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a b s t r a c t

A switching based approach using multiple parallel redundant controller implementations is developed
to improve resiliency of cyber–physical systems (CPSs). Hardware/software redundancy is known to
be a powerful technique for resiliency to mitigate effects of adversaries who infiltrate and maliciously
modify a subset of the redundant subsystems. While redundant subsystems are typically combined
using fail-over/backup and voting mechanisms, the proposed approach considers a time-division
multiplexer using which one of multiple controller implementations is selected at each time instant to
drive the input of the controlled system. Through detailed analysis of the switched system, it is shown
that time-division multiplexing between redundant controllers can be used to mitigate the impact
to stability and/or performance of the closed-loop CPS due to adversarial modifications of subsets
of controllers. Additionally, we show that adversarial impact to the closed-loop CPS can be reduced
over time by switching among the controllers in a probabilistic manner (rather than round-robin) and
by dynamically adapting probabilities of switching to each controller. The efficacy of the proposed
adaptive randomized switching algorithm is shown through simulation studies on two illustrative
examples: a simple third-order system and a more real-world single-machine-infinite-bus system.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Cyber-security for industrial control systems (ICSs) and other
yber–physical systems (CPSs) are becoming increasingly criti-
al [2–8]. While increasing programmability and remote connec-
ivity of controller devices (e.g., Programmable Logic Controllers
PLCs) in modern CPSs provide significant benefits in terms of

ase of use and maintenance, they also increase the potential
ttack surface for a cyber-adversary [9–13]. Hence, to detect
nd prevent attacks, several approaches have been developed
n the literature including hardware, software, network-based
nd process-aware methods, which can be combined in various
ays to achieve robust multi-layer security [2–6,14–23]. In com-
ination with these approaches, a generally useful ingredient in
chieving resiliency (both against cyber-adversaries and possible
alfunctions, etc.) is redundancy.

✩ An earlier version of this paper was presented (Krishnamurthy and Khor-
ami, 2020) [1] at the 2020 IEEE Conference on Control Technology and
pplications.
✩ This work was supported in part by the National Science Foundation (NSF)
nder grant 2039615 and the Office of Naval Research (ONR) under grant
000141512182.
∗ Corresponding author.

E-mail addresses: prashanth.krishnamurthy@nyu.edu (P. Krishnamurthy),
horrami@nyu.edu (F. Khorrami).
ttps://doi.org/10.1016/j.sysconle.2021.105066
167-6911/© 2021 Elsevier B.V. All rights reserved.
Redundancy can be introduced into a CPS at multiple lev-
els including communication channels, software, and hardware
(e.g., multiple redundant sensors, actuators, or computing nodes),
etc. [24–35]. Several off-the-shelf CPS devices integrate redun-
dancy in recent years based on integrity verification and voting
methods (e.g., the PLC-level ControlLogix Redundancy System
[36], the compiler-level CODESYS redundancy toolkit [37]). The
basic concept in introducing redundancy is that effects of failures/
malfunctions/cyber-attacks of a subset of parallel subsystems
may be mitigated due to the other redundant subsystems that
are operating normally. Redundant subsystems can be combined
using multiple approaches such as using subsystems as fail-
over (i.e., as backup to primary subsystems), comparing out-
puts/behaviors of subsystems at real-time (e.g., continuous
integrity verification between parallel redundant subsystems),
or by aggregating the outputs/behaviors of parallel subsystems
(e.g., using voting to determine the ‘‘majority opinion’’)
[24–29,31–35]. In the context of cyber-security, redundancy can
be combined with heterogeneity at various levels (e.g., by im-
plementing redundant controller instantiations using different
processor architectures, operating systems, communication net-
work connectivities, etc.) to pose additional challenges to the
adversary and limit the number of subsystems that could be
realistically simultaneously infiltrated. Such combinations of re-
dundancy and heterogeneity can be viewed in the context of

https://doi.org/10.1016/j.sysconle.2021.105066
http://www.elsevier.com/locate/sysconle
http://www.elsevier.com/locate/sysconle
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oving-target defense. Additionally, dynamic moving-target de-
ense approaches [38–40] can be integrated (e.g., dynamically
hanging parameters of the system, system dynamics by
ntroducing additional external states or using sensor nonlin-
arities, communication parameters protocols, hardware or soft-
are configurations, etc.) to pose further challenges to attackers.
hile such moving-target defenses introduce dynamic variations

i.e., switching) to introduce an aspect of unpredictability to
he attacker, switching-based methods have also been applied
41–43] to design stabilizing controllers for systems with un-
ertainties such as time-varying delays and constraints such as
ctuator saturation. An adaptive round-robin switching scheme
as been developed in [44] in the context of observer design for
inear systems under sensor spoofing attacks. By using the mea-
ured observer errors under different combinations of utilized
ensors as a performance index, the method in [44] steps through
ifferent candidate subsets of sensors to be utilized to eventually
etect and disable the corrupted sensors.
Unlike the above literature, we consider in this paper the

roblem of designing a controller switching algorithm to achieve
esiliency under attacks on controller implementations for non-
inear systems. Specifically, based on our initial development in
1], we consider the problem of temporal switching between mul-
iple parallel redundant controller implementations connected
sing a time-division multiplexer as shown in Fig. 1. The time-
ivision multiplexer in Fig. 1 is a switching controller that dynam-
cally picks one of the controller nodes as the active controller for
time interval of a fixed length and utilizes the output signal of
he selected controller node as the input signal to the controlled
ystem. In this paper, we analyze the behavior of the over-
ll closed-loop system under the time-division multiplexing and
esign switching schemes to dynamically pick active controller
odes. We first analyze the simplest switching logic which is a
ound-robin switching (RRS) multiplexer that picks the controller
odes in sequence (in a round-robin pattern) and then develop an
daptive randomized switching (ARS) scheme.
It will be seen that the time-division multiplexing based ap-

roach provides a very useful design freedom in terms of the
witching logic used for selecting controller nodes. In particular,
t will be seen that even the simplest switching logic, which is
he RRS multiplexer, provides benefits in terms of retaining CPS
tability/performance under adversarial modifications of subsets
f controller nodes and that the closed-loop behavior under RRS
s essentially a balance between how effectively good controllers
an stabilize the system vs. how much damage bad controllers
an inflict. However, we will see that the ARS scheme can enable
uch higher resiliency and that specifically, by introspecting the
erformance of the selected controller over each time interval, it
s possible to probabilistically determine bad controller nodes and
‘tune them out’’ over time. In particular, by making the switching
etween controller nodes probabilistic rather than round-robin
nd by adapting the probabilities of switching to each of the
ontrollers on-line based on the observation of their performance,
he impact to the CPS due to adversarial manipulations of a subset
f controller nodes can be attenuated over time.
It is to be noted that unlike voting-based or fail-over schemes,

he proposed time-division multiplexing based approach does not
se comparison of the outputs of the different controller nodes
t run-time. This yields several advantages. Firstly, this allows
simpler structure of the multiplexer since it does not need

o compute expected control actions and instead only requires
o feed through the selected controller node output. Secondly,
his approach enables the multiplexer to not require to obtain
utputs of inactive controller nodes (in fact, the inactive con-
roller nodes do not even need to run their computations and

an be disabled or put into low power mode during their inactive

2

Fig. 1. Overall architecture of the proposed adaptive randomized controller
switching scheme for CPS resiliency. The controller nodes are indexed by
1, . . . ,N . The time-division multiplexer takes the outputs of the controller nodes
and selects, over each time interval, one of these outputs to pass through as the
control signal to the physical system.

times). Thirdly, since the approach does not require numerical
comparisons between outputs of controller nodes, this approach
provides robustness to noise and other computation variations
between different controller nodes and also allows heterogeneity
in controller designs and implementations. Specifically, numer-
ical comparison between nodes for voting schemes would be
susceptible to various noise/non-idealities such as sensor mea-
surement and quantization noise, numerical variations due to
sensor signal sampling time shifts, and computational variations
between controller nodes (e.g., due to different implementation
methods and processor architectures). On the other hand, the
time-division multiplexer-based scheme is not affected by such
noise/non-idealities since it relies instead on observing the dy-
namic closed-loop behavior of the system and adapting controller
switching likelihoods. Furthermore, the controllers in different
controller nodes can be different and independently designed in
the proposed scheme (e.g., controllers based on different sets of
assumptions or based on slightly different physical models of the
controlled system).

