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Fundamentals and advances in thermal 
transport in thermoelectric materials
Keivan Esfarjani*   and Junichiro Shiomi 

This article attempts to summarize our understanding of heat flow in different solid materials and 
its relationship to atomistic structure of materials. This knowledge can be used to understand 
and design materials for electricity generation or cooling through the thermoelectric effect. We 
start with the fundamentals of heat transport in solids: mechanisms of phonon scattering in 
crystals, the role of interfaces and coherence, and the relationship between chemical bonding 
and heat transport will be elucidated. Theories used to model thermal conductivity of solids will 
be exposed next. They include the Green–Kubo formulation, Boltzmann transport equation and 
its recent quantum extensions, and Allen–Feldman theory of heat diffusion in noncrystalline 
solids and its recent extensions. In terms of phenomenology, we will distinguish between the 
kinetic regime based on independent single carriers and the collective or hydrodynamic one 
which occurs when normal or momentum-conserving processes dominate. Next, we will focus 
on advanced measurement and characterization techniques, and the knowledge extracted from 
them. Nanoscale thermal conductivity methods, such as the pump-probe thermoreflectance 
methods (TDTR/FDTR), have become fairly common allowing researchers to measure thermal 
conductivity of thin-film thermoelectrics. We will review recent advances of the method: the 
Gibbs excess approach, which measures thermal resistance across a grain boundary of 
polycrystals through mapping TDTR/FDTR measurements, and the transient Raman method, 
where pump-probe Raman spectroscopy realizes in-plane thermal conductivity measurements 
of two-dimensional materials even on a substrate. We will also review the progress in mode-
resolved phonon property measurements, such as inelastic x-ray scattering for thin-film 
samples, which allows direct observation of the modulation of phonon band and lifetime by 
nanostructures, and thermal diffuse scattering for quick characterization of phonon dispersion 
relations. Finally, because the main focus of this issue is thermoelectrics, we will review different 
classes of materials and strategies to lower their thermal conductivities.

Introduction
In thermoelectric materials, the ability to carry an electric cur-
rent under an applied temperature gradient is a measure of the 
efficiency of a material to convert heat or rather temperature 
difference, to electrical energy. The efficiency is high if the 
Seebeck coefficient, defined as the ratio of voltage difference 
to temperature difference across the sample under open-circuit 
condition, is large and if the electrical conductivity is large 
at the same time. If, however, the thermal conductivity is not 
small, one cannot sustain a large temperature gradient across the 
sample, and this limits the created voltage. High thermoelectric 
efficiency therefore also requires a small thermal conductivity.

The basic understanding of heat transport in solid materi-
als is based on the Fourier Law, relating the heat flux to the 
applied temperature gradient through a coefficient which is 
called the thermal conductivity: JQ = −κ∇T .

In this equation, the temperature gradient is assumed to be 
small so that the relationship is linear and the thermal con-
ductivity in a homogeneous sample can only be a function of 
the local temperature. In anisotropic materials, the latter is in 
general a second rank tensor. It was first predicted by Casimir 
in 1938,1 and then by Callaway in 1959,2 that κ can be size 
dependent, highlighting the importance of boundary scatter-
ing of phonons at small scales and temperatures. This was 
later confirmed experimentally in silicon thin films by Asheghi 
et al. in 1997.3,4 The explanation of this phenomenon has been 
traced back to the ratio of the mean free path (MFP) of the 
heat carriers as compared with the sample size. The diffusive 
regime is the regime in which all carrier MFPs are smaller 
than the sample size, so that carriers undergo many resistive 
scatterings before reaching the other end of the sample. The 
opposite limit is the ballistic regime where most heat carriers 
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do not undergo resistive scattering, either because their MFP 
is too long or their longitudinal momentum is not destroyed 
after a scattering process. This limit is similar to the radiation 
regime,1 except that the carriers are phonons instead of pho-
tons. Because the contribution of a full MFP in the diffusive 
limit is replaced by the sample length, which is a fraction of 
the MFP, in the ballistic or boundary scattering-limited regime, 
the transferred heat is less in the latter case, and the thermal 
conductivity becomes an increasing function of sample length.

