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We present the basis of dimension-eight operators associated with universal theories. We first derive a
complete list of independent dimension-eight operators formed with the Standard Model bosonic fields
characteristic of such universal new physics scenarios. Without imposing C or P symmetries the basis
contains 175 operators—that is, the assumption of universality reduces the number of independent Standard
Model effective field theory (SMEFT) coefficients at dimension eight from 44807 to 175. 89 of the 175
universal operators are included in the general dimension-eight operator basis in the literature. The 86
additional operators involve higher derivatives of the Standard Model bosonic fields and can be rotated in
favor of operators involving fermions using the Standard Model equations of motion for the bosonic fields.
By doing so we obtain the allowed fermionic operators generated in this class of models which we map into
the corresponding 86 independent combinations of operators in the dimension-eight basis of [C.W. Murphy,
Dimension-8 operators in the standard model effective field theory, J. High Energy Phys. 10 (2020) 174.].
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I. INTRODUCTION

The Standard Model (SM) based on the SUð3ÞC ⊗
SUð2ÞL ⊗ Uð1ÞY gauge symmetry has been extensively
tested at the Large Hadron Collider (LHC) and so far, no
deviation of its predictions [1] or new heavy state have
been observed [2]. The natural conclusion is that there
must be a mass gap between the electroweak scale and the
beyond the Standard Model (BSM) physics required to
address the well-known shortcomings of the SM. In this
scenario, precision measurements of SM processes are an
important tool to probe BSM physics and effective field
theory (EFT) [3–5] has become the standard tool employed
to search for hints of new physics.
The paradigmatic advantage of EFTs for BSM searches is

its model–independence since they are based exclusively on

the low-energy accessible states and symmetries. Assuming
that the scalar particle observed in 2012 [6,7] belongs to an
electroweak doublet, the SUð2ÞL ⊗ Uð1ÞY gauge symmetry
can be realized linearly at low energies. The resulting model
is the so-called Standard Model EFT (SMEFT) which can
be written as

Leff ¼ LSM þ
X
j¼1

X
n

fðjÞn

Λj O
ðjÞ
n ; ð1Þ

where the higher-dimension operators OðjÞ
n involve gauge–

boson, Higgs–boson and/or fermionic fields with Wilson
coefficients fn and Λ is a characteristic scale.
There is a plethora of analyses of the LHC data in terms

of the SMEFT up to dimension-six; see for instance [8–21]
and references therein. In order to assess the importance of
the different contributions in the 1=Λ expansion in such
analysis, as well as avoid the appearance of phase space
regions where the cross section is negative [13], one is
required in many cases to perform the full calculation at
order 1=Λ4. As is well known the consistent calculation at
order 1=Λ4 requires the introduction of the contributions
stemming from dimension-eight operators.
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At this point the advantage of the model-independent
approach mentioned above becomes a limitation due to the
large number of Wilson coefficients. Already at dimension-
six there are 2499 possible operators when taking flavor
into account [22,23]. At dimension-eight the number grows
to 44,807 [24,25]. Clearly such large number of operators
precludes a complete general analysis at any order beyond
1=Λ and we are forced to reintroduce some model
dependent hypothesis. In this realm, identifying physically
motivated hypothesis able to capture a large class of BSM
theories becomes the new paradigm.
One such well-motivated hypothesis is that of

Universality, which in brief refers to BSM scenarios where
the new physics (NP) dominantly couples to the gauge
bosons of the Standard Model. It was first put forward in
the context of the analysis of electroweak precision data
from LEP and low energy experiments, with the intro-
duction of the oblique parameters S, T,U [26,27] (or ϵ1, ϵ2,
ϵ3 [28]) which captured the dominant NP effects in the
observables. In the context of the SMEFT, Universality
formally refers to BSM models for which the low-energy
effects can be parametrized in terms of operators involving
exclusively the SM bosons, hereon referred to as bosonic
operators [29]. Ultraviolet (UV) completions that satisfy
this specific definition of universal theories include the-
ories in which the new states couple only to the bosonic
sector, as in composite Higgs models [30], as well as
models where the SM fermions are coupled to new states
via SM-like currents [31,32] like in type I two-Higgs-
doublet models [33].
In the EFT framework not all operators at a given order

are independent as operators related by local changes of
variables in quantum field theories possessing a jacobian
determinant equal to one at the origin exhibit the same
S–matrix elements [34,35]. In particular, operators con-
nected by the use of the classical equations of motion
(EOM) of the SM fields lead to the same S–matrix
elements [36–39].1 In general, a given SMEFT basis trades
some of the bosonic operators for other bosonic operators
and operators involving fermions, hereon called fermionic
operators, in order to keep only independent operators.
Therefore, the action of a rotated operator is equivalent to a
relation between the Wilson coefficients in the basis. These
relations for universal dimension-six operators were
obtained in Ref. [29].
This work represents the next step in the exploration of

the BSM effects for universal theories by presenting the
SMEFT operator basis and relations implied by the uni-
versality hypothesis at dimension-eight. As a first step we

search for a complete list of independent dimension-eight
operators composed exclusively with SM bosons before the
use of EOM. A large fraction of these operators involve
higher derivatives of the gauge bosons and/or the Higgs
field and therefore, in the existing dimension-eight basis
[24,25], they have been generically eliminated in favor of
fermionic operators. Consequently, in universal theories
only a subset of the fermionic operators of the general
dimension-eight operator basis are generated and, further-
more, their Wilson coefficients are related. In this work we
use, for concreteness, the basis presented by Murphy in
Ref. [24] which we refer to as M8B. Thus, the program at
hand is first to identify a suitable basis of independent
bosonic operators at dimension-eight and then by applica-
tion of EOM to identify the combination of fermionic
operators of M8B associated with universal theories.
The relevance of constructing the most general EFT

within a minimal set of assumptions—such as that of
Universality—is precisely to provide a tool for phenom-
enological studies as model independent as possible within
that assumption. On this front, it is important to stress that
the universality assumption allows us to perform detailed
studies at 1=Λ4 without resorting to very simplified hypoth-
esis where just one dimension-eight operator is considered,
or to specific UV completions. For instance, working in the
framework of universal models, Ref. [42] studies the impact
of dimension-eight operators on the experimental analysis
of anomalous triple gauge couplings by combining the
available electroweak precision data and electroweak dibo-
son (WþW−, W�Z, W�γ) productions. It is interesting to
notice that the inclusion of dimension-eight operators
breaks the relation λγ ¼ λZ that holds for the dimension-
six operators. Another possible application is the complete
1=Λ4 analysis of Drell-Yan processes [43] that goes beyond
the S, T,W, and Y oblique parameter analysis [44] with the
introduction of further contributions to the electroweak
gauge boson propagators.
For the sake of illustration we also present in Sec. VI a

few simple UV completions of the SM that give rise only to
bosonic operators when heavy states are integrated out at
tree level. As expected, once a specific UV model is
specified, only a subset of the possible dimension-eight
universal operators is generated, and its number grows with
the complexity of the UV completion and its mass spectrum.
Thus the results in this paper can be generically utilized in
two different approaches. Firstly, as mentioned above, it
allows to perform a 1=Λ4 complete analysis in a totally
model agnostic way by considering all universal dimension-
six and -eight operators which contribute to the process of
interest. Alternatively, it can be of practical use when
working within a specific universal UV completion matched
to the SMEFT by integrating out the heavy states to obtain
the generated bosonic effective operators up to dimension
eight. In this case the results in appendix A can be used to
rotate these generated bosonic operators to M8B without

1When considering higher orders in the 1=Λ expansion one
needs to take care when applying the EOM. While they are
consistent when at the highest order in the expansion considered,
at lower orders one needs to include terms “beyond linear order.”
Alternatively, the application of field redefinitions is always
consistent [40,41].
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having to do each time the exercise of applying the
equivalence of operators by integration by parts, Fierz
identities or equations of motion because it has been already
taken care of.
The work is organized as follows. Sec. II contains our

notation and framework. In Sec. II we present our notation
and framework. Section III is dedicated to presenting our
basis of independent dimension-eight universal bosonic
operators while in Sec. IV we construct the Lorentz
structures involving fermions associated with the product
of SM currents, which are used in Sec. V to obtain the basis
of universal fermionic operators. In Sec. VI we introduce a
few simple bosonic UV completions and the corresponding

low-energy operators, while we present our final remarks in
Sec. VII. The work is complemented with three appendices.
The full explicit expressions of the relations between the
bosonic and fermionic operators for universal theories are
presented in Appendix A. For convenience we include
in Appendix B a compilation of the relations more
frequently employed, and we reproduce in Appendix C
the subset of M8B operators which appear in the universal
operators.

II. NOTATION AND FRAMEWORK

Our conventions are such that the SM lagrangian reads

LSM ¼ −
1

4
GA

μνGAμν −
1

4
Wa

μνWaμν −
1

4
BμνBμν þ jDμHj2 þ λv2jHj2 − λjHj4

þ
X

f∈ fq;l;u;d;eg
if̄=Df − ½ðH̃†ūyu†qþ q̄yddH þ lyeeH þ H:c:Þ�; ð2Þ

where GA
μν;Wa

μν; Bμν stand for the field strength tensors of
SUð3Þc; SUð2ÞL; Uð1ÞY respectively. We denoted the quark
and lepton doublets by q and l while the SUð2ÞL singlets
are u, d and e and the respective Yukawa couplings are
yu;d;e. We also define H̃j ¼ ϵjkHk† with ϵ12 ¼ þ1.2 The
covariant derivative for objects in the fundamental repre-
sentation reads Dμ ¼ ∂μ − igsTAGA

μ − ig τa

2
Wa

μ − ig0YBμ

where Y is the hypercharge of the particle, TA are the
SUð3Þc generators and τa stands for the Pauli matrices. On
the other hand, the covariant derivatives for the field
strengths are

DρBμν ¼ ∂ρBμν; DρWaμν ¼ ∂ρWaμν þ gϵabcWb
ρWcμν;

DρGAμν ¼ ∂ρGAμν þ gsfABCGB
ρGCμν; ð3Þ

where fABC are the SUð3Þc structure constants. We denote
the SUð3Þc completely symmetric constants by dABC.
As mentioned above the first step in the program is to

obtain the basis of independent dimension-eight operators
consisting only of SM bosons. In order to do so we first
obtained the number of independent operators belonging
to each of the different bosonic classes before applying
the EOM using available packages like BASISGEN [45],
a modified version of ECO [46] given in Ref. [47] and
GrIP [48]. Next, we wrote down all possible operators
satisfying the SM gauge symmetry and Lorentz invariance.
In this process, we worked with the irreducible Lorentz
representation of the field strengths

Xμν
L;R ¼ 1

2
ðXμν ∓ iX̃μνÞ with X̃μν ¼ 1

2
ϵμνρσXρσ; ð4Þ

where we defined the Levi-Civita totally antisymmetric
tensor ϵ0123 ¼ −ϵ0123 ¼ þ1. The transformation proper-
ties of these fields under the Lorentz group are simple,
XL ∼ ð1; 0Þ and XR ∼ ð0; 1Þ under SUð2ÞL ⊗ SUð2ÞR. The
Bianchi identity reads DμX̃μν ¼ 0 implying that DμX

μν
L ¼

DμX
μν
R . At this point, we obtained all possible linear

relations between our set of operators using SUð3Þ and
SUð2Þ Fierz transformations [49–51] summarized in
Appendix B.
Further, linear relations between the effective operators in

a given class can be obtained using integration by parts
(IBP) for which we follow a procedure similar to the one
described in Ref. [52]. In brief, given the field content and
number of derivatives in a given class we obtain all
operators invariant under gauge and Lorentz transforma-
tions. To obtain the relations among them implied by IBP
we write all the vector structures yνj that contain one less
derivative than the operator class under consideration, then
the IBP relations are obtained by setting Dνyνj ¼ 0. At this
point, we consider the Fierz and IBP linear relations and
eliminate as many operators as there are independent
relations. In order to apply the EOM more easily, we then
express the final set of operators in terms of the field
strengths Xμν and their duals.
As illustration of the above procedure, let us consider the

D2BLH4 operator class that contains eight members3,4:
2It should be noted, with our conventions for H̃j and ϵjk that

assuming yu† is diagonal will result in a wrong sign for the up-
quark mass. Therefore if one neglects CKM considerations yu†
should be assumed to be proportional to −diagðmu;mc; mtÞ.

3Terms like DμDνB
μν
L give rise to operators in the XLBLH4

class and were not considered for simplicity.
4Hereon DνH† stands for ðDνHÞ† for the sake of simplicity.
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x1 ¼ Bμν
L ðDμH†DνHÞðH†HÞ; ð5Þ

x2 ¼ Bμν
L ðDμH†HÞðH†DνHÞ; ð6Þ

x3 ¼ ðDμB
μν
L ÞðDνH†HÞðH†HÞ; ð7Þ

x4 ¼ ðDμB
μν
L ÞðH†DνHÞðH†HÞ; ð8Þ

x5 ¼ Bμν
L ðDμH†τIDνHÞðH†τIHÞ; ð9Þ

x6 ¼ Bμν
L ðDμH†τIHÞðH†τIDνHÞ; ð10Þ

x7 ¼ ðDμB
μν
L ÞðDνH†τIHÞðH†τIHÞ; ð11Þ

x8 ¼ ðDμB
μν
L ÞðH†τIDνHÞðH†τIHÞ: ð12Þ

At this stage, we consider operators and their Hermitian
conjugates as different structures. In this example, linear
Fierz relations can be obtained using Eq. (B2) leading to

x5 ¼ 2x2 − x1; ð13Þ

x6 ¼ 2x1 − x2; ð14Þ

x7 ¼ x3; ð15Þ

x8 ¼ x4: ð16Þ

We can see clearly from these relations that we can trade
ðx5; x6; x7; x8Þ for ðx1; x2; x3; x4Þ. Therefore, we focus on
the latter operator set when obtaining the IBP relations
which are derived from the following vector operators

yν1 ¼ Bμν
L ðDμH†HÞðH†HÞ; ð17Þ

yν2 ¼ Bμν
L ðH†DμHÞðH†HÞ; ð18Þ

yν3 ¼ ðDμB
μν
L ÞðH†HÞ2: ð19Þ

The IBP relations are, then, derived from Dνyνj ¼ 0 and
they read

x1 þ x2 − x3 ¼ 0; ð20Þ

x1 þ x2 þ x4 ¼ 0; ð21Þ

x3 þ x4 ¼ 0: ð22Þ

Just two of the last relations are independent, so we have
two independent operators that we can choose to be x1 and
x3 since this choice renders the rotations of these operators
into M8B straightforward.
Once the set of independent bosonic operators have been

identified we apply the EOM to those with one or more

derivatives acting on the gauge strength tensors and two or
more acting on the Higgs field. With our conventions the
EOM read

DμGAμν ¼ −JAνG ;

DμWIμν ¼ −
ig
2
H†D

↔Iν
H − JIνW;

DμBμν ¼ −
ig0

2
H†D

↔ν
H − JνB;

ðD2H†Þj ¼ λv2H†j − 2λðH†HÞH†j − JjH; ð23Þ

where H†D
↔Iν

H ¼ H†τIDνH −DνH†τIH and we have
defined the fermionic “currents”

JAμG ¼ gs
X

f∈ fq;u;dg

X
a

f̄aγμTAfa;

JIμW ¼ g
2

X
f∈ fq;lg

X
a

f̄aγμτIfa;

JμB ¼ g0
X

f∈ fq;l;u;d;eg

X
a

Yff̄aγμfa;

JjH ¼
X
ab

fyu†abðūaqbkÞϵjk þ ydab; ðq̄jadbÞ þ yeabðl̄jaebÞg;

J†Hj ¼
X
ab

fyuabðq̄kaubÞϵkj þ yd†ab; ðd̄aqbjÞ þ ye†abðēalbjÞg:

ð24Þ

Yf are the fermionic hypercharges, fYq; Yl; Yu; Yd; Yeg ¼
f1
6
;− 1

2
; 2
3
;− 1

3
;−1g and JjH, does not contain the CKM

matrix because the fermion fields in these equations are in
gauge eigenstates (labeled with the latin indexes a, b or c)
and so are the Yukawa matrices yf. In addition, we denote
the SUð2ÞL indices as ijk.
Expressing the fermionic operators generated by prod-

ucts of these currents and their derivatives in terms of
operators in the M8B basis requires in some cases trivial
but lengthy field manipulations which make use of iden-
tities involving the SUð2Þ and SUð3Þ generators as well as
Fierz field rearrangements [49–51]; see Appendix B for the
more frequently employed relations. In addition, the
simplification also involves the equations of motion for
the fermions which in our notation read

i=Dlaj ¼
X
b

yeabebHj; i=Dea ¼
X
b

ye†ablbjH
†;j;

i=Dda ¼
X
b

yd†abqbjH
†;j; i=Dua ¼

X
b

yu†abqbjH̃
†;j;

i=Dqaj ¼
X
b

½ydabdbHj þ yuabubH̃j�; ð25Þ

together with the covariant conservation of the gauge
currents which imply that
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DμJ
μ
B ¼−i

g0

2
DμðH†D

↔μ
HÞ; DμJ

I;μ
W ¼−i

g
2
DμðH†D

↔Iμ
HÞ;
ð26Þ

and the commutators of the covariant derivatives of the
gauge currents are

½Dα; Dβ�JμB ¼ 0; ½Dα; Dβ�JIνW ¼ gϵIJKWJ
αβJ

Kν
W ;

½Dα; Dβ�JAνG ¼ gsfABCGB
αβJ

Cν
G : ð27Þ

III. INDEPENDENT BOSONIC OPERATORS

The building blocks of the operator basis for universal
theories are the Higgs field H, the SM field strengths
(Xμν

L;R ∼ Bμν
L;R;W

aμν
L;R; G

Aμν
L;R) and covariant derivatives D. As

mentioned above we obtain the number of independent
operators with this field content using the packages
BASISGEN [45] and ECO [46,47]. Doing so one finds,
prior to the application of the EOM and without imposing
C and P symmetries, there are 175 independent bosonic
operators at dimension-eight. Of those, 89 can be chosen to
be those included in M8B, and which, for convenience, we
list in Table I. They include all independent operators
without derivatives acting on the gauge strength tensors and
with up to one derivative acting on each Higgs field. They
lead to a rich and well-known phenomenology. For

example, the operators in the classes X4, X3X0 and
X2X02 generate anomalous quartic and higher gauge self-
couplings that have no triple gauge vertex associated to
them [53,54]. The operator in the H8 class modifies the
Higgs self-couplings and the operatores in the X3H2 class
give rise to multi H [55–58] and gauge boson [59,60]
vertices, e.g., anomalous triple gauge couplings [42,61].
Furthermore, the operators in class X2H4 class give finite
renormalization to the SM input parameters [42] and they
also generate multi Higgs and gauge boson vertices [62,63].
The first task at hand is, therefore, to identify a suitable

set for the remaining 86 operators following the procedure
sketched in the previous section. Since our final objective is
to find the corresponding combinations of fermionic
operators generated after application of the EOM, we
select the 86 operators for which the transformation can
be more directly implemented. With this in mind, we make
the following choice of operators.

A. Operators with Higgs fields and two or more
derivatives

Prior to applying the EOM, the classes H6D2, H4D4 and
H2D6 contain 18 independent bosonic operators of which
five are those included in the corresponding classes in
Table I. As for the remaining 13 independent bosonic
operators, 2 of them are in the class H6D2 and we chose
them as

Rð1Þ
H6D2 ¼ ðD2H†HÞðH†HÞðH†HÞ; Rð2Þ

H6D2 ¼ ðH†D2HÞðH†HÞðH†HÞ: ð28Þ

In addition, there are 10 independent operators in the class H4D4 selected to be

Rð1Þ
H4D4 ¼ ðD2H†τIHÞðDμH†τIDμHÞ; Rð2Þ

H4D4 ¼ ðD2H†DμHÞðH†DμHÞ;
Rð3Þ
H4D4 ¼ ðDμH†D2HÞðDμH†HÞ; Rð4Þ

H4D4 ¼ ðH†τID2HÞðDμH†τIDμHÞ;
Rð5Þ
H4D4 ¼ ðD2H†HÞðDμH†DμHÞ; Rð6Þ

H4D4 ¼ ðH†D2HÞðDμH†DμHÞ;
Rð7Þ
H4D4 ¼ ðD2H†D2HÞðH†HÞ; Rð8Þ

H4D4 ¼ ðD2H†HÞðD2H†HÞ;
Rð9Þ
H4D4 ¼ ðD2H†HÞðH†D2HÞ; Rð10Þ

H4D4 ¼ ðH†D2HÞðH†D2HÞ; ð29Þ

while there is only one in the class H2D6

Rð1Þ
H2D6 ¼ ðDμD2H†DμD2HÞ: ð30Þ

As we will see upon application of EOM they generate combinations of fermionic operators with two fermions of classes
ψ2H5 and ψ2H3D2, and operators with four fermions in classes ψ4H2 and ψ4D2 with chiralities ðL̄LÞðR̄RÞ, ðL̄RÞðL̄RÞ, and
ðL̄RÞðR̄LÞ, with related Wilson coefficients. Explicit expressions for the relations can be found in Eqs. (A1)–(A13) of
Appendix A.

B. Operators with gauge field strengths and derivatives

There are 19 independent operators in classes X3D2, X2X0D2 and X2D4 none of which is included in M8B. Four involve
three powers of the W field strength tensor and another four three powers of the G tensor and we selected them to be
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TABLE I. Independent bosonic operators belonging to M8B.

