Fundamentals and advances in thermal
transport in thermoelectric materials

Keivan Esfarjani*© and Junichiro Shiomi

This article attempts to summarize our understanding of heat flow in different solid materials and
its relationship to atomistic structure of materials. This knowledge can be used to understand
and design materials for electricity generation or cooling through the thermoelectric effect. We
start with the fundamentals of heat transport in solids: mechanisms of phonon scattering in
crystals, the role of interfaces and coherence, and the relationship between chemical bonding
and heat transport will be elucidated. Theories used to model thermal conductivity of solids will
be exposed next. They include the Green-Kubo formulation, Boltzmann transport equation and
its recent quantum extensions, and Allen—Feldman theory of heat diffusion in noncrystalline
solids and its recent extensions. In terms of phenomenology, we will distinguish between the
kinetic regime based on independent single carriers and the collective or hydrodynamic one
which occurs when normal or momentum-conserving processes dominate. Next, we will focus
on advanced measurement and characterization techniques, and the knowledge extracted from
them. Nanoscale thermal conductivity methods, such as the pump-probe thermoreflectance
methods (TDTR/FDTR), have become fairly common allowing researchers to measure thermal
conductivity of thin-film thermoelectrics. We will review recent advances of the method: the
Gibbs excess approach, which measures thermal resistance across a grain boundary of
polycrystals through mapping TDTR/FDTR measurements, and the transient Raman method,
where pump-probe Raman spectroscopy realizes in-plane thermal conductivity measurements
of two-dimensional materials even on a substrate. We will also review the progress in mode-
resolved phonon property measurements, such as inelastic x-ray scattering for thin-film
samples, which allows direct observation of the modulation of phonon band and lifetime by
nanostructures, and thermal diffuse scattering for quick characterization of phonon dispersion
relations. Finally, because the main focus of this issue is thermoelectrics, we will review different
classes of materials and strategies to lower their thermal conductivities.
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Introduction
In thermoelectric materials, the ability to carry an electric cur-
rent under an applied temperature gradient is a measure of the
efficiency of a material to convert heat or rather temperature
difference, to electrical energy. The efficiency is high if the
Seebeck coefficient, defined as the ratio of voltage difference
to temperature difference across the sample under open-circuit
condition, is large and if the electrical conductivity is large
at the same time. If, however, the thermal conductivity is not
small, one cannot sustain a large temperature gradient across the
sample, and this limits the created voltage. High thermoelectric
efficiency therefore also requires a small thermal conductivity.
The basic understanding of heat transport in solid materi-
als is based on the Fourier Law, relating the heat flux to the
applied temperature gradient through a coefficient which is
called the thermal conductivity: Jg = —«kVT.

In this equation, the temperature gradient is assumed to be
small so that the relationship is linear and the thermal con-
ductivity in a homogeneous sample can only be a function of
the local temperature. In anisotropic materials, the latter is in
general a second rank tensor. It was first predicted by Casimir
in 1938," and then by Callaway in 1959, that k can be size
dependent, highlighting the importance of boundary scatter-
ing of phonons at small scales and temperatures. This was
later confirmed experimentally in silicon thin films by Asheghi
etal. in 1997.3* The explanation of this phenomenon has been
traced back to the ratio of the mean free path (MFP) of the
heat carriers as compared with the sample size. The diffusive
regime is the regime in which all carrier MFPs are smaller
than the sample size, so that carriers undergo many resistive
scatterings before reaching the other end of the sample. The
opposite limit is the ballistic regime where most heat carriers
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do not undergo resistive scattering, either because their MFP
is too long or their longitudinal momentum is not destroyed
after a scattering process. This limit is similar to the radiation
regime,' except that the carriers are phonons instead of pho-
tons. Because the contribution of a full MFP in the diffusive
limit is replaced by the sample length, which is a fraction of
the MFP, in the ballistic or boundary scattering-limited regime,
the transferred heat is less in the latter case, and the thermal
conductivity becomes an increasing function of sample length.

