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ABSTRACT: Conformal field theories that exhibit spontaneous breaking of conformal symmetry
(a moduli space of vacua) must satisfy a set of bootstrap constraints, involving the usual
data (scaling dimensions and OPE coefficients) as well as new data such as the spectrum of
asymptotic states in the broken vacuum and form factors. The simplest bootstrap equation
arises by expanding a two-point function of local operators in two channels, at short distance
using the OPE and at large distance using the EFT in the broken vacuum. We illustrate
this equation in what is arguably the simplest perturbative model that exhibits conformal
symmetry breaking, namely the real ABC model in d = 4 — € dimensions. We investigate the
convergence properties of the bootstrap equation and check explicitly many of the non-trivial
relations that it imposes on theory data.
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1 Introduction

Spontaneous breaking of continuous global symmetries is a ubiquitous phenomenon in quantum
field theory. As is well known, it can occur in d > 2 spacetime dimensions, where it leads to
massless Goldstone bosons that parametrize the flat directions of the moduli space of vacua.
By contrast, spontaneous breaking of conformal symmetry appears to be very non-generic.
All known interacting examples' are supersymmetric, but it is not clear whether this is a deep
structural fact or just a lamppost effect. Intuitively, conformal symmetry breaking is rare (and
perhaps always requires supersymmetry) because a delicate conspiracy is needed to fine tune
to zero the potential of the dilaton (the Goldstone boson of broken scale invariance) [11, 12].

1We restrict our analysis to legitimate local CFTs, in particular we require the existence of a local stress-
tensor operator with finite two-point function. It is not difficult to engineer examples of flat directions in
(non-supersymmetric) CFTs to leading order in the large N expansion, see e.g. [1-7] or (which is much the
same) in theories defined by a classical AdS dual [8-10]. These moduli spaces are expected to get lifted at
finite V.



It is however difficult to phrase this intuition in abstract CFT language. Ideally, one would
like a simple sharp criterion that establishes which CFTs (abstractly defined by their usual
conformal bootstrap data) admit moduli spaces of vacua.

How to formulate the abstract bootstrap question is conceptually clear, if not immediately
useful. CFTs that admit a moduli space of vacua have a larger set of observables, which must
satisfy some stringent bootstrap conditions. One can draw an illuminating analogy with CFTs
in the presence of a conformal boundary. In boundary CF'T, there are three sets of data:

(i) The usual bulk data: spectrum and OPE coefficients of the bulk local operators.
(ii) Boundary data: spectrum and OPE coefficients of the boundary local operators.

(iii) Bulk-to-boundary data. Using the OPE, they can be reduced to the two-point functions
of one bulk and one boundary operator.

In a CFT with a moduli space of vacua, there are also three sets of data:
(i) The usual “bulk” data: spectrum and OPE coefficients of the “bulk” local operators.

(ii)’ S-matrix bootstrap data: the spectrum of asymptotic states in the broken vacuum, and
their complete S-matrix. The massless dilaton is always one of the asymptotic states,
possibly accompanied by additional massless moduli.

(iii)” Form factors, i.e. the overlaps between the local operators and the asymptotic states in
the broken vacuum.

In both cases, one is breaking the original SO(d, 2) conformal symmetry to a subgroup, which
is SO(d —1,2) in BCFT and the Poincaré group ISO(d — 1,1) for a CFT on its moduli space.
In both cases, the original CF'T data are supplemented by new sets of data, which are specific
to the choice of boundary state or to the choice of broken vacuum, respectively. The new
data must obey stringent bootstrap constraints. But the analogy only goes so far. First,
there are profound technical differences, as BCF'T requires only a relatively minor extension
of the conformal bootstrap framework, while CF'Ts on their moduli space present us with a
novel interplay between the conformal bootstrap and the S-matrix bootstrap. Second, there
is an essential physical difference: a generic CF'T is expected to admit at least one consistent
boundary state, but no moduli space of vacua. The problem of conformal symmetry breaking
can then be precisely phrased: for which special choices of CFT data (i)’ can one find data
(ii)” and (iii)’ that satisfy all the bootstrap constraints?

In this paper we will not be able to answer this difficult question. Our more modest
aim will be to illustrate the simplest bootstrap equation, namely the one that arises from
the two-point function of scalar primary operators [13], in a very concrete example. In a
companion paper [14], we address the question from a very different angle, providing a simple
necessary condition for spontaneous conformal symmetry breaking, under the assumption
that a continuous global symmetry is also broken on the moduli space.

As we have emphasized, all known interacting CFTs with a moduli space are supersym-
metric. The most familiar examples are theories with at least four real supercharges in d = 3
and d = 4 spacetime dimensions. Their moduli spaces are holomorphic, parametrized by



expectation values of chiral operators which are charged under a continuous R-symmetry.
Moduli spaces can also occur in 3d SCFTs with only two real supercharges, as a Zo R-
symmetry is sometimes sufficient to establish the existence of flat directions (see [15] for
a recent discussion). These models are particularly interesting for our purposes. As the
powerful restrictions imposed by holomorphy are absent, their low-energy EFTs are less
constrained, and their operator spectrum more generic — in particular there are no towers of
protected chiral operators. We may thus hope to learn more general lessons. A related benefit
is the simplicity of several Lagrangian models in this class. We focus on what is arguably the
simplest perturbative example that exhibits conformal symmetry breaking, namely the real
ABC model in d = 4 — € dimensions. Its field content is comprised of three real scalars and
three real fermions.? The moduli space consists of three equivalent branches (exchanged by
the discrete global symmetry) that meet at the origin, each branch corresponding to one of the
three scalars acquiring a vacuum expectation value. The real ABC model illustrates conformal
symmetry breaking in the minimal setting where the dilaton is the only massless modulus.

A basic set of consistency conditions for a CFT with a moduli space arises by considering
a two-point function of local operators and expanding it in two “channels”,

(0]0;(2)0;(0)[0) = ZmAfg - (0104(0)0)  forz 0 (1.1)

—Z (0|O;i(z)|n)(n]O;(0)]0) for x — 0.

At short distance, we use the OPE and take the vacuum expectation value term by term.
While in the standard conformal vacuum only the identity term contributes, in the broken
vacuum scalar primaries can acquire a vev. The large distance expansion is instead obtained
by inserting the complete set of asymptotic states {|n)} in the broken vacuum.? This equation
was first written down in [13] but to the best of our knowledge never studied in any detail.

A first structural question is about convergence of the two expansions. It seems plausible
that the short distance expansion is absolutely convergence for any |z| < co. We believe this
to be the case at least in all perturbative models. Indeed the short distance expansion in the
broken vacuum is just the usual OPE, with the insertion at z = oo of a sum of scalar primaries
that enforce the non-zero vevs. A sufficient condition for its convergence is that the state at
infinity has finite norm; this is true in free field theory and we will argue that it remains true
to all orders in perturbation theory. By contrast, the x — co expansion is only asymptotic,
as can be checked already at tree level in our simple example. In momentum space, both the
short and the large distance expansions might have finite radius of convergence, but there is
no overlapping region where they both converge. This complicates the use of the equation in
an abstract bootstrap setting, but it is not an obstacle in our concrete example, where we
can just fully compute both sides of (1.1) to any given order in perturbation theory.

2This is the counting of degrees of freedom in the physical dimension d = 3. To perform the e-expansion
one needs to analytically continue in the number of fermions [16, 17], as we will review in detail.

30f course, inserting a complete set of states just yields the Kéllén-Lehmann representation, which holds
for arbitrary distance |z|; what we mean here is that this latter representation is particularly useful at large
distances, where the contribution of massive states is exponentially suppressed.



We compute the two-point functions of the elementary fields up to one loop order in
the real ABC model, in a double-scaling limit where the mass of the single-particle states
is kept fixed. We find that (1.1) implies intricate constraints on the data of the theory.
Already at tree level, where the large distance expansion is very simple (only single particle
states contribute, either the massless dilaton or a massive scalar), matching with the short
distance expansion is non-obvious — even the basic requirement that there is no divergence
as x — oo requires large cancellations. While these relations amongst theory data ultimately
follow from the selection rules enforced by supersymmetry on the Lagrangian model, they
are definitely not a consequence of superconformal representation theory alone, and appear
highly non-trivial from an abstract bootstrap viewpoint.

The remainder of the paper is organized as follows. In section 2 we introduce the basic
bootstrap equation (1.1) and investigate its convergence properties. We also prove that
infinitely many scalar primaries must acquire a vev. In section 3 we briefly review 3d A/ =1
models, their moduli spaces, and how to set-up their e-expansion, focusing on the example
of the real ABC model. Section 4 is the main technical part of the paper. We compute
two-point functions of elementary fields in the real ABC model up to one loop order. We
illustrate how the bootstrap equation (1.1) works in this concrete example and check many of
the non-trivial relations that it implies on the data of theory. We conclude in section 5 with a
brief outlook. Appendix A contains several technical details of our perturbative calculations.

Note added. As we were finalizing this work, [18] appeared on the ArXiv. The authors
study similar questions in the context of four dimensional planar A/ = 4 Super-Yang-Mills
theory. Our results for the convergence of the OPE agree with the explicit calculation there.

2 Bootstrap equation

In this section we review and study the basic bootstrap equation (1.1). Our main new
contribution is a discussion of its convergence properties.

2.1 OPE on the moduli space

Let us first introduce some notation. We consider a generic CFT in d > 2. We denote
its (possibly trivial) internal symmetry group G. We suppose that the theory admits an
n-dimensional moduli space in which infinitely many* scalar primary operators acquire a
vev and break the conformal symmetry, as well as the internal symmetry as G — H. We
assume that the moduli space is n-dimensional, i.e. that the vacuum we are considering
can be specified in terms of the expectation values (O;) = v; of n operators, which thus
provide a set of local coordinates on the moduli space. Notice that the dimension of the
moduli space is always larger or equal to ng, g + 1, where ng, g is the dimension of the coset
G/H, due to the appearance of ng si Goldstone bosons and one dilaton. At a generic point
on the moduli space it is always possible to make a change of coordinates {v;} — {v, P4}
with A = 1,...,n — 1, such that the ¢4 take values on a compact manifold while v > 0 is

1As we will discuss shortly, consistency of the OPE implies that, once a scalar operator with dimension
A > 0 admits a nontrivial one-point function, infinitely many other operators also acquire a vev.



noncompact. Therefore, choosing v to have mass dimension one, we write the expectation
value of an arbitrary real scalar primary operator as

(Oax (), 5= (v, B|Oa x (2)|v, §) = Eov™. (2.1)

In (2.1), (A, X) are the scaling dimension and the other internal quantum numbers of the
scalar primary operator, and the {{n} are a set of nontrivial coefficients that may depend on
the exactly marginal couplings ~ g of the theory (the so-called conformal manifold) and on the
parameters of the moduli space: £p = §@(gz_§, g). We will drop the subscript v, qg in what follows.

