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Abstract—Electricity rate plan recommender systems (EPRS)
are tools that aim to predict and recommend which rate plans will
be the least expensive for a household. In addition to its rate plan
recommendation, EPRS could be greatly improved if they also
generated probabilistic forecasts for the savings the household
might incur if enrolled. Probabilistic load forecasting could be
used to forecast cumulative usage costs and potential savings.
However, load forecasts are generated from imperfect models,
and so cumulative savings forecast distributions will also be
imperfect. In this paper, we apply probabilistic load forecasting
to generate cumulative savings forecast distributions for EPRS
recommendations and show how load forecasting error affects
savings forecasts. We show that these effects differ in severity over
forecast horizons of a day, between months in the year, and over
the full year. We show across 865 real households and 12 months
that inaccuracies in forecasted load distributions can form bias
in short-term savings forecasts but also compound, worsening
the forecasted cumulative savings distributions. We conclude
that forecasting cumulative savings from EPRS recommendations
using probabilistic load forecasting has potential but requires
careful consideration or mitigation of forecast bias induced by
the nonstationarity of load.

Index Terms—probabilistic load forecasting, electricity rate
plan recommender systems, forecast bias, residential load

I. INTRODUCTION

With the increasing prevalence of advanced metering in-
frastructure, electric utilities are able to offer their residential
customers a suite of electricity rate plan options [1], [2]. Al-
gorithms and models called electricity rate plan recommender
systems (EPRS) have emerged to help households save on
their electricity bills [3]. EPRS recommend the rate plans
predicted to be lowest-cost based on a household’s features
(i.e., monthly usage, appliance ownership, household income,
etc.) [4]. However, current EPRS do not generate predictions
for how much money and at what times over the coming
months or year the household can expect to save money
after enrolling. Such predictions would allow the household
to better plan or adapt their energy usage and other expenses,
ultimately enabling them to have greater control over both,
which is important to low income homes [2].
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One approach to predicting future (i.e., “forecasting”) sav-
ings from an EPRS recommendation is to forecast home load
and compute the cost on each rate plan of interest. The
difference between the costs on each rate plan estimates the
expected savings. However, due to load uncertainty stemming
from weather uncertainty and demand variation and change,
it is common to approach forecasting probabilistically [5].
Furthermore, probabilistic load forecasting offers more infor-
mation regarding long-term possibilities. This is relevant to
forecasting over horizons comparable to the duration of enroll-
ment contracts, which can require enrollment for a year [6].
From these probabilistic load forecasts, probabilistic cost and
savings forecasts can be generated. However, load forecast
distributions are generated from imperfect load models, and
so the savings distribution forecasts will also be imperfect.

Inaccuracies in the forecasted load distributions can give
rise to bias in the savings forecasts. This can lead to increas-
ingly erroneous long-term cumulative savings forecasts as the
effect of bias accumulates over multi-day forecast horizons. If
such savings forecasts were used by a household in decision
making, it could expose them to unanticipated financial risk
and hardship. Therefore, it is important to understand how
probabilistic load forecasting inaccuracies affect long-term
probabilistic savings forecasts.

In this paper, we demonstrate the potential downstream
effects of probabilistic load forecast error on savings forecasts
corresponding to EPRS recommendations. We employ a prob-
abilistic load forecasting method in which we first combine
and post process the outputs of two temperature dependent
load models to generate home load scenarios. Then, we use the
load scenarios to forecast the range of savings that the home
can incur on each day, and forecast a probability distribution
describing the likeliness of the savings outcome. We present
a case study utilizing multi-year home load data from 865
real households in Detroit, MI and show how periods of bias
in short-term savings forecasts compound in the long-term to
produce inaccurate cumulative savings forecasts. Furthermore,
we explore these effects considering various forecast horizon
durations and periods of the year.
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Past work has developed EPRS to identify and recommend
to a household its least-expensive rate plan options, often
leveraging indirect relationships between household features
and rate plan suitability [3], [4], [7], [8]. However, many of
these methods often cannot forecast usage costs and savings
if a household were to enroll in the recommended rate plan.
Some works that develop methods to probabilistically forecast
load have considered its application to usage cost predictions
and rate plan recommendations [9], [10]. Methods presented
for short- and long-term probabilistic load forecasting often
generate distributions for load at each step in time in a forecast
horizon [9], [11]-[13]. A method of this kind is extended
to predict the potential for positive savings from a rate plan
recommendation over forecast horizons of one week [10].
Performance metrics applied to these methods often measure
how well each individual distribution predicts the load at its
corresponding step in time. However, the interaction between
each distribution becomes critical when forecasting costs and
savings that accumulate over time steps in the forecast horizon,
but has mostly gone unconsidered. This motivates our work
which applies and assesses probabilistic load forecasting in
cumulative savings predictions for EPRS recommendations.