1∶X4; X3X0 1∶X2X02 2∶H8

Qð1Þ
G4

ðGA
μνGAμνÞðGB

ρσGBρσÞ Qð1Þ
G2W2

ðWI
μνWIμνÞðGA

ρσGAρσÞ QH8 ðH†HÞ4

Qð2Þ
G4

ðGA
μνG̃

AμνÞðGB
ρσG̃

BρσÞ Qð2Þ
G2W2

ðWI
μνW̃IμνÞðGA

ρσG̃
AρσÞ 3∶H6D2

Qð3Þ
G4

ðGA
μνGBμνÞðGA

ρσGBρσÞ Qð3Þ
G2W2

ðWI
μνGAμνÞðWI

ρσGAρσÞ Qð1Þ
H6

ðH†HÞ2ðDμH†DμHÞ
Qð4Þ

G4
ðGA

μνG̃
BμνÞðGA

ρσG̃
BρσÞ Qð4Þ

G2W2
ðWI

μνG̃
AμνÞðWI

ρσG̃
AρσÞ Qð2Þ

H6
ðH†HÞðH†τIHÞðDμH†τIDμHÞ

Qð5Þ
G4

ðGA
μνGAμνÞðGB

ρσG̃
BρσÞ Qð5Þ

G2W2
ðWI

μνW̃IμνÞðGA
ρσGAρσÞ 4∶H4D4

Qð6Þ
G4

ðGA
μνGBμνÞðGA

ρσG̃
BρσÞ Qð6Þ

G2W2
ðWI

μνWIμνÞðGA
ρσG̃

AρσÞ Qð1Þ
H4

ðDμH†DνHÞðDνH†DμHÞ
Qð7Þ

G4
dABEdCDEðGA

μνGBμνÞðGC
ρσGDρσÞ Qð7Þ

G2W2
ðWI

μνGAμνÞðWI
ρσG̃

AρσÞ Qð2Þ
H4

ðDμH†DνHÞðDμH†DνHÞ
Qð8Þ

G4
dABEdCDEðGA

μνG̃
BμνÞðGC

ρσG̃
DρσÞ Qð1Þ

G2B2
ðBμνBμνÞðGA

ρσGAρσÞ Qð3Þ
H4

ðDμH†DμHÞðDνH†DνHÞ
Qð9Þ

G4
dABEdCDEðGA

μνGBμνÞðGC
ρσG̃

DρσÞ Qð2Þ
G2B2

ðBμνB̃μνÞðGA
ρσG̃

AρσÞ 5∶X3H2

Qð1Þ
W4

ðWI
μνWIμνÞðWJ

ρσWJρσÞ Qð3Þ
G2B2

ðBμνGAμνÞðBρσGAρσÞ Qð1Þ
G3H2

fABCðH†HÞGAν
μ GBρ

ν GCμ
ρ

Qð2Þ
W4

ðWI
μνW̃IμνÞðWJ

ρσW̃JρσÞ Qð4Þ
G2B2

ðBμνG̃
AμνÞðBρσG̃

AρσÞ Qð2Þ
G3H2

fABCðH†HÞGAν
μ GBρ

ν G̃Cμ
ρ

Qð3Þ
W4

ðWI
μνWJμνÞðWI

ρσWJρσÞ Qð5Þ
G2B2

ðBμνB̃μνÞðGA
ρσGAρσÞ Qð1Þ

W3H2
ϵIJKðH†HÞWIν

μ W
Jρ
ν WKμ

ρ

Qð4Þ
W4

ðWI
μνW̃JμνÞðWI

ρσW̃JρσÞ Qð6Þ
G2B2

ðBμνBμνÞðGA
ρσG̃

AρσÞ Qð2Þ
W3H2

ϵIJKðH†HÞWIν
μ W

Jρ
ν W̃Kμ

ρ

Qð5Þ
W4

ðWI
μνWIμνÞðWJ

ρσW̃JρσÞ Qð7Þ
G2B2

ðBμνGAμνÞðBρσG̃
AρσÞ Qð1Þ

W2BH2
ϵIJKðH†τIHÞBν

μW
Jρ
ν WKμ

ρ

Qð6Þ
W4

ðWI
μνWJμνÞðWI

ρσW̃JρσÞ Qð1Þ
W2B2

ðBμνBμνÞðWI
ρσWIρσÞ Qð2Þ

W2BH2
ϵIJKðH†τIHÞ
ðB̃μνWJ

νρW
Kρ
μ þ BμνWJ

νρW̃
Kρ
μ Þ

Qð1Þ
B4

ðBμνBμνÞðBρσBρσÞ Qð2Þ
W2B2

ðBμνB̃μνÞðWI
ρσW̃IρσÞ

Qð2Þ
B4

ðBμνB̃μνÞðBρσB̃ρσÞ Qð3Þ
W2B2

ðBμνWIμνÞðBρσWIρσÞ 6∶X2H4

Qð3Þ
B4

ðBμνBμνÞðBρσB̃ρσÞ Qð4Þ
W2B2

ðBμνW̃IμνÞðBρσW̃IρσÞ Qð1Þ
G2H4

ðH†HÞ2GA
μνGAμν

Qð1Þ
G3B

dABCðBμνGAμνÞðGB
ρσGCρσÞ Qð5Þ

W2B2
ðBμνB̃μνÞðWI

ρσWIρσÞ Qð2Þ
G2H4

ðH†HÞ2G̃A
μνGAμν

Qð2Þ
G3B

dABCðBμνG̃
AμνÞðGB

ρσG̃
CρσÞ Qð6Þ

W2B2
ðBμνBμνÞðWI

ρσW̃IρσÞ Qð1Þ
W2H4

ðH†HÞ2WI
μνWIμν

Qð3Þ
G3B

dABCðBμνG̃
AμνÞðGB

ρσGCρσÞ Qð7Þ
W2B2

ðBμνWIμνÞðBρσW̃IρσÞ Qð2Þ
W2H4

ðH†HÞ2W̃I
μνWIμν

Qð4Þ
G3B

dABCðBμνGAμνÞðGB
ρσG̃

CρσÞ Qð3Þ
W2H4

ðH†τIHÞðH†τJHÞWI
μνWJμν

7∶X2H2D2
Qð4Þ

W2H4
ðH†τIHÞðH†τJHÞW̃I

μνWJμν

Qð1Þ
G2H2D2

ðDμH†DνHÞGA
μρG

Aρ
ν Qð1Þ

B2H2D2
ðDμH†DνHÞBμρB

ρ
ν Qð1Þ

B2H4
ðH†HÞ2BμνBμν

Qð2Þ
G2H2D2

ðDμH†DμHÞGA
νρGAνρ

Qð2Þ
B2H2D2

ðDμH†DμHÞBνρBνρ
Qð1Þ

WBH4
ðH†HÞðH†τIHÞWI

μνBμν

Qð3Þ
G2H2D2

ðDμH†DμHÞGA
νρG̃

Aνρ Qð3Þ
B2H2D2

ðDμH†DμHÞBνρB̃νρ Qð2Þ
WBH4

ðH†HÞðH†τIHÞW̃I
μνBμν

Qð1Þ
W2H2D2

ðDμH†DνHÞWI
μρW

Iρ
ν Qð1Þ

WBH2D2
ðDμH†τIDμHÞBνρWIνρ

Qð2Þ
B2H4

ðH†HÞ2B̃μνBμν

Qð2Þ
W2H2D2

ðDμH†DμHÞWI
νρWIνρ

Qð2Þ
WBH2D2

ðDμH†τIDμHÞBνρW̃Iνρ 8∶XH4D2

Qð3Þ
W2H2D2

ðDμH†DμHÞWI
νρW̃Iνρ Qð3Þ

WBH2D2
iðDμH†τIDνHÞðBμρW

Iρ
ν − BνρW

Iρ
μ Þ Qð1Þ

WH4D2
ðH†HÞðDμH†τIDνHÞWI

μν

Qð4Þ
W2H2D2

iϵIJKðDμH†τIDνHÞWJ
μρW

Kρ
ν Qð2Þ

WH4D2
ðH†HÞðDμH†τIDνHÞW̃I

μν

Qð5Þ
W2H2D2

ϵIJKðDμH†τIDνHÞðWJ
μρW̃

Kρ
ν − W̃J

μρW
Kρ
ν Þ Qð4Þ

WBH2D2
ðDμH†τIDνHÞðBμρW

Iρ
ν þ BνρW

Iρ
μ Þ Qð3Þ

WH4D2
ϵIJKðH†τIHÞðDμH†τJDνHÞWK

μν

Qð4Þ
WH4D2

ϵIJKðH†τIHÞðDμH†τJDνHÞW̃K
μν

Qð6Þ
W2H2D2

iϵIJKðDμH†τIDνHÞðWJ
μρW̃

Kρ
ν þ W̃J

μρW
Kρ
ν Þ Qð5Þ

WBH2D2 iðDμH†τIDνHÞðBμρW̃
Iρ
ν − BνρW̃

Iρ
μ Þ Qð1Þ

BH4D2
ðH†HÞðDμH†DνHÞBμν

Qð2Þ
BH4D2

ðH†HÞðDμH†DνHÞB̃μν

Qð6Þ
WBH2D2 ðDμH†τIDνHÞðBμρW̃

Iρ
ν þ BνρW̃

Iρ
μ Þ
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Rð1Þ
W3D2 ¼ WI

μνðDαWJ;αμÞðDβWK;βνÞϵIJK; Rð1Þ
G3D2 ¼ GA

μνðDαGB;αμÞðDβGC;βνÞfABC;
Rð2Þ
W3D2 ¼ W̃I

μνðDαWJ;αμÞðDβWK;βνÞϵIJK; Rð2Þ
G3D2 ¼ G̃A

μνðDαGB;αμÞðDβGC;βνÞfABC;
Rð3Þ
W3D2 ¼ WI

μνW
J;ν
ρ ðDμDαWK;αρÞϵIJK; Rð3Þ

G3D2 ¼ GA
μνG

B;ν
ρ ðDμDαGC;αρÞfABC;

Rð4Þ
W3D2 ¼ WI

μνW̃
J;ν
ρ ðDμDαWK;αρ −DρDαWK;αμÞϵIJK; Rð4Þ

G3D2 ¼ GA
μνG̃

B;ν
ρ ðDμDαGC;αρ −DρDαGC;αμÞfABC: ð31Þ

Eight operators contain two powers of Wμν or Gμν together with Bμν which can be chosen as

Rð1Þ
BW2D2 ¼ ðDμBμνÞWI;νρðDαWI

ραÞ; Rð1Þ
BG2D2 ¼ GA

μνðDαGA;αμÞðDβBβνÞ;
Rð2Þ
BW2D2 ¼ ðDμBμνÞW̃I;νρðDαWI

ραÞ; Rð2Þ
BG2D2 ¼ G̃A

μνðDαGA;αμÞðDβBβνÞ;
Rð3Þ
BW2D2 ¼ BμνW

I;ν
ρ ðDμDαWI;αρ −DρDαWI;αμÞ; Rð3Þ

BG2D2 ¼ BμνG
A;ν
ρ ðDμDαGA;αρ −DρDαGA;αμÞ;

Rð4Þ
BW2D2 ¼ BμνW̃

I;ν
ρ ðDμDαWI;αρ −DρDαWI;αμÞ; Rð4Þ

BG2D2 ¼ BμνG̃
A;ν
ρ ðDμDαGA;αρ −DρDαGA;αμÞ: ð32Þ

These operators modify the triple (multi) gauge couplings.
Upon application of the EOM they will lead to combina-
tions of two-fermion operators in the classes ψ2H5,
ψ2H4D, ψ2XH2D, ψ2X2H, and ψ2X2D, and uniquely
generate four-fermion operators in the class ψ4X [see
Eqs. (A14)–(A29)].

Finally, there are three operators in X2D4, one per gauge
boson,

Rð1Þ
B2D4 ¼DρDαBαμDρDβBμ

β; Rð1Þ
W2D4 ¼DρDαWI

αμDρDβWI;μ
β ;

Rð1Þ
G2D4 ¼DαDμGA

μνDαDρGA;ν
ρ : ð33Þ

They affect the gauge boson propagators and can give rise
to ghosts [64] in addition to anomalous multigauge boson
vertices. Equations of motion rotate these three operators to

combinations of two-fermion operators in classes ψ2H5,
ψ2H4D, ψ2H2D3, and ψ2XH2D as well as four-fermion
operators in classes ψ4H2—with chiralities ðL̄LÞðR̄RÞ,
ðL̄RÞðL̄RÞ and ðL̄RÞðR̄LÞ—and ψ4D2 with chiralities
ðL̄LÞðR̄RÞ, ðL̄RÞðL̄RÞ, ðL̄RÞðR̄LÞ, and ðR̄RÞðR̄RÞ which
can be found in Eqs. (A30)–(A32).

C. Operators with field strengths, Higgs fields
and derivatives

There are 62 independent bosonic operators in the class
X2H2D2 prior the use of EOM. M8B contains 18 operators
in this class; see Table I. There are, therefore, 44 additional
independent bosonic operators in class X2H2D2 of which 9
contain two powers of the hypercharge field strength tensor
and another 9 contain two powers of the gluon field strength
tensor

Rð1Þ
B2H2D2 ¼ BμνBμνðD2H†HÞ; Rð1Þ

G2H2D2 ¼ GA
μνGAμνðD2H†HÞ;

Rð2Þ
B2H2D2 ¼ BμνBμνðH†D2HÞ; Rð2Þ

G2H2D2 ¼ GA
μνGAμνðH†D2HÞ;

Rð3Þ
B2H2D2 ¼ BμνB̃μνðD2H†HÞ; Rð3Þ

G2H2D2 ¼ GA
μνG̃

AμνðD2H†HÞ;
Rð4Þ
B2H2D2 ¼ BμνB̃μνðH†D2HÞ; Rð4Þ

G2H2D2 ¼ GA
μνG̃

AμνðH†D2HÞ;
Rð5Þ
B2H2D2 ¼ ðDμBμνÞBανðDαH†HÞ; Rð5Þ

G2H2D2 ¼ ðDμGA
μνÞGAανðDαH†HÞ;

Rð6Þ
B2H2D2 ¼ ðDμBμνÞBανðH†DαHÞ; Rð6Þ

G2H2D2 ¼ ðDμGA
μνÞGAανðH†DαHÞ;

Rð7Þ
B2H2D2 ¼ ðDμBμνÞB̃ανðDαH†HÞ; Rð7Þ

G2H2D2 ¼ ðDμGA
μνÞG̃AανðDαH†HÞ;

Rð8Þ
B2H2D2 ¼ ðDμBμνÞB̃ανðH†DαHÞ; Rð8Þ

G2H2D2 ¼ ðDμGA
μνÞG̃AανðH†DαHÞ;

Rð9Þ
B2H2D2 ¼ ðDμBμαÞðDνBναÞðH†HÞ; Rð9Þ

G2H2D2 ¼ ðDμGA
μαÞðDνGAναÞðH†HÞ; ð34Þ

DIMENSION-EIGHT OPERATOR BASIS FOR UNIVERSAL … PHYS. REV. D 110, 033003 (2024)

033003-7



while 13 contain two powers of theW field strength tensor and another 13 contain the product of the hypercharge andW field
strength tensors

Rð1Þ
W2H2D2 ¼ WI

μνWI;μνðD2H†HÞ; Rð1Þ
BWH2D2 ¼ BμνWI;μνðH†τID2HÞ;

Rð2Þ
W2H2D2 ¼ WI

μνWI;μνðH†D2HÞ; Rð2Þ
BWH2D2 ¼ BμνWI;μνðD2H†τIHÞ;

Rð3Þ
W2H2D2 ¼ WI

μνW̃I;μνðD2H†HÞ; Rð3Þ
BWH2D2 ¼ BμνW̃I;μνðH†τID2HÞ;

Rð4Þ
W2H2D2 ¼ WI

μνW̃I;μνðH†D2HÞ; Rð4Þ
BWH2D2 ¼ BμνW̃I;μνðD2H†τIHÞ;

Rð5Þ
W2H2D2 ¼ ðDμWI

μνÞWI;ανðDαH†HÞ; Rð5Þ
BWH2D2 ¼ ðDμBμαÞWI;ανðDνH†τIHÞ;

Rð6Þ
W2H2D2 ¼ ðDμWI

μνÞWI;ανðH†DαHÞ; Rð6Þ
BWH2D2 ¼ ðDμBμαÞWI;ανðH†τIDνHÞ;

Rð7Þ
W2H2D2 ¼ ðDμWI

μνÞW̃I;ανðDαH†HÞ; Rð7Þ
BWH2D2 ¼ ðDμBμαÞW̃I;ανðDνH†τIHÞ;

Rð8Þ
W2H2D2 ¼ ðDμWI

μνÞW̃I;ανðH†DαHÞ; Rð8Þ
BWH2D2 ¼ ðDμBμαÞW̃I;ανðH†τIDνHÞ;

Rð9Þ
W2H2D2 ¼ ðDμWI

μαÞðDνWI;ναÞðH†HÞ; Rð9Þ
BWH2D2 ¼ ðDμWI

μνÞBναðDαH†τIHÞ;
Rð10Þ
W2H2D2 ¼ ϵIJKðDμWI

μνÞWJ;ρνðDρH†τKHÞ; Rð10Þ
BWH2D2 ¼ ðDμWI

μνÞBναðH†τIDαHÞ;
Rð11Þ
W2H2D2 ¼ ϵIJKðDμWI

μνÞWJ;ρνðH†τKDρHÞ; Rð11Þ
BWH2D2 ¼ ðDμWI

μνÞB̃ναðDαH†τIHÞ;
Rð12Þ
W2H2D2 ¼ ϵIJKðDμWI

μνÞW̃J;ρνðDρH†τKHÞ; Rð12Þ
BWH2D2 ¼ ðDμWI

μνÞB̃ναðH†τIDαHÞ;
Rð13Þ
W2H2D2 ¼ ϵIJKðDμWI

μνÞW̃J;ρνðH†τKDρHÞ; Rð13Þ
BWH2D2 ¼ ðDμBμαÞðDνWI;ναÞðH†τIHÞ: ð35Þ

Generically, operators in this class modify the gauge
couplings of the Higgs boson and vertices with two
scalars and two or more gauge bosons. As we will see
upon application of EOM they generate combinations of
fermionic operators with two fermions belonging to the
classes ψ2H5, ψ2H4D, ψ2X2H, and ψ2XH2D, and

also operators with four fermions in classes ψ4H2 involv-
ing chiralities ðL̄LÞðR̄RÞ, ðL̄RÞðL̄RÞ, ðL̄RÞðR̄LÞ, and
ðR̄RÞðR̄RÞ. Explicit expressions for the relations can be
found in Eqs. (A33)–(A76) of Appendix A.
Class XH4D2 contains 10 independent operators, six of

them in M8B and another four which we chose as

Rð1Þ
BH4D2 ¼ ðDαBαμÞðH†D

↔

μHÞðH†HÞ; Rð1Þ
WH4D2 ¼ ðDμWI

μνÞðH†D
↔Iν

HÞðH†HÞ;
Rð2Þ
WH4D2 ¼ ϵIJKðH†τIHÞðDνH†τJHÞðDμWK

μνÞ; Rð3Þ
WH4D2 ¼ ϵIJKðH†τIHÞðH†τJDνHÞðDμWK

μνÞ: ð36Þ

As seen in Eqs. (A77)–(A80), these four bosonic operators are rotated by EOM to combinations of two-fermion operators in
classes ψ2H5 and ψ2H4D.
Finally, there are six independent operators in class XH2D4, none of which are in M8B, and that we write as

Rð1Þ
BH2D4 ¼ ðDμH†D2HÞðDνBμνÞ; Rð1Þ

WH2D4 ¼ ðDμH†τID2HÞðDνWI
μνÞ;

Rð2Þ
BH2D4 ¼ ðD2H†DμHÞðDνBμνÞ; Rð2Þ

WH2D4 ¼ ðD2H†τIDμHÞðDνWI
μνÞ;

Rð3Þ
BH2D4 ¼ ðDμH†DαH −DαH†DμHÞðDαDνBμνÞ; Rð3Þ

WH2D4 ¼ ðDμH†τIDαH −DαH†τIDμHÞðDαDνWI
μνÞ: ð37Þ

Application of EOM on these six operators will give two-fermion operators in classes ψ2H5, ψ2H4D and ψ2H3D2, and
four-fermion operators in classes ψ4H2 and ψ4HD.
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We finish this section by pointing out that an alternative
basis of 86 dimension-eight purely bosonic operators has
been presented in Refs. [65,66] motivated by the study of
off-shell Green’s functions. The universal basis presented
here and that in these references are related by IBP and
Bianchi identities. As mentioned above the basis of bosonic
operators presented in this section was selected with the
aim of allowing for a more direct implementation of the
EOM and a more transparent identification of the resulting
Lorentz structures involving fermions and the correspond-
ing fermionic operator combinations associated with uni-
versal theories, as we discuss next.