More generally, to highlight the influence of boundary scat-
tering and size effects, three different transport regimes of heat
transport are distinguished: Diffusive, hydrodynamic, and bal-
listic. While in the former, the thermal conductivity does not
depend on the sample size, in the latter two, it varies with the
dimensions of the sample, when it becomes on the order of
phonon mean free paths. But before getting into the details of
these regimes, let us first consider the nature of heat carriers,
their kinetics, and dynamics. This is based on the language
of quasiparticles, which are single-particle excitations of the
quantum system. In the case of vibrational modes of perfect
crystals, we refer to phonons. While discussing the solution
to the Boltzmann transport equation or BTE, it is assumed
that the quasiparticle lifetimes t are longer than their inverse
frequency (i.e., wt >> 1). The lifetime is defined as the average
time before the phonon changes to another state because of a
“collision” or “scattering” event. Alternatively, but equiva-
lently, one can say that the wavelength associated with the
quasiparticle must be much smaller than its mean free path.
Therefore the BTE language where phonons are treated as
quasiparticles is not appropriate for strongly damped oscilla-
tions, and in this case one needs to start from first principles
(i.e., the Green—Kubo definition of the thermal conductivity
valid in all cases or the Wigner formulation valid for both par-
ticles and waves present in disordered systems). In disordered
systems, the taxonomy will change from phonons to prop-
agons and additional excitations called diffusons and locons.’

Heat carriers and their kinetics and dynamics

A simple understanding of the thermal conductivity can be
achieved by considering the simple formula from kinetic the-
ory: k = Cvl/3, where C is the heat capacity per unit volume,
v is the carrier velocity, and / its MFP, which is defined as the
average distance traveled by the carrier between two succes-
sive collisions. This simple formula shows fast carriers with
long MFPs can carry a lot of heat per unit time, unit area, and
per unit of temperature gradient.

In metals, most of the heat is carried by electrons as com-
pared to phonons or vibrational modes. While the heat capacity
of the former is linear in temperature 7 that of phonons with a
linear dispersion is cubic in 7 at low 7 and thus negligible. But
at high temperatures, due to Dulong and Petit’s Law, the heat
capacity per atom is less or on the order of 3 kp, while the elec-
tronic contribution is on the order of kg x (kg7 DOS(EF)) per
atom. In a good metal such as copper, the density of states at
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the Fermi level DOS(EF) =~ 0.5 ¢V /atom, so that at room tem-
perature kgT DOS(EF) ~ 0.01/atom. Even though the heat
capacity of an electron becomes 100 times smaller than that
of'a phonon at high 7, the much larger group velocity of elec-
trons (=~ 1000 km/s) dominates that of phonons (< 10km/s)
leading to a dominant contribution of electrons to the thermal
conductivity in a metal. Traditionally, one has looked for good
thermoelectrics among nonmetals in the hope that the thermal
conductivity can be made as small as possible.

Looking at the kinetic formula, we see that materials with
phonons of short MFPs and low speeds (soft material with
small elastic moduli) are favorable for low thermal conduc-
tivity. To lower thermal conductivity, one is required to create
as many collisions as possible to lower MFP. There are three
sources of collisions: sample boundaries, point or extended
defects, and other carriers. The latter collision process is called
intrinsic, whereas the two former are called extrinsic. In an
insulator carriers are dominantly phonons, although one could
conceive of other types of carriers such as magnons, which can
collide with phonons and lead to lower phonon intrinsic MFPs,
while they are also able to carry heat by themselves!

Normal versus resistive processes

Scattering processes are separated to resistive and normal.
Normal processes are those that conserve momentum. As such,
specular scattering against a wall, which is parallel to VT leads
to longitudinal momentum conservation and is a nonresistive
process. The terminology “normal” is reserved for only mul-
tiphonon processes that preserve total momentum. The rest of
scatterings, which break longitudinal momentum conservation
are called “resistive.”

While nonmomentum-conserving processes, as their name
indicates, cause thermal resistance, normal processes and spec-
ular reflections off a wall do not strictly lead to lower thermal
conductivity. They contribute, however, to a faster randomi-
zation or equilibration of the momentum distribution but do
not lead to a longitudinal momentum loss. Energy relaxation
happens in multiphonon (dominantly three phonon) scatter-
ings. Only these inelastic scatterings allow both energy (and
momentum) of carriers to reach their steady-state distribution.

