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Abstract

Cytoskeletal filaments propelled by surface-bound motor proteins can be viewed as active polymers, a

class of active matter. When constraints are imposed on their movements, the propelled cytoskeletal

filaments show dynamic patterns distinct from equilibrium conformations. Pinned at their leading ends,

propelled microtubules or actin filaments form rotating spirals, whose shape is determined by the

interplay between motor forces and the mechanics of the cytoskeletal filaments. We simulated the

spiral formations of microtubules propelled by kinesin motors in an overdamped dynamics framework,

which in addition to the mechanics of the spiralling microtubule explicitly includes the mechanics of

kinesin motors. The simulation revealed that spiral formation was initiated by localized buckling of

microtubules near the pinned ends, and the conditions for occurrence of spiral formation were

summarized in a phase diagram. The radius of the formed spirals scaled with the surface motor density

with an exponent of approximately -1/4, distinct from previous theoretical and simulation studies based

on implicit modelling of motor proteins. This result can be understood as a consequence of the

contributions of kinesin motors to the total elastic deformation energy, highlighting the importance of

mechanics of motor proteins in the behaviour of the active polymers. These findings can be useful in

accurate modelling of active polymers and in designing active polymer-based applications such as

molecular shuttles driven by motor proteins.

Key words: active polymer, cytoskeletal filaments, motor proteins, computer simulation

1. INTRODUCTION
Cytoskeletal filaments and their networks are active matters with remarkable mechanical

properties, such as adaptation and remodelling, distinct from those of synthetic polymers '=. Such
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properties are mediated by active elements, such as motor proteins, as well as passive ones, such as

binding proteins. A minimal reconstituted system to investigate emerging phenomena arising from

interactions between cytoskeletal filaments and motor proteins is an in vitro motility assay *°, where

the filaments are driven by motor proteins attached to a surface. Because of the activity of motor

proteins, the cytoskeletal filaments are driven out of equilibrium and show distinct behaviours from

those in thermal equilibrium. Cytoskeletal filaments driven by motor proteins can therefore be viewed

as a type of active polymer, a class of active matter ®’. Non-equilibrium phenomena exhibited by active

matter include collective motions® 3, transports'®, motor-induced conformations > and others. In vitro
9 b

motility assays have also been developed into engineered systems, such as molecular shuttles '¢2!, with

22-31 33,34

applications in biosensing 223!, computation 3? and robotics
Cytoskeletal filaments driven by surface bound motors show complex dynamical patterns,

reminiscent of biological movements, when constraints are imposed on their movements. Microtubules

(MTs) and actin filaments clamped at their leading ends and driven by surface-bound motors show

flagellar-like beatings on the surface 34

, which may serve as a minimal model to investigate the
mechanism of flagellar beatings. Pinned at their leading ends, MTs or actin filaments form rotating
spirals *!,which are spatial-temporal patterns far from equilibrium. Bourdieu et al. *! derived a scaling

relation for the spiral radius (R) against the motor density (¢): R < ¢~/3

by balancing the bending
moment of filaments with the torque produced by motors. Wang et al. performed Brownian dynamics
simulations and obtained the same scaling relation 2. The spiral formation is not only of scientific
interest in spatio-temporal dynamic patters %, but also can be a limiting factor for efficient active
transports in biosensors because sharp bending in the spirals can lead to the breaking of MTs and actin

filaments +*4.
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Simulation studies investigating active polymers often use effective tangential force models ’
where surface bound motors are implicitly included as effective tangential force along filaments and
the mechanical properties of the motor proteins are overlooked. While effective tangential force models

36,3842 it is unclear if the mechanical

successfully reproduced the formation of active spiralling
properties of the motors have an effect %4, Elastic linkers binding to the filaments are known to affect
the conformations of cytoskeletal filaments. For example, in living cells and in reconstituted systems,
elastic linkers cause sinusoidal conformations of MTs, which are distinct from Euler buckling 64
Here, we use a simulation model of MTs propelled by kinesin-1 (hereafter, referred to kinesin) motors,
processive dimeric motors, which explicitly includes mechanical properties of the kinesin motor

proteins 303!

and predict significantly different behaviours.