The novel contributions of this paper include:

• Analysis of the dynamic behavior of the closed-loop sys-
tem under the time-division multiplexing based switching
controller.
• Development of the ARS scheme that dynamically adapts

probabilities of switching to each controller using the on-
line observed ‘‘goodness’’ of controller nodes.
• Analysis of the convergence properties of the controller

switching probabilities for unattacked and attacked con-
troller nodes and the dynamic closed-loop system behavior
under the ARS scheme.
• Analysis of the efficacy and robustness of the proposed

method for two illustrative example systems (using
simulation-based studies).

The organization of the paper is as follows. The detailed for-
mulation of the problem being addressed and introduced
assumptions are discussed in Section 2. The switching-based
controller design and its analysis are presented in Section 3.
The adaptive randomized switching algorithm is presented in
Section 4. Simulation studies of the application of the proposed
approach to a third-order system example and a more real-
world representative CPS example (a single-machine-infinite-
bus system) are provided in Section 5. Concluding remarks are
summarized in Section 6.
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. Problem formulation and assumptions

Consider a CPS with dynamics of the form

ẋ = f (x, u, w) (1)

where x ∈ Rnx is the state of the system, u ∈ Rnu is the control
input, and w ∈ Rnw is a disturbance input, with nx, nu, and
nw representing dimensions of system state, control input, and
disturbance input, respectively. The assumptions introduced on
this class of systems are listed below and discussed in Remarks 1
and 2.

Assumption A1. Control laws ui(x), i = 1, . . . ,N , and a com-
mon Lyapunov function V (x) are given such that, for each i ∈
{1, . . . ,N}, the following inequality is satisfied along all trajec-
tories of the closed-loop system formed by (1) and the control
law ui(x)

V̇ ≤ −αi(|x|)+ β(1,i)(|x|)µ(1,i)(|w|), (2)

with αi being a class K∞ function,1 β(1,i) being a non-negative
function, and µ(1,i) being a class K function. Additionally, positive
constants αi, αi, and β (1,i) are known such that

αiV (x) ≤ αi(|x|) ≤ αiV (x) (3)
2
(1,i)(|x|) ≤ β (1,i)αi(|x|). (4)

Assumption A2. The Lyapunov function from Assumption A1 sat-
isfies the following inequality along any trajectory of the system
(1)

V̇ ≤ γ1(|x|)+ γ2(|x|)γu(|u|)+ β2(|x|)µ2(|w|) (5)

with γ2 and β2 being non-negative functions, γ1 being any func-
tion (not necessarily sign-definite), and γu and µ2 being class K
functions. Also, a constant γ 1 and positive constants γ 2 and β2
are known such that γ1(|x|) ≤ γ 1V (x), γ 2

2 (|x|) ≤ γ 2V (x), and
2
2 (|x|) ≤ β2V (x). It is assumed that the magnitudes of u and w
re bounded (e.g., due to physical constraints in the specific CPS)
s |u| ≤ umax and |w| ≤ wmax with umax and wmax being positive
onstants.

emark 1. Assumption A1 essentially requires that one or
ore nominal state-feedback control laws have been designed

or the system (1). Since the proposed methodology is based
n switching among N different controller implementations as
hown in Fig. 1, Assumption A1 is stated, for generality, in terms
f N known control laws. Some or all of these control laws could
e identical. Assumption A2 is essentially a worst-case bound
nown on the possible adversarial impact (modeled in terms of
Lyapunov inequality) by an attacker by arbitrarily modifying

he control input signal. Considering Assumptions A1 and A2, the
first part of the problem being addressed is to determine what
effect adversarial modifications on a subset of controller imple-
mentations can have on the overall closed-loop system when the
control input to the system (1) is generated by switching (time-
division multiplexing) among the set of controllers. The second
part of the problem being addressed is to develop a methodology
for adaptively updating the likelihoods of switching to each of the
controllers by introspecting the real-time ‘‘goodness’’ of the con-
trollers and to establish how such a methodology can, over time,
attenuate the effects of the adversarially modified controllers.
These two parts of the problem are discussed in Sections 3 and 4,
respectively, and simulation studies are presented in Section 5. ⋄

1 Class K denotes the set of all continuous functions α : [0, a)→ [0,∞) that
re strictly increasing and satisfy α(0) = 0. Class K∞ is the subset of class K
herein furthermore a = ∞ and α(r)→∞ as r →∞.
3

emark 2. Assumptions A1 and A2 are satisfied by several
classes of dynamical systems and control designs. For exam-
ple, the backstepping-based control designs for strict-feedback
systems naturally lead to Lyapunov inequalities of the form in
Assumptions A1 and A2. The strongest part of the assumptions
in A1 and A2 is that the negative term −αi(|x|) on the right
hand side of Lyapunov inequality (2) is of the ‘‘same size’’ (in
a nonlinear function sense) as the Lyapunov function V (x). This
structure is, for example, automatically generated in a back-
stepping-based design for a system of the general strict-feedback
form ẋi = fi(x1, . . . , xi) + φi(x1, . . . , xi)xi+1, i = 1, . . . , n −
1; ẋn = fn(x1, . . . , xn)+ φn(x1, . . . , xn)u with f1, . . . , fn, φ1, . . . , φn
being some functions. In the ith step of the iterative process of
backstepping, a virtual control law x∗i+1 is designed for xi+1 and
a transformed state variable is defined as zi+1 = xi+1 − x∗i+1. At
the nth step of backstepping, the control law for u is designed.
After the completion of this process, the Lyapunov function V
will comprise of quadratics in z1, . . . , zn while the right hand
side of the expression for V̇ will have negative quadratic terms
in z1, . . . , zn, thus providing a structure (which relates to ex-
ponential convergence in terms of the transformed set of state
variables z1, . . . , zn) as in (2). It can be seen that control design
approaches such as feedback linearization and dynamic high-
gain control designs also lead to Lyapunov inequalities of the
form in Assumptions A1 and A2. Also, these assumptions are
automatically satisfied in the special case of linear systems. For
example, considering ẋ = Ax + Bu + Hw and a feedback control
law u = Kx with K being a stabilizing feedback gain, a symmetric
positive-definite matrix P can always be found such that P(A +
BK )+ (A+ BK )TP ≤ −I . Then, defining V = xTPx, we have

