analysis of the convergence properties of the controller
switching probabilities for unattacked and attacked con-
troller nodes and the dynamic closed-loop system behavior
under the ARS scheme.

e Analysis of the efficacy and robustness of the proposed
method for two illustrative example systems (using
simulation-based studies).

The organization of the paper is as follows. The detailed for-
mulation of the problem being addressed and introduced
assumptions are discussed in Section 2. The switching-based
controller design and its analysis are presented in Section 3.
The adaptive randomized switching algorithm is presented in
Section 4. Simulation studies of the application of the proposed
approach to a third-order system example and a more real-
world representative CPS example (a single-machine-infinite-
bus system) are provided in Section 5. Concluding remarks are
summarized in Section 6.
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2. Problem formulation and assumptions

Consider a CPS with dynamics of the form
x=f(x,u, w) (1

where x € R™ is the state of the system, u € R™ is the control
input, and w € R™ is a disturbance input, with ny, n,, and
n, representing dimensions of system state, control input, and
disturbance input, respectively. The assumptions introduced on
this class of systems are listed below and discussed in Remarks 1
and 2.

Assumption A1l. Control laws u;(x),i = 1,...,N, and a com-
mon Lyapunov function V(x) are given such that, for each i €
{1,..., N}, the following inequality is satisfied along all trajec-
tories of the closed-loop system formed by (1) and the control
law u;(x)

V < —ai(Ix]) + Bero(xDiecp(lwl), (2)

with «; being a class Koo function, ! B(.iy being a non-negative
function, and p(; ;) being a class K function. Additionally, positive
constants @;, &;, and Bq ;, are known such that

o V(x) < ai([x]) = @V(x) (3)

=
Bl (Ix1) < Baaei(lx)). (4)
Assumption A2. The Lyapunov function from Assumption A1 sat-
isfies the following inequality along any trajectory of the system

(1)
V < yi(Ix1) + vallxDyu(lul) + B2(1X1)2(Jw]) (5)

with y, and B, being non-negative functions, y; being any func-
tion (not necessarily sign-definite), and y, and u, being class K
functions. Also, a constant y; and positive constants y, and B,
are known such that y;(]x|) < ¥,V(x), y2(Ix]) < ¥,V(x), and
B3(Ix]) < B,V(x). It is assumed that the magnitudes of u and w
are bounded (e.g., due to physical constraints in the specific CPS)
as |u| < Umgy and |w| < wpmgy With Uy and wpey being positive
constants.

Remark 1. Assumption Al essentially requires that one or
more nominal state-feedback control laws have been designed
for the system (1). Since the proposed methodology is based
on switching among N different controller implementations as
shown in Fig. 1, Assumption A1 is stated, for generality, in terms
of N known control laws. Some or all of these control laws could
be identical. Assumption A2 is essentially a worst-case bound
known on the possible adversarial impact (modeled in terms of
a Lyapunov inequality) by an attacker by arbitrarily modifying
the control input signal. Considering Assumptions A1 and A2, the
first part of the problem being addressed is to determine what
effect adversarial modifications on a subset of controller imple-
mentations can have on the overall closed-loop system when the
control input to the system (1) is generated by switching (time-
division multiplexing) among the set of controllers. The second
part of the problem being addressed is to develop a methodology
for adaptively updating the likelihoods of switching to each of the
controllers by introspecting the real-time “goodness” of the con-
trollers and to establish how such a methodology can, over time,
attenuate the effects of the adversarially modified controllers.
These two parts of the problem are discussed in Sections 3 and 4,
respectively, and simulation studies are presented in Section 5. ¢

1 Class K denotes the set of all continuous functions o : [0, a) — [0, o0) that
are strictly increasing and satisfy «(0) = 0. Class K, is the subset of class K
wherein furthermore a = co and «(r) — oo as r — oo.
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Remark 2. Assumptions A1 and A2 are satisfied by several
classes of dynamical systems and control designs. For exam-
ple, the backstepping-based control designs for strict-feedback
systems naturally lead to Lyapunov inequalities of the form in
Assumptions A1 and A2. The strongest part of the assumptions
in A1 and A2 is that the negative term —c;(|x|) on the right
hand side of Lyapunov inequality (2) is of the “same size” (in
a nonlinear function sense) as the Lyapunov function V(x). This
structure is, for example, automatically generated in a back-
stepping-based design for a system of the general strict-feedback
form % = fi(x1,...,%) + ¢ilx1, ..., % )xip1,1 = 1,...,n —
1, % = fulx1, ..., %) + dn(X1, ..., x)u wWith fi, ... fo, d1, ..., D0
being some functions. In the ith step of the iterative process of
backstepping, a virtual control law x, ; is designed for x;;1 and
a transformed state variable is defined as z; 1 = x;11 — X, ;. At
the nth step of backstepping, the control law for u is designed.
After the completion of this process, the Lyapunov function V
will comprise of quadratics in z;,...,z, while the right hand
side of the expression for V will have negative quadratic terms
in zq,...,z, thus providing a structure (which relates to ex-
ponential convergence in terms of the transformed set of state
variables zq, ..., z;) as in (2). It can be seen that control design
approaches such as feedback linearization and dynamic high-
gain control designs also lead to Lyapunov inequalities of the
form in Assumptions A1 and A2. Also, these assumptions are
automatically satisfied in the special case of linear systems. For
example, considering x = Ax + Bu + Hw and a feedback control
law u = Kx with K being a stabilizing feedback gain, a symmetric
positive-definite matrix P can always be found such that P(A +
BK) + (A+ BK)'P < —I. Then, defining V = x Px, we have

