N)
)
Check for
updates

REMaQE: Reverse Engineering Math Equations from
Executables

MEET UDESHI and PRASHANTH KRISHNAMURTHY, ECE, NYU Tandon School of
Engineering, Brooklyn, NY, USA

HAMMOND PEARCE, School of Computer Science and Engineering, UNSW, Sydney, Australia
RAMESH KARRI and FARSHAD KHORRAMI, ECE, NYU Tandon School of Engineering,
Brooklyn, NY, USA

Cybersecurity attacks on embedded devices for industrial control systems and cyber-physical systems may
cause catastrophic physical damage as well as economic loss. This could be achieved by infecting device binaries
with malware that modifies the physical characteristics of the system operation. Mitigating such attacks
benefits from reverse engineering tools that recover sufficient semantic knowledge in terms of mathematical
equations of the implemented algorithm. Conventional reverse engineering tools can decompile binaries to
low-level code, but offer little semantic insight. This article proposes the REMaQE automated framework for
reverse engineering of math equations from binary executables. Improving over state-of-the-art, REMaQE
handles equation parameters accessed via registers, the stack, global memory, or pointers, and can reverse
engineer equations from object-oriented implementations such as C++ classes. Using REMaQE, we discovered
a bug in the Linux kernel thermal monitoring tool “tmon.” To evaluate REMaQE, we generate a dataset
of 25,096 binaries with math equations implemented in C and Simulink. REMaQE successfully recovers a
semantically matching equation for all 25,096 binaries. REMaQE executes in 0.48 seconds on average and in up
to 2 seconds for complex equations. Real-time execution enables integration in an interactive math-oriented
reverse engineering workflow.

CCS Concepts: » Security and privacy — Embedded systems security; Software reverse engineering;

Additional Key Words and Phrases: binary reverse engineering, embedded systems, symbolic execution,
mathematical equations

ACM Reference format:

Meet Udeshi, Prashanth Krishnamurthy, Hammond Pearce, Ramesh Karri, and Farshad Khorrami. 2024.
REMaQE: Reverse Engineering Math Equations from Executables. ACM Trans. Cyber-Phys. Syst. 8, 4, Article 43
(November 2024), 25 pages.

https://doi.org/10.1145/3699674

This work was supported in part by the Sponsor Office of Naval Research under the Grant #N00014-22-1-2153 and the
Sponsor National Science Foundation under the Grant #2039615.

Authors’ Contact Information: Meet Udeshi (corresponding author), ECE, NYU Tandon School of Engineering, Brooklyn,
NY, USA; e-mail: m.udeshi@nyu.edu; Prashanth Krishnamurthy, ECE, NYU Tandon School of Engineering, Brooklyn,
NY, USA; e-mail: prashanth krishnamurthy@nyu.edu; Hammond Pearce, School of Computer Science and Engineering,
UNSW, Sydney, Australia; e-mail: hammond.pearce@unsw.edu.au; Ramesh Karri, ECE, NYU Tandon School of Engineering,
Brooklyn, NY, USA; e-mail: rkarri@nyu.edu; Farshad Khorrami, ECE, NYU Tandon School of Engineering, Brooklyn, NY,
USA; e-mail: khorrami@nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2378-9638/2024/11-ART43

https://doi.org/10.1145/3699674

ACM Transactions on Cyber-Physical Systems, Vol. 8, No. 4, Article 43. Publication date: November 2024.

https://orcid.org/0000-0001-7297-0880
https://orcid.org/0000-0001-8264-7972
https://orcid.org/0000-0002-3488-7004
https://orcid.org/0000-0001-7989-5617
https://orcid.org/0000-0002-8418-004x
https://doi.org/10.1145/3699674
mailto:permissions@acm.org
https://doi.org/10.1145/3699674
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3699674&domain=pdf&date_stamp=2024-11-15

43:2 M. Udeshi et al.

1 Introduction

Embedded systems in industrial control systems (ICS) and cyber-physical systems (CPS) are
vulnerable to process-aware cyber-attacks that compromise the physical processes under control
[15, 17, 37]. Such attacks can breach safety-critical requirements, causing real-world destruction and
harm. For example, Stuxnet injected malware in the programmable logic controllers (PLC) of a
nuclear facility to adversely modify the centrifuge motor frequencies [20]. The BlackEnergy attack
against Ukraine’s power grid opened several breakers at once to cause a power outage [21]. Covert
attacks are also possible: Krishnamurthy et al. [18] develop a stealthy communication channel that
uses analog emissions from a CPS. This method maintains the closed-loop process characteristics by
factoring in controller dynamics during attack design. Civilian unmanned aerial vehicles (UAVs)
(drones) are being targetted to inject malicious software trojans in the controller and allow attackers
to gain control of the drone [1]. Sun et al. [37] present a survey of attacks on ICS, highlighting
more examples of control logic modification attacks that impact PLCs.

One can analyze the cybersecurity of embedded systems by leveraging semantic understanding
of the physical process features, such as mathematical models, control algorithms, and dynamic
behavior of the process. For example, Yang et al. [40] derive control invariants of physical processes
using PLC runtime logs and detect changes in these invariants to signal an intrusion. Badenhop
et al. [4] reverse engineer the proprietary Z-Wave transceiver using static and dynamic analysis
to verify communication security properties. The Trusted Safety Verifier in [26] is implemented
as a bump-in-the-wire and verifies safety-critical code for PLCs by recovering a semantic graph
of the program and asserting safety-critical properties using model checking. Bourbouh et al.
[5] implement a reverse compilation framework from Lustre (low-level synchronous data-flow
language) to Simulink (high-level modelling framework) to add semantic context to the Simulink
models.

On the offensive side, McLaughlin [25] shows that recovering boolean expressions of the PLC
control code can automatically generate dynamic malware payloads. The CLIK attack on PLCs [13]
decompiles the control logic to high-level automation languages, making malicious code changes
to disrupt the physical process. The Laddis decompiler [32] enables the attacker to mount a denial
of engineering operations attack on a PLC by modifying the ladder logic.

While there are many methods to reverse engineer embedded systems and extract semantic
knowledge for cybersecurity, this article focuses on the analysis and reverse engineering of binary
executables of the embedded devices (e.g., PLCs) which interact with physical sensors and actuators.
Reverse engineering the mathematical models and control algorithms implemented in the binaries
can reveal the semantic knowledge necessary to understand these embedded systems. This semantic
knowledge is useful for applications such as (a) analyzing malicious changes injected in the
binary by malware, (b) recovering details of legacy systems without source code, (c) examining
adversarial systems, such as UAVs or drones used for reconnaissance, (d) identifying vulnerabilities
in implemented systems for patching or exploitation, and (e) debugging during implementation of
mathematical algorithms.

While binary compilation works well in the forward direction (math equation — binary exe-
cutable), reversing this process is difficult. Math equations compiled into binaries are deployed on
a diverse range of embedded hardware platforms and target a variety of processor architectures.
The implementation of math equations involves platform-specific details which offer no semantic
information. Disassembly and decompilation tools like IDA Pro [11] and Ghidra [28] are useful for
analysis of binaries, but they do not recover semantic information. Symbolic execution is useful to
gain semantic insight into a binary with dynamic analysis [34], but the recovered semantic infor-
mation is not presented as human-friendly math equations. There is thus a need for a framework

ACM Transactions on Cyber-Physical Systems, Vol. 8, No. 4, Article 43. Publication date: November 2024.

REMaQE: Reverse Engineering Math Equations from Executables 43:3

that can automatically reverse engineer math equations from their binaries and present them in
a human-friendly form. To this end, we propose Reverse Engineering Math Equations from
Executables (REMaQE).

1.1 Contributions

The REMaQE framework implements automatic parameter analysis and algebraic simplification
methods to automate the reverse engineering of mathematical equations from binary executables.
REMaQE is built on top of existing binary analysis frameworks and symbolic mathematics tools.
REMaQE employs automatic parameter analysis of functions to identify important metadata
regarding the function arguments stored in register, stack, global memory, or accessed via pointer.
According to the best of our knowledge, REMaQE is the first work able to reverse engineer
math equations from a variety of function implementations, including object-oriented C++ code.
Simplification of math equations in REMaQE is performed via math-aware algebraic methods.
This overcomes limitations of other approaches such as machine learning methods for equation
simplification and enables REMaQE to simplify complex conditional equations. Unlike state-of-
the-art methods that look for patterns of well-known algorithms, REMaQF refines the extracted
semantic information and displays it as math equations, enabling general-purpose applications
on real-world use cases. REMaQE can be used in conjunction with existing reverse engineering
tools to provide math-oriented semantic information in a reverse engineering workflow. Parameter
analysis and algebraic simplification sets REMaQE apart from prior semantic reverse engineering
approaches. Section 3 discusses the strengths of REMaQE over existing works. The contributions of
this article are as follows:

(1) The REMaQE framework for reverse engineering mathematical equations from binary exe-
cutables, which offers two major improvements over existing approaches:

(a) Automatic parameter analysis to recognize input, output, and constant parameters in an
implemented equation. This enables reverse engineering of object-oriented implementa-
tions, such as C++ classes and struct pointer based C functions.

(b) Algebraic simplification to transform extracted symbolic expressions into easily under-
standable math equations. This handles much more complex expressions compared to
existing approaches that use machine learning methods.

(2) A dataset of 25,096 compiled binary executables and their corresponding 3,137 math equations
with their implementation as C code and Simulink models. This is suitable for evaluating

reverse-engineering tools and is made available at [38].

The article is organized as follows: Section 2 offers a motivating example of the Linux “tmon”
controller bug found by REMaQE, Section 3 reviews related work, Section 4 details REMaQE’s
implementation, Section 5 explains the evaluation procedure and dataset generation methodology,
Section 6 reports results, Sections 7 and 8 showcase two case studies on reverse engineering the
ArduPilot [3] auto-pilot C++ firmware and an OpenPLC [2] Proportional-Integral-Derivative
(PID) controller using REMaQE, and Section 9 concludes and explores future work.

2 Motivation—Linux Kernel PID Controller

This section presents the reverse engineering of the Linux kernel thermal monitoring tool “tmon™!
that uses a PID controller. We demonstrate how the math equations recovered by REMaQE help
in uncovering a bug in the controller’s implementation. Figure 1(a) shows the source code of the

Ihttps://github.com/torvalds/linux/blob/v6.3/tools/thermal/tmon/pid.c

ACM Transactions on Cyber-Physical Systems, Vol. 8, No. 4, Article 43. Publication date: November 2024.

https://github.com/torvalds/linux/blob/v6.3/tools/thermal/tmon/pid.c

43:4 M. Udeshi et al.
1 void controller_handler(const double xk, double x 1 void FUN_@0015194 (double *param_1,undefined4 param_2
yk) {) o
2 double ek; 2 double in_d@, dvarl, dvVar2;
3 double p_term, i_term, d_term; 3 if (3.0 <= _DAT_00018448 - in_do) {
4 ek = p_param.t_target - xk; /* error x/ 4 syslog(7,"PID:_.%3.1f_Below_set_point_%3.1f,_stor
5 if (ek >= 3.0) { \n'");
6 syslog (LOG_DEBUG, "PID:_%3.1f_Below_set_point 5 FUN_00015150 () ;
%3.1f, . stop\n", xk, p_param.t_target); 6 *(undefined4 *)param_1 = 0;
7 controller_reset(); 7 *(undefined4 =*)((int)param_1 + 4) = 0;
8 *yk = 0.0; 8 return;
9 return; 9 }
10 3} 10 dvar2 = (((in_d@ - (_DAT_00018458 + _DAT_00018458)
11 /* compute intermediate PID terms =/) + _DAT_00018460) * -(_DAT_00018420 *
12 p_term = -p_param.kp * (xk - xk_1); _DAT_00018430)) / DAT_00018438 + —(
13 i_term = p_param.kp * p_param.ki _DAT_00018420 * (in_do - _DAT_00018458)) +
14 * p_param.ts * ek; _DAT_00018420 * _DAT_00018428 * DAT_00018438
15 d_term = -p_param.kp * p_param.kd * (_DAT_00018448 - in_d@) + *param_1;
16 * (xk - 2 x xk_1 + xk_2) / p_param.ts; 11 dvarl = -95.0;
17 /* compute output =*/ 12 *param_1 = dVar2;
18 *yk += p_term + i_term + d_term; 13 _DAT_00018458 = in_do;
19 /% update sample data %/ 14 _DAT_00018460 = in_do;
20 xk_1 = xk; 15 if (-95.0 <= dvar2) {
21 xk_2 = xk_1; 16 dvarl = -2.0;
22 /* clamp output adjustment range x*/ 17 if (dVar2 < -2.0) goto LAB_00015270;
23 if (xyk < -LIMIT_HIGH) 18 }
24 *yk = -LIMIT_HIGH; 19 *param_1 = dVaril;
25 else if (xyk > -LIMIT_LOW) 20 LAB_00015270:
26 *yk = -LIMIT_LOW; 21 _DAT_00018450 = *param_1;
27 p_param.y_k = xyk; 22 lround((double)CONCAT44 (param_2,param_1));
28 set_ctrl_state(lround(fabs(p_param.y_k))); 23 FUN_00014ddc () ;
29 } 24 return;
25 3

(a) C source of controller_handler in “tmon”. i) i

The blue and yellow highlighted lines indicate the (b) controller_handler decompiled with Ghidra.

implementation bugs.