Different modes of phonon scattering
As previously mentioned, there are basically three types of
phonon scatterings:

e Phonon-sample boundary scattering: these are usually
elastic and thus energy conserving. Diffuse scatterings in
the case of a rough surface (or interface) is nonmomen-
tum conserving and lead to fast momentum relaxation and
thermal resistance. To these scatterings one associates a
rate for each phonon mode. The first nontrivial models for
boundary scattering rate were developed since the 1950s
by Sondheimer® and later adopted by several authors.”'°
These scattering rates are constant at low frequencies and
thus become dominant at very low temperatures.
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e Phonon-defect scattering: these are also generally assumed
to be energy conserving but momentum relaxing and resis-
tive. Point defects scattering rates at very low frequencies
are of Rayleigh type with a scattering rate in w*. This model
was later improved by Tamura'! using perturbation theory,
which yielded the form ®2DOS(w). More recent improve-
ments went beyond perturbation theory, using the T-matrix
approximation.'?~'® They assume scattering strength can be
large, but the defect concentration is still dilute so that inter-
ference effects due to scatterings off of two or more defects
are still neglected. Other types of defects are line defects
such as dislocation cores or 2D manifolds such as grain and
domain boundaries leading to lower powers of frequency
as »*~¢ where d = 1 for lines and d = 2 for surfaces. In
the case of dislocations, it was shown that there can also be
exchange of energy with the vibrations of the dislocation
core,!” so the treatment is more complicated.'®!? At inter-
mediate temperatures, but typically lower than the Debye
temperature, defect scatterings can become important and
bring the thermal conductivity down. For strong scatter-
ers and in the dilute limit, one needs to use the T-matrix
approximation to obtain more accurate density of states and
relaxation times.?’ In the case of nondilute substitutional
point defects, one is in the limit of a solid solution and
refers to phonon-alloy scattering: in solid solutions where
there is crystalline order but sites are randomly occupied,
the perturbation approach does not generally work. Garg
et al. have proposed to use the virtual crystal as a reference
and use Tamura’s formula to treat alloy scattering in SiGe
alloys.2"?? In the nondilute case, the use of the coherent
potential approximation or CPA?? is preferable.

e Phonon-other carriers scattering: Phonons can also scat-
ter off of other excitations of a crystal, such as electrons,
polarons, polaritons, magnons, and excitons. Treating these
scatterings is challenging and material dependent. But
progress is being made in treating these processes when
needed. The dominant process that has received the most
attention is of course phonon—electron scattering.?*2°
Although this is dominant in metals, there is also a nonneg-
ligible contribution in doped and small bandgap semicon-
ductors where there is still a nonnegligible concentration of
electrons. A notable example is FeSb,, which has shown a
colossal Seebeck coefficient attributed to the phonon drag
effect.”’** Phonon drag is a nonequilibrium phenomenon
that is most visible in materials with long-phonon MFPs.
Under a temperature gradient, this large phonon current can,
under the influence of a strong electron—phonon coupling,
drag electrons and therefore create an extra voltage in addi-
tion to the regular band contribution to the Seebeck coef-
ficient.’!* The main source of intrinsic phonon scattering
is, however, anharmonic phonon—phonon interactions: At
moderate temperatures, on the order of Debye or higher, the
dominant anharmonic interaction is from three-phonon pro-
cesses that are inelastic and thus contribute to both energy
and momentum thermalization of phonons. At yet higher

temperatures, phonon concentration becomes larger, and
four-phonon collisions can also contribute. This process
also becomes dominant if three-phonon processes are scarce.
Reasons for this could be specific selection rules imposed by
symmetry, such as in graphene or large acoustic—optical gap
in the dispersion which prevents energy conservation in opti-
cal — acoustic+acoustic processes, but where conversion of
an optical phonon to three acoustic phonons is allowed, such
as in boron arsenide.?>*° The likelihood of occurrence of
these processes can be investigated by looking at the scatter-
ing phase space for mode wy , which requires the knowledge
of the phonon dispersion only:

P;t(cokx) = /dk] dkz?‘)((.o — i = ookz)

Atk+ k1 +k+G)

’ (D

Pf‘t’i(o)kk) = /dkldkzdk38<0) — Wy, T o, = wk3)
(2)
Atk + ki +k +k+ G).

