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ABSTRACT: Using the large-charge expansion, we prove a necessary condition for a CFT
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symmetry is also broken on the moduli space: there must be a tower of charged local operators
whose scaling dimensions are asymptotically linear in the charge. In supersymmetric theories
with a continuous R-symmetry and a holomorphic moduli space, the existence of such a
tower of operators follows trivially from a BPS condition: their scaling dimensions are then
exactly linear in the R-charge. We illustrate the more general statement in several examples
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with large charge on the cylinder (isomorphic to local operators) to the spectrum of massive
particles on the moduli space.
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1 Introduction

Conformal field theories that exhibit spontaneous breaking of conformal symmetry (a moduli

space of vacua) are highly non-generic. Their key property, the absence of a potential for

the dilaton, is a special feature that requires fine tuning. It seems however difficult to fully

characterize this feature in terms of abstract CFT data. In principle, one can set up an



abstract bootstrap problem, involving the usual data (scaling dimensions and OPE coefficients)
as well as new data such as the spectrum of asymptotic states in the broken vacuum and
form factors. In a recent paper [1], we illustrated the simplest bootstrap equation [2] in a
concrete perturbative example.! Our findings confirmed the general intuition that theory
data must satisfy some very special relations for conformal symmetry breaking to occur,
but a simple general criterion is still elusive.

In this work we address the problem from a different angle. We prove a simple necessary
condition for spontaneous conformal symmetry breaking to occur, under the (crucial) assump-
tion that a continuous global symmetry is also broken on the moduli space. Let Ay, (Q)
be the minimum scaling dimension among all local operators of charge? ). The necessary
condition is that A, (Q) must be asymptotically linear,

CFT with moduli space s.t. = Apin(Q) =@ +... forQ — oo, (1.1)

where the dots indicate possible subleading corrections.

It will come as no big surprise that our basic tool is the large-charge expansion initiated
in [4],% a beautiful and surprising application of effective field theory (EFT) ideas. Even
in a strongly-coupled CFT, certain observables of large charge Q > 1 are captured by a
weakly-coupled EFT, for which 1/@Q is the natural small parameter. One such observable is
precisely Apin(Q), which by the state operator correspondence is given by the ground-state
energy on the cylinder of the large-charge EFT at fixed ). Our claim (1.1) follows by a
straightforward extension of the analysis of [6], enforcing the sole additional assumption that
the theory has a moduli space where the charge is spontaneously broken. The form of the
subleading corrections is dimension dependent. In d = 3 we find the behavior

Amin(Q) = a0Q + o1 + a2/Q + 0(1/Q?) (1.2)

while in d = 4 the expansion takes the form

Anin(Q) = Q@ + o log Q@ + a2 + O(1/Q) . (1.3)

The necessary condition (1.1) is established in full generality, with no recourse to
supersymmetry. However, when it comes to check it in concrete examples, we must face
the predicament that all known interacting, local*> CFTs with a moduli space of vacua
are in fact supersymmetric. The most familiar class of examples have at least four real
supercharges in d = 3 and d = 4 spacetime dimensions. Their moduli spaces are holomorphic,
parametrized by the vacuum expectation values of chiral operators. Chiral operators are
charged under a continuous R-symmetry, which is thus also spontaneously broken. In these
theories, holomorphy goes hand in hand with the existence of infinite towers of protected
chiral operators with exactly linearly-spaced scaling dimensions, proportional to the R-charge,

'See [3] for a similar analysis in A" = 4 SYM theory.

2Here for ease of notation we take the global symmetry to be U(1).

3This is by now a large subject, see e.g. [5] for a review.

4In most of the paper we assume the existence of a local stress tensor with a finite two-point function. It is
not difficult to find examples of CFTs with an approximate moduli space at leading in a large N expansion, as
we briefly discuss in section 3.5.



A(Q) = aQ. Mathematically, the ring of chiral operators coincides with the holomorphic

® Physically, the chiral operators arise (at least at

coordinate ring on the moduli space.
some intuitive level) from quantization of the holomorphic moduli. In this whole class of
examples, (1.1) follows trivially from a BPS condition. From the viewpoint of the large-
charge EFT, this amount of supersymmetry imposes selection rules that set to zero the
higher coefficients a;>1.

Fortunately, there is another class of supersymmetric theories for which (1.1) is nontrivial:
the three-dimensional SCFTs with only N' =1 SUSY (two real supercharges). These theories
have no continuous R-symmetry, no holomorphy and no protected operators. Nevertheless,
they can still admit exact moduli spaces thanks a discrete Zgo R-symmetry [8], as we review
in appendix B. They are thus the perfect playground to study the interplay between moduli
spaces and global symmetries.

We consider several explicit examples of N'=1 SUSY theories with moduli spaces, and
check that (1.1) holds with non-vanishing corrections to the leading linear behavior. In
selecting the matter content and interactions of these examples, some care had to be taken to
ensure that they have a moduli space with a broken global charge while at the same time no
emergent N = 2 supersymmetry in the IR. Most of our examples are Wess-Zumino theories,
which can be studied perturbatively in 4 — € dimensions by analytically continuing in the
number of fermions [9, 10], as we review in appendix B. We go beyond the EFT analysis and
compute explicitly the coefficients «; in the e-expansion, following [11].

In our concrete examples, the leading correction to the linear behavior of A, (Q) turns
out to be negative or zero. This is perhaps related to the charge convexity conjecture [12],
which schematically claims that Ay, (Q) is a convex function of ). While a counterexample
to the original conjecture appeared in [13], our findings might support a modification of
the conjecture (“convexity only at large enough charge”) that bypasses the counterexample.
However we have not been able to prove this weaker conjecture and leave further exploration
to future work.

The large-charge EFT allows us compute additional observables as well, including OPE
coefficients and dimensions of operators just above Api,(Q). Further predictions can be
obtained by assuming the existence of a macroscopic limit [14]. This limit relates correlation
functions in the large-charge state on the cylinder to flat-space correlators on the moduli
space by taking ) — oo as well as taking the cylinder radius R — oo by keeping a specific
ratio fixed. Physically, this limit corresponds to “zooming in” to distances much smaller
than the sphere radius but keeping the charge large, so that we expect the result to be
a flat-space correlator in a nontrivial state. By applying this procedure to e.g. four-point
functions of large-charge operators, we can relate the spectrum of large charge operators
to the spectrum of massive particles on the moduli space.

We can summarize the main conceptual lesson as follows. In CFTs with a moduli space
where a global charge is also broken, large charge operators create, in radial quantization,
semiclassical states that closely resemble the vacua where both the conformal and the internal

5The more precise statement is that the coordinate ring is identified with reduced chiral ring, i.e. with the
ring of chiral operators where nilpotents elements have been quotiented out. This can be established rigorously
in Lagrangian models [7] and it is believed to be true (general lore!) in any 3d and 4d SCFT with at least four
real supercharges.



symmetry are broken. This implies the existence of a tower of operators whose scaling
dimension grows linearly with the charge. The existence of a conserved charge is essential, as
it allows to focus on a precise tower of states, those corresponding to the lowest dimensional
charged operators. However one might wonder whether more generally, in CFTs with a
moduli space but no global charge, there could still be some simple semiclassical signature
of spontaneous conformal symmetry breaking in the high energy spectrum. In section 5 we
offer some musings on this question, starting from the EFT of a real dilaton. We speculate
that in the general case the moduli space is reflected in the existence of certain special
resonant states on the cylinder, whose width becomes parametrically narrower than their
energy in the high energy limit.

The remainder of the paper is organized as follows. In section 2 we review the construction
of the moduli space EFT and we compute Api,(Q) as well as of some additional observables.
We explain in detail how to extract the leading-order result and the form of the corrections
to it. Next in section 3 we discuss several explicit examples of moduli spaces at large charge
in d =3 N =1 theories. We compute the first correction to the leading-order result and
discuss some applications. We also briefly consider examples of non-supersymmetric large
N theories with an approximate moduli space. In section 4 we apply the macroscopic limit
to large-charge correlators and relate them to flat-space correlators on the moduli space.
This limit allows us to write down precise equations relating the spectrum of large charge
local operators to the massive spectrum on the moduli space. In section 5 we offer some
speculations on the general case of moduli spaces with no broken global symmetry. Several
appendices complement the text with further technical details.

2 EFT and CFT data at large charge

In this section we argue that if a CFT admits a moduli space of vacua in which a continuous
internal symmetry group G is (either partially or completely) spontaneously broken, then
the lowest dimensional operator with large charge under a broken Cartan generator @ has
scaling dimension linearly proportional to the charge:

CFT with moduli space s.t.  — Apin(Q) x Q forQ — co. (2.1)

For non-abelian groups, Apin(Q) is the scaling dimension of an operator in a large rep-
resentation of G.

The argument leading to this result uses the EFT for the massless modes on the moduli
space and the state-operator correspondence. This approach is a simple generalization of that
of [6], where the authors studied a specific supersymmetric theory, and the lowest dimensional
charged operators have protected dimensions A(Q) = a@ due to a BPS shortening condition.
As it will become clear below, the conclusion that Ay (Q) o @ for large @ is independent
of the details of the theory and of supersymmetry, as long as the CFT admits a moduli
space. The proportionality coefficient in (2.1), as well as the subleading corrections and the
spectrum of large-charge operators with A 2 Ay, are also calculable from the EFT.

2.1 Moduli effective theory

Consider a CFT with an n-dimensional moduli space in d > 2. We denote its internal
symmetry group G, and assume that along the moduli space the conformal symmetry is



spontaneously broken along with the internal symmetry group as G — H, for some (possibly
trivial) H C G. We can use an EFT to describe states on a moduli space at energies much
smaller than the gap m of the massive states. The massless degrees of freedom always
include at least n scalar fields whose expectation values locally parametrize the moduli space;
among these, we always find a dilaton ® together with dim(G/H) Goldstone bosons. In
supersymmetric theories the massless degrees of freedom also include the superpartners. At a
generic point on the moduli space it is always possible to make a change of coordinates such
that there is one noncompact direction (which we associate with the dilaton ®) and n — 1
compact directions ¢4, A =1,...,n — 1 corresponding to the additional moduli, including
the Goldstones for the internal symmetry.

The EFT is constrained by the nonlinear realization of the conformal symmetry and
the spontaneously broken internal symmetries [15-17]. In practice, the EFT is most easily
constructed by imposing Weyl invariance and introducing a Weyl invariant combination of
the metric and the dilaton as (see e.g. [18])

4
uv = guV‘q)|d’2 ) (2.2)

where we parametrized the dilaton ® so that it transforms as a real canonically normalized
scalar field in d-dimensions under the conformal group, and we take the additional moduli
#* dimensionless, and thus with zero Weyl weight. In this section guv can be taken to be
the flat metric g,, = diag(1,—1,—1,—1), but note that we could also work on any other
Weyl equivalent manifold by Weyl invariance; we will make use of this observation in the
next section.

Denoting with a hat geometric invariants constructed from the rescaled metric (2.2), it
is easy to write the effective action to leading order in derivatives

1. N
Seer = [ d'av/G |5Gan(0)00,6'0,6 + Gonl0)g i R
+ ScrTyy + irrelevant couplings, (2.3)

where G'ap(¢) and Gee (o) specify the metric of the non-linear sigma model (NLSM) and
are constrained by the nonlinear realization of the internal symmetry or supersymmetry
when present. The coefficient multiplying Goo was chosen for future convenience and the
rescaled Ricci scalar contains the dilaton kinetic term

4(d — 1)v2c1>]

=03 (2.4)

R =|®| 7= [R -

Note indeed that in flat space the first line of the action (2.3) can be written as a stan-
dard NLSM

/ d%z

where conformal invariance determines the dependence of the metric on ® and relates G

5CAR(B.0)0,0'9" 0% + Gonl()(OD) + Can(@,0)0,0'08] . (25)

and GAq,.

L @i(}@@(qﬁ) . (2.6)

GAB(q)’ ¢) - (I)QGAB(QS) ’ G¢¢(¢) = Gé@(¢) ’ GA@(CI)v ¢) - 5 8¢A



In (2.3) Scrr,y, schematically denotes all the other massless IR fields, including the superpart-
ners and/or accidental strongly coupled sectors. The Poincaré invariant vacua with broken
conformal symmetry correspond to constant solutions of the form

(®) = v , (¢} = const . (2.7)

Expanding in fluctuations around such solutions we find that the moduli correspond to n
weakly coupled massless scalar particles. Note that by dimensional analysis the gap of the
massive modes, and hence the cutoff of the EFT, scales as m o v.

All the interactions of the moduli among themselves and/or with the additional fields
present in Scpr,, are irrelevant. From the expansion of the action (2.5) we see that the
moduli are derivatively coupled. In the simplest case where no strongly coupled sector is
present, additional interactions arise from the couplings to the superpartners (if present) and
from higher derivative terms. The latter are suppressed by inverse powers of |<I>|% ~ v by
Weyl invariance. For instance, based solely on conformal invariance the first higher derivative

operators arise at fourth order in derivatives and are given by
Si= / 42/ [e1(6) Ry ) + 2(8) Rouvpo)? + 3,45 ()R 96”0,

+ c1.4BeD(O)RM7 0,0 0,07 0,060,687 + 5, 4pon(9) (0" V67 0,67V 7)) |
(2.8)

where we used the leading order equations of motion to eliminate operators proportional
to R and V2¢*. The components G 4p and Gee of the NLSM metric in (2.3), as well as
the functions ¢;’s appearing in (2.8) are Wilson coefficients, whose value depends on the
microscopic dynamics of the specific underlying CFT. For an underlying strongly coupled
theory, these scale as inverse powers of (47) according to generalized dimensional analysis [19]
(at a generic point of the moduli space), while weakly coupled theories correspond instead to
non-generic sizes for these coefficients (generically in the form of a large ~ 1/g? prefactor).

In even dimensions, higher derivative operators include also Wess-Zumino terms required
to match the conformal anomaly and other ’t Hooft anomalies of the internal symmetries.
In particular, in d = 4 conformal anomaly matching implies that the EFT should include
the following four-derivatives term [20, 21]:

Swz = —/dda; tog (1977 /1) (Aa By — AeWR,, ) + ... (2.9)

where p is an arbitrary mass scale, Aa and Ac denote the difference between the UV and
IR anomaly coefficients, E4 and W), are, respectively, the Euler density and the Weyl
tensor, and the dots stand for terms with at least two derivatives acting on ®, which are
required by the Wess-Zumino consistency conditions and whose specific form will not be
important for our purposes. In general in 2n-dimensions, the Wess-Zumino anomaly matching
term is of order 2n in derivatives [22].