IV. PRODUCTS OF FERMIONIC CURRENTS

In universal theories, fermionic operators are either
generated involving the SM fermionic currents or originate

through the use of EOM for the bosonic fields on purely
bosonic operators. As such the only possible fermionic
Lorentz structures are those listed in Eq. (24).
Consequently, the Wilson coefficients of the possible
fermionic operators in universal theories have well defined
relations. At this point, it is interesting to identify the
possible current combinations which are generated by the
application of the EOM to the bosonic operators listed in
Sec. III. These combinations contain two and four fermion
fields.
Most of operators exhibiting two fermionic fields origi-

nate from direct contraction of the gauge and Higgs
currents in Eq. (24) with dimension-five bosonic structures.
In addition, some two-fermion operators contain deriva-
tives of the fermionic currents in Eq. (24) contracted with
dimension-four bosonic structures. The generated struc-
tures are

ðDΨ2þÞμνB ≡DμJνB þDνJμB ¼ g0
�X

a

X
f∈ fq;l;u;d;eg

Yf½Dμðf̄aγνfaÞ þDνðf̄aγμfaÞ�
�
; ð38Þ

ðDΨ2þÞKμνW ≡DμJKνW þDνJKμW ¼ g
2

�X
a

X
f∈ fq;lg

½Dμðf̄aγντKfaÞ þDνðf̄aγμτKfaÞ�
�
; ð39Þ

ðDΨ2
−ÞKμνW ≡DμJKνW −DνJKμW ¼ g

2

�
−iϵμνσα

X
f∈ fq;lg

X
a

f̄aγσD
↔Kα

fa

þ
X
ab

h
yeabðl̄aσμνebÞτKH þ ydabðq̄aσμνdbÞτKH þ yuabðq̄aσμνubÞτKH̃ þ H:c:

i�
; ð40Þ

ðDΨ2
−ÞAμνG ≡DμJAνG −DνJAμG ¼ gs

�
iϵμνσα

X
a

½ūaγσD
↔α

TAua þ d̄aγσD
↔α

TAda − q̄aγσD
↔α

TAqa�

þ 2
X
ab

h
ydabðq̄aσμνTAdbÞH þ yuabðq̄aσμνTAubÞH̃ þ H:c:

i�
: ð41Þ

In order to facilitate the comparison with M8B we have transformed the last two equations using the relations in the
Appendix B. In principle the same procedure could have been applied to the first two relations, however, we kept the form
used in M8B.
Conversely, most operators containing four fermion fields originate from the product of two currents in Eq. (24)

contracted with a field strength tensor, two Higgs fields or the derivative of a Higgs field. The operator rotations to M8B
require the knowledge of sixteen current products. There are three structures coming from the product of two scalar JH’s

ðΨ4ÞjkHH ≡ JjHJ
k
H ¼

X
a;b;c;d

n
yu†aby

u†
cdðūaqbnÞϵjnðūcqdmÞϵkm þ ydaby

d
cdðq̄jadbÞðq̄kcddÞ

þ yeaby
e
cdðl̄jaebÞðl̄kcedÞ þ

h
yeaby

u†
cdðl̄jaebÞðūcqdmÞϵkm þ ydaby

u†
cdðq̄jadbÞðūcqdmÞϵkm

þ yeaby
d
cdðl̄jaebÞðq̄kcddÞ þ j ↔ k

io
; ð42Þ
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ðΨ4ÞHH ≡ JjHJ
†
Hj ¼

X
a;b;c;d

�
−

X
f∈ fu;dg

yf†aby
f
cd

�
1

6
ðf̄aγμfdÞðq̄cγμqbÞ þ ðf̄aγμTAfdÞðq̄cγμTAqbÞ

�

−
1

2
ye†aby

e
cdðēaγμedÞðl̄cγμlbÞ þ

h
yeaby

u
cdðl̄jaebÞϵkjðq̄kcudÞ þ yuaby

d
cdðq̄jaubÞϵjkðq̄kcddÞ

þ yeaby
d†
cdðl̄aebÞðd̄cqdÞ þ H:c:

i�
; ð43Þ

½ðΨ4ÞHH�jk ≡ JjHJ
†
Hk ¼

1

2
δjkðΨ4ÞHH þ 1

2
ðτIÞjk

X
a;b;c;d

�
yu†aby

u
cd

�
1

6
ðūaγμudÞðq̄cγμτIqbÞ þ ðūaγμTAudÞðq̄cγμτITAqbÞ

�

− yd†aby
d
cd

�
1

6
ðd̄aγμddÞðq̄cγμτIqbÞ þ ðd̄aγμTAddÞðq̄cγμτITAqbÞ

�

−
1

2
ye†aby

e
cdðēaγμedÞðl̄cγμτIlbÞ þ

h
−yeabyucdðl̄ma ebÞðτIϵÞmnðq̄ncudÞ

−yuaby
d
cdðq̄mc ddÞðτIϵÞmnðq̄naubÞ þ yeaby

d†
cdðl̄aebÞτIðd̄cqdÞ þ H:c:

i�
; ð44Þ

where, in writing the right-hand side of the above equations, we have made again use of the relations listed in Appendix B to
express the fermion currents in the combinations appearing in M8B.
The product of two gauge currents JμB;W;G gives rise to Lorentz scalar and tensor structures. The tensor ones related to

bosonic operators are

ðΨ4ÞIμνWW ≡ ϵIJKJJμW JKνW ¼ g2

4

X
a;b

�
2ϵIJKðq̄aγμτJqaÞðl̄bγντKlbÞ

þ ϵμνρσ
�
ðl̄aγρτIlbÞðl̄bγσlaÞ þ

1

3
ðq̄aγρτIqbÞðq̄bγσqaÞ þ 2ðq̄aγρτITAqbÞðq̄bγσTAqaÞ

��
; ð45Þ

ðΨ4ÞAμνGG ≡ fABCJBμG JCνG ¼ g2s
X
a;b

�
fABC

X
f∈ fq;u;dg

X
f0 ∈ fq;u;dg;f0≠f

ðf̄aγμTBfaÞðf̄0bγνTCf0bÞ

−
1

2
ϵμνρσ

�
ðūaγρTAubÞðūbγσuaÞ þ ðd̄aγρTAdbÞðd̄bγσdaÞ

−
1

2
ðq̄aγρTAqbÞðq̄bγσqaÞ −

1

2
ðq̄aγρτITAqbÞðq̄bγστIqaÞ

��
; ð46Þ

ðΨ4ÞAμνGB ≡ JAμG JνB ¼ gsg0
X
a;b

X
f∈ fq;u;dg

X
f0 ∈ fq;l;u;d;eg

Yf0 ðf̄aγμTAfaÞðf̄0bγνf0bÞ; ð47Þ

ðΨ4ÞIμνWB ≡ JIμWJ
ν
B ¼ g

2
g0
X
a;b

X
f∈ fq;lg

X
f0 ∈ fq;l;u;d;eg

Yf0 ðf̄aγμτIfaÞðf̄0bγνf0bÞ; ð48Þ

where we have Fierz transformed the first two equations above for later convenience. On the other hand, the generated
Lorentz scalar structures are

ðΨ4ÞBB ≡ JμBJBμ ¼ g02
X
a;b

X
f;f0 ∈ fq;l;u;d;eg

YfYf0 ðf̄aγμfaÞðf̄0bγμf0bÞ; ð49Þ

ðΨ4ÞWW ≡X
I

JIμWJ
I
Wμ ¼

g2

4

X
a;b

fðq̄aγμτIqaÞðq̄bγμτIqbÞ þ 2ðq̄aγμτIqaÞðl̄bγμτIlbÞ

þ 2ðl̄aγμlbÞðl̄bγμlaÞ − ðl̄aγμlaÞðl̄bγμlbÞg; ð50Þ
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ðΨ4ÞGG ≡X
A

JAμG JAGμ ¼ g2s
X
a;b

( X
f∈ fq;u;dg

X
f0 ∈ fq;u;dg;f0≠f

ðf̄aγμTAfaÞðf̄0bγμTAf0bÞ

þ 1

2

X
f∈ fu;dg

ðf̄aγμfbÞðf̄bγμfaÞ −
1

6

X
f∈ fq;u;dg

ðf̄aγμfaÞðf̄bγμfbÞ

þ 1

4
ðq̄aγμqbÞðq̄bγμqaÞ þ

1

4
ðq̄aγμτIqbÞðq̄bγμτIqaÞ

)
; ð51Þ

ðΨ4ÞIWB ≡ JIμWJBμ ¼
gg0

2

X
a;b

X
f0 ∈ fq;l;u;d;eg

X
f∈ fq;lg

Yf0 ðf̄aγμτIfaÞðf̄0bγμf0bÞ: ð52Þ

There are only two products of the scalar current JH with a gauge current that are generated

ðΨ4ÞμjBH ≡ JμBJ
j
H ¼ g0

X
a;b;c

X
f∈ fq;l;u;d;eg

fYfy
u†
abðf̄cγμfcÞðūaqbkÞϵjk þ Yfydabðf̄cγμfcÞðq̄jadbÞ þ Yfyeabðf̄cγμfcÞðl̄jaebÞg; ð53Þ

ðΨ4ÞIμjWH ≡ JIμWJ
j
H ¼ g

2

X
a;b;c

X
f∈ fq;lg

fyu†abðf̄cγμτIfcÞðūaqbkÞϵjk þ ydabðf̄cγμτIfcÞðq̄jadbÞ þ yeabðf̄cγμτIfcÞðl̄jaebÞg: ð54Þ

Finally, some operators with four fermions come from direct contraction of derivatives of two currents. They are

ðDΨ4ÞBB ≡DαJμBDαJBμ ¼ g02
X
a;b

X
f;f0 ∈ fq;l;u;d;eg

YfYf0Dαðf̄aγμfaÞDαðf̄0bγμf0bÞ; ð55Þ

ðDΨ4ÞGG ≡X
A

DαJAμG DαJAGμ ¼ g2s
X
a;b

( X
f∈ fq;u;dg

X
f0 ∈ fq;u;dg;f0≠f

Dαðf̄aγμTAfaÞDαðf̄0bγνTAf0bÞ

þ 1

2

X
f∈ fu;dg

Dαðf̄aγμfbÞDαðf̄bγμfaÞ −
1

6

X
f∈ fq;u;dg

Dαðf̄aγμfaÞDαðf̄bγμfbÞ

þ 1

4
Dαðq̄aγμqbÞDαðq̄bγμqaÞ þ

1

4
Dαðq̄aγμτIqbÞDαðq̄bγμτIqaÞ

)
; ð56Þ

ðDΨ4ÞWW ≡X
I

DαJIμWDαJIWμ ¼
g2

4

X
a;b

fDαðq̄aγμτIqaÞDαðq̄bγμτIqbÞ þ 2Dαðq̄aγμτIqaÞDαðl̄bγμτIlbÞ

þ 2Dαðl̄aγμlbÞDαðl̄bγμlaÞ −Dαðl̄aγμlaÞDαðl̄bγμlbÞg; ð57Þ

ðDΨ4ÞHH ≡DαJjHDαJ
†
Hj ¼

X
abcd

�
½yeabyucdDμðl̄jaebÞϵkjDμðq̄kcudÞ þ yuaby

d
cdD

μðq̄jaubÞϵjkDμðq̄kcddÞ

þ yeaby
d†
cdD

μðl̄jaebÞDμðd̄cqdÞ þ H:c:� − 1

2
yeaby

e†
cdD

μðl̄aγνldÞDμðēcγνebÞ

−
X

f∈ fu;dg
yfaby

f†
cd

�
1

6
Dμðq̄aγνqdÞDμðf̄cγνfbÞ þDμðq̄aγνTAqdÞDμðf̄cγνTAfbÞ

��
: ð58Þ

Notice that these last structures do not need any further simplification as their present form appear in M8B.

V. FERMIONIC OPERATORS FOR UNIVERSAL THEORIES

We are now in position to present the combination of dimension-eight fermionic operators that are associated with
universal theories. We call such combinations universal fermionic operators since they are the ones with independent
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couplings. That is, in universal theories the couplings of the
fermionic operators must be linear combinations of the 86
independent couplings of the universal fermionic operators
listed here.
The 86 universal fermionic operators are formed by the

contraction of the fermionic Lorentz structures listed in
Sec. IV with the remaining bosonic pieces of the universal
operators listed in Sec. III. For convenience, we express
them in terms of the fermionic operators in M8B and we
employ the M8B naming and numbering of the operator
classes. Also for convenience, we reproduce in Appendix C
the subset of M8B operators which appear in the universal
operators listed here. In addition, we have included a factor
i to make the operators Hermitian whenever possible.

The full relation between the 86 bosonic operators in
Sec. III, the universal fermionic operators, and the bosonic
operators in M8B can be found in Appendix A.

A. Two-fermion operators

There are 62 independent universal combinations of two-
fermion operators in the following classes:

(i) Class 9∶ψ2X2H þ H:c:: there are 16 universal
operators in this class arising from the direct con-
traction of the Higgs fermionic current Eq. (24) with
two gauge boson strength tensors

Qð1Þ
ψ2B2H

≡ ðJHHÞBμνBμν ¼
X
pr

h
yu†rpQ

†ð1Þ
quB2H

þ ydprQ
ð1Þ
qdB2H

þ yeprQ
ð1Þ
leB2H

i
;

Qð2Þ
ψ2B2H ≡ ðJHHÞBμνB̃μν ¼

X
pr

h
yu†rpQ

†ð2Þ
quB2H þ ydprQ

ð2Þ
qdB2H þ yeprQ

ð2Þ
leB2H

i
;

Qð1Þ
ψ2W2H

≡ ðJHHÞWI
μνWIμν ¼

X
pr

h
yu†rpQ

†ð1Þ
quW2H

þ ydprQ
ð1Þ
qdW2H

þ yeprQ
ð1Þ
leW2H

i
;

Qð2Þ
ψ2W2H ≡ ðJHHÞWI

μνW̃Iμν ¼
X
pr

h
yu†rpQ

†ð2Þ
quW2H þ ydprQ

ð2Þ
qdW2H þ yeprQ

ð2Þ
leW2H

i
;

Qð1Þ
ψ2G2H

≡ ðJHHÞGA
μνGAμν ¼

X
pr

h
yu†rpQ

†ð1Þ
quG2H

þ ydprQ
ð1Þ
qdG2H

þ yeprQ
ð1Þ
leG2H

i
;

Qð2Þ
ψ2G2H ≡ ðJHHÞGA

μνG̃
Aμν ¼

X
pr

h
yu†rpQ

†ð2Þ
quG2H þ ydprQ

ð2Þ
qdG2H þ yeprQ

ð2Þ
leG2H

i
;

Qð1Þ
ψ2WBH

≡ ðJHτIHÞBμνWIμν ¼
X
pr

h
−yu†rpQ†ð1Þ

quWBH þ ydprQ
ð1Þ
qdWBH þ yeprQ

ð1Þ
leWBH

i
;

Qð2Þ
ψ2WBH ≡ ðJHτIHÞBμνW̃Iμν ¼

X
pr

h
−yu†rpQ†ð2Þ

quWBH þ ydprQ
ð2Þ
qdWBH þ yeprQ

ð2Þ
leWBH

i
; ð59Þ

together with the Hermitian conjugates of the above operators. These universal fermionic operators are generated
when applying EOM to some of the operators in class X2H2D2 as can be seen in Eqs. (A33)–(A36), (A42)–(A45),
(A55)–(A58), and (A64)–(A67),

(ii) Hybrid class 9 & 14∶ψ2X2HðDÞ contains 8 operators exhibiting specific combinations of operators in classes
ψ2X2H and ψ2X2D originated from contraction of the fermionic structures in Eq. (40) and (41) with two gauge
strength tensors

Qð1Þ
ψ2WBHðDÞ ≡ ðDΨ2

−ÞIμνW BμρW
Iρ
ν ¼ g

2

X
pr

n
−
h
yuprQ

ð3Þ
quWBH þ ydprQ

ð3Þ
qdWBH þ yeprQ

ð3Þ
leWBH þ H:c:

i

− i
h
Qð3Þ

q2WBD
þQð3Þ

l2WBD

i
δpr

o
;

Qð2Þ
ψ2WBHðDÞ ≡ ðDΨ2

−ÞIμνW BμρW̃
Iρ
ν ¼ g

2

X
pr

n
−
h
iyuprQ

ð3Þ
quWBH þ iydprQ

ð3Þ
qdWBH þ iyeprQ

ð3Þ
leWBH þ H:c:

i

þ i
h
Qð1Þ

q2WBD
þQð1Þ

l2WBD

i
δpr

o
;
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Qð1Þ
ψ2GBHðDÞ ≡ ðDΨ2

−ÞAμνG BμρG
Aρ
ν ¼ gs

X
pr

n
−2

h
yuprQ

ð3Þ
quGBH þ ydprQ

ð3Þ
qdGBH þ H:c:

i

− i
h
Qð3Þ

q2GBD
−Qð3Þ

u2GBD
−Qð3Þ

d2GBD

i
δpr

o
;

Qð2Þ
ψ2GBHðDÞ ≡ ðDΨ2

−ÞAμνG BμρG̃
Aρ
ν ¼ gs

X
pr

n
−2

h
iyuprQ

ð3Þ
quGBH þ iydprQ

ð3Þ
qdGBH þ H:c:

i

þ i
h
Qð1Þ

q2GBD
−Qð1Þ

u2GBD
−Qð1Þ

d2GBD

i
δpr

o
;

Qð1Þ
ψ2W2HðDÞ ≡ ϵIJKðDΨ2

−ÞIμνW WJ
μρW

Kρ
ν ¼ g

2

X
pr

nh
yuprQ

ð3Þ
quW2H

þ ydprQ
ð3Þ
qdW2H

þ yeprQ
ð3Þ
leW2H

þ H:c:
i

− i
h
Qð4Þ

q2W2D þQð4Þ
l2W2D

i
δpr

o
;

Qð2Þ
ψ2W2HðDÞ ≡ ϵIJKðDΨ2

−ÞIμνW WJ
μρW̃

Kρ
ν ¼ g

2

X
pr

n
þ
h
iyuprQ

ð3Þ
quW2H

þ iydprQ
ð3Þ
qdW2H

þ iyeprQ
ð3Þ
leW2H

þ H:c:
i

þ 2i
h
Qð2Þ

q2W2D
þQð2Þ

l2W2D

i
δpr

o
;

Qð1Þ
ψ2G2HðDÞ ≡ fABCðDΨ2

−ÞAμνG GB
μρG

Dρ
ν ¼ gs

X
pr

n
2
h
yuprQ

ð5Þ
quG2H

þ ydprQ
ð5Þ
qdG2H

þ H:c:
i

− i
h
Qð5Þ

q2G2D
−Qð5Þ

u2G2D
−Qð5Þ

d2G2D

i
δpr

o
;

Qð2Þ
ψ2G2HðDÞ ≡ fABCðDΨ2

−ÞAμνG GB
μρG̃

Dρ
ν ¼ gs

X
pr

n
þ2

h
iyuprQ

ð5Þ
quG2H

þ iydprQ
ð5Þ
qdG2H

þ H:c:
i

þ 2i
h
Qð2Þ

q2G2D
−Qð2Þ

u2G2D
−Qð2Þ

d2G2D

i
δpr

o
: ð60Þ

The universal fermionic operators in this hybrid class are generated when applying EOM to some of the operators in
class X3D2 as can be seen in Eqs. (A16)–(A17), (A20)–(A21), (A24)–(A25), and (A28)–(A29).

(iii) Class 11∶ψ2H2D3: the 2 operators in this class arise from the contraction of the structures in Eq. (38) and (39) with a
current containing two symmetrized covariant derivatives acting on the Higgs field

Qð1Þ
ψ2H2D3 ≡ iðDΨ2þÞμνB ðDðμDνÞH†H −H†DðμDνÞHÞ

¼ 2g0
X
pr

X
f∈ fq;l;u;d;eg

Yf

h
Qð1Þ

f2H2D3 −Qð2Þ
f2H2D3þH:c:

i
δpr;

Qð2Þ
ψ2H2D3 ≡ iðDΨ2þÞIμνW ðDðμDνÞH†τIH −H†τIDðμDνÞHÞ

¼ g
X
pr

X
f∈ fq;lg

h
Qð3Þ

f2H2D3 −Qð4Þ
f2H2D3þH:c:

i
δpr: ð61Þ

These operators are generated directly from application of the EOM of the Higgs field to the operators in class X2D4

as in Eqs. (A30) and (A31) and class XH4D2, see Eqs. (A83) and (A86).
(iv) Class 12∶ψ2H5 þ H:c: contains 2 operators originating from the contraction of the Higgs fermionic currents in

Eq. (24) directly with Higgs fields:

Qð1Þ
ψ2H5 ≡ ðH†HÞ2ðJHHÞ ¼

X
pr

h
yu†rpQ

†
quH5 þ ydprQqdH5 þ yeprQleH5

i
ð62Þ

and its Hermitian conjugate. These operators appear directly in the application of the Higgs EOM to the two
operators in classH6D2 Eqs. (A1)–(A2) but, as seen in Appendix A, they also arise in the rotation of a large fraction
of the 86 bosonic operators. This is so, because these two operators in class H6D2 are generically generated when
reducing the products of the Higgs-gauge currents introduced by the gauge boson EOM to the bosonic operators
in M8B.
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(v) Class 13∶ψ2H4D: there are four universal fermionic operators in this class which appear in the contraction of the
electroweak fermionic currents in Eq. (24) with the product of two Higgs pairs one of them containing one derivative.