2. RESULTS AND DISCUSSION

2.1. Motility of pinned microtubules

In our simulations, MTs with lengths ranging from 5 to 30 um are modelled as bead-rod

polymers consisting of 10 to 60 segments with a rigidity equal to those of MTs (22.0 pN pm?) 32, The

MT movement was simulated by solving overdamped equations of motion under the constraint of fixed

segment length. Thermal fluctuations of MTs were not included unless otherwise mentioned in order to

focus on the effects of the kinesin motors. The kinesin motors were modelled as active linear springs

spring constant of 100 pN/um) >3, with attachment points to the surface randomly distributed on the
pring pN/p p

surface. If a MT segment comes within a 20 nm radius of the attachment point, the motor is assumed to

bind to the MT and move towards the MT plus end with a force-dependent velocity (see Methods for

details). While kinesin motors translocate on MTs in average around 1 pm before spontaneous
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dissociation,> to circumvent the complexity stemming from the spontaneous dissociation discussed in

2.4, we assumed that kinesin motors translocate on MTs without dissociation unless a force larger than

7 pN % is exerted and focused on effects of mechanics of motor proteins on MT spiralling.

MTs were initially placed in straight conformations and allowed to move without pinning over a

distance greater than their own length to reach a steady state. Subsequently, pinning was imposed at the

leading ends of the MTs such that the leading ends were fixed in their positions and free to rotate as

kinesin motors bound to the MTs continued moving towards the free (plus) end of the MT. Because the

tails of the kinesin motors were adhered on the substrate, the kinesin motors push the MT towards the

pinned end. This results in a compressive force that increases cumulatively towards the pinned end and

leads to two distinct microtubule behaviours (Figure 1). Figure 1a shows the MT conformation at 10 s

and 5 s before pinning, and moments after pinning. In this case, the MT remains nearly in the

conformation it was at the moment of pinning. Hereafter, we refer to this kind of motion as “stuck”.

Figure 1b shows the movement of a MT undergoing a spiral formation. Immediately after pinning, the

MT was observed to buckle in the plane of the surface, followed by pivoting around the pinned end at 5

s. Finally, the MT wound up around the pinned end forming a rotating section of a spiral starting at the

pinning point followed by a roughly circular section at steady state.

(2 (b) (c)
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Fig. 1: Behaviours of kinesin motor-driven microtubules pinned at their leading ends. (a, b) Sequential
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images of a stuck (a) and spiral formation (b) of a microtubule (orange) driven by bound kinesin

motors (green dots). The white dots represent randomly distributed kinesin motors. Pinning was

imposed on the microtubules’ leading ends (the right sides) at time of 0 s. The length of the microtubule

is 10 um; the surface motor density is 10 um for (a). See supplementary video 1. The length of the

microtubule is 15 pm; the surface motor density is 40 um™ for (b). See supplementary video 2. Scale

bars, 2 um for both (a) and (b). (c¢) Phase diagram of modes of microtubule movements. The size of

each circle represents the number of simulation runs for each condition: large and small circles

represent 20 and 5 simulation runs, respectively. The colour of the marks indicates the fraction of spiral

that occurred: yellow indicates that all the microtubules formed spirals; dark blue indicates that no

microtubules formed spirals.

The occurrence of the two types of movements depends on the length of MTs and the surface

motor density as summarized in a phase diagram (Fig. 1c). Since outcomes were variable even for the

same kinesin motor density and MT length due to the stochastic distribution of the motors on the

surface, we performed multiple independent simulation runs for every point in the phase diagram and

showed the fraction of spiralling that occurred. At low motor densities, short MTs occasionally

detached from substrates. In such cases, we discarded the data and ran additional simulations to

maintain the desired number of simulated MT movements remaining on surfaces for each condition.

Spiralling tended to occur at high motor density and with long MTs while stuck behaviour tended to

occur at low motor density and with short MTs.