It is important to remark that the absence of relevant couplings for the moduli is a very
special property. Indeed, based solely on conformal invariance, the dilaton always admits
at least a relevant coupling, the cosmological constant term:

[ davis@) = [ e ygiale). (2.10)



where the function f is constrained by the internal symmetry and may just be a constant.
This term, as well as other potential couplings to relevant operators of Scpr,,, would
create a potential for & which would lift the flat direction. Therefore, for the CFT to
admit a moduli space, its selection rules must set all the relevant couplings of the dilaton
including (2.10) to zero. This is a highly nontrivial condition, and typically requires some
amount of supersymmetry.® As elaborated in [23] (see also [24]), the problem of constructing
interacting non-supersymmetric CFTs with a moduli space of vacua can be thought as a
scalar analogue of the cosmological constant problem. In our analysis, we will simply use self-
consistently the general EFT (2.3), remaining agnostic about the mechanism that produces
the moduli space and tunes the cosmological constant term to zero.

The EFT breaks down when the metric of the sigma model ~ v%2G (¢) becomes singular.
This obviously happens at v = 0, but it may also happen at other isolated points or surfaces
of dimension p < n, at which additional degrees of freedom become light. At those points we
may still use an EFT of the form (2.3) for the n — p moduli parallel to the surface, formally
including the contribution of the additional light sector in Scpt,;. A familiar illustration of
this behaviour is in /' =4 SYM with gauge group SU(N). At a generic point of the moduli
space the gauge group is fully Higgsed and the low energy theory consists of N A/ =4 U(1)
gauge theories, but at specific points the gauge group is partially restored and the massless
modes include nontrivial sectors with gauge group SU(p < N).”

2.2 Derivation of the leading order result

Let us suppose that in some region of the moduli space the internal symmetry G is sponta-
neously broken to H. Denoting with @), the broken Cartan charges, without loss of generality
we can parametrize the coset G/H such that the action of @, simply amounts to a shift of
the associated Goldstone field 7@, This implies that Gap(¢) and Gee(¢) in (2.3) can only
depend on the 7®’s through derivative terms. From now on we shall distinguish the #%’s from
the other moduli, that will be denoted ¢ as before with a slight abuse of notation.

In the following it will be convenient to work on the Lorentzian cylinder R x S9!, for
which the moduli action reads

2
Sppr = / diz\/g [q;@uwaﬁ“wb@ab(gb) + 029,70 P G (9)
(2.12)

A

P2 A G
+?6M¢A0H¢BGAB(¢) + ‘1"12’@) (—¢a2<1> — mgqﬂ) + ...,

An alternative scenario, considered in [23], would be to have a family of theories labeled by some marginal
couplings, such that a flat direction opens up at special points of the conformal manifold.
A less trivial example is a 3d N = 1 theory of 11 real superfields with superpotential

W =g AX:Ys + g2 BX:Z; + ¢g2CY3U;

where i = 1,2. This model admits a fixed-point in the e-expansion, and its symmetries protect a moduli space
which includes an O(2) breaking branch

(Xi) = fiva, (Vi) = eisfjuy,  (Ui) = hive,  (Zi) = €ijf vz, (2.11)
where 7; is a unit vector. The moduli space (2.11) is isomorphic to R* x S and the low energy EFT at a
generic point consists of 5 derivatively coupled real superfields. This manifold is singular when v, = 0 or
vy = 0, where the low energy EFT includes 8 moduli as well as an interacting sector. Within this surface we

encounter an additional singularity when three of the vevs in (2.11) are zero, where there are nine light modes,
an axio-dilaton and an interacting SCFT.



where we separated the 7%’s explicitly from the other moduli and

d—2 (d—2)?
2 pu— p— 2'1
M= ao ) T AR (213)

is the conformal mass coupling on the cylinder and R denotes the radius of S91.

While the EFT is derived around the background (2.7), the low energy effective action
may be reliably used around arbitrary backgrounds as long as the derivative expansion is
under control. We shall therefore search for a solution of the equations of motion on the
cylinder with the ansatz

d=0v7z , 7@ =m2/R, ot = o4, (2.14)

where t denotes the time coordinate. The ansatz (2.14) ensures that the expectation values
of the current and the stress-tensor agree with the structure of a three-point function of
primary operators [25]; therefore (2.14) describes a charged primary state.® Physically, the
ansatz (2.14) describes a stationary solution where both time translations D/R (corresponding
to dilations in flat space) and the charges @, are spontaneously broken,” leaving invariant a
diagonal combination D —m,Q,: this is the spontaneous symmetry breaking pattern defining
a superfluid phase [27, 28], that recently attracted much attention in the study of large charge
operators in CFTs, see e.g. [4, 5, 26]. In generic CF'Ts however the chemical potentials m®
grow with the charge and the scaling dimension scales as Apin (Q) Q%. The existence of
the moduli space (or in other words the absence of a potential for the dilaton (2.10)) makes
the models at hand non-generic, and we will find below that the m®’s do not scale with @,
resulting in a linear relation between the charge and the scaling dimension.
The equation of motion (EOM) for ® imposes the following condition (for v # 0)

mambéab(é)/RQ — CA?@@((E)W@ = 0, (2.15)
while the ¢4 satisfy the following condition
20Goa(¢)  m*mP 0Gay(9)

M4 554 T

=0. (2.16)

Finally, computing the Noether currents j#, we find the values of the Cartan charges on
the solution (2.14)

-0 Qa

Jo = Rimiq, Gap(¢)mv??/R, (2.17)

where Qg_1 = 27%2/T'(d/2) is the volume of the d — 1-dimensional sphere. Equations (2.15),
(2.16) and (2.17) completely specify the solution (2.14) in terms of the charges Q,.

8This can also be checked pedestrianly by computing the expression for the special conformal generators in
terms of the fluctuations around the background.

90f course, strictly speaking there is no spontaneous symmetry breaking at finite volume and integrating
over the zero-modes of the solution (2.14) the symmetry is restored at a quantum level (see e.g. the discussion
in [26]).



Let us consider first the case in which only one charge Q, = J1Q is non-zero (in some
basis). We can thus solve (2.17) for v as

1

d—2
vt (9 T (2.18)
R\ Qq4_1Gpm?

The remaining equations do not depend on v nor Q. For fixed values of the ¢* such that
G ap and Ggg are non-singular, it is always possible to find m®s that solve (2.15) and (2.17)
as a function of the O(1) ratio G ap/Ges.'’ Our only assumption is that (2.16) also admits a
solution at a point ¢* that lies within EFT — we shall comment further about this hypothesis
later. The energy of the state is obtained from the energy momentum tensor:

Apmin(Q) = R/dd_lzx\/ﬁTOO _ R/dd_lx\/ﬁ (i0ma/R— L) =m@Q.,  (2.19)

where we used that (2.15) implies that the Lagrangian vanishes, £ = 0, and m; ~ O(1)
depends upon the Wilson coeflicients of the EFT through the equations of motion. By
the state-operator correspondence, (2.19) is the scaling dimension of the lowest dimensional
charged operator of the theory. When the solution to (2.16) is not unique, the minimal energy
one has to be taken (i.e. the one that gives the smallest m;) and in some cases there might
be several degenerate operators with the same charge and scaling dimension at this order.

The generalization of the argument to operators in different representations, whose
highest weight state has multiple non-zero Cartan charges, is trivial and yields

1/2
Amin({Qa}) =mqQq = Qf (Qa/Qb) ) Q= <Z Q3> ) (220)

where the function f is again determined by the EFT Wilson coefficients. Similarly
to (2.19), (2.20) holds as long as @ > 1. The function f is expectedly analytic except
at isolated points in the space span by the ratios Q,/Qp, corresponding to singularities
in the moduli space.

Our analysis is reliable as long as the dilaton vev is much larger than the derivatives
of the Goldstone fields v ~ Qd%?/ R > |0my| ~ mg/R; we conclude that the result (2.19)
holds for @ > 1. At the classical level subleading contributions arise from higher derivative
terms and are suppressed by powers of R?v? ~ Qﬁ. For instance, it is simple to check
that the operators in (2.8) yield a contribution of order Q% to (2.19). Note also that the
Wess-Zumino term (2.9) evaluates to zero on the cylinder and therefore does not contribute
to the scaling dimension.

For a purely weakly-coupled EFT @ is the loop counting parameter and thus quantum
corrections to the result (2.19) (generically) scale as Q°. These are more important than
classical higher derivative contributions for d < 4. We will discuss such contributions and
the spectrum of operators corresponding to excitations on top of the large charge ground
state in the next subsection.

0The explicit solution for arbitrary charges reads

244 = jg(é_l)abjl? mi‘l _ (é_l)abjl? _ (G_l)abjg
2
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It is perhaps useful at this point to discuss a trivial example: the free theory of a charged
scalar . In this case the moduli space EFT coincides with the full action:

L = |0¢|* — mile|*. (2.21)

The parallel with (2.12) becomes obvious in cylindrical coordinates ¢ = ®e~" //2. In this
case the solution (2.14) is

d—2

v (2.22)

—imgt

p=e
The charge and energy densities yield the scaling dimension

jO = devd_2 N TO(] = mdjo - Amln(c2) = %Q? (223)

which is obviously exact in this case.

Besides free theories, there are many other instances for which the relation (2.19) is
exact. This is generally the case for theories with BPS operators, where @ is one of the
R-charges. In these cases supersymmetry ensures the absence of subleading corrections even
if the EFT is generically nontrivial. In some case, e.g. for Coulomb branch operators in
theories with rank larger than one, there are many degenerate solutions, corresponding to
different directions in the chiral ring. We will discuss examples in which the relation (2.19) is
not related to a BPS shortening condition in the next section.

Note that, while the cylinder makes the physical properties of the solution (2.14) manifest,
it is also possible to work directly in flat space or any other conformally flat manifold by
Weyl invariance; this is for instance illustrated by the semiclassical saddle-point calculation
of the flat space two-point function (¢"@") in free theory, presented, e.g., in [11].

Let us finally come back to the solution of (2.16). Suppose that no solution for the
»*’s exist at nonsingular points of the moduli space. In this case we can still consider the
configuration (2.14) for some ¢* such that G4p and ¢ are non-singular. We therefore find a
non-minimal energy state with A(Q) = m1(Q for some m;. We conclude that the real ground
state, even if it does not lie within EFT, must have lower energy: Apin(Q) < m1Q.

In practice we expect that, when the solution to (2.16) lies at a singular submanifold
of the moduli space, we can simply use the low energy theory along that surface for the
n — p parallel moduli to compute the scaling dimension. Such EFT is formulated in terms
of different Wilson coefficients than those at a generic point of the moduli space, but we
nonetheless recover the linearity of Ap;n(Q) at large charge.

2.3 Nearby operators

We now use the EFT to compute the spectrum of excited states on top of the large charge
ground states as well as quantum corrections on top of the result (2.19).

Let us begin analyzing the spectrum of excited states. To compute the scaling dimension
of operators associated with excitations of the moduli we need to compute the action for
the fluctuations around the solution (2.14). We do this in appendix A. We find that the
fluctuations always include two modes with dispersion relation

wB,l(ﬁ) = E/R, ng(R) = (ﬁ—i— d— 2)/R, (2.24)
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as a function of the angular momentum ¢. Note that (2.24) coincides with the spectrum
of fluctuations around the solution (2.22) in free theory. The dispersion relations for the
additional n — 2 fields are also approximately linear in the limit £ > 1:

wBVk(E)Zf/R-l-O(l/R), k=3,....,n. (2.25)

The general form of the dispersion relations (2.25) at finite £ may be quite involved due to
the spontaneous breaking of time translations in (2.14); we were not able to obtain general
closed form expressions. A simplification occurs when there is a unique Cartan charge and
a symmetry acting as m — —m on the corresponding Goldstone boson. This is for instance
the case in theories with a U(1) charge invariant under charge conjugation. In this case
we find a fully relativistic result

wp () =/n2/R*+ JZ, (2.26)

where J? = ((¢ +d — 2)/R? and the ny’s are O(1) numbers that depend upon the coefficients
in (A.9) of the appendix.

The Fock space of these quasi-particles describes operators in the same representation of
the internal symmetry with higher scaling dimension, except for the zero modes of wp 1 and
the other ng/p — 1 Goldstone bosons, that relate different charge sectors or create states in
the same representation of the ground state. States with one or more spin 1 wp 1 particles,
whose gap is wp (1) = 1/R, are descendants.

At a generic point of the moduli space, in most cases, there are additional massless
modes. In the simplest and most generic scenario, these consist of derivatively coupled
massless fermions and vector fields (with Abelian gauge group in d < 4), these often being the
superpartners of the moduli.'' The excitations of these fields describe additional operators.
Below, we briefly analyze these additional states.