More generally, to highlight the influence of boundary scat-
tering and size effects, three different transport regimes of heat 
transport are distinguished: Diffusive, hydrodynamic, and bal-
listic. While in the former, the thermal conductivity does not 
depend on the sample size, in the latter two, it varies with the 
dimensions of the sample, when it becomes on the order of 
phonon mean free paths. But before getting into the details of 
these regimes, let us first consider the nature of heat carriers, 
their kinetics, and dynamics. This is based on the language 
of quasiparticles, which are single-particle excitations of the 
quantum system. In the case of vibrational modes of perfect 
crystals, we refer to phonons. While discussing the solution 
to the Boltzmann transport equation or BTE, it is assumed 
that the quasiparticle lifetimes τ are longer than their inverse 
frequency (i.e., ωτ ≫ 1 ). The lifetime is defined as the average 
time before the phonon changes to another state because of a 
“collision” or “scattering” event. Alternatively, but equiva-
lently, one can say that the wavelength associated with the 
quasiparticle must be much smaller than its mean free path. 
Therefore the BTE language where phonons are treated as  
quasiparticles is not appropriate for strongly damped oscilla-
tions, and in this case one needs to start from first principles 
(i.e., the Green–Kubo definition of the thermal conductivity 
valid in all cases or the Wigner formulation valid for both par-
ticles and waves present in disordered systems). In disordered 
systems, the taxonomy will change from phonons to prop-
agons and additional excitations called diffusons and locons.5

Heat carriers and their kinetics and dynamics
A simple understanding of the thermal conductivity can be 
achieved by considering the simple formula from kinetic the-
ory: κ = Cvl/3, where C is the heat capacity per unit volume, 
v is the carrier velocity, and l its MFP, which is defined as the 
average distance traveled by the carrier between two succes-
sive collisions. This simple formula shows fast carriers with 
long MFPs can carry a lot of heat per unit time, unit area, and 
per unit of temperature gradient.

In metals, most of the heat is carried by electrons as com-
pared to phonons or vibrational modes. While the heat capacity 
of the former is linear in temperature T that of phonons with a 
linear dispersion is cubic in T at low T and thus negligible. But 
at high temperatures, due to Dulong and Petit’s Law, the heat 
capacity per atom is less or on the order of 3 k

B
 , while the elec-

tronic contribution is on the order of k
B
× (k

B
T DOS(E

F
)) per 

atom. In a good metal such as copper, the density of states at 

the Fermi level DOS(EF ) ≃ 0.5 eV/atom , so that at room tem-
perature k

B
T DOS(E

F
) ≃ 0.01/atom . Even though the heat 

capacity of an electron becomes 100 times smaller than that 
of a phonon at high T, the much larger group velocity of elec-
trons (≃1000 km/s) dominates that of phonons (<10 km/s) 
leading to a dominant contribution of electrons to the thermal 
conductivity in a metal. Traditionally, one has looked for good 
thermoelectrics among nonmetals in the hope that the thermal 
conductivity can be made as small as possible.

Looking at the kinetic formula, we see that materials with 
phonons of short MFPs and low speeds (soft material with 
small elastic moduli) are favorable for low thermal conduc-
tivity. To lower thermal conductivity, one is required to create 
as many collisions as possible to lower MFP. There are three 
sources of collisions: sample boundaries, point or extended 
defects, and other carriers. The latter collision process is called 
intrinsic, whereas the two former are called extrinsic. In an 
insulator carriers are dominantly phonons, although one could 
conceive of other types of carriers such as magnons, which can 
collide with phonons and lead to lower phonon intrinsic MFPs, 
while they are also able to carry heat by themselves!

Normal versus resistive processes
Scattering processes are separated to resistive and normal. 
Normal processes are those that conserve momentum. As such, 
specular scattering against a wall, which is parallel to ∇T  leads 
to longitudinal momentum conservation and is a nonresistive 
process. The terminology “normal” is reserved for only mul-
tiphonon processes that preserve total momentum. The rest of 
scatterings, which break longitudinal momentum conservation 
are called “resistive.”

While nonmomentum-conserving processes, as their name 
indicates, cause thermal resistance, normal processes and spec-
ular reflections off a wall do not strictly lead to lower thermal 
conductivity. They contribute, however, to a faster randomi-
zation or equilibration of the momentum distribution but do 
not lead to a longitudinal momentum loss. Energy relaxation 
happens in multiphonon (dominantly three phonon) scatter-
ings. Only these inelastic scatterings allow both energy (and 
momentum) of carriers to reach their steady-state distribution.