In CFTs, local operators form a closed algebra under the operator product expansion
(OPE). As is well known, this allows to formally reduce all correlation functions to a sum
of one-point functions by repeated fusion of the operators. The only difference between the
conformal vacuum and the broken vacuum is that, in the first, only the identity operator
admits a nontrivial one-point function, while in the latter all scalar primary operators may
acquire a nontrivial vev. In this section we explore some of the consequence of the OPE for
the CFT data under the assumption that the theory admits a moduli space.

Let us warm up with two simple general considerations. First, the vacua which exhibit
spontaneous symmetry breaking (SSB) can obviously be seen as a consequence of different,
nontrivial, boundary conditions at x — oo. In radial quantization we can thus regard
correlation functions on the moduli spaces as matrix elements between the conformal vacuum
at |z| = 0 and a nontrivial state aq(v, @| at || = co. The OPE allows us to formally deduce
such state from the requirement that all one-point functions are correctly reproduced. We find

rad <U; &’ — rad <O‘ Z OA,X(OO)<OA,X>1}7(;7 (22>
AX

where as usual O(c0) = lim, o0 |2/?*O(z) and we assume canonically normalized operators
(0]0i(00)O0;(x)|0) = &;5. Equation (2.2) is formally analogous to the structure of Cardy
states in boundary CFTs [19].

As we will see, upon using the OPE most correlation functions reduce to a sum of infinite
terms. In some cases however the OPE truncates. Most notably, this is the case for the
two-point functions of the stress tensor 7% or a conserved current j# with a scalar primary
operator Oa x(0). This is because the OPE takes the form

n
JE(x)Oa,x(0) ~ ﬁ\ﬂdéa@A’X(o) + descendants + spinning operators, (2.3)
dA OH — T
TH (2)Op x (0) ~ y R |de Oa x(0) + descendants + spinning operators,  (2.4)
- d—1|T

where Q4_1 = lgerd//;) is the volume of the d — 1-dimensional sphere, and 6,0a x = [Qa, Oa x]
is the variation of the operator under the internal generator (), associated with j¥, e.g.
00p,; = qOp 4 for an internal U(1) symmetry and a charge q operator. The absence of
additional scalar primaries in (2.3) and (2.4) follows from the Ward identities, which imply
0ui(x)Oa x(0) = §42)8,0n x (0) and Th ()0 x(0) = §%(x)AOa x(0). Since descendants
and spinning operators have vanishing expectation value, the OPE relations (2.3) and (2.4)



imply that the two-point functions of the current and the energy-momentum tensor with
the order parameter read

M

T = —— {6, a , 2.
<]a (x)OA,X(O» Qd_1|l‘|d< 0A,X> |:L‘|d(Q 5(9) ( 5)
dA oM — x“x; dA S x“x;
T _ dx — A dx . 2.
(T"(2)0a x(0)) = -— ST (Oax) = —Cov QT (2.6)

As is well known, transforming to momentum space (2.5) and (2.6) one finds that both
correlators display a pole ~ 1/p?. This proves the existence of 1 + n¢ /5 massless particles,
the dilaton and the Goldstone Bosons for the broken internal symmetry.

Let us now focus on the main object of interest in this paper: two-point functions of
primary operators

(0i(2)0;(0)) , (2.7)

where we collectively denoted with subscripts ¢,j the relevant quantum numbers. For
simplicity, we restrict to scalar primaries. We also choose a basis where all operators are
real: O; = (’);r .

The correlation function (2.7) satisfies a bootstrap equation, first presented in [13]. On
the one hand, (2.7) can be evaluated using the OPE

N

Ok (0
O;(x)0;(0) = z PA + Z 9ij ||A+k(A)A + descendants + spinning operators,  (2.8)

where the first term is the contribution of the identity operator® and glk denotes the OPE
coefficients (which are constrained by the internal symmetry). On the other hand, we can
write (2.7) (at finite distance) as the sum of the disconnected term and the Kéllen-Lehman
decomposition of the connected correlator

(Ou(@)0;(0) = &0 + [ dm pig(m?) G (). (2.9)
where we used (O;) = £v™i, G,2(2) is the free propagator
ddp eip:c md—2

Gro) = | Gy Tt = sy 2 071D (2.10)

and p;; is the spectral density

pij(0°) = (2m) "1 Y _(0[Oiln) (n]0;10)6% (4 — p) - (2.11)

n

Combining (2.8) and (2.9) we obtain the relation

ZgijkkaAk_Ai_Aj - &&= v RTA /dmZpij(m2)Gm2 (), L=vwv|z|. (2.12)
k

5For generality, from now on we do not assume that the operators are canonically normalized.



This equation relates the mass spectrum on the moduli space to the CFT data in the conformal
vacuum.® We will refer to it as the bootstrap or crossing equation.

As a first trivial application, we use (2.12) to prove that infinitely many operators must
acquire a vev in the broken vacuum. If the sum on the left-hand side is infinite there is
nothing to prove. If instead it truncates, (2.12) implies that there must be at least one
operator with scaling dimension A, = A; + A;. This is because the massless particles on
the moduli space together with the cluster decomposition principle and unitarity imply that,
at large distances, the connected two-point function behaves as

e pAEA—(d-2)
(0i(2)0;(0)) = /depij(mz)Gw(ﬂ?) < W=z —+-+ (2.13)

where II;; is a (potentially vanishing) coefficient that depends upon the matrix element of the
operators with the massless scalar particles ¢, of the moduli space and the dots stand for terms
which vanish faster than 1/|z|¢"2 for large 2. Therefore in the limit L — oo, (2.12) reads
A Zk: 9i G LM TR = g, (2.14)

which, since the sum truncates by assumption, implies that all operators satisfy Ay < A;4+ A,
and that there is at least an operator with scaling dimension Ay = A; + A;. We may then
iterate the argument for the two-point function of such operator, and so on, and conclude
that infinitely many operators, with arbitrary large scaling dimension, must acquire a vev.

In some cases, the sum on the left-hand side of (2.12) does truncate for a family of
correlators. This is famously the case in free theories or for holomorphic correlation functions
of chiral operators in SCF'Ts. In this case the previous argument implies the existence of a
ring of operators with scaling dimension ), npAg, where n; € IN and Ay are the dimensions
of the generators of the ring.

As we will see, in most cases the sum in (2.12) receives contributions from an infinite
number of terms. In this case we cannot commute the sum with the limit in (2.14), and there
is no need for an operator with scaling dimension A; + A; to exist.

2.2 Short and long distance expansions

To analyze the consequences of (2.12) we should understand the convergence properties of
both the short and long distance expansions on the moduli space. Here we provide some
general comments. We will verify our statements in a concrete example in the next sections.

Let us first discuss the convergence of the short distance expansion. To this aim, we
can use the Cardy-like representation in (2.2) to write the two-point functions in radial
quantization as

(0i(2)0;(0)) = raa (v, | Os(x)0;(0)|0)raa
= 37 (M), 660 aa (0104 (00) O4(2) 05 (0) |0}y . (2.15)
Lk

%Analogous equations can be written in other setups, e.g. for thermal correlators [20, 21] or correlation
functions in a finite density sate. In these other examples, however, the spectral density decomposition is not
constrained by relativity and spinning operators may also acquire a vev (O, .4, ) X 621 . 627,/.



This equation suggests that the OPE converges for any |z| < oo by the usual argument [22].
Indeed the product O;(x)0;(0)|0);aq corresponds to a state in radial quantization. By the
state operator correspondence this state can be written as a linear combination of primaries
and descendants.

To make the former argument rigorous a sufficient (but actually not necessary) condition
is that the state 1,q(v, 5] is normalizable. As an example, it is simple check to that this
is the case in the theory of a free scalar ¢ in d-dimensions. Indeed at leading order the
only operators acquiring a vev are those of the form ¢". Since their tree-level two-point
function in the conformal vacuum is

n!

<¢n(x>¢n(0)>v:0 = n'[Go(x)]n = (d — 2)”93_1’x‘2n ’

(2.16)

%qsnm) - %gﬁ”]@. Therefore

the corresponding normalizable state is |d§”> =
we find that the Cardy-like state (2.2) reads

rad Z " 2 GO( )} <¢n| — |U>rad _ i Rn(d_Q)Un% [Go(l)]n |¢§n> ,

n! — n!
n=0
(2.17)
a—2

where v 2 = (¢) and in the formula for the conjugate state R is an arbitrary distance scale,
which can be thought as the distance between the origin and the point around which we
perform the inversion in the definition of a conjugate operator in radial quantization. We
conclude that the norm of the state is finite

o0 [Go(l)(m)d—ﬂ" (Ru)t-2
rad<v‘v>rad = ngo ol = exp [MMH] . (218)

In perturbative theories, such as N'= 4 SYM at weak coupling, higher orders in perturbation
theory are not expected to affect the finiteness of the norm (2.18), and thus the convergence
of the OPE. Indeed, the k-th loop correction to (¢") scales at most as g?*n2*, where g is
a cubic coupling (the estimate is reliable for 1 < k < n). Thus loops do not modify the
~1/ v/n! behaviour of the expectation value of the normalized operator for large n; similarly,
the norm of operators with many derivatives is also suppressed by large factorials. Given these
arguments, we expect that the OPE in the moduli space converges at any finite |z| to all orders
in perturbation theory, and more in general in all models that admit a perturbative limit.

Let us now discuss the long distance limit. As we observed earlier around (2.13), this
limit is controlled by the cluster decomposition principle and the massless particles of the
moduli space. In general, the long distance expansion contains both inverse powers of |z|,
which are generically computed from the EFT for the massless fields in the moduli space, as
well as exponential corrections due to the exchange of massive modes. Therefore the long
distance expansion is always asymptotic. The requirement that correlation functions remain
finite at large separation implies that the series that we obtain using the OPE must have
oscillating signs. This is because a series with positive coefficients that converges for any
|z| < oo necessarily gives rise to a function that diverges for |z| — oo.



These abstract considerations are concretely exemplified by the exchange of a single
mass m particle in the two-point function.” This results into a contribution proportional
to the free propagator

d—2

(2m)4/2(mla]) 2"

(O(2)0(0)) > # Kaa(mlal). (2.19)

It follows from the properties of the Bessel function that the short distance expansion of
the massive propagator for m|z| < 1 is uniformly convergent for any finite 2. Additionally,
it is well known that the expansion of the Bessel function K,(z) is given by an oscillating
series. E.g. in d = 4 we have

1 X 72\ 2k z
Ki(z) = -+ Z () i log <> + qk} , (2.20)
z = 2 2
where the pi’s and ¢;’s have opposite sign
1 OF+1) + 9Dk +2) koo logk
Pk = 371 ka—w ( )y ) e —L. (2.21)
Elk + 1)! 2 [kNk + 1)!] El(k+ 1)!