Here, P3 and P4 indicate the number of possible chan-
nels involving the phonon mode wy), in a three-phonon
and four-phonon scattering processes, respectively. The
corresponding rates are essentially proportional to these
phase space volumes. Anharmonic processes can either
be momentum conserving or “normal” (G = 0) or require
an additional reciprocal lattice vector to satisfy momen-
tum conservation or “umklapp” (G # 0). For four-pho-
non processes, the calculation of P4 can be an intensive
computational task and Monte Carlo importance sam-
pling as implemented in the code FOUR-PHONON?" is
advantageous. The three-phonon (normal and Umklapp),
four-phonon (normal) processes as well as impurity and
boundary scattering, and electron—phonon process are
illustrated in Figure 1.

Phonon coherence in superlattices

Superlattices have been suggested by Mahan as a strat-
egy to make low-thermal-conductivity materials. One obvi-
ous reason is the existence of interfaces causing multiple
phonon scattering. The assumption of phonon scattering at
interfaces assumes incoherence across the interface, mean-
ing the phonon identity changes when it crosses the interface
(see illustration in Figure 2). In this case, as interface density
gets larger, thermal conductivity should go down. On the
other hand, one can view a clean superlattice with a short
period as one bulk material with its own phonon dispersion
that does not change across the interfaces. This dispersion is
caused by multiple phonon reflections at interfaces and con-
structive interferences. In this limit of very dense interfaces
or small superlattice period, thermal conductivity should go
back up as interface scattering does not exist and phonons are
“coherent” in the sense that they keep their identity as they
cross interfaces. Thermal conductivity is then only limited
by anharmonic scatterings. Consequently, one can observe

38,39
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Figure 1. Different phonon scattering processes.
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Figure 2. In the incoherent case, the identity of phonons changes across the layers.

Coherent phonon transport

a minimum in the thermal conductivity of a superlattice as
a function of its period thickness. The necessary condition
for phonon coherence is to have a clean specular interface
and that the superlattice phonon MFP should be a multiple
of its period, perhaps at least five periods so that multiple
reflections and interferences can lead to a superlattice phonon
mode. As the temperature is increased and anharmonicity
lowers the MFP, coherence can be destroyed and thermal con-
ductivity will go down. Several experiments have observed
such minimum in thermal conductivity.**** Evidence for the
coherence was shown by Luckyanova et al.*> who showed
that, for a fixed period thickness in a GaAs—AlAs superlat-
tice, the thermal conductivity increases almost linearly with
the sample length when the latter was varied from one to nine
periods. It also showed the increase in thermal conductivity
with temperature, both providing evidence of coherence due
to dominance of boundary (not interface) scattering in the
samples.

Analysis of chemical bonds to understanding
anharmonicity

Interaction potentials are a result of the effective interaction
between ions mediated by the electrons. In other words, the
strength of bonds has an electronic origin. There is a correlation
between the dip in the potential energy and its second deriva-
tive at the minimum, which is the force constant measuring
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the stiffness of a bond. The deeper the energy, the larger the
second derivative. On the other hand, there is a correlation®®
between bond stiffness and the so-called crystal overlap
Hamiltonian population (COHP)*’ between atomic orbital o
of atom j and orbital § of atom /, at eigenstate A defined by
COHP(ja, IB; E3) = pjap(En)Hjop, Where pjop(Ey) is the
contribution of the eigenstate of eigenvalue (£ ) to the density
matrix, and Hjy jp is the Hamiltonian matrix element between
orbitals jo and If. The Electronic Hamiltonian of bound elec-
trons being negative, a negative COHP means bonding states
and a positive COHP means antibonding states at the energy
of interest. Strength of a bond j — / can be considered to be
“correlated” to S;; = Zaﬁ,EKEF COHP(ja, IB; E5.), although
this term does not include the full ion-ion repulsive part of
the potential. The integral of the positive part of this quantity
(i.e., the antibonding contribution) can therefore characterize
the softness of the bond. The justification for this statement
has been provided in a paper by Liao’s group*® where they
showed that removing the effect of antibonding electrons led
to stronger force constants between atom pairs and to weaker
anharmonicity as evidenced by lower Griineisen parameters
and scattering rates. Now for soft bonds, because the local
potential energy curvature is small, atomic displacements will
be large and anharmonic portions of the potential energy land-
scape will be more often explored by the vibrating atom, espe-
cially at higher temperatures. In our recent work*® where we
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observed that the thermal conductivity of LaP is surprisingly
lower than that of LaBi, despite its lighter mass, we explored
the antibonding concept to explain the larger anharmonicity
in LaP. Finally, it was traced back to the metavalent nature™
and softness of the bonds in this compound.