<FP64 fpToFP ((if reg_r@_4_32{UNINITIALIZED} == Oxffffffff && reg_r@_4_32{UNINITIALIZED} + 0x4 == 0x3 &&

(1 & ~(<...>[0:0] & 1
<...>, <...>[0:0] |
xfFFFFffo && ((LShR(<...>,

ro<L.>[0:e] & 1))

<...>)[0:01 * 1)
RM_NearestTiesEven,

RM_NearestTiesEven, fpNeg(<...>),
mem_fffffffo_5_64{UNINITIALIZED},

<...>[0:0] * <...>[0:0]) & 1)

1 then fpToIEEEBV(fpAbs(fpAdd(RM.RM_NearestTiesEven,
fpMul (RM.RM_NearestTiesEven, <...>,

8 1) 1= 0 88 (1 & ~(<...> & <...> » <...> & <...>)) I=
fpAdd (RM.RM_NearestTiesEven, fpDiv(RM.
<...>»), FPV(0.0, DOUBLE)), fpAdd(RM.
fpMul (RM.RM_NearestTiesEven, <...>, <...>))), fpToFP(

DOUBLE)))) else 0x0)),

1 then reg_do_1_64{UNINITIALIZED} else (if ((LShR
== 1 &% reg_r@_4_32{UNINITIALIZED} == @

DOUBLE)>

(c) Symbolic expression generated with Angr.

X1X3
t=xg— —— (X0 — 2X6 + X7) — X1X2X4 (X0 — X5) — X1 (X0 — X¢)

X4
t forxs—xy <kyandk, >
_Jks forxs —xo < kzand k3 >
Y2 = ks forxs—xg < koand ks <

0 otherwise

xo forxs —xy < ko
3= .
tand ks <t Y 0 otherwise
! xo forxs —xy < ks
tand ks < t Yg =

0 otherwise

(d) Math equations recovered by REMaQE. The term t is introduced to display the y2 equation clearly.

Fig. 1. Reverse engineering the Linux “tmon” thermal controller with different tools: (a) C source code, (b)
decompilation with Ghidra, (c) symbolic execution with Angr, (d) math equations recovered with REMaQE.

controller_handler function that implements the PID controller. The source code is provided
only for discussion and is not utilized during reverse engineering. A pre-compiled binary for
the ARM 32-bit Hard-Float (ARM32-HF) target is taken from the package repository of the
Alpine Linux distribution,? which is popularly used on embedded platforms like Raspberry Pi. For
a comparison, the generated binary is reverse engineered using different tools namely, Ghidra [28]
for decompilation, Angr [34] for symbolic execution, and REMaQE to recover math equations.

Zhttps://dl-cdn.alpinelinux.org/alpine/v3.18/community/armhf/linux-tools-tmon-6.3.12-r0.apk

ACM Transactions on Cyber-Physical Systems, Vol. 8, No. 4, Article 43. Publication date: November 2024.

https://dl-cdn.alpinelinux.org/alpine/v3.18/community/armhf/linux-tools-tmon-6.3.12-r0.apk

REMaQE: Reverse Engineering Math Equations from Executables 43:5

The function is decompiled using Ghidra to generate the C source shown in Figure 1(b). The
decompiled controller_handler function is presented in a complicated form by Ghidra—it is
cluttered with global variable access, struct pointer dereferencing and goto statements for control
flow. This makes it difficult to understand what is implemented, even with the knowledge that
the function contains a PID controller. Ghidra has generated a faithful representation. However,
these implementation details present in the syntax are obscuring the semantic information of this
function. Thus, significant effort is required to clean up and extract a math equation of the PID
controller.

Note that the function name is not recovered as the pre-compiled binary is stripped of symbols.
The user needs to identify the function of interest to analyze by looking at either the disassembly
or the decompiled output of Ghidra. In this manner, REMaQE provides additional semantic infor-
mation for an interactive reverse engineering workflow. Figure 1(c) shows the symbolic expression
generated by Angr. Even though the generated expression has recovered sufficient semantic in-
formation about the source function, the implemented equations are not readily apparent to the
human analyst.

Figure 1(d) shows the math equations recovered by REMaQE for the various output parame-
ters of the function. REMaQE can not recover variable names from the stripped binary; hence
it names all inputs, outputs, and constants as x,, y,, and k,, respectively. For this example, RE-
MaQE has identified the function parameters *xyk, xk_1, xk_2 as inputs xs, x4, X7 and outputs
Y2, U3, Y4, respectively. These three variables are accessed in different ways (pointer derefer-
ence, global access) and they have been used as both inputs and outputs in the function; yet,
REMaQE has uniformly presented the output equations clearly. This is discussed in detail in
Section 4.3.

From the equations recovered by REMaQE, we see that y; and y, will take the same value after
the function is run once. When the function is called again, variables xk_1 and xk_2, now used
as inputs x¢ and x7, will be the same. In the PID control equation, the D-term x;—f(xo — 2x6 + X7),
will simplify to x;—f(xo — xg). This degrades the three-point approximation of the D-term to a
two-point one, impacting the quality of the PID controller. The reason is clear from the yellow
highlighted lines in Figure 1(a): line 20 wrongly reassigns xk_1 = xk before line 21 assigns xk_2 =
xk_1, which means that both variables take the value xk. The correct implementation would be to
switch the order of assignment and assign xk_2 before reassigning xk_1. This can be introduced
due to either human error or malware which swaps the order of a few assembly instructions.
The impact on the code and the execution is insignificant, yet the physical characteristics of the
controller change noticeably and may have real-world consequences. We have submitted a patch
to fix this bug.® This example demonstrates the advantage of reverse engineering using REMaQE
by providing a semantically rich understanding of the implemented math equations for binary
analysis.

3 Related Work

As discussed in Sections 1 and 2, disassembly and decompilation techniques are unable to provide
relevant semantic information of a program, while REMaQE is able to portray the program as
semantically equivalent math equations. The goal of decompilation is to reconstruct the original
source code from binary executables as accurately as possible. Decompilers intend to recover many
implementation details of the program such as variable types, memory layout, control flow, and
data flow [8]. These syntactical details are necessary when the recovered programs need to be

3https://patchwork kernel.org/project/linux-pm/patch/20230822184940.31316-1-mudeshi1209@gmail.com/

ACM Transactions on Cyber-Physical Systems, Vol. 8, No. 4, Article 43. Publication date: November 2024.

https://patchwork.kernel.org/project/linux-pm/patch/20230822184940.31316-1-mudeshi1209@gmail.com/

43:6 M. Udeshi et al.

represented in high-level source languages like C or Java. However, due to the noisy and obfuscating
nature of compilation, decompilation is an indeterminate process; hence, the recovered code may
obscure the original high-level semantic meaning. The reverse engineering approach of REMaQE
aims to refine and discard these implementation details before generating human-friendly equations
using conventional math symbols and operations. REMaQE is not intended to replace decompilers
or decompilation techniques. Instead, it can be integrated with the user interface of decompilation
tools to offer the semantic information of equations alongside useful information extracted by the
decompiler, for example, the C code of a function along with the math equation.

Manually recovering math equations from the binaries or obscured decompilation outputs
requires subject matter expertise of identifying and clustering code sequences, mapping them to
math primitives, and understanding how identified blocks will combine and simplify. Automated
approaches tailored to the embedded systems can use knowledge about the compilation tool chain
and build a better representation in domain-specific languages. For example, executables from
control devices can be reverse engineered to automation languages like Ladder Logic and Instruction
List [13, 22, 30, 32]. These methods offer better abstraction than languages like assembly or C, but
they too cannot represent the semantic information. This necessitates domain expertise and manual
effort to recover math equations.

Programs may be intentionally obfuscated. For example, malware is obfuscated to hide its intent
and avoid detection or analysis [29]. Jha et al. [12] use oracle-guided program synthesis to develop
a semantic understanding to deobfuscate malware. Malware obfuscation uses bit-manipulation
operations and deliberate complex control flows specifically to hinder analysis and prevent reverse
engineering. Deobfuscation is outside the scope of the current article (see Section 4.6).

Symbolic execution is a technique to gain semantic insight into a binary with dynamic analysis.
Symbolic execution explores all execution paths through the program and captures symbolic
expressions [34]. Primary use cases are automatic test generation [6, 35], exploit detection and
generation [7, 33], and reverse engineering [10, 26]. The symbolic expressions are “solved” using
satisfiability modulo theory (SMT) solvers to identify concrete inputs. Although symbolic
expressions are generated to assist SMT solvers, they are not presented as human-friendly equations.
They contain platform-specific implementation details that obscure the semantic information (see
Section 4.5). Simply printing the symbolic expressions in a human-readable format is not sufficient.
REMaQE employs algebraic simplification techniques to clean up the expressions.

Recent approaches to extract high-level semantic information [14, 16, 36] have used domain
knowledge and assumptions to match the extracted information to patterns of well-known algo-
rithms. MISMO [36] employs a template of popular control algorithms and performs semantic
matching on expressions extracted using symbolic execution to determine which control algo-
rithm is implemented. DisPatch [16] targets controllers for robotic aerial vehicles, and identifies
customized implementations of the PID controller.

MISMO authors have analyzed the “tmon” tool and identified that the implemented PID control
equations do not match the expected pattern. In Figure 1(a), the blue highlighted term p_param. kp
is multiplied for the I and D terms, due to which this implementation fails to match any of their
template patterns. Assuming availability of source code, further manual inspection reveals the
implementation bug. Using REMaQE, the user can identify this mismatch, as highlighted by the
blue terms x; in the equations in Figure 1(d). However, MISMO’s pattern matching fails to highlight
the wrong assignment to xk_1 and xk_2 that causes the second implementation bug described
in Section 2. Furthermore, unlike MISMO, REMaQE’s reverse engineering output enables these
bugs to be detected without access to source code. Prior methods are domain-specific and can be
sensitive to alterations in implementation that breach domain-specific assumptions. Although they
extract semantic information similar to REMaQE, implementing and deploying such techniques

ACM Transactions on Cyber-Physical Systems, Vol. 8, No. 4, Article 43. Publication date: November 2024.