V < —|x|* + 2x" PHw, (6)

implying that Assumption A1 is satisfied. Also, for any input signal
u, we have

V < x"(PA+ A"P)x + 2x"PBu + 2x" PHw, (7)

implying that Assumption A2 is satisfied. In all the example
system structures above, it is to be noted that all or some of the
control laws u; can be identical or can be all different (e.g., with
slightly or significantly different gains). ¢

Remark 3. For mathematical simplicity and clarity and to focus
on the controller switching approach which is the main focus of
this paper, Assumptions A1 and A2 are stated based on a common
Lyapunov function V(x) shared among all the controller nodes.
This is not a particularly strong assumption since the physical
system being controlled is the same irrespective of the con-
troller node and the control designs and implementations at each
controller node would not in realistic scenarios be dramatically
different from each other. The proposed approach can however
also be applied to the case where the Lyapunov function is dif-
ferent for each controller node (i.e., separate Lyapunov functions
Vi,i = 1,...,N, for the control laws u; implemented at each
controller node i) as discussed further in Remarks 6 and 9. ¢

Adversary (Threat Model): The adversary/attacker is modeled as
having the ability to arbitrarily modify the control signal (sub-
ject to the physical magnitude constraint represented by tlpy)
output by the attacked controller nodes. The set of attacked con-
troller nodes is assumed to be an unknown subset of the set
of all controller nodes — this subset physically represents the
set of controller nodes that the attacker has successfully infil-
trated. The adversary’s access to the attacked controller nodes
(i.e., the infiltration) can be conceptually thought of as resulting
from successful cyber-attacks on the controller nodes by exploit-
ing software/network vulnerabilities. As discussed in Section 1,



P. Krishnamurthy and F. Khorrami

such vulnerabilities and cyber-attacks are indeed relevant in real-
world CPS. As discussed further in Remark 4, the adversary’s
access is reasonably limited to a subset of controller nodes (the
subset being unknown however) due to software/network het-
erogeneity making it much more difficult for an adversary to
gain access to all controller nodes simultaneously. The maximum
dynamic effect of the adversary on the closed-loop system is
modeled via the Lyapunov inequality in Assumption A2. Since
the closed-loop behavior of the CPS is governed by the dynamics
of the physical system and the magnitudes of the input signals
that can be applied to the system are constrained by the physical
instrumentation of the CPS, the model in Assumption A2 of the
maximum adversarial impact on the dynamic closed-loop system
is physically justified. Assumption A1 characterizes the stabilizing
behavior of an unattacked controller and is also physically realis-
tic since the intended control law (unmodified by an adversary)
would be designed taking into account the system dynamics to
stabilize the closed-loop system. The set of all attacked controller
nodes is denoted by A C {1, ..., N} and the number of elements
in the set A is denoted by n,.

Remark 4. As discussed in Section 1, the redundancy in
controller implementations can be physically coupled with het-
erogeneity to limit the potential success by the adversary. For
example, different controller nodes can be implemented using
various hardware architectures (e.g., different types of processors
such as Intel and ARM so as to limit effects of architecture-specific
malwares to a subset of controller nodes), different operating
systems (e.g., VxWorks, Windows, Linux), different network in-
terfaces (e.g., serial, Ethernet, analog), different network con-
nectivities (e.g., physically disjoint network buses/sub-networks),
different network protocols (e.g., Modbus, RS232, custom TCP/IP),
etc. Introducing “multi-modal” heterogeneity is a well-established
cyber-security practice [28,33] in CPSs and poses significant chal-
lenges to the adversary and practically limits the number of nodes
that an adversary can realistically simultaneously attack in a
successful manner since vulnerabilities that would be exploited
by the adversary to attack the nodes are specific to one or more
of various variables including device type, processor architecture,
network connection type and protocol, operating system, etc. ¢

Design Freedom: The control laws u;(x) for each of the controller
nodes are assumed to be known as summarized in
Assumption Al. The design problem being addressed is to define
a switching logic for the time-division multiplexer, i.e., a decision
rule to dynamically pick which of the controller nodes to connect
to the actual control signal to the physical system in each time
interval. The simplest such logic is RRS wherein each of the
controllers is picked in sequence for the same length of time.
As discussed in Section 3, even the simple RRS provides stability
and performance benefits since the action of the uncompromised
controller nodes during their active times can compensate to
some extent for destabilizing effects of compromised controller
nodes during their active times. However, by observing dynamic
behavior in each time interval, an adaptive randomized switching
(ARS) logic can be achieved, which, as could be expected, can
provide much better stability and performance as discussed in
Section 4.

3. Controller switching: Design and analysis

As discussed in Section 2, we are given the system (1) and
N control laws u;(x). The control laws are considered as imple-
mented on N separate computational nodes, therefore providing
N separate controller instantiations. The output of the ith con-
troller node is u;(x). The task of the time-division multiplexer
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based switching controller as shown in Fig. 1 is to dynamically
select one of the controller nodes and feed through its output for
a time interval of a specified length T. More precisely, at time
instants t = kT, k = 0,1,2,..., the multiplexer chooses an
ie1,...,N; the signal u;(x) is then passed through as the control
input to the system (1) for time interval [KT, (k + 1)T). Defining
the “selection” signal as s, the control input to system (1) is given
by

u(t) = ug, (x(t)) fort e [kT,(k+1)T), k=0,1,2,.... (8)

The simplest switching logic for this purpose is RRS (round-robin)
given by

Sy =k (mod N) + 1. 9)

Since the control input signal to the system (1) over time interval
[KT, (k+1)T) is ug,(x), the closed-loop system has dynamics given
by

X = f(x, ug,(x), w). (10)

The closed-loop dynamics (10) is of a switched system form with
dwell time T. The stability properties of the switched system (10)
are analyzed below for any selection signal s, with RRS (9) being
a specific case.