As we will see, the logarithms in (2.20) are interpreted as perturbative contributions from the
anomalous dimensions of the operators exchanged in the OPE in concrete models. Both the
sum over the pi’s and the gx’s produce, individually, a behaviour of the sort ~ e*log(z)/z
for large z. However such contributions cancel when summing them up and the end-result
decays exponentially ~ e ?/z.

Incidentally, from (2.21) we see that, in order to reproduce the exchange of a finite number
of massive particles in d = 4, we must have operators with scaling dimension A ~ 2n — 2 with
n € IN, whose product of OPE coefficients and one-point functions produces two terms scaling
as > &o, gO%A ~ 1/[T(A/2)]> ~ e=2184  More generally, a simple saddle-point argument
suggests that the regularity of the long distance limit implies that the sum over operators

—imA—AlogA [18]. This scaling is not generic

of dimension close A yields Y &o, gO%A ~ e
and implies nontrivial cancellations between the CFT data of the theory. Indeed, from the
discussion above we infer that one-point functions of scalar operators scale as ~ 1//I'(A)
for large A in perturbative models, while from [23-26] we know that in CFT the product
of the density p(A) of scalar primary operators Oa and OPE coefficients go%“‘ scale as
p(A)\gO%A| ~ 274 This would suggest a scaling ZfoAgO%A ~ 1/y/T(A) for the coefficients
in (2.21), which is much larger than the actual result.

Finally, it is also possible to consider two-point functions in momentum space. We do
not have general arguments for the convergence of the small and large momentum expansion.
The example of a free massive propagator (p? + m?)~! suggests that these expansions in
general have at most a measure zero overlapping regime of convergence. We will see that this
conclusion holds also at one-loop level in the example that we will study in section 4.

"In many perturbative examples, such as in ' = 4 and the ABC model that we discuss in the rest of the
paper, correlation functions at leading order in the coupling are given by a finite sum of free massless and
massive propagators.



3 Moduli spaces in 3d N/ = 1 SCFTs and the real ABC model

In this section we first review some general facts about three-dimensional A' = 1 theories and
their e-expansion, and then focus on the real ABC' model, arguably the simplest perturbative
Lagrangian model that admits conformal symmetry breaking.

3.1 Moduli spaces in 3d N = 1 theories

Three-dimensional theories with A/ =1 SUSY do not have a continuous R-symmetry, and so
lack the full power of SUSY that theories with more than two supercharges possess. However,
it turns out that a discrete R-symmetry is enough in order to provide some exact results, and
in particular in some cases it is enough to protect a moduli space from being lifted due to
quantum corrections. Therefore, 3d N = 1 SCFTs are the minimal known interacting theories
that admit moduli spaces, since all one needs are two supercharges and some discrete internal
symmetry group. These ideas have appeared in various places in the literature, e.g. [27-29],
and we review them mostly following the recent discussion in [15].

Our 3d N' = 1 superspace conventions follow [30]. A Lagrangian for a 3d N' = 1
SUSY theory can be written in superspace, with z* the usual coordinates and 6, Majorana
Grassmannian coordinates. The superpotential for a single real scalar superfield takes the form

/dQGW@), (3.1)

where we emphasize that W is not a holomorphic function of the fields and that it does
not include derivatives. The basic observation of [15, 27] is that the superspace coordinates
behave as Majorana fields, and therefore transform as d?6 — —d?6 under time-reversal 7.
For the theory to be invariant under 7', the superpotential must be odd under it, and ®
must transform accordingly.® We will also refer to T as a discrete Zo R-symmetry, due to
its action on the superspace coordinates. For instance, in the supersymmetric Ising model,
which is the IR fixed point of the theory a real superfield with superpotential W = %@3,
the field ® is odd under the Zs R-symmetry (for a recent discussion see e.g. [31] and ref.s
therein). As we will see below, in some cases the Zs R-symmetry is enough to prohibit
any term which can lift a moduli space.

A simple example is N' =1 SQED, consisting of a gauge multiplet, a single (complex)
matter multiplet ® and vanishing Chern-Simons level. Classically there is a moduli space
parametrized by |®|. Gauge invariance forces the superpotential to be a function of |®|?,
and so there are no possible superpotential terms which are odd under Zf. As a result
a superpotential cannot be generated due to quantum corrections and the moduli space
becomes exact quantum-mechanically.” Note that adding a Chern-Simons term breaks the
R-symmetry and so lifts the moduli space (although in some cases an R-symmetry is emergent
in the IR, again leading to a moduli space [32, 33]).

In the following we will study another simple example of a Wess-Zumino model that
admits a moduli space: the real ABC model. This consists of three real superfields and

8In components, this requirement follows from the transformation properties under 7" of the Majorana, fields.
9At least to all orders in perturbation theory. There are cases where non-perturbative corrections can lift
the moduli space [15].
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superpotential
W= gABC’. (3.2)

Classically, this theory has a moduli space consisting of three branches where on each branch
only one of the three fields gets a vev. To find which branches are protected from quantum
corrections, we analyze the symmetries of the model. There is a Z symmetry that flips
the sign of all the superfields (A, B,C) — (—A, —B,—C), as well as an Sy symmetry group
that is obtained composing the obvious S3 permutation group with the action (A, B,C) —
(—A,—B,C).!1Y These are enough to constrain all possible effective action terms to be of
the form

Wes D ABCf(A% B2, C?), (3.3)

for some function f. Since none of these terms lift the classical moduli space, we find that
it is exact quantum-mechanically.

3.2 e-expansion for 3d N = 1 theories

The coupling g in the 3d model (3.2) is strongly relevant. In order to obtain a more tractable
weakly coupled theory we would then like to analytically continue the real ABC model to 4 —e-
dimensions and use the e-expansion.!! However, naively there is an obstruction to using this
method: 3d N =1 consists of two supercharges, while the minimal number of supercharges
in 4d is four. Equivalently, our theories will include 3d Majorana fermions, which have half
the number of degrees of freedom as the minimal fermionic representation of the 4d Lorentz
group. It is thus not immediately clear how to study such theories in the e-expansion from 4d.

A solution was proposed in [16, 17] (which is valid up to three-loops in perturbation
theory). Consider a general 3d N' = 1 Wess-Zumino (WZ) theory, consisting of interacting
scalar multiplets ¥, for ¢ = 1, ..., Ny whose components are real Bosons ¢; and Majorana
Fermions ;. In components, the Lagrangian takes the form

1 i i N 1
L= 5(0ub:)” — GUfDagty — ZO0W U aj — FOW)’ (3.4
where W (U;) is the superpotential. We instead choose to study a (non-SUSY) theory with
an additional flavor index a = 1,..., Ny for the fermions, and Lagrangian
1 2 i a B i a 1 2
L= 5(8#»@') - iwaiaaﬁwai - iaiajw¢ai¢aaj - i(aiW) : (3.5)

This theory reduces to the SUSY theory when Ny = 1. On the other hand, it can be studied
in the e-expansion for IV, a multiple of 2 by repackaging the 3d two-component Majorana
fermions into Ny, /2 4d four-component Majorana fermions. We will go a step further and
work with Ny a multiplet of 4, in which case the fermions can be repackaged into Ny /4
4d Dirac fermions. The 4d Lagrangian is

L= %(%@)2 + i Dby — 0;0; W bpithy; — %(@‘W)z, (3.6)

198, acts as the group of permutations of the set {A+ B ~C, A+C—~B,C - A+ B, —-A— B —C}.
"The ABC model and other N = 1 SCFTs have also been studied directly in 3d via the numerical
bootstrap [34] (see also [35, 36] for related bootstrap studies).
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where now we sum over b = 1,...,Ny/4. The Lagrangian (3.6) can be studied in the
e-expansion using standard techniques. Eventually one sets Ny = 1, which should correspond
to the original 3d N' = 1 theory. This strategy was tested for the 3d N' = 1 Ising model
in [16] and for additional 3d N’ = 1 theories in [37-41].12

3.3 The real ABC model in 4 — € dimensions

We now consider the continuation of the model (3.2) to 4—e dimensions. Using the prescription
explained in (3.5), the renormalized Euclidean Lagrangian reads

L= %(8@)2 + %(56)2 + %(80)2 + a;Pa; + 1:%(%@ + &Pe;

gu/?

+ [a (gzéz + Ez&) +b (Ezdz + C:Lzéz) +c (5151 + 1:)251)} (3.7)

2
+ g <a2b2 + b2 + 02a2)
3 )
where p is the sliding scale, g is the dimensionless renormalized coupling. The fields a, b, ¢
are real scalars while @;, b;, ¢; are Dirac spinors with ¢ = 1,..., Ng. We perform calculations
with Ny, arbitrary and set N, = 1/4 at the end. By the discussion in section 3.2 the model
should describe the 3d N = 1 ABC model (3.2), so that e.g. a,a will combine to form
the scalar superfield A.

As mentioned in section 3.1, the model is invariant under a discrete internal S4 group
which is obtained by composing S3 permutations of the operators with the Zs flip of the
sign of two arbitrary superfields. Additionally, the model is invariant under a discrete chiral
symmetry, under which the Dirac fields transform as (a;, bi, ¢i) — (s, v5bi, v5Ci), and all
the scalars flip sign (a,b,¢) — (—a,—b,—c).

We work in dimensional regularization within the minimal subtraction scheme, see
appendix A for details. Setting Ny = 1/4, the beta function of the coupling is

3

e 59 9g° g
b9 = =59 " Jame ~ S{amy 9 ((47r)6> ' (38)

We see that the model (3.7) admits a perturbative fixed point in 4 — € dimensions at

2
(4‘2:)2 = %e + 1178562 +0 (63) . (3.9)
We will focus on such fixed-point. At the fixed-point correlation functions are independent of
the sliding scale (provided we rescale the operators appropriately, see (A.7)). In appendix A
we list some perturbative results for the CFT data that we will need in the next sections.
In what follows, we will drop the subscript from the coupling, leaving understood that we
always work at the fixed point.

12A5 pointed out in [40], beyond three loops the theories fail to be supersymmetric in the usual dimensional
regularization, ue to issues involving the three index antisymmetric symbol. A prescription to resolve this
issue at four loops was given in [40].
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A technical remark is in order. As further explained in appendix A, we work with
operators in the minimal subtraction scheme rather than with canonically normalized ones.
For instance, the two-point function of a(z) in the conformal vacuum to one-loop order reads

(a@)a(0) = (3.10)

where Ay =1 — 2 + O (€?) is the scaling dimension (the two-loop result is given in (A.12)
of the appendix) and

NAA:(d_21)ch—1 1—16()(2—|-’7+10g7r)+0<62)} . (3.11)
The canonically normalized operator is given by a@ = a/v/Naa.