Assuming four-component Dirac fermions in 2 < d < 4 for concreteness (the generalization
to chiral spinors and other dimensions is straightforward), the most general fermionic action
compatible with conformal invariance at first order in derivatives reads

Sfermions = /ddx\/g {;lzsz,U (¢) [ij + Fgca (¢)7Hwkau7ra + F?ﬂA(¢)’yuwkau¢A} + C-C'} ’

(2.27)
where the hatted metric is defined in (2.2), the indices , j run from 1 to the number of fermions
Np and the metric and connections in field space G and I' are model-dependent. Note that
terms of the form /g1t would yield a large mass ~ vt} in the broken vacua (2.7), as well
as a potentially relevant Yukawa coupling. We therefore assumed that such operators are
ruled out by the selection rules of the model similarly to (2.10). Around the solution (2.14)
the quadratic action reads

Stermions =2 v/ddx\/ﬁ{;zﬁiGmij((g) {ij + mal“ia(é)’yowk} + c.c.} ) (2.28)

"Note that, unless the solution (2.14) describes a BPS state, the dispersion relation of these modes is not
directly fixed by the supersymmetry.
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We see that the coupling to the Goldstones 7% creates a chemical potential. Therefore,
canonically normalizing the fields and decomposing them in spinor harmonics (see e.g. [29]),
we find that the dispersion relations take the form
W) (0) = pr() £ i, (2.29)
where pp(¢) = [{ + (d — 1)/2] /R and the fi; are O(1/R) chemical potentials that depend on
the Wilson coefficients G, and I'y, in (2.28). Each mode in (2.28) has spin ¢+ 1/2 and must
be counted twice for a four component Dirac field (besides the group-theoretical multiplicity).
Interestingly, (2.29) implies that when one or more of the fi;’s becomes larger than some of
the pp(¢) we have negative energy levels. The fermions must therefore occupy such states,
forming a (small) Fermi sphere that contributes an O(1) amount to the charges (),. The gap
of the Fock states around the Fermi sphere is given by the absolute value of (2.29): |wg;(¢)].
In practical examples the fermionic metric and connection Gy, I in (2.27) are related
to the bosonic NLSM (2.12) by supersymmetry. A relevant example for us is 3d N’ =1
SUSY theories. In this case the generic EFT consists of n real superfields, with bosonic
action as in (2.3) and fermionic action given by:!?

j . 0Gy; <
Sfermions = _% /dgw WU“ |:GZJ(SD)8H + 8#90]68]?0@ W +... (230)
where the 1)*’s are Majorana, i = 1,...,n, ¢! = {®, 1%, d)A} collectively denotes all the moduli,

the NLSM metric is the one given in (2.6) and the ellipsis denote 4-fermion interactions.
The bosonic 2-derivative terms thus completely determine the fermionic two-derivative terms
through SUSY.

Finally, the two derivative action for the vector fields at leading order is simply the free
theory action accounting for the conformal coupling to the dilaton'?

1 _ LD AL . .
Svectors =~ _Z /ddx\/gGV,ij((b)gupg O-FZLVF/JJO'7 (231)

where the field strength is defined as usual and the function Gvy;;(¢) is constrained by
gauge-invariance for non-Abelian gauge groups (that can occur in d > 4). Expanding around
the solution (2.14) we find that each vector field behaves as a free Maxwell field and thus
we find Ny modes with dispersion relation [30]:

wvi(f) = /(L +1)(¢+d—3)/R, (2.32)

where ¢ > 1.

2.4 Quantum corrections

Let us now discuss the quantum corrections to the result (2.19). In the generic case where
all the fields in the EFT are derivatvely coupled, these arise from the Casimir energy due
the quasi-particles analyzed above:

n oo Np oo Ny oo
S o nsOwns(®) ~ 23 3 e OO+ Y Y v Owva@)| . (2:33)
k=14¢=0 k=1¢=0 =+ k=1/¢=1

2The second term in (2.30) can also be written in terms of the connection associated with the NLSM (2.6)
(using that the ¢’s are Grassmanian).

13An apparent exception in d = 3 is the following coupling Fuye“”p8p¢Afv,A(¢) for an Abelian vector field,
but this is not a new term compared to (2.5) since an Abelian vector is dual to a shift invariant scalar.
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where the multiplicities are given by

oo dH2-20(d+L0-2) 24l
np(l) = Fd-1re+1) np(f) = Fd - DI+ 1) B
ny(e) = WA=l +d—2)T(L+d—3) (2.34)

T(d— 2)T(( + 2)

The sum in (2.33) of course must be properly regularized compatibly with the symmetries
of the model. (2.33) naively provides a Q" contribution to the scaling dimension. For odd
spacetime dimensions, the result must be finite since it cannot be renormalized by any
counterterm. For even d however we find higher derivative operators that contribute to the
scaling dimension at order Q¥ compatibly with conformal invariance, such as the operators
in (2.8) for d = 4. Therefore in even dimension we expect that, barring special symmetries of
the solution, the sum (2.33) displays a logarithmic divergence and thus results in a logarithm

1
of the cutoff v ~ Q72 similarly to the discussion in [31]. In summary:

o0 d odd

5A(1—1oop) Q) =
@ aglog @ d even,

min (235>
where «q is a constant that depends upon the dispersion relations. (2.35) is the leading
correction to (2.19) in d = 3,4. When multiple Cartan charges are non-zero as in (2.20), the
coefficient o in (2.35) is a function of the ratios Q./Qp.

Of course, in many cases supersymmetry enforces cancellations. E.g. for BPS states
we always have 5Afrlli;lo°p)(Q) = 0. We will discuss in the next sections examples for which
the Casimir energy is nontrivial.

In generic schemes, such as dimensional regularization,'* (2.33) can be further simplified.
Indeed, the first two scalar modes in (2.24) do not contribute to the sum (as it can be
easily checked in dimensional regularization) because their dispersion relations coincide with
those for the fluctuations of a free scalar field. For the same reason, the contribution of
the fermions in (2.29) vanishes unless one or more of the fi; are larger than some of the
pr(f), in which case the fermions’ contribution equals the (negative) energy of the Fermi
sphere.'® Finally the vector fields contribution to (2.33) is trivial in d = 4 since the cylinder
is a conformally flat manifold and the four dimensional Maxwell action is Weyl invariant
on its own, without the need of a dilaton.

Finally, we estimate the subleading corrections to Ap,in(Q) when Scpr,, in (2.5) includes
some arbitrary interacting sector.'® Recall that by assumption this sector couples to the
moduli only via irrelevant terms. This means that when expanding around (2.7) all operators
are irrelevant. As we show below, this does not ensure that around a different background,
such as (2.14), no relevant perturbation arises. We will nonetheless argue that such terms

only yield subleading contribution to (2.19), therefore proving the robustness of our result.

MNote that in the presence of a dilaton there exist many perturbative schemes that explicitly preserve
conformal symmetry [32], including a version of dimensional regularization.

Note that the Casimir energy (2.33) is the first correction to Amin(Qa) — M*Qq, where the Q,’s include
the O(1) contributions from the Fermi surface.

18This discussion might apply in the example discussed in footnote 7 if the saddle describing the lowest
dimensional charged operator lies in one of the singular submanifolds discussed below (2.11).
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If ScpT, contains a primary scalar operator Oa of dimension A < d — 2, excluding total
derivatives the leading couplings around the background (2.14) are given by

S5 / "2 \/G [ap(@)0, w0 x" + B(B)R] Onl®] 277 (2.36)

where the powers of the dilaton are dictated as usual by conformal invariance. Recalling (2.2)
and using (2.14), (2.36) results in a perturbation of the form

~ M / dia /GO | (2.37)

where by (2.18) the mass scale upfront is given by

WECEN = NN
M — [ S ] ~ EQM AY(d-2) | (2.38)
As announced, (2.37) is a relevant perturbation for A < d, and the coupling (2.38) is
larger than the geometric scale 1/R for A < d — 2. Therefore the coupling (2.38) triggers
a nontrivial RG flow. This results (at most) in a contribution ~ M? to the potential.
Using (2.38) we conclude that (2.36) implies the existence of the following contribution to
the scaling dimension:

1

5 Amin(Q) ~ Q' T ANT (2.39)

which is larger than the Casmir energy (2.35) for A < d—2, but is smaller than the leading term
in (2.19) for A > 0.17 In other words, the contribution of the coupling (2.36) to the dilaton
potential is always subleading compared to the conformal coupling to the Ricci, as expected.!®

When Scpr,, does not include scalars of dimension A < d — 2, assuming unitarity the
only non-irrelevant coupling between the interacting sector and the moduli can take the form

S5 / e /Gha()Dm T BT / e\ /gAa()me /R, (2.40)

where J* is a conserved current of Scrr,,. As for the chemical potential term in the fermionic
action (2.28), this operator may result in a ~ Q¥ contribution to App,(Q). Similarly,
a marginally irrelevant operator would couple to the dilaton through the coupling beta-
function [33], and might result in a contribution to the scaling dimension proportional to
some inverse power of log Q.

In conclusion, accidental strongly coupled sector might yield corrections to the scaling
dimension Ay, (Q) which are non-polynomial in @, but are nonetheless suppressed with
respect to the leading order result (2.19).

170f course A > 0 is always realized in unitary theories, but we must have A > 0 also in non-unitary
theories for the term (2.37) to be irrelevant in the Poincaré’ invariant state (2.7).

18 As a concrete illustration of this mechanism we can imagine that Scrr,; consists of a four-dimensional
scalar ¢ with potential Ap? (this coupling can be made conformal compensating the dependence on the RG
scale with the dilaton [33]). Identifying therefore Oa = ¢ in (2.36), with the appropriate sign the scalar
acquires a vev (@) ~ M and at its minimum the potential contributes to the energy as ~ Q2/3, up to logarithms
of @ associated with the running of A, in agreement with (2.39).
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2.5 Correlation functions

Let us conclude the general discussion by mentioning that the EFT can also be used to compute
correlation functions with two or more large charge operators and an arbitrary number of
light operators as in the non supersymmetric case [26]. For instance, we can represent a
neutral operator of scaling dimension A ~ O(1) in the EFT in terms of the dilaton as

On = co(¢)®T2 + ... | (2.41)

where co is some function of the moduli and the dots stand for higher derivative terms.
Evaluating its expectation value in the large charge ground state we obtain the OPE coefficient

Moo = (QOAQ) ~ co(@® = Igog x Q77 . (2.42)

Similar results hold for charged operators. For spinning operators one has to introduce

2
derivatives of the Goldstones, and thus multiply the formula (2.41) by factors of 9,7%/®d-2.
One obtains

A
AQOQ|spin J X Q=2 (2.43)

barring additional selection rules. Note that (2.43) is obviously satisfied by the conserved
currents. One may also consider correlation functions with several insertions of the large
charge ground-state operator, as in [25].

Note that the result (2.42) holds in free theory, for which the OPE for (g@t2x2pQ)
is \/(Q +¢)!/v/Qlg! ~ Q%2 and Apa = q%. Less trivially, the same results holds in
strongly interacting 4d N/ = 2 SCFTs for Coulomb branch operators, as it follows from

localization [34, 35], and for Higgs branch operators, whose correlators can be computed using
the chiral algebra [36, 37]. The EFT calculation can also be extended to obtain subleading
orders, see [38—42]. One can also check that (2.43) agrees with the known chiral algebra
result for the OPE between two Higgs branch operators and the spin 1 Schiir operator that is
obtained fusing the SU(2)r current J;{l‘h and a Higgs branch operator H''*! in the 2¢ 4 1
SU(2) g representation with ¢ ~ O(1).1?

3 Moduli spaces at large charge: examples

In this section we test our basic claim (1.1) in several nontrivial examples. To this end
we focus on 3d N =1 SCFTs, which have no continuous R-symmetry nor protected chiral
operators (see appendix B for a brief review). We will see explicitly how the asymptotic
linear behavior of Apin(Q) receives subleading corrections.

We first review how to compute the large charge scaling dimension A, (Q) in the
presence of a small coupling g, in a double-scaling limit where the mass of the single-particle
states on the moduli space is held fixed. We then study two specific Wess-Zumino models,
where we can achieve perturbative control by working in d = 4 — ¢ dimensions, such that
g% ~ e. We are of course interested in models with a moduli space and at least a global U(1)

"“This OPE is fixed because, within the chiral algebra, the product operator ~ J;/*72H" 4 is a Virasoro
descendant of H 1 1a,
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symmetry. The concrete Wess-Zumino examples that we consider may look somewhat baroque,
but some care needs to be taken in engineering models that do not exhibit an accidental
supersymmetry enhancement in the IR, with the global U(1) becoming the continuous
R-symmetry of an N' = 2 SCFT.

We then consider the example of N' =1 SQED, going beyond perturbation theory using
the effective action formalism discussed above. Finally we discuss some non-supersymmetric
examples that exhibit approximate moduli spaces to leading order in a large N expansion.

3.1 Large charge double-scaling limit

We quickly review the method for extracting large-charge data using the double-scaling limit
discussed in [11] (see also [43]). Assuming a weak (cubic) coupling g and a U(1) symmetry,
the method allows for the computation of Apin(Q) in the double-scaling limit g*> — 0 with
¢°Q = fixed and yields a result of the form

Anmin(Q) = 912A_1 (°Q) + A0 (4°Q) + 0*A1 (4°Q) + ..., (3.1)

where the function A_l, Ao, ... are, respectively, the tree-level, one-loop, and higher loop
contributions. When multiple charges are present, the functions A, also depend on the ratios
Qa/Qp. In order to match the standard perturbative results, for small g?Q the Ai(QQQ)
admit a Taylor expansion in ¢?Q which starts at order ¢?@Q. In all the examples we work
in the e-expansion, such that ¢> ~ e.

We use the state-operator correspondence, and compute the ground state energy at
fixed charge Q on the cylinder R x S%1. At small g this can be done using a saddle-point
approximation. These saddles take the form of the “helical” superfluid solution similar
to (2.22), schematically

X = pert (3.2)

where X is a complex field on which the charge acts by phase rotations and ¢ is time. The
constants p and p are fixed by the equations of motion and the charge-fixing condition. Then
the leading-order term Ay is just the value of the energy computed on this saddle.

The next-order contribution Ay comes from the Casimir energy evaluated around the
saddle. We must therefore quantize the theory around the saddle (3.2) and compute the
contribtions from the zero-point energies of the various modes. The regularization of the
final infinite sum is straightforward within dimensional regularization, see [11] for details. In
principle one can use this formalism to compute higher orders in An, (Q) as well, although
we will be content with focusing on these two leading contributions.

3.2 T7-field WZ model
We study the model defined by the superpotential [8]

W = gﬂaiu R, = gﬁRu, (3.3)

where u is a complex superfield which is a doublet under SU(2) and R is a real superfield and
a triplet under SU(2). The global symmetry group is SU(2) x U(1) where the U(1) rotates
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the phase of u, and there is an additional Z£ symmetry taking R — —R. The classical
moduli space is generated by R and is protected from quantum corrections. The model is
IR dual to SQED with two charge-one particles [8, 44].

In the e-expansion one finds the two-loop beta function

9,3 &

- > J 3.4
& 2 + 8m2 8’ (34)
leading to the two-loop anomalous dimensions®’
Ape1_t_
A 9 2 €
_= — —€ — —
R 37 54’

where by R? we mean the symmetric product of two R’s. Surprisingly we see that Az = 2AR
to two-loop order, which seems to hint at higher SUSY. However, this model is not compatible
with emergent A" = 2 SUSY, since the moduli space is 3-real-dimensional and so cannot be
Kahler. Therefore the relation Ap2s = 2AR cannot be exact and we should expect higher
order to violate it. Below we will use the double-scaling limit analysis to analyze large charge
operators. We will also provide a structural explanation for why the relation Az = QAR
holds at two-loop, but not at higher orders.