Assumptions A1 and A2 provide characterizations of system
behavior (modeled using Lyapunov inequalities) during time in-
tervals corresponding to unattacked or attacked controller
nodes, respectively. From Assumption Al, it is seen that during
a time interval corresponding to an unattacked controller node i,
the following Lyapunov inequality is satisfied:

. 1 €
V= —aV + —Bh(xD + Z‘ué_imwn (11)
1

1-— €
<- (% - */3(1,:‘)51') V+ *'M(21,i)(|w|) (12)
€ 4
where ¢; > 0 is any constant.

From Assumption A2, it is seen that during a time inter-
val corresponding to an attacked controller node, the following
Lyapunov inequality is satisfied:

. 1 € 1 €p
V<YV 4+ =y (XD + —v2(ul) + —B3(IxD) + = u3(jw]) (13)
€a 4 €p 4
. 1_ 1— € €p
<(Vi+ Vot =B, ) V+ —vi(lul)+ ud(wl) (14)
€q €p 4 4

where ¢, > 0 and ¢, > 0 are any constants. Hence, during a time
interval [kT, (k + 1)T) corresponding to an attacked controller
node, i.e., if s; is in set A of attacked controller nodes, we see?
using the Bellman-Gronwall Lemma that

Viernr < €4 Vir

(k1)T € € (15)
+/ prallk 1T —1) [Z“yuz(mn + Zuﬁ(lwl)] dr
kT

where A, is a constant given by
_ 1_ 1-
ha=V1i+ =72+ — B> (16)
€aq €p

Noting that y, and p, are class K functions and noting that |u| <
Umax and |w| < Wpax, (15) implies

Viernr < € Vir + g + W) (17)
where U, and w} are constants given by
AaT raT
e —1¢ , _ e —1¢ ,
Ug = szll(umux) ; Wq = Tzﬂz(wmax)' (18)

2 The notation V; is used to denote the value of V(x) at time t, i.e., V; denotes

V(x(t)).
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On the other hand, if the time interval [kT, (k+ 1)T) corresponds
to an unattacked controller node i, i.e., if i = s is not in A, we see
using (12) and the Bellman-Grénwall Lemma that

(k+1)T

o s _n€i
Virr < e MTVkT"‘/ e hilller I t)zlﬂ(zl,i)ﬂwndf (19)
kT
where A; is a constant defined as
1- _
Al = o — ;ﬂ(u)azﬂ (20)

1
The constant ¢; appearing in (12) is picked such that

1 _
€ > — B i (21)
&@;

therefore implying that A; > 0. Noting that j(1 ;) € K and noting
that |w| < wmg, (19) implies

Viernr < e 4TV + w; (22)
where wj is a constant given by

_ 1—eMT € -

w; = TZM(]j)(wmax)- (23)

The inequalities (17) and (22) provide bounds on the temporal
evolution of the Lyapunov function V during time intervals corre-
sponding to attacked or unattacked controller nodes, respectively.
Hence, considering N time intervals of length T starting from time
kT, we have

kN—1 KN—1 k+N—1
Vikenyr < ( 1_[ ar>VkT + Z < 1—[ aj>br (24)
r=k

r=k j=r
where
e T ifs, ¢ A
ar = {eAGT ifs, €A (25)
_Jw,, ifs, €A
by = {ua +wgy if s, €A (26)

where, as defined in Section 2, the set of attacked controller nodes
is denoted by A, which is a subset of {1, ..., N}. While (24) is
satisfied for a general switching signal sy, the specific example of
RRS (9) yields a simplification as shown below:

k+N—-1 N N
l_[ a, = 1_[ el 1_[ e T (27)
r=k j=1 Jj=1
JjeA JgA
N N
=exp[(2xa—2xj)r}. (28)
=1 =1
jea jéA

Note that (24) can be considered as an inequality on a scalar
discrete-time system (with state variable V) and time step NT.
Hence, it can be inferred from (24) that this scalar discrete-
time system is stable if the scalar [[“} " a, is smaller than 1

in magnitude. It can also be seen that since the forcing term

Zfigq ]_[Jlfir’\’f1 a; )b, admits a finite upper bound that can be

easily written explicitly, the stability analysis only requires anal-
ysis of the term 1—11::;:1—1 a,. Furthermore, since V is a Lyapunov
function for the original system (1), it follows that stability of the
closed-loop system formed by (1) and the switching controller
can be inferred from stability of the scalar discrete-time system
(24) (with state variable V). Hence, for the case of RRS, (28)

implies that the closed-loop system is stable if

N N
D ha< ) A (29)
j=1 j=1

JjeA Jj¢A
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The inequality (29) essentially provides an estimated upper bound
on how many controller nodes can be adversarially modified and
still retain closed-loop stability.

Remark 5. As an illustration, consider the very specific case of
when the size of the stabilizing effect of the unattacked con-
trollers (as quantitatively measured by the size of —2;) is equal to
the size of the destabilizing effect of the attacked controller nodes
(as quantitatively measured by the size of A;). In this specific
case, the inequality (29) reduces to ny < (N — na) where ny
is the number of adversarially modified controller nodes. This
is equivalent to the condition N > 2n,4, which can be simply
stated as the condition that if at most n4 controller nodes can be
simultaneously compromised by an attacker, then it suffices to
have 2n4 4 1 controller nodes to retain closed-loop stability. This
kind of condition (i.e., that to accommodate failures/malfunctions
of at most k elements in a collection, it is sufficient to have
2k + 1 elements in the overall collection) is commonly seen in
redundancy-based resiliency analysis and it is intuitively satis-
fying to note that the obtained conditions do reduce, as can be
expected, to this condition in the special case when the stabiliz-
ing and destabilizing effects of unattacked and attacked nodes,
respectively, are equal. ¢