REMaQE: Reverse Engineering Math Equations from Executables 43:7

Table 1. Feature Comparison of REMaQE with Existing Approaches for Reverse Engineering
Math Equations

DisPatch [16] MISMO [36] PERFUME [39] REMaQE (our)

Fixed patterns o o o o
General purpose O O o o
register o o
iacrcaer::eter stack O o
pointer O o
global O o
Conditionals O O ®
Simplification O O o

@, fully supported; ©, supported for some cases; O, not supported.

necessitates combining domain expert knowledge with reverse engineering. These methods may
fail on outlier cases. In contrast, REMaQE provides a versatile approach based on a fundamental
set of assumptions that can be readily expanded, enabling its application to various domains with
minimal adaptation.

PERFUME [39] overcomes limitations in prior domain-specific approaches by following a generic
approach which does not rely on semantic pattern matching. PERFUME is able to present the
math equation pertaining to the implemented algorithm in a human-friendly form. Among existing
works, PERFUME is most similar to REMaQE. PERFUME uses symbolic execution to extract the
semantic information in the form of symbolic expressions, and trains a machine learning based
sequence-to-sequence machine translation model to “translate” that symbolic expression into a
simplified equation. The framework is offered as a plugin for Ghidra that augments decompiled
output with semantic information and integrates into an interactive reverse engineering workflow.

PERFUME, however, cannot analyze functions with parameters accessed through the stack,
global memory, or pointers. Hence, PERFUME fails to analyze the “tmon” tool in Section 2, because
this function uses a struct, a pointer dereference, and global variables to read inputs and write
outputs. In contrast, REMaQE employs a parameter analysis pass collecting metadata about each
parameter’s storage location. REMaQE can reverse engineer a wider variety of functions, including
those found in object-oriented implementations in real-world programs like “tmon.” Additionally,
while PERFUME’s machine translation model struggles to simplify long and complex symbolic
expressions arising from conditional logic, REMaQE’s algebraic simplification stage adopts a
math-aware algorithmic approach. It handles complex expressions generated from functions with
floating-point comparisons and conditional logic. This deterministic simplification scales based
on the complexity of the simplified expression, not the input expression. PERFUME’s machine
translation model cannot simplify the complex conditional expression (Figure 1(c)) generated for the
output clamping logic of the “tmon” controller (Figure 1(a), lines 23-26), whereas REMaQE produces
a compact, human-friendly equation. REMaQE’s parameter analysis and algebraic simplification
features set it apart from PERFUME and other symbolic execution approaches.

Table 1 compares the features of existing approaches and REMaQE. DisPatch and MISMO require
pre-programmed patterns of well-known control algorithms and extract information pertaining to

ACM Transactions on Cyber-Physical Systems, Vol. 8, No. 4, Article 43. Publication date: November 2024.

43:8 M. Udeshi et al.

—) Input/Output --=--» User Choice Data ® Process

Human Analyst e m e E m e e e e e e e e e e e e - .- - - - = - == -~ .
,' REMaQE Framework
1
Python API / Callgraph . . . Algebraic
P Anal lic E:
T Nt I::fl> Extraction arameter Analysis Symbolic Execution Simplification
. 1
A ‘ 1 A ¢
—t Parameter i
. Symbolic

1
~0.48s ; +—>| Binary Metadata Math
| 1

1 Callgraph —» Function (et

Expressions

N - ——————

Fig. 2. The REMaQE framework. Average execution time of the pipeline is 0.48 seconds, from when the user
provides which function to reverse engineer, to when REMaQE returns the math equations.

the matched pattern. They support all kinds of parameter access and conditional statements, but as
part of the matched pattern. On the other hand, PERFUME is general-purpose, however it can only
handle parameters present in registers, severely restricting its scope. REMaQE is general-purpose,
yet handles all kinds of parameter access. It also handles conditional logic in a general context.

4 Implementing REMaQE
4.1 Background on Symbolic Execution

Symbolic execution involves running a program in an emulated environment using symbols instead
of concrete values. This process generates a symbolic expression tree (ET), a type of abstract
syntax tree. When conditional branches depend on symbolic data, the execution forks to follow
both taken and not taken paths, adding a constraint or predicate to each path based on the branch
condition. Constraints accumulate as the execution progresses through each branch. Upon reaching
an equivalence point, such as a function return statement, the ETs can be combined into one,
utilizing the constraints gathered along each path. For example, symbolic execution of the binary
code of controller_handler shown in Figure 1(a) forks paths on the branch instruction on line
23, leading to two execution paths, one which takes the branch and the other which does not. The
paths are merged into one at the function return, and the ET for the return value is simplified by
REMaQE into a piecewise form as shown in Figure 1(d).

When reverse engineering math equations, symbolic execution offers two big advantages. First,
operations representing the math equation are naturally captured and tracked. Second, the forking
on branches ensures that all code is explored during execution, yielding a full picture of the
implemented math equation. Code coverage is important, as failing to explore the entire code base
can yield a math equation that is undefined for certain input values. REMaQE relies on the Angr
binary analysis framework [34] for dynamic analysis and symbolic execution.

4.2 Overview of REMaQE

Figure 2 presents an overview of the REMaQF framework. REMaQE focuses on reverse engineering
math equations of one function at a time. This allows reverse engineering to proceed in a modular
fashion, similar to the approach a human analyst may follow manually. REMaQE first extracts a call
graph of the functions present in the executable. The user then selects a function for REMaQE to
analyze. The function runs through the parameter analysis stage to gather information about input,
output and constant parameters that express the math equation. This information is packaged
into the parameter metadata. The symbolic execution stage then runs the function with initialized

ACM Transactions on Cyber-Physical Systems, Vol. 8, No. 4, Article 43. Publication date: November 2024.

REMaQE: Reverse Engineering Math Equations from Executables 43:9

Binary "tmon"

\
Extract callgraph Identify parameter type.
g i 5 i 1 Parameter Metadata
Symbolic execution storage kind, and location '
without initialization P Input L S‘(',:
0x4051a4:15 reg/read: o > g ot 64

z2 global

er =
:15 mem/read: <BV32 0x408420> ="

> input:global
0x4051¢0:7 mem/write: <BV32 reg_10_38_32>.......__
> output:pointer

state.ip = function.start
simulation.execute(state)

Output__| Kind

ys pointer | ptr0[0x0] 64

7 S e Parmeterfndysls .

function @ 0x405194

1 X X ™\ Extract output expression trees Simplify to get math equations 1
1 Symbolic execution T 1
1 with initialized inputs >> print(state.mem[state.regs.r0]) t =25 — =3 (x9 — 226 + 27) ;
<FP64 if PEQ(<...>, <...>) && PLT(<..>, <..>) o4
! e && 1<..> && 1<.> || LT(<..>, <.>) && — 212224 (To — 25) — 21 (To — Z6) I
1 state.ip = function.start oL T(< oLT(= Ry X 1
i state.regs.d0 = FPS("x_0") ngQ(«_'__)) ‘>>)) }‘ ,[;)Eé(g_);:_;)ﬁin (fpAdd(i t foras —ag < kyandky > tandks <t .
p | [petememi0x408420] = FPS("x 1) fpAdd(<..>, <..>), FP_input_8_50_64)) else (if ! ! _ Jks foras —zo < kyandks >t ;
1 ;i.mululi(vn.execule(s\ute| <...> then (FP_ ant_3_52_64) ... 1 ! ky forzs 7 xog < koand ks < tand ks <t 1
1 - ' 0 otherwise .
1 1! 1
\ . . A c . . /]
< (b) Symbolic Execution s N (c) Algebraic Simplification ’
s T T] o o BT TN e . - -

Fig. 3. REMaQE reverse engineering pipeline. The controller_handler function from Figure 1 is used as an
example, and intermediate outputs are shown for each stage through the pipeline: (a) Parameter analysis
automatically identifies the input, output and constant parameters of the function along with their kind
and storage location, (b) Symbolic execution runs the function with properly initialized symbolic inputs and
gathers the output symbolic ETs, and (c) Algebraic simplification converts the output ET to a human-friendly
math equation.

inputs and extracts the symbolic ETs for each output. The output ETs are simplified by the algebraic
simplification stage to generate the math equation.

REMaQE’s function-by-function approach enables control over whether to represent function
calls as-is or substitute them in the recovered equation. For instance, trigonometric functions might
be implemented using approximating polynomials or platform-specific hardware extensions in
libraries. However, such implementation details do not provide valuable information and may even
cloud the equation’s meaning. In such cases, it is better to represent these as function calls in the
generated equation. Conversely, in some situations, it could be beneficial to substitute a called
function’s equation into the caller function’s equation. The controller_reset function in “tmon”
is one such example, where it is beneficial to be substituted. Certain functions which do not impact
the output can be ignored, such as logging, printing, and error functions (e.g., syslog).

REMaQE provides an API in Python, which allows the user to analyze the executable function
by function and to control each stage of REMaQE. The API can be used in Python scripts or in a
Python command line interface like I-Python or Jupyter for interactive reverse engineering.

Figure 3 shows the REMaQE pipeline. The Linux “tmon” example discussed in Section 2 is used to
explain the REMaQE pipeline. The controller_handler function is selected for analysis. Snippets
of intermediate outputs of each stage are elaborated in Sections 4.3, 4.4, and 4.5.

4.3 Parameter Analysis

To invoke symbolic execution of a function, it is important that the execution entry state is initialized
with symbolic parameters placed in the expected locations. To read the output ET, it is necessary
to know where the function places the outputs. A math equation may use certain constants, which

ACM Transactions on Cyber-Physical Systems, Vol. 8, No. 4, Article 43. Publication date: November 2024.

43:10 M. Udeshi et al.

Algorithm 1: Parameter Analysis

1: procedure ANALYZEPARAMS(F: function)
2: T: execution trace «— SymbolicExecute(F)
3. Inputs, Outputs, Constants < empty lists
4: for A: actionin T do

5: L « StorageLocation(A)

6: Reads, Writes «— GetReadsWrites(L)
7. if Writes is empty and L is initialized then
8: V « GetValue(L)
9: Append (L, V) to Constants
10: else if first(Reads) < first(Writes) then
11: Append L to Inputs
122 endif
13: if Writes is not empty then
14: Append L to Outputs
15: end if
16: end for

17: return Inputs, Outputs, Constants
18: end procedure

the tool should distinguish from inputs and extract their hard-coded value. The parameter analysis
stage collects the information of the storage location of parameters.

The parameters of a function are defined as the inputs, outputs and constants which are used
to express the implemented math equation, and pointers which hold the storage address of the
parameters. Temporary variables which may be used in the function implementation are not
considered as parameters. In the “tmon” example, the controller_handler function takes a
pointer to yk as an argument. This pointer is not considered an input/output parameter by REMaQE,
instead it is separately marked and the dereferenced value is considered as input/output. Similarly,
the global variables xk_1 and xk_2 are considered as output parameters as they are written to by
the function, even though they are not part of the function’s return value.

The memory layout of data at the pointer address or inside a struct is not important since
each separate value, whether it is dereferenced or accessed as a member, is considered a distinct
parameter. Only the offset is necessary. This distinction helps to abstract different implementation
details, allowing for a clean math equation recovery. The metadata for each parameter contains
the following information: (i) Parameter name, (ii) Storage kind, and (iii) Storage location. Storage
location, depending on kind, is either the architectural name of register, stack offset, global address,
or pointer address and offset. The pointer parameters also require a storage location, since a concrete
address pointing to memory containing symbolic parameters must be passed as an argument to the
function. Constants may also be present as hard-coded immediate values in the instruction. This is
indicated as the immediate kind, with the instruction address as location.

Algorithm 1 describes parameter analysis of a function. The parameter analysis pass has no
knowledge of function parameters, so it does not initialize the symbolic execution state and relies
on Angr to fill in uninitialized values when accessed. The “SymbolicExecute” call performs this
uninitialized execution and records an execution trace. The execution trace is parsed and read/write
accesses to each storage location are recorded in a sequential history. “GetReadsWrites” gathers this
access history for each storage location. Locations with a first access as read are marked as inputs.
These input locations are filtered and labeled as constant if they have no write access and contain

ACM Transactions on Cyber-Physical Systems, Vol. 8, No. 4, Article 43. Publication date: November 2024.