The contributions of this paper are three-fold. First, we
expand the electricity rate plan recommendation problem to
include a forecast for long-term cumulative savings and we
develop an initial method to generate probabilistic savings
forecasts leveraging load models. Second, we study how load
forecast error affects daily savings and long-term cumulative
savings, highlighting variation as the forecast horizon duration
and period in the year changes. Third, we highlight the
compounding effects of bias in short-term savings forecasts on
cumulative savings forecasts, motivating the use of methods to
mitigate forecast bias induced by the nonstationarity of load.

This paper is organized as follows. Section II introduces
the methods used in this work, including the electricity load
model and how the model output and residuals are used to
generate probabilistic load scenarios. These load scenarios are
then used to create savings scenarios, from which we form
daily and cumulative savings distribution forecasts. Section III
presents a case study illustrating the effects of load forecast
bias on savings distribution forecasts. Section IV concludes.

II. METHODS

Fig. 1 summarizes our method for forecasting a probability
distribution that describes the likeliness of cumulative savings
outcomes for a household after enrolling in a recommended
rate plan. First, we train and implement regression-based load
models to forecast home load from temperature forecasts and
calendar information. We use these load models to generate
daily point forecasts of home load as well as a discrete
probability distribution of forecast error (the green block). For
each day, we form all combinations of the point forecast and
forecast errors and generate a subset of feasible load scenarios
(the blue block), approximating the domain of home load
outcomes. Next, the difference in tariff charge (i.e., “savings”)
incurred by each load scenario is computed and used to
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Fig. 1. A block diagram for probabilistically forecasting home load and
cumulative savings from rate plan enrollment.

construct a set of savings scenarios for the household (the
purple block). Then, leveraging the probability of each forecast
error, we create a probability mass function (PMF) of short-
term (daily) savings (the pink block). Finally, we convolve
the short-term savings distributions to obtain the long-term
cumulative savings distribution forecast (the yellow block).
Note that our method does not model behavioral changes in
response to enrollment in the recommended rate plan. The
following subsections describe each step in detail.

A. Electricity Load Models

In this section, we describe the “Electricity Load Models”
block in Fig. 1. In our case study, we consider two electric
rates — a time-of-use (TOU) rate and an increasing block tariff
(IBT) rate — and so we use models that allow us to estimate
relevant loads and costs on both rates. Specifically, we use two
home load models to predict total load during two different
periods of a day — on-peak and off-peak — based on forecasted
temperature and the part of week. Note that this method could
be easily extended to consider more pricing periods. Here, we
describe the historical data used in constructing the model,
the model formulation and training process, and our approach
to probabilistically model load forecast error, wherein we first
approximate the error domain with forecast error scenarios and
then ascribe probabilities to the scenarios.

1) Historical Data: We first describe the historical load,
temperature and calendar information used in constructing the
two home load models. First, let z?” be an indicator whose
value is 1 if the 7" hour is within the “on-peak period” and is 0
for all hours j outside of the on-peak period, referred to as the
“off-peak period”. Vectors u°" and u°" contain each day i’s
total on-peak period load u9" and off-peak period load 19

5 5
in kWh, respectively, i.e., u®" = [u",... uQ"] and u°f =
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[wft, ... uQM], where N is the number of days of historical

data. Vectors t°" and t° contain each day i’s mean on-peak
period outdoor air temperature t?“ and off-peak period outdoor

air temperature t, respectively, i.e., tO" = [t?", ... Q"] and
O = [0, ... #Qff]. We construct the load models such that

the load’s sensitivity to temperature can differ between low
and high temperature conditions using a method similar to that
presented in [14]. The key difference is that rather than using
fixed temperature ranges to define the load’s sensitivity, we
allow the low and high temperature ranges for load sensitivity
to change based on the home’s historical usage patterns. For
the on-peak period load model, we split the temperature into
two temperature components,

7_10&1 _ min(t?n o £0n7 tOn,c o zOn), (1)
705 = max(0, 9" — 1), 2)

where tO" is the historical minimum mean on-peak temper-
ature and t°™¢ is the change-point temperature, which is the
point of transition between low and high temperatures. Then,
7 = 720,773, and 70" € RV*2 stacks all 79". The off-
peak period load model is defined similarly. The values for
tOn¢ and tOf¢ are chosen to maximize the R-squared value
between each model’s predictions and historical observation.