Qð1Þ
ψ2H4D

≡ iJμBðH†D
↔

μHÞðH†HÞ ¼ g0
X
pr

X
f∈ fq;l;u;d;eg

YfQ
ð1Þ
f2H4D

δpr;

Qð2Þ
ψ2H4D

≡ iJIμW ½ðH†D
↔I

μHÞðH†HÞ þ ðH†D
↔

μHÞðH†τIHÞ� ¼ g
2

X
pr

X
f∈ fq;lg

Qð2Þ
f2H4D

δpr;

Qð3Þ
ψ2H4D ≡ iϵIJKJIμWðH†D

↔J
μHÞðH†τKHÞ ¼ g

2

X
pr

X
f∈ fq;lg

Qð3Þ
f2H4Dδpr;

Qð4Þ
ψ2H4D

≡ ϵIJKJIμWðH†τJμHÞDμðH†τKHÞ ¼ g
2

X
pr

X
f∈ fq;lg

Qð4Þ
f2H4D

δpr: ð63Þ

Operators in this class are directly generated by application of the gauge-boson EOM in operators in class XH4D2 as
seen in Eqs. (A77)–(A80). They also arise in the complete rotation to operators in M8B of some operators in classes
X3D2 pEq. (A14)], X2D4 [Eqs. (A30)–(A31)], X2H2D2 [Eqs. (A37), (A38), (A46), (A47), (A51), and (A52)], and
XH2D4 [Eqs. (A83) and (A86)]. Notice that, for the sake of simplicity in writing the expressions above, in operators

Qð1Þ
f2H4D, where f ¼ u, d, e, we have added a superscript of (1) to the M8B operators. This minimal change of labeling

is reflected also when we list the operators in class 13 in Table III.
(vi) Class 15∶ψ2XH2D: It contains 24 operators generated by the contraction of fermionic gauge currents in Eq. (24)

with a gauge field strength tensors and a pair of Higgs bosons with one derivative. In twelve operators the fermionic
and Higgs currents are contracted with the SUð2ÞL field strength tensor

Qð1Þ
ψ2WH2D

≡ JνBD
μðH†τIHÞWI

μν ¼ g0
X
pr

X
f∈ fq;l;u;d;eg

YfQ
ð1Þ
f2WH2D

δpr;

Qð2Þ
ψ2WH2D

≡ JνBD
μðH†τIHÞW̃I

μν ¼ g0
X
pr

X
f∈ fq;l;u;d;eg

YfQ
ð2Þ
f2WH2D

δpr;

Qð3Þ
ψ2WH2D

≡ iJνBðH†D
↔I

μHÞWI
μν ¼ ig0

X
pr

X
f∈ fq;l;u;d;eg

YfQ
ð3Þ
f2WH2D

δpr;

Qð4Þ
ψ2WH2D ≡ iJνBðH†D

↔I
μHÞW̃I

μν ¼ ig0
X
pr

X
f∈ fq;l;u;d;eg

YfQ
ð4Þ
f2WH2Dδpr;

Qð5Þ
ψ2WH2D

≡ JIνWD
μðH†HÞWI

μν ¼
g
2

X
pr

X
f∈ fq;lg

Qð5Þ
f2WH2D

δpr;

Qð6Þ
ψ2WH2D

≡ JIνWD
μðH†HÞW̃I

μν ¼
g
2

X
pr

X
f∈ fq;lg

Qð6Þ
f2WH2D

δpr;

Qð7Þ
ψ2WH2D ≡ iJIνWðH†D

↔

μHÞWI
μν ¼ i

g
2

X
pr

X
f∈ fq;lg

Qð7Þ
f2WH2Dδpr;

Qð8Þ
ψ2WH2D

≡ iJIνWðH†D
↔

μHÞW̃I
μν ¼ i

g
2

X
pr

X
f∈ fq;lg

Qð8Þ
f2WH2D

δpr;

Qð9Þ
ψ2WH2D

≡ ϵIJKJIνWD
μðH†τJHÞWK

μν ¼
g
2

X
pr

X
f∈ fq;lg

Qð9Þ
f2WH2D

δpr;

Qð10Þ
ψ2WH2D

≡ ϵIJKJIνWD
μðH†τJHÞW̃K

μν ¼
g
2

X
pr

X
f∈ fq;lg

Qð10Þ
f2WH2D

δpr;

Qð11Þ
ψ2WH2D

≡ iϵIJKJIνWðH†D
↔J

μHÞWK
μν ¼ i

g
2

X
pr

X
f∈ fq;lg

Qð11Þ
f2WH2D

δpr;

Qð12Þ
ψ2WH2D

≡ iϵIJKJIνWðH†D
↔J

μHÞW̃K
μν ¼ i

g
2

X
pr

X
f∈ fq;lg

Qð12Þ
f2WH2D

δpr: ð64Þ
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They originate from direct application of EOM of the electroweak gauge bosons in operators in classes X3D2

[Eqs. (A14), (A15), (A22), and (A23)] as well as X2H2D2 [Eqs. (A46)–(A49) and Eqs. (A51)–(A54)]. They are also
generated in the rotation of operators Rð1Þ

W2D4 (A31), Rð3Þ
BH2D4 (A83), and Rð3Þ

WH2D4 (A86).
In eight operators in this class the fermionic structures couple to the hypercharge field strength tensor

Qð1Þ
ψ2BH2D

≡ JνBD
μðH†HÞBμν ¼ g0

X
pr

� X
f∈ fu;d;eg

YfQ
ð1Þ
f2BH2D

þ
X

f∈ fq;lg
YfQ

ð5Þ
f2BH2D

�
δpr;

Qð2Þ
ψ2BH2D

≡ JνBD
μðH†HÞB̃μν ¼ g0

X
pr

� X
f∈ fu;d;eg

YfQ
ð2Þ
f2BH2D

þ
X

f∈ fq;lg
YfQ

ð6Þ
f2BH2D

�
δpr;

Qð3Þ
ψ2BH2D

≡ iJνBðH†D
↔

μHÞBμν ¼ ig0
X
pr

� X
f∈ fu;d;eg

YfQ
ð3Þ
f2BH2D

þ
X

f∈ fq;lg
YfQ

ð7Þ
f2BH2D

�
δpr;

Qð4Þ
ψ2BH2D ≡ iJνBðH†D

↔

μHÞB̃μν ¼ ig0
X
pr

� X
f∈ fu;d;eg

YfQ
ð4Þ
f2BH2D þ

X
f∈ fq;lg

YfQ
ð8Þ
f2BH2D

�
δpr;

Qð5Þ
ψ2BH2D

≡ JIνWD
μðH†τIHÞBμν ¼

g
2

X
pr

X
f∈ fq;lg

Qð1Þ
f2BH2D

δpr;

Qð6Þ
ψ2BH2D

≡ JIνWD
μðH†τIHÞB̃μν ¼

g
2

X
pr

X
f∈ fq;lg

Qð2Þ
f2BH2D

δpr;

Qð7Þ
ψ2BH2D ≡ iJIνWðH†D

↔I
μHÞBμν ¼ i

g
2

X
pr

X
f∈ fq;lg

Qð3Þ
f2BH2Dδpr;

Qð8Þ
ψ2BH2D

≡ iJIνWðH†D
↔I

μHÞB̃μν ¼ i
g
2

X
pr

X
f∈ fq;lg

Qð4Þ
f2BH2D

δpr: ð65Þ

They are generated by direct application of EOM of the electroweak gauge bosons in operators in class X2H2D2

[Eqs. (A37)–(A40) and Eqs. (A72)–(A75)]. They are also generated in the rotation of operators Rð3Þ
BH2D4 (A83), and

Rð3Þ
WH2D4 (A86).
And finally four operators involve the gluon strength tensor

Qð1Þ
ψ2GH2D

≡ JAGD
μðH†HÞGA

μν ¼ gs
X
pr

� X
f∈ fu;dg

Qð1Þ
f2GH2D

þQð5Þ
q2GH2D

�
δpr;

Qð2Þ
ψ2GH2D

≡ JAGD
μðH†HÞG̃A

μν ¼ gs
X
pr

� X
f∈ fu;dg

Qð2Þ
f2GH2D

þQð6Þ
q2GH2D

�
δpr;

Qð3Þ
ψ2GH2D

≡ iJAGðH†D
↔

μHÞGA
μν ¼ igs

X
pr

� X
f∈ fu;dg

Qð3Þ
f2GH2D

þQð7Þ
q2GH2D

�
δpr;

Qð4Þ
ψ2GH2D

≡ iJAGðH†D
↔

μHÞG̃A
μν ¼ igs

X
pr

� X
f∈ fu;dg

Qð4Þ
f2GH2D

þQð8Þ
q2GH2D

�
δpr; ð66Þ

which stem from the direct application of the gluon EOM in operators in class X2H2D2, as in Eqs. (A59)–(A62), and
the operators Rð1Þ

BG2D2 (A26) and Rð2Þ
BG2D2 (A27) of class X3D2.

(vii) Class 17∶ψ2H3D2 þ H:c: is generated by direct contraction of the Higgs fermionic current in Eq. (24) with one
Higgs field and two derivatives of Higgs fields. There are six independent such contractions
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Qð1Þ
ψ2H3D2 ≡ ðDμH†DμHÞðJHHÞ ¼

X
pr

h
yu†rpQ

†ð1Þ
quH3D2 þ ydprQ

ð1Þ
qdH3D2 þ yeprQ

ð1Þ
leH3D2

i
;

Qð2Þ
ψ2H3D2 ≡ ðDμH†τIDμHÞðJHτIHÞ ¼

X
pr

h
−yu†rpQ†ð2Þ

quH3D2 þ ydprQ
ð2Þ
qdH3D2 þ yeprQ

ð2Þ
leH3D2

i
;

Qð3Þ
ψ2H3D2 ≡ ðH†DμHÞðJHDμHÞ ¼

X
pr

h
yu†rpQ

†ð5Þ
quH3D2 þ ydprQ

ð5Þ
qdH3D2 þ yeprQ

ð5Þ
leH3D2

i
; ð67Þ

and their Hermitian conjugates. These operators are generated directly from applying the Higgs field EOM to the
operators in class H4D4 and H2D6 [see Eqs. (A3)–(A8) and (A13)]. In addition they also appear in the rotation of
operators XH2D4, as in Eqs. (A81)–(A82) and (A84)–(A85), arising in the reduction of the products of the Higgs
gauge currents introduced by the gauge boson EOM to the bosonic operators in M8B.

B. Four-fermion operators

We obtain 24 universal four-fermion operators in the following classes:
(i) Class 18∶ψ4H2: contains eight universal fermionic operators obtained from the product of the four-fermion currents

in Eqs. (42)–(44) and Eqs. (49)–(52) with a pair Higgs fields

Qð1Þ
ψ4H2 ≡ ðΨ4ÞHHðH†HÞ ¼

X
prst

(
−

X
f∈ fu;dg

yf†sr y
f
pt

�
1

6
Qð1Þ

q2f2H2 þQð3Þ
q2f2H2

�
−
1

2
ye†sr yeptQ

ð1Þ
l2e2H2

þ
h
−yepryustQ

ð1Þ
lequH2 þ yuprydstQ

ð1Þ
q2udH2 þ yepry

d†
ts Q

ð1Þ
leqdH2 þ H:c:

i)
;

Qð2Þ
ψ4H2 ≡ ðΨ4ÞjkHHHjHk ¼

X
prst

�
yu†rpy

u†
ts Q

†ð5Þ
q2u2H2 þ ydprydstQ

ð5Þ
q2d2H2 þ yepryestQ

ð3Þ
l2e2H2

þ 2
h
yepry

u†
st Q

ð5Þ
lequH2 þ ydpry

u†
st Q

ð5Þ
q2udH2 þ yeprydstQ

ð3Þ
leqdH2

i�
;

Qð3Þ
ψ4H2 ≡H†k

h
ðΨ4ÞHH

i
j

k
Hj −

1

2
Qð1Þ

ψ4H2

¼ 1

2

X
prst

(
−yd†sr ydpt

�
1

6
Qð2Þ

q2d2H2 þQð4Þ
q2d2H2

�
þ yu†sr yupt

�
1

6
Qð2Þ

q2u2H2 þQð4Þ
q2u2H2

�
−
1

2
ye†sr yeptQ

ð2Þ
l2e2H2

þ
h
−yepryustQ

ð2Þ
lequH2 − yuprydstQ

ð2Þ
q2udH2 þ yepry

d†
ts Q

ð2Þ
leqdH2 þ H:c:

i)
;

Qð4Þ
ψ4H2 ≡ ðΨ4ÞBBðH†HÞ ¼ g02

X
prst

( X
f∈ fq;l;u;d;eg

Y2
fQ

ð1Þ
f4H2 þ 2

X
f∈ fq;lg

X
f0 ∈ fu;d;eg

YfY 0
fQ

ð1Þ
f2f02H2

þ 2YqYlQ
ð1Þ
l2q2H2 þ 2

h
YeYuQ

ð1Þ
e2u2H2 þ YeYdQ

ð1Þ
e2d2H2 þ YuYdQ

ð1Þ
u2d2H2

i)
δprδst;

Qð5Þ
ψ4H2 ≡ ðΨ4ÞWWðH†HÞ ¼ g2

4

X
prst

nh
Qð3Þ

q4H2 þ 2Qð3Þ
l2q2H2

i
δprδst þQð1Þ

l4H2ð2δptδsr − δprδstÞ
o
;

Qð6Þ
ψ4H2 ≡ ðΨ4ÞGGðH†HÞ ¼ g2s

X
prst

�
2
h
Qð3Þ

q2d2H2 þQð3Þ
q2u2H2 þQð2Þ

u2d2H2

i
δprδst

þ 1

2

h
Qu4H2 þQd4H2

i�
δptδsr −

1

3
δprδst

�
þ 1

2
Qð1Þ

q4H2

�
1

2
δptδsr −

1

3
δprδst

�
þ 1

4
Qð3Þ

q4H2δptδsr

�
;

Qð7Þ
ψ4H2 ≡ ðΨ4ÞIWBðH†τIHÞ ¼ gg0

2

X
prst

� X
f∈ fq;e;u;dg

Yf

h
Qð2Þ

l2f2H2 þQð2Þ
q2f2H2

i
þ Yl

h
Qð2Þ

l4H2 þQð4Þ
l2q2H2

i�
δprδst; ð68Þ
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together with the Hermitian conjugate ofQð2Þ
ψ4H2 . The

operators Qð1Þ
ψ4H2–Q

ð3Þ
ψ4H2 are generated by the use of

the Higgs EOM directly in operators in class H4D4

and H2D6, see Eqs. (A9)–(A13), and in the rotation
of operators in class X2D4, as in Eqs. (A30)–(A31).
Qð4Þ

ψ4H2–Q
ð7Þ
ψ4H2 arise from direct application of the

EOM for the gauge bosons in operators of class

X2H2D2, in particular the EOM of Bμν in Rð9Þ
B2H2D2

(A41), the EOM of Wμν in Rð9Þ
W2H2D2 (A50), the one

for Gμν in Rð9Þ
G2H2D2 (A63), and the EOM’s for Bμν

and Wμν in Rð13Þ
BWH2D2 (A76). Here again, for con-

venience, when writing the expression of Qð4Þ
ψ4H2 in

terms of operators in M8B, we have added a

superscript (1) in Qð1Þ
f4H2 , where f ¼ u, d, e; and

in Qð1Þ
e2u2H2 and Qð1Þ

e2d2H2 . This minimal change of
labeling is reflected also when we list the operators
in class 18 in Table VI.

(ii) Class 19∶ψ4X: the eight universal operators in this
class are formed by the contraction of the four-
fermion tensor currents in Eqs. (45)–(48) with a
gauge strength tensor

Qð1Þ
ψ4W

≡ ðΨ4ÞIμνWWW
I
μν ¼

g2

2

X
prst

�
Qð5Þ

l2q2W
δprδst −

�
Qð2Þ

l4W
þ 1

3
Qð2Þ

q4W
þ 2Qð4Þ

q4W

�
δptδrs

�
;

Qð2Þ
ψ4W

≡ ðΨ4ÞIμνWWW̃
I
μν ¼

g2

2

X
prst

�
Qð6Þ

l2q2W
δprδst þ

�
Qð1Þ

l4W
þ 1

3
Qð1Þ

q4W
þ 2Qð3Þ

q4W

�
δptδrs

�
;

Qð3Þ
ψ4W

≡ ðΨ4ÞIμνWBW
I
μν ¼

gg0

2

X
prst

�
−Yl

h
Qð1Þ

l4W
þQð1Þ

l2q2W

i
− Yq

h
Qð1Þ

q4W
−Qð3Þ

l2q2W

i

þ
X

f∈ fu;d;eg
Yf

h
Qð1Þ

l2f2W
þQð1Þ

q2f2W

i�
δprδst;

Qð4Þ
ψ4W

≡ ðΨ4ÞIμνWBW̃
I
μν ¼

gg0

2

X
prst

�
−Yl

h
Qð2Þ

l4W
þQð2Þ

l2q2W

i
− Yq

h
Qð2Þ

q4W
−Qð4Þ

l2q2W

i

þ
X

f∈ fu;d;eg
Yf

h
Qð2Þ

l2f2W
þQð2Þ

q2f2W

i�
δprδst;

Qð1Þ
ψ4G

≡ ðΨ4ÞAμνGGG
A
μν ¼ g2s

X
prst

�
2
h
Qð5Þ

q2u2G
þQð5Þ

q2d2G
þQð5Þ

u2d2G

i
δprδst

−
�
1

2
Qð2Þ

q4G
þ 1

2
Qð4Þ

q4G
−Qð2Þ

u4G
−Qð2Þ

d4G

�
δptδsr

�
;

Qð2Þ
ψ4G

≡ ðΨ4ÞAμνGG G̃
A
μν ¼ g2s

X
prst

�
2
h
Qð6Þ

q2u2G
þQð6Þ

q2d2G
þQð6Þ

u2d2G

i
δprδst

þ
�
1

2
Qð1Þ

q4G
þ 1

2
Qð3Þ

q4G
−Qð1Þ

u4G
−Qð1Þ

d4G

�
δptδsr

�
;

Qð3Þ
ψ4G ≡ ðΨ4ÞAμνGB G

A
μν ¼ −gsg0

X
prst

� X
f∈ flqg

X
f0 ∈ fq;u;dg

YfQ
ð1Þ
f2f02G þ Ye

h
−Qð1Þ

q2e2G þQð1Þ
e2u2G þQð1Þ

e2d2G

i

þ Yu

h
Qð1Þ

u4G
−Qð3Þ

q2u2G
þQð1Þ

u2d2G

i
þ Yd

h
Qð1Þ

d4G
−Qð3Þ

q2d2G
þQð3Þ

u2d2G

i�
δprδst;

Qð4Þ
ψ4G ≡ ðΨ4ÞAμνGB G̃

A
μν ¼ −gsg0

X
prst

� X
f∈ flqg

X
f0 ∈ fq;u;dg

YfQ
ð2Þ
f2f02G þ Ye

h
−Qð2Þ

q2e2G þQð2Þ
e2u2G þQð2Þ

e2d2G

i

þ Yu

h
Qð2Þ

u4G
−Qð4Þ

q2u2G
þQð2Þ

u2d2G

i
þ Yd

h
Qð2Þ

d4G
−Qð4Þ

q2d2G
þQð4Þ

u2d2G

i�
δprδst: ð69Þ
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They are all generated by the direct application of the EOM for the weak and strong gauge bosons in operators in

class X3D2. In particularQð1Þ
ψ4W

–Qð4Þ
ψ4W

arise when using the EOM ofWμν in the operators Rð1;2Þ
W3D2 in Eqs. (A14)–(A15),

and Rð1;2Þ
BW2D2 in (A22)–(A23), respectively. Equivalently, Qð1Þ

ψ4G
–Qð4Þ

ψ4G
arise when using the EOM of Gμν in operators

Rð1;2Þ
G3D2 [(A18)–(A19)] and Rð1;2Þ

BG2D2 [(A26)–(A27)].
(iii) Class 20∶ψ4HD: there are four universal four-fermion operators genrerated by the contraction of the gauge-Higgs

fermion currents in Eqs. (53) and (54) with the derivative of a Higgs field

Qð1Þ
ψ4HD

≡ ðΨ4ÞμjBHDμHj ¼ −ig0
X
prst

X
f∈ fq;l;u;d;eg

Yf

n
−yu†ts Q

†ð1Þ
f2quHD

þ ydstQ
ð1Þ
f2qdHD

;þyestQ
ð1Þ
f2leHD

o
δpr;

Qð2Þ
ψ4HD

≡ ðΨ4ÞIμjWHðτIÞkjDμHk ¼ −i
g
2

X
prst

n
þyu†ts

h
Q†ð2Þ

q3uHD
þQ†ð3Þ

l2quHD

i

þ ydst
h
Qð2Þ

q3dHD
þQð3Þ

l2qdHD

i
þ yest

h
Qð2Þ

l3eHD
þQð3Þ

leq2HD

io
δpr; ð70Þ

and their Hermitian conjugates. They are generated by applying the EOM for the electroweak gauge bosons and the

Higgs in the four operators of class XH2D2: Rð1;2Þ
BH2D4 [(A81)–(A82)] and Rð1;2Þ

WH2D4 [(A84)–(A85)]. Notice that, to keep
the notation compact, we took the liberty of reordering the fermion labeling for some operators in the first equation.

In particular, in the case of Qð1Þ
f2leHD

, when f ¼ q, the operator needs to be identified with Qð1Þ
leq2HD

in Table VIII.