There are two main technical advantages in working with operators in the minimal
subtraction scheme, rather than with canonically normalized ones. First, in this scheme, we
do not have to compute explicitly the normalization factors Nj; of the operators exchanged
in the OPE; this will reduce the amount of work required in the next section to compare the
OPE with explicit results for the two-point functions in the moduli space. Additionally, OPE
coefficients are particularly simple at leading order, since the fusion is trivial at tree-level
— e.g. a(r) x a(0) = Naal/x? + a?(0) + .. ..

As explained in section 3.1, we expect that the theory (3.7) admits a moduli space of
vacua in which one of the fundamental fields acquires a vev. It is instructive to check explicitly
that the quantum effective potential admits a flat direction. Without loss of generality we
choose to focus on a vacuum such that

@ #0, () ={c)=0. (3.12)

In this vacuum the internal symmetry is broken to a Zso X Zs subgroup consisting of the
exchange of b and ¢ and the transformation (a,b,c) — (a, —b, —c). Because of this symmetry
we can set both b and c¢ self-consistently to zero, and we find that the one-loop effective
potential is given by (note u¢ = 1 to this order)

Vet (@) [p=c=0 = 2 X %Tr {log (—82 + g2a2)} — Ny {Tr [log (9 — ga)] + Tr [log (P + ga)]}

Ng=1/4

= (1—4Ny) Tr [log (=0° + g%?)]| 0, (3.13)

which indeed vanishes for the prescribed number of fermions.

The moduli space is parametrized by a single real coordinate, the expectation value (a).
As the field a has a non-trivial scaling dimension Ay =14 O(e), it is slightly awkward to
work with (a). We find it more convenient to parametrize the moduli space by a coordinate
v of dimension one, defined by the equation

i—2 [ gu AA_%
- <2> —w[140(e)] . (3.14)
It is redundant but useful to also introduce a mass scale m as
%(a) =mP =m[l+0 (). (3.15)
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The point of this definition is that m coincides at tree level with the mass of the gapped
particles. Clearly m and v are related as

(3.16)

These definitions will be convenient in the next section, when we will compare perturbative
two-point functions in the moduli space with the OPE.

To compute correlation functions in the moduli space, we simply need to shift a« — a+ (a)
in the Lagrangian (3.7). Neglecting O(e) terms and suppressing the fermion flavor index
1 to avoid clutter of notation, we obtain

L~ (007 + 53 [(Qws) +m*d] +aa+ Y [7a (9 m) 2]
+ +

- ga (f_i_ —Fp3y) — g:z_ (F_a+ai )+ §x+ (Zsa+ aiy) (3.17)
2 2
m
+ %a(azi +22) + %aQ( 2 +a?)+ %(mi —2?2)2,

where we defined the following combinations

bte
=g

and similarly for the fermions. We therefore see that the spectrum consists of a massless

(3.18)

superfield, i.e. the dilaton multiplet, and two massive superfields.

As usual in perturbative theories, the mass m is proportional to the coupling times
the expectation value of the field. As we will explain in more detail in the next section,
this fact implies that, in order to reproduce correlation functions in the moduli space at
arbitrary distances from the OPE, we need to known certain CFT data to arbitrarily high
order in e. This is because using the action (3.17) we formally work in the double-scaling
limit g — 0, (a) — oo with g(a) ~ m = fixed, in which we resum the effect of infinitely many
vertices proportional to ~ g(a) with respect to the perturbation theory in the conformal
vacuum. The existence of this double-scaling limit can also be understood rescaling all the
fields in (3.7) by 1/g, so that the coupling appears only as a 1/¢% overall factor in front of
the action. Then the definition (3.15) ensures that the vev of the rescaled field, and therefore
the rescaled action in the moduli space, depend only on m (and p). Physically, this is just
the statement that in perturbation theory we work perturbatively in the coupling, but to
all orders in the mass m ~ gv of the particles.

4 Bootstrap equation in the perturbative ABC model

This section contains our main technical results. We use the real ABC model in d =4 — ¢
dimensions to illustrate how the bootstrap equation works in perturbation theory, up to
one-loop order.
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4.1 Tree-level two-point functions

From the action (3.17), we readily obtain the two-point function of the fundamental field,
which is completely specified by

1

(a(w)a(O)) - <CL>2 + (d — 2)Qd_1‘x|d—2 + 0(92), (4'1>
d—2
x = {zy(z)x = mn a—2 (mlx 3, .
(b(x)b(0)) = (z+(x)24(0)) (27r)d/2(m\x|)dz;2KT( z|) + O(g7) (4.2)

where we recall that Qg_; = 27%2/T'(d/2) is the volume of the d — 1 dimensional sphere.
To this order, the two-point functions (4.1) and (4.2) are saturated by the exchange of,
respectively, a massless and a massive particle on the right-hand side of (2.12). We will
refer to the results (4.1) and (4.2) as tree-level, since their connected terms are O(g%) and
are simply given by the free propagator. On the other hand, the disconnected term is of
order O(g~2) when working at fixed m,

4
(a)? =~ (4.3)
g
where we used (3.15). As we discussed in section 2.2, it follows from the structure of the
free-theory propagator that the OPE converges to this order.

Two-point function and OPE at order O(g~2). In the following we compare (4.1)
and (4.2) with the OPE expansion (2.8) in greater detail. Our motivation for doing so is
twofold. First, as we will see, the seemingly trivial results (4.1) and (4.2) require several
nontrivial identities and cancellations between the anomalous dimensions and OPE coefficients
of the operators of the theory when matched to a conformal OPE. Therefore, studying the
OPE provides an alternative viewpoint on the necessity of special selection rules for the
existence of a moduli space in the double-scaling limit g — 0 with fixed m. Additionally, we
would like to understand how the long-distance behaviour of the correlation functions arises
from the OPE. We will then generalize these considerations to one-loop order.

Consider first the correlation functions to order O(1/g?):
(a(z)a(0)) =v* +0(g"),  (b(x)b(0)) = (c(2)c(0)) = O(g”). (4.4)

Physically, to the order O(1/g?) the correlators are purely classical, and thus are evaluated
replacing the fields with their classical expectation value. Equations (4.4) match on the
nose the result of the tree-level OPE:

a(x)a(0) = 471]_1562 + a?(0) 4 descendants + O (g2) ,
b(x)b(0) = 1 L 5+ b?(0) + descendants + O <g2> ) (4.5)
e

from which equations (4.4) arise using (a?) = v? [1 + O (¢?)] and (b?) = (c?) = 0.
The simplicity of the matching between the OPE expansion and the explicit results from
the moduli space action (3.17) is a consequence of the selection rules of the ABC model. To
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see this, note that the tree-level vev of the operators a™ is proportional to inverse powers
of g in the double scaling limit with fixed m ~ guv:

(@) =" = (2m)"/g". (4.6)

Therefore, a priori, it was possible for the inverse powers of g in (4.6) to compensate for
the factors of the coupling in the higher order terms of the OPE (4.5) (indeed, we have
seen that the O(g°) OPE yields a O(g~2) contribution to the correlation function through
the expectation value of a?). This however did not happen in the ABC model due to the
specific structure of the interactions.

To make the former discussion more precise, imagine perturbing the action (3.7) with
interaction vertices of the form g¢%a* and g¢%a3b. These terms of course destroy the moduli

13 we will soon recover this conclusion from the

space, but we neglect this fact for now
viewpoint of the OPE. It is easy to see that these vertices give rise to OPE coefficients

of order ¢"~2 for the operators a":

0 _ n—2.,.n—2,n 0
6£int ~ #g2a4+#g2a3b — a(aj)a( )D aneven #g x a ( )’ (47)

b(2)b(0) D X pmeven #9" 2" 2a™(0) ,

where we denoted with # some O(1) factors which are irrelevant for our discussion. Therefore
n—2,n

2™ in the OPE would result in a ~ ¢g" 20" ~

in the presence of such vertices, each term g
m"™/g? contribution to the correlators (4.4), since the vev (4.6) scales as g~™. By dimensional
analysis, these term would yield a xz-dependent contribution to the correlation functions
already at order O(g~2).

Therefore we conclude that it is crucial that the vertices in (4.7) are tuned to zero for
the correlators (4.4) to assume a simple factorized form, compatible with (a) = v, at the
classical level. Of course, that these terms must be tuned to zero is not a surprise, since
they break supersymmetry and the internal symmetry of the ABC model, that ensure the
existence of a flat direction. Our point is simply that the agreement between the conformal
OPE and the seemingly trivial expressions (4.4) already at this order relies on the nontrivial
structure of the CFT data of the theory.

4.2 General power counting in perturbative Yukawa models

In what follows we would like to systematize the comparison between the OPE and the
perturbative results in the moduli space at small g and fixed m. To this aim, it is useful
to make a digression and consider the scaling with the coupling of correlation functions in
generic weakly coupled theories in a spontaneously broken phase (either conformal or not).

Let us specify what we mean by generic weakly coupled theory. We consider a four-
dimensional model consisting of an arbitrary number of scalars and fermions (the inclusion of
vector bosons is straightforward) where we allow for all possible mass and renormalizable
interaction terms compatible with the Euclidean group. We further assume the most natural
scenario, in which the scaling of all terms is set by a single coupling g and a mass term m up

13These terms might also spoil the conformal invariance of the model at one-loop if included on their own,
but for now all we need is that the model is classically conformal.
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to O(1) prefactors. This means that all masses are proportional to m, and Yukawa couplings,
scalar cubic vertices and scalar quartics scale as, respectively, g, gm and g2.

Let us estimate OPE coefficients and one-point functions in this scenario. Naturally, the
vev v of fundamental scalar fields is set by m/g. Let us generically denote with ¢ the bosonic
fundamental operators and with v the fermionic ones. A generic composite operator is made
out of products of the fundamental fields and derivatives, schematically

Onynymg = 00 0" (4.8)

It is easy to get convinced that the vev of a generic such operator in the limit of small
coupling and fixed mass is parametrically bounded as

(Onynginy) S V"6mE" N0 ot ametno fgno. (4.9)

For operators with no derivatives or fermions ny = ny = 0, (4.9) agrees with (4.6). We also
used that fermionic bilinears acquire a vev at loop level via a self-contraction, e.g. (@1@ ~m3.
Finally derivatives kill the classical expectation value, but when acting on propagators in
loop diagrams also yield factors m.

Similarly, connected three-point functions of two fundamental scalar fields and a composite
operator scale at most as an amputated 2 — ng + ny correlator, therefore we have the
following parametric bound

(GOnympmg)e S g2, (4.10)

up to a function of m and the distance between the operators (which is trivial for m = 0).