V̇ ≤ −|x|2 + 2xTPHw, (6)

implying that Assumption A1 is satisfied. Also, for any input signal
u, we have

V̇ ≤ xT (PA+ ATP)x+ 2xTPBu+ 2xTPHw, (7)

implying that Assumption A2 is satisfied. In all the example
ystem structures above, it is to be noted that all or some of the
ontrol laws ui can be identical or can be all different (e.g., with
lightly or significantly different gains). ⋄

emark 3. For mathematical simplicity and clarity and to focus
n the controller switching approach which is the main focus of
his paper, Assumptions A1 and A2 are stated based on a common
Lyapunov function V (x) shared among all the controller nodes.
This is not a particularly strong assumption since the physical
system being controlled is the same irrespective of the con-
troller node and the control designs and implementations at each
controller node would not in realistic scenarios be dramatically
different from each other. The proposed approach can however
also be applied to the case where the Lyapunov function is dif-
ferent for each controller node (i.e., separate Lyapunov functions
Vi, i = 1, . . . ,N , for the control laws ui implemented at each
controller node i) as discussed further in Remarks 6 and 9. ⋄

Adversary (Threat Model): The adversary/attacker is modeled as
having the ability to arbitrarily modify the control signal (sub-
ject to the physical magnitude constraint represented by umax)
output by the attacked controller nodes. The set of attacked con-
troller nodes is assumed to be an unknown subset of the set
of all controller nodes — this subset physically represents the
set of controller nodes that the attacker has successfully infil-
trated. The adversary’s access to the attacked controller nodes
(i.e., the infiltration) can be conceptually thought of as resulting
from successful cyber-attacks on the controller nodes by exploit-
ing software/network vulnerabilities. As discussed in Section 1,



P. Krishnamurthy and F. Khorrami Systems & Control Letters 158 (2021) 105066

s
w
a
s
e
g
d
m
t
o
t
i
m
i
b
t
w
s
n

s
a
i
i
i
t
b

u

T
g

s

S
[

b

x

T
d
a
a

b
t
n
a
t

V

i

u

uch vulnerabilities and cyber-attacks are indeed relevant in real-
orld CPS. As discussed further in Remark 4, the adversary’s
ccess is reasonably limited to a subset of controller nodes (the
ubset being unknown however) due to software/network het-
rogeneity making it much more difficult for an adversary to
ain access to all controller nodes simultaneously. The maximum
ynamic effect of the adversary on the closed-loop system is
odeled via the Lyapunov inequality in Assumption A2. Since

he closed-loop behavior of the CPS is governed by the dynamics
f the physical system and the magnitudes of the input signals
hat can be applied to the system are constrained by the physical
nstrumentation of the CPS, the model in Assumption A2 of the
aximum adversarial impact on the dynamic closed-loop system

s physically justified. Assumption A1 characterizes the stabilizing
ehavior of an unattacked controller and is also physically realis-
ic since the intended control law (unmodified by an adversary)
ould be designed taking into account the system dynamics to
tabilize the closed-loop system. The set of all attacked controller
odes is denoted by A ⊂ {1, . . . ,N} and the number of elements

in the set A is denoted by nA.

Remark 4. As discussed in Section 1, the redundancy in
controller implementations can be physically coupled with het-
erogeneity to limit the potential success by the adversary. For
example, different controller nodes can be implemented using
various hardware architectures (e.g., different types of processors
such as Intel and ARM so as to limit effects of architecture-specific
malwares to a subset of controller nodes), different operating
systems (e.g., VxWorks, Windows, Linux), different network in-
terfaces (e.g., serial, Ethernet, analog), different network con-
nectivities (e.g., physically disjoint network buses/sub-networks),
different network protocols (e.g., Modbus, RS232, custom TCP/IP),
etc. Introducing ‘‘multi-modal’’ heterogeneity is a well-established
cyber-security practice [28,33] in CPSs and poses significant chal-
lenges to the adversary and practically limits the number of nodes
that an adversary can realistically simultaneously attack in a
successful manner since vulnerabilities that would be exploited
by the adversary to attack the nodes are specific to one or more
of various variables including device type, processor architecture,
network connection type and protocol, operating system, etc. ⋄

Design Freedom: The control laws ui(x) for each of the controller
nodes are assumed to be known as summarized in
Assumption A1. The design problem being addressed is to define
a switching logic for the time-division multiplexer, i.e., a decision
rule to dynamically pick which of the controller nodes to connect
to the actual control signal to the physical system in each time
interval. The simplest such logic is RRS wherein each of the
controllers is picked in sequence for the same length of time.
As discussed in Section 3, even the simple RRS provides stability
and performance benefits since the action of the uncompromised
controller nodes during their active times can compensate to
some extent for destabilizing effects of compromised controller
nodes during their active times. However, by observing dynamic
behavior in each time interval, an adaptive randomized switching
(ARS) logic can be achieved, which, as could be expected, can
provide much better stability and performance as discussed in
Section 4.

3. Controller switching: Design and analysis

As discussed in Section 2, we are given the system (1) and
N control laws ui(x). The control laws are considered as imple-
mented on N separate computational nodes, therefore providing
N separate controller instantiations. The output of the ith con-
troller node is u (x). The task of the time-division multiplexer
i

4

based switching controller as shown in Fig. 1 is to dynamically
elect one of the controller nodes and feed through its output for
time interval of a specified length T . More precisely, at time

nstants t = kT , k = 0, 1, 2, . . ., the multiplexer chooses an
∈ 1, . . . ,N; the signal ui(x) is then passed through as the control
nput to the system (1) for time interval [kT , (k + 1)T ). Defining
he ‘‘selection’’ signal as sk, the control input to system (1) is given
y

(t) = usk (x(t)) for t ∈ [kT , (k+ 1)T ) , k = 0, 1, 2, . . . . (8)

he simplest switching logic for this purpose is RRS (round-robin)
iven by

k = k (mod N)+ 1. (9)

ince the control input signal to the system (1) over time interval
kT , (k+1)T ) is usk (x), the closed-loop system has dynamics given
y

˙ = f (x, usk (x), w). (10)

he closed-loop dynamics (10) is of a switched system form with
well time T . The stability properties of the switched system (10)
re analyzed below for any selection signal sk with RRS (9) being
specific case.
Assumptions A1 and A2 provide characterizations of system

ehavior (modeled using Lyapunov inequalities) during time in-
ervals corresponding to unattacked or attacked controller
odes, respectively. From Assumption A1, it is seen that during
time interval corresponding to an unattacked controller node i,
he following Lyapunov inequality is satisfied:

˙ ≤ −αiV +
1
ϵi

β2
(1,i)(|x|)+

ϵi

4
µ2

(1,i)(|w|) (11)

≤ −

(
αi −

1
ϵi

β (1,i)αi

)
V +

ϵi

4
µ2

(1,i)(|w|) (12)

where ϵi > 0 is any constant.
From Assumption A2, it is seen that during a time inter-

val corresponding to an attacked controller node, the following
Lyapunov inequality is satisfied:

V̇ ≤ γ 1V +
1
ϵa

γ 2
2 (|x|)+

ϵa

4
γ 2
u (|u|)+

1
ϵb

β2
2 (|x|)+

ϵb

4
µ2

2(|w|) (13)

≤

(
γ 1 +

1
ϵa

γ 2 +
1
ϵb

β2

)
V +

ϵa

4
γ 2
u (|u|)+

ϵb

4
µ2

2(|w|) (14)

where ϵa > 0 and ϵb > 0 are any constants. Hence, during a time
nterval [kT , (k + 1)T ) corresponding to an attacked controller
node, i.e., if sk is in set A of attacked controller nodes, we see2
sing the Bellman–Grönwall Lemma that