Remark 6. Under the case of separate Lyapunov functions V;, i =
1, ..., N, for the control laws at the different controller nodes as
discussed in Remark 3, an analysis analogous to the discussion
in this section can be carried out. The primary modification
under this case is that since the corresponding Lyapunov func-
tions would change when switching between different controller
nodes, an inequality such as (17) would need to be written to

form an upper bound for Vg, k+1)r S Vs (x((k+ 1)T)) in terms

of Vg, kr S Vs, (X(KT)). For this purpose, it is to be noted that since
Vi,i=1,..., N, are Lyapunov functions, it is reasonable to write
known lower and upper bounds for these functions as V,(|x|) <
Vi(x) < Vi(|x|) with V, and V; being class K, functions. Hence, we
would have, for example, the inequalities Vj(x) < V,-(z;l(vi(x)))
and Vj(x) > K(Vf(v,-(x))) for any i and j in 1..., N. Hence, an
inequality anafogous to (17) can be written as

—1 — J—
Vo (Voo Vs i) < €7V i + T + W (30)

and similarly for (22). Using these inequalities, the analysis of the
closed-loop system under the time-division multiplexing can be
carried out (under, for example, simplifying assumptions on the
relative sizes of V; and V; for differenti = 1, ..., N) analogous to
the analysis in this section. The details are omitted for brevity. ¢

4. Adaptive Randomized Switching (ARS)

While the conditions in (28) and (29) in Section 3 considered
RRS, we now consider a time-division multiplexer that uses ARS.
Based on a set of probabilities p1, ..., py such that Zj'fl:l pi=1
ARS selects, at each switching time, one of the N controller nodes
(with probability p; for picking the jth controller node) with the
choices of controller nodes at successive time intervals being
independent random variables. Then, instead of the deterministic
form of a, in (24) and (25), we can write instead at time instant
T

N N
E(@) =Y pe +Y pe i’ (31)
= e

where the notation E(.) is used to denote the expected value.
The Eq. (31) can be considered as essentially a probabilistic ver-
sion of an application of the averaging method in switched sys-
tems [45-47] based on the identification of the possible candidate
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subsystems. It is noted that if it were possible to pick the prob-
abilities p; for attacked nodes (i.e., j € A) to be relatively small
and to pick probabilities p; for unattacked nodes (i.e., j ¢ A) to be
large, then the expected value E (a;) can be ensured to be smaller
than 1. Also, noting that the controller nodes over successive time

intervals are independently picked, we have E (]_[’:E(V*]

ar> =
Hf:,’:’” E (ar). Hence, if p; are small for j € A and relatively

large for j ¢ A, we would have E (]_[’;:kN_1 ar) < 1. Hence,

noting (24), we would ensure stability of the scalar discrete-time
system with state variable E (V). However, it is to be noted that
it is not possible to directly pick p; based on whether nodes
are attacked/unattacked since it is not known which nodes are
attacked/unattacked (even the number of attacked nodes, if any,
is unknown). Nevertheless, while it is not possible to directly
observe which nodes are attacked or unattacked, it is indeed pos-
sible to observe the “goodness” of a controller node during time
intervals in which it is active. These observed goodness values can
then be used to dynamically update the switching probabilities
p; for each controller node j € {1...,N}. For this purpose,
goodness estimates can be defined to characterize closed-loop
system performance using, in general, application-specific criteria
by considering for example combinations of the system state vari-
ables that best capture the control objectives (e.g., application-
specific efficiency or CPS stability criteria). Alternatively, a general
signal of goodness can be derived from the Lyapunov function V
itself, which is as defined in Assumptions A1 and A2. Specifically,
since — fk(fH)T Vdr = Vir — Viiq1yr, an estimate of the goodness
of the controller node s, over the time interval [kT, (k + 1)T)
can be computed by first caching the value of V at the time kT
at which the controller node s, becomes active, then observing
the value of V at the time (k + 1)T when another controller is
picked, and calculating the difference between the values at time
instants kT and (k 4+ 1)T. To address noise and other uncertain-
ties (including the possibility that the set of attacked controller
nodes could change over time), these goodness estimates over
time intervals can be averaged/filtered over time to derive a
robust indicator of goodness of each controller node. Denoting
Quer,(k+1)1) = Vir — Viesnyr, @ simple filter for averaging these
values for each controller node over time is given by

s, < s, + (1 — o)Quer, (k+1)7)- (32)

The update rule (32) is executed at time (k + 1)T to update the
temporally averaged estimate g, of controller node s. The state
variables ¢y, ..., gy of the switching controller will be referred
to as switching likelihood states; these state variables will be
used below to compute probabilities for switching to each of the
controller nodes. The parameter « in (32) can be picked to be any
constant in the interval [0, 1]. At each time kT, the probabilities p;

of picking each of the controller nodesj € {1, ..., N} are defined
as
p; = max(q;, co(t — tiast j)) (33)
pj
Pi=—=§ = (34)
Zj:] pj

where ¢p > 0 is any constant and ty,; j denotes the last time (be-
fore the current switching time kT) at which the controller node
j was selected. The second term in (33) is introduced to provide
robustness to possible spurious reductions in switching likelihood
states (e.g., due to intermittent noise) or possible changes in
the sets of nodes that are unattacked/attacked. This second term
in (33) ensures that even if the probability of switching to a
particular controller j becomes very small, the controller will
be tested again (for at least one time interval) at some point
in time in the future to detect if its behavior has changed. The
probabilities p; computed in (34) are normalized, i.e., Z}il pi=1
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Remark 7. To ensure that system behaviors during large tran-
sients do not inordinately dominate in the computations of g,
additional normalization components can be integrated into the
definition of Q[kT,(k—H)T) as

Vir — Vs r
max(Vies1yr, €v)