To perform the analysis in the double-scaling limit with ¢?@Q fixed, we first rewrite the
superpotential in a more convenient form. Writing the fields in components as

R Ry +iR
w= ("), m=(, M8 TR} (3.6)
U Ry —iRy —Rs3
the calculation consists of expanding around the saddle point R; + iRy = wve™ "™, To
compute the leading terms A_;, Ay in the expansion (3.1), it is enough to consider quadratic

fluctuations around the saddle point (since A_; can be read off from the classical charges
and Ay is the Casimir energy around this background). The superpotential takes the form

W= %(Rl + iRy)ujus + c.c. + gR:a(luﬂ2 — [u2f?), (3.7)

and so in computing A_1 and Ao we can ignore the last term which is cubic around the
saddle point. However, removing this term, the superpotential reduces to that of the N' = 2
supersymmetric XY Z model, which consists of three chiral superfields and superpotential

W = gXYZ. (3.8)

The theory thus exhibits enhanced SUSY at this order, which leads to some operator
dimensions being protected. The XY Z model was studied in the double-scaling limit in [45],
and the results are

A, d-2 g2v? B q2Q €

2 - 2 @ BomTg T @ (39)

20This was computed in [44] apart from the €* term in Ag2, which is new.
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Summing up we find

Ay ~  d-1
= +Ag = Q. (3.10)

*

as expected from the BPS bound in the XY Z model.
Equation (3.10) implies that Apin(Q) = QAmin(1) up to two-loop order in standard
perturbation theory. This is because, as formerly mentioned, the functions Ak(gQQ) in (3.1)

are polynomials starting at linear order, and the deviation from Ay, (Q) = QAmin(1) arises
from the term gzﬁl, which admits a Taylor expansion of the form g2A1 = #g'Q+#¢°Q%+. ..
for small ¢2Q.

Finally notice that the mass of the gapped mode u is proportional to g?v? ~ ¢?Q/R.
Therefore for g?Q > 1 we can integrate it out and obtain the moduli EFT. We will analyze
in detail such EFT in section 3.4.

In summary, we found that the large charge scaling dimension in the model (3.3) is
linear in @ as expected. Techinically, to the order we are working this result arises as a
trivial consequence of the similarity with the A/ = 2 model studied in [45], as we explained
below (3.7) using the double-scaling limit. We will provide a less trivial check of our
predictions in the next section.

3.3 5-field WZ model
We study the WZ model defined by the superpotential
g
W= A(XP VP (3.11)

with A a real superfield and X,Y complex superfields. Its continuous symmetries are
U(1) x U(1), and in addition it has a discerete symmetry that flips the sign of A and
interchanges either X and Y, or X and Y. Finally, the Zf symmetry acts as A — —A. The
symmetries protect the classical moduli space (where either (A) # 0 or (| X|?) = (|Y|?) #0)
from quantum corrections. According to our discussion, we expect operators with large
charge under either of the U(1)’s to be well described by the effective action on the region
of the moduli space where X # 0 and/or Y # 0, where the internal symmetry group is
either partially or fully broken. Below we perform a detailed study of the charged operators’
spectrum of this theory within the e-expansion. This will provide a nontrivial check of the
general predictions in section 2, concretely illustrating the relation between the moduli EFT
and the large charge operators’ spectrum.
In the e-expansion from 4d one finds the two-loop beta function

€ 3q° 3g°

=5 — 1o 1 12
o= =39% 5022 ~ 51ont (3-12)
and the scaling dimensions
S5e € e 2
Ax=Ay=1— — +— Asg=1—— 4+ —
X = sy 12141 A 37 35"
2 2 2
AXQZAY2:27£*67, AXY:AXY:27€+L7
530 36 (3.13)
Aax = Auy —2- 264 € A 9
AX — 2AY — 12 144 |X|2—|Y]2 = 3 36
€ e 2
Apz—|xe—lyp =2—€e+ o7, Apeyixpelyp =2- 3~ 5 -
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Using that to one-loop order the scaling dimension of the operator X?=Y%v is a quadratic
polynomial in @, and @, from (3.13) we infer that the dimension of the lowest dimensional
operator for arbitrary values of the charges is

AxQ:cyQy = AxQx}_/Qy = (Qx + Qy) (1 — ;) + % (Qg; - Qy)2 + O (62) . (314)

This equation shows that to one-loop order Ayeoye = QAxy. We will find below that this
relation is exact at leading order in the large charge double-scaling limit, but it receives
corrections at higher orders.

We now study the theory in the large-charge double-scaling limit. We start by computing
the leading term A_; in the expansion (3.1) for general charges @, @y (corresponding to
the operators XY @), Without loss of generality we assume Q, > @y > 0. The leading
contribution is given by the semiclassical energy of the saddle of the form

- Ee*wzt, Y = %e*%t, (3.15)
with A = 0. The EOMs and charge-fixing conditions fix

Qz

e = \/m3 + g%vi — g*vy, R0, CARTES |
B 3.16
0 (
fry = \/mﬁ + g%v) — g*v3, 71%‘1—1?25171 = [vy Py -

(3.16) admit a unique solution for real values of j,/, and |v,,|. Interestingly, we find that
the second derivative of the scaling dimension is discontinuous at ¢>Q,/(R*1Q4_1) = 8v/2my
and @y = 0; the result it’s otherwise analytic for @), @, > 0. The scaling dimension admits

simple expansions for small and large values of ¢g2,/Q2 + Q%/

2 _ 2
M@t Q)+ iy . ¢\ [RGB < (4r)?

||>>

Ql\')
=

VEImRT0. 4, (Q1-Q))?

T @y

+...

V2ma, |Q2+Q2 9°\/Q2+Q2> (47)?,
(3.17)

which agrees with (3.14) for small ¢?Q,, /y- We were not able to obtain a closed form expression
for A_; for arbitrary values of the charges, but we found that the result simplifies drastically
for Q; = @y, for which one surprisingly find that

A—l szgy:
92

coinciding with the free theory result.

% 2RmaQ = (d - 2)Q, (3.18)

We now turn to the one-loop correction. We focus on the operators with Q, = @, = @
for which the leading order result (3.17) is particularly simple. These states are special since
they are invariant under the discrete symmetry exchanging X and Y, and the solution (3.15)
explicitly reads

Q

_. 3.19
ded_lﬁd,l ( )

Mz = Hy = Mg, |Ux’2: "Uy|2:
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Expanding the action to quadratic order around the saddle point, we find the dispersion
relations given in appendix C. Since the leading order result is independent of the coupling,
we can neglect the renormalization of the coupling and the one-loop correction is just the
Casimir energy

Ay =

)

N 5

5 oo
SN np@wsi(@) — 2N S np(Owil (0] (3.20)
k=1¢=0 +

where wp , and wg, are the bosonic and fermionic dispersion relations respectively, Ny = 1/4
is the number of Dirac Fermions and the multiplicities are given in (2.34). We checked that
the sum (3.20) is regular (i.e. it contains no 1/e pole) in the limit ¢ — 0 when evaluated
within dimensional regularization.

First, as a crosscheck, we compute the sum for small g>¢Q). We find that the Casimir

energy admits an expansion starting at order e2Q?

94Q2 96Q3 62Q2
A(4r)t O<(47r)6> " 36

The absence of an O (eQ)) correction is in agreement with the fact that both the double-scaling

Ay = +0 (%) . (3.21)

limit leading order result (3.18) and the one-loop diagrammatic calculation (3.14) coincide
with the free theory answer.?!
For large (¢%Q) > (47)? we can evaluate the sum using the method of matched asymptotic

expansion, as explained in appendix D of [46]. The leading terms of the result are

2 2
Ao 9@ 1 9°Q 0,0
Ro= o5 3210g<4w2>+0(gQ), (3.22)
and thus, summing the leading order contribution (3.18), we arrive at
Ay o 11e 9 1 00
gT+A0_ [2—12+O<e )} Q—ﬁ[l—l—O(e)}log(eQ)—i—O(e Q ) . (3.23)

(3.23) agrees with the general prediction of section 2 that the scaling dimension grows linearly
with the charge. This is a very nontrivial result at the technical level, and it is due to nontrivial
cancellations between the bosonic and fermionic contributions (whose individual sums are
divergent and scale as ~ (g2Q)? for large ¢?Q) in (3.20). Note also that the coefficient of the
linear term in (3.23) deviates from the free-theory result at this order.

Interestingly, the fist subleading contribution in (3.23) at large @ is logarithmic. This
also agrees with the EFT prediction (2.35), since to leading order in e the theory lives in
four dimensions. The coefficient of the logarithmic term is also predicted by the EFT. It
is instructive to check this explicitly.

2ncidentally, comparing (3.21) with the diagrammatic result (3.13) and using that the two-loop anomalous
dimension of X®Y ¥ is a cubic polynomial with no Q° term, we obtain that the two-loop anomalous dimension
(at fixed Q) is
€2Q2

Ayeye =(2-¢Q+ 36

+ 0 (63) .
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For large charge g%,/Q2 + Q2 > 1 the fluctuations around the solution (3.15) include

two massive modes with gap M? ~ ¢*(|vg|* + |v,[?) ~ ¢*|/Q% + Q2/R? > 1/R?. The moduli
space is R x S* x S1, and therefore the low energy dynamics is well described by the EFT for
the dilaton ® and two U(1) Goldstones 7, and m, (and the superpartners). Using that the
discrete symmetries act on the Goldstones as 7, <+ £m,, the most general bosonic effective
action to leading order in derivatives reads

Lo = 58 [(0m2)? + (0m))”] + % [(00)2 — m3a?] (3.24)

which depends on a unique Wilson coefficient ¢ to this order (we work in conventions such
that the Goldstones are 2m-periodic). The saddle-point describing an operator with charges

(QmQy) iS
Q=v, mp=pt, Ty =pt, (3.25)

where the EOMs and the charge-fixing condition give

g - ) v = _ .
v Q@) VemaRt 0y

Using (2.20), we obtain

Amin(Qz, Qy) = \/Q2 +Qp + (3.27)

We can extract ¢ near four dimensions matchlng this result for Q, = @, with (3.23). We obtain
1
c_§fﬂ+o() (3.28)

To evaluate the first correction to (3.27), we compute the Casimir energy of the fluctua-
tions. Fermions do not contribute at order log(Q) and thus we neglect them. Expanding in
fluctuations around the solution (3.25) we find the following three bosonic modes

e,
Rwpp=123() =< +d—2, (3.29)
l+d—2).
Notice that the dispersion relations do not depend on ¢ nor the ratio Q,/Qy. From now on
we set d = 4 as appropriate to this order. The first two modes in (3.29) are as in (2.24) and

do not contribute to the Casimir energy in dimensional regularization. The last mode is more
interesting. Its contribution to the Casimir energy is logarithmically divergent in d = 4

1 1
5A$ﬁf loop) Z Z np(f)wpz(¢ T Z 7 +power-divergences+finite,  (3.30)
modes 0 L

where we used npy = (1 + £)? for the multiplicity in d = 4. Cutting off the sum at

M ~ \/e(Q2 + Q%)l/ 2/R and introducing counterterms to cancel the power-divergences as

dictated by conformal invariance, we infer

A one—toon) _ 3—210g( e/Q2 + Q2) +0 ( m/y) . (3.31)
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The same result can be obtained evaluating the sum in dimensional regularization in a way that
manifestly preserves the Weyl invariance of the EFT as in [31]. Note that the precise function
of Q,/Qy appearing in the logarithm in (3.31) depends on the O(Q°) higher derivative terms
that we did not study. For Q, = @y, (3.31) agrees with the result (3.23), therefore providing
a nontrivial check of the EFT methodology. Additionally, the EFT result in (3.31) predicts
that the coefficient multiplying the logarithm is the same for all values of the ratio @,/ Qy.22

3.4 SQED

3d N =1 SQED consists of a U(1) gauge multiplet with N; fundamental matter multiplets
and vanishing Chern-Simons level. As discussed in appendix B, the theory possesses a Zo
R-symmetry which protects its moduli space. This moduli space is 2N; — 1-dimensional
moduli space, and is parametrized by the matter fields with one combination gauged away.
The effective theory on the moduli space is a CPY/~! NLSM, consisting of 2N + — 2 Goldstone
bosons which together with the dilaton give the 2Ny — 1 massless bosonic degrees of freedom
that were expected. As formerly mentioned, SQED with Ny = 2 is thought to be dual to
the 7-field WZ model discussed in section 3.2. We will study the theory directly in 3d using
the EFT methods discussed in section 2.

Since the effective theory consists of a dilaton coupled to a CPYs~! NLSM, the leading
2-derivative term in the bosonic part of the EFT takes the form (momentarily working in
arbitrary spacetime dimensions)

1 1
L= 5(8M<D)2 + im?lqﬂ + 26(132%]‘6“%8“5]‘ . (332)
Here, @ is the dilaton and the complex coordinates z;, i = 1,..., Ny — 1 parametrize CcpNs—1,

7i; is the Fubini-Studi metric

(1 + [2*)ds; — Zizj
i = . 3.33
’YJ (1 + ’2’2)2 ( )

Finally, ¢ is some constant which cannot be fixed from symmetry considerations. We have fixed

its normalization such that at ¢ = 1 and Ny = 2, the model reduces to three real free fields.
We can focus on the specific U(1) isometry rotating z; by a phase and compute Apin(Q).
Following the analysis in section 2, we find a solution to the EOMs on the cylinder of the form

o =v, 2 = e (3.34)

2
with all other fields vanishing. The equations of motion set p? = %, and the solution

has charge and energy density

Jo = cv2u, Too = m2v?. 3.35
d

22We can also use the EFT to predict the Q° Casimir energy directly in d = 3. Since the fermionic dispersion
relations for the light modes are independent of c,

+ + +
wi () = Wi (0 =pr(@) £ma, Wi (0 =pr(0),
fermions do not form a Fermi sphere and thus do not contribute the Casimir energy. We conclude
SAlene=loor)| o~ _0.13255.

Note that the Casimir energy is negative for any value of ¢ and Q/Qy.
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Figure 1. Casimir energy Ey for the CP' model.