Recent theoretical advances

Beyond the numerical implementations of the solution of BTE,
it is important to understand the assumptions and their domain
of validity. Although the standard methodologies as imple-
mented in ALAMODE,!*> SHENG-BTE, > PHONO3PY,>*
and similar software is widely used by many authors, in many
materials, these assumptions may be violated, leading to erro-
neous estimations of the MFPs less than a bond length, and
thus of the thermal conductivity.

Proof of gauge invariance

In 2015, Baroni and his group showed that despite mul-
tiple choices for the definition of the heat current, the
Green—Kubo formula is gauge invariant and leads to the
same thermal conductivity.’® Therefore, he designed a
way to compute the heat current and thermal conductivity
directly from DFT simulations without any need to fit the
forces to a surrogate model.

Theories of thermal transport in strongly anharmonic
or disordered systems, violation of particle picture,
and importance of interband overlaps

Disordered solids were treated by Allen and Feldman (AF) in
the 1990s>°73 with the introduction of a new taxonomy for
the heat carriers: Propagons, diffusons, and locons. Thermal
conductivity was then formulated within the harmonic approx-
imation for diffusons, a majority of the vibrational excitations
that do not show any order and have algebraic decay. They are
essentially formed from a superposition of local vibrations that
have a large real-space overlap allowing to tunnel among
themselves due to their energy quasi-degeneracy. There is no
clear cut lower-frequency cutoff separating them from prop-
agons, which are wave-like excitations very similar to long
wavelength phonons. Simulations have shown that there is a
frequency crossover region also called the loffe—Regel fre-
quency around which both diffusons and propagons may coex-
ist. It was postulated that it is the frequency at which the prop-
agon is so damped that its mean free path becomes on the
order of its wavelength: A >~ lypp. It may also be estimated
from the structure factor where the peak frequency becomes
on the order of the peak broadening w =~ y(w). In practice, this
is hardly achieved as y(w) « ?. The determination of the
cutoff frequency may be a subtle issue that requires further
investigation.’® There is, however, a sharp separation called
the mobility edge between the diffusons and locons, which are
localized modes occurring near the band edges, with exponen-
tial decay. Within the harmonic approximation, locons do not

contribute to the thermal conductivity, but if anharmonicity is
taken into account, localized energy can hop through coupling
with diffusons or propagons from a given site to neighboring
sites. Within the AF theory, the contribution of propagons must
be separated. It requires the calculation of the Ioffe-Regel cut-
off frequency, and, similar to phonons, the speed of sound and
a finite MFP or relaxation time for which usually a phenom-
enological formula of the form @ = A®’T can be
adopted.

More recently, starting from the Green—Kubo formula
and calculating the heat current for a lattice dynamical
model (harmonic terms), Isaeva et al.®® showed that even
for strong disorder, a purely harmonic model will have a
divergent thermal conductivity. This is because there will
be terms such as coswt in the heat current leading to diver-
gent integrals of the type [ gocoszwtdt. This result was also
previously known by AF and even earlier by Flicker and
Leath.®! This divergence can be resolved if one allows an
imaginary part for the mode frequencies reflecting their
finite lifetime due to the presence of anharmonicity. In this
case, the kinetic BTE formula for the thermal conductiv-
ity was extended to disordered systems and labeled quasi-
harmonic Green—Kubo (QHGK) formulation.®® The velocity
terms were generalized to matrices. Heat capacity and life-
times were also generalized to a two-mode version, keeping
the overall form of the k formula the same. They further
showed that in the limit of vanishing disorder the standard
kinetic formula for k is recovered.’”*!~%3 The QHGK formal-
ism was further extended by Fiorentino and Baroni,® based
on the Mori-Zwanzig memory formalism and Green—Kubo
formula.