Qukr (k+1)1) = Sat ( » Quin, Qmax) . (35)
With this normalization, Qyr (k+1)r) and therefore the probability
updates above are independent of the actual size of V (and
thereby sizes of the states x), but are instead dependent on the
relative rate of change of V. In (35), ey > 0 can be picked to be
any constant and is used in (35) to prevent a numerical singular-
ity for values of V(x;1yr close to 0. Also, sat(8, Qmin. Qmax) denotes
a saturation of the value § to the interval [Qumin, Qmax]. As With
the normalization, the saturation is also introduced to ensure that
“noise” due to large transients do not cause inordinately large
effects in computations of gj. ¢

Remark 8. To further provide an intuitive interpretation of the
ARS design in (32)-(35), the primary motivating considerations
for the design are summarized in this remark. Firstly, since what
is observable from the perspective of the time-division multi-
plexer is the variation of V over the time interval in which a
controller is active, a goodness estimate of the active controller
is defined in (35) in terms of V to capture a metric of the extent
to which the active controller is being effective in achieving the
stabilization objective. Secondly, since the goodness estimates
are inherently stochastic indicators due to the presence of the
disturbance input and the unknown adversarial modifications,
(32) is used as a low pass filtering to attenuate such noise and
obtain the switching likelihood states g;, which provide more
robust indicators of the goodness of each controller node. Thirdly,
since the transient performance (as quantified by the goodness
estimates in (35)) would be expected to be positive (and relatively
large) for unattacked controllers and small/negative for attacked
controllers, the switching probabilities are defined in (33) such
that nodes with larger g; would tend to correspond to higher
probabilities than nodes with smaller g;. The additional time-
dependent term in (33) is introduced to guard against instances
where intermittent noise (e.g., due to disturbance inputs) re-
sults in observations of temporary low goodness estimates of
an unattacked controller leading to spurious reduction in the
corresponding switching likelihood states. In such an instance,
the presence of the time-dependent term in (33) ensures that
the controller will be retested eventually since the switching
probability for that controller node increases over time until it
happens to be activated. The computed values p; from (33) are
normalized (to make sum equal to 1) to obtain the switching
probabilities pj,j=1,...,N. ¢

Some of the salient properties of the closed-loop system under
time-division multiplexing with the ARS scheme are summa-
rized below. For simplicity and brevity, we consider the case
max(Vig+1r, €v) = Vs in the analysis below. This is rea-
sonable since the small positive constant ey is introduced in
(35) only to prevent numerical singularities when Viiyr =~ 0
and is therefore only relevant when V reduces down to close
to O (i.e.,, when the switching-based controller has successfully
stabilized the system) while the analysis below addresses the
transient behavior of the closed-loop system to show that the
switching-based controller will indeed stabilize the system.

@ Increase of the switching likelihood states of
unattacked controller nodes to large values: Positive constants
W and q exist such that if wp, < W, then with probability 1,
we have liminf,_.,q; > q for allj € {1,...,N} — A. To see
this, note that an inequality of the form (22) is satisfied with
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A; > 0O for all unattacked controller nodes i where ¢; and w; are as
shown in (20) and (23), respectively. From (22) and noting that
max(Vix4+1)r, €v) = Vg 1yr as noted above and max(Vigy1yr, €v) >
€y, we see that the term appearing in the goodness estimate
defined in (35) satisfies

Vir — Ve . (é‘)”iT—l)E'
D > (AT — 1) = 2 (Wnee). (36)
max(Vigs1)r, €v) riey 4
Hence, defining q = min(Qmax,min,-E“MN} ek’;_l), we have
Quir, (k1) = q if the following inequality holds:
(e“T—l)e,- , e)‘iT—]
WZM(U)(WWM) = — (37)

Defining the function Wu(z) = supwmﬂxsz(ﬁu(ﬂj)(wmm))

and defining the constant W = sup{z € R¥|Wpau(z) < 1}, the
inequality (37) is seen to definitely hold if wyq < W. Since the
inequality Qpr (k+1)r) > q therefore holds over each time interval
[KT, (k 4+ 1)T) in which an unattacked controller j = s is active,
the switching likelihood state g; computed using the filter (32)
will also be greater than or equal to g in the limit as t — o0. Since
this convergence property relates to the stochastic closed-loop
system, this statement is seen to hold with probability 1 under
the randomized switching.

Decrease of the switching likelihood states of attacked
controller nodes to small values: To model the minimum ad-
versarial impact of an attacked controller node, we consider that
over a time interval [kT, (k4 1)T) in which an attacked controller
is active, we have an inequality of the form

Viernr = @Vir + Br (38)

with &, > 1 and Bk > 0 being constants (that could be time-
varying, i.e., dependent on k). A Lyapunov inequality such as (38)
is reasonable since one would expect that an adversary should
at least have some level of destabilizing dynamic effect on the
closed-loop system for it to even be considered an adversarial
modification. With this adversarial model, it can be shown that
with probability 1, the inequality limsup,_, o, ¢j < max{Qmin, 0}
is satisfied for all j € A. To see this, note that

a; ' Br

max(Vik1yr, €v)

Vir — Vi yr < (5‘1_] _1) <o, (39)
max(Vig+1)r, €v) :
from which it follows that limsup,_, ., qj < max{Qm, 0} for all
j € A with probability 1 under the randomized switching in the
closed-loop system.

Eventual retesting of each controller node, i.e., in-
finitely many activations of all controllers: For allj € {1, ..., N},
the non-negative integers k for which s, = j are infinite in
number with probability 1. This is a simple consequence of the
time-dependent second term in (33). To show this statement
using a proof by contradiction, consider that a controller node
j is activated only a finite number of times, i.e., there exists a last
time tjs j at which the controller node j is activated after which
it is never activated. In this case, as t — o0, it can be shown
from (33) and (34) that liminf;_, o p; > % To see this, note that
any other controller nodes i activated after time ;4 ; will have p;
smaller than p; while controller nodes i that were last activated
before time tj,s: ; will asymptotically have lim[_mo% = 1 since

lim;_s oo i:—; = 1 for any real numbers a and b. Therefore, p;

will increase asymptotically to ﬁ or higher implying that with

probability 1, the controller node j will be activated again. This
contradicts the assumption that a finite f; is the last ever

activation time of controller node j implying that all controllers
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will be activated infinitely many times (possibly very infrequently
however as discussed in ).