2.2. Spiral formation and localized buckling
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To investigate the formation of active spirals, we made detailed observations of MT movements.
Fig. 2a shows the time-evolution of a conformation of a pinned MT driven by kinesin motors. At the
early stage of the time-evolution, localized buckling occurred near the MT pinned end. The amplitude
of the localized buckling gradually increased while the horizontal length of the buckled regions stayed
roughly the same, and the MT conformation eventually assumed a spiral shape. After reaching a steady
state, the curvature of the MT along its contour was large near the pinned end and almost constant at
the outer rim (Fig. 2b). The radius of the outer rim was measured (referred to as the spiral radius, R) by
computing the radius of curvature of the plateau seen in the plot of the time averaged curvature as a
function of the distance from its free end (s) at steady state (Fig. 2b). The spiral radius was independent
of the MT length and decreased with the increase in the surface motor density as R o g ~0-26+0.01
(Uncertainties of exponents in this study represent the standard deviations of the regressions) (Fig. 2c).

1/3

This scaling relation differs from the theoretical prediction of R o< 0~/ obtained by Bourdieu et al.

4l and simulation studies using effective tangential force models %42,

Since the localized buckling of MTs initiated the spiral formation, we closely investigated the
localized buckling and measured the length of the localized buckling, [. For this, we looked at the
curvature of MT along its contour at the moment that localized buckling occurred (Fig. 2d). The
curvature as a function of the contour possessed at least two peaks, where the first and second peaks
from the pinned end correspond to the crest and trough of the buckled MT, respectively. The distance
between the second peak from the right side of a spline-interpolated curve and the pinned end of MT

was measured as the localized buckling length. Measurements revealed that the localized buckling

length followed a similar scaling relation with the spiral radius (Fig. 2c).
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Fig. 2: Spiral formation and localized buckling. (a) A superimposed sequential image of a microtubule
forming a spiral. The arrow points the direction of microtubule movement, and the colour change
indicates time increase from orange to red. The length of the microtubule is 15 um. The surface motor
density is 20 um™. (b) Curvature of a microtubule as a function of the distance from its free end (s)
after forming a rotating spiral at a steady state. Inset, the snapshot of the microtubule conformation
when the curvature is measured. (c) The spiral radius (R) and localized buckling length (I) vs. the
surface motor density (o). Open squares indicate the spiral radius; solid squares indicate the localized

buckling length, (mean + S.D., n=5). The solid lines are regressions of the data: R o g ~0-26£001;

[ oc g~026£003 The dotted line represents the scaling relation of R o« ¢~/3 for comparison. (d)

Curvature of a microtubule as a function of the distance from its free end (s) at the onset of the

localized buckling. The localized buckling length is the length from the pinned end to the point shown
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by the arrow. Inset, the snapshot of the microtubule conformation when the curvature is measured.

Scale bars, 2 pm.

To investigate the cause of the localized buckling, we looked at bending energy of MTs and
elastic energies of kinesin motors (Fig. 3a). Until the onset of the localized buckling, bound kinesin
motors elongated as they moved towards the free end of the MT, which caused the elastic energies of
kinesin motors to increase. Meanwhile, the elastic energy of kinesin motors dominated the total elastic
energy of the system, which is the sum of the bending energy of the MT and the elastic energies of the
kinesin motors, and the MT maintained an almost straight conformation. At the onset of the localized
buckling, the bending energy of the MT started to increase. Simultaneously, the elastic energies of
kinesin motors decreased. The total elastic energy or the rate of its increase was decreased by the
decrease in elastic energies of kinesin motors even though the bending energy of the MT increased. In
the case of stuck microtubules, the elastic energies of kinesin motors dominated the total energy
throughout the process and the bending energy of the MT remains low (Fig. 3b). These observations

revealed that the elasticity of kinesin motors played a key role in the localized buckling of MTs.

(a) (b)

12 T T 12
1
Motor elastic energy 1 = Motor elastic energy
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Fig. 3: The bending energy of microtubule and the elastic energy of kinesins binding to microtubules as

function of time after pinning. The bending energy of the microtubule is shown in green; the elastic
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energy of kinesins binding to microtubules is shown in blue; the sum of the two is shown in red. (a)

The time evolution of the three energies for a representative microtubule in the case of spiral formation.

The broken black vertical line marks the time when localized buckling occurred. (b) The time evolution

of the three energies for a representative stuck microtubule.