We also process historical calendar information to form a
vector w with elements w; equal to 1 if day ¢ corresponds to
Monday-Friday or equal to 0 if day ¢ corresponds to Saturday
or Sunday, i.e., w = [wy,wa,...,wy].

2) Model Formulation and Training: We next describe the
model formulation and training process. The load models
used in this paper are also inspired by those presented in
[14] but adapts the model outputs to forecast total load over
several hours. Both the on-peak period and off-peak period
load models are linear regression models each with its own
set of parameters 8 = {a"P aVE 3}, where a™P captures
the weekday influence, aVE captures the weekend influence,
and B = [(, (2] captures the temperature influence on the
load. The on-peak period load model uses future calendar
information w;, temperature components 79" computed from a
temperature forecast t?“, and model parameters 0°" to forecast
the total on-peak load on day ¢ according to

On On,WD

ud" = WPy, + aO™WE(1

—w;) +Zﬁ0“ ™ )

and the off-peak period load model is defined similarly. Using
ordinary least squares, we compute the on-peak period load
model parameters " using on-peak period historical data for
{u,w, T}, and we compute the off-peak period load model
parameters similarly. Note that future work may incorporate
household price elasticity and load flexibility into the load
models to capture a household’s response to rate plan enroll-
ment (e.g., reducing/shifting load to minimize costs).

3) Modeling the Domain of Load Forecast Error: Here, we
describe how we approximate the domain of the load forecast
error with a set of error scenarios. We use historical data
to evaluate the load models to generate an on-peak period

load estimate 49" and off-peak period load estimate 49 and
compute the model residuals for each day ¢ as the dlfference
between the actual load and the estimated load,

On _ On ~On
e, =u; — U, (@)
Off _ , Off _ ~Off
e, =u; —u; . (®)]
We include all residuals in the sets £ = {9, e, ..., e

and EOT = {9 9 . eQff}. Next, we form a hlstogram
with KO uniform bins from the set £°°, and a histogram with
KO uniform bins from the set £°%, and define the approxi-
mate joint residual for each day i as the pair ¢; = (9", e9'),
where " corresponds to the midpoint of the bin within which

falls and €9 corresponds to the midpoint of the bin within
wh1ch et falls. Let € include all &;, and £ C £ include all
unique é;, with elements &, for r = 1,..., N". Then, £ is the
domain of the load forecast error.

4) Forecast Error Probability Distributions: Here, we de-
scribe how probabilities are ascribed to each scenario within
E'. The use of residuals to form parametric and nonparametric
distributions for load forecasts is well established [15] and
we implement a nonparametric approach. This allows us to
take advantage of our regression-based (point forecast) load
model and historical observations to inform error modeling
while limiting the assumptions imposed on the shape of the
error distributions. We model load forecast error with separate
distributions for high-temperature days and low-temperature
days, because we have found that errors on these days often
differ significantly. We define high-temperature days as days
in which ¢On > $On¢ or ¢Off > ¢Offc and all other days are low-
temperature days. Subset £ C £ includes all €; occurring on
all high-temperature days (and includes NH total elements)
and subset £ C & includes all & occurring on all low-
temperature days (and includes N total elements). Elements
of £ can appear in both €Y and £".