REMaQE: Reverse Engineering Math Equations from Executables 43:11

Table 2. Parameter Metadata Generated for the “tmon” PID Controller in Figure 1

f:olput iilglil:[er Eg cation Slzz Output Kind Location | Size
X1 global | 0x408420 64 Yo reg}ster ro 39
X2 global | 0x408428 6a | | T register | do 64
x3 global | 0x408430 64 | | Y2 global | 0x408450 64
X4 global | 0x408438 64| | Y3 global | 0x408458 64
x5 global | 0x408448 64 | | Y4 glqbal 0x408460 64
X6 global | 0x408458 64 | L5 pointer | ptro[0x0] | 64
X7 global | ox408460 | 4 | | Comstant |Kind | Location | Size | Value
X3 pointer | ptrofoxo] | 64| | k2 global | 0x405298 | 64 3
Pointer | Kind Location | Size ks global | 0x4052a0 64 95
ptro register | ro a5 Lk global | 0x4052a8 64 D)

The input, output, constant and pointer parameters are listed, along with storage kind and location.

an initialized value. Uninitialized locations are filled with a symbolic value by Angr, differentiating
inputs from constants since constant parameters are hard-coded in the binary. Some constants that
are initialized at runtime (e.g., C++ class member assigned in the the class constructor) will be
treated as inputs because symbolic execution begins at the entry point of the selected function, and
initializations outside the function cannot be tracked. This does not affect the recovered equation
except that the constant is treated as input and it’s value cannot be extracted. Locations with at
least one write access are marked as output. A single location can be both input and output, as the
implementation may reuse storage locations.

Table 2 shows the parameter metadata obtained for the “tmon” controller_handler function.
Input x is assigned to the ARM 64-bit floating point register d@. Inputs x; to x; are loaded from
global memory. Input xg is dereferenced from the pointer ptr@ with offset 0. As indicated by the
pointer table, ptro is present in 32-bit integer register r@. Of the 6 outputs, 5 have the same location
as inputs, yet they are distinguished as separate parameters of the equations. During the subsequent
symbolic execution stage, register d@ is initialized as the symbolic input x at start and the ET for
Yy is read from it at the end. Similarly, the outputs yo, y2, y3 are co-located with inputs xs, x¢, x7 and
are handled accordingly.

4.4 Symbolic Execution

This stage initializes the symbolic state with appropriate symbols for each parameter, using the
metadata generated during parameter analysis. The execution runs until the function returns, at
which point all execution paths are merged into a final state. The parameter metadata is used to read
the output ET from the correct storage locations in the final state. Due to the proper initialization in
this stage, the output ET depends on the appropriate symbols, hence a math equation can be derived
for the output. This leads to a subtle difference between the ET in Figure 3(b) and the Angr output
in Figure 1(c), where the Angr output does not contain properly initialized symbols and hence
cannot be directly simplified to a math equation, demonstrating the need for parameter analysis.
Constants are treated as symbols during reverse engineering and are optionally substituted in the
final equation, so that the constant values are not changed by any computation during execution
or simplification. REMaQE recovers an accurate depiction of the constants which are hard-coded
in the binary and how they are expressed in the math equation, including modifications during
compilation like floating point approximation.

ACM Transactions on Cyber-Physical Systems, Vol. 8, No. 4, Article 43. Publication date: November 2024.

43:12 M. Udeshi et al.

Algorithm 2: Simplify Conditional ETs

1: procedure SIMPLIFYCONDITIONAL(ET)
2: for all comparison C in ET do

3: LHS,RHS <« CanonicalOrder(C)
4 LT « LHS < RHS

5. EQ « LHS == RHS

6: BE <« BoolExp(C, LT, EQ)

7. Replace C with BE in ET

8: end for

9: § < QuineMcCluskey(ET)

10: for all boolean Bin S do

11: C « GetComparison(B)

122 Replace BwithCin S

13: end for

14: return S

15: end procedure

4.5 Algebraic Simplification

The equations generated by reverse engineering have operations which follow the sequence of
computations performed by the function’s binary implementation. This representation may be
cluttered with implementation-specific operations that need to be cleaned up and simplified to
produced human-friendly equations. Conditional branches also generate complex expressions with
deeply nested if-then-else statements. Such expressions can result when merging execution
paths with constraints as described in Section 4.1. Figure 3(b) shows the internal representation
of the ET obtained after symbolic execution of controller_handler. The complex expression is
generated because of the conditional statements executed for the clamping operation in lines 23-26.
Even though the clamping requires only two conditions, the generated ET represents the sequence
of operations performed during symbolic execution which semantically represent the conditions in
the function. A similar complex ET example can be seen in Figure B1 in Appendix B.

The sequence of operations is determined by two factors. First, when the C function is compiled
to a target machine code, the conditional branches can be represented using a variety of instruction
sequences as decided by the compiler. Second, Angr maps every instruction in the binary from the
target’s machine code to an intermediate representation required by it’s symbolic execution engine.
This further modifies the sequence of operations from what the binary’s instructions describe. The
only guarantee is that these modifications and mappings are semantically correct and represent the
original equation. When the condition involves a comparison, a separate instruction performs the
comparison and updates bits in a flag register. Later, conditional instructions check these bits of the
flag register. When these instructions are mapped to the IR, Angr can generate bit-wise operations
to perform checks, so these operations end up in the final expression.

REMaQE uses algebraic simplification to clean up implementation-specific operations and rep-
resent them as a simplified equation. The if-then-else operation of Angr requires a condition, a
true clause, and a false clause. The condition ET must yield a boolean value. The conditions in
math equations generally consist of one or more comparisons combined with boolean operations.
Algebraic simplification exploits this to streamline the condition ET to simple comparisons before
producing the equation.

ACM Transactions on Cyber-Physical Systems, Vol. 8, No. 4, Article 43. Publication date: November 2024.

REMaQE: Reverse Engineering Math Equations from Executables 43:13

Each condition ET in the full expression is simplified by Algorithm 2. The ETs generated by
Angr are immutable and hashable to maintain consistency across multiple symbolic expressions
of one execution. The “CanonicalOrder” function extracts the left and right ET of the compari-
son C, and orders them according to their hash value. Two booleans, LT and EQ, are generated
to represent less-than and equal-to comparisons. They are combined to form the representa-
tive boolean expression BE by the “BoolExp” function, and C is replaced with BE. The order-
ing of LHS and RHS, along with representing the comparison using LT and EQ, helps generate
a consistent boolean expression for the comparison. For example, the condition (x < y) & &
(y > = x) converts to LT_x_y & & (LT_x_y || EQ_x_y), which simplifies to LT_x_y and con-
verts back to x < y. The Quine-McCluskey algorithm [24, 31] is used to simplify the boolean
expression ET to S. This algorithm does not scale to expressions with a large number of boolean
variables. However, based on our assumption that the simplified equations involve only a few
comparisons, we typically handle a small number of boolean variables, even though the unsimpli-
fied expression may be long and complex with many terms. For each boolean variable B in S, the
“GetComparison” function forms the equivalent comparison C. B is replaced with C in S to obtain
the final simplified expression.

The equations are further reduced using the Sympy symbolic processing engine [27]. Sympy
applies rule-based modifications to simplify or cancel terms in the equation. The definition of
simplification is quite subjective, so equations may have more than one representation which can be
deemed as simplified. Sympy uses the number of operations as a heuristic to quantify simplification
level. Sympy’s rule-based simplification fails to apply directly on the complex Angr generated
expressions because of the deeply nested conditionals. Hence, the algebraic simplification algorithm
is essential to simplify the equations by cleaning up the implementation-specific operations.

Equations (1a)-(1e) show the equations generated by REMaQE for the outputs of controller_
handler:

X1
t=xg— % (%0 — 2x6 + x7) — x1X2%4 (X0 — X5) — x1 (X0 — X¢) (1a)
4
Yo = round ([y2|) (1b)
Y1 = |y (1)
t forxs—xo<kyandks>tandk; <t

ks forxs—xg <kyandks >t
Yo =Ys = (1d)
ky forxs—x9 <kjyandks <tandky <t
0 otherwise
xo forxs —xg < ks (1)
= = e
Y3 =Y 0 otherwise,
where x; for i = 0,---,8 are the inputs, y; for i = 0,---,5 are the outputs, k; for i = 2,3,4 are

constants, and ¢ is a term introduced to simplify the presentation of equations. The following
changes are performed manually to the equations generated by REMaQE: the term ¢ is introduced
and replaces the long shared expression in the outputs; the expression for y; is replaced in the y
and y; equations; equations for the repeated outputs y,, ys, and ys, y4 are displayed together.

4.6 Limitations

REMaQE does not handle data type casting or precision conversion that are intended to perform
operations in the original equations (e.g., floor(x) implemented using float to int cast). Instead,
we assume that data type and precision conversions are a by-product of the implementation, and

ACM Transactions on Cyber-Physical Systems, Vol. 8, No. 4, Article 43. Publication date: November 2024.

43:14 M. Udeshi et al.

choose to not represent them in the generated equations to avoid clutter. Similarly, comparison
operations that rely on bit manipulation (e.g., x < 0 implemented using sign-bit check) are not
simplified. These operations are still supported when performed using the proper instructions
or library calls. Advanced forms of control-flow like function pointers, recursion, or obfuscated
control-flow will run into the path explosion problem of symbolic execution, which will impact the
ability to analyze such functions. REMaQE generates equations represented with simple operations
on scalar values. So, advanced math operations such as vector dot-product or matrix multiplication
are unrolled and represented as a long sequence of individual multiply and add operations. This
is less than ideal when the goal is to recover human-friendly equations. Algebraic simplification
cannot handle such subjective modifications to the equations to further simplify them, as also
seen in Section 4.5 (variable ¢ was separated manually). Appendix A describes additional binaries
generated to represent these limitations.

Despite these limitations, REMaQF is applicable to many real-world reverse engineering scenarios.
Supporting data type conversions, bit-manipulation, vector and matrix operations, will expand the
scope of REMaQE to many more applications, and these are targeted for future work.

5 Evaluation of REMaQE

We focus our evaluation on the widely-used 32-bit ARM architecture with hardware floating point
support (ARM32-HF). It is straightforward to extend REMaQE to other architectures supported
by symbolic execution frameworks. To evaluate REMaQE, we need to test it on binaries where
the implemented math equation is available to check for correctness of the recovered equation.
To obtain this dataset for testing, we randomly generate math equations and compile them to
ARM32-HF binaries. REMaQE is benchmarked based on correctness defined in Section 5.1, human-
friendliness of reverse-engineered equations defined in Section 5.2, and execution time for reverse
engineering. Dataset generation is described in Section 5.3.

5.1 Correctness

This section discusses the guarantees of correctness that the framework provides, along with poten-
tial sources of inaccuracy. A math equation recovered by REMaQE is “correct” if it is mathematically
equivalent to the original equation. Equivalence checking is hard especially when dealing with float-
ing point numbers. Two equations f and g are mathematically equivalent if f(x) = g(x) Vx € RY,

where d is the number of inputs. As floating point operations are approximate, this strict equality

f(x)-g(x)

check must be loosened: |W < € Vx € R?, where € is a tolerance to compare the equation

outputs. If, f(x) = 0, we check if |g(x)| < e. The following sources of inaccuracy arise when
implementing equations with floating point variables:

(1) The constants in the original equation are stored in a fixed precision in the binary, hence
they can only be recovered to that approximation.

(2) The constants can be modified when the recovered equation is simplified, hence they may
not match the original equation constants.

(3) The order of operations can differ between the original equation and recovered equation
which impacts floating point computations.

Apart from these inaccuracies, the REMaQE pipeline is deterministic. Angr’s symbolic execution,
the algebraic simplification algorithm, and Sympy’s rule-based modifications preserve and represent
the semantic structure of operations present in the binary. This ensures REMaQE always recovers a
“correct” equation, even if it is obscured. For the generated dataset where original equations are

ACM Transactions on Cyber-Physical Systems, Vol. 8, No. 4, Article 43. Publication date: November 2024.