(iv) Class 21∶ψ4D2: Finally, there are four universal four-fermion operators generated directly by the contraction of the
derivatives of two fermion currents in Eqs. (55)–(58)

Qð1Þ
ψ4D2 ≡ ðDΨ4ÞHH ¼

X
prst

�
−

X
f∈ fu;dg

yf†pty
f
sr

�
1

6
Qð1Þ

q2f2D2 þQð3Þ
q2f2D2

�
−
1

2
ye†ptyesrQ

ð1Þ
l2e2D2

þ
h
−yepryustQ

ð1Þ
lequD2 þ yuprydstQ

ð1Þ
q2udD2 þ yepry

d†
st Q

ð1Þ
leqdD2 þ H:c:

i�
;

Qð2Þ
ψ4D2 ≡ ðDΨ4ÞBB ¼ g02

X
prst

� X
f∈ fq;l;u;d;eg

Y2
fQ

ð1Þ
f4D2 þ 2

X
f∈ fq;lg

X
f∈ fu;d;eg

YfY 0
fQ

ð1Þ
f2f02D2

þ 2YqYlQ
ð1Þ
l2q2D2 þ 2

h
YeYuQ

ð1Þ
e2u2D2 þ YeYdQ

ð1Þ
e2d2D2 þ YuYdQ

ð1Þ
u2d2D2

i�
δprδst;

Qð3Þ
ψ4D2 ≡ ðDΨ4ÞWW ¼ g2

4

X
prst

�h
Qð3Þ

q4D2 þ 2Qð3Þ
l2q2D2

i
δprδst þQð1Þ

l4D2ð2δptδsr − δprδstÞ
�
;

Qð4Þ
ψ4D2 ≡ ðDΨ4ÞGG ¼ g2s

X
prst

�
2
h
Qð3Þ

q2u2D2 þQð3Þ
q2d2D2 þQð3Þ

u2d2D2

i
δprδst

þ 1

2

h
Qð1Þ

u4D2 þQð1Þ
d4D2

i�
δptδsr −

1

3
δprδst

�
þ 1

2
Qð1Þ

q4D2

�
1

2
δptδsr −

1

3
δprδst

�
þ 1

4
Qð3Þ

q4D2δptδsr

�
: ð71Þ

They, respectively, originate from applying the EOM for the Higgs in Rð1Þ
H2D6 [(A13)], for the hypercharge gauge

boson in Rð1Þ
B2D4 [(A30)], for the weak gauge boson in R

ð1Þ
W2D4 [(A31)], and for the gluon in R

ð1Þ
G2D4 [(A32)]. Notice that,

for convenience, in the equation forQð2Þ
ψ4D2, we have a superscript of (1) inQ

ð1Þ
e4D2 to the M8BQe4D2 operator. We have

included this minimal change of labeling when listing the operators of this class in Table IX.
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VI. SOME SIMPLE UNIVERSAL UV
COMPLETIONS

Here we briefly discuss a few existing models which
match onto the universal basis. For each model we point out
the bosonic operators which are generated in the universal
basis and specified those which are rotated to the fermionic
basis in this work.
A straightforward way to construct universal extensions

of the SM is to enlarge its scalar sector with new scalar
fields which do not couple to the SM fermions. The

simplest bosonic UV completion is therefore that of the
SM supplemented by a real singlet scalar S

ΔL ¼ 1

2
ð∂μSÞ2 −

1

2
M2S2 − AjHj2S −

1

2
kjHj2S2

−
1

3!
μS3 −

1

4!
λ̃SS4: ð72Þ

After tree level integration of the heavy S, the low energy
effective theory contains the following operators up to
dimension eight [41,67,68]

ΔLeff ¼
A2

2M2
jHj4 þ A2

2M4
∂μjHj2∂μjHj2 þ A2

2M4

�
Aμ
3M2

− k

�
jHj6

þ A2

2M6

�
k2 −

A2λ̃S
12M2

−
Aμk
M2

�
QH8 þ 2A2

M6

�
Aμ
2M2

− k2
�
jHj2∂μjHj2∂μjHj2 þ A2

2M6
□jHj2□jHj2: ð73Þ

The last two dimension-eight operators can be written in
our basis by the following relations:

jHj2∂μjHj2∂μjHj2 ¼ Rð1Þ
H6D2 þ Rð2Þ

H6D2 þ 2Qð1Þ
H6 ; ð74Þ

□jHj2□jHj2 ¼ 4Qð3Þ
H4 þ 4ðRð5Þ

H4D4 þ Rð6Þ
H4D4Þ þ Rð8Þ

H4D4

þ 2Rð9Þ
H4D4 þ Rð10Þ

H4D4 : ð75Þ

From the results presented in Appendix A, we can see that
the rotation of the operator in Eq. (74) to M8B only
generates one fermionic universal operator, the real part of

Qð1Þ
ψ2H5 [see Eqs. (A1) and (A2)], while the operator in

Eq. (75) generates a linear combination of five fermionic

operators, the real parts of Qð1Þ
ψ2H5 , Q

ð1Þ
ψ2H3D2 , and Qð2Þ

ψ4H2 ,

together with Qð1Þ
ψ4H2 , and Qð3Þ

ψ4H2 [(see Eqs. (A5), (A6), and

(A8)–(A10)].
Another possibility is the addition of a scalar SUð2ÞL

triplet field ϕa with Y ¼ 0: In this case, the new terms in
Lagrangian read

ΔL ¼ 1

2
ðDμϕ

aÞðDμϕaÞ − 1

2
M2ðϕaÞ2 þ κH†σaHϕa

− λϕHðϕaÞ2jHj2 − λϕjϕaj4: ð76Þ

The low energy effective theory of this model is, up to
dimension-eight operators in terms of our basis can be
written as [41,69,70],

ΔLeff ¼
κ2

8M2
jHj4 − λϕHκ

2

4M4
jHj6 þ κ2

8M4
½ðDμHÞ†HðDμHÞ†H þ H:c:� þ κ2

2M4
jHj2jDμHj2 − κ2

4M4
jðDμHÞ†Hj2

−
κ2

16M6

�
λϕκ

2

M2
− 8λ2ϕH

�
QH8 þ λϕHκ

2

2M6

�
Rð1Þ
H6D2 þ Rð2Þ

H6D2 þ 2Qð2Þ
H6

	

þ κ2

8M6

�
8Qð1Þ

H4 − 4Qð3Þ
H4 þ 4Rð1Þ

H4D4 þ 4Rð4Þ
H4D4 þ 4Rð7Þ

H4D4 þ Rð8Þ
H4D4 − 2Rð9Þ

H4D4 þ Rð10Þ
H4D4

	
ð77Þ

In this case, from the Appendix Awe note that the rotation
of the operators to M8B generates the following fermionic

operators, the real parts of Qð1Þ
ψ2H5 , Q

ð2Þ
ψ2H3D2 , and Qð2Þ

ψ4H2 ;

together with Qð1Þ
ψ4H2 , and Q

ð3Þ
ψ4H2 [see Eqs. (A1)–(A3), (A6),

and (A9)–(A12)].
Next we consider a scenario presenting a hidden sector

where its particles are not charged under the SM gauge

group. In the kinetic mixing model, the hiden sector
exhibits a Uð1ÞX gauge symmetry and possesses a gauge
boson Vμ which interacts with the SM via

ΔL ¼ −
1

4
VμνVμν þ 1

2
M2VμVμ −

k
2
BμνVμν: ð78Þ
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For heavy Vμ we can integrate it out at tree level and obtain
the following dimension-six and -eight operators [69,71]

ΔLeff ¼ −
k2

2M2
ð∂νBμνÞð∂αBμαÞ þ

k2

2M4
ð∂νBμνÞð∂2∂αBμαÞ:

ð79Þ

The dimension eight-operator is identified with the operator

Rð1Þ
B2D4 in our basis, which is associated to seven fermionic

universal operators in M8B: the real parts of Qð1Þ
ψ2H5 and

Qð2Þ
ψ4H2 , together with Qð1Þ

ψ4H2 , Q
ð3Þ
ψ4H2 , Q

ð4Þ
ψ4D2 , Q

ð1Þ
ψ2H2D3 , and

Qð2Þ
ψ2H4;D

, as can be seen in Eq. (A30).

At large energy, composite Higgs models possess a
strongly interacting sector that is naturally connected to the
SM bosons. Ergo, possible high-energy resonances can
give rise to a plethora of bosonic low-energy effective
operators depending on the spectrum in the UV region. As
an illustration, let us consider the minimal model based on
the coset SOð5Þ=SOð4Þ [30,72,73] and consider a vector
resonance (ρμ) that transforms in the adjoint of SOð4Þ. In
this scenario many operators are generated and wewill list a
few of them.
The formalism develop by Coleman, Callan, Wess and

Zumino [74] allow us to write down the allowed inter-
actions of this resonance [75,76]. Denoting by Π ¼ haTa

where Ta are the SOð5Þ broken generators and ha

the Goldstone bosons, we define U ¼ expðiΠÞ. For sim-
plicity, we assume that the SM gauge group satisfies
GSM ⊂ SOð4Þ. In order to write down the ρμ interactions
we need the building blocks Dμ and Eμ:

U†ð∂μ þ iAμÞU≡ iDA
μTA þ iEa

μTa ¼ iDμ þ iEμ; ð80Þ

with TA being the unbroken generators and Aμ the SM
gauge fields. The lowest order terms of Dμ and Eμ are

Dμ ¼ DμΠ −
1

6
½Π;ΠD↔Π� þ � � � ð81Þ

Eμ ¼ Aμ −
i
2
ΠD

↔
Πþ � � � : ð82Þ

The most general two derivative SOð5Þ-invariant action
for the ρμ is

m4
ρΔLð2Þ ¼ m2

ρDA
μD

μ
A −

1

4
ρμνρ

μν þ 1

2
m2

ρðρμ − EμÞ2; ð83Þ

where ρμν ¼ ∂μρν − ∂νρμ þ i½ρμ; ρν�. Assuming that ρμ is
heavy we can integrate it out to obtain [75]

ΔLeff ¼ −
1

4g2ρ
EμνEμν −

1

2g2ρ
DμEμν

1

∂
2 þm2

ρ
DαEαν ð84Þ

where gρ is the coupling constant. Terms containing four or
more derivatives and four or more field strength tensors
have been omitted. The first term of the above equation
leads to the dimension-six operators

ðH†τID
↔

μHÞDνWI;μν and ðH†D
↔

μHÞ∂νBμν: ð85Þ

On the other hand, the second term of Eq. (84) gives rise to
the following dimension-six and -eight operators

DνWI;μνDαWIαν; ∂νBμν
∂
αBαν; ð86Þ

Rð1Þ
W2D4 ¼ DνWI;μνDβDβDαWIαμ;

Rð1Þ
B2D4 ¼ ∂νBμν

∂
β
∂β∂

αBαν: ð87Þ

Upon rotation to M8B the operators in Eq. (87) give rise
respectively to two linear combinations involving ten and
seven universal operators respectively given in Eqs. (A31)
and (A30).

In addition, possible four derivative ρ interactions can
produce genuine anomalous quartic gauge couplings [53],
i.e., anomalous quartic couplings that do not have triple
couplings associated to them. For instance, the following ρ
self-interaction

1

m4
ρ
ðρμνρμνÞðραβραβÞ ð88Þ

generates the low-energy effective interaction

1

m4
ρ
ðEμνEμνÞðEαβEαβÞ ð89Þ

that contains the operators

Qð1Þ
W4 ¼ðWI

μνWI;μνÞðWI
αβW

I;αβÞ;
Qð1Þ

W2B2 ¼ðWI
μνWI;μνÞðBαβBαβÞ; Qð1Þ

B4 ¼ðBμνBμνÞðBαβBαβÞ:
ð90Þ

VII. FINAL REMARKS

In the absence of a smoking-gun signal for new physics at
the LHC, EFTs, in particular the SMEFT, have become the
standard tool for model-agnostic BSM explorations.
Unfortunately, their power is in some sense also their
weakness as, taken in their greatest generality, the number
of parameters (i.e., the number of independent Wilson
coefficients) is prohibitively large already at dimension-
six. Identifying physically motivated hypotheses which
reduce the EFT parameter space while still capturing a
large class of BSM theories presents a motivated route to
predictability. Universality, i.e., the assumption that the NP
couples dominantly to the Standard Model bosons, is one
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such hypothesis. At dimension-six, universality reduces the
dimensionality of the SMEFT parameter space from 2499 to
16, allowing for a constrained effective parametrization of
NP effects [29].
In this work we have taken the next step by construct-

ing the dimension-eight SMEFT operator basis which at
the high energy matching scale can be used to encode the
effects of universal extensions of the SM. To do so we
have identified a suitable basis of independent operators
formed with the Standard Model bosonic fields at
dimension-eight. It contains 175 operators—that is, the
assumption of Universality reduces the number of inde-
pendent SMEFT coefficients at dimension eight from
44807 to 175. 89 of these operators are part of the general
SMEFT dimension-eight basis in the literature; see
Table I). Our choice of the additional 86 operators is
presented in Eqs. (28)–(37). In the general dimension-
eight SMEFT basis in the literature these 86 operators
have been traded for combinations of the 89 bosonic
operators in the basis and additional operators involving
fermions. Thus in universal theories, only a subset of
fermionic operators are generated (see Appendix C) and
their Wilson coefficients have well defined relations: they
must be linear combinations of the 86 independent
couplings of the universal fermionic operators presented
in Sec. V.
The drastic reduction of independent parameters implied

by the Universality assumption opens up the possibility of
employing it for quantitative phenomenology because just
a few of them contribute to a specific reaction. For example,
the direct effect of the dimension-eight universal operators
can be seen in the production of multiple H, W� and Z.
Operators in the classes X3H2 and X3D2 modify the triple
gauge boson vertices, so contributing to diboson production
at tree level. Moreover, many classes contribute to mod-
ifications of the quartic coupling among the SM gauge
bosons, as well as to vertices with Higgs and gauge bosons.
In addition, an interesting subset of operators from the
rotated basis are those which include, after rotation, the

Murphy basis operatorsQðiÞ
f2VH2D

for i∈ 1, 3, 5 andQðiÞ
f2H2D3

for i∈ 1, 3, 4. These operators introduce novel kinematics
to the Higgs associated production process [62]. The

QðiÞ
f2VH2D

are generated by rotating Rð5;6Þ
B2H2D2 , Rð5;6Þ

BWH2D
,

Rð3Þ
BH2D4 , Rð1Þ

BW2D2 , and Rð5;6Þ
W2H2D2 . Similarly QðiÞ

f2H2D3 are

generated by rotating Rð1Þ
B2D4 and Rð1Þ

W2D4 . We notice in
passing that the results in Sec. VI show that the simple
composite Higgs model there presented generates both

Rð1Þ
B2D4 and Rð1Þ

W2D4 , while R
ð1Þ
B2D4 also emerges in the minimal

Uð1ÞX kinetic-mixing scenario.
Of course, the phenomenological program first

requires a careful accounting for the relevant field
redefinitions and other finite renormalization effects
since some of the operators give contributions to the

definition of the SM parameters [42]. Moreover, even in a
scenario where the high energy model is universal, there
will be nonuniversal effects at the low energy EFT due to
the renormalization group running [77] but controlled by
the universal parameters at the matching scale. They
should also be taken into account in phenomenological
studies. Furthermore, the rich phenomenology of
dimension-eight operators possesses many constraints
originating from the causality and analyticity of the
scattering amplitudes; see, for instance, Refs. [78–82].
These bounds define the regions of the parameter space
associated with well-defined ultraviolet completions of
the SM. We leave the quantitative exploration of the
phenomenology of universal SMEFT at dimension-eight
for future work.
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APPENDIX A: ROTATION OF THE HIGHER
DERIVATIVE BOSONIC UNIVERSAL

OPERATORS INTO FERMIONIC
UNIVERSAL OPERATORS

This appendix contains the explicit expression of the 86
bosonic operators of universal theories not included in
M8B in terms of the bosonic and fermionic operators in
M8B as generated by the EOM. For the sake of conven-
ience, we present in Appendix C the definition of all M8B
fermionic operators involved. For some of the operators the
final expressions in terms of operators in M8B basis may
look rather cumbersome. This is particularly the case when
the Higgs currents introduced by the application of the
EOMs results in bosonic operators which are not included
in M8B and which, therefore, need further simplification by
reapplication of IBP, BI, and EOMs.
Notice that the mass term of the Higgs equation of

motion Eq. (23) leads to the appearance of operators with
dimension less than eight when we apply the EOM. For
these terms we did not express the resulting operators in
terms of any specific dimension-six operator basis of those
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in the literature: HISZ [83,84], Warsaw [85], EGGM [86], or SILH [87]. For convenience we define the following
combinations involving terms arising from the Higgs mass part of the EOM and some Higgs operators which appear
recurrently in the expressions

Δ0 ≡ λ½v2ðH†HÞ − 2ðH†HÞ2�; Δ1 ≡ λ½v2ðH†HÞ3 − 2QH8 �;
Δ2 ≡ λ½v2ðH†HÞ3 − 2QH8 � þ 2Qð1Þ

H6 þ 2Qð2Þ
H6 ; Δ3 ≡ λ½v2ðH†HÞ3 − 2QH8 � þ 5Qð1Þ

H6 ;

Δ4 ≡ λ½v2ðH†HÞ3 − 2QH8 � þ 4Qð1Þ
H6 þQð2Þ

H6 ; Δ5 ≡ λ½v2ðH†HÞ3 − 2QH8 � þ 3Qð1Þ
H6 þ 2Qð2Þ

H6 :

Operators in the class H6D2:

Rð1Þ
H6D2 ¼ Δ1 −Qð1Þ

ψ2H5 ; ðA1Þ

Rð2Þ
H6D2 ¼ Δ1 −Q†ð1Þ

ψ2H5 : ðA2Þ

Operators in the class H4D4:

Rð1Þ
H4D4 ¼ λv2ðH†τIHÞðDμH†ÞτIðDμHÞ − 2λQð2Þ

H6 −Qð2Þ
ψ2H3D2 ; ðA3Þ

Rð2Þ
H4D4 ¼ λΔ2 þ λv2ðH†ðDμHÞÞ2 − λQ†ð1Þ

ψ2H5 −Qð3Þ
ψ2H3D2 ; ðA4Þ

Rð3Þ
H4D4 ¼ λΔ2 þ λv2ðDμH†HÞ2 − λQð1Þ

ψ2H5 −Q†ð3Þ
ψ2H3D2 ; ðA5Þ

Rð4Þ
H4D4 ¼ λv2ðH†τIHÞðDμH†ÞτIðDμHÞ − 2λQð2Þ

H6 −Q†ð2Þ
ψ2H3D2 ; ðA6Þ

Rð5Þ
H4D4 ¼ λv2ðH†HÞðDμH†ÞðDμHÞ − 2λQð1Þ

H6 −Qð1Þ
ψ2H3D2 ; ðA7Þ

Rð6Þ
H4D4 ¼ λv2ðH†HÞðDμH†ÞðDμHÞ − 2λQð1Þ

H6 −Q†ð1Þ
ψ2H3D2 ; ðA8Þ

Rð7Þ
H4D4 ¼ ðΔ0Þ2 − λv2ðH†J†H þ H:c:ÞðH†HÞ þ 2λðQð1Þ

ψ2H5 þQ†ð1Þ
ψ2H5Þ þQð1Þ

ψ4H2 ; ðA9Þ

Rð8Þ
H4D4 ¼ ðΔ0Þ2 − 2λv2ðH†HÞH†J†H þ 4λQð1Þ

ψ2H5 þQð2Þ
ψ4H2 ; ðA10Þ

Rð9Þ
H4D4 ¼ ðΔ0Þ2 − λv2ðJHH þ H:c:ÞðH†HÞ þ 2λðQð1Þ

ψ2H5 þQ†ð1Þ
ψ2H5Þ þQð3Þ

ψ4H2 þ 1

2
Qð1Þ

ψ4H2 ; ðA11Þ

Rð10Þ
H4D4 ¼ ðΔ0Þ2 − 2λv2ðH†HÞJHH þ 4λQ†ð1Þ

ψ2H5 þQ†ð2Þ
ψ4H2 : ðA12Þ

Operator in the class H6D2:

Rð1Þ
H2D6 ¼ −8λ2Δ1 þ λ2v4ðDμH†DμHÞ − 2λ2v2DμðH†HÞDμðH†HÞ − 4λ2v2ðH†HÞðDμH†DμHÞ

− λv2ðDμH†DμJ
†
H þ H:c:Þ − 6λ2v2ðH†HÞðH†J†H þ H:c:Þ − 4λ2Qð1Þ

H6

− 2λð3Qð1Þ
ψ2H3D2 þQð2Þ

ψ2H3D2 þ 2Qð3Þ
ψ2H3D2 þ H:c:Þ þ 16λ2ðQð1Þ

ψ2H5 þQ†ð1Þ
ψ2H5Þ

þ 2λð3Qð1Þ
ψ4H2 þQð2Þ

ψ4H2 þQ†ð2Þ
ψ4H2 þ 2Qð3Þ

ψ4H2Þ þQð1Þ
ψ4D2 : ðA13Þ
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Operators in class X3D2:

Rð1Þ
W3D2 ¼ −

g3

4
Δ3 þ 2ig2Qð1Þ

WH4D2 þ g2

4

�
g0Qð1Þ

WBH4 þ gQð1Þ
W2H4

	

þ g3

8

�
Qð1Þ

ψ2H5 þQ†ð1Þ
ψ2H5

	
−
g2

4

�
Qð2Þ

ψ2H4D
þQð4Þ

ψ2H4D

	
− gQð11Þ

ψ2WH2D
þQð1Þ

ψ4W
; ðA14Þ

Rð2Þ
W3D2 ¼ 2ig2Qð2Þ

WH4D2 þ g2

4

�
g0Qð2Þ

WBH4 þ gQð2Þ
W2H4

	
− gQð12Þ

ψ2WH2D
þQð2Þ

ψ4W
; ðA15Þ

Rð3Þ
W3D2 ¼ −gQð4Þ

W2H2D2 −
g
4

�
g0Qð1Þ

W2BH2 þ gQð1Þ
W3H2

	
−
1

2
Qð1Þ

ψ2W2HðDÞ; ðA16Þ

Rð4Þ
W3D2 ¼ −gQð6Þ

W2H2D2 −
g
4

�
−g0Qð2Þ

W2BH2 þ 2gQð2Þ
W3H2

	
−Qð2Þ

ψ2W2HðDÞ; ðA17Þ

Rð1Þ
G3D2 ¼ Qð1Þ

ψ4G
; ðA18Þ

Rð2Þ
G3D2 ¼ Qð2Þ

ψ4G; ðA19Þ

Rð3Þ
G3D2 ¼ −

1

2
Qð1Þ

ψ2G2HðDÞ; ðA20Þ

Rð4Þ
G3D2 ¼ −Qð2Þ

ψ2G2HðDÞ; ðA21Þ

Rð1Þ
BW2D2 ¼ i

gg0

2
Qð3Þ

WH4D2 −
g0

2
Qð7Þ

ψ2WH2D þ g
2
Qð3Þ

ψ2WH2D −
gg0

8
Qð3Þ

ψ2H4D þQð3Þ
ψ4W; ðA22Þ

Rð2Þ
BW2D2 ¼ i

gg0

2
Qð4Þ

WH4D2 −
g0

2
Qð8Þ

ψ2WH2D þ g
2
Qð4Þ

ψ2WH2D þQð4Þ
ψ4W; ðA23Þ

Rð3Þ
BW2D2 ¼ −gQð3Þ

WBH2D2 þQð1Þ
ψ2WBHðDÞ; ðA24Þ

Rð4Þ
BW2D2 ¼ −gQð5Þ

WBH2D2 þQð2Þ
ψ2WBHðDÞ; ðA25Þ

Rð1Þ
BG2D2 ¼ −

g0

2
Qð3Þ

ψ2GH2D
þQð3Þ

ψ4G
; ðA26Þ

Rð2Þ
BG2D2 ¼ −

g0

2
Qð4Þ

ψ2GH2D
þQð4Þ

ψ4G
; ðA27Þ

Rð3Þ
BG2D2 ¼ Qð1Þ

ψ2GBHðDÞ; ðA28Þ

Rð4Þ
BG2D2 ¼ Qð2Þ

ψ2GBHðDÞ: ðA29Þ

Operators in class X2D4:

Rð1Þ
B2D4 ¼ g2g02

4
Δ4 þ g02

�
Qð1Þ

H4 −Qð2Þ
H4

	
þ g02

8

�
g02Qð1Þ

B2H4 − g2Qð1Þ
W2H4

	
þ ig02

�
g0Qð1Þ

BH4D2 − gQð1Þ
WH4D2

	

−
g0

2
Qð1Þ

ψ2H2D3 −
g02g
4

Qð2Þ
ψ2H4D

−
g2g02

8

�
Qð1Þ

ψ2H5 þQ†ð1Þ
ψ2H5

	

−
3g02

4

�
−Qð1Þ

ψ4H2 þQð2Þ
ψ4H2 þQ†ð2Þ

ψ4H2 − 2Qð3Þ
ψ4H2

	
þQð2Þ

ψ4D2 ; ðA30Þ
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Rð1Þ
W2D4 ¼ g4

4
Δ3 þ

g2g02

2
Δ5 − g2

�
Qð1Þ

H4 þQð2Þ
H4 − 2Qð3Þ

H4

	