Asymptotically low frequencies of activation of at-

tacked controllers: Picking Qni; < 0 and using above, it
can be shown that given any A4 > 0, the constant ¢y can be
picked small enough to make the asymptotic (as t — oc0) mean
time (in units of number of time intervals of length T) between
activations of an attacked controller larger than or equal to Ags.
To show this, consider an attacked controller node j; using s
it is seen that asymptotically p; ~ co(t — tigs j) With tie j being
the last activation time of controller node j before time t. We
want to find the expected time (in units of T) before the next
activation of controller node j. Denote the next activation time

A .
by thextj = tiast,j + MnextjT. We want to find E(nyex j). It can be
seen that to find the form of the dependence of a lower bound of
E(npext,j) on the parameter cy, it suffices to consider that Z’?_Ll_ Di

is some constant py. This is because if any other controller nlc?;jdes
i have not been activated recently and for which therefore p; has
a relatively large component co(t — tist.i), the presence of such
controller nodes will only tend to compete for activation with the
controller node j thereby increasing E(nuex ;). Denote by ¢; the
probability that the controller node j will be activated in the next
time interval after tjs ;. It is seen that ¢; = ﬁ where 1 denotes

%. Denoting by ¢, the probability that controller node j will only
be activated in the second time interval after tj.s ; and not in the
first time interval (i.e., that npex j = 2), we have §, = (1—-¢4 )%‘
Similarly, denoting by ¢ the probability that nn: ; = k, we have

k

- kn
=(1-— i . 40
&= ( ;mHkn (40)

Note that from (40), we have ¢ < kn for all k. Now, pick any
e € (0,1) and using the given A, > 0, define M = 24 Then,

1—€*
. . 2€po 2¢ M
picking ¢y < W We have n < WO and Y, & <

e kn < e Since Y52 & = 1, we have Y50 G > 1— €
implying that "%/, k&, > (M+1)(1—e). Since by the definition
of expected value, we have E(Npexj) = Z,fil ke, we see that
E(Mnext ) = Y poprsr k& = (M 4+ 1)(1 — €) > A, from the choice

of M above. Therefore, by picking ¢y small enough, the frequency
of activation of attacked controllers can be asymptotically made
arbitrarily small.

Asymptotic boundedness and convergence of closed-

loop system states: Given @— , it follows that the state
x of the closed-loop system remains uniformly bounded over
the time interval [0, oco) with probability 1. To see this, note

from that the mean time between activations of attacked
controller nodes can be asymptotically made larger than any
given A4. Hence, as t — oo, each attacked controller node is
active on around a fraction AlA of the time intervals while the
unattacked controller nodes considered all together are active
for around a fraction 1 — Z—’; of the time intervals where ny
denotes the number of attacked controllers. Since A4 can be made
arbitrarily large by picking ¢, appropriately small, this implies
that asymptotically the effects of the attacked controllers can be
arbitrarily attenuated by appropriate choice of ¢y and the region
of convergence of the system state is governed essentially by
the disturbance input w and the performance of the unattacked
controllers. Furthermore, under the case that the disturbance w
goes to 0 as t — oo, it is seen that the closed-loop system state
converges (with probability 1) as t — oo to within a region
|x| < €4 where €, is a constant dependent on A4 such that if

Aq — oo (which from
then ¢4 — 0.

1

is equivalent to picking c¢ — 0),
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Remark 9. While the analysis above considered the case of a
common Lyapunov function V shared among all the controller
nodes, the ARS design in (32)-(35) can also be applied under the
case discussed in Remarks 3 and 6 of separate Lyapunov functions
Vi,i = 1,...,N, for the control laws at the different controller
nodes. The design of the goodness estimates in (35) still applies

under this case with Vs, 7 = Vs, (x(kT)) and Vs, (eq-1y7 2 Vs, (X((k+
1)T)) being used in place of Vir and Vi41)r, respectively, since
what is being measured is the observed efficacy of the controller
utilized over time interval [kT, (k41)T) in terms of a scalar metric
of relevance for that controller, i.e. V. Using these goodness
estimates, the switching likelihood states can be defined as in (32)
and the switching probabilities can be defined as shown in (33)
and (34). The subsequent analysis of the convergence properties
of the switching likelihood states and the dynamic closed-loop
system can be carried out analogously as discussed in this section.
The details are omitted for brevity. ¢

Remark 10. While the analysis in this paper focused on the
resilient control application (in the state-feedback setting as for-
malized in Assumption A1), the proposed ARS approach can be
conceptually applied to a secure state estimation problem as
well, i.e.,, to enable resiliency of state estimation under adver-
sarial modifications of subsets of available sensors. Consider, for
example, m multiple redundant sensors (which could measure
the same or different physical signals) such that a given dynamic
system is observable using any subset of sensors. Then denoting
the sensor measurements as y1, ..., ¥m, the goodness estimation
concept discussed in this section could be applied using indicators
of goodness of sensors based on, for example, the residuals y; —;
where signals y; are computed using dynamic observers. Then, the
ARS approach could be applied using these dynamic goodness es-
timates of sensors during run-time to iteratively tune out sensors
detected as bad so as to improve state estimation resiliency under
sensor attacks. The details are omitted for brevity. ¢

5. Simulation studies

To evaluate the efficacy of the proposed switching controller
approaches based on time-domain multiplexing using RRS and
ARS schemes, we consider two illustrative examples below, the
first with a simple third-order system and the second with a more
real-world CPS example of a single-machine-infinite-bus (SMIB)
system.