Interestingly, the radius of the forming spiral is not determined by the buckling process. This is

demonstrated by placing MTs into spiral conformations and observing their behaviour as they are

propelled by the motors. If the spiral had a larger initial radius than that of a steady state spiral, the MT

spiral contracted as the MT moved (Fig. 4a) and reached the steady state spiral radius for the given

motor density after around 20 s (Fig. 4a). The radius of the MT spiral during contraction was calculated

from the curvature profiles of each moment by taking an average of the segment curvature values at the

outer rim. The outer rim region of the MT was determined by visual inspection. A closer look of the

transition revealed that a part of the MT segment near the pinned end bulged out (Fig. 4b) and formed a

new smaller spiral. Figure 4c shows how the radius of the spiral contracted and formed a new steady

state spiral. The scaling relation of the new steady state spiral radius as a function of the surface motor

density (Fig. 4d) was comparable to the scaling relation that was obtained when starting from a straight

MT conformation (Fig. 2c). Furthermore, starting from spiral conformations, MTs can remain in spiral

conformations even in the “stuck” phase in Fig. 1c (Supplementary Information Fig. S5), indicating

that the occurrence of localized buckling is the limiting process for the spiral formation. If the spiral

had a smaller initial radius than that of a steady state spiral, the MT spirals expanded (Fig. 4¢) and

reached the steady state spiral radius on the motor densities after around 20 s (Fig. 4c). The radius of

the MT spiral during expansion and at steady state was calculated using the same method as that of

10
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contracting spiral. Expansion occurred only around the region of the semicircular arc associated with

the pinned end (Fig. 4f). Figure 4g shows how the radius of the spiral expanded and formed a new

steady state spiral as time changed. We then obtained the new steady state spiral radius as a function of

the surface motor density (Fig. 4h). The scaling relation was again comparable to the scaling relation

that was obtained by when starting from a straight MT conformation (Fig. 2c). The steady state spiral

radius at low motor density showed deviations from that of MTs that started from straight conformation

(Fig. 4h). Presumably, these deviations resulted from pronounced fluctuations of MT conformations at

low motor density even in spiralling at their steady state (Supplementary Information, Fig. S6). Overall,

these observations showed that the occurrence of localized buckling is the limiting process for the

spiral formation and that the spiral radius has its stable steady state value regardless of the MT initial

conformation once a spiral is initiated.
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Fig. 4: (a) Sequential images of a contraction of a microtubule spiral with a larger initial radius than

that at the steady state shown in Fig. 2¢c. The microtubule is represented in orange; kinesin motors are

represented with white dots; bound kinesin motors are highlighted with green dots. The length of the

microtubule is 15 pm. The motor density is 30 um™. See supplementary video 3. (b) Superimposed

microtubule conformations within the first 1.0 s. The colour changes from yellow to red represents the
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change in time. (c) The time evolution of the spiral radius during the contraction process. (d) The spiral

radius (R) vs. the surface motor density (¢), (mean £ S.D.,n=>5). The solid line is a regression of the

data: R o g~024£002 The initial spiral radius is indicated with the black broken line. The regression

of the spiral radius at the steady state in Fig. 2¢ is shown with the red broken line for comparison. (e)

Sequential images of the expansion of a microtubule spiral with a smaller initial radius than that at the

steady state shown in Fig. 2¢c. The microtubule is represented in orange; kinesin motors are represented

with white dots; bound kinesin motors are highlighted with green dots. The length of the microtubule is

15 pum. The surface motor density is 30 pum™. See supplementary video 4. (f) Superimposed

microtubule conformations within the first 1.0 s. The colour changes from yellow to red represent the

change in time. (g) The time evolution of the spiral radius during the expansion process. (h) The spiral

radius (R) vs. the surface motor density (¢), (mean £ S.D.,n=>5). The solid line is a regression of the

data: R o< g~0204001 ‘The initial spiral radius is indicated with the black broken line. The regression

of the spiral radius at the steady state in Fig. 2¢ is show with the red broken line for comparison. Scale

bars, 2 pm.