−
g2

8

�
3g02Qð1Þ

B2H4 þ g2Qð1Þ
W2H4 þ 4gg0Qð1Þ

WBH4

	
− ig2

�
3g0Qð1Þ

BH4D2 þ gQð1Þ
WH4D2

	

−
g
2
Qð2Þ

ψ2H2D3 − g2Qð11Þ
ψ2WH2D

þ g2

4

�
gQð2Þ

ψ2H4D
þ gQð4Þ

ψ2H4D
þ 4g0Qð1Þ

ψ2H4D

	

−
g2ðg2 þ 2g02Þ

8

�
Qð1Þ

ψ2H5 þQ†ð1Þ
ψ2H5

	
−
3g2

4

�
−3Qð1Þ

ψ4H2 þQð2Þ
ψ4H2 þQ†ð2Þ

ψ4H2 þ 2Qð3Þ
ψ4H2

	
þQð3Þ

ψ4D2 ðA31Þ

Rð1Þ
G2D4 ¼ Qð4Þ

ψ4D2 : ðA32Þ

Operators in class X2H2D2:

Rð1Þ
B2H2D2 ¼ λv2BμνBμνðH†HÞ − 2λQð1Þ

B2H4 −Qð1Þ
ψ2B2H; ðA33Þ

Rð2Þ
B2H2D2 ¼ λv2BμνBμνðH†HÞ − 2λQð1Þ

B2H4 −Q†ð1Þ
ψ2B2H

; ðA34Þ

Rð3Þ
B2H2D2 ¼ λv2BμνB̃μνðH†HÞ − 2λQð2Þ

B2H4 −Qð2Þ
ψ2B2H; ðA35Þ

Rð4Þ
B2H2D2 ¼ λv2BμνB̃μνðH†HÞ − 2λQð2Þ

B2H4 −Q†ð2Þ
ψ2B2H

; ðA36Þ

Rð5Þ
B2H2D2 ¼ −

g02

8
Δ5 þ i

g0

2
Qð1Þ

BH4D2 þ g0

8

�
g0Qð1Þ

B2H4 þ gQð1Þ
WBH4

	

−
1

2

�
Qð1Þ

ψ2BH2D
þ iQð3Þ

ψ2BH2D

	
−
g0

4
Qð1Þ

ψ2H4D
þ g02

16

�
Qð1Þ

ψ2H5 þQ†ð1Þ
ψ2H5

	
; ðA37Þ

Rð6Þ
B2H2D2 ¼ −

g02

8
Δ5 þ i

g0

2
Qð1Þ

BH4D2 þ g0

8

�
g0Qð1Þ

B2H4 þ gQð1Þ
WBH4

	

−
1

2

�
Qð1Þ

ψ2BH2D − iQð3Þ
ψ2BH2D

	
−
g0

4
Qð1Þ

ψ2H4D þ g02

16

�
Qð1Þ

ψ2H5 þQ†ð1Þ
ψ2H5

	
; ðA38Þ

Rð7Þ
B2H2D2 ¼ i

g0

2
Qð2Þ

BH4D2 þ g0

8

�
g0Qð2Þ

B2H4 þ gQð2Þ
WBH4

	
−
1

2

�
Qð2Þ

ψ2BH2D þ iQð4Þ
ψ2BH2D

	
; ðA39Þ

Rð8Þ
B2H2D2 ¼ i

g0

2
Qð2Þ

BH4D2 þ g0

8

�
g0Qð2Þ

B2H4 þ gQð2Þ
WBH4

	
−
1

2

�
Qð2Þ

ψ2BH2D − iQð4Þ
ψ2BH2D

	
; ðA40Þ

Rð9Þ
B2H2D2 ¼ g02

4
Δ5 −

g02

8

�
Qð1Þ

ψ2H5 þQ†ð1Þ
ψ2H5

	
þ g0Qð1Þ

ψ2H4D
þQð4Þ

ψ4H2 ; ðA41Þ

Rð1Þ
W2H2D2 ¼ λv2WI

μνWI;μνðH†HÞ − 2λQð1Þ
W2H4 −Qð1Þ

ψ2W2H; ðA42Þ

Rð2Þ
W2H2D2 ¼ λv2WI

μνWI;μνðH†HÞ − 2λQð1Þ
W2H4 −Q†ð1Þ

ψ2W2H
; ðA43Þ

Rð3Þ
W2H2D2 ¼ λv2WI

μνW̃I;μνðH†HÞ − 2λQð2Þ
W2H4 −Qð2Þ

ψ2W2H
; ðA44Þ

Rð4Þ
W2H2D2 ¼ λv2WI

μνW̃I;μνðH†HÞ − 2λQð2Þ
W2H4 −Q†ð2Þ

ψ2W2H
; ðA45Þ
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Rð5Þ
W2H2D2 ¼ −

g2

8
Δ3 þ

g
2

�
iQð1Þ

WH4D2 −Qð3Þ
WH4D2

	
þ g
8

�
g0Qð1Þ

WBH4 þ gQð1Þ
W2H4

	

−
1

2

�
Qð5Þ

ψ2WH2D
þ iQð7Þ

ψ2WH2D

	
−
g
8

�
Qð2Þ

ψ2H4D
þQð4Þ

ψ2H4D
− iQð3Þ

ψ2H4D

	
þ g2

16

�
Qð1Þ

ψ2H5 þQ†ð1Þ
ψ2H5

	
; ðA46Þ

Rð6Þ
W2H2D2 ¼ −

g2

8
Δ3 þ

g
2

�
iQð1Þ

WH4D2 þQð3Þ
WH4D2

	
þ g
8

�
g0Qð1Þ

WBH4 þ gQð1Þ
W2H4

	

−
1

2

�
Qð5Þ

ψ2WH2D − iQð7Þ
ψ2WH2D

	
−
g
8

�
Qð2Þ

ψ2H4D þQð4Þ
ψ2H4D þ iQð3Þ

ψ2H4D

	
þ g2

16

�
Qð1Þ

ψ2H5 þQ†ð1Þ
ψ2H5

	
; ðA47Þ

Rð7Þ
W2H2D2 ¼ g

2

�
iQð2Þ

WH4D2 −Qð4Þ
WH4D2

	
þ g
8

�
g0Qð2Þ

WBH4 þ gQð2Þ
W2H4

	
−
1

2

�
Qð6Þ

ψ2WH2D
þ iQð8Þ

ψ2WH2D

	
; ðA48Þ

Rð8Þ
W2H2D2 ¼ g

2

�
iQð2Þ

WH4D2 þQð4Þ
WH4D2

	
þ g
8

�
g0Qð2Þ

WBH4 þ gQð2Þ
W2H4

	
−
1

2

�
Qð6Þ

ψ2WH2D
− iQð8Þ

ψ2WH2D

	
; ðA49Þ

Rð9Þ
W2H2D2 ¼ g2

4
Δ3 þ

g
2

�
Qð2Þ

ψ2H4D
þQð4Þ

ψ2H4D

	
−
g2

8

�
Qð1Þ

ψ2H5 þQ†ð1Þ
ψ2H5

	
þQð5Þ

ψ4H2 ; ðA50Þ

Rð10Þ
W2H2D2 ¼ i

g2

4
Δ3 − i

g
2

�
4iQð1Þ

WH4D2 −Qð3Þ
WH4D2

	
− i

g
4

�
g0Qð1Þ

WBH4 þ gQð1Þ
W2H4

	

þ 1

2

�
Qð9Þ

ψ2WH2D
þ iQð11Þ

ψ2WH2D

	
þ i

g
4

�
Qð2Þ

ψ2H4D
þQð4Þ

ψ2H4D
− iQð3Þ

ψ2H4D

	
− i

g2

8

�
Qð1Þ

ψ2H5 þQ†ð1Þ
ψ2H5

	
; ðA51Þ

Rð11Þ
W2H2D2 ¼ −i

g2

4
Δ3 þ i

g
2

�
4iQð1Þ

WH4D2 þQð3Þ
WH4D2

	
þ i

g
4

�
g0Qð1Þ

WBH4 þ gQð1Þ
W2H4

	

þ 1

2

�
Qð9Þ

ψ2WH2D − iQð11Þ
ψ2WH2D

	
− i

g
4

�
Qð2Þ

ψ2H4D þQð4Þ
ψ2H4D þ iQð3Þ

ψ2H4D

	
þ i

g2

8

�
Qð1Þ

ψ2H5 þQ†ð1Þ
ψ2H5

	
; ðA52Þ

Rð12Þ
W2H2D2 ¼ g

2

�
4Qð2Þ

WH4D2 þ iQð4Þ
WH4D2

	
− i

g
4

�
g0Qð2Þ

WBH4 þ gQð2Þ
W2H4

	
þ 1

2

�
Qð10Þ

ψ2WH2D
þ iQð12Þ

ψ2WH2D

	
; ðA53Þ

Rð13Þ
W2H2D2 ¼ g

2

�
−4Qð2Þ

WH4D2 þ iQð4Þ
WH4D2

	
þ i

g
4

�
g0Qð2Þ

WBH4 þ gQð2Þ
W2H4

	
þ 1

2

�
Qð10Þ

ψ2WH2D
− iQð12Þ

ψ2WH2D

	
; ðA54Þ

Rð1Þ
G2H2D2 ¼ λv2GA

μνGA;μνðH†HÞ − 2λQð1Þ
G2H4 −Qð1Þ

ψ2G2H; ðA55Þ

Rð2Þ
G2H2D2 ¼ λv2GA

μνGA;μνðH†HÞ − 2λQð1Þ
G2H4 −Q†ð1Þ

ψ2G2H
; ðA56Þ

Rð3Þ
G2H2D2 ¼ λv2GA

μνG̃
A;μνðH†HÞ − 2λQð2Þ

G2H4 −Qð2Þ
ψ2G2H

; ðA57Þ

Rð4Þ
G2H2D2 ¼ λv2GA

μνG̃
A;μνðH†HÞ − 2λQð2Þ

G2H4 −Q†ð2Þ
ψ2G2H

; ðA58Þ

Rð5Þ
G2H2D2 ¼ −

1

2

�
Qð1Þ

ψ2GH2D
þ iQð3Þ

ψ2GH2D

	
; ðA59Þ

Rð6Þ
G2H2D2 ¼ −

1

2

�
Qð1Þ

ψ2GH2D
− iQð3Þ

ψ2GH2D

	
; ðA60Þ

Rð7Þ
G2H2D2 ¼ −

1

2

�
Qð2Þ

ψ2GH2D þ iQð4Þ
ψ2GH2D

	
; ðA61Þ

Rð8Þ
G2H2D2 ¼ −

1

2

�
Qð2Þ

ψ2GH2D
− iQð4Þ

ψ2GH2D

	
; ðA62Þ
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Rð9Þ
G2H2D2 ¼ Qð6Þ

ψ4H2 ; ðA63Þ

Rð1Þ
BWH2D2 ¼ λv2BμνWI;μνðH†τIHÞ − 2λQð1Þ

WBH4 −Qð1Þ
ψ2WBH

; ðA64Þ

Rð2Þ
BWH2D2 ¼ λv2BμνWI;μνðH†τIHÞ − 2λQð1Þ

WBH4 −Q†ð1Þ
ψ2WBH

; ðA65Þ

Rð3Þ
BWH2D2 ¼ λv2BμνW̃I;μνðH†τIHÞ − 2λQð2Þ

WBH4 −Qð2Þ
ψ2WBH; ðA66Þ

Rð4Þ
BWH2D2 ¼ λv2BμνW̃I;μνðH†τIHÞ − 2λQð2Þ

WBH4 −Q†ð2Þ
ψ2WBH

; ðA67Þ

Rð5Þ
BWH2D2 ¼ −

gg0

8

�
Qð1Þ

H6 −Qð2Þ
H6

	
þ g0

2

�
iQð1Þ

WH4D2 −Qð3Þ
WH4D2

	
þ gg0

16

�
Qð1Þ

W2H4 −Qð3Þ
W2H4

	
þ 1

2

�
Qð1Þ

ψ2WH2D
þ iQð3Þ

ψ2WH2D

	
−
g0

8

�
Qð4Þ

ψ2H4D
− iQð3Þ

ψ2H4D

	
; ðA68Þ

Rð6Þ
BWH2D2 ¼ −

gg0

8

�
Qð1Þ

H6 −Qð2Þ
H6

	
þ g0

2

�
iQð1Þ

WH4D2 þQð3Þ
WH4D2

	
þ gg0

16

�
Qð1Þ

W2H4 −Qð3Þ
W2H4

	
þ 1

2

�
Qð1Þ

ψ2WH2D
− iQð3Þ

ψ2WH2D

	
−
g0

8

�
Qð4Þ

ψ2H4D
þ iQð3Þ

ψ2H4D

	
; ðA69Þ

Rð7Þ
BWH2D2 ¼ g0

2

�
iQð2Þ

WH4D2 −Qð4Þ
WH4D2

	
þ gg0

16

�
Qð2Þ

W2H4 −Qð4Þ
W2H4

	
þ 1

2

�
Qð2Þ

ψ2WH2D
þ iQð4Þ

ψ2WH2D

	
; ðA70Þ

Rð8Þ
BWH2D2 ¼ g0

2

�
iQð2Þ

WH4D2 þQð4Þ
WH4D2

	
þ gg0

16

�
Qð2Þ

W2H4 −Qð4Þ
W2H4

	
þ 1

2

�
Qð2Þ

ψ2WH2D − iQð4Þ
ψ2WH2D

	
; ðA71Þ

Rð9Þ
BWH2D2 ¼ −

gg0

8
Δ5 þ i

3g
2
Qð1Þ

BH4D2 þ g
8

�
gQð1Þ

WBH4 þ g0Qð1Þ
B2H4

	
þ 1

2

�
Qð5Þ

ψ2BH2D þ iQð7Þ
ψ2BH2D

	
−
g
4
Qð1Þ

ψ2H4D þ gg0

16

�
Qð1Þ

ψ2H5 þQ†ð1Þ
ψ2H5

	
; ðA72Þ

Rð10Þ
BWH2D2 ¼ −

gg0

8
Δ5 þ i

3g
2
Qð1Þ

BH4D2 þ g
8

�
gQð1Þ

WBH4 þ g0Qð1Þ
B2H4

	
þ 1

2

�
Qð5Þ

ψ2BH2D
− iQð7Þ

ψ2BH2D

	
−
g
4
Qð1Þ

ψ2H4D
þ gg0

16

�
Qð1Þ

ψ2H5 þQ†ð1Þ
ψ2H5

	
; ðA73Þ

Rð11Þ
BWH2D2 ¼ i

3g
2
Qð2Þ

BH4D2 þ g
8

�
gQð2Þ

WBH4 þ g0Qð2Þ
B2H4

	
þ 1

2

�
Qð6Þ

ψ2BH2D
þ iQð8Þ

ψ2BH2D

	
; ðA74Þ

Rð12Þ
BWH2D2 ¼ i

3g
2
Qð2Þ

BH4D2 þ g
8

�
gQð2Þ

WBH4 þ g0Qð2Þ
B2H4

	
þ 1

2

�
Qð6Þ

ψ2BH2D
− iQð8Þ

ψ2BH2D

	
; ðA75Þ

Rð13Þ
BWH2D2 ¼ gg0

4
Δ5 −

gg0

8

�
Qð1Þ

ψ2H5 þQ†ð1Þ
ψ2H5

	
þ g
2
Qð1Þ

ψ2H4D þ g0

4

�
Qð2Þ

ψ2H4D −Qð4Þ
ψ2H4D

	
þQð7Þ

ψ4H2 : ðA76Þ

Operators in class XH4D2:

Rð1Þ
BH4D2 ¼ i

g0

2
Δ5 þ iQð1Þ

ψ2H4D − i
g0

4

�
Qð1Þ

ψ2H5 þQ†ð1Þ
ψ2H5

	
; ðA77Þ

Rð1Þ
WH4D2 ¼ i

g
2
Δ3 þ i

1

2

�
Qð2Þ

ψ2H4D
þQð4Þ

ψ2H4D

	
− i

g
4

�
Qð1Þ

ψ2H5 þQ†ð1Þ
ψ2H5

	
; ðA78Þ
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Rð2Þ
WH4D2 ¼ −

g
2

�
Qð1Þ

H6 −Qð2Þ
H6

	
−
1

2

�
Qð4Þ

ψ2H4D
− iQð3Þ

ψ2H4D

	
; ðA79Þ

Rð3Þ
WH4D2 ¼ −

g
2

�
Qð1Þ

H6 −Qð2Þ
H6

	
−
1

2

�
Qð4Þ

ψ2H4D
þ iQð3Þ

ψ2H4D

	
: ðA80Þ

Operators in class XH2D4:

Rð1Þ
BH2D4 ¼ −i

g0

2
½λΔ5 − λv2ðDνH†HÞðH†D

↔

νHÞ� þ λv2ðDνH†HÞJνB

− i
g0

4

�
Q†ð1Þ

ψ2H3D2 þQ†ð2Þ
ψ2H3D2 − 2Q†ð3Þ

ψ2H3D2

	
− iλQð1Þ

ψ2H4D þ i
g0λ
4

�
Qð1Þ

ψ2H5 þQ†ð1Þ
ψ2H5

	
−Q†ð1Þ

ψ4HD; ðA81Þ

Rð2Þ
BH2D4 ¼ i

g0

2
½λΔ5 − λv2ðH†DνHÞðH†D

↔

νHÞ� þ λv2ðH†DνHÞJνB

þ i
g0

4

�
Qð1Þ

ψ2H3D2 þQð2Þ
ψ2H3D2 − 2Qð3Þ

ψ2H3D2

	
þ iλQð1Þ

ψ2H4D
− i

g0λ
4

�
Qð1Þ

ψ2H5 þQ†ð1Þ
ψ2H5

	
−Qð1Þ

ψ4HD
; ðA82Þ

Rð3Þ
BH2D4 ¼ i

g0g2

8
Δ4 þ ig0

�
Qð1Þ

H4 −Qð2Þ
H4

	
−
g0

2

�
g0Qð1Þ

BH4D2 − gQð1Þ
WH4D2

	
− i

gg0

16

�
gQð1Þ

W2H4 þ gQð3Þ
W2H4 þ 2g0Qð1Þ

WBH4

	
− i

1

4
Qð1Þ

ψ2H2D3 þ i
1

2

�
g0Qð1Þ

ψ2BH2D
þ gQð1Þ

ψ2WH2D

	

− i
g2 þ g02

4
Qð1Þ

ψ2H4D þ i
gg0

8
Qð2Þ

ψ2H4D − i
g2g0

16

�
Qð1Þ

ψ2H5 þQ†ð1Þ
ψ2H5

	
− i

1

2

h
g0
�
−Qð1Þ

ψ4H2 þQð2Þ
ψ4H2 þQ†ð2Þ

ψ4H2 − 2Qð3Þ
ψ4H2 þQð4Þ

ψ4H2

	
þ gQð7Þ

ψ4H2

i
; ðA83Þ

Rð1Þ
WH2D4 ¼ −i

g
2

h
λΔ3 − λv2ðDνH†τIHÞðH†D

↔I
νHÞ

i
þ λv2ðDνH†τIHÞJIνW

− i
g
4

�
3Q†ð1Þ

ψ2H3D2 −Q†ð2Þ
ψ2H3D2 − 2Q†ð3Þ

ψ2H3D2

	
− i

λ

2

�
Qð2Þ

ψ2H4D
þQð4Þ

ψ2H4D
− iQð3Þ

ψ2H4D

	
þ i

gλ
4

�
Qð1Þ

ψ2H5 þQ†ð1Þ
ψ2H5

	
−Q†ð2Þ

ψ4HD; ðA84Þ

Rð2Þ
WH2D4 ¼ i

g
2

h
λΔ3 þ λv2ðH†τIDνHÞðH†D

↔I
νHÞ

i
þ λv2ðH†τIDνHÞJIνW

þ i
g
4

�
3Qð1Þ

ψ2H3D2 −Qð2Þ
ψ2H3D2 − 2Qð3Þ

ψ2H3D2

	
þ i

λ

2

�
Qð2Þ

ψ2H4D
þQð4Þ

ψ2H4D
þ iQð3Þ

ψ2H4D

	
− i

gλ
4

�
Qð1Þ

ψ2H5 þQ†ð1Þ
ψ2H5

	
−Qð2Þ

ψ4HD
; ðA85Þ

Rð3Þ
WH2D4 ¼ i

gg02

4
Δ5 − ig

�
Qð1Þ

H4 þQð2Þ
H4 − 2Qð3Þ

H4

	
− i

gg0

4

�
g0Qð1Þ

B2H4 þ gQð1Þ
WBH4

	
−
g
2

�
gQð1Þ

WH4D2 − 3g0Qð1Þ
BH4D2

	
− i

1

4
Qð2Þ

ψ2H2D3 þ i
1

2

�
g0Qð5Þ

ψ2BH2D
þ gQð5Þ

ψ2WH2D
− 2gQð11Þ

ψ2WH2D

	

− i
1

8

�
ðg2 þ g02ÞQð2Þ

ψ2H4D
þ ðg2 − g02ÞQð4Þ

ψ2H4D
− 4gg0Qð1Þ

ψ2H4D

	
− i

gg02

8

�
Qð1Þ

ψ2H5 þQ†ð1Þ
ψ2H5

	
− i

1

2

h
g
�
−3Qð1Þ

ψ4H2 þQð2Þ
ψ4H2 þQ†ð2Þ

ψ4H2 þ 2Qð3Þ
ψ4H2 þQð5Þ

ψ4H2

	
þ g0Qð7Þ

ψ4H2

i
: ðA86Þ
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APPENDIX B: USEFUL RELATIONS

One useful tool to simplify the intermediate expressions
are the Fierz transformations [49]. We made extensive use
of the following relations:

(i) SUð2Þ identities:

ðτIÞliðτJÞjl ¼ δIJðδÞji þ iϵIJKðτKÞji ; ðB1Þ

ðτIÞljðτIÞnm ¼ 2δnjδ
l
m − δljδ

n
m; ðB2Þ

2ðτIÞlmδnj − ðτIÞnmδlj − ðτIÞljδnm ¼ þiϵIJKðτJÞljðτKÞnm;
ðB3Þ

ðτIÞnmδlj − ðτIÞljδnm ¼ þiϵIJKðτJÞnj ðτKÞlm: ðB4Þ

(ii) SUð3Þ identities:

ðTAÞbaðTBÞcb ¼
1

6
δABδca þ

1

2
ðdABC þ ifABCÞðTCÞca;

ðB5Þ

ðTAÞbaðTAÞdc ¼
1

2
δdaδ

b
c −

1

6
δbaδ

d
c; ðB6Þ

ðTAÞdaδbc −
1

3
ððTAÞbaδdc þ ðTAÞdcδbaÞ − dABCðTBÞbaðTCÞdc

¼ −ifABCðTBÞbaðTCÞdc: ðB7Þ

(iii) Relations with γ matrices:

γμγν ¼ gμν − iσμν; ðB8Þ

γμγαγρ ¼ gμαγρ þ gαργμ − gμργα − iϵμαρσγσγ5; ðB9Þ

σμν ¼ −i
1

2
ϵμνρησρηγ

5; ðB10Þ

Dμðf̄γνMfÞ −Dνðf̄γμMfÞ ¼ i½f̄σμνMð=DfÞ − ð=DfÞσμνMf � ϵμνρηf̄γρMD
↔

ηf�: ðB11Þ

where M can be the identity, a Pauli matrix τI or a TA matrix and the upper (lower) sign corresponds to right (left)-
handed fermions.