REMaQE: Reverse Engineering Math Equations from Executables 43:15

available, equivalence check of recovered equations with the original equations is performed on
three levels:

(1) Structural match is when they have the same order of operations and variables; This is
checked by comparing Sympy’s internal tree representation of both equations.

(2) Semantic match is when they are equivalent, but do not have the same structure; This is
checked by taking the difference of equations and seeing if it simplifies to 0.

(3) Evaluated match is when the functions are evaluated for a range of inputs and the outputs
are compared with tolerance € = 107°.

A structural match implies semantic match, and a semantic match implies evaluated match. Hence,
the equivalence check can stop at the first level that matches. For real world binaries where the
original equation is not available, the evaluated match is performed directly. For evaluated match,
inputs are randomly selected between —10 and 10. Invalid inputs are discarded if the ground truth
equation gives invalid, complex, or infinite outputs. Up to 200 inputs are evaluated to check if the
maximum error breaches the threshold. More inputs or a wider range can be chosen for a higher
confidence of the evaluated match.

5.2 Human Friendliness

A recovered equation may be considered human-friendly if its complexity is similar to the original
equation, based on its appearance. Evaluating the complexity of a math equation is subjective and
cannot be precisely measured. So determining whether an equation is fully simplified is not feasible.
A heuristic measure of complexity is defined by the number of operations in the math equation.
The sympy . count_ops function measures the number of operations in an equation. If the reverse
engineered equation has a similar number of operations as the original one, we consider them
to have comparable complexity. We quantify human-friendliness as the ratio of the number of
operations, with a ratio closer to 1 indicating higher human-friendliness.

5.3 Dataset Generation

Each generated equation is implemented as a C function and a Simulink [23] model. Simulink is
popular for modelling controllers, and it provides features to compile the models into binaries for
embedded targets. The C function is compiled for ARM32-HF target using the GCC compiler (arm-
linux-gnueabhihf-gcc). The Simulink model is compiled for the same target using Simulink’s
code generation feature. Four optimization levels from “-00” to “-O3” are used during compilation
to obtain a variety of implementations.

To allow direct conversion to Simulink models, which are computational graphs, the math
equations are generated as directed-acyclic graphs (DAG), where each node is a parameter or a
math operation. The input nodes are initialized first. Then, math operation nodes are picked from a
pool of operations, with repeats allowed. Edges are randomly added between the nodes to connect
the entire graph, while ensuring that the graph remains a DAG (i.e., no cycles). Finally, nodes
without outgoing edges are connected by inserting add or multiply operation nodes to get to one
output. This final step prevents “dead” operations (wasted computation not reaching any output).

REMaQE contrasts with approaches in [19, 39] to randomly generate math equations which
generate ET instead of DAGs. Generating ET helps control the complexity of the random equation.
This is important for the two articles as their analysis uses machine learning and can handle only a
finite amount of tokens. REMaQF simplification stage is rule-based and does not have this limitation.
In our assessment, DAGs offer two advantages: (1) they can be converted into Simulink models and
(2) they generate complex equations in terms of number of operations.

ACM Transactions on Cyber-Physical Systems, Vol. 8, No. 4, Article 43. Publication date: November 2024.

43:16 M. Udeshi et al.

Table 3. Parameters for Random DAG Generation and Binary Compilation

Parameter DAG Generation Options
Type of operations | Arithmetic, Trigonometric + Exponential, Conditional
Number of inputs | 1to 2
Number of nodes | 5to 15
Compilation Options
Implementation | C, Simulink
Optimization level | -O0, -01, -02, -O3

460 r 10.2
450 | | : 7 7
50 [=0 =D =D =D =D = = = = £ = = = 6 i
I 5 -
g 10 1 9
T 30 I 5
© -
£ 20+ | =
A 10 1 21
0 1 T 1 I 1 7 EE
0 108 1077 1076 1075 107 0 T T T T
Evaluation error 0-4 5-9 1014 1519 2025
DAG nodes

Fig. 4. Histogram of number of binaries vs. max error

. . . Fig. 5. A tio of ti lexity f h
during evaluation match. Tolerance € = 10~° is marked. ' verage ratio of equation compiexity for eac

parameter binned with the number of nodes. The box
indicates y + o (u is mean, o is standard deviation),
while the line and whiskers indicate range.

Table 3 shows the parameters available for random DAG generation and compilation. All combi-
nations of parameters are used so that the dataset has a wide variety of equations for evaluation. The
nodes inserted to prevent dead operations increase the total number of nodes, so selecting number
of nodes up to 15 during generation is sufficient to create DAGs with up to 25 nodes and equations
with 100s of operations. The trigonometric and exponential operations generate binaries with calls
to library functions, which represents real-world implementations. Conditional operations like
saturation, signum, absolute value, and deadzone produce binaries with data-dependent branches
and conditional execution that stresses different stages of the REMaQE pipeline.

Each generated equation is simplified first and discarded if the simplification either reduces to
a constant, contains complex or infinite values, or cancels out one of the inputs. Each model in
the dataset has a generated equation, a simplified ground truth equation, and binaries compiled
using C and Simulink implementations with 4 optimization levels. The final dataset contains 3,137
ground truth equations and 25,096 compiled binaries for analysis.

6 Results

REMaQE successfully recovers the correct equation for all 25,096 binaries. This strongly shows the
correctness of REMaQE’s reverse engineering pipeline. In the equivalence check, structural match
is obtained for 12,032 binaries (47.94%), semantic match is obtained for 12,525 binaries (49.91%),
and evaluated match is obtained for 533 binaries (2.12%). A tolerance of € = 10~° is used for the
evaluated match. The 6 remaining binaries violate the tolerance threshold during evaluation, hence
the equivalence check fails for them. However, manual verification (see Section 6.1) reveals that
REMaQE has recovered the correct equation for these 6 binaries as well. Figure 4 is a histogram
of binaries versus maximum error during evaluated match, for the 539 binaries (533 matched plus

ACM Transactions on Cyber-Physical Systems, Vol. 8, No. 4, Article 43. Publication date: November 2024.

REMaQE: Reverse Engineering Math Equations from Executables 43:17

Table 4. Examples to Demonstrate the Different Types of Equivalence Checks

Match Type Ground Truth Equation Recovered by REMaQE
Structural (—k1 + xosin(kox1)% — x1)/kz (—k1 + xosin(kox1)% — x1)/kz
—atan (xg)+xokz+k; —x1 —ko

Semantic (—ko + k1 + kaxo — x1 — atan(xp))exp(—xp) exp(xg)

acos(kyxg) — x1sin(xg) /ko
for (k1xg >= —1.0) and (k1xo <= 1.0)
Evaluated acos(kixg) — xisin(x) 3141593 - xisin(x1) [k
for k1x1 <=1.0
—x1sin(xo)/ko

otherwise

Even in instances such as the one shown in the “Evaluated” row, REMaQE recovers the correct representation of equations
implemented in the binary (which may differ from “Ground Truth”) since the compilation tool chain adds these checks.

6 manually verified). Most binaries have a maximum error < 1078, indicating the equations are
correct with confidence. Very few have higher errors and even fewer breach the tolerance threshold
due to floating point approximations.

Table 4 shows examples from the dataset for each of the three equivalence check levels. The
recovered equation for the evaluated match case is much more complex than the ground truth,
with extra conditional operations, because Simulink adds bounds checks for the acos(+) function.
REMaQE reverse engineers the implementation in the binary, hence semantic modifications per-
formed during compilation, such as the extra bounds checks introduced by Simulink in this case, are
also recovered. The recovered equations help debug the implementation of mathematical algorithms
to ensure that the compilation pipeline has not made any unexpected changes. Evaluating both
equations shows that they generate the same outputs (or close, up to the tolerance).

6.1 Manual Verification

The goal of REMaQE is to reverse engineer the binary implementation and present it as math equa-
tions. When the three equivalence checks fail to match the recovered and ground truth equations,
this is not sufficient to conclude that the recovered equation is wrong. Manual inspection is required
to determine whether the recovered equation is a faithful recreation of the implementation of the
ground truth equation, or if it is indeed mismatched. The following is one of the 6 manually verified
cases to demonstrate that even though equivalence checks have failed, REMaQE has recovered
correct equations. Equation (2a) shows the ground truth and Equation (2b) shows the recovered
equation:

1 1
x_ko_kl_k_g_ki-'-k_ forx >0
y=3x—ko—k; - k2+/f+k forx <0 (2a)
x —ko— ki otherwise
—k~0—k~1 forx=0
y = x—k~0—k~1—k~2(x—k~0+k~2+1)+1 forx <0 (Zb)
ko— .X+1—kT
x — ko—k1—1+k—° forx >0
0

where x is the input, y is the output, k; are the constants in the ground truth equation, and
k; are the approximated constants recovered from the binary. ky = —1.51, k; = —1.58, ky =

ACM Transactions on Cyber-Physical Systems, Vol. 8, No. 4, Article 43. Publication date: November 2024.

43:18 M. Udeshi et al.

[Parameter analysis [ZS] Symbolic execution [EZZJ Algebraic simplification

14 2.0
1.8 o

0.5 4

» 124 0.5 -
P 1.6 4 04
g 104 14 4 04 -
B o8 1.2 A 0.3 4
o 1.0 4 03 4
S 06+
E=t 0.8 - 02 -
5 02 §
O 0.4 - 0.6 4 'v.
% m 04 014 [0.1 AA A
%] - .14 14 va A, A
= 02 7 ~4 N7 0.2 A E oog R P
0.0 T T T T T 0.0 T T 0.0 T T 0.0 T
04 59 1014 1519 20-24 Arith. Arith, Arith. C Simulink o1 02 03
Trig. Cond. . A
(a) DAG nodes g on (c) Implementation (d) Optimization

(b) Operations

Fig. 6. Average execution time (seconds) per stage for the different dataset generation and compilation
parameters: (a) number of DAG nodes, (b) type of operations, (c) implementation, and (d) optimization level.

—1.5099999904632568, 151 = —1.5800000429153442, and k~2 = —0.6622516512870789. Notice that
Equation (2b) has an extra constant k; ~ klo’ which means the compiler has chosen to store the
inverse of kj as a separate constant. Inaccuracies due to the floating point approximation and dif-
ferent representation of constants caused evaluated match to find inputs that violate the tolerance
level. Manual inspection shows that REMaQE has recovered a semantically matched equation.

6.2 Human Friendliness

Figure 5 demonstrates the human-friendliness of reverse engineered outputs of REMaQE. The
average ratio of number of operations in the recovered equation over the simplified ground truth
equation is shown as a histogram binned with respect to number of nodes in the DAG. Standard
deviation and range of each bin is displayed as the box and whiskers plot. The average ratio is close
to 1 across the range of equation complexity, with a standard deviation of 0.26; For larger number of
nodes, the mean increases to 1.15 and standard deviation increases to 0.57. REMaQE performs well
on the human-friendliness metric for a variety of equations. Instances with higher ratios indicate
outliers where REMaQE recovers a more complex equation since algebraic simplification cannot
shrink the recovered equations beyond a point. Instances with ratios lower than 1 indicate cases
where the recovered equations are simpler than ground truth since C and Simulink compilers
optimized the expressions in the implementation.

6.3 Execution Time

Execution time of each of REMaQFE’s three stages is measured for the generated dataset on an
Intel i7-6700 CPU. Only one instance of REMaQE is run on a single core to collect the timing
measurements. On average, the full reverse engineering takes 0.48 seconds. 71% time is consumed
by algebraic simplification, 18% by parameter analysis, and 11% by symbolic execution.

Figure 6 displays the execution time for different dataset generation parameters. Across the
different kinds of binaries, the total execution time remains under 2 seconds.