2.3. Mechanism of localized buckling and phase diagram

The phase diagram of microtubule behaviour as function of motor density and microtubule

length (Fig. 1c) can be explained with the theory of elasticity based on the observations that localized

buckling initiated the spiral formation and that the elasticity of kinesin motors played a key role. The

effect of linker elasticity on the deformation of a semiflexible polymer subjected to compressive force

at both ends has been studied previously **’. A detailed account of the analytical theory is given in

Supplementary Information “Effects of elastic links on microtubule conformation”. Semiflexible

13



232 polymers with bending modulus k¥ embedded in an elastic medium with effective elastic modulus a
233 and subjected to a force F at both ends remain straight up to F, = v/4ax, and undergo buckling at
. K\ 174 . .
234 F, with a wavelength of 2m (;) , provided the polymer is longer than the half wavelength #¢%¢, The
235 predicted conformations agreed with sinusoidal MT conformations in living cells and in reconstituted
236  systems ***. These theoretical results do not apply in a straightforward manner to the localized
237  buckling of MTs, because the force exerted on MT segments by the kinesin motors is not constant
238 along MTs.
239 For the localized buckling of MTs, the forces of the kinesin motors combine to increase the
240 force acting on the MT segments towards the pinned end (Fig. 5a). The force profile can be
241 approximated as 2f (t)ows, where f(t) is the magnitude of force generated by a single kinesin
242 motor; ¢ is the motor density; w is the effective reach of kinesin motors; and s is the distance
243 from the MT free end. f(t) is an increasing function of time and becomes levelled-off with the
244 magnitude of the stall force of kinesin motors (f;;4;;) because, as the kinesin head moves along the MT
245 towards the free end, the force exerted by the kinesin increases until it stalls (Fig. 5a). As the maximal
246 force at the tip increases, the compressive force will reach the critical force F, = v4ak at time t, and
247 then exceed it, but the length of the region where F > F is shorter than the half wavelength of
K\ 174 . . . . .
248 s (;) , so that localized buckling does not occur. Only at a later time t; will the length of the region
249 where F > F, exceed the half wavelength, and the MT will undergo buckling near the pinned end with
. . K\ 1/4 . s
250 the localized buckling length of m (;) . The maximum value of f(t) is limited by the stall force of
251 the kinesin motors. When the increase of the slope of the force profile is terminated before the length of

252 the region where F > F, exceeds the half wavelength, the MT remains in a straight conformation, that

253 is, the MT is stuck.

14
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The predicted length of localized buckling is an approximation, because the boundary

conditions in the theory are different from those in the simulation. In the theory, both ends of a

localized buckling region are fixed in their locations and free to rotate. In contrast, in the simulation,

the pinned end is fixed in location and free to rotate; the other end of a localized buckling region is

neither fixed in location nor free to rotate.
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i K 1/4 eb 2 is
r 2~ =ty
= 4,0
i i F 38 ~_F
| ' =t ep—— 3 2.0
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Fig. 5: (a) A schematic of the mechanism of localized buckling. The left side shows the compressive
force profile at four times (to to t3). The right side shows the corresponding schematic drawings of the
microtubule and kinesins at time from to to t3. (b) The comparison between localized buckling length
obtained from the simulations (red solid squares; the red solid line represents the regression line:

[ < g~02640.03) and the half wavelength calculated from the elastic theory (black solid line), (mean +
S.D., n=5). (c) Compression force as a function of the distance from the free end for a 20 um long
buckling MT (left), and 10 pm long stuck MT (right), with equal surface motor density of 20 pm? at

different times after pinning. The localized buckling occurred at 0.2 s. The red broken lines show the

15



268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

calculated critical buckling force. (d) Phase diagram of modes of microtubule movements with the

theoretical boundary curve (black curve).

The above scenario, (Fig. 5a), of the occurrence of localized buckling based on the elastic

1/4
foundation theory predicts that the length of the localized buckling is comparable with 7 (E) . Since

47,57

a = 2kow where k is the spring constant of kinesin motors, the length of localized buckling

scales with g~1/4

, which is in agreement with our simulation result (Fig. 5b). The prediction is also
consistent with our observation that the localized buckling length is independent of the length of the
MTs.