Of course, (4.9) and (4.10) are just crude upper bounds; for instance, spinning operators
or total derivatives always have trivial expectation value. For our purposes it is enough to
note that at fixed and sufficiently large classical scaling dimension, in a generic model we
find a nonzero number of operators for which the inequalities (4.9) and (4.10) are saturated.
There are however two nontrivial exceptions to these estimates. One concerns operators
without fermions but at least two derivatives. In this case, since for the operator to acquire
a vev we need to self-contract at least two scalars via a propagator, we find

<On¢70,na> N "It mn¢+na/9n¢_2 for ng >0, (4.11)

which is g? smaller than (4.9). The other exception concerns the three-point functions of two
fundamental scalar fields and the identity operator, formally an operator of the form Og 0,
in which case (¢¢1). ~ O(1). For this reason, in what follows we will treat the contribution
of the identity to the OPE separately from the rest.

Given (4.9) and (4.10), we can now readily write the generic expansion of CFT data
and one-point functions in generic Yukawa models in the e-expansion, like the ABC model
considered here. The scaling dimensions admit the usual expansion:

3
:n¢+§n¢+na+e’yg)+62fyg)+.... (4.12)

Note that here we define anomalous dimensions including the classical piece %n(ﬁ + %nw —

Aon¢,nw,na
Nng — %mp. Identifying g2 ~ €, OPE coeflicients are expanded as

R () 1 2
966Onymymy =€ 2 ! [gé(go + eg((w)o + € géqﬁ)o +.. } . (4.13)
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Finally, the vev of a composite operator reads

mn¢+%n¢+na 9
<On¢7n.¢),n8> = W 6(9 + ego +e€ 5( ) . :| . (414)

Note that, since (O) m®° by dimensional analysis, the coefficients 58: ) of the expansion
in (4.14) must contain powers of logm.

It is important that the structure of these expansions is not affected by operator mixing.
For instance, an operator ~ ¢2" may mix with ~ g?(9¢)2¢"*, which contributes at subleading
order to the vev (4.14) and at leading order to the OPE (4.13).

4.3 Consistency conditions at tree level

We now proceed with a detailed analysis of how the consistency conditions are obeyed in
the real ABC model at tree level.

Order O(g—2). Of course, the real ABC model is not a completely generic model, and
its observables obey other selection rules besides Poincaré invariance. In particular, only
superconformal primaries can acquire a vev. Additionally, the internal symmetry group
constrains, besides others, the structure of the OPE and one-point functions, and in particular
implies that the leading term in (4.13) vanishes in many cases. We have already seen that
some of these cancellations are also required for the OPE to match the trivial results (4.1)
and (4.2) at order O(g~2) — below we extend the discussion to order O(g®). We will discuss
the order O(g?) in section 4.4.

Let us first reproduce our former discussion of (4.4) in the current notation. Using (4.11),
we see that at order O(e~!) only operators of the form Ogy 00 = ¢** (with ¢ = a,b, c) may
potentially contribute to the two-point function of the fundamental field (odd powers are
excluded because of the internal Zs). Therefore we must have

vt = Z Z |2 2n ,(3107 (4.15)

neEN O2y,.0,0
m*" /e (o) ()
O:Z Z |22 2n§(9 9BBO - (4.16)
neN Oy 0,0

Note that the identity does not contribute at this order. As we have seen before, these
equations are satisfied because the only operators acquiring a vev are of the form a?". These
operators have an anomalously small OPE coefficient because supersymmetry and the internal
group forbid g?a* and ¢g?a’b interactions in the action, hence implying gg)i A2n = gg)])g q2n = 0.

Beyond leading order additional operators acquire a vev, and we expect that all scalar
superconformal primary operators, up to the requirements of the internal symmetry, acquire
an expectation value at sufficiently high order in perturbation theory. Additionally, the
operators that diagonalize the dilation operator in the interacting theory are nontrivial
linear combinations of A%" and other classically degenerate operators, see appendix A. For
these reasons, the comparison with the OPE is less trivial at order O(e”). We discuss some

detailed checks below.
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Order O(g®). Let us consider for concreteness the (aa) two-point function. At this order
the OPE also receives contributions from operators with an arbitrary number of derivatives
and up to two fermionic fields: Qa2 0.2k = 0%k p2n =2k and Oop—3-2k22k = D2k p2n=3=2k ).
Operators of the form ¢>")? in principle could also contribute at this order, but their
OPE coefficients vanish because of the discrete chiral symmetry mentioned below (3.7).
Therefore we find

NAA| 0 2n IOgCC ( )
s+ 2mPeeY) = S0l % — 2y
47r2|$\2 A SA 72 ng\% 2‘$|2 2n (927;:)0 o9 AAO( A )
(1)
+ Z I ‘2 TR [5 gAA(’) +§o 9aa0 (4.17)
neN Oznp,o

n—2 n—1
Sy @00, Y W 5&0},

k=0 O2y,_3_2k, 2,2k k=1 O2y_2k. 0,2k

where N44 is given in (3.11). A similar equation holds for the (bb) two-point function,
with the left hand-side replaced by the short distance expansion of the 4d massive scalar

m*z? m2z2
21lo 4~ —
+256 5 og 1 +4v -5+
(4.18)

Let us unpack (4.17). The first term on the left-hand side is the massless scalar propagator,

propagator (2.10):

1 m? m2a?
Gm2($2):M+WlIOg< 4 +2’7—1

while the second term arises from the expansion of (A)2. From (3.15) we find:

5(0) \/3 5(1) _ 2010gm+9. (4.19)
o’ A 20v/107

As formerly commented, we work with non-canonically normalized operators, and the de-
pendence on m is fixed by the scaling dimension. The first term on the right-hand side
of (4.17) is the contribution from the identity in the OPE. The second term arises from the
anomalous dimensions of A and the composite operators on the right hand side of (4.15).
On the second and third lines we grouped the first terms in the expansion of the vev and
the OPE of the operators Og,,0,0 ~ ¢*", which already appeared in the previous order, with
the first contribution of operators with either derivatives or fermions; note that because of
the property (4.11) the operators Oz,—2k.0,2k = 0%k p?n =2k have 5((90) = 0.

Let us now see explicitly how the leading terms at short distances are obtained from the
OPE. The ~ 1/22 on the left-hand side of the tree-level results is trivially reproduced by the
contribution of the identity. The ~ z° contributions instead arise from operators of the form
®?. As detailed in appendix A, these can be grouped into a singlet S = A% + B2+ C? and a
doublet { D1, Do} = {A%— B2% (A% +B?—2C?)/+/3} under S;. The internal symmetry implies

(D) = V3(Dy), gAAD, = —9BBD, = V39AAD, = V39BBD, = 9AAD , (4.20)
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as well as gaas = gpps. Therefore, comparing the OPE with the tree-level results for the
two-point functions we find

0) (0 1 0 1
0=¢90s (1§ - 2,(4’)+ &g () —29%) (4.21)

1 0) (0 1 1 0 1 1
=600 (18 - 2D) - 2696 0p (15 - 1) (4.22)

from the logz? terms, as well as

0 0 0 @
2606 = €9 lhs + 68 9hs + 3 [fp 94D +§§>)9,(4,21D} ;o (4.23)

1

m? 0 0 0) (1
1672 [log( 1 ) +t2y - ] = &5 ghs + €895 — 3 [fD 9D +f§:>)9,(4,2m} ;o (424)

from the 29 pieces.
To illustrate the potential uses of these relations, note that the tree-level OPEs and

vevs are
o _1 o _1 b
9aas =30 9aap T 5 ) =¢) = 52 (4.25)
Using these, (4.21), (4.22), (4.23) and (4.24), yield relations between the one-loop CFT data
of the theory from a tree-level calculation on the moduli space. For instance, if we are given
the one-loop anomalous dimensions of A,

1 2
7=z, (4.26)
from (4.21) and (4.22) we can solve for the anomalous dimensions of S and D
2
¥ = - ) =1, (4.27)

which are in perfect agreement with the results (A.14) and (A.16) from a direct calculation
in the appendix. Similarly, from (4.23) and (4.24) we obtain the following relation between
OPEs and one-point functions

1

9k + —5(” = [10y — 14 — log(1024) — 10logm] , (4.28)
1

g, + g) = 14 [og(1024) — 10y — 13 — 50log ] . (4.29)

These are satisfied by the results (A.24) and (A.46) in the appendix, that give'4

Gihs = % (logm+7) (4.30)
oWhp = — 55 logm+7) (4.31)
5(1) __10logm — 51(—;14 + 5log(4m) ’ (4.32)
f(Dl) 5log(4m) — 523702771 — 5y — 13 (4.33)

' Note that while the Euler number always appears in the combination v — log(4) in loops in dimensional
regularization, the free theory propagator in position space is proportional to Q;_ll, whose expansion near
four dimensions introduces additional factors of v that contribute to the OPE coefficients.
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It is increasingly difficult to check explicitly the identities arising from higher powers
of 2% in (4.17), since we need to compute the CFT data of higher dimensional operators
including OPE coefficients to very high order in €. As an illustration, from the x2log 2>
terms of the OPE expansion in (4.17) we find the following

0 1 1
0= gx () —204) + €& g% (i — 204

+ *ﬁ?gf/)w (’71(\4) 2 (1)) + fﬁ)gAiN (%(\P —27511)) ; (4.34)

m = & 94Ax (’Y(zl) - 274 )) + 55?’9%1( (vg) - 27§ ))

- fﬁM gioan (7 = 2Y) - 3 2090 (W -2, (4.35)
where at this order we receive contributions from two singlets, 3 and K, and two doublets,
M; and Nj, see appendix A for the expressions in terms of fundamental fields. Eqgs. (4.34)
and (4.35) are in agreement with the results (A.18), (A.20), (A.24) and (A.49) in the appendix.

In summary, already at tree-level the correlators (4.1) and (4.2) contain a wealth of
information on the CF'T data of the theory. The comparison with the OPE shows that the
existence of a moduli space relies on nontrivial relations between the CFT data of the theory.
To further illustrate this point, in the next section we will extract the O(e?) corrections
to the OPE coefficients of .S and D from the one-loop result for the two-point functions
of A and B in the moduli space.

We speculate that the power-counting analysis of this section should be easily generalizable
to non conformal theories, with the main difference that the OPE is not constrained by
conformal invariance. It might be possible to perform a detailed comparison between
perturbative correlators and the OPE in massive theories along the lines of our discussion,
perhaps using conformal perturbation theory to evaluate corrections to the OPE. This
analysis might prove useful in understanding the properties and structure of the OPE in

generic massive theories.!?

4.4 Two-point functions and consistency relations at one-loop

In this subsection we extend our considerations to one-loop order. We will consider both
the convergence properties of the short and long distance expansions, as well as some of the
consistency relations that arise from the comparison of the explicit results with the OPE.