Assuming the approximate joint residuals e; are i.i.d. (albeit
a somewhat unrealistic assumption), we can ascribe probabil-
ities to both the high- and low-temperature day load forecast
error scenarios. For high-temperature days, the approximate
probability of the pair €, is

H

n
Lo=py, (6)

Pr(z =e¢,) =~ i

where n!! is the number of instances of &, in £F. Similarly,
for low-temperature days, the approximate probability of the
pair €, is

nL

Pr(x =é¢,) =~ NTI; =k, (7)

where n% is the number of instances of &, in E-. Then, the
empirical high-temperature day joint PMF is

Fiz=e,)= { vy

0 otherwise

if &, € EH
ne forr=1,... N'

)

®)
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and the empirical low-temperature day joint PMF is

L if & gL
Fz=¢,) = pr 1 67«6' ,forr=1,...,N",
0  otherwise
€))
and the full joint PMF for each day 7 is
Fiz—é) = F:(:z: = ?r) %f high-temperature day .
F~(zx =¢,) if low-temperature day
(10)

B. Scenario Generator: Load and Savings

This section describes the “Scenario Generator” block in
Fig. 1. We first generate home load scenarios using the
load forecast error scenarios. We then compute the savings
scenarios, assuming two specific electricity rate options.

1) Load Scenario Generator: We present the process for
constructing the load scenarios corresponding to a high-
temperature day; however, the same process is followed for
low-temperature days. Let &, = (e9",0). We assume the
true load might differ from the forecast (u9",u$T) by any
e, € EN. We compute the corrected on-peak period and off-
peak period load scenario for day 7 and unique residual r as

udh = ud" + ", (11)
u?f = 9 4 &0t (12)
We use the indicator function f(uf},u})) = 1 to indicate

whether a scenario is feasible, i.e., ug'; > 0 and u?ff > 0.
Otherwise, f(udy, uQy) = 0.

2) Savings Scenario Generator: Next, we describe how we
approximate a domain for the savings the household could
incur on each day. Let the TOU rate plan be recommended to
the household and let the alternative rate plan be an IBT. We
compute the savings on day ¢ with unique residual r as

B T
Si,r = Ci,r -

7,7

13)

where C’ET is the cost of load under the IBT rate plan and
CiT) , 1 the cost of load under the TOU rate plan on day 7 with
unique residual r. Then, the set of feasible savings values for
day 7 is

Si = {82‘77‘7 r= 1, .. .,]\7r | f(uon quf) = 1},

7,7 Yir

(14)

and the set of all savings across all days ¢ within a forecast
horizon is St = {S;,i = 1,...,N¥}, where NF is the
number of days in the forecast horizon. We form a histogram
with K® uniform bins from the set ST, and define the
approximate savings scenarios zj, € X®, fork =1,..., K*, as
the midpoints of the bins, where A’® approximates the savings
domain across the forecast horizon.

C. Short-Term Savings Forecasts

We next describe the “Short-Term Savings Forecast” block
in Fig. 1, which forecasts a probability distribution for each
day’s savings. We use the indicator function vi(s;,) =1 to
indicate whether s, , is in bin k. Otherwise, vg(s;,) = 0.

Then, the approximate probability of zj, for each day ¢ in the
forecast horizon is

N* _
Y Fi(z =& )op(si) fudy, udy)

YL Fi(w = &) f(u2n, udlh)

i,r Yi,r

i,k

15)
and the empirical savings PMF for each day ¢ in the forecast
horizon is

Fi(x =x)) ={pir,k=1,2,...,K°}. (16)

D. Long-Term Savings Forecast

Finally, we describe the “Long-Term Savings Forecast”
block in Fig. 1, which computes the probability distribution
for the cumulative savings incurred over a multi-day fore-
cast horizon, resulting in a long-term probabilistic savings
forecast for a household’s enrollment into the recommended
rate plan. If we were using point forecasts, the long-term
savings would be the sum of the short-term (daily) savings.
Since we are using forecast distributions, we approach the
computation as determining the distribution corresponding to
a sum of independent random variables [16]. We make the
assumption that the distributions are independent (again, a
somewhat unrealistic assumption) and convolve the short-term
(daily) savings distributions to obtain the long-term savings
distribution. Therefore, the cumulative savings distribution is
computed as the convolution of the PMFs of each day in the
forecast horizon, i.e.,

F(x) = Fj(x) « Fi (x) ... x Fiyye(x).

K3

(17
III. CASE STUDY

We next present a case study in which we demonstrate the
potential downstream effects of inaccuracies in probabilistic
load forecasts in daily and cumulative savings forecasts. We
first describe our case study set-up and then describe the
results.