Different modes of phonon scattering
As previously mentioned, there are basically three types of 
phonon scatterings:

•	 Phonon-sample boundary scattering: these are usually 
elastic and thus energy conserving. Diffuse scatterings in 
the case of a rough surface (or interface) is nonmomen-
tum conserving and lead to fast momentum relaxation and 
thermal resistance. To these scatterings one associates a 
rate for each phonon mode. The first nontrivial models for 
boundary scattering rate were developed since the 1950s 
by Sondheimer6 and later adopted by several authors.7–10 
These scattering rates are constant at low frequencies and 
thus become dominant at very low temperatures.
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•	 Phonon-defect scattering: these are also generally assumed 
to be energy conserving but momentum relaxing and resis-
tive. Point defects scattering rates at very low frequencies 
are of Rayleigh type with a scattering rate in ω4 . This model 
was later improved by Tamura11 using perturbation theory, 
which yielded the form ω2

DOS(ω) . More recent improve-
ments went beyond perturbation theory, using the T-matrix 
approximation.12–16 They assume scattering strength can be 
large, but the defect concentration is still dilute so that inter-
ference effects due to scatterings off of two or more defects 
are still neglected. Other types of defects are line defects 
such as dislocation cores or 2D manifolds such as grain and 
domain boundaries leading to lower powers of frequency 
as ω4−d where d = 1 for lines and d = 2 for surfaces. In 
the case of dislocations, it was shown that there can also be 
exchange of energy with the vibrations of the dislocation 
core,17 so the treatment is more complicated.18,19 At inter-
mediate temperatures, but typically lower than the Debye 
temperature, defect scatterings can become important and 
bring the thermal conductivity down. For strong scatter-
ers and in the dilute limit, one needs to use the T-matrix 
approximation to obtain more accurate density of states and 
relaxation times.20 In the case of nondilute substitutional 
point defects, one is in the limit of a solid solution and 
refers to phonon-alloy scattering: in solid solutions where 
there is crystalline order but sites are randomly occupied, 
the perturbation approach does not generally work. Garg 
et al. have proposed to use the virtual crystal as a reference 
and use Tamura’s formula to treat alloy scattering in SiGe 
alloys.21,22 In the nondilute case, the use of the coherent 
potential approximation or CPA23 is preferable.

•	 Phonon-other carriers scattering: Phonons can also scat-
ter off of other excitations of a crystal, such as electrons, 
polarons, polaritons, magnons, and excitons. Treating these 
scatterings is challenging and material dependent. But  
progress is being made in treating these processes when 
needed. The dominant process that has received the most 
attention is of course phonon–electron scattering.24–26 
Although this is dominant in metals, there is also a nonneg-
ligible contribution in doped and small bandgap semicon-
ductors where there is still a nonnegligible concentration of 
electrons. A notable example is FeSb2, which has shown a 
colossal Seebeck coefficient attributed to the phonon drag 
effect.27–30 Phonon drag is a nonequilibrium phenomenon 
that is most visible in materials with long-phonon MFPs. 
Under a temperature gradient, this large phonon current can, 
under the influence of a strong electron–phonon coupling, 
drag electrons and therefore create an extra voltage in addi-
tion to the regular band contribution to the Seebeck coef-
ficient.31–34 The main source of intrinsic phonon scattering 
is, however, anharmonic phonon–phonon interactions: At 
moderate temperatures, on the order of Debye or higher, the 
dominant anharmonic interaction is from three-phonon pro-
cesses that are inelastic and thus contribute to both energy 
and momentum thermalization of phonons. At yet higher 

temperatures, phonon concentration becomes larger, and 
four-phonon collisions can also contribute. This process 
also becomes dominant if three-phonon processes are scarce. 
Reasons for this could be specific selection rules imposed by 
symmetry, such as in graphene or large acoustic–optical gap 
in the dispersion which prevents energy conservation in opti-
cal → acoustic + acoustic processes, but where conversion of 
an optical phonon to three acoustic phonons is allowed, such 
as in boron arsenide.35,36 The likelihood of occurrence of 
these processes can be investigated by looking at the scatter-
ing phase space for mode ωk� , which requires the knowledge 
of the phonon dispersion only:

	   Here, P3 and P4 indicate the number of possible chan-
nels involving the phonon mode ωk� in a three-phonon 
and four-phonon scattering processes, respectively. The 
corresponding rates are essentially proportional to these 
phase space volumes. Anharmonic processes can either 
be momentum conserving or “normal” (G = 0) or require 
an additional reciprocal lattice vector to satisfy momen-
tum conservation or “umklapp” (G  = 0) . For four-pho-
non processes, the calculation of P4 can be an intensive 
computational task and Monte Carlo importance sam-
pling as implemented in the code FOUR-PHONON37 is 
advantageous. The three-phonon (normal and Umklapp), 
four-phonon (normal) processes as well as impurity and 
boundary scattering, and electron–phonon process are 
illustrated in Figure 1.