The one-loop two-point functions are more easily expressed in momentum space. We
define the 1PI factors as

/ d4zet?® (a(x)a(0))1—1oop) = (49; ~ Laa(p) (4.36)

3 2 Fx:p
/ddxelpgc<$+($)$+(0)>(1_l00p) = (4977)2 (p2 _|_Efb)2)2

3

(4.37)

The relevant diagrams are shown in figure 1. As these show, at one-loop order we introduce
the contribution of two-particle states in the spectral density on the right hand side of the

15See [42, 43] and references therein for discussions of the OPE in massive QFTs.
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Figure 1. Diagrams contributing the two-point functions of a and x1 at one-loop. We neglected
diagrams proportional to massless tadpole that vanish identically in dimensional regularization.

bootstrap equation (2.12). A textbook calculation gives

1 _ P p? m?
——— 2 2 1
Laalp) = 2p\/élm + p? tanh ( g p2> + 1 [log (471- +v-2], (4.38)

1 p* +m? 3m! p?
sz(p) = ZPZ [IOg ( e ) +v = 2‘| - 74p2 log | 1+ W

+ im2 [6 + 3log(4m) — 3y — 2log (p2 + m2> — 2log (m2)} ; (4.39)

note that I'44(0) = 0, ensuring that the dilaton remains massless also at one-loop level.

Convergence of the short and large distance expansions. The convergence properties
of the low and large momentum expansion follow from the analytic structure of the results.
The 1PI factors (4.38) and (4.39) have a branch cut starting, respectively, at p> = —4m?
due to the continuum of two massive particles (from the diagrams 1(a) and 1(b)), and
at p?> = —m? (from the diagrams 1(d) and 1(e)), due to the exchange of a dilaton and a
massive particle. At this order both correlators are analytic for |p?| < m?, because there
is no cut corresponding to the exchange of two or more massless particles. Therefore the
small momentum expansion for [p?|/m? < 1 is convergent. Less obviously, the momentum
space OPE expansion is convergent for momenta larger than the branch points, i.e. for
|p?|/(4m?) > 1 in (4.38) and for |p?|/m? > 1 in (4.39).

Now we would like to compare explicitly our results with the OPE as in the previous
section. To this aim, we need the correlation functions in position space. The Fourier
transform of (4.37) can be expressed in closed form in terms of Bessel functions as

2 m mx T
(24 (2)24(0)) 1 710oP) = — (41)2 { ﬁ;(% ) [lOg <4m2$4) + 3y + 2}
Ko (4.40)

+ [2 — m2z? (4 + 2log(47) — 5logm — 27)] } .

167222
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We were only able to express the Fourier transform of (4.36) as a series expansion for small z%:

2 [eS)
(a()a() 1) = Ty 37 2t [y logt e + flogle] ] . (141)
k=-1

We obtained closed expressions for all the ay’s and S;’s, and we computed the values of the
first few 1’s; we will derive below also the asymptotic form of the ~;’s for large k. A similar
expansion can be obtained for the two-point function of b from (4.40). We provide details of
the derivations of (4.40) and (4.41) and the explicit values of the coefficients in appendix A.5.
We find again that the OPE is uniformly convergent for any x2 > 0. For the two-point
function of x4, this follows from (4.40) and the properties of the Bessel functions. To see
that the OPE converges also for the (a(x)a(0)) correlator, we use that the coefficients of the
logarithmic terms in the expansion (4.41) of (a(x)a(0)) decay faster than exponentially

1 log(k/m)

~ 167T5/2]€5/2(k!)2 ) Bk: ~ _m for k— 0, (442)

893

as can be verified from the explicit result in (A.69) of the appendix. It follows that the 7’s
obey a similar behavior. This is because (a(z)a(0)) does not grow exponentially at large x2,
while (4.42) imply that the sum of the first two terms in (4.41) yield an exponentially growing

m|z|

behaviour ~ e Therefore the sum over the ~;’s must compensate for that. Evaluating

the sum (4.41) via the saddle-point approximation we find that this is possible only if

log®(k/m)
e 6m5/2k5/2 (k1)

for k— 0. (4.43)

Similarly to the discussion below (2.20), these observations imply that the long distance limit
of the sum in (4.36), which is proportional to ~ 1/|z|?, arises as a consequence of several
nontrivial cancellations between the individual contributions in the OPE.

The cuts in momentum space imply that at this order the long distance limit of the dilaton

—2mlz|  Therefore

two-point function receives exponentially suppressed contributions ~ e
we conclude that the long distance expansion in coordinate space is asymptotic for both

correlators, as expected.

Consistency relations at one-loop. Finally, we can add the one-loop results to the O(e)
terms from the expansion of the tree-level and compare explicitly to the OPE. The check is
largely analogous to the one detailed at tree-level. The main difference is that at this order
we also have terms proportional to log? |z| times the square of the anomalous dimensions
of the operators of the form ¢",

2 log? ||

(a(@)a(0)) > em® 3 &&APho (6] - 28) =5

02,0,0

(4.44)

and similarly for (b(z)b(0)). Additionally at this order there are contributions from operators
with four fermionic fundamental fields, that did not appear before.

We verified explicitly the agreement with the OPE for the operators of engineering
dimension 2, i.e. S and D;. In particular, we found that the e2log? |z| and e2Clog|z|
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terms are correctly reproduced by the OPE using the results in appendix A for the one-
and two-loop anomalous dimensions, and for the one-loop OPE coefficients and one-point
functions of S and D;. Additionally, analogously to (4.28) and (4.29), from the ez" term
we find a relation between the two-loop one-point functions and OPE coefficients of S and
D;. From this relation and the results for the one-point functions in (A.47) and (A.48), we
extract the O(e?) corrections to the OPE coefficients of S and D:

(2) log?7  logm

60~2 — 204~ + 2572 — 390
= + BT 10y —17) + Sl

9aas = 50 T 750 9000 ’
2 2 2
(2) logm logm 30y + 24~ — 257 + 480
- 5y + 2 . 4.45
9440 = 50"t 10007+ F 12000 (4.45)

Note that a direct calculation of these OPE coefficients would involve rather intricate
three-point two-loop integrals. Here instead we extracted the result from a textbook one-
loop calculation of a two-point function and from the two-loop one-point functions (whose
calculation is simple because of the trivial kinematics).

Finally, matching the e 22 log? |z| terms in the expansion of the two-point functions with
the OPE, we find the following conditions:

(1) 1))2 1) (1)) 2
L oo 057 220) g 0 O - 20)
39002 °% Jaax 5 K 9AAK 5
1 1 2 1 1 2
0.0 (O —2) () -2
+ ng gAAMf *fN AAN# , (4.46)
1) 5 D)2 O 5 )2
L _ 0,0 M+£<o> (0) M
64072 °% a4z 2 K 9AAK 5

o0 (0 -20) 2 0 (F-28)

2
€M gaam~ 5 T 3NYaanT 5 (4.47)

where ¥ and K, M; and N; are the operators with engineering dimension four that con-
tributed to (4.34) and (4.35) at tree-level. Also (4.46) and (4.47) are in agreement with the
results (A.18), (A.20), (A.24) and (A.49) in the appendix.

5 Outlook

In CFTs with moduli spaces, the operator spectrum and OPE coefficients are not independent
of the particle spectrum and interactions on the moduli space. At least a subset of the relations
between these quantities is obtained by expressing correlation functions in the moduli space
in terms of an infinite number of one-point functions by repeated application of the OPE.

In this paper we have studied the simplest set of such constraints, those that arise when
considering a two-point function of local operators by comparing the OPE channel with
the exchange of the asymptotic states in the broken vacuum, equation (1.1). Our most
conceptual point concerns the convergence of the OPE, which we found admits an infinite
radius of convergence under mild assumptions. We also studied a concrete example, the real
ABC model in 4 — € dimensions, to one-loop order. We found that already at low orders in
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perturbation theory, (1.1) enforces nontrivial identities between the CFT data of the theory
to arbitrarily high order in the coupling. We provided a systematic framework to write such
relations order by order in perturbation theory in arbitrary weakly coupled models, and
verified several of the constraints we found explicitly in the example at hand.

Overall, our analysis provides an abstract viewpoint, not based on a Lagrangian de-
scription, on why CFTs with moduli space are nongeneric in the space of theories. Yet, we
did not find a systematic approach to study the bootstrap constraints in full generality and
at the nonperturbative level. We still seem far from answering the longstanding question
of which conditions must the CFT data of a theory obey for it to admit a moduli space.
Below we list some possible future directions.

The most obvious next step is perhaps to extend our analysis of the bootstrap equa-
tion (1.1) to a more constrained example, such as planar N’ = 4 Super-Yang-Mills theory.
This promises to be a rich problem due to the possibility of exploring both the weak and
strong coupling regime, using supergravity as in [44], and because of the potential interplay
with integrability. (While this work was under completion, [18] appeared where an analysis
of this setup was initiated).

Besides studying additional explicit examples, it would be desirable to make the abstract
bootstrap problem more systematic. A key technical obstacle to this aim is that the OPE
channel of (1.1) does not admit any positivity property; in fact we argued that the OPE
expansion must necessarily yield a nontrivial oscillating series to be consistent with a regular
long distance limit. Below we thus discuss some potential alternative strategies to decode
the properties of the data of a CFT with a moduli space.

The simplest alternative is probably to consider the S-matrix in the broken vacuum,
which obeys well known unitarity and crossing constraints, as in the S-matrix bootstrap
literature (see e.g. [45] for a recent review). The existence of a moduli space would then be
implemented by demanding the existence of a massless dilaton, whose low energy interactions
are constrained by the nonlinear realization of the symmetry [11, 12]. See [46] for progress
on a related problem. Additional constraints might arise including form-factors of the stress
tensor in the bootstrap system as in [47], and imposing tracelessness.

In a companion paper [14], we take a very different approach. We take as an input the
effective field theory (EFT) for the dilaton and the other massless moduli [11, 12, 48], and,
rather than expanding around the broken vacua, we look for backgrounds that correspond
to primary states in radial quantization. This approach has the advantage that the tuning
required for the existence of a moduli space, the absence of a potential of the dilaton, is an
explicit input in the construction of the EFT. Generalizing the ideas of [49], we establish in
full generality that, when an internal charge @) is spontaneously broken in the moduli space,
the lowest dimensional operators charged under the latter have scaling dimension growing
linearly with the charge Apin(Q) o« @ for @ > 1. The result is in general unrelated to the
existence of BPS operators, and it applies also when @ is not an R-charge, as we Verify
in several examples. This behaviour is to be contrasted with the scaling Ay (Q) o< Qa1
which is expected to hold in generic CFTs [50, 51], and thus is a nontrivial reflection of the
existence of a moduli space. In [14] we will also discuss additional aspects of the connection
between large charge operators and moduli spaces (see also [52, 53]), and list some interesting
directions for generalizing this approach.
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We also mention that in [54] it was also argued that, in A/ = 4 SYM, the massive spectrum
of the Coulomb branch is related to the cusp anomalous dimensions of supersymmetric Wilson
lines. It would be interesting to understand if there exist other quantitative connections
between conformal defects and the S-matrix in the broken vacuum in conformal gauge theories.