The scenario illustrated in Fig. 5a can be directly compared with the results of our computer
simulations. For the case of buckling MTs, when the compression force exerted by kinesin motors on
MT segments reaches the critical value near the pinned ends, the compression force would decrease
due to the localized buckling of MTs causing a release of tension within individual kinesin motors. The
simulation results qualitatively agree with the scenario (Fig. Sc left). In many cases, the force profiles
appeared to start to decrease before the length of the region where F > F, exceeds the half wavelength.
This is presumably caused by undulated conformations of MTs which promote buckling. For the cases
of stuck MTs, the force increased toward MT’s pinned ends. The slope of the force profile initially
increased with time and then saturated (Fig. Sc right).

Another prediction from the scenario shown in Fig. 5a relates to the boundary of the two phases

in the phase diagram. For the localized buckling and hence spiralling to occur, the force profile must

have regions of F > F, longer than the half wavelength. This means that the force profile F(s,t) in

1/4
Figure 5areaches F, = V4ak at s=L—m (g) . Because the maximum of f(t) is fsqu, the

16



290  boundary curve relating motor density and MT length is thus defined by the condition:
291 VEGK = 2f,pgyow [L —n(§)1/4]. )

292 The value of w was determined to be 24 nm by analysing simulation results (Supplementary

293 Information, Estimation of effective reach, w). The boundary curve qualitatively reproduced the phase
294  boundary in Figure 5d, but spiralling already can occur in the simulations at lower lengths and motor
295 densities. We attribute this to not fully straight MT conformations at the moment of pinning, which
296  promote buckling. This is supported by simulations including thermal fluctuations. The addition of
297 thermal fluctuations to the simulation of the motion of the MT segments further promotes buckling by

298 pre-bending the MTs (Fig. 6). However, while the boundary between buckling and getting stuck shifts,

299  the shape of the boundary curve remains similar.

o (um2)
N w
o o

Fraction of Spiralling

0O 5 10 15 20 25 30 35
100 L (um)

301 Fig. 6: Phase diagram of microtubule movements with thermal fluctuations. The size of each circle

302 represents the number of simulation runs for each condition: large and small circles represent 20 and 5
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simulation runs, respectively. The colour of the marks indicates the occurrence of outcome. The curve

indicates the theoretical boundary curve.

2.4. Scaling argument of the spiral radius

A mechanistic explanation is required why the spiral radius is proportional to (k/ a)'/* and
how the steady state spiral radius is achieved when MTs movements started from either expanded or
compacted spirals (Fig. 4). To account for the contraction or expansion of spirals shown in Figure 4, the
scenario (Fig. 5a) cannot be used because it considers infinitesimal deformations from initial straight
conformations. Therefore, we make a scaling argument as follows (Fig. 7). The scaling argument is
based on our observations that the changes in MT conformations were initiated in regions of MTs near
their pinned ends (Fig 4b and f) and that the length of these regions of the MTs, denoted by 7, evolved
into the steady-state spiral radius after expansion or contraction. Because the other part of MT
conformations remained almost the same, we assumed that the dominant changes in MT bending and
kinesin elastic energy occurred in the regions near the pinned ends. When the region of a MT makes a
lateral displacement of Au from an initial curved conformation described with u (Fig. 7), this causes
the changes in the bending of the MT and elongations of kinesin motors binding on the region of the
MT. The MT curvature changes from u/r? to (u + Au)/r2, so that the change in the bending
energy of the MT scales as ~kAu - =3, In addition, as the change in the elongations of kinesin motors
is ~Au and the number of stretched kinesin motors is proportional to 7, the change in the summation
of the elastic energy of binding kinesin motors scale as (1/2)a(Auw)?r. Thus, the increase of the
energy of the system consisting of the MT and the kinesin motors, AE,is ~kxAu - r~3 +

(1/2)a(Auw)?r. Since we assumed an overdamped system, the change in the MT curvature must occur
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325 at the value of r that gives the minimum AE. This leads to 7 o (x/a)/#. This scaling relation agrees
326 with the simulation result in Fig. 2¢, Fig. 4d and h.

327

328

329 Fig. 7: A schematic representation of the scaling argument. The orange curve shows an initial

330  microtubule conformation. The red one shows a microtubule conformation after a displacement of Au.