Phonon coherence in superlattices
Superlattices have been suggested by Mahan38,39 as a strat-
egy to make low-thermal-conductivity materials. One obvi-
ous reason is the existence of interfaces causing multiple 
phonon scattering. The assumption of phonon scattering at 
interfaces assumes incoherence across the interface, mean-
ing the phonon identity changes when it crosses the interface 
(see illustration in Figure 2). In this case, as interface density 
gets larger, thermal conductivity should go down. On the 
other hand, one can view a clean superlattice with a short 
period as one bulk material with its own phonon dispersion 
that does not change across the interfaces. This dispersion is 
caused by multiple phonon reflections at interfaces and con-
structive interferences. In this limit of very dense interfaces 
or small superlattice period, thermal conductivity should go 
back up as interface scattering does not exist and phonons are 
“coherent” in the sense that they keep their identity as they 
cross interfaces. Thermal conductivity is then only limited 
by anharmonic scatterings. Consequently, one can observe 
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P
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a minimum in the thermal conductivity of a superlattice as 
a function of its period thickness. The necessary condition 
for phonon coherence is to have a clean specular interface 
and that the superlattice phonon MFP should be a multiple 
of its period, perhaps at least five periods so that multiple 
reflections and interferences can lead to a superlattice phonon 
mode. As the temperature is increased and anharmonicity 
lowers the MFP, coherence can be destroyed and thermal con-
ductivity will go down. Several experiments have observed 
such minimum in thermal conductivity.40–44 Evidence for the 
coherence was shown by Luckyanova et al.45 who showed 
that, for a fixed period thickness in a GaAs–AlAs superlat-
tice, the thermal conductivity increases almost linearly with 
the sample length when the latter was varied from one to nine 
periods. It also showed the increase in thermal conductivity 
with temperature, both providing evidence of coherence due 
to dominance of boundary (not interface) scattering in the 
samples.

Analysis of chemical bonds to understanding 
anharmonicity
Interaction potentials are a result of the effective interaction 
between ions mediated by the electrons. In other words, the 
strength of bonds has an electronic origin. There is a correlation 
between the dip in the potential energy and its second deriva-
tive at the minimum, which is the force constant measuring 

the stiffness of a bond. The deeper the energy, the larger the 
second derivative. On the other hand, there is a correlation46 
between bond stiffness and the so-called crystal overlap 
Hamiltonian population (COHP)47 between atomic orbital α 
of atom j and orbital β of atom l  , at eigenstate � defined by 
COHP(jα, lβ;E�) = ρjα,lβ(E�)Hjα,lβ, where ρjα,lβ(E�) is the 
contribution of the eigenstate of eigenvalue (E�) to the density 
matrix, and Hjα,lβ is the Hamiltonian matrix element between 
orbitals jα and lβ . The Electronic Hamiltonian of bound elec-
trons being negative, a negative COHP means bonding states 
and a positive COHP means antibonding states at the energy 
of interest. Strength of a bond j − l can be considered to be 
“correlated” to Sjl =

∑

αβ,E�<EF
COHP(jα, lβ;E�) , although 

this term does not include the full ion-ion repulsive part of 
the potential. The integral of the positive part of this quantity 
(i.e., the antibonding contribution) can therefore characterize 
the softness of the bond. The justification for this statement 
has been provided in a paper by Liao’s group48 where they 
showed that removing the effect of antibonding electrons led 
to stronger force constants between atom pairs and to weaker 
anharmonicity as evidenced by lower Grüneisen parameters 
and scattering rates. Now for soft bonds, because the local 
potential energy curvature is small, atomic displacements will 
be large and anharmonic portions of the potential energy land-
scape will be more often explored by the vibrating atom, espe-
cially at higher temperatures. In our recent work49 where we 

Figure 1.   Different phonon scattering processes.

Figure 2.   In the incoherent case, the identity of phonons changes across the layers.
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observed that the thermal conductivity of LaP is surprisingly 
lower than that of LaBi, despite its lighter mass, we explored 
the antibonding concept to explain the larger anharmonicity 
in LaP. Finally, it was traced back to the metavalent nature50 
and softness of the bonds in this compound.