Finally, we cannot resist but mention that it would be interesting if any of these approaches
could shed light on the longstanding question of the existence of a dilaton in the conformal
window of QCD [55, 56] (see [57] and ref.s therein for a summary of lattice searches). A
priori, as emphasized in [58, 59], the existence of a moduli space in a non-supersymmetric
theory would be a rather finely tuned phenomenon. In particular, it is now understood that
the spontaneous breaking of conformal symmetry is not related to the fixed point merger
mechanism, which is believed to take place at the lower edge of the conformal window, as
the examples studied in [60, 61] show (see however [10] for some holographic examples of
dilatons at fixed-point merger points). Yet, there exist some examples of moduli spaces
in large N theories [1, 2, 4, 5], and thus it is not logically impossible that a flat direction
accidentally opens up in the large N, limit of QCD at some value of Ny/N.. An elegant
speculative scenario would be that such a flat direction emerges precisely at the lower edge
of the conformal window, so that the conformal and spontaneously broken phases would
be continuously connected.
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A Technical details of the perturbative calculation

A.1 Some details on the scheme

We work in bare perturbation theory with the Lagrangian

1 1 1 _ = .

+ 5 {a (blcZ + clbl) +b(¢a; + a;é;) + ¢ (CLJ)Z + bzcl)} (A1)
2
90 ( 2;2 2 2 2 2

+§(ab + b“c —i—ca),

where gq is the bare coupling and in this section only we work in terms of bare fields. All
calculations are done for ¢ = 1,..., Ny where Ny = 1/4.

The relation between the bare coupling and the renormalized (physical) one is expressed
through an ascending series of poles at ¢ = 0:

dg  d2g
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where p is the sliding scale. To two-loop order, we find

59° 9g° g

%= Tar2 ~ To(any 9 ((4@6) ’ (A.3)
75 5 7

529:32(4%4+0<(4€T)6> . (A.4)

Requiring that the bare coupling is independent of u, we extract the beta-function (3.8).
In the minimal subtraction scheme, the wave-function renormalization of a composite or
fundamental operator O is written as a series of ascending poles with no finite term:

1) (2)
ZO:1+Z(’)€(9) +2062(g) .., (A5)

where each coefficient is given in a perturbative series as zék ) (9) = #g°F + #4¢%:2 4 ... The
wave-function is related to the anomalous dimensions by

AO - A(9|c1assical = Z(B 879 _59 + /Bg|d=4) 5 (Aﬁ)

where Ap|classical 18 the engineering dimension of the operator. We then define the renormalized
operator as

O — MA(’)lclassical_AO ZOOI‘GI’I. , (A?)

where the subscript distinguishes the renormalized operator from the bare one and the factor
of the sliding scale upfront is chosen so that Oy, has dimension An. This ensures that
correlation functions of renormalized operators at the fixed point are py-independent. We
provide explicit results for the wave-functions and scaling dimensions of several operators
in the next section.

To compute correlation functions in the moduli space, we simply need to shift a — a + vg
in the Lagrangian (A.1), where vg is the expectation value of the bare field:

L= %(8@)2 + % > |02 + miad| +ada+ Y [#+ (D F mo) 7]
I +

- %a (Fd_ — Tody) — %x_ (F_a+ai_ )+ &;M (ira+ai) (A8)
2 2
m
+ 2 Ya(z? +22) + @aQ(xi +a2)+ D (22 —22)?,

2 8 32

where mo = govg/2, we suppressed the fermion flavor index i and X1 are defined in (3.18).
Because of (A.7) the vev of the bare operator A is related to the vev of the renormalized
field (3.14) by

(aren.) = p24~F Z3Ya). (A.9)

Equivalently, the bare vev is related to the moduli space coordinate v as

-2 /m AA_%
ZZIUO =v z () , (A.10)
7
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where Z4 and A, are, respectively, the wave-function renormalization and the scaling
dimension of the field, given in (A.11) and (A.12) of the next subsection.

In the following subsections, as well as in the main text, we will never consider bare
fields again. We therefore remove the subscript ren. and indicate renormalized operators
with the same symbols as their bare counterpart.

A.2 Scaling dimensions

We obtained the anomalous dimensions and wave-functions at the fixed-point (3.9) for some
operators with engineering dimension 1, 2 and 4 (in d = 4) using the formulas in the appendix
of [16].16 We list the results below.

Operators are organized in irreducible representations of the discrete group. The funda-
mental fields (A, B, C) are grouped into an irreducible three-dimensional representation. We
find that the corresponding wave-function renormalization, to two-loop order, is given by

2 4 6
g g 9 1 ) g
Zy=1- - ——)+o—=—]|. A1l
A A(4m)Ze (47t (3262 16e) " ((4@6) (A.11)
The scaling dimension follows from (A.7):
d—2 g2 g4 g3 2 | 267 3
A= 5 T aume s O\ e 5 1 O () (4.12)

Let us now consider operators with classical dimension equal to 2. There are two
independent superconformal primary operators, which are neutral under the Zsy group. These
are conveniently grouped into a singlet and a doublet irrep.s of the permutation group Ss:

« The singlet is S = A% + B? + C?, with wave-function renormalization

392 g4 3 1 g6
To—1— _ - _ - Ol ——|. A.13
S 2(4m)2e  (4m)* (462 e) + (47)6 ( )
The corresponding scaling dimension is
392 gt g8 2¢  13¢?
Ag=d—2 o2 4O ) =2-C - O(€); A.14
s MCTES e i W 5 125 O (€): (A.14)

o The doublet can be written as {D1, Do} = {A? — B2, (A% + B2 — 2C?)//3}, where
we chose a basis such that the two-point function is proportional to the identity
(D;Dj) o d;j; its wave-function reads

4 6

ZD_1+O—8(fW)46+O<(4g7T)6> . (A.15)

16Ty compute the anomalous dimension of operators of engineering dimension 4, we included in the action
all the dimension 4 scalar operators invariant under the sign flip of two arbitrary superfields. We then obtained
the beta functions of the corresponding couplings using the formulas in [16], and computed the one-loop
dilation operator restricted to this subsector from the derivatives of the beta function with respect to the
coupling constants.
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The scaling dimension follows

9s g9 € 3
AD:d—2+O+4(4ﬂ)4+O<(4w)6>:2—64—254-0(6). (A.16)

Note also that the triplet {AB, BC, C A} is a superconformal descendant of the fundamental
field because of the equations of motion, that imply Q?A ~ BC, etc. We checked that its
dimension is A4 4+ 1 to two-loop order as expected.

In the main text we will also consider some operators with engineering dimension 4.

The ones we need are neutral under the Zs action, and consist of two singlets and two
doublets of Sj:

o the two singlets that diagonalize the one-loop dimension matrix are

Y =A'+ B* 4+ C* - (A’B* 4+ B2C? + C?A*) + O (Vo) ,
K =A* 4+ B* 4+ C* + 6(A’B? + B*C? + C?A%) + O (V) , (A.17)
where the O(y/€) corrections include terms with fermions and derivatives, that ensure

that these operators do not overlap with descendants of S or other primaries;!” to
one-loop order, the scaling dimensions read

Ang(d—2)+O+O<(4gf)4> =4-24+0(&),

2 4
Ag =2(d—2)+ (Z%Q +O<(4€:)4> :4+§e+0(e_2) ; (A.18)

e the two doublets are permutations of

12
My =A*—B* - W(AQ—BQ)CQ-FO(\/E) ;
NM—At_p -2 2o pyeriowe . (A.19)

7—73

such that, working again in a basis where (M;M;) o d;5, the second component reads
My = (Mi|gesc—Mi|acsc)/V/3 and similarly for No; the corresponding one-loop scaling
dimensions read

11— \/73) g2
AM:2(d—2)+( 4(4@2)9 +O<(g§4>:4—9+18/ﬁe+0(e2),

11 ++/73) g2 _
AN:2(d—2)+( I(M)?)g +0<(49f)4>=4—91({ﬁe+0(e2). (A.20)

Note that, denoting schematically with ¢ and v fundamental scalar and Dirac fields, a contribution of
the form gipé in (A.17) corrects the two-point function of ¥ and K only at O(g?), but it contributes at the
same order as the term displayed in (A.17) to the correlators of ¥ and K with operators of the form ¢.
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Finally, to compute OPE coefficients in the next section we will also need the following
three conformal primaries

W = % |a (be+ @) +b (7@ +ac) +c (ab+be)| + % (a%? + 0% + %a?) + O (e)
T = [a(be+ ) = b(Ga+ac)| +g(a> = b?) 2+ 0(e)
T, = \}5 (T1!B<—>c - TI‘AHC) +0 (Ve) , (A.21)

where {Tl, T 5} form a doublet and Wisa superconformal descendant of the superpotential
W at the fixed point. In (A.21) we neglected the fermion flavor index. For completeness,
we report the corresponding one-loop scaling dimensions

AVT/:4+O(62)’

7 2
AT_4+E6+0(6). (A.22)
The operators X, K, M;, N;, W, T; are all the operators with engineering dimension 4 that
are invariant when the sign of two different superfields is reversed.

A.3 OPE coefficients

Let us now present the OPE of the fundamental field to order O (¢). For convenience we
define a vector (V1, V2, V3) = (A, B, C), and an invariant tensor ¢,,; where a,b = 1,2, 3 and
1 = 1,2 are, respectively, triplet and doublet indices of the S4 symmetry group. Explicitly,
only the components of t,;; which are diagonal in the first two indices are non-zero, and read:

1
t11,1 t11,2 1 3
oo taoo | = | —1 % (A.23)
33,1 33,2 0 —%

Given this definition, we can compactly write the contribution to the OPE from the operators
listed in the previous section:
Vo (2)Vo(0) D gaas|z|*572246,,8(0) + gaaplz|*s 224ty ;D;(0)
+ gaas|z|P=T2246,5(0) + gaax || 2226, K (0)
+ gaan|z| SV 2Ly M (0) 4 gaan |z AN T2y, N (0)

A~—2A4c - .
VAL ? A(SabW(O)JFQAAT\x’AT ZAAtab,iTi(o)'

(A.24)

Below we compute the explicit value of the OPE coefficients in (A.24).