We thus find at the two-derivative level

mqQ) 0 d=3 @
Amin = (0] = ——=
As a consistency check, for ¢ = 1 we obtain the result for a free theory. We can also set
d = 4 — € and compare this calculation with the result for the 7 field WZ model. Matching

with equation (3.10), we extract ¢ near four dimensions:

+0(QY). (3.36)

c=1- ée +0 (). (3.37)

The subleading term in A, (Q) will be the Casimir energy Ejy, which will be a c¢-
dependent constant. We compute it in appendix D for the physical number of dimensions,
d = 3. For the case Ny = 2 where CP! is just the 2-sphere, the result is displayed in figure 1. At
¢ = 1 the theory becomes free and the Casimir energy vanishes, as expected, while for all other
values of c it is negative. For the case Ny > 2, the result is Eo(Ny) = Eo(Ny = 2)+2(Nf—2)eq
where eg ~ —0.132. We thus find that fixing a U(1) symmetry, the minimal-dimension
operators with a fixed charge @) should have dimension

_ ;ﬁQ + Eo(Ny) +0(1/Q). (3.38)

3.5 Approximate moduli in non-supersymmetric theories

Amin(Q)

While exact moduli spaces are hard to construct in interacting theories without supersymmetry,
there are several models that admit flat directions in certain parametric limit § — 0, where
generically 62 ~ 1/N, while remaining interacting — see e.g. [47-50]. From the viewpoint of
the EFT (2.3), this means that the coefficient of the dilaton potential (2.10) is parametrically
suppressed with respect to its natural value.?> Equivalently, the parameter ¢ induces a large
separation between the (tachyonic) mass of the dilaton and the gap of the other massive modes
in the moduli space, ensuring that states with spontaneously broken conformal symmetry
are parametrically long lived.

ZFor a theory with a unique quartic coupling ~ )\, which may possibly be O(1), on a solution (2.7) a
generic potential contributes as M?/\ to the energy, where M is the generic gap of the massive modes on the
moduli space.
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It is interesting to repeat the EFT analysis of section 2 in this setup. To this aim we
simply include the potential (2.10) with a small coefficient ~ ¢ = (where the powers have
been chosen for convenience, such that § would scale as a cubic coupling around a conformal
vacuum). Assuming that the gap of the massive modes in the would-be moduli space scales as
~ g?v? for some coupling ¢ (that in the most convenient normalization appears as an overall
1/g? in front of the action and is possibly O(1) for a strongly coupled model) as in the former
examples, we find that the dilaton is light and the large charge operator spectrum obeys
a linear relation as in (2.19) for 1 < ¢?Q < 1/6%2. However for ¢?Q > 1/62 eventually the
dilaton and the other moduli acquire a gap of order §2¢2Q, the only remaining light modes
being the Goldstones for the internal symmetry; consequently, the scaling dimension grows
nonlinearly with the charge Apin(Q) ~ (529262)%1 /(62g?), in agreement with the prediction
of the large charge expansion [4, 26]. In summary

Q for 1 <« ¢?Q < 1/6?

Amin(Q) X 2 9 % (339)
(59626922) for g2Q > 1/6%.

The simplest model displaying this behaviour [49] is a scalar O(N) x O(N) CFT in
2 < d < 4, with potential given by

A1

oy o A22
Vgt ¢3) = N

8N

A12

(01)° + o (63)7 + 07 63, (3.40)
4N
where we normalized the couplings so that they admit a natural large N-limit. To leading

order in N, the beta functions of the coupling admits a fixed-point (for any d) such that
M1 =X =—-A12=A>0 for N — o0, (3.41)

where A = 1672¢ for d = 4 — . The potential (3.40) becomes a perfect square at such fixed
points and the theory admits a flat direction for

(1) = (3). (3.42)

In the vacua (3.42) the light modes consist of a dilaton and a O(N) x O(N)/O(N) NLSM,
while the radial modes acquire a mass ~ )\<qg12/2> /N. Higher order corrections destroy the
moduli space and contribute to a potential of the form

)\/

003 (3.43)

where \' = 8\ at leading order in the e-expansion. This term induces a tachyonic mass
MZ2iion ~ M?/N < M? for the dilaton.

We may then apply the former discussion to this example, with g2 ~ ¢/N and 62 ~
1/N (where € could be O(1)). We conclude that operators in large traceless symmetric
representations with @) boxes under both the O(N)’s have approximately linear in @ scaling
dimension for 1 < eQQ/N <« N. Note that this prediction is not a trivial consequence of
large N factorization, since we are considering charges 2 N. The behavior eventually
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changes for eQ/N = N, for which we recover the nonlinear superfluid behavior. These
predictions are simple to verify in the large charge double-scaling limit in the e-expansion
(and it should be possible to compute the scaling dimension at large N with Q/N fixed).
We spare the details to the reader.

Charged operators in this model should be contrasted to the spectrum of large charge
operators in the O(N) model, studied in the e-expansion in [51] and at large N for any d
in [52, 53]. In that case there is no approximate moduli space, and the only relevant parameter
is €eQ /N, whose value controls the transition from the perturbative diagrammatic regime to
the superfluid phase where A, (Q) ~ %(GQ /N )d%l, with no intermediate linear regime.

Another potentially interesting testing ground for our predictions could be the conformal
Fishnet model [54], a non-supersymmetric and non-unitary deformation of N' =4 SYM
with gauge group SU(NV,.) which at large N, becomes integrable. It was recently suggested
that in the planar limit this model admits flat directions with a spontaneously broken U(1)
symmetry [55].2* Our EFT analysis of large charge operators does not rely in any essential
form on unitarity and should therefore apply to operators with charge Q/N. > 1 if the

t.25 It would also be interesting to explore

moduli space is indeed robust in the planar limi
connections between the large charge double-scaling limit and integrability in that model,
along the lines of [57].

We finally mention that our discussion provides a simple necessary condition for the
existence of a dilaton at the endpoint of the conformal window of QCD [58, 59]. The existence
of a flat direction in the conformal window of QCD would be a rather finely tuned phenomenon,
as emphasized in [60-62], but it is nonetheless conceivable at large N, as in the example
above. If such a scenario is indeed realized, it is natural to expect that also the internal
SU(Ny) x SU(Ny) symmetry is spontaneously broken to the diagonal in the moduli space, as
in the gapped phase. It would then follow from our discussion that at the endpoint of the
conformal window the lowest dimensional operators with charge ) under a Cartan generator
in the diagonal of SU(Ny) x SU(Ny) (corresponding to traceless symmetric representations
with 2@ boxes in both Young diagrams) would have scaling dimension A, (Q) x @ for
1 < @ < N.. We hope that in the future this prediction can be used as a test of the existence
of a flat direction at the endpoint of the QCD conformal window.

3.6 Convexity in CFTs

Motivated by the weak gravity conjecture, the paper [12] conjectured a convexity relation
for Apin(Q) in unitary d > 2 CFTs. Specifically, the charge convexity conjecture (CCC)
states that there exists some gy of order 1 for which

Amin(n1g0 + 12¢0) > Amin(n190) + Amin(n290) , Vni,ne € N. (3.44)

Although a counterexample was found in [13], the conjecture still seems to apply to a large
range of CFTs, and an obvious question is whether some alternative version of it still holds.?®

24This was verified to one-loop order in the ’t Hooft coupling.

ZEncouragingly, charged operators in the planar limit have been studied in [56], where it was found that
Amin(Q) =~ f(9)Q where f is some nontrivial function of the strong coupling. It remains unclear at this stage
if this predictions survives for @ 2 Ne.

260ne such version is studied in [63].
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It is natural to start from the weakest version, where we allow any (arbitrarily large) qo.
We call this version of the conjecture the weak CCC.

Originally the weak CCC was dismissed as trivial, since all known phases at asymptotically
large charge were manifestly convex in the sense of (3.44). However, in the models that
we discussed this is no longer true. Specifically, in our examples Ay (Q) is given in an
expansion of the form

Anin(Q) = 1@ + ag+ O(1/Q) (3.45)

in 3d, or

Amin(Q) = a1Q + aglog @ + O(Q°) (3.46)

in the e-expansion from 4d. In both cases convexity is not manifest, and instead the sign of
the Casimir energy «g determines whether the weak CCC holds (if oy vanishes, one needs
to compute higher-order terms to check the weak CCC, although we have not encountered
such examples). It is then interesting to ask whether the weak CCC is indeed obeyed in
these examples.

Happily, in all of the examples discussed above « is non-positive (and is only zero in
free theories or for BPS operators in theories with extended supersymmetry), and so the
weak CCC holds. In particular, in the 5-field WZ model and the SQED example discussed in
sections 3.3 (see footnote 22) and 3.4, the Casimir energy is always negative, and so even
though we cannot fix the Wilson coefficient ¢ we are still assured that convexity holds.

We comment that convexity is a misnomer in the 3d case, since convexity for a function
f(z) requires f”(x) > 0, while the condition (3.44) instead corresponds to superadditivity.
This distinction was not important in previous discussions of convexity since these two defini-
tions were equivalent in all of the examples that were considered (see [12, 64, 65]). However,
in the expansion (3.45) ag determines superadditivity while higher-order terms determine
convexity, and so the two concepts are distinct. We will keep calling the condition (3.44)
“convexity” to avoid confusion.

One might wonder if the Casimir energy (2.33) is always non-positive in d = 3, perhaps
assuming N = 1 supersymmetry. We were not able to establish this result in full generality.
However we found that the contributions of scalars with relativistic dispersion relations (2.26)
to the Casimir energy is always negative for d = 3 and d = 4.27 Additionally, as already
mentioned in section 2, fermions always contribute negatively to the Casimir energy. These
observations are enough to establish that ag < 0 in a large class models, including all the
ones that we studied here. Although this is a limited set of examples, it is reassuring that
they all obey the weak CCC. It would be nice to prove the weak CCC in general.?

Note however that it is easy to construct moduli EFTs that violate the weak CCC, e.g.
the theory of an axio-dilaton (or its 3d N' = 1 version) with the appropriate sign of the higher
derivative terms in (2.8) or a purely bosonic R x CP! model (with the dilaton potential (2.10)
finely tuned to zero) as in (3.32), with ¢ 2 4.63 in d = 5 or with 0 < ¢ < 2 in d = 6, so that
the Casimir energy is negative. Therefore a proof of the weak CCC, if possible, must go
beyond EFT arguments (e.g. of the form appearing in [67]) and must rely nontrivially on the
requirement that the theory admits a well behaved UV completion.

2"This is not true anymore in d = 5 and d = 6, where the sign depends on the mass ny in (2.26).
28The weak CCC can be proven in two dimensions [66].

— 26 —



4 Large charge macroscopic limit for theories with moduli spaces

Given the relation between moduli spaces and large charge operators that we discussed so
far, we expect that at distances much smaller than the sphere radius, correlation functions
in a large charge state reduce to correlators in the moduli space. This statement in fact
follows from EFT at distances R > |z| > 1/m, where m QTi? /R is the EFT cutoff, in
this section we further assume that it remains true also at distances |z| < 1/m.?? These
considerations relate the scaling dimension spectrum of large charge operators and the mass
spectrum of particles on the moduli space. This set of ideas is formalized by the existence
of a macroscopic limit [68], first introduced in the context of charged operators in [14]. In
the context of SCFTs with moduli spaces, this limit was further explored in [57]. For the
benefit of the reader, here we provide a self-contained discussion.

4.1 Macroscopic limits

Let us begin by reviewing the main ideas behind the concept of macroscopic limit, following [14].
Let us consider a CFT with a U(1) symmetry (the generalization to more complicated groups
being straightforward), but not necessarily a moduli space for the moment. Let us denote
with Og the lowest dimensional operator as a function of the charge for each allowed value of
Q; additional specifications might be needed when this is not unique. The macroscopic limit
conists in sending Q — oo and R — oo with the ratio @7 /R = fixed, where the power ~
depends on the theory and the state, such that correlation functions of light operators (whose
dimensions are held fixed in the limit) between two large charge states remain finite. The
limit must be taken so that the dimensionful distances between the light operators remain
finite. For instance, consider the expectation value of a light scalar operator Qs , of dimension
d ~ O(1) and charge ¢ ~ O(1) in a large charge state

(@103,]Q + ) = 22205 (4.1)
In the macroscopic limit this matrix element should reduce to an appropriate expectation
value in a nontrivial flat-space state:

(Q|0541Q + ) 225 (flat|Os ,|flat) ga (4.2)

where we indicated with |flat) the resulting state, that is characterized by the dimensionful
1
scale v = Q7 /R — therefore dimensional analysis implies (flat|Os ,|flat)ga oc ©°. Using

that the macroscopic limit leaves the ratio Q%/ R = fixed, (4.2) can be stated purely in
terms of CFT data as:

lim Q™% "\g.0.01q = v °(fat|Os 4|flat) s = finite . (4.3)

Q—o0
As a less trivial example, consider the correlator of two light operators in the large charge
ground-state

(Q1O5, 4, (7,711) 05,4 (0,702)|Q+a1 +a2) = (flat| Og, 4, (7,7) 5,4, (0,0) | flat) g, (4.4)

=goo(7,|Z])

2More precisely, correlation functions are expected to be well approximated by a nontrivial flat space limit
2
up to corrections of order |z|?/R* and 1/(mR)? ~ Q~ 7-2; in practice we often do not know how to compute
these corrections beyond the EFT regime, and therefore we do not discuss them here.
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where we work on the Euclidean cylinder with metric ds? = dr? + R?da? and the limit is
taken keeping fixed 7 and #2 = 2R%(1 —; - fig). Introducing cross ratios in standard notation

(0q(0)0s, 4, (2, 2) D64, (1) O—q(0)) = Gz, 2) , (4.5)

(4.4) can be stated purely in terms of the flat space four-point function as

_ %1142 w w !
lim @ 7 Gg (z:l—yl,z:l—z/1> =v 7 X goo(Rew,|[Imw|), (4.6)

@ Q" Q>
where the factors of v ensure that w has the dimensions of a length. Note that for the limit
to be nontrivial it is crucial that the result is nonzero at least for some correlators.

The existence of a macroscopic limit is a natural requirement; physically it corresponds
to the statement that zooming in at distances much shorter than the sphere radius in a
very large charge state we recover the dynamics of a nontrivial flat space state. However,
to identify such state and the power ~ in the fixed ratio Q'/7 /R we need to make some
assumptions. Below we discuss some possibilities.