A. Set Up

Here, we describe the specifics of our implementation of
the aforementioned methodology including the preprocessing
of data, the rate plans considered, and other modeling choices.

1) Input Data: We use hourly smart meter data from
approximately 1000 real households in Detroit, MI. We use
one year of home load data for model training (1 March 2019
- 29 February 2020) and one year of home load data for testing
(1 March 2020 - 28 February 2021). We required all homes
to have no missing data over the two year period. We also
required that the training year home load have a total usage
above 500 kWh as a proxy for the home being inhabited most
of the year. All toll, we filtered out over 100 homes, resulting
in 865 homes.

We use NOAA temperature data from Detroit Metropolitan
Wayne County Airport Detroit, MI [17]. We use two years of
hourly temperature measurements, corresponding to the same
period as the load data, one year for model training and one
year for forecasting. Both years of data are interpolated using
spline interpolation to have readings on the hour. In forecasting
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load, we use a perfect temperature forecast because, though
assessing the sensitivity of this method to temperature forecast
uncertainty is valuable, this paper primarily aims to assess the
effects of load forecast bias in savings forecasts with emphasis
on the nonstationarity of load.

2) Rate Plans: The rate plans are modeled after rates
historically offered to Detroit electricity customers [6]. The
TOU rate plan’s on-peak price period is 11AM - 7PM on
weekdays and the off-peak price period are all hours outside
of the on-peak period. The hot season months are from June
to September and all other months are considered the cold
season. The prices differ between seasons for the same price
period. Let the total forecasted load on day ¢ with unique
residual r be

Tot __ ,,On Off
T ui,r + ui re

u (18)

The charge associated with this load incurred on the TOU rate
plan is
off, Off

T __, On, On
Ci,r_ﬂ-i ui,r+7T7, ui,r’

19)

where 7" and ﬂ?ﬁ are the on-peak period and off-peak period
prices for day ¢, determined by whether the day is a weekday
or weekend and whether the day occurs during the hot season
or cold season months.

The IBT rate plan has two blocks, with electricity consump-
tion up to 17 kWh/day charged at a different rate than electric-
ity consumption beyond 17 kWh. The charge associated with

Tot

;. incurred on the IBT rate plan is

CP. = m¥max(u® — 17,0) + 7y min(ul, 17), (20)

where 7% and 78 are the prices for the first usage block and
second usage block, respectively.

3) Other Modelling Choices: We apply a uniformly
weighted 7x7 smoothing kernel to the high-temperature day
and low-temperature day forecast error distributions. This was
motivated by the sometimes sparse or jagged (i.e., many
peaks and valleys) error distributions we observed and the
assumption that errors within proximity of one another have
similar probabilities. Similarly, we smooth each daily savings
distribution using uniformly weighted moving averaging with
a window size automatically chosen by the MATLAB function
“smoothData”.

B. Results

Other work has focused on improving probabilistic load
forecasts and, as such, their results often include measures
of precision and accuracy. In contrast, our work aims to
highlight how errors in forecasted load distributions propagate
to savings. Therefore, we use the Prediction Interval Coverage
Probability Score (PICP) [13], which measures how frequently
the true value of a forecasted quantity falls within forecasted
prediction intervals.

We first generate daily load distribution forecasts for a
single home over a year-long forecast horizon and explore
the occurrence of load forecast bias presumably due to the
nonstationarity of load. In Fig. 2, we plot the off-peak marginal
distribution of each day’s joint load distribution forecast. In
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Fig. 3. Bias in forecasted daily savings distributions, for a single home.

December 2020 and the start of January 2021, the true off-
peak period load (the solid black line) is much larger than the
load during the same period in the historical training data set.
This suggests nonstationarity in the home load, causing bias
in the mean load forecast (the dotted red line) over that period.
From this we observe that nonstationarity creates challenges
for precisely forecasting future load with unobserved features;
however, such scenarios can be accounted for when forecasting
is approached probabilistically.

Next, we explore the effects of load forecast bias on
daily savings forecasts. As more load is consumed in a day,
especially as the day’s cumulative load exceeds 17 kWh, the
IBT charge grows more rapidly than the TOU charge, leading
to greater savings generally. If the total forecasted load is
underestimated, then it is possible that the savings will be
underestimated as well. We observe this outcome in Fig. 3,
where we plot the savings incurred for the same home using
the true load compared to the savings forecasts, and their
corresponding prediction intervals, for each day. We learn that
though the true daily savings always remains within the 99%
prediction interval (the light red area), the load forecast bias
causes the mean daily savings forecast (the dotted black line)
to be biased to underestimate the true daily savings.