Recent theoretical advances
Beyond the numerical implementations of the solution of BTE, 
it is important to understand the assumptions and their domain 
of validity. Although the standard methodologies as imple-
mented in ALAMODE,51,52 SHENG-BTE,53 PHONO3PY,54,55 
and similar software is widely used by many authors, in many 
materials, these assumptions may be violated, leading to erro-
neous estimations of the MFPs less than a bond length, and 
thus of the thermal conductivity.

Proof of gauge invariance
In 2015, Baroni and his group showed that despite mul-
tiple choices for the definition of the heat current, the 
Green–Kubo formula is gauge invariant and leads to the 
same thermal conductivity.56 Therefore, he designed a 
way to compute the heat current and thermal conductivity 
directly from DFT simulations without any need to fit the 
forces to a surrogate model.

Theories of thermal transport in strongly anharmonic 
or disordered systems, violation of particle picture, 
and importance of interband overlaps
Disordered solids were treated by Allen and Feldman (AF) in 
the 1990s5,57,58 with the introduction of a new taxonomy for 
the heat carriers: Propagons, diffusons, and locons. Thermal 
conductivity was then formulated within the harmonic approx-
imation for diffusons, a majority of the vibrational excitations 
that do not show any order and have algebraic decay. They are 
essentially formed from a superposition of local vibrations that 
have a large real-space overlap allowing to tunnel among 
themselves due to their energy quasi-degeneracy. There is no 
clear cut lower-frequency cutoff separating them from prop-
agons, which are wave-like excitations very similar to long 
wavelength phonons. Simulations have shown that there is a 
frequency crossover region also called the Ioffe–Regel fre-
quency around which both diffusons and propagons may coex-
ist. It was postulated that it is the frequency at which the prop-
agon is so damped that its mean free path becomes on the 
order of its wavelength: � ≃ lMFP . It may also be estimated 
from the structure factor where the peak frequency becomes 
on the order of the peak broadening ω ≃ γ(ω) . In practice, this 
is hardly achieved as γ(ω) ∝ ω2 . The determination of the 
cutoff frequency may be a subtle issue that requires further 
investigation.59 There is, however, a sharp separation called 
the mobility edge between the diffusons and locons, which are 
localized modes occurring near the band edges, with exponen-
tial decay. Within the harmonic approximation, locons do not 

contribute to the thermal conductivity, but if anharmonicity is 
taken into account, localized energy can hop through coupling 
with diffusons or propagons from a given site to neighboring 
sites. Within the AF theory, the contribution of propagons must 
be separated. It requires the calculation of the Ioffe–Regel cut-
off frequency, and, similar to phonons, the speed of sound and 
a finite MFP or relaxation time for which usually a phenom-
enological formula of the form 1

τpropagon
= Aω2

T  can be 
adopted.

More recently, starting from the Green–Kubo formula 
and calculating the heat current for a lattice dynamical 
model (harmonic terms), Isaeva et al.60 showed that even 
for strong disorder, a purely harmonic model will have a 
divergent thermal conductivity. This is because there will 
be terms such as cosωt in the heat current leading to diver-
gent integrals of the type 

∫∞

0
cos

2ωtdt  . This result was also 
previously known by AF and even earlier by Flicker and 
Leath.61 This divergence can be resolved if one allows an 
imaginary part for the mode frequencies reflecting their 
finite lifetime due to the presence of anharmonicity. In this 
case, the kinetic BTE formula for the thermal conductiv-
ity was extended to disordered systems and labeled quasi-
harmonic Green–Kubo (QHGK) formulation.60 The velocity 
terms were generalized to matrices. Heat capacity and life-
times were also generalized to a two-mode version, keeping 
the overall form of the κ formula the same. They further 
showed that in the limit of vanishing disorder the standard 
kinetic formula for κ is recovered.57,61–63 The QHGK formal-
ism was further extended by Fiorentino and Baroni,62 based 
on the Mori–Zwanzig memory formalism and Green–Kubo 
formula.