Example 1. Consider the system with dynamics:

5(] =X
Xy = —Xxp + sin(0.1x)w + X3
)'(3 = —X3+1U (41)

where the system state is x = [xq, X2, X317, u is the control input,
and w is the disturbance input. Considering the linear system
obtained with w = 0, the controller can be designed as u = Kx
with the controller gain vector K picked to place the closed-loop
poles at any desired locations. For example, taking the desired
pole locations as —5 and —3 = j, the controller gain vector is
obtained as K = [—65, —33, —9]. With this controller gain vector,
the linear closed-loop system with w = 0 is given by X = A.x with

0 1 0
Ac=1| 0 -1 1 1. (42)
—65 —33 —10

Solving the Lyapunov equation PA. +ATP = —diag(1, 1, 1) where
diag denotes a diagonal matrix with the indicated elements on
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the diagonal and defining V = 0.02x”Px, the goodness estimate
Quir (k+1yr) is defined as discussed in Section 4 as Vir — Viky1)r-
The controller magnitude limit is defined as upq = 100. For
the simulation study, consider w = sin(0.2t). The adversary is
modeled as setting the control signal to a constant given by tq.
The switching time T for the time-division multiplexer is picked
to be 0.05 s. The parameters in the ARS controller are picked as
a = 095 ¢ = 1074 Quin = —2, Quax = 2, and ¢y = 1073,
The initial condition is picked as x = [5, 2, 2]". With a single
unattacked controller node, the closed-loop signals x and u will
go to zero rapidly since A is a strict Hurwitz matrix. On the
other hand, with a single adversarially modified controller node,
it can be seen that x; will grow unbounded since a non-zero
value of u at steady-state will drive x, to a non-zero steady-state
value even in the absence of the disturbance input w resulting in
unbounded growth of x;. Simulation plots for single unattacked
and attacked nodes are omitted for brevity. Now, using N = 4
parallel controller nodes with n4, = 2 nodes being adversarially
modified starting at time Tyq, = 10 s, it is seen from Fig. 2 that
unbounded growth of x; is prevented even with RRS. Since only
a subset of the controllers are adversarially modified, it is seen
that the stabilizing effect of the good controllers is able to com-
pensate for the destabilizing effect of the bad controllers during
the round-robin switching among all the controllers. However,
there are considerable oscillations (and non-zero offset) in x;. It
is seen in Fig. 3 that the adversarial impact by the attacker can
be reduced using ARS and x; can be regulated to 0. The switching
likelihood states g; and switching probabilities p; are computed as
discussed in Section 4 using Egs. (32), (33), and (34). As discussed
in Section 4, the dynamic update of the switching likelihood
states ensures that over time, the good controllers are likely to
be more frequently picked than the bad controllers. The dynamic
evolution of the switching probabilities is shown in Fig. 4. Using
these switching probabilities for randomized switching among
the controllers, it is seen in Fig. 3 that ARS tunes out the attacked
controller nodes over time. The efficacy of RRS and ARS are
discussed in greater detail in the “real-world” example below.

Example 2. Consider the dynamics of a SMIB system [48,49]
S=w
. 1
w = ﬁ[_Dw + wo(Prmo — Pe)]
. 1 .
Eq = —[Ef — Eqg — Eg] (43)
Tao

where 8, o, and E;; denote the power angle, relative speed, and
quadrature-axis transient electromotive force (EMF), respectively,
of the generator. E; denotes the quadrature-axis EMF, E,; the
noise/disturbance, and E; the equivalent EMF in the excitation
coil. Py is the mechanical input power. wq is the synchronous
machine speed (wy = 27fy). P is the active electrical power
delivered by the generator. T, is the direct-axis transient short
circuit time constant. The parameters D and H are the per unit
damping constant and inertia constant, respectively. P, E4, and
Eq1 are related through the algebraic equations [48]

ViE, sin(8
P. = L() (44)
Xds
X X4 — X,
E, = —2E, — MVS cos(8) (45)
Xds1 Xds1

where V; is the infinite bus voltage, and x4, X41, Xgs, and x4 are
reactance parameters as in [48]. The control input to system (43)
is u = E;. A controller based on external feedback linearization
can be designed for system (43) as [48]:

v = K[8 — 80, @, Pe — Pl + Prno (46)
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Fig. 2. Simulation of closed-loop system for Example 1 with RRS (N = 4) with adversarial modification of controllers 1 and 2 from Ty, = 10 s.
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Fig. 3. Simulation of closed-loop system for Example 1 with ARS (N = 4) with adversarial modification of controllers 1 and 2 from Ty4, = 10 s.
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Fig. 4. Controller switching probabilities (p;(t),i =1, ..., N) for simulation with

ARS in Fig. 3. The “ground truth” of attacked and unattacked controllers are
denoted with red dotted and green solid lines, respectively.

V,T,
Tao1lgVs sin(8)w — ——
Xds1 Xds

1 (Uf _ (Xa —xa1)

u=—
Iy

E, cos(8)w)
(47)

where I, = %399 and Ty = “1Tyo. K in (46) is a gain vector of

dimension 1 x 3. 8o is the desired operating point for the power
angle §. As in [48], the parameters of the SMIB system are given
by Pmo = 0.9 p.u., wg = 314.159 rad/s, Tyo = 6.9 s, D = 5 p.u,,
H =4s,V; = 1.0 p.u, x4, = 1.863, X517 = 0.257, x4 = 2.2327,
and xg; = 0.6267. As in [48], the gain vector K is chosen to

be K = [19.3,6.43, —47.6]. Also, §o = 75° = 1.309 rad and
Umax = 2.3 p.u. The disturbance input signal is defined as w = E
and is chosen to be w = 0.01 cos(0.5xt).