Here, we shift to consider the effects of load forecast bias
on cumulative savings forecasts over forecast horizons of a
month, again for the same home. We convolve the savings
forecasts of each day sequentially, from the first day of the
month to the last day of the month, and plot each day’s
cumulative savings distribution in Fig. 4(a). In December, the
mean cumulative savings forecasts (the red dotted line) in-
creasingly underestimate the true savings (the solid black line).
In December and January, the true cumulative savings exceeds
the upper bound of the forecasted 99% prediction interval (the
dark grey area), unlike the case for daily savings. From this,
we learn that bias in load distribution forecasts propagate to
daily savings forecasts but compound in cumulative savings.

Next, we consider a forecast horizon of a year. Note that
the true daily savings associated with this home always remain
within the forecasted 99% prediction interval for all 365 days

Authorized licensed use limited to: Duke University. Downloaded on November 06,2025 at 16:04:11 UTC from IEEE Xplore. Restrictions apply.



2k T T T T i I T T T
g’ 50 - |C__IMin\Max Savings Scenarios True Savings b
5 — [C799% Prediction Interval - ——— Forecasted Mean
n &

[ =) A ‘
_; @D 0 — =\ =
53 <<
€

=1
o 50 . . . | | 1 . . . . .

N N 0 0 0 A
o o N o o o
e 2 W 2 3\,\7' o0 2 W A w\?'
Date (Daily)
(a) Monthly prediction horizon.

S g0 |-|EEE099% Prediction Interval

@ True Savings

]

0 —~4 ——— -~ Forecasted Mean

=

5g

2 208 ARNRRNIINNNNN o T

2
E2
© 0
o0 o2 o 20 o0 o
RES A NT 3\3\7, 69‘)?' o VA ya“?'
Date (Daily)

(b) Yearly prediction horizon.
Fig. 4. True savings vs. forecasted prediction intervals, for a single home.

in the forecast horizon. We once again convolve the savings
forecast of each day, now from the first day of the year
to the last day of the year, and plot each day’s cumulative
savings distribution in Fig. 4(b). We observe that the difference
between the true cumulative savings and mean cumulative
savings forecast grows, increasing noticeably post August,
as a consequence of daily savings forecasts being biased to
underestimate the true daily savings. This figure also reveals
the residual effects of the forecast bias when compared to
Fig. 4(a) in that while February overestimates the true savings,
it does not offset the effect of the cumulative bias in earlier
parts of the year, resulting in the last three months of the
true savings being outside of the 99% prediction interval for
cumulative savings.

Lastly, we explore how load forecast bias propagates to
and compounds in cumulative savings for all 865 real homes.
For a given month, we consider the set of prediction intervals
for daily savings generated across all homes and compute the
PICP. Repeating this for each month, we plot the PICP values
(the blue line) in Fig. 5. For each month, we consider the
prediction intervals for month-end savings across all homes
and plot the corresponding PICP (the orange line). The high
daily savings PICP shows that instances of extremely poor
calibration in daily savings forecasts are generally rare. Con-
sequently, the disparity in their PICP scores is attributable to
the compounding effects of daily savings forecasts bias, origi-
nating from load distribution forecast inaccuracies. The results
demonstrate how probabilistic load forecasting inaccuracies
appear downstream in probabilistic savings forecasts.

IV. CONCLUSION

In this paper, we presented a regression-based home load
model and a residual-based nonparametric probabilistic fore-
cast error model that generates probabilistic load and savings
forecasts from electricity rate switching. We show that bias in
forecasted load distributions propagate to short-term savings
forecasts and compound in cumulative savings forecasts. Fu-
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Fig. 5. The rate at which the 99% prediction interval captures daily savings
vs. cumulative monthly savings across real 865 homes.

ture work should assess the application of bias correction to
EPRS savings forecasting and explore methods to model the
nonstationarity of load due to changes in appliance ownership
and behavioral variation including changes in behavior in
response to enrollment in the recommended rate plan.
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