Suppose that the scaling dimensions of the operators Qg grows as A(Q) ~ Q% for
@ — oco. We additionally assume that the corresponding state on the sphere is approximately
homogeneous, and therefore the spin carried by these operators does not scale with ). The
energy density € and the charge density p of the corresponding state therefore are

Q" Q

YR P ReT 47)

9

In the simplest option, the macroscopic limit is defined so that the energy density remains
d
fixed in the limit R — oo [68]. This implies that the ratio /R« must be held fixed, i.e.

v = g. We have three possibilities:

1. for a > d%‘ll the charge density vanishes; we expect that in this case the flat limit
corresponds to a generic high energy state, of the kind analyzed in [69], and that the
operators Og do not provide the large charge ground state.

d
d%‘ll we obtain the relation € ~ pd-T; this is the only possible equation of state

for a CF'T at finite density in flat space and corresponds to the expected behaviour of

2. for a =

large charge operators in generic CFTs.

3. for a < d%‘ll we find that p diverges, contradicting the assumption that correlation func-
tions remain finite in the limit. We thus conclude that we cannot take the macroscopic
limit while keeping the energy density fixed.

This is a simple but important conclusion: if Ay, (Q) ~ Q% with a < d%‘ll, then the existence
of a nontrivial macroscopic limit necessarily results in a nontrivial state with vanishing energy
density, and therefore the theory must have a flat direction. More in general, we can drop
the assumption that the scaling dimensions grows as a power law in ) and we conclude:

Qlim Amin(Q)/Qﬁ =0 U J macro. limit @ - 00 = 3 moduli space. (4.8)
—00

When the energy density vanishes in the macroscopic limit, we expect that p vanishes as
well — otherwise we would have vacua that break spontaneously the Lorentz symmetry.
This implies that v < d — 1.
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4.2 Applications

The conclusion (4.8) is a powerful one, and it essentially argues for the opposite direction of the
arrow in the argument (2.1). However at this stage it does not tell us what is the right value of
~v. We expect that, when there exist a family operators satisfying the property (4.8), the U(1)
symmetry is spontaneously broken in the flat space state. In this case we can resort to the
EFT analysis of the previous sections to identify the proper way to take the macroscopic limit.
From the solution (2.14) we see that the physical limit corresponds to holding the dilaton’s
vev v fixed. Therefore, using the expression for the charge density (2.17) we consider the limit

Q— oo, R—o00, with = fixed, (4.9)

Rd-2
which amounts at ¥ = d — 2. To be more precise, the fixed ratio @Q/R?~? is related to the
dilaton’s vev in the broken vacuum by (2.18). In this section we discuss some consequences
of the existence of the limit (4.9) for correlation functions. For simplicity, we also assume
that the lowest dimensional charged operators Qg are scalars.

Let us warm-up by considering OPE coefficients. Setting v = d — 2, (4.3) implies that
OPE coefficients of scalar operators scale as

2Q.0.q+q ~ QPN (4.10)

for large (). This is indeed the result that we obtained within EFT (2.42). Similarly, the
requirement that the macroscopic limit reproduces the moduli space theory implies that
OPEs of spinning operators should vanish faster than in (4.10) for Q — oo — this is again
trivially realized in the EFT, see (2.43).

In some cases, the existence of a finite macroscopic limit follows from supersymmetry.
As a trivial example, consider a rank 1 4d N' = 2 SCFT, and denote with ®, the U(1),
charge r Coulomb branch operator, whose scaling dimension is A, = r. Working in the
standard normalization where the chiral ring’s OPE is unit normalized, supersymmetry fixes
the form of the so called extremal correlators, consisting of n 4 1 chiral operators and one
anti-chiral operator (see e.g. [70]):

<<1>Q(0)<1>h(x1)<1>m(m2)...@rn(xn)é%zm(@)_ w(@ FAZQ ) H\x _x‘m o (4.11)

where

w(r) = (,(0)®,(1)). (4.12)
Mapping the correlator (4.11) to the cylinder we obtain

w(Q + 3 mi) yy €7
w(Q) H RA:

)

<Q|(I)r1 (7—17 ﬁl)q)rz (7—27 ﬁ2) cee (I)rn (Tna ﬁn)|Q> =

(4.13)

Taking the macroscopic limit and using the localization result [34, 35] /w(Q + >, ri) /w(Q) =~
in "i/2 we obtain

(Q|®y, (71, 701) Bry (T2, 712) .. By Ty 1) | Q) 29T 20 A (4.14)
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where we identified the fixed-ratio v = y/@Q/R with the local coordinate v on the Coulomb
branch. We see that taking the macroscopic limit in (4.14) we obtained a coordinate-indepent
result. This matches the well known holomorphic properties of chiral operators in the
Coulomb branch.

The macroscopic limit implies a relation between the particles’ mass spectrum in the
moduli space and the dimensions of charged primary operators that are much heavier than
the large charge ground state. The exact correspondence can be established relating the
conformal block decomposition of a four-point function with two insertions of the large charge
operator Og and two light operators, with the Kéllen Lehman decomposition in the moduli
space. We discuss this relation below. It is important that the macroscopic limit applies
at arbitrary short distances, even if the EFT breaks for #2,72 < m™2 ~ R?/ Qﬁ. For
technical reasons that we mention below, our discussion will be limited to d > 4.

Consider the two point function of a light neutral operator O (whose O(1) quantum
numbers will be irrelevant for our purposes) in the large charge ground state:

Foo(r,7 - i) = (Q|O(7,71)O0(0,72)[Q) - (4.15)

It is convenient to evaluate this correlator inserting a complete set of states between the two
light operators. Grouping states into conformal families, this results into the conformal block
decompostion. For 7 > 0 we use the s-channel conformal block decomposition

1 9 00,0 00,0

FQ,O(T,ﬁrﬁz):W A2,0.Q925.0 (1,2 )+Y_ A oanday (The-ni)|,  (4.16)
AL

)

where we isolated the contribution of the operator Qg itself and gi " is the conformal block
corresponding to the exchange of an operator of dimension A and spin £ in the Og-O OPE.
We normalized the s-channel conformal blocks so that the primary’s contribution reads:

00,0

d_
gay (T, Ny -7y) = e_T(A_AQ)/RCZ(2 1)(ﬁ1 - ig) + descendants . (4.17)

The s-channel decomposition in these coordinates converges for 7 > 0. For 7 < 0 we may
use the t-channel expansion, which in the case of identical neutral operators O is obtained
from the s-channel decomposition with the replacement 7 — —7 in the blocks.

In the macroscopic limit (4.4), the correlation function (4.15) reduces to the moduli
space correlator. This in turn can be expressed using the spectral decomposition, i.e.

Fo.o(T,7 - fia) 252 (O(7,£)0(0,0)) -

v,
2 * 2 2 2 2 (4.18)
= <(’)>v¢—;—|—/ dm*poo(m*)G 2 (77 + Z7),
' 0
where p;; is the spectral density
pij(p*) = (2m)471 Y _(0Oi|n) (n]0;]0)6% (g0 — p) - (4.19)

n

We would like to relate (4.18) with the conformal block decomposition described above. To
this aim we need to compute the form of the conformal blocks in the macroscopic limit.
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The macroscopic limit of the conformal block depends on whether the gap A —Ag and the
angular momentum £ of the exchanged operator scale or not with R. When A—Ag ~ £ ~ O(1),
the conformal blocks are trivial in the macroscopic limit

This result arises because the contributions of descendants in (4.17) is suppressed by powers
of Ag, see e.g. [69]. Therefore operators with O(1) gap and angular momentum can only
contribute to the disconnected part of the correlator in the macroscopic limit. The contribution

is nontrivial only when the corresponding OPE coefficient scales as R™© ~ QSTOQ. Because

of (4.2), we find immediately that the exchange of Og in (4.16) reproduces exactly the

disconnected term in (4.18) in the macroscopic limit. Therefore we conclude that the OPE
coefficients of all the other exchanged operators vanish in the macroscopic limit

. _Ao

ngnoo Q a2 )‘Q,O,(A,Z) =0. (4.21)

The connected term in (4.18) arises from the exchange of operators with A — Ag ~ R
and/or angular momentum ¢ ~ R. We therefore set

A—-Aq 14 A Vo)

R 'T R

The discussion of the macroscopic limit of the conformal blocks at fixed w and k is similar to

&
Il
7
Il

(4.22)

the one in [69], where the authors considered the macroscopic limit at fixed energy density.
The contribution of the nth level descendants in (4.17) scales as ~ [(w? + k*)R?/Ag]" ~
RM2-(d=2)] " Degcendants may therefore be neglected for d > 4. In d = 4 we may instead
resort to the exact expression of the conformal block [71, 72], and we find that descendants
only contribute to an overall prefactor. We spare the details to the reader, and only report
the final result:

0,0 ~ ~ macro. RI-3 —wT d—1 ik-7
9ay (7o - 11) —— Naz(w, k) e A po(|pl — k)e™ ™, (4.23)
where the prefactor reads
1 ford > 4

Rd_3

Nys(w, k) = - X 2 4 2
(- k) 9d-2, 93 (%) exp (%) ford=14.

(4.24)

We expect that a result analogous to (4.23) holds also in d < 4 with a different prefactor,
but we did not prove it.
Using (4.23), we recast the macroscopic limit of (4.16) as

F ~ ~ macro. )‘é,O,Q ood
Q.0(T, M - Ng) — T80 + A W

A1k 72 -
2 e Tl T K (w, [R]) (4.25)

where we defined

2
_A=8 AQ) 5 (k - 5) Nap- B Xgomn (4.26)

_ d—1
K(w, k) = (21) %5 (w — =) S e
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The existence of the macroscopic limit therefore requires that the combination in (4.26)
becomes R-independent in the appropriate sense."

Finally, comparing (4.25) with (4.18), we arrive at
O(w)poo(w? — k*) = K(w, k). (4.27)

(4.27) establishes a direct connection between the flat space spectral density and the operators
exchanged in the s- and t- channel of the correlation function (4.15).

As a simple application, consider the contribution of a mass m particle in the spectral
density in d = 4:

0(w)poo(w? — k?) = 202207 20(w)d(w? — k2 — m?), (4.28)

where the powers of v are dictated by dimensional analysis and c,,2 is an arbitrary dimen-
sionless coefficient. Because of (4.27), (4.28) implies that there exists one or more operators
with scaling dimension

A—Ag >~ V2 + R?m?, (4.29)

and with OPE coefficient

2, 2 2
Z A ~c 2(R’D)2Ao_274ﬂe ei%
Qvoz(Aze) - m 62 +R2m2
ST e (4.30)
o QAofl e QAQ

V2 + R?*m? ’

where the sum runs over all the degenerate operators with the same scaling dimension (4.29).
Note that it is important that the mass remains finite in the macroscopic limit Rm ~
Q'/2. (4.29) and (4.30) are in agreement with the explicit results of [57], where the authors
studied correlation functions with two large charge Coulomb branch operators in N' = 4
SYM with gauge group SU(2) in the weak coupling double-scaling limit and conjectured a
similar formula.?! We also expect the prediction (4.29) to be relevant in large N SCFTs
with moduli spaces.

Let us conclude this dicussion with a comment about the macroscopic limit for N' = 4
SYM in the holographic limit as explained in [3]. We focus for concreteness on the Higgsing
pattern SU(N) — U(1) x SU(N — 1). Holographically this is realized by displacing a brane
at some distance from the center of the bulk of AdS; [73]. The state which reduces to this
vacuum in the macroscopic limit is the one created by a fully symmetric chiral operator
~ Tr[X¥] with Q ~ N, which is dual to a giant graviton spherical D3 brane in AdSs [74] (see
also [75-78]). For large charge Q > N (but still Q < N? in order to neglect the gravitational
backreaction) the brane extends towards the boundary of AdS similarly to the moduli space
one. Zooming in at distances much smaller than the S3 radius the two branes are locally
identical. The mapping between moduli space particles and charged CFT operators then

30T this aim, it might be necessary to smoothen the delta functions in (4.26) with normalized averages

over intervals of infinitesimal size § around w and k — see e.g. footnote 8 in [69].
C w24k?
31To compare the results, note that e~ 202 ~ 1 + O(g?) at weak coupling in the double-scaling limit.
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follows straightforwardly. In particular, for both branes we can consider open strings ending
on them. For the moduli space brane the string state could be e.g. a W-boson particle,
whose mass TAX ~ guv is proportional to the distance between the displaced brane and the
bulk of AdS. For the giant graviton with ¢ > N the string corresponds to a W-boson like
primary operator, and the semiclassical energy of the string provides the scaling dimensions
in agreement with (4.29).3% It would be interesting to further explore the connection between
large charge operators and moduli spaces in holography.

Let us conclude by mentioning that it might be interesting to apply the macroscopic
limit to the study of partition functions at finite chemical potential, and in particular
to the supersymmetric index. For instance, in 4d N/ = 2 SCFTs certain limits of the
supersymmetric index are related to the physics of the Coulomb and Higgs branches of the
theory (see e.g. [79, 80] for reviews); we expect that many of these relations can be understood
by a generalization of the arguments presented in this section.

5 Comments on moduli spaces with no broken charges

The main conceptual message of this work could be summarized as follows. In CFTs with
moduli spaces where a global charge is also broken, large charge operators create, in radial
quantization, semiclassical states that closely resemble the vacua where both the conformal
and the internal symmetry are broken. The connection is clear in the EFT saddle-point (2.14),
since the dilaton acquires a large value. This is what allows to prove the existence of a tower
of operators whose scaling dimension grows linearly with the charge. The existence of a
conserved charge is essential, as one can identify a precise tower of states, those corresponding
to the lowest dimensional charged operators.

One might still wonder whether in the general case (where no internal symmetry is
spontaneously broken) the existence of a moduli space is still reflected in some semiclassical
feature of the spectrum. Below we address this question starting from the EFT of a real
dilaton. Not surprisingly, we conclude that in the absence of a conserved charge it is not
possible to identify a tower of special operators that look like the spontaneously broken
vacua. However, we speculate that the moduli space is reflected in the existence of certain
resonant states on the cylinder, whose width becomes parametrically narrower than their
energy in the high energy limit.