V(k+1)T ≤ eλaTVkT

+

∫ (k+1)T

kT
eλa((k+1)T−τ )

[ϵa

4
γ 2
u (|u|)+

ϵb

4
µ2

2(|w|)
]
dτ

(15)

where λa is a constant given by

λa = γ 1 +
1
ϵa

γ 2 +
1
ϵb

β2. (16)

Noting that γu and µ2 are class K functions and noting that |u| ≤
umax and |w| ≤ wmax, (15) implies

V(k+1)T ≤ eλaTVkT + ua + wb (17)

where ua and wb are constants given by

ua =
eλaT − 1

λa

ϵa

4
γ 2
u (umax) ; wa =

eλaT − 1
λa

ϵb

4
µ2

2(wmax). (18)

2 The notation Vt is used to denote the value of V (x) at time t , i.e., Vt denotes
V (x(t)).
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n the other hand, if the time interval [kT , (k+ 1)T ) corresponds
o an unattacked controller node i, i.e., if i = sk is not in A, we see
using (12) and the Bellman–Grönwall Lemma that

V(k+1)T ≤ e−λiTVkT +

∫ (k+1)T

kT
e−λi((k+1)T−τ ) ϵi

4
µ2

(1,i)(|w|)dτ (19)

here λi is a constant defined as

i = αi −
1
ϵi

β (1,i)αi. (20)

he constant ϵi appearing in (12) is picked such that

i ≥
1
αi

β (1,i)αi (21)

herefore implying that λi > 0. Noting that µ(1,i) ∈ K and noting
that |w| ≤ wmax, (19) implies

V(k+1)T ≤ e−λiTVkT + wi (22)

here wi is a constant given by

wi =
1− e−λiT

λi

ϵi

4
µ2

(1,i)(wmax). (23)

The inequalities (17) and (22) provide bounds on the temporal
evolution of the Lyapunov function V during time intervals corre-
sponding to attacked or unattacked controller nodes, respectively.
Hence, considering N time intervals of length T starting from time
kT , we have

V(k+N)T ≤

(k+N−1∏
r=k

ar

)
VkT +

k+N−1∑
r=k

(k+N−1∏
j=r

aj

)
br (24)

where

ar =
{
e−λsr T if sr /∈ A
eλaT if sr ∈ A (25)

br =
{
wsr if sr /∈ A
ua + wa if sr ∈ A (26)

here, as defined in Section 2, the set of attacked controller nodes
s denoted by A, which is a subset of {1, . . . ,N}. While (24) is
atisfied for a general switching signal sk, the specific example of
RS (9) yields a simplification as shown below:

k+N−1∏
r=k

ar =
N∏
j=1
j∈A

eλaT
N∏
j=1
j/∈A

e−λjT (27)

= exp
{( N∑

j=1
j∈A

λa −

N∑
j=1
j/∈A

λj

)
T
}
. (28)

ote that (24) can be considered as an inequality on a scalar
iscrete-time system (with state variable V ) and time step NT .
ence, it can be inferred from (24) that this scalar discrete-
ime system is stable if the scalar

∏k+N−1
r=k ar is smaller than 1

n magnitude. It can also be seen that since the forcing term
k+N−1
r=k

(∏k+N−1
j=r aj

)
br admits a finite upper bound that can be

asily written explicitly, the stability analysis only requires anal-
sis of the term

∏k+N−1
r=k ar . Furthermore, since V is a Lyapunov

unction for the original system (1), it follows that stability of the
losed-loop system formed by (1) and the switching controller
an be inferred from stability of the scalar discrete-time system
24) (with state variable V ). Hence, for the case of RRS, (28)
mplies that the closed-loop system is stable if
N

j=1

λa <

N∑
j=1

λj. (29)
j∈A j/∈A

5

he inequality (29) essentially provides an estimated upper bound
n how many controller nodes can be adversarially modified and
till retain closed-loop stability.

emark 5. As an illustration, consider the very specific case of
hen the size of the stabilizing effect of the unattacked con-
rollers (as quantitatively measured by the size of −λj) is equal to
he size of the destabilizing effect of the attacked controller nodes
as quantitatively measured by the size of λa). In this specific
ase, the inequality (29) reduces to nA < (N − nA) where nA
s the number of adversarially modified controller nodes. This
s equivalent to the condition N > 2nA, which can be simply
tated as the condition that if at most nA controller nodes can be
imultaneously compromised by an attacker, then it suffices to
ave 2nA+ 1 controller nodes to retain closed-loop stability. This
ind of condition (i.e., that to accommodate failures/malfunctions
f at most k elements in a collection, it is sufficient to have
k + 1 elements in the overall collection) is commonly seen in
edundancy-based resiliency analysis and it is intuitively satis-
ying to note that the obtained conditions do reduce, as can be
xpected, to this condition in the special case when the stabiliz-
ng and destabilizing effects of unattacked and attacked nodes,
espectively, are equal. ⋄

emark 6. Under the case of separate Lyapunov functions Vi, i =
, . . . ,N , for the control laws at the different controller nodes as
iscussed in Remark 3, an analysis analogous to the discussion
n this section can be carried out. The primary modification
nder this case is that since the corresponding Lyapunov func-
ions would change when switching between different controller
odes, an inequality such as (17) would need to be written to
orm an upper bound for Vsk+1,(k+1)T

△
= Vsk+1 (x((k+ 1)T )) in terms

f Vsk,kT
△
= Vsk (x(kT )). For this purpose, it is to be noted that since

i, i = 1, . . . ,N , are Lyapunov functions, it is reasonable to write
nown lower and upper bounds for these functions as V i(|x|) ≤

Vi(x) ≤ V i(|x|) with V i and V i being class K∞ functions. Hence, we
would have, for example, the inequalities Vj(x) ≤ V j(V−1i (Vi(x)))
and Vj(x) ≥ V j(V

−1
i (Vi(x))) for any i and j in 1 . . . ,N . Hence, an

inequality analogous to (17) can be written as

V sk (V
−1
sk+1 (Vsk+1,(k+1)T )) ≤ eλaTVsk,kT + ua + wb (30)

and similarly for (22). Using these inequalities, the analysis of the
closed-loop system under the time-division multiplexing can be
carried out (under, for example, simplifying assumptions on the
relative sizes of V i and V i for different i = 1, . . . ,N) analogous to
the analysis in this section. The details are omitted for brevity. ⋄

4. Adaptive Randomized Switching (ARS)

While the conditions in (28) and (29) in Section 3 considered
RS, we now consider a time-division multiplexer that uses ARS.
ased on a set of probabilities p1, . . . , pN such that

∑N
j=1 pj = 1,

RS selects, at each switching time, one of the N controller nodes
with probability pj for picking the jth controller node) with the
hoices of controller nodes at successive time intervals being
ndependent random variables. Then, instead of the deterministic
orm of ar in (24) and (25), we can write instead at time instant
:

(ar) =
N∑
j=1
j∈A

pjeλaT +

N∑
j=1
j/∈A

pje−λjT (31)

here the notation E(.) is used to denote the expected value.
he Eq. (31) can be considered as essentially a probabilistic ver-
ion of an application of the averaging method in switched sys-
ems [45–47] based on the identification of the possible candidate
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ubsystems. It is noted that if it were possible to pick the prob-
bilities pj for attacked nodes (i.e., j ∈ A) to be relatively small
nd to pick probabilities pj for unattacked nodes (i.e., j /∈ A) to be
arge, then the expected value E (ar) can be ensured to be smaller
han 1. Also, noting that the controller nodes over successive time
ntervals are independently picked, we have E

(∏k+N−1
r=k ar

)
=

k+N−1
r=k E (ar). Hence, if pj are small for j ∈ A and relatively

arge for j /∈ A, we would have E
(∏k+N−1

r=k ar
)

< 1. Hence,
oting (24), we would ensure stability of the scalar discrete-time
ystem with state variable E (V ). However, it is to be noted that
t is not possible to directly pick pj based on whether nodes
re attacked/unattacked since it is not known which nodes are
ttacked/unattacked (even the number of attacked nodes, if any,
s unknown). Nevertheless, while it is not possible to directly
bserve which nodes are attacked or unattacked, it is indeed pos-
ible to observe the ‘‘goodness’’ of a controller node during time
ntervals in which it is active. These observed goodness values can
hen be used to dynamically update the switching probabilities
j for each controller node j ∈ {1 . . . ,N}. For this purpose,
oodness estimates can be defined to characterize closed-loop
ystem performance using, in general, application-specific criteria
y considering for example combinations of the system state vari-
bles that best capture the control objectives (e.g., application-
pecific efficiency or CPS stability criteria). Alternatively, a general
ignal of goodness can be derived from the Lyapunov function V
tself, which is as defined in Assumptions A1 and A2. Specifically,
ince −

∫ (k+1)T
kT V̇ dτ = VkT − V(k+1)T , an estimate of the goodness

f the controller node sk over the time interval [kT , (k + 1)T )
an be computed by first caching the value of V at the time kT
t which the controller node sk becomes active, then observing
he value of V at the time (k + 1)T when another controller is
icked, and calculating the difference between the values at time
nstants kT and (k + 1)T . To address noise and other uncertain-
ies (including the possibility that the set of attacked controller
odes could change over time), these goodness estimates over
ime intervals can be averaged/filtered over time to derive a
obust indicator of goodness of each controller node. Denoting
[kT ,(k+1)T ) = VkT − V(k+1)T , a simple filter for averaging these
alues for each controller node over time is given by

sk ← αqsk + (1− α)Q[kT ,(k+1)T ). (32)

he update rule (32) is executed at time (k + 1)T to update the
emporally averaged estimate qsk of controller node sk. The state
ariables q1, . . . , qN of the switching controller will be referred
o as switching likelihood states; these state variables will be
sed below to compute probabilities for switching to each of the
ontroller nodes. The parameter α in (32) can be picked to be any
onstant in the interval [0, 1]. At each time kT , the probabilities pj
f picking each of the controller nodes j ∈ {1, . . . ,N} are defined
s

ˆ j = max(qj, c0(t − tlast,j)) (33)

j =
p̂j∑N
j=1 p̂j

(34)

here c0 > 0 is any constant and tlast,j denotes the last time (be-
ore the current switching time kT ) at which the controller node
was selected. The second term in (33) is introduced to provide

robustness to possible spurious reductions in switching likelihood
states (e.g., due to intermittent noise) or possible changes in
the sets of nodes that are unattacked/attacked. This second term
in (33) ensures that even if the probability of switching to a
particular controller j becomes very small, the controller will
be tested again (for at least one time interval) at some point
in time in the future to detect if its behavior has changed. The
probabilities pj computed in (34) are normalized, i.e.,

∑N
j=1 pj = 1.
6

emark 7. To ensure that system behaviors during large tran-
ients do not inordinately dominate in the computations of qj,
dditional normalization components can be integrated into the
efinition of Q[kT ,(k+1)T ) as

Q[kT ,(k+1)T ) = sat
(

VkT − V(k+1)T

max(V(k+1)T , ϵV )
,Qmin,Qmax

)
. (35)

ith this normalization, Q[kT ,(k+1)T ) and therefore the probability
updates above are independent of the actual size of V (and
thereby sizes of the states x), but are instead dependent on the
relative rate of change of V . In (35), ϵV > 0 can be picked to be
any constant and is used in (35) to prevent a numerical singular-
ty for values of V(k+1)T close to 0. Also, sat(δ,Qmin,Qmax) denotes
saturation of the value δ to the interval [Qmin,Qmax]. As with

he normalization, the saturation is also introduced to ensure that
‘noise’’ due to large transients do not cause inordinately large
ffects in computations of qj. ⋄

emark 8. To further provide an intuitive interpretation of the
RS design in (32)–(35), the primary motivating considerations
or the design are summarized in this remark. Firstly, since what
s observable from the perspective of the time-division multi-
lexer is the variation of V over the time interval in which a
ontroller is active, a goodness estimate of the active controller
s defined in (35) in terms of V to capture a metric of the extent
o which the active controller is being effective in achieving the
tabilization objective. Secondly, since the goodness estimates
re inherently stochastic indicators due to the presence of the
isturbance input and the unknown adversarial modifications,
32) is used as a low pass filtering to attenuate such noise and
btain the switching likelihood states qj, which provide more
obust indicators of the goodness of each controller node. Thirdly,
ince the transient performance (as quantified by the goodness
stimates in (35)) would be expected to be positive (and relatively
arge) for unattacked controllers and small/negative for attacked
ontrollers, the switching probabilities are defined in (33) such
hat nodes with larger qj would tend to correspond to higher
robabilities than nodes with smaller qj. The additional time-
ependent term in (33) is introduced to guard against instances
here intermittent noise (e.g., due to disturbance inputs) re-
ults in observations of temporary low goodness estimates of
n unattacked controller leading to spurious reduction in the
orresponding switching likelihood states. In such an instance,
he presence of the time-dependent term in (33) ensures that
he controller will be retested eventually since the switching
robability for that controller node increases over time until it
appens to be activated. The computed values p̂j from (33) are
ormalized (to make sum equal to 1) to obtain the switching
robabilities pj, j = 1, . . . ,N . ⋄

Some of the salient properties of the closed-loop system under
ime-division multiplexing with the ARS scheme are summa-
ized below. For simplicity and brevity, we consider the case
ax(V(k+1)T , ϵV ) = V(k+1)T in the analysis below. This is rea-
onable since the small positive constant ϵV is introduced in
35) only to prevent numerical singularities when V(k+1)T ≈ 0
nd is therefore only relevant when V reduces down to close
o 0 (i.e., when the switching-based controller has successfully
tabilized the system) while the analysis below addresses the
ransient behavior of the closed-loop system to show that the
witching-based controller will indeed stabilize the system.