(iv) Lorentz scalar fermionic Fierz identities:

ðl̄a; ebÞðēcldÞ ¼ −
1

2
ðl̄aγμldÞðēcγμebÞ; ðB12Þ

ðl̄ja; ebÞðēcldkÞ ¼ −
1

4
½ðl̄aγμldÞðēcγμebÞδjk þ ðl̄aγμτIldÞðēcγμebÞðτIÞjk�; ðB13Þ

ðq̄aubÞðūcqdÞ ¼ −
1

6
ðq̄aγμqdÞðūcγμubÞ − ðq̄aγμTAqdÞðūcγμTAubÞ; ðB14Þ

ðq̄jaubÞðūcqdkÞ ¼ −
δjk
2

�
1

6
ðq̄aγμqdÞðūcγμubÞ þ ðq̄aγμTAqdÞðūcγμTAubÞ

�
;

−
ðτÞjk
2

�
1

6
ðq̄aγμτIqdÞðūcγμubÞ þ ðq̄aγμTAτIqdÞðūcγμTAubÞ

�
; ðB15Þ

ðf̄aγμfaÞðf̄bγμfbÞ ¼ ðf̄aγμfbÞðf̄bγμfaÞ; for f ¼ q; l; u; d; e; ðB16Þ

ðl̄aγμτIlaÞðl̄bγμτIlbÞ ¼ 2ðl̄aγμlbÞðl̄bγμlaÞ − ðl̄aγμlaÞðl̄bγμlbÞ; ðB17Þ

ðf̄aγμTAfaÞðf̄bγμTAfbÞ ¼ −
1

6
ðf̄aγμfaÞðf̄bγμfbÞ þ

1

2
ðf̄aγμfbÞðf̄bγμfaÞ; for f ¼ q; u; d: ðB18Þ

(v) Lorentz tensor fermionic Fierz identities: In the expressions below, Sμν represent a piece which is symmetric under
the exchange μ ↔ ν and which will not contribute to the operators for which these relations are being used, so for
simplicity we have not included their explicit forms. They can be found in Ref. [51].
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ðēaγμeaÞðēbγνebÞ ¼ Sμνe þ 1

2
iϵμνρσðēaγρebÞðēbγσeaÞ; ðB19Þ

ðl̄aγμlaÞðl̄bγνlbÞ ¼ Sμνl −
1

2
iϵμνρσðl̄aγρlbÞðl̄bγσlaÞ; ðB20Þ

ðūaγμuaÞðūbγνubÞ ¼ Sμνu þ 1

2
iϵμνρσ

�
1

3
ðūaγρubÞðūbγσubÞ þ 2ðūaγρTAubÞðūbγσTAuaÞ

�
; ðB21Þ

ðq̄aγμqaÞðq̄bγνqbÞ ¼ Sμνq −
1

2
iϵμνρσ

�
1

3
ðq̄aγρqbÞðq̄bγσqaÞ þ 2ðq̄aγρTAqbÞðq̄bγσTAqaÞ

�
; ðB22Þ

ðl̄aγμτIlaÞðl̄bγντJlbÞϵIJK ¼ SKl
μν þ ϵμνρσðl̄aγρτKlbÞðl̄bγσlbÞ; ðB23Þ

ðq̄aγμτIqaÞðq̄bγντJqbÞϵIJK ¼ SKq μν þ ϵμνρσ
�
1

3
ðq̄aγρτKqbÞðq̄bγσqbÞ þ 2ðq̄aγρTAτKqbÞðq̄bγσTAqbÞ

�
; ðB24Þ

ðūaγμTAuaÞðūbγνTBubÞfABC ¼ SCu μν −
1

2
ϵμνρσðūaγρTCubÞðūbγσuaÞ; ðB25Þ

ðq̄aγμTAqaÞðq̄bγνTBqbÞfABC ¼ SCq μν þ 1

2
ϵμνρσðq̄aγρTCqbÞðq̄bγσqaÞ: ðB26Þ

APPENDIX C: RELEVANT FERMIONIC OPERATORS IN M8B

For convenience and reference, in Tables II, III, IV, V, VI, VII, VIII, and IX we list the operators in M8B that contain
fermion and are in the rotation of the bosonic universal operators and, therefore, appear in Eqs. (59)–(71).

TABLE II. The dimension-eight operators in the M8B with
particle content ψ2X2H and ψ2H2D3 generated in universal
theories. For the operators in the first two columns their
Hermitian conjugates are a priori independent operators. For
operators ψ2H2D3 their Hermitian conjugates are not indepen-
dent operators. The subscripts p, r are weak eigenstate indices.

9∶ψ2X2H þ H:c:

Qð1Þ
leG2H

ðl̄perÞHGA
μνGAμν

Qð2Þ
leG2H

ðl̄perÞHG̃A
μνGAμν

Qð1Þ
leW2H

ðl̄perÞHWI
μνWIμν

Qð2Þ
leW2H

ðl̄perÞHW̃I
μνWIμν

Qð3Þ
leW2H

ϵIJKðl̄pσμνerÞτIHWJ
μρW

Kρ
ν

Qð1Þ
quG2H

ðq̄purÞH̃GA
μνGAμν

Qð2Þ
quG2H

ðq̄purÞH̃G̃A
μνGAμν

Qð3Þ
quG2H

dABCðq̄pTAurÞH̃GB
μνGCμν

Qð3Þ
quGBH

ðq̄pσμνTAurÞH̃GA
μρB

ρ
ν

Qð1Þ
quW2H

ðq̄purÞH̃WI
μνWIμν

(Table continued)

TABLE II. (Continued)

9∶ψ2X2H þ H:c:

Qð2Þ
quW2H

ðq̄purÞH̃W̃I
μνWIμν

Qð3Þ
quW2H

ϵIJKðq̄pσμνurÞτIH̃WJ
μρW

Kρ
ν

Qð1Þ
quWBH

ðq̄purÞτIH̃WI
μνBμν

Qð2Þ
quWBH

ðq̄purÞτIH̃W̃I
μνBμν

Qð3Þ
quWBH

ðq̄pσμνurÞτIH̃WI
μρB

ρ
ν

Qð1Þ
quB2H

ðq̄purÞH̃BμνBμν

Qð2Þ
quB2H

ðq̄purÞH̃B̃μνBμν

9∶ψ2X2H þ H:c:

Qð1Þ
leWBH

ðl̄perÞτIHWI
μνBμν

Qð2Þ
leWBH

ðl̄perÞτIHW̃I
μνBμν

Qð3Þ
leWBH

ðl̄pσμνerÞτIHWI
μρB

ρ
ν

Qð1Þ
leB2H

ðl̄perÞHBμνBμν

Qð2Þ
leB2H

ðl̄perÞHB̃μνBμν

(Table continued)
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TABLE III. The dimension-eight operators in the M8B with
particle content ψ2H5, ψ2H4D and ψ2H3D2 that are generated in
universal theories. For the operators in the first column their
Hermitian conjugates are a priori independent operators. Oper-

ators in class 13 are Hermitian. For operators Qð1Þ
f2H4D

, where

f ¼ u, d, e, we have added a superscript of (1) to the M8B
operators. The subscripts p, r are weak eigenstate indices.

12∶ψ2H5 þ H:c:

QleH5 ðH†HÞ2ðl̄perHÞ
QquH5 ðH†HÞ2ðq̄purH̃Þ
QqdH5 ðH†HÞ2ðq̄pdrHÞ

17∶ψ2H3D2 þ H:c:

Qð1Þ
leH3D2

ðDμH†DμHÞðl̄perHÞ
Qð2Þ

leH3D2
ðDμH†τIDμHÞðl̄perτIHÞ

Qð5Þ
leH3D2

ðH†DμHÞðl̄perDμHÞ
Qð1Þ

quH3D2
ðDμH†DμHÞðq̄purH̃Þ

Qð2Þ
quH3D2

ðDμH†τIDμHÞðq̄purτIH̃Þ
Qð5Þ

quH3D2
ðDμH†HÞðq̄purDμH̃Þ

Qð1Þ
qdH3D2

ðDμH†DμHÞðq̄pdrHÞ
Qð2Þ

qdH3D2
ðDμH†τIDμHÞðq̄pdrτIHÞ

Qð5Þ
qdH3D2

ðH†DμHÞðq̄pdrDμHÞ

13∶ψ2H4D

Qð1Þ
l2H4D iðl̄pγμlrÞðH†D

↔

μHÞðH†HÞ
Qð2Þ

l2H4D iðl̄pγμτIlrÞ½ðH†D
↔I

μHÞðH†HÞ þ ðH†D
↔

μHÞðH†τIHÞ�
Qð3Þ

l2H4D iϵIJKðl̄pγμτIlrÞðH†D
↔J

μHÞðH†τKHÞ
Qð4Þ

l2H4D
ϵIJKðl̄pγμτIlrÞðH†τJHÞDμðH†τKHÞ

Qð1Þ
e2H4D iðēpγμerÞðH†D

↔

μHÞðH†HÞ
Qð1Þ

q2H4D iðq̄pγμqrÞðH†D
↔

μHÞðH†HÞ
Qð2Þ

q2H4D iðq̄pγμτIqrÞ½ðH†D
↔I

μHÞðH†HÞ þ ðH†D
↔

μHÞðH†τIHÞ�
Qð3Þ

q2H4D iϵIJKðq̄pγμτIqrÞðH†D
↔J

μHÞðH†τKHÞ
Qð4Þ

q2H4D
ϵIJKðq̄pγμτIqrÞðH†τJHÞDμðH†τKHÞ

Qð1Þ
u2H4D iðūpγμurÞðH†D

↔

μHÞðH†HÞ
Qð1Þ

d2H4D iðd̄pγμdrÞðH†D
↔

μHÞðH†HÞ

TABLE II. (Continued)

9∶ψ2X2H þ H:c:

Qð1Þ
qdG2H

ðq̄pdrÞHGA
μνGAμν

Qð2Þ
qdG2H

ðq̄pdrÞHG̃A
μνGAμν

Qð3Þ
qdG2H

dABCðq̄pTAdrÞHGB
μνGCμν

Qð3Þ
qdGBH

ðq̄pσμνTAdrÞHGA
μρB

ρ
ν

Qð1Þ
qdW2H

ðq̄pdrÞHWI
μνWIμν

Qð2Þ
qdW2H

ðq̄pdrÞHW̃I
μνWIμν

Qð3Þ
qdW2H

ϵIJKðq̄pσμνdrÞτIHWJ
μρW

Kρ
ν

Qð1Þ
qdWBH

ðq̄pdrÞτIHWI
μνBμν

Qð2Þ
qdWBH

ðq̄pdrÞτIHW̃I
μνBμν

Qð3Þ
qdWBH

ðq̄pσμνdrÞτIHWI
μρB

ρ
ν

Qð1Þ
qdB2H

ðq̄pdrÞHBμνBμν

Qð2Þ
qdB2H

ðq̄pdrÞHB̃μνBμν

11∶ψ2H2D3

Qð1Þ
l2H2D3

iðl̄pγμDνlrÞðDðμDνÞH†HÞ
Qð2Þ

l2H2D3
iðl̄pγμDνlrÞðH†DðμDνÞHÞ

Qð3Þ
l2H2D3

iðl̄pγμτIDνlrÞðDðμDνÞH†τIHÞ
Qð4Þ

l2H2D3
iðl̄pγμτIDνlrÞðH†τIDðμDνÞHÞ

Qð1Þ
e2H2D3

iðēpγμDνerÞðDðμDνÞH†HÞ
Qð2Þ

e2H2D3
iðēpγμDνerÞðH†DðμDνÞHÞ

Qð1Þ
q2H2D3

iðq̄pγμDνqrÞðDðμDνÞH†HÞ
Qð2Þ

q2H2D3
iðq̄pγμDνqrÞðH†DðμDνÞHÞ

Qð3Þ
q2H2D3

iðq̄pγμτIDνqrÞðDðμDνÞH†τIHÞ
Qð4Þ

q2H2D2
iðq̄pγμτIDνqrÞðH†τIDðμDνÞHÞ

Qð1Þ
u2H2D3

iðūpγμDνurÞðDðμDνÞH†HÞ
Qð2Þ

u2H2D3
iðūpγμDνurÞðH†DðμDνÞHÞ

Qð1Þ
d2H2D3

iðd̄pγμDνdrÞðDðμDνÞH†HÞ
Qð2Þ

d2H2D3
iðd̄pγμDνdrÞðH†DðμDνÞHÞ
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TABLE IV. The dimension-eight operators in the M8B with
particle content ψ2XH2D generated in universal theories. All
operators are either Hermitian or anti-Hermitian. Once again, the
subscripts p, r are weak eigenstate indices.

15∶ðR̄RÞXH2D

Qð1Þ
e2WH2D

ðēpγνerÞDμðH†τIHÞWI
μν

Qð2Þ
e2WH2D

ðēpγνerÞDμðH†τIHÞW̃I
μν

Qð3Þ
e2WH2D ðēpγνerÞðH†D

↔Iμ
HÞWI

μν

Qð4Þ
e2WH2D ðēpγνerÞðH†D

↔Iμ
HÞW̃I

μν

Qð1Þ
e2BH2D

ðēpγνerÞDμðH†HÞBμν

Qð2Þ
e2BH2D

ðēpγνerÞDμðH†HÞB̃μν

Qð3Þ
e2BH2D ðēpγνerÞðH†D

↔μ
HÞBμν

Qð4Þ
e2BH2D ðēpγνerÞðH†D

↔μ
HÞB̃μν

Qð1Þ
u2GH2D

ðūpγνTAurÞDμðH†HÞGA
μν

Qð2Þ
u2GH2D

ðūpγνTAurÞDμðH†HÞG̃A
μν

Qð3Þ
u2GH2D ðūpγνTAurÞðH†D

↔μ
HÞGA

μν

Qð4Þ
u2GH2D ðūpγνTAurÞðH†D

↔μ
HÞG̃A

μν

Qð1Þ
u2WH2D

ðūpγνurÞDμðH†τIHÞWI
μν

Qð2Þ
u2WH2D

ðūpγνurÞDμðH†τIHÞW̃I
μν

Qð3Þ
u2WH2D ðūpγνurÞðH†D

↔Iμ
HÞWI

μν

Qð4Þ
u2WH2D ðūpγνurÞðH†D

↔Iμ
HÞW̃I

μν

Qð1Þ
u2BH2D

ðūpγνurÞDμðH†HÞBμν

Qð2Þ
u2BH2D

ðūpγνurÞDμðH†HÞB̃μν

Qð3Þ
u2BH2D ðūpγνurÞðH†D

↔μ
HÞBμν

Qð4Þ
u2BH2D ðūpγνurÞðH†D

↔μ
HÞB̃μν

Qð1Þ
d2GH2D

ðd̄pγνTAdrÞDμðH†HÞGA
μν

Qð2Þ
d2GH2D

ðd̄pγνTAdrÞDμðH†HÞG̃A
μν

Qð3Þ
d2GH2D ðd̄pγνTAdrÞðH†D

↔μ
HÞGA

μν

Qð4Þ
d2GH2D ðd̄pγνTAdrÞðH†D

↔μ
HÞG̃A

μν

Qð1Þ
d2WH2D

ðd̄pγνdrÞDμðH†τIHÞWI
μν

Qð2Þ
d2WH2D

ðd̄pγνdrÞDμðH†τIHÞW̃I
μν

Qð3Þ
d2WH2D ðd̄pγνdrÞðH†D

↔Iμ
HÞWI

μν

Qð4Þ
d2WH2D ðd̄pγνdrÞðH†D

↔Iμ
HÞW̃I

μν

Qð1Þ
d2BH2D

ðd̄pγνdrÞDμðH†HÞBμν

Qð2Þ
d2BH2D

ðd̄pγνdrÞDμðH†HÞB̃μν

Qð3Þ
d2BH2D ðd̄pγνdrÞðH†D

↔μ
HÞBμν

Qð4Þ
d2BH2D ðd̄pγνdrÞðH†D

↔μ
HÞB̃μν

15∶ðL̄LÞXH2D

Qð1Þ
l2WH2D

ðl̄pγνlrÞDμðH†τIHÞWI
μν

Qð2Þ
l2WH2D

ðl̄pγνlrÞDμðH†τIHÞW̃I
μν

(Table continued)

TABLE IV. (Continued)

15∶ðL̄LÞXH2D

Qð3Þ
l2WH2D ðl̄pγνlrÞðH†D

↔Iμ
HÞWI

μν

Qð4Þ
l2WH2D ðl̄pγνlrÞðH†D

↔Iμ
HÞW̃I

μν

Qð5Þ
l2WH2D

ðl̄pγντIlrÞDμðH†HÞWI
μν

Qð6Þ
l2WH2D

ðl̄pγντIlrÞDμðH†HÞW̃I
μν

Qð7Þ
l2WH2D ðl̄pγντIlrÞðH†D

↔μ
HÞWI

μν

Qð8Þ
l2WH2D ðl̄pγντIlrÞðH†D

↔μ
HÞW̃I

μν

Qð9Þ
l2WH2D

ϵIJKðl̄pγντIlrÞDμðH†τJHÞWK
μν

Qð10Þ
l2WH2D

ϵIJKðl̄pγντIlrÞDμðH†τJHÞW̃K
μν

Qð11Þ
l2WH2D ϵIJKðl̄pγντIlrÞðH†D

↔Jμ
HÞWK

μν

Qð12Þ
l2WH2D ϵIJKðl̄pγντIlrÞðH†D

↔Jμ
HÞW̃K

μν

Qð1Þ
l2BH2D

ðl̄pγντIlrÞDμðH†τIHÞBμν

Qð2Þ
l2BH2D

ðl̄pγντIlrÞDμðH†τIHÞB̃μν

Qð3Þ
l2BH2D ðl̄pγντIlrÞðH†D

↔Iμ
HÞBμν

Qð4Þ
l2BH2D ðl̄pγντIlrÞðH†D

↔Iμ
HÞB̃μν

Qð5Þ
l2BH2D

ðl̄pγνlrÞDμðH†HÞBμν

Qð6Þ
l2BH2D

ðl̄pγνlrÞDμðH†HÞB̃μν

Qð7Þ
l2BH2D ðl̄pγνlrÞðH†D

↔μ
HÞBμν

Qð8Þ
l2BH2D ðl̄pγνlrÞðH†D

↔μ
HÞB̃μν

15∶ðL̄LÞXH2D

Qð5Þ
q2GH2D

ðq̄pγνTAqrÞDμðH†HÞGA
μν

Qð6Þ
q2GH2D

ðq̄pγνTAqrÞDμðH†HÞG̃A
μν

Qð7Þ
q2GH2D ðq̄pγνTAqrÞðH†D

↔μ
HÞGA

μν

Qð8Þ
q2GH2D ðq̄pγνTAqrÞðH†D

↔μ
HÞG̃A

μν

Qð1Þ
q2WH2D

ðq̄pγνqrÞDμðH†τIHÞWI
μν

Qð2Þ
q2WH2D

ðq̄pγνqrÞDμðH†τIHÞW̃I
μν

Qð3Þ
q2WH2D ðq̄pγνqrÞðH†D

↔Iμ
HÞWI

μν

Qð4Þ
q2WH2D ðq̄pγνqrÞðH†D

↔Iμ
HÞW̃I

μν

Qð5Þ
q2WH2D

ðq̄pγντIqrÞDμðH†HÞWI
μν

Qð6Þ
q2WH2D

ðq̄pγντIqrÞDμðH†HÞW̃I
μν

Qð7Þ
q2WH2D ðq̄pγντIqrÞðH†D

↔μ
HÞWI

μν

Qð8Þ
q2WH2D ðq̄pγντIqrÞðH†D

↔μ
HÞW̃I

μν

Qð9Þ
q2WH2D

ϵIJKðq̄pγντIqrÞDμðH†τJHÞWK
μν

Qð10Þ
q2WH2D

ϵIJKðq̄pγντIqrÞDμðH†τJHÞW̃K
μν

Qð11Þ
q2WH2D ϵIJKðq̄pγντIqrÞðH†D

↔Jμ
HÞWK

μν

Qð12Þ
q2WH2D ϵIJKðq̄pγντIqrÞðH†D

↔Jμ
HÞW̃K

μν

Qð1Þ
q2BH2D

ðq̄pγντIqrÞDμðH†τIHÞBμν

(Table continued)
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TABLE V. The dimension-eight operators in the M8B with
particle content ψ2X2D generated in universal theories. All
operators are anti-Hermitian. As before, the subscripts p, r are
weak eigenstate indices.