As previously mentioned, if the scattering rates, which 
in the simplest picture are the inverse lifetime or broaden-
ing of a phonon state, are large, they can lead to a not so 
well-defined “independent” phonon state, if, for instance, 
the difference between two phonon energies ω,ω′ becomes 
smaller than the broadening γ caused by anharmonicity or 
disorder. The true quantum state would be a superposition 
of the individual states of energy within γ . In that sense, 
it is a “coherent” state since the phases of the two modes 
which were originally unrelated are now the same within 
the coherence time of 1/γ . This happens in a so-called 
strong-coupling regime in which perturbative treatments 
fail. In this case, the standard kinetic approach of BTE also 
becomes invalid. To remedy this situation, Simoncelli et al. 
recently adopted the density matrix formalism59 and later the 
Wigner distribution function approach63 to solve the phonon 
transport equation. The outcome of this treatment is that the 
velocity now becomes a matrix in the band representation 
and that total thermal conductivity becomes the sum of the 
old BTE exact solution plus a correction term, called the 
coherence contribution, involving the off-diagonal terms in 
the velocity matrix, phonon frequencies, self-energies, and 
heat capacities.
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with L
(

q, ��
′
)

=
1

2
(Ŵ

q�+Ŵ
q�′ )

(

ω
q�−ω

q�′

)

2

+ 1

4

(

Ŵ
q�+Ŵ

q�′

)

2
 and Fq� = exact 

solution to standard (diagonal) BTE.
The first term is the standard solution to BTE (could be 

within the relaxation time approximation (RTA) or from 
direct diagonalization/inversion of the collision matrix). It is 
simple enough to implement within existing transport codes. 
The coherence term increases with increasing temperature 
and increasing disorder. This approach becomes also very 
convenient in inhomogeneous or disordered systems when 
the very concept of wave vector-resolved phonon becomes 
questionable. This formalism was applied with success 
to several anharmonic systems64 and glasses.65 The new 
Wigner formulation has bypassed the need to separate the 
propagons from diffusons and have produced the thermal 
conductivity of amorphous silicon within a unified formal-
ism.66 This formalism produces results very similar to the 
work of Baroni’s group.67 Differences were shown to be on 
the order of Ŵ2/ω2.

Hydrodynamic transport regime
Recent advances in first-principles modeling of thermal 
transport have enabled detailed investigations into phonon 
scattering processes and relaxation dynamics in various 
materials.68,69 In particular, these advances have provided 
clear evidence—both experimentally and theoretically—
for ballistic transport in short samples and hydrodynamic 
phonon transport at low temperatures and sufficiently small 
length scales.70

A deep understanding of phonon heat transport can be 
achieved by investigating the collision matrix, first studied 
systematically by Guyer and Krumhansl.71,72 They realized 
that the first four eigenstates of the normal (i.e., momentum 
conserving) part of the collision matrix have the general drift-
ing form, which can be expanded on eigenstates of the normal 
collision operator:

Here, q and ωq are the phonon wavevector and frequency, 
β is the inverse temperature, and vD is the drift velocity vector. 
It can be determined from the constraint of crystal momentum, 
which is what Callaway used.2 All modes q have the same 
drift velocity, implying that any distribution function made 
as a superposition of these four basis set represents a collec-
tive motion of phonons. In reality, the collision matrix is not 
normal and has a resistive part as well. However, in the limit 
where resistive terms are small (τR ≫ τN ) (i.e., in clean sam-
ples and at low temperatures with few Umklapp processes), to 
a good approximation the drifting distribution is solution to the 

(3)καβ = 1

Nq�0

[

∑

q,�
Cq�v

α
q�
F
β
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+
∑

q,� �=�′

∫
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,

(4)

[

e
β�(ωq−q·vD) − 1

]−1

≃ f0 + qxvxDf1x + qyvyDf1y + qzvzDf1z
.

BTE, at least until times t ≤ τR after which they are damped 
and relax to the equilibrium BE distribution.

Hydrodynamic or fluid-like flow behavior is then observ-
able when the rates resistive (i.e., nonmomentum-conserving) 
processes are significantly smaller than those of normal pro-
cesses denoted by Ŵq,N =

1

τq,N
 . Therefore, clean, defect-free 

samples with minimal resistive scattering clearly exhibit 
hydrodynamic phonon transport due to the slower decay of 
collective modes compared to resistive modes.

More recently, Alvarez et al.73 developed a phenomeno-
logical approach called the kinetic collective model (KCM) 
to treat the hydrodynamic transport of phonons. They sepa-
rated the mode contribution to the thermal conductivity 
into a weighted sum of kinetic, where, as in the RTA, each 
phonon mode contributes some Cqv

2

q
τq/3 amount to the 

thermal conductivity through nonmomentum-conserving 
processes and collective, which captures hydrodynamic 
transport. The weight corresponding to each term is propor-
tional to the average resistive and normal rates, respectively, 
κ = (κkinŴR + κcolŴN )/(ŴR + ŴN ) . The assumption is that 
there is a gap between the normal rate of drifting distribu-
tion and that of resistive modes, so that collective and kinetic 
contributions can be well separated. It therefore requires very 
clean samples. This theory is computationally more tractable 
than the full solution to BTE, especially for complex materials.