(a) DAG nodes: Execution time for all three stages increases almost linearly with number of nodes
in the generated DAG. This is because code size (i.e., number of instructions) is proportional to
DAG nodes. Execution time ranges from 0.3 seconds to 1.3 seconds across DAG nodes.

(b) Type of operations: We see a significant increase for the more complex operations. Trigono-
metric and exponential operations cause a larger number of function calls to libraries, taking longer
to reverse engineer. Conditional operations add data-dependent branches that lead to multiple
exploration paths during parameter analysis and symbolic execution. Each branch execution adds
conditions to the final equation that require additional handling during algebraic simplification.

ACM Transactions on Cyber-Physical Systems, Vol. 8, No. 4, Article 43. Publication date: November 2024.

REMaQE: Reverse Engineering Math Equations from Executables 43:19

void PosVelEKF::predict(float dt, float dVel, float dVelNoise)
{
// Newly predicted state and covariance matrix at next time step
float newState[2];
float newCov[3];
// We assume the following state model for this problem
newState[0] dtx_state[1] + _state[@]
newState[1] dvel + _state[1];
/*x . x/
newCov[@] = dt*_cov[1] + dt*x(dtx_cov[2] + _cov[1]) + _cov[e];
newCov[1] = dt*_cov[2] + _cov[1];
newCov[2] = ((dVelNoise)*(dVelNoise)) + _cov[2];
// store the predicted matrices
memcpy (_state,newState,sizeof (_state));
memcpy (_cov,newCov,sizeof (_cov));

}

float calc_lowpass_alpha_dt(float dt, float cutoff_freq)
{
if (is_negative(dt) || is_negative(cutoff_freq)) {
INTERNAL_ERROR(AP_InternalError::error_t::invalid_arg_or_result);
return 1.0;
3
if (is_zero(cutoff_freq)) return 1.0;
if (is_zero(dt)) return 0.0;
float rc = 1.0f / (M_2PI * cutoff_freq);
return dt / (dt + rc);

Fig. 7. C++ source of PosVelEKF: :predict and calc_lowpass_alpha_dt.

(c) Implementation: Parameter analysis and symbolic execution are slightly faster for Simulink
compared to C, whereas algebraic simplification is slightly slower. This is because Simulink may add
extra bounds checks for some operations that take longer to process during algebraic simplification.

(d) Optimization level: For higher optimization levels, parameter analysis and symbolic execution
time decreases, as the code size decreases.

Overall, REMaQE reverse engineers a wide range of equations in real time. It is hence suitable as
an interactive tool that can integrate into a GUI-based reverse engineering workflow and deliver
recovered equations at latencies comparable to human click speeds.

7 Case Study: Reverse Engineering of ArduPilot

We use REMaQE to reverse engineer two functions in the ArduPilot auto-pilot firmware for UAVs
[3]. The firmware binary* is compiled for ARM32-HF and the BeagleBone Black embedded platform.
The binary is not stripped in this case, so function names and global symbol names are available.
Figure 7 shows the C++ source for PosVelEKF: :predict which implements an extended Kalman
filter (EKF) for position-velocity estimation and calc_lowpass_alpha_dt, a low-pass filter. We
reverse engineer these functions using REMaQE. The source code is provided only for discussion
and is not utilized during reverse engineering.

Table 5 shows the parameter metadata extracted for PosVelEKF: :predict. REMaQE correctly
identifies the 3 pass-by-value arguments (xy to x;) and 5 class members (x5 to x9) as inputs of the
function. The missing indices are false positive inputs identified by REMaQE. They do not show
up in the output equations, and they are not displayed in the table. The class members are also
identified as the 5 outputs (yo to y4). The class pointer is correctly identified as the base for the class
members and represented as ptr@. REMaQE has handled the memcpy call and determined outputs
even though the function returns void.

Equations (3a)-(3e) show the recovered output equations:

Yo = XoXe + Xs, (3a)

4https://firmware.ardupilot.org/Copter/stable-4.3.4/bbbmini/arducopter

ACM Transactions on Cyber-Physical Systems, Vol. 8, No. 4, Article 43. Publication date: November 2024.

https://firmware.ardupilot.org/Copter/stable-4.3.4/bbbmini/arducopter

43:20 M. Udeshi et al.

Table 5. Parameters of PosVelEKF: :predict

Inp. Klndt Lgcatlon Slg; Out. | Kind Location Size
Xo | reglster |3 Yo pointer | ptro[oxe] 32
= register | s 32 ointer | ptro[0x4] 32
X2 register | s2 32 u1 P

Y2 pointer | ptro[0x8] 32

ointer tro[oxc 32
X6 pointer | ptro[0x4] 32 43 po! ptrofoxcl
. Ys pointer | ptro[0x1@] 32
X7 pointer | ptro[0x8] 32 - . .
. Ptr. | Kind Location Size
Xg pointer | ptro[oxc] 32

Xg pointer | ptro[ox1@] 32 ptro | register | ré 32

X5 pointer | ptro[0x0] 32

Table 6. Parameters of calc_lowpass_alpha_dt

Inp. | Kind Locati Si
xnp renilster sgca ton 1?2: Const. | Kind | Location | Size Value
0 & ko global | 0x473788 | 64 6.28319
bl register | s 32
Out. | Kind Location | Size ki global 0x473f90 32 | —1.19209e-07
- : ks global | @x473f94 | 32| 1.19209e-07
Yo register | s@ 32
Y1 = X1 + X, (3b)
Yo = XoXg + Xo (XoX9 + xg) + X7, (3¢)
Y3 = XpX9 + X3, (3d)
yyg = xg + Xo, (3e)

where x; for i = 0,1,2,5,---,9 are inputs and y; for i = 0, --, 4 are outputs. REMaQE reverse
engineers the math equations implemented in the function. While these equations by themselves
are not sufficient to determine that this function implements an EKF, the user can combine them
with context from other sources to understand aspects like the state and covariance updates.
Table 6 shows the parameter metadata extracted for calc_lowpass_alpha_dt. The error function
is ignored during symbolic execution so REMaQE captures the error cases without terminating.
REMaQE identifies the pass-by-value arguments and return output. The recovered constant values
are helpful: kg ~ 27, also k; ~ =272 and k, ~ 272, the 32-bit floating point machine epsilons.
Equation (4) shows the output equation:

1 for ki < xg and k; < x; and ky > |xq|

0 for ky > |xo| and k; < xp and k; < x; and ks < x| @
Yo =13 k s

% for k; < xo and k; < x; and ky < |x;| and ky < |x]

1 otherwise

where yj is the output, xg, x; are the inputs, and ky, k1, k; are constants. The expression for low-pass
filter is shown in one of the cases. The conditions in case statements indicate that is_zero()
and is_negative() in the original code are implemented as comparisons with k; and k;, the
machine epsilon, instead of relying on equality or sign-bit check. Using REMaQE, we verify that
the implementation is robust to floating point approximations. This case study demonstrates that
REMaQE can be used in real-world analysis of UAVs, and debugging of implemented algorithms.

ACM Transactions on Cyber-Physical Systems, Vol. 8, No. 4, Article 43. Publication date: November 2024.

REMaQE: Reverse Engineering Math Equations from Executables 43:21

1 FUNCTION_BLOCK MYDERIVATIVE 17 FUNCTION_BLOCK MYPID

2 VAR_INPUT xin:REAL; cycle:REAL; END_VAR 18 VAR_INPUT pv:REAL; setp:REAL; cycle:REAL; END_VAR
3 VAR_OUTPUT xout:REAL; END_VAR 19 VAR_OUTPUT xout:REAL; END_VAR

4 VAR x1, x2, x3:REAL; END_VAR 20 VAR

5 21 Kp:REAL; Tr:REAL; Td:REAL; error:REAL;
6 xout := (3.0 * (xin - x3) + x1 - x2) 22 iterm:MYINTERGRAL; dterm:MYDERIVATIVE;
7 / (10.0 * cycle); 23 END_VAR

8 x3 := x2; x2 := x1; x1 := xin; 24

9 END_FUNCTION_BLOCK 25 Kp := 1.54; Tr := 2.33; Td := 0.07;

10 26 error := pv - setp;

11 FUNCTION_BLOCK MYINTEGRAL 27 iterm (xin := error, cycle := cycle);

12 VAR_INPUT xin:REAL; cycle:REAL; END_VAR 28 dterm (xin := error, cycle := cycle);

13 VAR_OUTPUT xout:REAL; END_VAR 29 xout := Kp * (error + iterm.xout/Tr

14 30 + dterm.xout*Td);

15 xout := xout + xin * cycle; 31 END_FUNCTION_BLOCK

16 END_FUNCTION_BLOCK

Fig. 8. Structured Text implementation of a PID controller for OpenPLC.

Table 7. Parameters of the OpenPLC PID Controller

inp : Kc:iI::tier L::;Eg::;] SIZ Out. Kind Location Size
x(l) IIzointer Etr@[@xS] 32 Yo po%nter ptrof[ox20] 32
X3 pointer | ptro[0x10] 32 Ya po%nter ptro[ox60] 32
X3 pointer | ptro[0x18] 32 Y5 po%nter ptrofox8o] 32
X4 pointer | ptro[0x60] 32 Yo po%nter ptro[0x8s] 32
X5 pointer | ptro[0x80] 32 Y7 po.mter ptr@[?x%] ,32
X pointer | ptro[0x88] 32 Const. Kmd . Location Size | Value
x; pointer | ptre[@x9e] 39 ko immediate | 0x40019b 32 1.54
Ptr. | Kind Location Size k1 immediate | 0x4001af 32 2.33
ptro | register | 10 32 ko immediate | 0x4001c3 32 0.07

8 Case Study: Reverse Engineering of the OpenPLC PID Controller

We use REMaQE to reverse engineer a PID controller implemented using the OpenPLC [2] platform
in the Structured Text (ST) language. OpenPLC converts the ST implementation to C code, which
is compiled to an object file for the ARM32-HF target using the GCC compiler. This object file can
be executed using the OpenPLC runtime on embedded devices that OpenPLC supports, such as the
Arduino and Raspberry Pi. Figure 8 shows the ST source code of the PID controller. The function
blocks in this ST are based on the “PID”, “INTEGRAL”, and “DERIVATIVE” examples provided
in the IEC 61131-3 standard [9]. The source code is provided here only for discussion and is not
used during reverse engineering. REMaQE is run directly on the “MYPID” function as we intend to
inline the integral and derivative calculations in the recovered equations instead of representing
them as function calls. Table 7 shows the parameters of the PID controller. We see that access to
input, output and local variables are pointer based. We also see the three tuning constants used by
the controller, whose usage will be evident from the recovered equations. The inputs x4, x5, X¢, X7
and outputs y4, ys, ys, y7 are correspondingly accessed from the same location (same pointer offset),
indicating that they may refer to the local variables.
Equations (5a)—-(5e) show the recovered output equations:

1 0.1k

Yo = ko |x0 —x1 + T (x4 +x3 (9 — x1)) + x_z (x5 — x6 + 3.0 (x0 — x1 — x7)) (5a)
1 3

Ya = x4 + X3 (X9 — X1) (5b)

Ys = Xo — X1 (5¢)

ACM Transactions on Cyber-Physical Systems, Vol. 8, No. 4, Article 43. Publication date: November 2024.

43:22 M. Udeshi et al.

Yo = X5 (5d)
Y7 = Xe (5e)
where x; for i = 0,---,7 are inputs, y; for i = 0,4,---,7 are outputs, and ko, k1, k, are constants.