The basic idea is simple. Consider for concreteness the EFT for a real dilaton, which
is relevant in the ABC model [8] and other 3d N’ =1 SCFTs. The leading term is simply
the free action

2
5= /ddx B(@@)Q - %@2 .., (5.1)

where the dots stand for higher derivative terms and additional fields, such as the superpartners.
On the cylinder, the free theory admits a homogeneous solution of the form

d—2
o= % cos(mgt + to) . (5.2)

32We thank Shota Komatsu for clarifying discussions about this point.
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The parameter tg ~ tg + 27 is a zero-mode of the solution and should be integrated over in
the path-integral. In appendix 5.2 we show that the solution (5.2) arises as the saddle-point
describing the two-point function (®"(x;)®"(xf)) for n > 1 in free theory, with

d—2 n
v = A= 20, 2 (5.3)

Therefore the solution (5.2) describes a primary state with dimension A,, = n in free theory.
Note that from the cylinder viewpoint, the quantization condition n € IN follows from the
semiclassical quantization of the field around the saddle-point.3

One might therefore naively conclude from the existence of the solution (5.2) that CFTs
with moduli spaces always admit states with energy A, ~ n for n > 1.3 There is an
important subtlety however. Even when n > 1 the dilaton vev does not stay large for
the full oscillation period T" = 27/mg of the solution. This is to be contrasted with the
large charge profile (2.14), where the dilaton retains a constant value and the solution never
exits the EFT valdity regime.

Within EFT, we can trust the profile (5.2) only as long as higher derivative terms are
suppressed, i.e. when

(0)? < |®|7= . (5.4)

From this condition we infer that for each oscillation period the solution (5.2) exits the EFT
validity regime for a time dt of the order

ot (md> 7 _
—_— _— ~ N
T v

Physically, during the time in which the dilaton vev is small, all the degrees freedom of

=

(5.5)

the CFT become again massless and interact nontrivially with the dilaton mode. The
breakdown of EFT therefore signifies that the EFT Hamiltonian is not complete, and there
exist additional off-diagonal terms that mix the dilaton with the other fields of the theory.

—1/d with respect to the leading contribution A, ~ n

These terms are suppressed by 6t/T ~ n
at large energy, but they imply nonetheless that we cannot diagonalize the Hamiltonian
restricting ourselves only to the EFT states. Therefore the energy eigenstates are complicated
linear combinations of dilaton quasi-particles and other strongly coupled modes. This was
in some sense a foreordained conclusion: the spectrum of a general CF'T is dense at high
energies, and it is a priori not clear how to identify special eigenstates.

This discussion is again to be contrasted with the case of charged operators — in which

case the saddle-point (2.14) describes the ground state in a certain fixed charge sector. In

33The simplest way to see this is to consider the Bohr-Sommerfeld condition

7{Hd<l>z27r,

where IT = R41 f d* 17 ® is the field momentum and the integration is over an oscillation period T' = 21w/ mgq
of the solution.

34Note that this would be a stronger claim than the one for charged operators, since the ratio A,,/n is fixed
by the EFT. This is because there is no free parameter in the EFT action (up to rescalings of the dilaton)
unlike the charged case.
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that case the EFT is obtained integrating out only massive states in a standard fashion,
and we can self-consistently focus on the EFT Hilbert space. In the neutral case instead,
when using the EFT around the solution (5.2) we are neglecting other degenerate states with
the same quantum numbers, that are not separated by a large gap. There is no selection
rule that prevents the semiclassical dilaton state (2.14) from mixing with these other states
made of strongly coupled degrees of freedom.

Yet, there remain the question of which is the right interpretation of the semiclassical
state described by (5.2). After all, this is certainly a well defined state for short enough times,
such that the dilaton did not yet have time to interact significantly with other modes. Our
speculation is that the saddle-point (5.2) describes a resonant state. Indeed, in general the
spectrum of states of energy A > 1 is expected to be exponentially dense [81-83] and may
therefore be approximated by a continuum.?> On general grounds, the mixing of an isolated
state with a continuum results in the existence of a resonant pole in the Green’s function
of the theory [86]. Therefore we expect that the interactions between the dilaton and other
strongly coupled modes will result into a width that controls the lifetime of the state (5.2).
We can estimate the width on dimensional grounds from the ratio (5.5)

ot d—1

We can also reach this conclusion using EFT. Indeed, it is sometimes the case that
in EFT one can integrate out a continuum of states at the price of losing unitarity. The
most famous example is perhaps the EFT for C'P violation in Kaon physics, in which one
describes the physics in a small energy window around the Kaon mass and neglects the
pions and other light states, whose effect is described via the inclusion of small imaginary
terms in the Hamiltonian. In that case the EFT does not describe the full evolution of
the system, but only the probability that the Kaon evolves into another quasi-degenerate
particle rather than decaying into lighter ones.

Assuming that is possible to integrate out the quasi-continuum of degenerate states
around the solution (5.2), we need to parametrize in EFT our inability to describe the
interactions of the dilaton with the other modes during the small interval of times in which
the dilaton vev becomes small. Similarly to [87], as long as 0t/T < 1 this can be done
treating the interaction as instantaneous, introducing effective operators which are localized
in field space & §(®). The leading such operator is

S = c/ddazé(@) (0®)" + . ]*d; : (5.7)

where the powers are dictated by Weyl invariance and the dots stand for terms which are needed

1
to Weyl complete the parenthesis.?® The general idea is that (8@)% ~ [mzvd_ﬂ ‘> 1/R
controls the derivative expansion at the singular points where ® = 0; on physical grounds, the

35For a detailed discussions of the validity of this approximations, see e.g. [84, 85].
36Tn the notation of section 2.1, the term in parenthesis can be written as

(d—2)2 52 H4(1+7%5) _ 4
4d(d—1)RWq)(+ el
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reason why we can still use EFT is that the interactions with the strongly coupled modes is
almost instantaneous, and should therefore be describable by effective source terms localized at
mgt +to ~ 5 +nZ. (5.7) realizes the leading such term in a manifestly Weyl invariant fashion.

On the saddle-point, the operator (5.7) results into a contribution to the stress tensor
of the form

1, d=2
@} 3+ 34

Too x cd(mgt + to)]<§|%+% ~ ¢ X §(mgt + to) {mdv 2 (5.8)

Thus, upon averaging over the zero-mode tg, we obtain a correction ~ en T to the energy.
Since the operator (5.7) has zero support in the usual moduli space, the coefficient c is
unknown and may be taken complex according to our discussion. This is therefore the leading
contribution to the width in agreement with the estimate (5.6).

Matrix elements in such resonant states behave very differently than in generic high
energy states. Indeed, we can compute the expectation value of an arbitrary scalar operator
Ojs of dimension § ~ O(1) via operator matching O o |®|° as in section 2.5. We therefore
find that ¢ = 0 matrix elements take the form

(0]Os(t = 0)[v) x ATz . (5.9)

Which is very different than the expected result in a generic (thermalized) high energy state
(A|Os(t = 0)|A) Ad. These considerations suggest these resonances should be more
properly interpreted as scar states, similarly to [88].

To summarize, in the absence of a conserved charge it does not seem possible to find
a specific tower of primary operators that carries over the information of the moduli space
physics. It might however still be possible to construct long-lived resonances which, in a
sense, can be thought as homogeneous excitations of the dilaton.
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A Fluctuations around the large charge ground state
We expand the moduli around the solution (2.14)
<I>:v¥+5<b, W“:mat/R—i-&r“/v%, (bA:&A—l—&ﬁA/v%. (A.1)
Expanding (2.12), we find the following quadratic action
Lot = Gapdudnd"ogP + %5(}53 (Gan,09¢” +2Gapd®) + m%aérb (G 400" + 2G50

+ %éabaﬂawaaﬂawb + QLRQmamb <Gab5<1>2 + 2G a0 0P + %éab’aDwC 5¢D>

+ %GA36“5¢A8#5¢B _ % (é@ 50 + Goo, A5¢A) 925®

2 7 - 1
— % (G@p 0% + 2Gpp 40DIG™ + §G<M>, A35¢A5¢B) , (A.2)
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where G = G (¢) and the additional subscripts denote derivatives with respect to the ¢4’s, e.g.
Ga.c = 8@ab/8¢0]¢:¢;, Gop a4 = 8(§¢,¢/8¢Al¢:q;, etc.. Using the EOMs (2.15) and (2.16),
we see that the terms proportional to d®2 and §®5¢C cancel; therefore, integrating by parts
the term proportional to 9?6®, we arrive at

1 4o = —
Liuet = 5Car0"07°0, 07" + %Mb (Gab 106" + 2G0®)
1= 1~ 1 1
+ 5Gae 0,000"50 + - Gao, 140,02 0"5® + 3G AB0"6¢*0,007 — §M§Ba¢A5¢B

+ Gopd, 60165 + ’%5@3 (Gap,c06C +2Gapo®) |
(A.3)
where we defined
d

2 c
2 _ [ Mags _mm = A4
Mip < 5 Goo AB 52 ch,AB> . (A.4)

At this point it is convenient to isolate in the d7’s the component parallel to the chemical
potential vector, according to the scalar product defined by Gu,. We thus decompose

o1 = m®mo + 67%  such that m®Gaon] =0. (A.5)

Note that this decomposition is trivial when there is a unique spontaneously broken Cartan
generator. Using (2.15) and (2.16), we recast the action as
2
oMo >

ral 2 _
1 1G e,
et = g0 (8“5@ ’ 25?;8“5“) RS (a“‘”“) + Fmiton

— . *GaB 1 Goo.a
9Gop Rm2 | 670 + —L 2B s5iB ) (50 5o
+ oo md<7r0+R2 G<1>q>¢>< +2 Goo (Z))

%éaba 674 0,018, + Gopd,omt 01565 + f&r’iGab 4094

1 ~  GopaGoop mGeamGyp A B
— | Gap — ot Yoso )
2 ( 4G pa RQm?lexp > ¢ 0u09
m m*Gaplc\ < ipcc Lio < ac.B
" — — =M% 56076
(R B,C T >5¢ 097 — 5 Myd¢~0¢
(A.6)
We can rewrite (A.6) compactly by defining
= Go9,4AGoo,5 M Geam?Gp me— m*GapGoa c
K2, =Gap— J2RATORE NCdB g =G o T TaBT R0
AB AR T Ce R?m2Gasp R e T
(A7)
Then, shifting 0® and dmy as
1Go0.4 ., 2 m®Gap
5B = B — — ZERASUA s g — —SaB 5B A8
3 Cos ¢ o o PmiGos o (A.8)
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we arrive at
1 .
Lyt = §G<1>q> [(85@)2 + R*m2(06m0)? + 4 Rm? 57@5(1)}

1~ — 1
+ §Gab8“6wiauéwﬁ + Gupd,6m$ 9"665 + QKE,BE)“MA&M(SQSB (A.9)
ma

TR

Gap, 2078 60" + dapddAse® — %MiBéquégbB :

Upon canonically normalizing the fields, we recognize that the first line of (A.9) coincides
with the action for the fluctuations around the helical solution (2.22) in free theory. We
therefore immediately conclude that the corresponding dispersion relations are given by (2.24)
in the main text.

The other n — 2 fields are also associated with a Fock spectrum of light quasi-particles.
For large angular momentum ¢ > 1 we can drop the terms in the third line of (A.9) and
we obtain (2.25) in the main text.

Due to the terms with a single time derivative, it is hard to compute in full generality
the spectrum associated with the fields in the second and third line of (A.9). A simplification
occurs when the first and second term in the last line of (A.9) vanish. This happens for
instance in theories in which there is a unique Cartan charge and a symmetry acting as
m — —m on the Goldstone boson, e.g. a model with a single U(1) charge invariant under
charge conjugation. In this case the spectrum of fluctuations results into standard relativistic
dispersion relations, cf. (2.26).

B Moduli spaces and e-expansion for 3d N/ = 1 SUSY theories

Three-dimensional A/ = 1 SUSY has two supercharges, and as a result SUSY is much less
powerful compared to the more extensively-studied cases with four and more supercharges.
In particular, 3d AN/ = 1 theories do not possess a continuous R-symmetry, and as a result
some famous features which are attributed to SUSY like non-renormalization theorems and
protected operator dimensions do not oocur. Nonetheless, a discrete R-symmetry is sometimes
available, and can be enough to provide some exact results. One particular example involves
a Zo R-symmetry which in some cases protects a moduli space from being lifted to all orders
in perturbation theory [89-91], which we now review following [8].

Interactions which lift moduli spaces in 3d N/ = 1 theories take the form of a super-
potential3”

/dQGW(@), (B.1)

with ®;, i = 1,..., N some real scalar superfields. A Zy R-symmetry acts as d?6 — —d?0,
and so it appears only if one can assign a transformation W — —W to the superpotential
under it. If this symmetry appears, it severely restricts the terms which can appear in W
once quantum corrections are taken into account.

One immediate example of a 3d N’ = 1 theory with an exact moduli space is N' = 1
SQED, consisting of a gauge multiplet coupled to Ny complex scalar multiplets ®; of charge

370ur 3d N = 1 superspace conventions follow [92]. In particular we have bosonic coordinates x* and Majo-
rana Grassmanian coordinates ., and a basic scalar multiplet consists of a real scalar and Majorana fermion.
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1 and no Chern-Simons term. Classically the theory has a moduli space parametrized by the
vev of ®; up to an overall phase rotation, so that the moduli space is CPY/~!. The theory
possesses a Zo R-symmetry which acts on ®; and which prevents the appearance of any
superpotential under quantum corrections. Indeed, gauge invariance and a global SU(NNy)
symmetry forces the superpotential to be a function of |®;|?, but all such terms are even under
the Z£ and so cannot be generated. The moduli space is thus exact quantum-mechanically,
at least to all orders in perturbation theory. The absence of a Chern-Simons term is crucial
here, since otherwise the Zs R-symmetry is explicitly broken, although there are examples
where an R-symmetry is emergent in the IR and which leads to a moduli space [93, 94]).

A particularly simple example is a WZ model which consists of three real scalar superfields
and the superpotential

W= gABC. (B.2)

At the classical level this theory has a moduli space where one of the three fields A, B, C has
a vev while the other do not. The theory also has a Z symmetry which acts as A — —A,
together with an S3 permutation symmetry. The combination of these symmetries protects
the moduli space to all orders in perturbation theory, since it constrains the effective action
to include only terms of the form

Wer D ABC f(A% B%,C?), (B.3)
for some function f.