In subsequent work, Alvarez et al. proposed an ansatz74,75 
wherein each phonon mode distribution is the equilibrium 
distribution plus terms linear in heat flux Q and its time and 
space derivatives:

and where the mode-dependent coefficient vectors Aq,BqGq 
are determined from conservation equations. This flux deriva-
tives formalism led to a modified Fourier Law, the hyperbolic 
(Maxwell–Cattaneo) heat equation. The second term guaran-
tees a response linear to the heat flux, and the third allows a 
wave-like solution (second sound). Coupled with the energy 
conservation, one obtains a macroscopic heat wave equation, 
the parameters of which could be expressed in terms of pho-
non frequencies, group velocities, and RTA relaxation times:

Solutions of this modified heat equation with a new length 
scale l  , of relevance for the observation of hydrodynamic 
effects, by the finite element method (FEM), have been able 
to explain many experimental observations, such as Poiseuille 
flow,75,76 bridging different transport regimes and explaining 
size effects, including the Knudsen minimum in materials such 
as Si77 and second sound in Germanium.76 Coefficients l, α, τ, κ 

(5)fq = f
0

q
+ Aq.Q + Bq.

∂Q
∂t

+ Gq : ∇Q

(6)
C

∂T
∂t

+∇.Q = 0;Q = −τ
∂Q
∂t

− κ∇T + l
2

[

∇2
Q + α∇(∇.Q)

]

.
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are geometry independent and can be calculated from the solu-
tion of BTE for the bulk material.

In parallel, Cepellotti and Marzari undertook a more 
systematic approach using as a representation of the distri-
bution function the full eigenstates of the collision matrix, 
termed “relaxons.”78–80 This method has clarified and 
generalized older theories by Callaway2 and Guyer Krum-
hansl.71,81 Callaway associated a relaxation time τN  to the 
normal processes that relax to the drifting distribution and 
another one to the resistive or Umklapp ones τR , relaxing 
to the equilibrium BE distribution, so that the total relaxa-
tion time is given by 1

τ
= 1

τN
+ 1

τR
 . This approach works 

mostly well in high-thermal-conductivity materials, with 
some exceptions as explained in the recent work by Ravi-
chandran.36 Other relaxon modes do also contribute to the 
thermal transport. At low temperatures, Ravichandran82 
demonstrated that, at low temperatures, only about 3% of 
relaxon modes are sufficient to capture over 99% of the 
thermal conductivity in diamond at 100 K, whereas approxi-
mately 50% are needed at 300 K.

Simoncelli et al. could derive macroscopic viscous heat 
equations which, similarly, could be solved by FEM.83,84

Boltzmann transport theory solvers 
implementations
For electronic transport, the transport distribution function is 
calculated from the band structure (wannierized85–87 or not). 
The codes BOLTZTRAP88,89 and BOLTZWANN90 perform 
a constant relaxation time approximation. Electron relaxa-
tion mechanisms are implemented in the codes AMSET,91 
ELECTRA,92 and QUANTUM-ATK.93

For phonon transport, many codes are also avail-
able. First harmonic and anharmonic force constants are 
extracted. FOCEX as a part of ALATDYN,94 HIPHIVE95 and 
PHONOPY54,55 are such codes which use DFT calculations 
of forces versus displacements in a supercell as input and 
provide harmonic and anharmonic force constants as output 
to be processed by other codes (see flowchart in Figure 3). 
Other codes such as SHENG-BTE,37,53 ALAMODE,51,52,96 
TDEP,97–99 KALDO,100 SSCHA,101–103 THERMACOND, 

and PHONO3PY55,104 may do both force constant extrac-
tion and thermal conductivity calculation.

Finally, ELPHBOLT105 and PHOEBE106 are full imple-
mentations of the coupled electron–phonon Boltzmann 
solver and take as input electron and phonon dispersions, 
anharmonicities, as well as their coupling constants calcu-
lated by codes, such as EPW24,25,107 and PERTURBO,26 and 
calculate the distribution function for both carriers subject 
to a thermal gradient and voltage. In an impressive paper, 
Coulter et al.108 recently developed and solved a hydrody-
namic version of the coupled electron–phonon transport 
problem, and the corresponding code SOLVITE has been 
interfaced with PHOEBE.