As previously mentioned, if the scattering rates, which
in the simplest picture are the inverse lifetime or broaden-
ing of a phonon state, are large, they can lead to a not so
well-defined “independent” phonon state, if, for instance,
the difference between two phonon energies w, ®’ becomes
smaller than the broadening y caused by anharmonicity or
disorder. The true quantum state would be a superposition
of the individual states of energy within y. In that sense,
it is a “coherent” state since the phases of the two modes
which were originally unrelated are now the same within
the coherence time of 1/y. This happens in a so-called
strong-coupling regime in which perturbative treatments
fail. In this case, the standard kinetic approach of BTE also
becomes invalid. To remedy this situation, Simoncelli et al.
recently adopted the density matrix formalism>® and later the
Wigner distribution function approach® to solve the phonon
transport equation. The outcome of this treatment is that the
velocity now becomes a matrix in the band representation
and that total thermal conductivity becomes the sum of the
old BTE exact solution plus a correction term, called the
coherence contribution, involving the off-diagonal terms in
the velocity matrix, phonon frequencies, self-energies, and
heat capacities.
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The first term is the standard solution to BTE (could be
within the relaxation time approximation (RTA) or from
direct diagonalization/inversion of the collision matrix). It is
simple enough to implement within existing transport codes.
The coherence term increases with increasing temperature
and increasing disorder. This approach becomes also very
convenient in inhomogeneous or disordered systems when
the very concept of wave vector-resolved phonon becomes
questionable. This formalism was applied with success
to several anharmonic systems® and glasses.®® The new
Wigner formulation has bypassed the need to separate the
propagons from diffusons and have produced the thermal
conductivity of amorphous silicon within a unified formal-
ism.% This formalism produces results very similar to the
work of Baroni’s group.®” Differences were shown to be on
the order of I'2/w?.

with L(g, A1) > and F,, = exact

Hydrodynamic transport regime

Recent advances in first-principles modeling of thermal
transport have enabled detailed investigations into phonon
scattering processes and relaxation dynamics in various
materials.®®%° In particular, these advances have provided
clear evidence—both experimentally and theoretically—
for ballistic transport in short samples and hydrodynamic
phonon transport at low temperatures and sufficiently small
length scales.”

A deep understanding of phonon heat transport can be
achieved by investigating the collision matrix, first studied
systematically by Guyer and Krumhansl.”""”> They realized
that the first four eigenstates of the normal (i.e., momentum
conserving) part of the collision matrix have the general drift-
ing form, which can be expanded on eigenstates of the normal
collision operator:

[eﬁh(wq—qw)) - 1} - >~ fo + qxvxpfix + QyVnyly + g-v:pfiz -
“

Here, g and w, are the phonon wavevector and frequency,

B is the inverse temperature, and vp is the drift velocity vector.
It can be determined from the constraint of crystal momentum,
which is what Callaway used.? All modes ¢ have the same
drift velocity, implying that any distribution function made
as a superposition of these four basis set represents a collec-
tive motion of phonons. In reality, the collision matrix is not
normal and has a resistive part as well. However, in the limit
where resistive terms are small (tg > ty) (i.e., in clean sam-
ples and at low temperatures with few Umklapp processes), to
a good approximation the drifting distribution is solution to the
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BTE, at least until times ¢ < t after which they are damped
and relax to the equilibrium BE distribution.

Hydrodynamic or fluid-like flow behavior is then observ-
able when the rates resistive (i.e., nonmomentum-conserving)
processes are significantly smaller than those of normal pro-
cesses denoted by I'y v = T%N Therefore, clean, defect-free
samples with minimal resistive scattering clearly exhibit
hydrodynamic phonon transport due to the slower decay of
collective modes compared to resistive modes.

More recently, Alvarez et al.”> developed a phenomeno-
logical approach called the kinetic collective model (KCM)
to treat the hydrodynamic transport of phonons. They sepa-
rated the mode contribution to the thermal conductivity
into a weighted sum of kinetic, where, as in the RTA, each
phonon mode contributes some qué‘tq/?) amount to the
thermal conductivity through nonmomentum-conserving
processes and collective, which captures hydrodynamic
transport. The weight corresponding to each term is propor-
tional to the average resistive and normal rates, respectively,
K = (Kiin'R + KeotT'N)/(Tg + T'y). The assumption is that
there is a gap between the normal rate of drifting distribu-
tion and that of resistive modes, so that collective and kinetic
contributions can be well separated. It therefore requires very
clean samples. This theory is computationally more tractable
than the full solution to BTE, especially for complex materials.