1⃝ Increase of the switching likelihood states of
nattacked controller nodes to large values: Positive constants

W and q exist such that if wmax ≤ W , then with probability 1,
we have lim inft→∞ qj ≥ q for all j ∈ {1, . . . ,N} − A. To see
this, note that an inequality of the form (22) is satisfied with
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i > 0 for all unattacked controller nodes i where ϵi and wi are as
hown in (20) and (23), respectively. From (22) and noting that
ax(V(k+1)T , ϵV ) = V(k+1)T as noted above and max(V(k+1)T , ϵV ) ≥

V , we see that the term appearing in the goodness estimate
efined in (35) satisfies

VkT − V(k+1)T

max(V(k+1)T , ϵV )
≥ (eλiT − 1)−

(eλiT − 1)
λiϵV

ϵi

4
µ2

(1,i)(wmax). (36)

ence, defining q = min
(
Qmax,mini∈{1,...,N}

eλiT−1
2

)
, we have

Q[kT ,(k+1)T ) ≥ q if the following inequality holds:

(eλiT − 1)
λiϵV

ϵi

4
µ2

(1,i)(wmax) ≤
eλiT − 1

2
. (37)

efining the function Wmax(z) = supwmax≤z

(
ϵi

2λiϵV
µ2

(1,i)(wmax)
)

and defining the constant W = sup{z ∈ R+|Wmax(z) ≤ 1}, the
inequality (37) is seen to definitely hold if wmax ≤ W . Since the
nequality Q[kT ,(k+1)T ) ≥ q therefore holds over each time interval
[kT , (k + 1)T ) in which an unattacked controller j = sk is active,
the switching likelihood state qj computed using the filter (32)
will also be greater than or equal to q in the limit as t →∞. Since
his convergence property relates to the stochastic closed-loop
ystem, this statement is seen to hold with probability 1 under
he randomized switching.

2⃝ Decrease of the switching likelihood states of attacked
ontroller nodes to small values: To model the minimum ad-
ersarial impact of an attacked controller node, we consider that
ver a time interval [kT , (k+1)T ) in which an attacked controller
s active, we have an inequality of the form

(k+1)T ≥ α̃kVkT + β̃k (38)

ith α̃k ≥ 1 and β̃k ≥ 0 being constants (that could be time-
arying, i.e., dependent on k). A Lyapunov inequality such as (38)

is reasonable since one would expect that an adversary should
at least have some level of destabilizing dynamic effect on the
closed-loop system for it to even be considered an adversarial
modification. With this adversarial model, it can be shown that
with probability 1, the inequality lim supt→∞ qj ≤ max{Qmin, 0}
is satisfied for all j ∈ A. To see this, note that

VkT − V(k+1)T

max(V(k+1)T , ϵV )
≤ (α̃−1k − 1)−

α̃−1k β̃k

max(V(k+1)T , ϵV )
≤ 0, (39)

rom which it follows that lim supt→∞ qj ≤ max{Qmin, 0} for all
∈ A with probability 1 under the randomized switching in the
losed-loop system.

3⃝ Eventual retesting of each controller node, i.e., in-
initely many activations of all controllers: For all j ∈ {1, . . . ,N},
he non-negative integers k for which sk = j are infinite in
number with probability 1. This is a simple consequence of the
time-dependent second term in (33). To show this statement
using a proof by contradiction, consider that a controller node
j is activated only a finite number of times, i.e., there exists a last
time tlast,j at which the controller node j is activated after which
it is never activated. In this case, as t → ∞, it can be shown
from (33) and (34) that lim inft→∞ pj ≥ 1

N . To see this, note that
ny other controller nodes i activated after time tlast,j will have pi

smaller than pj while controller nodes i that were last activated
before time tlast,j will asymptotically have limt→∞

pi
pj
= 1 since

imt→∞
t−a
t−b = 1 for any real numbers a and b. Therefore, pj

ill increase asymptotically to 1
N or higher implying that with

robability 1, the controller node j will be activated again. This
ontradicts the assumption that a finite tlast,j is the last ever
ctivation time of controller node j implying that all controllers
7

will be activated infinitely many times (possibly very infrequently
however as discussed in 4⃝).

4⃝ Asymptotically low frequencies of activation of at-
acked controllers: Picking Qmin ≤ 0 and using 2⃝ above, it
can be shown that given any ∆A > 0, the constant c0 can be
icked small enough to make the asymptotic (as t → ∞) mean
ime (in units of number of time intervals of length T ) between
activations of an attacked controller larger than or equal to ∆A.
To show this, consider an attacked controller node j; using 2⃝,
it is seen that asymptotically p̂j ≈ c0(t − tlast,j) with tlast,j being
the last activation time of controller node j before time t . We
want to find the expected time (in units of T ) before the next
activation of controller node j. Denote the next activation time
by tnext,j

△
= tlast,j + nnext,jT . We want to find E(nnext,j). It can be

seen that to find the form of the dependence of a lower bound of
E(nnext,j) on the parameter c0, it suffices to consider that

∑N
i=1
i̸=j

pi
is some constant p0. This is because if any other controller nodes
i have not been activated recently and for which therefore p̂i has
a relatively large component c0(t − tlast,i), the presence of such
controller nodes will only tend to compete for activation with the
controller node j thereby increasing E(nnext,j). Denote by ζ1 the
robability that the controller node j will be activated in the next
ime interval after tlast,j. It is seen that ζ1 =

η

1+η
where η denotes

cT0
p0

. Denoting by ζ2 the probability that controller node j will only
be activated in the second time interval after tlast,j and not in the
first time interval (i.e., that nnext,j = 2), we have ζ2 = (1−ζ1) 2η

1+2η .
imilarly, denoting by ζk the probability that nnext,j = k, we have

k = (1−
k−1∑
i=1

ζi)
kη

1+ kη
. (40)

ote that from (40), we have ζk ≤ kη for all k. Now, pick any
ϵ ∈ (0, 1) and using the given ∆A > 0, define M = ∆A

1−ϵ
. Then,

icking c0 ≤
2ϵp0

M(M+1)T , we have η ≤ 2ϵ
M(M+1) and

∑M
k=1 ζk ≤∑M

k=1 kη ≤ ϵ. Since
∑
∞

k=1 ζk = 1, we have
∑
∞

k=M+1 ζk ≥ 1 − ϵ

mplying that
∑
∞

k=M+1 kζk ≥ (M+1)(1−ϵ). Since by the definition
f expected value, we have E(nnext,j) =

∑
∞

k=1 kζk, we see that
(nnext,j) ≥

∑
∞

k=M+1 kζk ≥ (M + 1)(1 − ϵ) > ∆A from the choice
f M above. Therefore, by picking c0 small enough, the frequency

of activation of attacked controllers can be asymptotically made
arbitrarily small.

5⃝ Asymptotic boundedness and convergence of closed-
loop system states: Given 1⃝– 4⃝, it follows that the state
x of the closed-loop system remains uniformly bounded over
the time interval [0,∞) with probability 1. To see this, note
from 4⃝ that the mean time between activations of attacked
controller nodes can be asymptotically made larger than any
given ∆A. Hence, as t → ∞, each attacked controller node is
ctive on around a fraction 1

∆A
of the time intervals while the

unattacked controller nodes considered all together are active
for around a fraction 1 − nA

∆A
of the time intervals where nA

denotes the number of attacked controllers. Since ∆A can be made
arbitrarily large by picking c0 appropriately small, this implies
that asymptotically the effects of the attacked controllers can be
arbitrarily attenuated by appropriate choice of c0 and the region
of convergence of the system state is governed essentially by
the disturbance input w and the performance of the unattacked
controllers. Furthermore, under the case that the disturbance w
oes to 0 as t →∞, it is seen that the closed-loop system state
onverges (with probability 1) as t → ∞ to within a region
x| ≤ ϵA where ϵA is a constant dependent on ∆A such that if
A → ∞ (which from 4⃝ is equivalent to picking c0 → 0),

hen ϵA → 0.
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emark 9. While the analysis above considered the case of a
ommon Lyapunov function V shared among all the controller
nodes, the ARS design in (32)–(35) can also be applied under the
ase discussed in Remarks 3 and 6 of separate Lyapunov functions
i, i = 1, . . . ,N , for the control laws at the different controller

nodes. The design of the goodness estimates in (35) still applies
nder this case with Vsk,kT