B.1 e-expansion for 3d N =1

There is an immediate obstruction to studying 3d N = 1 theories in the e-expansion from 4d:
3d N =1 theories have two supercharges, while 4d SUSY theories cannot have less than 4.
A workaround for WZ theories was proposed in [9, 10]. Consider a general 3d N =1 WZ
theory consisting of scalar multiplets ¥; for ¢ = 1,..., Ny. In components these consist of
real Bosons ¢; and Majorana Fermions 1);, and the Lagrangian takes the form

1 7 7 1
L= 5(5;@1)2 - §¢?aa6¢f - §3iajw¢?¢ag‘ - 5(31W)2a (B.4)

with W (;, ;) the superpotential. To approach this theory in the e-expansion, we instead
consider a generalization of the Lagrangian with an additional flavor index a = 1,..., Ny
for the fermions:

1 ) ) 1
L= 5(8u¢i)2 - §¢3i aﬁwfi - §8i8jW¢3i¢aaj - 5(3z‘W)2 . (B-5>

This Lagrangian is non-SUSY, except for the case Ny = 1 which reduces to (B.4). The
advantage of stduying this generalized theory is that for Ny a multiple of 2, we can repackaging
the 3d two-component Majorana fermions into Ny/2 4d four-component Majorana fermions,
which allows us to study the theory in the e-expansion from 4d. In our case we work with Ny
a multiple of 4, and repackage the fermions into N¢/4 4d Dirac Fermions. The corresponding
Lagrangian in 4d is

L= %(au¢l)2 + ’L"Lbz@@bbz - 8i8jquzbiwbj — é(@lW)Q’ (B6)
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where we sum over b = 1,..., N¢/4. The Lagrangian (B.6) can now be studied in the e-
expansion as usual, and we can compute various CFT data as a function of Ny. Eventually we
set Ny = 1 which corresponds to the 3d N = 1 theory of interest. This trick has been tested for
various 3d N = 1 theories [9, 44, 95, 96] and provided excellent agreement with other methods.

C One-loop scaling dimension in the 5-field WZ model
The Lorentzian action for the model (3.11) on R x S9! in d = 4 — ¢ dimensions reads:

1 m3
£ = [0 —mBaf*+10yl2 —m3ly P+ 5 (9a) ~ SLa®

o~ ~ .~ ~ .~ ~ .~ ~ .~ ~ 1 2
+qu?a+m$x+zxc$xc+zy$y+zyc$yc—ZgQa2(|x|2+\y|2)—%(|x|2—\y|2)2 (C.1)

- ga (T2 +FoFe— 1T — Ticile) —g (@ (Zex+ 2" —Jey—iy") +c.c]

where tilde’s denote Dirac fields and we neglected the fermion multiplicity index. Note
that to each of the charged scalars x, y correspond two Dirac fields, (Z,z.) and (7,7.),
with opposite charge.

To study fluctuations around the saddle-point (3.15), we define r,/, and m,, via

z/y

V2 ’ V2

and we make a field redefinitions to make the fermions neutral

_ Me—mztfm y = Me*wyt*my , (C.2)

i_ _> e*iﬂzt*iﬂ'zti.’ g _) efiuytfiﬂ'ytgj «;i;c _) €+iuzt+iﬂzt(i‘6’ gc _> eiuytJriTl'ytgc .
(C.3)

Specializing to the solution (3.19), we find the bosonic and fermionic quadratic actions:

2 1 1 .1 M? 1 m2 + M?
4)0)5 = Z [Q(OTQ)Q + 5(8%)2 + 2mgraTa — 4M27“2] — 5 Taly + 5(8@)2 -4 5 a?

a=z,y
£ =iz (4?9 - ’évomd) I+ % (@ + i'YOmd> Fe+ i (é? — i'yomd> J+ 7. (6 + i'yomd> e

+ iada — % la(Zc+2— G —§) +cc] (C.4)

where we defined

_ glva
== (C.5)

It is simple to obtain the spectrum of bosonic fluctuations. We find
wp,1/2(0) = \/WZF mq ,
M2 M2 2
wp,3/4() = \l Ji +2mj + - T \/4J€2mfl + <2mfl + 2> : (C.6)

wps(0) = \/J7 +mg+ M?,

where J? = ((¢+d—2)/R%. Note that the first three dispersion relations coincide with the EFT
result (3.29) when expanded for M 2> Jf, 1/ R?, while w B4 and wp 5 describe gapped modes.
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To obtain the spectrum of fermions, it is convenient to proceed as in [45, 97] and write the
Dirac fields in terms of Weyl spinors. Expanding the latter in terms of spinor harmonics [29],
we find that the spectrum contains four modes with dispersion relation

WEE (0) = Wi (0) = pr(6) £ mg, (c.7)

where pp(¢) = (E + %) /R. The other six dispersion relations are given by the positive

roots, each counted twice, of the following cubic equation for w?:

Wb — i [2 (M2 + mfl) + 3p%(£)} + w? [3p‘}w FAM2pE(0) + (M2 + mfl)z}
() [M? w3+ 53 (0] =0. (C3)

Since the polynomial in (C.8) is itself the product of two real cubic polynomials in w (identical
up to the flip w — —w) with positive discriminant, (C.8) admits three real and positive
solutions for w?. Their explicit form is complicated in general, but simplifies in certain limits.
For instance, the expansion of the nontrivial fermionic dispersion relations for R2M? < 1 is:

2pr(OM?  2pp(0)M* [4pF(€)® + mj] n

() gy —
wpg (0) = pr(f) + () — 2 ) — ] - (C.9)
Wi (0) = wid (0) = pr(0) £mg + M L PorOFmdM” (C.10)

2[2])}:‘(5) + md] Smd[2pF(€) + md]3

Expanding similarly the bosonic fluctuations (C.6) for £ > 1 (the expansion of wp 3 is singular
at £ = 0) and evaluating the sum (3.20) in dimensional regularization, (3.21) follows.

To obtain the result (3.23), we isolated explicitly the divergent contribution in the sum.
Noting that the first two modes in (C.6) and the two modes in (C.7) sum to a vanishing
contribution in dimensional regularization, we recast (3.20) as

“ R 5 o
Ng==Y > 60 +o00, (C.11)
2 k=3 /(=1

where & denotes the summand in d = 4 from which we subtracted the terms of the £ — oo
expansion whose sum does not converge in d = 4; explicitly we find:
9¢% 214 R?M?

Al .
3

5
50 = T3 | npOn i) — 3 Ynr(Owi) (0
k=3 +

(C.12)

that can be checked to be O (¢72) for £ — oco. In (C.11) og is the contribution of the
(regularized) divergent sum and the ¢ = 0 states

. 3(RM)? R

SR LS

[wB,km) —AN; Y @) <O>] : (C.13)
k=3 +

To obtain the scaling dimension for large g?Q we then separated the sum (3.20) into two
contributions with a cutoff aM R with M > 1/R and a < 1 as in appendix D of [46]. The sum
over the low £’s is evaluated expanding the dispersion relations at R2M? > ¢ ~ O(1), while the

sum over the large £’s is computed expanding for £ ~ RM > 1 and using the Euler-Maclaurin
formula. The details are essentially identical to [46] and we do not report them here.
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D CPY ! Casimir energy
D.1 Special case: Ny = 2

For the special case Ny = 2, we have CP! = S$2. The bosonic part of the EFT is just

1

£ =5 (m30? — oV20) + 02 ((9p)? + sin® p(06)?) . (D.1)
2 2

Focus on the U(1) isometry which takes # — 0+«. There is a solution to the EOMs of the form

d=v, po=po=7n/2, 0=iut; (D.2)

this is an S? geodesic and so solves the EOMs for 6, . The ® EOM reduces to

0?0 = (m3 + ¢ (90)°) @, (D.3)
which fixes
_ md
-7 (D.4)

Now we can find the leading contribution to the energy by directly plugging this into
the Hamiltonian:

I €22 229
E—§<mdv)+§vu =myv~. (D.5)
The charge is ¢ = v?\/emg and so we find
m2q mq
E=—¢ =2 D.6
mave — Vel (D.6)

which has the expected linear behavior.
Next we find the subleading correction to the energy from the one-loop Casimir energy.
We expand around the saddle point using

d=0v+Y, O0=iut+0, p=7/24+¢, (D.7)

and expand the action to second order in the fluctuations. The quadratic terms are

(Y v2m§

1 2 2
£>-sTVE + % (90)2 + 2/emguisd® + % (96)" + —26%, (D.8)
giving the mass matrix
3 (J2—w?)  Vemguw Y
2
(X0 ¢)| Vemguw - (JF —w?) of. (D.9)
2,72
%002(J€2—w2)—|—vgnd o

The dispersion relations are

{+d—2

Rwi:;(d—2i(d+2£—2)):{€

(D.10)

Jelld+—2)+ 1(d—2)2
G .

RCU¢ =
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The casimir energy is

N | —

antug , (D.11)
l

with ny = 14 2¢ in 3d. This sum diverges so we compute it using dimensional regularization,
following [11]. The contributions from wy vanish, so we only need to take into account the
contribution from wg. The result is displayed in figure 1.

Next we show that the fermions do not contribute to the Casimir energy. The relevant
terms are those described in (2.30) and take the explicit form (up to an overall factor)

i (Dapt 97 — " Dog??) (D.12)
where
Y Dogt?? = " (915040, + Oigrjoti g0t ) 77 (D.13)
and g is the metric for the NLSM above,
1
2 2
gij = - : (D.14)
% sin? ¢

Evaluating this on the solution (D.7) we find the quadratic terms

Vg + cv*1hgdg + cvtp 00y + b0, (D.15)

since v, appears as a free massless fermion it does not contribute to the Casimir energy
and we ignore it. The remaining dispersion relations are
(£) ) _ _ 1
wp (£) = pr(f) £ Vep = pr(f) £ SR (D.16)
Since w%i) (¢) are always positive, the fermions do not contribute to the Casimir energy. The
full result for the Casimir energy is then just the bosonic contribution computed above.

D.2 General Ny

Now we perform the calculation for general CP¥/~!. First we must choose a U(1) symmetry.

Writing 21 = 7€, we can choose the U(1) symmetry which shifts . We guess a solution

to the EOMs of the form
d=wv, O=iut, r=nrg, (D.17)

and where all zp; = 0 for M > 1. This is a geodesic for rp = 1, and so solves the EOMs
for the CNs~1 coordinates. To fix u we use the EOM for ®, which fixes

B mq (1 +73) _2m
M*iﬁ = (D.18)

Now we look at small fluctuations:

db=v+XY, r=rg+R, O=iut+0, = 2Zu, (D.19)

— 43 —



where M > 1. Expanding the action to quadratic order, we find that the Z,;’s decouple from
the rest of the fields and become massless. The mass matrix for ¥, R, © is independent of the
number of Zj;’s and so is the same as in the C P! case, and in particular their contribution
to the Casimir energy is identical. We thus have to add to the CP' Casimir energy the
contribution from the Zj;’s. They behave as 2(INy — 2) real fields with dispersion relations
w = l(¢+d—2), each one contributing ey ~ —0.132 to the Casimir energy. So the total
Casimir energy is Eo(Nf) = Eo(Nf = 2) + Q(Nf — 2)60.

To finish the calculation we also need to find the fermionic contribution. Expanding the
fermionic part of the EFT to quadratic order and ignoring free massless fermions, we find
only one nontrivial dispersion relation, which is identical to (D.16). As a result we again
find that the fermions do not contribute to the Casimir energy.

E Correlation functions of a free real scalar field from semiclassics

In this section we show how to generalize the semiclassical approach of [11] to the calculation
of correlation functions of heavy neutral operators in the theory of a massless real free field
®. This motivates considering the saddle-point (5.2) in the dilaton EFT.
We consider the two-point function of the operator ®™. This corresponds to the following
path-integral
(@ ()07 () = [ DO ()@ (w)e [ A", (B.1)

Proceeding as in [11], we exponentiate the insertion and obtain the following modified action
1
Stod = /ddx§(8¢)2 —nlog®(zs) —nlog ®(x;). (E.2)

We then consider the resulting saddle-point equation:

—0%d = % [5d(x —xp) + 64z — xz)} : (E.3)

The solution to this equation formally reads

1

®(x)=aGla—a)+ 3G —2)~(@+B)G0),  Ole)= gg g, (B
where the coefficients a and (3 satisfy
aff = n (E.5)

G(zif) —G(0)

and x;; = x; — xy. Note that the solution therefore admits a free parameter; the physical
significance of the latter will become clear once we discuss the map to the cylinder. In (E.4) we
implicitly assumed that we work within a regularization scheme in which G(0) is finite. The
necessity of specifying a regularization scheme is unsurprising, since also in the diagrammatic
approach we need to specify a prescription for the tadpole diagrams arising from contractions
of fields at the same point. In mass-independent schemes that preserve the conformal
symmetry of the free theory, such as dimensional regularization, G(0) — 0 by dimensional
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analysis. In the following we will assume that we work in such a scheme, for which the
solution simplifies and reads

d(x) = eG(r —x;) +e °G(x —xyr)| , E.6
() =\ ey [0 =) + G )] (6)

where 7y is arbitrary.
It is now simple to verify that the saddle-point (E.6) gives the expected result for the
two-point function for n > 1. Indeed, plugging the solution in the classical action we obtain

(@ ()" (i) o e Smoaladdie = M IBNR[G ()" & ml [G(aiy)]" (E.7)

where we used the Stirling formula in the last step.

Let us finally map the solution (E.6) to the cylinder, such that the corresponding
Euclidean time stretches between the two operators insertions at 7 = *oo in terms of the
Euclidean cylinder time coordinate. Introducing a subscript to distinguish between flat space
and cylinder fields, the map is given by

zif| R oz . - T — T
(I)ﬂat($) = < ‘ f’ ) (Pcyl(T’ n)a € /R — u (E8)

| — il |z — ] IEEET

where R is the cylinder radius and 7 specifies the position on the sphere. We therefore
obtain the Euclidean profile

A n — —
(I)cyl(Ta n) = \/(d 0, = {6 MaT+T0 | oMaT=To , (E.9)
where mg = %. Wick rotating 7 — it and 79 — iy, and removing the subscript, we obtain

the profile (5.2) in the main text. Note that the arbitrary parameter of the solution now
admits a simple interpretation as the zero-mode parametrizing the origin of the oscillation
period of the solution.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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