In subsequent work, Alvarez et al. proposed an ansatz’+”>
wherein each phonon mode distribution is the equilibrium
distribution plus terms linear in heat flux @ and its time and
space derivatives:

)

and where the mode-dependent coefficient vectors 44, B, G,
are determined from conservation equations. This flux deriva-
tives formalism led to a modified Fourier Law, the hyperbolic
(Maxwell-Cattaneo) heat equation. The second term guaran-
tees a response linear to the heat flux, and the third allows a
wave-like solution (second sound). Coupled with the energy
conservation, one obtains a macroscopic heat wave equation,
the parameters of which could be expressed in terms of pho-
non frequencies, group velocities, and RTA relaxation times:

Jo=10+A4,.0+B,. 2 +G,:VQ

CL 4 v0=0,0=—-1%2 VT +P2[V2Q+avV(V.0)].
Q)

Solutions of this modified heat equation with a new length
scale /, of relevance for the observation of hydrodynamic
effects, by the finite element method (FEM), have been able
to explain many experimental observations, such as Poiseuille
flow,”>7 bridging different transport regimes and explaining
size effects, including the Knudsen minimum in materials such
as Si’” and second sound in Germanium.’® Coefficients /, ., T, k
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are geometry independent and can be calculated from the solu-
tion of BTE for the bulk material.

In parallel, Cepellotti and Marzari undertook a more
systematic approach using as a representation of the distri-
bution function the full eigenstates of the collision matrix,
termed “relaxons.”’® %" This method has clarified and
generalized older theories by Callaway” and Guyer Krum-
hansl.”"8! Callaway associated a relaxation time ty to the
normal processes that relax to the drifting distribution and
another one to the resistive or Umklapp ones 1z, relaxing
to the equilibrium BE distribution, so that the total relaxa-
tion time is given by % = % + %. This approach works
mostly well in high-thermal-conductivity materials, with
some exceptions as explained in the recent work by Ravi-
chandran.*® Other relaxon modes do also contribute to the
thermal transport. At low temperatures, Ravichandran®?
demonstrated that, at low temperatures, only about 3% of
relaxon modes are sufficient to capture over 99% of the
thermal conductivity in diamond at 100 K, whereas approxi-
mately 50% are needed at 300 K.

Simoncelli et al. could derive macroscopic viscous heat
equations which, similarly, could be solved by FEM 384

Boltzmann transport theory solvers
implementations

For electronic transport, the transport distribution function is
calculated from the band structure (wannierized® 7 or not).
The codes BOLTZTRAP***° and BOLTZWANN? perform
a constant relaxation time approximation. Electron relaxa-
tion mechanisms are implemented in the codes AMSET,’!
ELECTRA,’?> and QUANTUM-ATK.*

For phonon transport, many codes are also avail-
able. First harmonic and anharmonic force constants are
extracted. FOCEX as a part of ALATDYN,* HIPHIVE®® and
PHONOPY>*%3 are such codes which use DFT calculations
of forces versus displacements in a supercell as input and
provide harmonic and anharmonic force constants as output
to be processed by other codes (see flowchart in Figure 3).
Other codes such as SHENG-BTE,*”>> ALAMODE,>'*>%
TDEP,”"™” KALDO,'" SSCHA,'"""'” THERMACOND,

and PHONO3PY>>!% may do both force constant extrac-
tion and thermal conductivity calculation.

Finally, ELPHBOLT'% and PHOEBE'%® are full imple-
mentations of the coupled electron—phonon Boltzmann
solver and take as input electron and phonon dispersions,
anharmonicities, as well as their coupling constants calcu-
lated by codes, such as EPW?*?3197 and PERTURBO,?® and
calculate the distribution function for both carriers subject
to a thermal gradient and voltage. In an impressive paper,
Coulter et al.'% recently developed and solved a hydrody-
namic version of the coupled electron—phonon transport
problem, and the corresponding code SOLVITE has been
interfaced with PHOEBE.