△
= Vsk (x(kT )) and Vsk,(k+1)T

△
= Vsk (x((k+

1)T )) being used in place of VkT and V(k+1)T , respectively, since
what is being measured is the observed efficacy of the controller
utilized over time interval [kT , (k+1)T ) in terms of a scalar metric
f relevance for that controller, i.e., Vsk . Using these goodness
stimates, the switching likelihood states can be defined as in (32)
nd the switching probabilities can be defined as shown in (33)
nd (34). The subsequent analysis of the convergence properties
f the switching likelihood states and the dynamic closed-loop
ystem can be carried out analogously as discussed in this section.
he details are omitted for brevity. ⋄

emark 10. While the analysis in this paper focused on the
esilient control application (in the state-feedback setting as for-
alized in Assumption A1), the proposed ARS approach can be
onceptually applied to a secure state estimation problem as
ell, i.e., to enable resiliency of state estimation under adver-
arial modifications of subsets of available sensors. Consider, for
xample, m multiple redundant sensors (which could measure
he same or different physical signals) such that a given dynamic
ystem is observable using any subset of sensors. Then denoting
he sensor measurements as y1, . . . , ym, the goodness estimation
oncept discussed in this section could be applied using indicators
f goodness of sensors based on, for example, the residuals yi− ŷi
here signals ŷi are computed using dynamic observers. Then, the
RS approach could be applied using these dynamic goodness es-
imates of sensors during run-time to iteratively tune out sensors
etected as bad so as to improve state estimation resiliency under
ensor attacks. The details are omitted for brevity. ⋄

. Simulation studies

To evaluate the efficacy of the proposed switching controller
pproaches based on time-domain multiplexing using RRS and
RS schemes, we consider two illustrative examples below, the
irst with a simple third-order system and the second with a more
eal-world CPS example of a single-machine-infinite-bus (SMIB)
ystem.

xample 1. Consider the system with dynamics:

˙1 = x2
˙2 = −x2 + sin(0.1x1)w + x3
˙3 = −x3 + u (41)

here the system state is x = [x1, x2, x3]T , u is the control input,
nd w is the disturbance input. Considering the linear system
btained with w = 0, the controller can be designed as u = Kx
ith the controller gain vector K picked to place the closed-loop
oles at any desired locations. For example, taking the desired
ole locations as −5 and −3 ± j, the controller gain vector is
btained as K = [−65,−33,−9]. With this controller gain vector,
he linear closed-loop system with w = 0 is given by ẋ = Acxwith

c =

[ 0 1 0
0 −1 1
−65 −33 −10

]
. (42)

olving the Lyapunov equation PAc+AT
c P = −diag(1, 1, 1) where
iag denotes a diagonal matrix with the indicated elements on

8

he diagonal and defining V = 0.02xTPx, the goodness estimate
[kT ,(k+1)T ) is defined as discussed in Section 4 as VkT − V(k+1)T .
he controller magnitude limit is defined as umax = 100. For
he simulation study, consider w = sin(0.2t). The adversary is
odeled as setting the control signal to a constant given by umax.
he switching time T for the time-division multiplexer is picked
o be 0.05 s. The parameters in the ARS controller are picked as
= 0.95, c0 = 10−4, Qmin = −2, Qmax = 2, and ϵV = 10−3.

The initial condition is picked as x = [5, 2, 2]T . With a single
unattacked controller node, the closed-loop signals x and u will
go to zero rapidly since Ac is a strict Hurwitz matrix. On the
other hand, with a single adversarially modified controller node,
it can be seen that x1 will grow unbounded since a non-zero
value of u at steady-state will drive x2 to a non-zero steady-state
value even in the absence of the disturbance input w resulting in
unbounded growth of x1. Simulation plots for single unattacked
and attacked nodes are omitted for brevity. Now, using N = 4
parallel controller nodes with nA = 2 nodes being adversarially
modified starting at time Tadv = 10 s, it is seen from Fig. 2 that
unbounded growth of x1 is prevented even with RRS. Since only
a subset of the controllers are adversarially modified, it is seen
that the stabilizing effect of the good controllers is able to com-
pensate for the destabilizing effect of the bad controllers during
the round-robin switching among all the controllers. However,
there are considerable oscillations (and non-zero offset) in x1. It
is seen in Fig. 3 that the adversarial impact by the attacker can
be reduced using ARS and x1 can be regulated to 0. The switching
likelihood states qj and switching probabilities pj are computed as
discussed in Section 4 using Eqs. (32), (33), and (34). As discussed
in Section 4, the dynamic update of the switching likelihood
states ensures that over time, the good controllers are likely to
be more frequently picked than the bad controllers. The dynamic
evolution of the switching probabilities is shown in Fig. 4. Using
these switching probabilities for randomized switching among
the controllers, it is seen in Fig. 3 that ARS tunes out the attacked
controller nodes over time. The efficacy of RRS and ARS are
discussed in greater detail in the ‘‘real-world’’ example below.

Example 2. Consider the dynamics of a SMIB system [48,49]

δ̇ = ω

ω̇ =
1
2H
[−Dω + ω0(Pm0 − Pe)]

˙q1 =
1
Td0
[Ef − Eq − Êq] (43)

here δ, ω, and Eq1 denote the power angle, relative speed, and
quadrature-axis transient electromotive force (EMF), respectively,
of the generator. Eq denotes the quadrature-axis EMF, Êq the
noise/disturbance, and Ef the equivalent EMF in the excitation
coil. Pm0 is the mechanical input power. ω0 is the synchronous
machine speed (ω0 = 2π f0). Pe is the active electrical power
delivered by the generator. Td0 is the direct-axis transient short
circuit time constant. The parameters D and H are the per unit
damping constant and inertia constant, respectively. Pe, Eq, and
Eq1 are related through the algebraic equations [48]

Pe =
VsEq sin(δ)

xds
(44)

Eq =
xds
xds1

Eq1 −
(xd − xd1)

xds1
Vs cos(δ) (45)

where Vs is the infinite bus voltage, and xd, xd1, xds, and xds1 are
reactance parameters as in [48]. The control input to system (43)
is u = Ef . A controller based on external feedback linearization
can be designed for system (43) as [48]:

v = K [δ − δ , ω, P − P ]T + P (46)
f 0 e m0 m0
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d
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Fig. 2. Simulation of closed-loop system for Example 1 with RRS (N = 4) with adversarial modification of controllers 1 and 2 from Tadv = 10 s.
Fig. 3. Simulation of closed-loop system for Example 1 with ARS (N = 4) with adversarial modification of controllers 1 and 2 from Tadv = 10 s.
δ

T
p

s
c
a
s
s
m
a
t

Fig. 4. Controller switching probabilities (pi(t), i = 1, . . . ,N) for simulation with
ARS in Fig. 3. The ‘‘ground truth’’ of attacked and unattacked controllers are
denoted with red dotted and green solid lines, respectively.

u =
1
Iq

(
vf −

(xd − xd1)
xds1

Td01IqVs sin(δ)ω −
VsTd01
xds

Eq cos(δ)ω
)

(47)

where Iq = Vs sin(δ)
xds

and Td01 =
xds1
xds

Td0. K in (46) is a gain vector of
imension 1 × 3. δ0 is the desired operating point for the power

angle δ. As in [48], the parameters of the SMIB system are given
by Pm0 = 0.9 p.u., ω0 = 314.159 rad/s, Td0 = 6.9 s, D = 5 p.u.,
= 4 s, Vs = 1.0 p.u., xd = 1.863, xd1 = 0.257, xds = 2.2327,

and x = 0.6267. As in [48], the gain vector K is chosen to
ds1
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be K = [19.3, 6.43,−47.6]. Also, δ0 = 75◦ = 1.309 rad and
umax = 2.3 p.u. The disturbance input signal is defined as w = Êq
and is chosen to be w = 0.01 cos(0.5π t).