In general, to compute the OPE coefficients we need to know the two-point function of
the composite operator O of interest, from which we extract the normalization factors that
relates canonically normalized operators and those in the minimal subtraction scheme, and
the three-point function (AAQ). Explicitly, we define the two-point function normalization
of the lowest components of the superfields in the minimal subtraction scheme as

(O(z)O0(0)) = |;V|§fo . (A.25)
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The OPE coefficients of A and an operator O in then obtained from the three-point function

(A@AWOW) = L0 (A.26)

Note that in our scheme we do not need to know the normalization of the two-point function
of A. In practice, as usual, the expansion of the anomalous dimension will lead to logarithms
of the distance between the operators in perturbation theory.

The calculation of the OPE coefficients of the operators with classical dimension 2, i.e. .S
and D;, is straightforward, since they have different quantum numbers under the internal
symmetry and thus we do not have to worry about operator mixing. At tree-level, the result

immediately follows from the free theory OPE A x A D A? and the identity
1 1 1
A*=_S+_-Di+—~=Ds. A.27
3 27! 24/3 2 ( )

At one-loop, one finds

Nss = % + 3 +21)oﬂg47r —2) +0 (62) , (A.28)
Npp = 47;2 + (5 +25017(:§7r —1 + 0 (62) : (A.29)
The calculation of the tree-point functions is straightforward and one obtains:
gAAS = % + %6(7 +logm) + O (62) , (A.30)
JAAD = % — %6(’7 +logm) + O (62> . (A.31)

To efficiently compute the OPE coefficients of the operators with engineering dimension 4,
we note that to order O(g?) the only composite operators made of more than two fundamental
fields whose three-point three-point function with two a’s is nonvanishing are a’b? and
a (55 + 55). Since we work only at the leading nontrivial order, we may compute the OPE
coeflicients of these two operators directly, and then decompose them in terms of the operators
that diagonalize the dilation operator listed in the previous section, similarly to (A.27). There
is however as small subtlety: we should make sure that the operators that we use have zero
overlap with lower dimensional primaries such as a? and b?. To the order of interest, this

is achieved considering the combinations

O3 = a (be +b) - ( 479T )2(8(1)2, (A.32)
0= a?— I )2 9 ony? (A.33
1= b = i 0)” = i (00 -33)

The subtracted terms ensure that three-point functions take the expected structure (A.26).!%
Using the results for the tree-level two-point functions,

1

(O3(x)05(0)) = 6arS[a

10,  (Oy2)040) +0(e), (A.34)

~ 876zt

18n practice, we can neglect the additional terms in (A.32) and (A.33) if we content ourselves with computing
the three-point function (A.26) to leading order at small |x —y|, which is enough to extract the OPE coefficient.

,31,



and computing the three-point functions to O(g?), we obtain the contribution of O3 and
O4 to the OPE of the fundamental field

A(2)A(0) S [16+0( )] 2205(0) +

g; +0 <g4>] 220,4(0) (A.35)

To obtain the result for the OPE coefficients in (A.24), we simply need to decompose O3
and Oy in terms of a complete basis of operators of classical dimension 4 that can appear
in the OPE, ie. X, K, M;, N;, W and T;. We find

2

gAAY, = —JAAK = —%6 + 0 (62) ; (A.36)
2

JAAM = —YAAN = # +0 (62) ) (A.37)

Ianiy = ;\ﬁ [1+0(e)], (A.38)

daat = IO (239

Note that the subtractions in (A.32) and (A.33) can be neglected to this order when rewriting
O3 and O, in terms of operators that diagonalize the dilation operator.

Finally, for completeness we provide the expression for the OPEs of canonically normalized
operators for the operators in the first three lines of (A.24). To this aim, we need the
normalization of the two-point function of the fundamental field

Naa= ﬁ L 2201;5” Yo (). (A.40)
the two point functions (A.28) and (A.29) of S and D;, and the analogous results for ¥,
K y Ml‘ and Ni:

21 63

Nes = 648-1-0() N = 3278+O() (A.41)
73 - 7V73 VT3 + 73

The OPE coefficients for canonically normalized operators are then obtained via Agap =

9240V Noo/Naa. We find

AAAS_[—f6+O AAAD—1+T0+O<€2>, (A.43)

AAAS = —10\/> ( ) AAK = (62) (A.44)
B 6+ 2 r 6 — j%e
AAAM = " (\/>+ 7) +0 (62) , AAN = TToloEoT (m 7) ( ) . (A.45)

A.4 One-point functions

In the minimal subtraction scheme, the one-point functions of the two lowest dimensional
nontrivial operators to two loop order are given by

(8) = 9 2mAs=@=2¢e (D)) = V3(Dy) = 0¥ 2mAr =42, (A.46)
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where

2

£ =1+ g [y — 1 — log(47)] + 3800 [607% — 124(7 + 201og 2 + 10log ) — 257
+54 + 168log 2 + 84 1log 7 + 2410g(1024) log(2) + 60 log() log(167)] + O (63) ,
(A.47)
2
Ep=1+ %(l — v+ logdr) + 6800 {3072 — 127(23 + log 1024 + 5log 7) 4 2572 + 396
4276 log 7 + 1381og 16 4 30 log? () + 301log(16) log() + 6log(16) 10g(32)} +0 (63) .

(A.48)

In the basis discussed in the former section, the tree-level one-point functions of the

operators with engineering dimension 4 are particularly simple and read
() = (K) = (M1) = (N1) = V3{Mz) = V3(N2) = (A") = ' [1 + O (¢)] . (A.49)

A.5 Fourier transform of the one-loop two-point functions

In this section we compute the Fourier transform of the two-point functions (4.36) and (4.37).
First, notice that to obtain the four-dimensional Fourier transform of a function f = f(p?)
we can always perform the angular integration first and recast the integration as

/ d4p efipr(pZ) — i /OO dpp3f(p2) /ﬂ— d6 sin? Hefip\adcose
(2m)4 473 Jo 0
1

:@ﬂ%zﬁwﬂmv@%h@um

(A.50)

where J; is a Bessel function of the first kind. The result (4.40) then follows simply performing
the integration explicitly (e.g. using Mathematica).
Let us now discuss the Fourier transform of (4.36). This consists of two terms

(4m)? toop _ L[ Vami 4 pr o p
7 (a(x)a(0))1toor = (%)QM/O dle(plxD{ o tanh 1<m>

—i—1 lo m—Q +7—2
1%\ ) 77 '
(A.51)
The terms in the second line can be integrated explicitly and we obtain
m2

(4m)? vy _ 18 (F) £7=2 1
—r %P = F A .52
- {al@)a(0)) o @), (a2)

where

FWM)—mAm@h@m>

2 2
VAT o (P ) (A.53)
2p VAm? + p?

We were not able to compute the integral (A.53) in closed form. We will therefore content
ourselves with expressing the result as a series for small m?z?. To this aim, note that the
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short distance expansion of the correlator in position space cannot be obtained directly from
the large p expansion in momentum space, performing the Fourier transform term by term.
Indeed the large p expansion of the result (4.36) in momentum space produces terms of the
form 1/p?", which are not integrable for n > 2. To proceed instead we apply the method
of matched asymptotic expansions. Namely, we separate the integration into two regions
(0,a/|x|) and (a/|x|,00) with 0 < a < 1:

F(ml|z|) = Fi(m|z|,a) + Fa(m|z|,a), (A.54)

where

a/lz|
Fi(mlal,a) = Jal [ dp2(pla)

/ 2 2
2p VAm? + p?

0 4 2 2
Fy(mla|,a) = || / dp Jy (pla) P ! <p> . (A.56)
a/le]

Since for p € (0,a/|z|) we have p|z| < 1, the integral in the first region can be performed
expanding the Bessel function in a power series and performing the integration term by term.
Expanding the result for m|z| < a < 1 we find a double series of the form

Fi(m|z|,a) = (m|z])° {116(12[2 log a — 2log(m|z|) — 1] + O ((14)}
+ m2z? {é [2 log?(m|z|) — 2log(m|z|) + 1 — 4log(m|z|) log a

(A.57)

1
+2loga + 2log? a] +§a2 [log(m|z|) — loga] + O (a4)}

+0 (mifz[') .

Similarly, in the region p € (a/|z|, c0) we can expand the term multiplying the Bessel function

2

in a series valid at p? > m?. Performing the integral term by term and expanding for

mlzr] € a < 1 we find
1 1
Fg(m|x|,a):(m|x])0{2[log2—10g(mm|)—'y]—16a2[210ga—210g(m|x\)—1]+O<a4>}
1
+m?2z? {4 {2log(m|m|)loga—log2a—loga+(27—log4—1)log(m|x|)

+(fy—1)2+log22+(1—'y)log4} —31—2a2 [log(m|z|)—loga]+O <a4)}
+0 (m4|x|4) :
(A.58)

Summing (A.57) and (A.58) we see that the dependence on a cancels. From (A.52) we then
obtain the first few coefficients of the expansion in (4.41):

1 1
a-1=0, A0 = {652 U= Togn? (4.59)
5= 1 5 _logF+v-—1 5 _logF+v-—1 ’
1T g2 0= 82 ’ 1= 6472 ’
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_ y+2+log(m)
’Y—l - 16772 I
2 (log % +27~2) logm+3+2 [72+log? 2~ 2y(1+1og2) | +10g 16
e 2 , (A.60)
327
8 (log F42v—2) logm+T7+8 [72+log22—2’y(1+10g2)} +8log4
102472 '

"=

In practice, we can also obtain the coefficients of the x2#log? || and 2%* log |z| terms
in (4.41) from the large momentum expansion of the result (4.36). To this aim we note
(A.61)

that for any integer £ > 0 we have
/d4x log |z 22Fe'P* = pﬁfgk ;
/d4x log? || x%FeP? = pﬁf% [log |p| + dax] , (A.62)
where
ap = (—D)Fr?2% 4D (k + 2) k!, (A.63)
! —log2, (A.64)
(A.65)

day =~ — Hy — ————
ap =y — Hg 20+ 1)

bk: o (_1)k’+1ﬂ_222k’+3r(k + 2) k‘,

)

and Hy, is the kth harmonic number. We then compare to the large momentum expansion

042k Ck 10g |p| + By
m e (A.66)

of the result (4.36)
2 00
_ \W(1—loop) __ 9 v—2—log (47T)
a\p)al{—p = +
(afp)a(-p) e [ o >
where
r(k+1)
e = (— 1)k 2 A67
1 _
Bk — (_1)k2+122k’—1r (2 + k) (Hk_% Hk+1 + log 4) _ dk logm . (A68>
Vrl(k + 2)
We conclude that, for k > 0, the coefficients aj and i in (4.41) are given by
~ P _ d ~
Oy, B — B . ar k>0 (A.69)
k

Eq. (A.69) agrees with the former results (A.59) for & = 0, 1.
Note finally that the Fourier transform of z2* with % integer vanishes for p? > 0. Thus we
cannot extract the v;’s in (4.41) commuting the integral with the large momentum expansion
of the one-loop result, as we did for the coefficients of the logarithmic terms.
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