331 The length of the bulging regions is denoted by .

332

333 Freely jointed chain models, which are nonlinear spring models, have been used in modelling

334  kinesin motors 3%, While the freely jointed chain models can be more accurate than the linear spring
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356

model for highly stretched motors, we used the linear spring model for simplicity. However, since our
scaling arguments rely on infinitesimal displacements of MTs, corresponding to infinitesimal
elongations of kinesin motors, the arguments remain valid even when nonlinear spring models of
kinesin motors are considered. This is because localized buckling and bulging occur before kinesin
motors are significantly stretched where nonlinear elastic effects become pronounced. Hence, any
potential influence of nonlinearity of motor mechanics on the formation and size of the spirals would
be marginal. In addition, the stretch of simulated kinesin motors bound to the outer rims of the MT
spirals at steady state was approximately 24 nm (Supplementary Information, Fig. S7), which is about
one-third of the contour length of a full-length kinesin-1 molecule. Hence, modelling kinesin motors as
linear springs is reasonable for the purposes of this study.

A scaling relation between the spiral radius and motor density has been derived by Bourdieu et
al.*: R o¢ ~1/3_ Their scaling argument was based on the balance between the torque generated by
binding motors and the bending moment of the filament and did not take into account the elasticity of
motor proteins. The scaling exponent of -1/3 by Bourdieu et al. showed agreement with the
experimental data for an actomyosin motility assay *!. We surmise that the agreement between their
theoretical and experimental scaling exponents stems from the low duty ratio of the motor proteins
used in the experiment. Bourdieu et al. used non-processive myosin II motors, which bind actin
filaments for only about 5% of their chemomechanical cycle. The low processivity of myosin I motors
can lead to unbinding of stretched binding motors and to bindings of unstretched or less stretched ones
during formation of spirals, providing another pathway to release the elastic energy of motors. As a
result, the elastic energy of myosin II motors cannot build up over time, thus having little contribution

compared with the bending energy of actin filaments. This would be the reason why the scaling relation
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377

378

ignoring the elastic contributions of motor proteins agreed with the experimental data for the

actomyosin motility assay. Our study is complementary with the study by Bourdieu et al.*! in that we

investigated an active polymer system driven by motors with high duty ratio. While we are not aware

of an experiment obtaining a scaling exponent between the spiral radius and motor density other than

the actin/myosin systems, our simulation study predict that the exponent of -1/4 can be experimentally

observed in kinesin/MT systems. In experiments, due to the finite run length of kinesin motors, an

intermediate value between -1/3 and -1/4 may be observed.

3. CONCLUSIONS

Using computer simulations of MTs propelled by kinesin motors, which explicitly include the

mechanical properties of kinesin motors, we investigated active spiralling of pinned MTs. We found

either stuck MTs or spiralling MTs, depending on the MT length and surface motor density, and

summarized the findings in a phase diagram. In addition, we found that the spiral radius followed a

scaling relation against the motor density distinct from that of previous studies. These findings were

elucidated by taking into account the mechanical property of kinesin motors, highlighting the

importance of explicitly including the mechanics of motor proteins in computer simulations.

Our results also show that, while semiflexible polymers driven by surface bound motors and

active polymers consisting of active particles, such as Janus particles, qualitatively behave in similar

manners, their behaviours could be different in the details. The difference may affect the overall

performance of applications integrated with active polymers.

Another insight obtained from this study is that as spirals with small radius can cause breakage of
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MTs #, the use of a low motor density would be beneficial to prevent breakages of molecular shuttles.
Finally, this study may provide an insight into elementary processes of active interactions between

cytoskeletal filaments and motor proteins in living cells.

4. SIMULATION METHODS

The simulation method was based on our previous work %!, In the following, we briefly
summarize the simulation method. We assumed the MTs to be infinitely thin and inextensible
semiflexible bead-rod polymers with a flexural rigidity of 22.0 pN pm™ 32, The length of MTs was set
to be from 5 to 30 pm and each MT consisted of 10 to 60 rigid segments depending on the length of
MTs. MT movement was simulated by solving overdamped equations of motion under the constraint of
fixed segment length. Thermal fluctuations were not included unless otherwise mentioned.