Advances in thermal transport measurements
While the standard way of measuring thermal conductiv-
ity of bulk thermoelectric materials remains to be the laser
flash method, there has been great advances over the last
few decades in the methods to measure local thermal con-
ductivity in micro- and nanoscale regions. One of the most
popular approaches has been the pump-probe optical method
mostly using thermoreflectance (time-domain themoreflec-
tance, TDTR)!?'!! but some using temperature depend-
ence of Kerr rotation angle (Time-resolved magneto-optical
Kerr effect, TR-MOKE)112 or Raman shift (Flash Raman,
FR).!!® They enabled measuring thermal conductivity of thin
films and thermal conductance at solid interfaces. Methods
using microfabricated devices have also been performed
by some researchers although they require more complex
processes;''* a sample is suspended between micro-islands
equipped with heaters and thermometers realizing steady-
state thermal conductivity measurement of thin films and
nanomaterials. The methods are primarily used to measure
cross-plane thermal conductivity of thin films, but they
can also measure in-plane thermal conductivity when suf-
ficient sensitivity is achieved by offsetting the pump and
probe beam'!' or varying the dimension of heat conduction
through laser spot size of modulation frequency.''® The mate-
rial selectivity of Raman scattering has been used to measure
monolayer two-dimensional material thermal conductivity
even when supported by the substrate.

Construct a number of
large supercells

Displace atoms in each
supercell and calculate
DFT forces on all atoms

Move single atoms,
or according to
normal modes

Typically containing
100 atoms

Phonons and thermal conductivity from first-principles DFT calculations

Calculate thermal and
thermodynamic
properties

Extract LD model force
constants

Phonons, Griineisen,
DOS, free energy,
relaxation times,
thermal conductivity

Typically by using ridge
regression (SVD)

Figure 3. Flowchart of anharmonic force constants and thermal conductivity calculations. DFT density functional theory; LD lattice
dynamics; DOS density of states; SVD singular value decomposition.
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One merit of the pump-probe method is that it can probe
effective thermal conductivity of various sizes by changing
the laser spot size, pulse width, or modulation frequency.
The size effect measurement has been used to extract the
dependence of thermal conductivity on the phonon mean free
path.'""-118 Another merit is the facileness to perform map-
ping of thermal conductivity by traversing the laser spots
along the sample surface. This allows obtaining informa-
tion on uniformity or it can be used for high-throughput
screening of combinatorial samples.''” Furthermore, the
mapping measurements of thermal conductivity have been
recently used to extract thermal boundary conductance of
polycrystal grain boundaries.'?*!*! Working on the smooth-
ened cross section of polycrystalline material, when profiling
thermal conductivity crossing orthogonally a grain bound-
ary, thermal conductivity drops around the interface with a
certain width related to the phonon mean free path. Then,
the thermal boundary resistance (inverse thermal conduct-
ance) can be extracted by integrating the thermal resistivity
(inverse thermal conductivity).

Mode-resolved phonon transport characteristics are
measured by inelastic neutron scattering (INS) or inelastic
x-ray scattering (IXS), where the line shape and width of
the dynamical structural factor give states and the scattering
rate of phonons, respectively. Recent development of the
instrumentation enabled IXS measurements of thin films by
making the incident angle extremely low.'?? In addition, the
advanced energy resolution enabled extraction of the elec-
tron—phonon scattering rate of doped silicon.'?

Summary

In summary, this article outlines fundamental concepts,
recent theoretical developments, and advanced experimental
techniques in thermal transport for thermoelectric materials.
Initially, mechanisms of phonon scattering and their depend-
ence on atomic-level details such as chemical bonding and
interfaces were discussed. We clearly distinguished between
diffusive, hydrodynamic, and ballistic transport regimes and
emphasized phonon coherence and scattering processes.

Theoretical models, including Green—Kubo, BTE, and
Allen—Feldman theory, along with their modern extensions,
were reviewed, highlighting their effectiveness in describing
various materials and phenomena such as phonon localization
and strong anharmonicity.

Experimental advancements, particularly in nanoscale
thermoreflectance (TDTR/FDTR) and Raman spectroscopy,
alongside mode-resolved techniques such as inelastic x-ray
scattering (IXS), have provided valuable insights into phonon
dynamics and thermal transport mechanisms.

For thermoelectric materials, strategies to reduce thermal
conductivity by introducing interfaces, defects, and exploit-
ing phonon coherence in superlattices were discussed. Nota-
bly, the observation of minima in thermal conductivity versus
superlattice period illustrates the balance between coherent
and incoherent phonon transport.
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Overall, combined theoretical and experimental progress
continues to enhance fundamental understanding and guide
the development of efficient thermoelectric materials.
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