14∶ψ2X2D

Qð2Þ
l2W2D ϵIJKðl̄pγμτID

↔ν
lrÞWJ

μρW
Kρ
ν

Qð4Þ
l2W2D ϵIJKðl̄pγμτID

↔ν
lrÞðWJ

μρW̃
Kρ
ν þ W̃J

μρW
Kρ
ν Þ

Qð2Þ
q2W2D ϵIJKðq̄pγμτID

↔ν
qrÞWJ

μρW
Kρ
ν

Qð2Þ
q2G2D fABCðq̄pγμTAD

↔ν
qrÞGB

μρG
Cρ
ν

Qð4Þ
q2W2D ϵIJKðq̄pγμτID

↔ν
qrÞðWJ

μρW̃
Kρ
ν þ W̃J

μρW
Kρ
ν Þ

Qð5Þ
q2G2D fABCðq̄pγμTAD

↔ν
qrÞðGB

μρG̃
Cρ
ν þ G̃B

μρG
Cρ
ν Þ

Qð2Þ
u2G2D fABCðūpγμTAD

↔ν
urÞGB

μρG
Cρ
ν

Qð5Þ
u2G2D fABCðūpγμTAD

↔ν
urÞðGB

μρG̃
Cρ
ν þ G̃B

μρG
Cρ
ν Þ

Qð2Þ
d2G2D fABCðd̄pγμTAD

↔ν
drÞGB

μρG
Cρ
ν

Qð5Þ
d2G2D fABCðd̄pγμTAD

↔ν
drÞðGB

μρG̃
Cρ
ν þ G̃B

μρG
Cρ
ν Þ

14∶ψ2X2D

Qð1Þ
l2WBD ðl̄pγμτID

↔ν
lrÞðBμρW

Iρ
ν − BνρW

Iρ
μ Þ

Qð3Þ
l2WBD ðl̄pγμτID

↔ν
lrÞðBμρW̃

Iρ
ν − BνρW̃

Iρ
μ Þ

Qð1Þ
q2WBD ðq̄pγμτID

↔ν
qrÞðBμρW

Iρ
ν − BνρW

Iρ
μ Þ

Qð3Þ
q2WBD ðq̄pγμτID

↔ν
qrÞðBμρW̃

Iρ
ν − BνρW̃

Iρ
μ Þ

Qð1Þ
q2GBD ðq̄pγμTAD

↔ν
qrÞðBμρG

Aρ
ν − BνρG

Aρ
μ Þ

Qð3Þ
q2GBD ðq̄pγμTAD

↔ν
qrÞðBμρG̃

Aρ
ν − BνρG̃

Aρ
μ Þ

Qð1Þ
u2GBD ðūpγμTAD

↔ν
urÞðBμρG

Aρ
ν − BνρG

Aρ
μ Þ

Qð3Þ
u2GBD ðūpγμTAD

↔ν
urÞðBμρG̃

Aρ
ν − BνρG̃

Aρ
μ Þ

Qð1Þ
d2GBD ðd̄pγμTAD

↔ν
drÞðBμρG

Aρ
ν − BνρG

Aρ
μ Þ

Qð3Þ
d2GBD ðd̄pγμTAD

↔ν
drÞðBμρG̃

Aρ
ν − BνρG̃

Aρ
μ Þ

TABLE IV. (Continued)

15∶ðL̄LÞXH2D

Qð2Þ
q2BH2D

ðq̄pγντIqrÞDμðH†τIHÞB̃μν

Qð3Þ
q2BH2D ðq̄pγντIqrÞðH†D

↔Iμ
HÞBμν

Qð4Þ
q2BH2D ðq̄pγντIqrÞðH†D

↔Iμ
HÞB̃μν

Qð5Þ
q2BH2D

ðq̄pγνqrÞDμðH†HÞBμν

Qð6Þ
q2BH2D

ðq̄pγνqrÞDμðH†HÞB̃μν

Qð7Þ
q2BH2D ðq̄pγνqrÞðH†D

↔μ
HÞBμν

Qð8Þ
q2BH2D ðq̄pγνqrÞðH†D

↔μ
HÞB̃μν

TABLE VI. The dimension-eight operators in the M8B with
particle content ψ4H2 generated in universal theories. All
operators are either Hermitian or anti-Hermitian. For operators

Qð1Þ
f4H2 , where f ¼ u, d, e; and for Qð1Þ

e2u2H2 and Qð1Þ
e2d2H2 we have

added a superscript of (1) to the M8B operators. The subscripts p,
r, s, t are weak eigenstate indices.

18∶ðL̄LÞðL̄LÞH2

Qð1Þ
l4H2

ðl̄pγμlrÞðl̄sγμltÞðH†HÞ
Qð2Þ

l4H2
ðl̄pγμlrÞðl̄sγμτIltÞðH†τIHÞ

Qð1Þ
q4H2

ðq̄pγμqrÞðq̄sγμqtÞðH†HÞ

Qð2Þ
q4H2

ðq̄pγμqrÞðq̄sγμτIqtÞðH†τIHÞ

Qð3Þ
q4H2

ðq̄pγμτIqrÞðq̄sγμτIqtÞðH†HÞ

Qð1Þ
l2q2H2

ðl̄pγμlrÞðq̄sγμqtÞðH†HÞ
Qð2Þ

l2q2H2
ðl̄pγμτIlrÞðq̄sγμqtÞðH†τIHÞ

Qð3Þ
l2q2H2

ðl̄pγμτIlrÞðq̄sγμτIqtÞðH†HÞ
Qð4Þ

l2q2H2
ðl̄pγμlrÞðq̄sγμτIqtÞðH†τIHÞ

18∶ðR̄RÞðR̄RÞH2

Qð1Þ
e4H2

ðēpγμerÞðēsγμetÞðH†HÞ
Qð1Þ

u4H2
ðūpγμurÞðūsγμutÞðH†HÞ

Qð1Þ
d4H2

ðd̄pγμdrÞðd̄sγμdtÞðH†HÞ
Qð1Þ

e2u2H2
ðēpγμerÞðūsγμutÞðH†HÞ

Qð1Þ
e2d2H2

ðēpγμerÞðd̄sγμdtÞðH†HÞ
Qð1Þ

u2d2H2
ðūpγμurÞðd̄sγμdtÞðH†HÞ

Qð2Þ
u2d2H2

ðūpγμTAurÞðd̄sγμTAdtÞðH†HÞ

18∶ðL̄LÞðR̄RÞH2

Qð1Þ
l2e2H2

ðl̄pγμlrÞðēsγμetÞðH†HÞ
Qð2Þ

l2e2H2
ðl̄pγμτIlrÞðēsγμetÞðH†τIHÞ

Qð1Þ
l2u2H2

ðl̄pγμlrÞðūsγμutÞðH†HÞ
Qð2Þ

l2u2H2
ðl̄pγμτIlrÞðūsγμutÞðH†τIHÞ

Qð1Þ
l2d2H2

ðl̄pγμlrÞðd̄sγμdtÞðH†HÞ
Qð2Þ

l2d2H2
ðl̄pγμτIlrÞðd̄sγμdtÞðH†τIHÞ

Qð1Þ
q2e2H2

ðq̄pγμqrÞðēsγμetÞðH†HÞ

Qð2Þ
q2e2H2

ðq̄pγμτIqrÞðēsγμetÞðH†τIHÞ

Qð1Þ
q2u2H2

ðq̄pγμqrÞðūsγμutÞðH†HÞ

Qð2Þ
q2u2H2

ðq̄pγμτIqrÞðūsγμutÞðH†τIHÞ

Qð3Þ
q2u2H2

ðq̄pγμTAqrÞðūsγμTAutÞðH†HÞ

(Table continued)
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TABLE VI. (Continued)

18∶ðL̄LÞðR̄RÞH2

Qð4Þ
q2u2H2

ðq̄pγμTAτIqrÞðūsγμTAutÞðH†τIHÞ

Qð1Þ
q2d2H2

ðq̄pγμqrÞðd̄sγμdtÞðH†HÞ

Qð2Þ
q2d2H2

ðq̄pγμτIqrÞðd̄sγμdtÞðH†τIHÞ

Qð3Þ
q2d2H2

ðq̄pγμTAqrÞðd̄sγμTAdtÞðH†HÞ

Qð4Þ
q2d2H2

ðq̄pγμTAτIqrÞðd̄sγμTAdtÞðH†τIHÞ

18∶ðL̄RÞðL̄RÞH2 þ H:c:

Qð1Þ
q2udH2

ðq̄jpurÞϵjkðq̄ksdtÞðH†HÞ
Qð2Þ

q2udH2
ðq̄jpurÞðτIϵÞjkðq̄ksdtÞðH†τIHÞ

Qð1Þ
lequH2

ðl̄jperÞϵjkðq̄ksutÞðH†HÞ
Qð2Þ

lequH2
ðl̄jperÞðτIϵÞjkðq̄ksutÞðH†τIHÞ

Qð3Þ
l2e2H2

ðl̄perHÞðl̄setHÞ
Qð3Þ

leqdH2
ðl̄perHÞðq̄sdtHÞ

Qð5Þ
q2u2H2

ðq̄purH̃Þðq̄sutH̃Þ
Qð5Þ

q2d2H2
ðq̄pdrHÞðq̄sdtHÞ

18∶ðL̄RÞðR̄LÞH2 þ H:c:

Qð1Þ
leqdH2

ðl̄jperÞðd̄sqtjÞðH†HÞ
Qð2Þ

leqdH2
ðl̄perÞτIðd̄sqtÞðH†τIHÞ

Qð5Þ
lequH2

ðl̄perHÞðH̃†ūsqtÞ
Qð5Þ

q2udH2
ðq̄pdrHÞðH̃†ūsqtÞ

TABLE VII. The dimension-eight operators in the M8B with
particle content ψ4X generated in universal theories. All operators
are either Hermitian or anti-Hermitian. The subscripts p, r, s, t
are weak eigenstate indices.

19∶ðL̄LÞðL̄LÞX

Qð1Þ
l4W

ðl̄pγμlrÞðl̄sγντIltÞWI
μν

Qð2Þ
l4W

ðl̄pγμlrÞðl̄sγντIltÞW̃I
μν

Qð1Þ
q4G

ðq̄pγμqrÞðq̄sγνTAqtÞGA
μν

Qð2Þ
q4G

ðq̄pγμqrÞðq̄sγνTAqtÞG̃A
μν

Qð3Þ
q4G

ðq̄pγμτIqrÞðq̄sγνTAτIqtÞGA
μν

(Table continued)

TABLE VII. (Continued)

19∶ðL̄LÞðL̄LÞX

Qð4Þ
q4G

ðq̄pγμτIqrÞðq̄sγνTAτIqtÞG̃A
μν

Qð1Þ
q4W

ðq̄pγμqrÞðq̄sγντIqtÞWI
μν

Qð2Þ
q4W

ðq̄pγμqrÞðq̄sγντIqtÞW̃I
μν

Qð3Þ
q4W

ðq̄pγμTAqrÞðq̄sγνTAτIqtÞWI
μν

Qð4Þ
q4W

ðq̄pγμTAqrÞðq̄sγνTAτIqtÞW̃I
μν

Qð1Þ
l2q2G

ðl̄pγμlrÞðq̄sγνTAqtÞGA
μν

Qð2Þ
l2q2G

ðl̄pγμlrÞðq̄sγνTAqtÞG̃A
μν

Qð1Þ
l2q2W

ðl̄pγμlrÞðq̄sγντIqtÞWI
μν

Qð2Þ
l2q2W

ðl̄pγμlrÞðq̄sγντIqtÞW̃I
μν

Qð3Þ
l2q2W

ðl̄pγμτIlrÞðq̄sγνqtÞWI
μν

Qð4Þ
l2q2W

ðl̄pγμτIlrÞðq̄sγνqtÞW̃I
μν

Qð5Þ
l2q2W

ϵIJKðl̄pγμτIlrÞðq̄sγντJqtÞWK
μν

Qð6Þ
l2q2W

ϵIJKðl̄pγμτIlrÞðq̄sγντJqtÞW̃K
μν

19∶ðR̄RÞðR̄RÞX

Qð1Þ
u4G

ðūpγμurÞðūsγνTAutÞGA
μν

Qð2Þ
u4G

ðūpγμurÞðūsγνTAutÞG̃A
μν

Qð1Þ
d4G

ðd̄pγμdrÞðd̄sγνTAdtÞGA
μν

Qð2Þ
d4G

ðd̄pγμdrÞðd̄sγνTAdtÞG̃A
μν

Qð1Þ
e2u2G

ðēpγμerÞðūsγνTAutÞGA
μν

Qð2Þ
e2u2G

ðēpγμerÞðūsγνTAutÞG̃A
μν

Qð1Þ
e2d2G

ðēpγμerÞðd̄sγνTAdtÞGA
μν

Qð2Þ
e2d2G

ðēpγμerÞðd̄sγνTAdtÞG̃A
μν

Qð1Þ
u2d2G

ðūpγμurÞðd̄sγνTAdtÞGA
μν

Qð2Þ
u2d2G

ðūpγμurÞðd̄sγνTAdtÞG̃A
μν

Qð3Þ
u2d2G

ðūpγμTAurÞðd̄sγνdtÞGA
μν

Qð4Þ
u2d2G

ðūpγμTAurÞðd̄sγνdtÞG̃A
μν

Qð5Þ
u2d2G

fABCðūpγμTAurÞðd̄sγνTBdtÞGC
μν

Qð6Þ
u2d2G

fABCðūpγμTAurÞðd̄sγνTBdtÞG̃C
μν

19∶ðL̄LÞðR̄RÞX

Qð1Þ
l2e2W

ðl̄pγμτIlrÞðēsγνetÞWI
μν

Qð2Þ
l2e2W

ðl̄pγμτIlrÞðēsγνetÞW̃I
μν

Qð1Þ
l2u2G

ðl̄pγμlrÞðūsγνTAutÞGA
μν

Qð2Þ
l2u2G

ðl̄pγμlrÞðūsγνTAutÞG̃A
μν

(Table continued)
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TABLE VII. (Continued)

19∶ðL̄LÞðR̄RÞX

Qð1Þ
l2u2W

ðl̄pγμτIlrÞðūsγνutÞWI
μν

Qð2Þ
l2u2W

ðl̄pγμτIlrÞðūsγνutÞW̃I
μν

19∶ðL̄LÞðR̄RÞX

Qð1Þ
l2d2G

ðl̄pγμlrÞðd̄sγνTAdtÞGA
μν

Qð2Þ
l2d2G

ðl̄pγμlrÞðd̄sγνTAdtÞG̃A
μν

Qð1Þ
l2d2W

ðl̄pγμτIlrÞðd̄sγνdtÞWI
μν

Qð2Þ
l2d2W

ðl̄pγμτIlrÞðd̄sγνdtÞW̃I
μν

Qð1Þ
q2e2G

ðq̄pγμTAqrÞðēsγνetÞGA
μν

Qð2Þ
q2e2G

ðq̄pγμTAqrÞðēsγνetÞG̃A
μν

Qð1Þ
q2e2W

ðq̄pγμτIqrÞðēsγνetÞWI
μν

Qð2Þ
q2e2W

ðq̄pγμτIqrÞðēsγνetÞW̃I
μν

Qð1Þ
q2u2G

ðq̄pγμqrÞðūsγνTAutÞGA
μν

Qð2Þ
q2u2G

ðq̄pγμqrÞðūsγνTAutÞG̃A
μν

Qð3Þ
q2u2G

ðq̄pγμTAqrÞðūsγνutÞGA
μν

Qð4Þ
q2u2G

ðq̄pγμTAqrÞðūsγνutÞG̃A
μν

Qð5Þ
q2u2G

fABCðq̄pγμTAqrÞðūsγνTButÞGC
μν

Qð6Þ
q2u2G

fABCðq̄pγμTAqrÞðūsγνTButÞG̃C
μν

Qð1Þ
q2u2W

ðq̄pγμτIqrÞðūsγνutÞWI
μν

Qð2Þ
q2u2W

ðq̄pγμτIqrÞðūsγνutÞW̃I
μν

Qð1Þ
q2d2G

ðq̄pγμqrÞðd̄sγνTAdtÞGA
μν

Qð2Þ
q2d2G

ðq̄pγμqrÞðd̄sγνTAdtÞG̃A
μν

Qð3Þ
q2d2G

ðq̄pγμTAqrÞðd̄sγνdtÞGA
μν

Qð4Þ
q2d2G

ðq̄pγμTAqrÞðd̄sγνdtÞG̃A
μν

Qð5Þ
q2d2G

fABCðq̄pγμTAqrÞðd̄sγνTBdtÞGC
μν

Qð6Þ
q2d2G

fABCðq̄pγμTAqrÞðd̄sγνTBdtÞG̃C
μν

Qð1Þ
q2d2W

ðq̄pγμτIqrÞðd̄sγνdtÞWI
μν

Qð2Þ
q2d2W

ðq̄pγμτIqrÞðd̄sγνdtÞW̃I
μν

TABLE VIII. The dimension-eight operators in the M8B with
particle content ψ4HD generated in universal theories. For all
operators their Hermitian conjugates are a priori independent
operators. The subscripts p, r, s, t are weak eigenstate indices.

20∶ψ4HDþ H:c:

Qð1Þ
l3eHD

iðl̄pγμlrÞ½ðl̄setÞDμH�
Qð2Þ

l3eHD
iðl̄pγμτIlrÞ½ðl̄setÞτIDμH�

Qð1Þ
le3HD

iðēpγμerÞ½ðl̄sDμetÞH�
Qð1Þ

leq2HD
iðq̄pγμqrÞ½ðl̄setÞDμH�

Qð3Þ
leq2HD

iðq̄pγμτIqrÞ½ðl̄setÞτIDμH�
Qð1Þ

leu2HD
iðūpγμurÞ½ðl̄setÞDμH�

Qð1Þ
led2HD

iðd̄pγμdrÞ½ðl̄setÞDμH�

20∶ψ4HDþ H:c:

Qð1Þ
l2quHD

iðl̄pγμlrÞ½ðq̄sutÞDμH̃�
Qð3Þ

l2quHD
iðl̄pγμτIlrÞ½ðq̄sutÞτIDμH̃�

Qð1Þ
e2quHD

iðēpγμerÞ½ðq̄sutÞDμH̃�
Qð1Þ

q3uHD
iðq̄pγμqrÞ½ðq̄sutÞDμH̃�

Qð2Þ
q3uHD

iðq̄pγμτIqrÞ½ðq̄sutÞτIDμH̃�
Qð1Þ

qu3HD
iðūpγμurÞ½ðq̄sutÞDμH̃�

Qð1Þ
qud2HD

iðd̄pγμdrÞ½ðq̄sutÞDμH̃�

20∶ψ4HDþ H:c:

Qð1Þ
l2qdHD

iðl̄pγμlrÞ½ðq̄sdtÞDμH�
Qð3Þ

l2qdHD
iðl̄pγμτIlrÞ½ðq̄sdtÞτIDμH�

Qð1Þ
e2qdHD

iðēpγμerÞ½ðq̄sdtÞDμH�
Qð1Þ

q3dHD
iðq̄pγμqrÞ½ðq̄sdtÞDμH�

Qð2Þ
q3dHD

iðq̄pγμτIqrÞ½ðq̄sdtÞτIDμH�
Qð1Þ

qu2dHD
iðūpγμurÞ½ðq̄sdtÞDμH�

Qð1Þ
qd3HD

iðd̄pγμdrÞ½ðq̄sdtÞDμH�
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TABLE IX. The dimension-eight operators in the M8B with
particle content ψ4HD generated in universal theories. All
operators are either Hermitian or anti-Hermitian. For the operator

Qð1Þ
e4D2 , we have added a superscript of (1) to the M8B operator.

The subscripts p, r, s, t are weak eigenstate indices.

21∶ðL̄LÞðL̄LÞD2

Qð1Þ
l4D2

Dνðl̄pγμlrÞDνðl̄sγμltÞ
Qð1Þ

q4D2
Dνðq̄pγμqrÞDνðq̄sγμqtÞ

Qð3Þ
q4D2

Dνðq̄pγμτIqrÞDνðq̄sγμτIqtÞ
Qð1Þ

l2q2D2
Dνðl̄pγμlrÞDνðq̄sγμqtÞ

Qð3Þ
l2q2D2

Dνðl̄pγμτIlrÞDνðq̄sγμτIqtÞ

21∶ðL̄RÞðL̄RÞD2 þ H:c:

Qð1Þ
q2udD2

Dμðq̄jpurÞϵjkDμðq̄ksdtÞ
Qð1Þ

lequD2
Dμðl̄jperÞϵjkDμðq̄ksutÞ

21∶ðR̄RÞðR̄RÞD2

Qð1Þ
e4D2

DνðēpγμerÞDνðēsγμetÞ
Qð1Þ

u4D2
DνðūpγμurÞDνðūsγμutÞ

(Table continued)

TABLE IX. (Continued)

21∶ðR̄RÞðR̄RÞD2

Qð1Þ
d4D2

Dνðd̄pγμdrÞDνðd̄sγμdtÞ
Qð1Þ

e2u2D2
DνðēpγμerÞDνðūsγμutÞ

Qð1Þ
e2d2D2

DνðēpγμerÞDνðd̄sγμdtÞ
Qð1Þ

u2d2D2
DνðūpγμurÞDνðd̄sγμdtÞ

Qð3Þ
u2d2D2

DνðūpγμTAurÞDνðd̄sγμTAdtÞ

21∶ðL̄RÞðR̄LÞD2 þ H:c:

Qð1Þ
leqdD2

Dμðl̄jperÞϵjkDμðd̄ksqtÞ

21∶ðL̄LÞðR̄RÞD2

Qð1Þ
l2e2D2

Dνðl̄pγμlrÞDνðēsγμetÞ
Qð1Þ

l2u2D2
Dνðl̄pγμlrÞDνðūsγμutÞ

Qð1Þ
l2d2D2

Dνðl̄pγμlrÞDνðd̄sγμdtÞ
Qð1Þ

q2e2D2
Dνðq̄pγμqrÞDνðēsγμetÞ

Qð1Þ
q2u2D2

Dνðq̄pγμqrÞDνðūsγμutÞ
Qð3Þ

q2u2D2
Dνðq̄pγμTAqrÞDνðūsγμTAutÞ

Qð1Þ
q2d2D2

Dνðq̄pγμqrÞDνðd̄sγμdtÞ
Qð3Þ

q2d2D2
Dνðq̄pγμTAqrÞDνðd̄sγμTAdtÞ
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