In this method, a single time step consisted of the following two steps.

In the first step, the beads representing an MT were moved without considering any constraint,

using the following expression:
r{(t+At) =1 () + %Fbending,i + %Fkinesin,i' (2)

where 1; is the position vector of the i-th bead consisting of a MT, { is the viscous drag coefficient,
Fhenaing,i 18 the restoring force of MT bending, Fyjnesin,; is a force exerted by bound kinesin. At was
set at 0.5x10°% s to ensure numerical stability. The viscous drag coefficient used was the average of the

parallel and perpendicular drag coefficients

3nnd

¢ ln() ()

where 71 is the viscosity of water (0.001 Pas), d is the length of the MT segment (0.25-0.50 um), and

r was the radius of MT (12.5 nm). We chose this length of the MT segmentation such that taking
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shorter MT segmentation leads to negligible change of results (Fig. S4).
In case of simulating movements of MTs subjected to thermal fluctuations (Fig. 6), the equation
(3) was replaced by:

, At At e
T (t + At) = ri(t) + ?Fbending,i + ?Fkinesin,i + V2D - Atfi' (4)
where D is the diffusion coefficient of the bead calculated as D = kzT/{.

The restoring force of MT bending was calculated from the following bending potential :
U= % % s (e — 21+ 1i2p)? (5)
where k is the flexural rigidity.
Kinesin motors were randomly distributed over the allowed surface by specifying the positions
of the kinesin tails (Fig. 1b). If an MT segment came close to a kinesin motor tail within a capture
radius (20 nm) ¥’, the kinesin motor was assumed to be bound to the MT segment, and the position of

the motor head was specified on the MT segment. Once bound, the head of the bound kinesin motor

moved toward the MT plus end with a force-dependent velocity expressed as

(A =w(1-75)  ©
where v, is the translational velocity without applied force, F is the component of the pulling force
along the MT, and F,,; is the stall force of the kinesin motors. v, was set at 0.8 um/s, and Fg;qy
was set at 5 pN. The bound kinesin acted as a linear spring between the motor head and tail with the
spring constant of 100 pN/um ** and with an equilibrium length of zero and exerted a pulling force on
the MT segment. The pulling force was divided into two forces which acted on the two beads located at
either end of the MT segment where the kinesin motor was bound, under the condition that the total
force and torque on the segment remained the same. A kinesin motor bound to an MT detached when

tension reached 7 pN 3. The choice of the spring constant and the detachment force leads to the

maximum stretch of 70 nm, which is close to the contour length of kinesin motors ¢!. By following the
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approach taken by Gibbons et al., ® we neglected the spontaneous dissociation of the bound kinesin
from the MT.

In dealing with equation (2), we used an implicit-explicit method, where the restoring force of
MT bending was implicitly calculated while other terms were explicitly calculated.

In the second step, the unconstrained movements were corrected by considering the constraints
due to the segment length and the guiding tracks. To keep the segment length constant, the coordinates
of the beads representing the MT {r;} as shown were subject to the following holonomic constraints:
Isegmentk = (g1 — 1) —d*=0 (k=1,..,n-1) ¥
In addition, to keep the MT movement above the substrate, the position of the beads representing the

MT were subjected to the following holonomic constrains:
Geracki = 2 = 0,if z; <0 )
The correction was carried out with the following expression:
1;(t + At) = 1/ (t + At) + Ary(t + Ab) (10)

where Ar;(t + At)is the correction term

n-—

At d At d i

A‘l"i(t +At) — _Z segmenti gsegmentk gtrack,t
k=1

( aTL ? Atrack,i aTi

(1)

and Agegmentx and Agqcr,; are Lagrangian multipliers, which were determined in order
for the coordinate at t + At to satisfy the constraints given by equations (8) and (9), respectively. For
this, we went through the calculations for the constraints one by one, cyclically, adjusting the
coordinates until the constraints were satisfied with a tolerance of 10 pm.

To impose the pinning at MT leading end, the position of the bead located at the MT leading end
was fixed allowing free rotations around it.

Simulation results were visualized with ParaView (https://www. paraview.org/).
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