Advances in thermal transport measurements
While the standard way of measuring thermal conductiv-
ity of bulk thermoelectric materials remains to be the laser 
flash method, there has been great advances over the last 
few decades in the methods to measure local thermal con-
ductivity in micro- and nanoscale regions. One of the most 
popular approaches has been the pump-probe optical method 
mostly using thermoreflectance (time-domain themoreflec-
tance, TDTR)109–111 but some using temperature depend-
ence of Kerr rotation angle (Time-resolved magneto-optical 
Kerr effect, TR-MOKE)112 or Raman shift (Flash Raman, 
FR).113 They enabled measuring thermal conductivity of thin 
films and thermal conductance at solid interfaces. Methods 
using microfabricated devices have also been performed 
by some researchers although they require more complex 
processes;114 a sample is suspended between micro-islands 
equipped with heaters and thermometers realizing steady-
state thermal conductivity measurement of thin films and 
nanomaterials. The methods are primarily used to measure 
cross-plane thermal conductivity of thin films, but they 
can also measure in-plane thermal conductivity when suf-
ficient sensitivity is achieved by offsetting the pump and 
probe beam115 or varying the dimension of heat conduction 
through laser spot size of modulation frequency.116 The mate-
rial selectivity of Raman scattering has been used to measure 
monolayer two-dimensional material thermal conductivity 
even when supported by the substrate.

Figure 3.   Flowchart of anharmonic force constants and thermal conductivity calculations. DFT density functional theory; LD lattice 
dynamics; DOS density of states; SVD singular value decomposition.
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One merit of the pump-probe method is that it can probe 
effective thermal conductivity of various sizes by changing 
the laser spot size, pulse width, or modulation frequency. 
The size effect measurement has been used to extract the 
dependence of thermal conductivity on the phonon mean free 
path.117,118 Another merit is the facileness to perform map-
ping of thermal conductivity by traversing the laser spots 
along the sample surface. This allows obtaining informa-
tion on uniformity or it can be used for high-throughput 
screening of combinatorial samples.119 Furthermore, the 
mapping measurements of thermal conductivity have been 
recently used to extract thermal boundary conductance of 
polycrystal grain boundaries.120,121 Working on the smooth-
ened cross section of polycrystalline material, when profiling 
thermal conductivity crossing orthogonally a grain bound-
ary, thermal conductivity drops around the interface with a 
certain width related to the phonon mean free path. Then, 
the thermal boundary resistance (inverse thermal conduct-
ance) can be extracted by integrating the thermal resistivity 
(inverse thermal conductivity).

Mode-resolved phonon transport characteristics are 
measured by inelastic neutron scattering (INS) or inelastic 
x-ray scattering (IXS), where the line shape and width of 
the dynamical structural factor give states and the scattering 
rate of phonons, respectively. Recent development of the 
instrumentation enabled IXS measurements of thin films by 
making the incident angle extremely low.122 In addition, the 
advanced energy resolution enabled extraction of the elec-
tron–phonon scattering rate of doped silicon.123

Summary
In summary, this article outlines fundamental concepts, 
recent theoretical developments, and advanced experimental 
techniques in thermal transport for thermoelectric materials. 
Initially, mechanisms of phonon scattering and their depend-
ence on atomic-level details such as chemical bonding and 
interfaces were discussed. We clearly distinguished between 
diffusive, hydrodynamic, and ballistic transport regimes and 
emphasized phonon coherence and scattering processes.

Theoretical models, including Green–Kubo, BTE, and 
Allen–Feldman theory, along with their modern extensions, 
were reviewed, highlighting their effectiveness in describing 
various materials and phenomena such as phonon localization 
and strong anharmonicity.

Experimental advancements, particularly in nanoscale 
thermoreflectance (TDTR/FDTR) and Raman spectroscopy, 
alongside mode-resolved techniques such as inelastic x-ray 
scattering (IXS), have provided valuable insights into phonon 
dynamics and thermal transport mechanisms.

For thermoelectric materials, strategies to reduce thermal 
conductivity by introducing interfaces, defects, and exploit-
ing phonon coherence in superlattices were discussed. Nota-
bly, the observation of minima in thermal conductivity versus 
superlattice period illustrates the balance between coherent 
and incoherent phonon transport.

Overall, combined theoretical and experimental progress 
continues to enhance fundamental understanding and guide 
the development of efficient thermoelectric materials.
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