The equation for y, looks like the PID output, which means that ky must be “Kp”. The expression
Xo — X1 is repeated in multiple places, indicating that it is the error term, making x, as process value
“pv” and x; as setpoint “setp”. As x4 and y4 are stored in the same location, Equation (5b) represents
an increment of x4 with x3(xo — x1), so it is likely the integral accumulator. This means the second
term in Equation (5a) is the integral term and the third is the derivative term. So, ys, ys, Y7 store
previous error values in shifted manner, to be used in the four-point derivative approximation
term. We can also conclude that k; is “Tr”, k; is “Td”, and x3 is the cycle time input. These findings
match the ST implementation in Figure 8. Notice that x; is identified as an input, but is not used in
the equations. This happens when some locations are accessed for other purposes, but parameter
analysis marks them as inputs of the equations. This case study demonstrates that REMaQE can
be used to reverse engineer PLC binary executables, which helps to recover source code of legacy
systems, and verify the integrity of implemented equations to ensure there is no tampering.

9 Conclusion

The REMaQE framework automatically reverse engineers math equations from binary executables.
It has three stages: parameter analysis, symbolic execution, and algebraic simplification. Parameter
analysis allows REMaQE to identify the input, output and constant parameters of the math equation
and whether they are stored in the register, on the stack, in global memory or accessed via pointers.
REMaQE uses this metadata to reverse engineer a wide variety of implementations, such as C++
classes that use class pointers, or Simulink compiled binaries that use global memory. This is a signifi-
cant improvement over the state-of-the-art, which only handles simple functions implemented using
registers. Algebraic simplification allows REMaQE to simplify complex conditional expressions
involving floating-point comparisons, that are generated by symbolic execution even for simple
equations. Existing approaches use machine learning models that have limits on the input expression
size. They cannot handle the long, complex expressions generated by conditional computations.

Additionally, we introduce an alternative method for randomly generating diverse equations
using directed acyclic graphs. REMaQE recovers the correct equations for the entire dataset of
25,096 binaries. REMaQE takes an average execution time of 0.48 seconds and up to 2 seconds
for the complex equations. Such a small reverse engineering time makes REMaQE effective in an
interactive reverse engineering workflow, and would enable one-click latency when integrated with
GUI frameworks. Comparing the complexity of the recovered equations with the original equations,
REMaQE shows an average ratio of 1 through a range of equation complexities, with a standard
deviation of 0.26. The REMaQE automated tool can significantly reduce human effort in the recovery
of control system dynamics from legacy hardware or recovered adversaries’ control computers
and can also facilitate defenses during run-time or after an attack to determine if any parameters
or control dynamics are modified. This can also reveal the effects of the modifications on the
mathematical computations and therefore system performance. REMaQE extracts human-friendly
equations.

Future work can extend REMaQE to integrate it into GUI decompilation tools, handle data type
conversion and bitwise computation, bundle support for complex control-flow like function pointers
or recursion, and enhance reverse engineering capabilities to recognize advanced mathematical
structures for improved representation. Algorithms in embedded systems can employ advanced
mathematical structures such as dynamic loops, summation, integration, differentiation, and high
dimensional data such as vectors and matrices. Extending simplification to include long chains of

ACM Transactions on Cyber-Physical Systems, Vol. 8, No. 4, Article 43. Publication date: November 2024.

REMaQE: Reverse Engineering Math Equations from Executables 43:23

scalar computation into high-level operations will further improve REMaQE’s human-friendliness.
These refinements and extensions are the proposed future work for REMaQE.

References

(1]

(2]
(3]
(4]

(5]

(14]

[15]

[16]

Riham Altawy and Amr M. Youssef. 2016. Security, privacy, and safety aspects of civilian drones: A survey. ACM
Transactions on Cyber-Physical Systems 1, 2 (Nov. 2016), Article 7, 25 pages.

Thiago Alves. 2023. OpenPLC. Retrieved December 20, 2023 from https://autonomylogic.com/

ArduPilot. 2023. ArduPilot. Retrieved December 20, 2023 from https://ardupilot.org/

C. W. Badenhop, S. R. Graham, B. E. Mullins, and L. O. Mailloux. 2018. Looking under the hood of Z-Wave: Volatile
memory introspection for the ZW0301 Transceiver. ACM Transactions on Cyber-Physical Systems 3, 2 (Dec. 2018),
Article 20, 24 pages.

Hamza Bourbouh, Pierre-Loic Garoche, Christophe Garion, and Xavier Thirioux. 2021. From Lustre to Simulink: Reverse
Compilation for Embedded Systems Applications. ACM Transactions on Cyber-Physical Systems 5, 3 (Jul. 2021), Article
31, 20 pages.

Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and automatic generation of high-
coverage tests for complex systems programs. In Proceedings of the USENIX Conference on Operating Systems Design
and Implementation (OSDI). USENIX Association, 209-224.

Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley. 2012. Unleashing Mayhem on binary code.
In IEEE Symposium on Security and Privacy (SP). IEEE, USA, 380-394.

] Cristina Cifuentes. 1994. Reverse Compilation Techniques. Ph.D. Dissertation. Queensland University of Technology.

International Electrotechnical Commission. 2003. IEC 61131-3:2003. Retrieved December 20, 2023 from https://
webstore.iec.ch/publication/19081

Robin David, Sébastien Bardin, Thanh Dinh Ta, Laurent Mounier, Josselin Feist, Marie-Laure Potet, and Jean-Yves
Marion. 2016. BINSEC/SE: A dynamic symbolic execution toolkit for binary-level analysis. In Proceedings of the IEEE
International Conference on Software Analysis, Evolution, and Reengineering (SANER), Vol. 1. IEEE, Japan, 653-656.
Hex-Rays. 2023. IDA Pro Disassembler. Retrieved December 20, 2023 from https://hex-rays.com/ida-pro/

Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010. Oracle-guided component-based program
synthesis. In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering - Volume 1 (ICSE ’10).
ACM, New York, NY, 215-224.

Sushma Kalle, Nehal Ameen, Hyunguk Yoo, and Irfan Ahmed. 2019. CLIK on PLCs! Attacking control logic with
decompilation and virtual PLC. In Proceedings of the Workshop on Binary Analysis Research (BAR). The Internet Society,
74-85.

Anastasis Keliris and Michail Maniatakos. 2019. ICSREF: A framework for automated reverse engineering of industrial
control systems binaries. In Proceedings of the Network and Distributed System Security Symposium (NDSS). The
Internet Society, 271-285.

Farshad Khorrami, Prashanth Krishnamurthy, and Ramesh Karri. 2016. Cybersecurity for control systems: A process-
aware perspective. IEEE Design & Test 33, 5 (2016), 75-83.

Taegyu Kim, Aolin Ding, Sriharsha Etigowni, Pengfei Sun, Jizhou Chen, Luis Garcia, Saman Zonouz, Dongyan Xu,
and Dave (Jing) Tian. 2022. Reverse engineering and retrofitting robotic aerial vehicle control firmware using dispatch.
In Proceedings of the 20th Annual International Conference on Mobile Systems, Applications and Services (MobiSys °22).
ACM, New York, NY, 69-83.

Charalambos Konstantinou, Michail Maniatakos, Fareena Saqib, Shiyan Hu, Jim Plusquellic, and Yier Jin. 2015. Cyber-
physical systems: A security perspective. In Proceedings of the IEEE European Test Symposium (ETS). IEEE, USA,
1-8.

Prashanth Krishnamurthy, Farshad Khorrami, Ramesh Karri, David Paul-Pena, and Hossein Salehghaffari. 2018.
Process-aware covert channels using physical instrumentation in cyber-physical systems. IEEE Transactions on
Information Forensics and Security 13, 11 (2018), 2761-2771.

Guillaume Lample and Francois Charton. 2020. Deep learning for symbolic mathematics. In Proceedings of the
International Conference on Learning Representations (ICLR). OpenReview.net, 24 pages.

Ralph Langner. 2011. Stuxnet: Dissecting a Cyberwarfare Weapon. IEEE Security & Privacy 9, 3 (2011), 49-51.
Robert M. Lee, Michael J. Assante, and Tim Conway. 2016. Analysis of the cyber attack on the Ukrainian power
grid. Retrieved from https://media kasperskycontenthub.com/wp-content/uploads/sites/43/2016/05/20081514/E-ISAC_
SANS_Ukraine_DUC_5.pdf.

Xuefeng Lv, Yaobin Xie, Xiaodong Zhu, and Lu Ren. 2017. A technique for bytecode decompilation of PLC program.
In Proceedings of the Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). IEEE,
252-257.

ACM Transactions on Cyber-Physical Systems, Vol. 8, No. 4, Article 43. Publication date: November 2024.

https://autonomylogic.com/
https://ardupilot.org/
https://webstore.iec.ch/publication/19081
https://webstore.iec.ch/publication/19081
https://hex-rays.com/ida-pro/
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2016/05/20081514/E-ISAC_SANS_Ukraine_DUC_5.pdf
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2016/05/20081514/E-ISAC_SANS_Ukraine_DUC_5.pdf

43:24 M. Udeshi et al.

(34]

(35]

(36]

(37]

(38]

(39]

(40]

MathWorks. 2023. Simulink - Simulation and Model-Based Design. Retrieved December 20, 2023 from https://www.
mathworks.com/products/simulink.html

E.J. McCluskey Jr. 1956. Minimization of Boolean functions. The Bell System Technical Journal 35, 6 (1956), 1417-1444.
Stephen McLaughlin. 2011. On dynamic malware payloads aimed at programmable logic controllers. In Proceedings of
the USENIX Conference on Hot Topics in Security. USENIX Association, 10-15.

Stephen McLaughlin, Saman Zonouz, Devin Pohly, and Patrick McDaniel. 2014. A trusted safety verifier for process
controller code. In Network and Distributed System Security Symposium (NDSS). The Internet Society, 43-57.

Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondiej Certik, Sergey B. Kirpichev, Matthew Rocklin, AMiT
Kumar, Sergiu Ivanov, Jason K. Moore, Sartaj Singh, et al. 2017. SymPy: Symbolic computing in Python. Peerj Computer
Science 3 (2017), e103.

NSA. 2023. Ghidra. Retrieved December 20, 2023 from https://ghidra-sre.org/

Philip O’Kane, Sakir Sezer, and Kieran McLaughlin. 2011. Obfuscation: The hidden malware. IEEE Security & Privacy
9,5 (2011), 41-47.

Syed Ali Qasim, Juan Lopez, and Irfan Ahmed. 2019. Automated reconstruction of control logic for programmable logic
controller forensics. In Information Security. Zhiqiang Lin, Charalampos Papamanthou, and Michalis Polychronakis
(Eds.), Springer International Publishing, Cham, 402-422.

W. V. Quine. 1952. The problem of simplifying truth functions. The American Mathematical Monthly 59 (1952), 521-531.
Saranyan Senthivel, Shrey Dhungana, Hyunguk Yoo, Irfan Ahmed, and Vassil Roussev. 2018. Denial of engineering
operations attacks in industrial control systems. In Proceedings of the 8th ACM Conference on Data and Application
Security and Privacy (CODASPY °18). ACM, New York, NY, 319-329.

Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, and Giovanni Vigna. 2015. Firmalice -
automatic detection of authentication bypass vulnerabilities in binary firmware. In Proceedings of the Network and
Distributed System Security Symposium (NDSS). The Internet Society, 294-308.

Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino, Andrew Dutcher, John Grosen,
Siji Feng, Christophe Hauser, and Christopher Kruegel. 2016. SOK: (State of) the art of war: Offensive techniques in
binary analysis. In Proceedings of the IEEE Symposium on Security and Privacy (SP). IEEE, 138-157.

Nick Stephens, Jessie Grosen, Christopher Salls, Audrey Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan Shoshitaishvili,
Christopher Kruegel, and Giovanni Vigna. 2016. Driller: Augmenting fuzzing through selective symbolic execution.
In Proceedings of the Network and Distributed System Security Symposium (NDSS). The Internet Society, 368-383.
Pengfei Sun, Luis Garcia, and Saman Zonouz. 2019. Tell me more than just assembly! Reversing cyber-physical
execution semantics of embedded IoT controller software binaries. In Proceedings of the IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). IEEE, 349-361.