As in Example 1, the switching time is chosen as T = 0.05 sec
for the time-division multiplexer. Considering the structure of the
feedback linearization control law in (46) and (47), the goodness
estimate Qur +1yr) is defined using X' Px where X = [§ —
89, w, P, — Pyol. The 3 x 3 matrix P is computed by solving the

Lyapunov equation PA + A P = —103diag(25, 5, 2) where A is
defined based on the closed-loop dynamics of x given by
0 1 0 0
A=|0 -5 -5 4| 0 |k (48)
0 0 __1 1
Tao1 Tao1

The parameters «, Co, Qmin, Qmax, and €y in the ARS controller are
picked to be the same as in Example 1.

From a simulation with a single non-attacked controller node
shown in Fig. 5, it can be observed that except for small os-
cillations (due to disturbance input E;), the baseline controller
achieves very good regulation performance. To evaluate the pos-
sible performance degradation that an adversary can effect, a
simulation with a single controller node, that is adversarially
modified starting at time Ty, = 10 s, is shown in Fig. 6. The
adversary is modeled in the simulation studies below as holding
the control signal to a constant given by 0.75u,4. It is seen in
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Fig. 5. Simulation of closed-loop system for Example 2 with a single unattacked controller implementation.
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Fig. 6. Simulation of closed-loop system for Example 2 with a single controller implementation, that is adversarially modified from Ty, = 10 s.
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Fig. 7. Simulation of closed-loop system for Example 2 with RRS (N = 8) with adversarial modification of controllers 2, 4, and 7 from T,q, = 10 s.

Fig. 6 that using the adversarially injected input, the attacker
can dramatically impact system stability (specifically, unbounded
drift of § seen in Fig. 6). However, through round-robin switching
among N = 8 parallel controller nodes, it is seen that (Fig. 7)
a considerable amount of the closed-loop system performance
can be regained even under adversarial modifications of n4 = 3
nodes. Since only ny = 3 out of N = 8 controllers are adver-
sarially modified, the good controllers are active for over half the
total time in the closed-loop CPS enabling the stabilizing effect of
the good controllers to compensate for the destabilizing effect of

10

the bad controllers during round-robin switching. However, it is
seen in Fig. 7 that there are still significant oscillations compared
to Fig. 5. Using ARS, Fig. 8 shows that the adversarial impact
can be further reduced. The switching states (i.e., signal given
by s, over time intervals [kT, (k + 1)T)) for RRS and ARS are
shown in Figs. 9 and 10, respectively. As expected, the switching
pattern in Fig. 10 is non-uniform (unlike RRS in Fig. 9) tending to
avoid the adversarially modified controller nodes. This avoidance
of attacked controller nodes is enabled by the estimation of the
switching likelihood states g; and switching probabilities p; as
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Fig. 9. Controller switching state (s(t)) for simulation with RRS in Fig. 7.
Attacked nodes (2, 4, 7) are denoted with horizontal red dotted lines.

discussed in Section 4 using Egs. (32), (33), and (34). By evalu-
ating the observed performance of the activated controller over
each switching time interval, the switching likelihood states are
dynamically updated and used to compute the switching proba-
bilities at each switching time so as to over time favor picking the
apparently good controller nodes rather than the apparently bad
controller nodes. As seen in Fig. 11, the dynamic updates of the
switching likelihood states gj, tend to reduce the values of g; (and
therefore p;) for controller nodes detected as having low goodness
and therefore to attenuate effects of attacked controller nodes
over time. The “ground truth” denoting the a priori unknown
information as to which controller nodes are unattacked/attacked
is also shown in Fig. 11 using two different line types (attacked:
red dotted, unattacked: green solid). It is seen that the switching
probabilities for attacked controllers are reduced over time while
the switching probabilities for unattacked controllers remain rel-
atively large. In similar simulations performed with number of
attacked nodes increased to ny = 4, it is seen that while the
round-robin switcher (Fig. 12) results in significant growing drift
of 8, ARS (Fig. 13) still retains performance close to the unattacked
baseline. The switching state s and the switching probabilities
p; for the simulation in Fig. 13 are shown in Figs. 14 and 15,
respectively, and it is observed that the adversarially modified
controllers can be dynamically tuned out over time by the ARS
controller (by dynamically adapting the corresponding switching
likelihoods using on-line observations of the controller nodes’
relative goodness).

6. Conclusion

The possibility of using multiple parallel controller implemen-
tations and dynamically switching among the controller nodes

11
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Fig. 10. Controller switching state (s(t)) for simulation with ARS in Fig. 8.
Attacked nodes (2, 4, 7) are denoted with horizontal red dotted lines.
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Fig. 11. Controller switching probabilities (p;(t),i = 1,...,N) for simulation
with ARS in Fig. 8. As in Fig. 4, attacked and unattacked controllers are denoted
with red dotted and green solid lines, respectively.

at run-time to improve resiliency to adversarial modifications
was considered. In particular, RRS and ARS methodologies were
considered. The efficacy of the proposed approach was shown in
simulation studies on a simple third-order system and a more
real-world example of a SMIB system. It was shown that if a
cyber-attacker arbitrarily changes a subset of controllers, the
overall closed-loop system can still be kept stable and impact
of adversarial modifications to controllers can be bounded. It
was shown that over time, the adaptation of switching likeli-
hoods enables reduction of impact to the CPS due to adversarially
modified controllers. Furthermore, the likelihood adaptation has
components to adapt to changes over time of which controllers
are adversarially modified. Future work will address applicability
of the methodology to additional classes of systems (e.g., de-
centralized systems with distributed controller implementations)
and analysis of more precise bounds on adversarial CPS impact
including in output-feedback scenarios.
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Fig. 14. Controller switching state (s(t)) for simulation with ARS in Fig. 13.
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