As in Example 1, the switching time is chosen as T = 0.05 sec
for the time-division multiplexer. Considering the structure of the
feedback linearization control law in (46) and (47), the goodness
estimate Q[kT ,(k+1)T ) is defined using xTPx where x = [δ −

0, ω, Pe − Pm0]. The 3 × 3 matrix P is computed by solving the
Lyapunov equation PA + A

T
P = −103diag(25, 5, 2) where A is

defined based on the closed-loop dynamics of x given by

A =

⎡⎣0 1 0
0 −

D
2H −

ω0
2H

0 0 −
1

Td01

⎤⎦+
⎡⎣ 0

0
1

Td01

⎤⎦ K . (48)

he parameters α, c0, Qmin, Qmax, and ϵV in the ARS controller are
icked to be the same as in Example 1.
From a simulation with a single non-attacked controller node

hown in Fig. 5, it can be observed that except for small os-
illations (due to disturbance input Êq), the baseline controller
chieves very good regulation performance. To evaluate the pos-
ible performance degradation that an adversary can effect, a
imulation with a single controller node, that is adversarially
odified starting at time Tadv = 10 s, is shown in Fig. 6. The
dversary is modeled in the simulation studies below as holding
he control signal to a constant given by 0.75u . It is seen in
max
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Fig. 5. Simulation of closed-loop system for Example 2 with a single unattacked controller implementation.
Fig. 6. Simulation of closed-loop system for Example 2 with a single controller implementation, that is adversarially modified from Tadv = 10 s.
Fig. 7. Simulation of closed-loop system for Example 2 with RRS (N = 8) with adversarial modification of controllers 2, 4, and 7 from Tadv = 10 s.
t
c
b
s
p
a
o

Fig. 6 that using the adversarially injected input, the attacker
can dramatically impact system stability (specifically, unbounded
drift of δ seen in Fig. 6). However, through round-robin switching
among N = 8 parallel controller nodes, it is seen that (Fig. 7)
a considerable amount of the closed-loop system performance
can be regained even under adversarial modifications of nA = 3
nodes. Since only nA = 3 out of N = 8 controllers are adver-
sarially modified, the good controllers are active for over half the
total time in the closed-loop CPS enabling the stabilizing effect of
the good controllers to compensate for the destabilizing effect of
 s

10
the bad controllers during round-robin switching. However, it is
seen in Fig. 7 that there are still significant oscillations compared
o Fig. 5. Using ARS, Fig. 8 shows that the adversarial impact
an be further reduced. The switching states (i.e., signal given
y sk over time intervals [kT , (k + 1)T )) for RRS and ARS are
hown in Figs. 9 and 10, respectively. As expected, the switching
attern in Fig. 10 is non-uniform (unlike RRS in Fig. 9) tending to
void the adversarially modified controller nodes. This avoidance
f attacked controller nodes is enabled by the estimation of the
witching likelihood states q and switching probabilities p as
j j
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Fig. 8. Simulation of closed-loop system for Example 2 with ARS (N = 8) with adversarial modification of controllers 2, 4, and 7 from Tadv = 10 s.
Fig. 9. Controller switching state (s(t)) for simulation with RRS in Fig. 7.
ttacked nodes (2, 4, 7) are denoted with horizontal red dotted lines.

iscussed in Section 4 using Eqs. (32), (33), and (34). By evalu-
ting the observed performance of the activated controller over
ach switching time interval, the switching likelihood states are
ynamically updated and used to compute the switching proba-
ilities at each switching time so as to over time favor picking the
pparently good controller nodes rather than the apparently bad
ontroller nodes. As seen in Fig. 11, the dynamic updates of the
witching likelihood states qj, tend to reduce the values of qj (and
herefore pj) for controller nodes detected as having low goodness
nd therefore to attenuate effects of attacked controller nodes
ver time. The ‘‘ground truth’’ denoting the a priori unknown
nformation as to which controller nodes are unattacked/attacked
s also shown in Fig. 11 using two different line types (attacked:
ed dotted, unattacked: green solid). It is seen that the switching
robabilities for attacked controllers are reduced over time while
he switching probabilities for unattacked controllers remain rel-
tively large. In similar simulations performed with number of
ttacked nodes increased to nA = 4, it is seen that while the
ound-robin switcher (Fig. 12) results in significant growing drift
f δ, ARS (Fig. 13) still retains performance close to the unattacked
aseline. The switching state s and the switching probabilities
j for the simulation in Fig. 13 are shown in Figs. 14 and 15,
espectively, and it is observed that the adversarially modified
ontrollers can be dynamically tuned out over time by the ARS
ontroller (by dynamically adapting the corresponding switching
ikelihoods using on-line observations of the controller nodes’
elative goodness).

. Conclusion

The possibility of using multiple parallel controller implemen-
ations and dynamically switching among the controller nodes
11
Fig. 10. Controller switching state (s(t)) for simulation with ARS in Fig. 8.
Attacked nodes (2, 4, 7) are denoted with horizontal red dotted lines.

Fig. 11. Controller switching probabilities (pi(t), i = 1, . . . ,N) for simulation
with ARS in Fig. 8. As in Fig. 4, attacked and unattacked controllers are denoted
with red dotted and green solid lines, respectively.

at run-time to improve resiliency to adversarial modifications
was considered. In particular, RRS and ARS methodologies were
considered. The efficacy of the proposed approach was shown in
simulation studies on a simple third-order system and a more
real-world example of a SMIB system. It was shown that if a
cyber-attacker arbitrarily changes a subset of controllers, the
overall closed-loop system can still be kept stable and impact
of adversarial modifications to controllers can be bounded. It
was shown that over time, the adaptation of switching likeli-
hoods enables reduction of impact to the CPS due to adversarially
modified controllers. Furthermore, the likelihood adaptation has
components to adapt to changes over time of which controllers
are adversarially modified. Future work will address applicability
of the methodology to additional classes of systems (e.g., de-
centralized systems with distributed controller implementations)
and analysis of more precise bounds on adversarial CPS impact
including in output-feedback scenarios.
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Fig. 12. Simulation of closed-loop system for Example 2 with RRS (N = 8) with adversarial modification of controllers 2, 4, 6, and 7 from Tadv = 10 s.
Fig. 13. Simulation of closed-loop system for Example 2 with ARS (N = 8) with adversarial modification of controllers 2, 4, 6, and 7 from Tadv = 10 s.
w

R

Fig. 14. Controller switching state (s(t)) for simulation with ARS in Fig. 13.
Attacked nodes (2, 4, 6, 7) are denoted with horizontal red dotted lines.
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