R. Sun, A. Mera, L. Lu, and D. Choffnes. 2021. SoK: Attacks on industrial control logic and formal verification-based
defenses. In Proceedings of the IEEE European Symposium on Security and Privacy (EuroS & P). IEEE Computer Society,
385-402.

Meet Udeshi, Prashanth Krishnamurthy, Hammond Pearce, Ramesh Karri, and Farshad Khorrami. 2023. Dataset for
REMaQE evaluation. IEEE Dataport. DOI : https://dx.doi.org/10.21227/r7e6-bk48

Nicolaas Weideman, Virginia K. Felkner, Wei-Cheng Wu, Jonathan May, Christophe Hauser, and Luis Garcia. 2021.
PERFUME: Programmatic extraction and refinement for usability of mathematical expression. In Proceedings of the
Research on Offensive and Defensive Techniques in the Context of Man at the End (MATE) Attacks (Checkmate). ACM,
New York, NY, 59-69.

Zeyu Yang, Liang He, Hua Yu, Chengcheng Zhao, Peng Cheng, and Jiming Chen. 2022. Detecting PLC intrusions
using control invariants. IEEE Internet of Things Journal 9, 12 (2022), 9934-9947.

Appendices

A Additional Dataset Representing Limitations

REMaQE is able to successfully handle all the cases in the dataset of 3,137 equations and 25,096
binaries. However, to illustrate cases representing the limitations of REMaQE, we have generated
212 additional binaries in a separate folder in the dataset. In these binaries, we have made the
following two implementation changes:

— A new signum implementation using bitwise operations to check the floating point sign bit
—Both 32-bit and 64-bit floating point types are used in each function to introduce type-casting

Only the C implementation is used for compilation as these changes cannot be introduced into
Simulink’s compilation pipeline. On these binaries, REMaQE recovers the accurate equation for 94

ACM Transactions on Cyber-Physical Systems, Vol. 8, No. 4, Article 43. Publication date: November 2024.

https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://ghidra-sre.org/
https://dx.doi.org/10.21227/r7e6-bk48

REMaQE: Reverse Engineering Math Equations from Executables 43:25

(44.34%), fails for 35 (16.51%), and takes more than 10 minutes to run for 83 (39.15%). The algebraic
simplification time blows up exponentially for complex expressions as those generated by bitwise
operations, and may sometimes generate wrong simplifications. The type-casting produces both
32-bit and 64-bit load and store operations that confuses the parameter analysis regarding the
bit-width of a parameter, which leads to wrong equations.

B Simplification Example

ko — k1 — kp (ko — x0) + kg + kaxo — xo for ky > kg + xq
y=14ko — k1 — kg (k2 — x0) + kg + k3xg — xp for ky < ks + xq
ko — k1 — kz (k2 — xq) +kz +x9 (kz — x9) — x¢ otherwise

(a) Ground Truth equation from the dataset.

<FP32 if (1 & ~(LShR(LShR((((LShR((if fpLT(fpSub(k2, x@), k4) then ox1 else (if fpGT(fpSub(k2, x0@), k4) then
0x0 else (if fpEQ(fpSub(k2, x0), k4) then 0x40 else @x45))), 0x5) & 0x3 | (if fpLT(fpSub(k2, x@), k4) then @
x1 else (if fpGT(fpSub(k2, x0), k4) then 0x0 else (if fpEQ(fpSub(k2, x0), k4) then 0x40 else 0x45))) & Ox1) *
0x1) << @xle) - Ox1, @x1d) + Ox1 - ((LShR((if fpLT(fpSub(k2, x@), k4) then @x1 else (if fpGT(fpSub(k2, x0),
k4) then ox0 else (if fpEQ(fpSub(k2, x@), k4) then 0x40 else 0x45))), 0x5) & 0x3 | (if fpLT(fpSub(k2, x0), k4
) then 0x1 else (if fpGT(fpSub(k2, x0), k4) then 0x0 else (if fpEQ(fpSub(k2, x0), k4) then 0x40 else 0x45)))
& 0x1) & LShR(LShR((if fpLT(fpSub(k2, x@), k4) then @0x1 else (if fpGT(fpSub(k2, x0), k4) then 0x0 else (if
fpEQ(fpSub(k2, x0), k4) then 0x40 else 0x45))), Ox5) & 0x3 | (if fpLT(fpSub(k2, x0), k4) then 0x1 else (if
fpGT (fpSub(k2, x0), k4) then 0x0 else (if fpEQ(fpSub(k2, x0), k4) then 0x40 else 0x45))) & Ox1, Ox1) & 0Ox1)
<< @x1c & 0xf0000000, 0x1e)[0:0] & 1 | LShR(LShR((((LShR((if fpLT(fpSub(k2, x0), k4) then @x1 else (if fpGT(
fpSub(k2, x0), k4) then 0x0 else (if fpEQ(fpSub(k2, x@), k4) then 0x40 else 0x45))), 0x5) & 0x3 | (if fpLT(
fpSub(k2, x0), k4) then 0x1 else (if fpGT(fpSub(k2, x@0), k4) then 0x0 else (if fpEQ(fpSub(k2, x@), k4) then 0@
x40 else 0x45))) & Ox1) * 0x1) << 0xle) - 0Ox1, @x1d) + 0x1 - ((LShR((if fpLT(fpSub(k2, x@0), k4) then 0x1 else
(if fpGT(fpSub(k2, x0), k4) then 0x0 else (if fpEQ(fpSub(k2, x0), k4) then 0x40 else 0x45))), 0x5) & 0x3 | (
if fpLT(fpSub(k2, x0), k4) then 0x1 else (if fpGT(fpSub(k2, x0), k4) then 0x0 else (if fpEQ(fpSub(k2, x0), k4
) then 0x40 else 0x45))) & 0x1) & LShR(LShR((if fpLT(fpSub(k2, x0), k4) then 0x1 else (if fpGT(fpSub(k2, x0),
k4) then 0x0 else (if fpEQ(fpSub(k2, x0), k4) then 0x40 else 0x45))), 0x5) & 0x3 | (if fpLT(fpSub(k2, x0),
k4) then 0x1 else (if fpGT(fpSub(k2, x0), k4) then 0x0 else (if fpEQ(fpSub(k2, x0), k4) then 0x40 else 0x45))
) & 0x1, 0x1) & 0x1) << @x1c & 0xf0000000, 0x1f)[0:0] & 1 * LShR(LShR((((LShR((if fpLT(fpSub(k2, x0), k4)
then @x1 else (if fpGT(fpSub(k2, x@), k4) then 0x0 else (if fpEQ(fpSub(k2, x@), k4) then 0x40 else 0x45))), 0
x5) & 0x3 | (if fpLT(fpSub(k2, x@), k4) then 0x1 else (if fpGT(fpSub(k2, x0), k4) then 0x0 else (if fpEQ(
fpSub(k2, x0), k4) then 0x40 else 0x45))) & 0x1) * 0x1) << 0xle) - Ox1, Ox1d) + 0x1 - ((LShR((if fpLT(fpSub(
k2, x0), k4) then 0x1 else (if fpGT(fpSub(k2, x0), k4) then 0x0 else (if fpEQ(fpSub(k2, x0), k4) then 0x40
else 0x45))), 0x5) & 0x3 | (if fpLT(fpSub(k2, x0), k4) then 0x1 else (if fpGT(fpSub(k2, x0@), k4) then 0x0
else (if fpEQ(fpSub(k2, x0@), k4) then 0x40 else 0x45))) & 0x1) & LShR(LShR((if fpLT(fpSub(k2, x@), k4) then @
x1 else (if fpGT(fpSub(k2, x0@), k4) then 0x0 else (if fpEQ(fpSub(k2, x@), k4) then 0x40 else 0x45))), 0x5) &
ox3 | (if fpLT(fpSub(k2, x0), k4) then 0x1 else (if fpGT(fpSub(k2, x0@), k4) then 0x0 else (if fpEQ(fpSub(k2,
x0), k4) then 0x40 else 0x45))) & 0x1, Ox1) & @Ox1) << 0x1c & 0xf0000000, Ox1c)[0:0] & 1)) == @ then fpAdd(
fpAdd(ke, fpNeg(fpAdd(fpAdd(fpNeg(fpAdd(k2, fpNeg(x0))), fpMul(fpAdd(k2, fpNeg(x@)), k2)), k1))), fpMul(xe, (
if 1+ (0 .. oxffffffff + ((if fpLT(fpAdd(k2, fpNeg(x0)), k3) || fpLT(k3, fpAdd(k2, fpNeg(x@))) then 0 else
1) .. ~(if fpLT(fpAdd(k2, fpNeg(x@)), k3) then 1 else (if fpEQ(fpAdd(k2, fpNeg(x0@)), k3) || fpLT(k3, fpAdd(k2
, fpNeg(x0))) then @ else 1)) .. @x0)[31:29]1) + 15 * ~(~((@ .. (if fpLT(fpAdd(k2, fpNeg(x@)), k3) || fpLT(k3,
fpAdd(k2, fpNeg(x0@))) then @ else 2)) | (0 .. (if fpLT(fpAdd(k2, fpNeg(x0)), k3) then 1 else (if fpEQ(fpAdd(
k2, fpNeg(x0)), k3) || fpLT(k3, fpAdd(k2, fpNeg(x@))) then @ else 1)))) | (7 .. ~(if fpLT(fpAdd(k2, fpNeg(x0)
), k3) || fpLT(k3, fpAdd(k2, fpNeg(x@))) then @ else 1)) | 14)[3:3] == 1 then k3 else fpAdd(k2, fpNeg(x0)))))
else fpAdd(fpAdd(ke, fpNeg(fpAdd(fpAdd(fpNeg(fpAdd(k2, fpNeg(x@))), fpMul(fpAdd(k2, fpNeg(x0)), k2)), k1))),
fpMul (x0, k4))>

(b) The unsimplified ET. Long symbol names are replaced and redundant information is removed to truncate
the ET to fit. The full ET is 17000 characters long.

ko +kaxo — (k1 +kz (k2 — x0) — k2 +x0) ko — k1 — kz (kz — x0) + ka + kaxo — xo
for kg < kg — xqo for ky > k4 + x¢
y=19|ko+ksxo — (k1 +kz (kg — x0) — k2 +x0) for ks > ka — xo _ Jko = k1 = ko (k2 — x0) + k2 + ksxo — xo
{kg +x0 (ky —x0) — (k1 + k2 (ky — x0) — ka +x9) otherwise y= forky < k3 +xp
otherwise ko — k1 — kg (k2 — x0) + k2 + x0 (kg — x0) — x0
otherwise

(c) Equation generated after Quine-McCluskey simplification.
(d) Final simplified equation.

Fig. B1. An example to show unsimplified and simplified equations: (a) ground truth equation, (b) the
unsimplified ET obtained after parameter analysis and symbolic execution, (c) the equation generated after
applying the Quine-McCluskey algebraic simplification on the ET, and (d) the final simplified equation
produced after Sympy simplification.

Received 18 January 2024; revised 18 June 2024; accepted 24 September 2024
ACM Transactions on Cyber-Physical Systems, Vol. 8, No. 4, Article 43. Publication date: November 2024.

	Abstract
	1 Introduction
	1.1 Contributions

	2 Motivation—Linux Kernel PID Controller
	3 Related Work
	4 Implementing REMaQE
	4.1 Background on Symbolic Execution
	4.2 Overview of REMaQE
	4.3 Parameter Analysis
	4.4 Symbolic Execution
	4.5 Algebraic Simplification
	4.6 Limitations

	5 Evaluation of REMaQE
	5.1 Correctness
	5.2 Human Friendliness
	5.3 Dataset Generation

	6 Results
	6.1 Manual Verification
	6.2 Human Friendliness
	6.3 Execution Time

	7 Case Study: Reverse Engineering of ArduPilot
	8 Case Study: Reverse Engineering of the OpenPLC PID Controller
	9 Conclusion
	References
	A Additional Dataset Representing Limitations
	B Simplification Example

