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Abstract  14 

Cytoskeletal filaments propelled by surface-bound motor proteins can be viewed as active polymers, a 15 

class of active matter. When constraints are imposed on their movements, the propelled cytoskeletal 16 

filaments show dynamic patterns distinct from equilibrium conformations. Pinned at their leading ends, 17 

propelled microtubules or actin filaments form rotating spirals, whose shape is determined by the 18 

interplay between motor forces and the mechanics of the cytoskeletal filaments. We simulated the 19 

spiral formations of microtubules propelled by kinesin motors in an overdamped dynamics framework, 20 

which in addition to the mechanics of the spiralling microtubule explicitly includes the mechanics of 21 

kinesin motors. The simulation revealed that spiral formation was initiated by localized buckling of 22 

microtubules near the pinned ends, and the conditions for occurrence of spiral formation were 23 

summarized in a phase diagram. The radius of the formed spirals scaled with the surface motor density 24 

with an exponent of approximately -1/4, distinct from previous theoretical and simulation studies based 25 

on implicit modelling of motor proteins. This result can be understood as a consequence of the 26 

contributions of kinesin motors to the total elastic deformation energy, highlighting the importance of 27 

mechanics of motor proteins in the behaviour of the active polymers. These findings can be useful in 28 

accurate modelling of active polymers and in designing active polymer-based applications such as 29 

molecular shuttles driven by motor proteins.  30 

Key words: active polymer, cytoskeletal filaments, motor proteins, computer simulation 31 

 32 

1. INTRODUCTION 33 

Cytoskeletal filaments and their networks are active matters with remarkable mechanical 34 

properties, such as adaptation and remodelling, distinct from those of synthetic polymers 1–3. Such 35 
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properties are mediated by active elements, such as motor proteins, as well as passive ones, such as 36 

binding proteins. A minimal reconstituted system to investigate emerging phenomena arising from 37 

interactions between cytoskeletal filaments and motor proteins is an in vitro motility assay 4,5, where 38 

the filaments are driven by motor proteins attached to a surface. Because of the activity of motor 39 

proteins, the cytoskeletal filaments are driven out of equilibrium and show distinct behaviours from 40 

those in thermal equilibrium. Cytoskeletal filaments driven by motor proteins can therefore be viewed 41 

as a type of active polymer, a class of active matter 6,7. Non-equilibrium phenomena exhibited by active 42 

matter include collective motions8–13, transports14, motor-induced conformations 15 and others. In vitro 43 

motility assays have also been developed into engineered systems, such as molecular shuttles 16–21, with 44 

applications in biosensing 22–31, computation 32 and robotics 33,34. 45 

Cytoskeletal filaments driven by surface bound motors show complex dynamical patterns, 46 

reminiscent of biological movements, when constraints are imposed on their movements. Microtubules 47 

(MTs) and actin filaments clamped at their leading ends and driven by surface-bound motors show 48 

flagellar-like beatings on the surface 35–40, which may serve as a minimal model to investigate the 49 

mechanism of flagellar beatings. Pinned at their leading ends, MTs or actin filaments form rotating 50 

spirals 41,which are spatial-temporal patterns far from equilibrium. Bourdieu et al. 41 derived a scaling 51 

relation for the spiral radius (𝑅) against the motor density (𝜎): 𝑅 ∝ 𝜎!" #⁄  by balancing the bending 52 

moment of filaments with the torque produced by motors. Wang et al. performed Brownian dynamics 53 

simulations and obtained the same scaling relation 42. The spiral formation is not only of scientific 54 

interest in spatio-temporal dynamic patters 7,35, but also can be a limiting factor for efficient active 55 

transports in biosensors because sharp bending in the spirals can lead to the breaking of MTs and actin 56 

filaments 43,44. 57 
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Simulation studies investigating active polymers often use effective tangential force models 7 58 

where surface bound motors are implicitly included as effective tangential force along filaments and 59 

the mechanical properties of the motor proteins are overlooked. While effective tangential force models 60 

successfully reproduced the formation of active spiralling 36,38,42, it is unclear if the mechanical 61 

properties of the motors have an effect 40,45. Elastic linkers binding to the filaments are known to affect 62 

the conformations of cytoskeletal filaments. For example, in living cells and in reconstituted systems, 63 

elastic linkers cause sinusoidal conformations of MTs, which are distinct from Euler buckling 46–49. 64 

Here, we use a simulation model of MTs propelled by kinesin-1 (hereafter, referred to kinesin) motors, 65 

processive dimeric motors, which explicitly includes mechanical properties of the kinesin motor 66 

proteins 50,51 and predict significantly different behaviours. 67 

 68 

2. RESULTS AND DISCUSSION 69 

2.1. Motility of pinned microtubules 70 

In our simulations, MTs with lengths ranging from 5 to 30 µm are modelled as bead-rod 71 

polymers consisting of 10 to 60 segments with a rigidity equal to those of MTs (22.0 pN µm2) 52.  The 72 

MT movement was simulated by solving overdamped equations of motion under the constraint of fixed 73 

segment length. Thermal fluctuations of MTs were not included unless otherwise mentioned in order to 74 

focus on the effects of the kinesin motors. The kinesin motors were modelled as active linear springs 75 

(spring constant of 100 pN/µm) 53, with attachment points to the surface randomly distributed on the 76 

surface. If a MT segment comes within a 20 nm radius of the attachment point, the motor is assumed to 77 

bind to the MT and move towards the MT plus end with a force-dependent velocity (see Methods for 78 

details). While kinesin motors translocate on MTs in average around 1 µm before spontaneous 79 
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dissociation,54 to circumvent the complexity stemming from the spontaneous dissociation discussed in 80 

2.4, we assumed that kinesin motors translocate on MTs without dissociation unless a force larger than 81 

7 pN 55 is exerted and focused on effects of mechanics of motor proteins on MT spiralling. 82 

MTs were initially placed in straight conformations and allowed to move without pinning over a 83 

distance greater than their own length to reach a steady state. Subsequently, pinning was imposed at the 84 

leading ends of the MTs such that the leading ends were fixed in their positions and free to rotate as 85 

kinesin motors bound to the MTs continued moving towards the free (plus) end of the MT. Because the 86 

tails of the kinesin motors were adhered on the substrate, the kinesin motors push the MT towards the 87 

pinned end. This results in a compressive force that increases cumulatively towards the pinned end and 88 

leads to two distinct microtubule behaviours (Figure 1). Figure 1a shows the MT conformation at 10 s 89 

and 5 s before pinning, and moments after pinning. In this case, the MT remains nearly in the 90 

conformation it was at the moment of pinning. Hereafter, we refer to this kind of motion as “stuck”. 91 

Figure 1b shows the movement of a MT undergoing a spiral formation. Immediately after pinning, the 92 

MT was observed to buckle in the plane of the surface, followed by pivoting around the pinned end at 5 93 

s. Finally, the MT wound up around the pinned end forming a rotating section of a spiral starting at the 94 

pinning point followed by a roughly circular section at steady state. 95 

 96 

Fig. 1: Behaviours of kinesin motor-driven microtubules pinned at their leading ends. (a, b) Sequential 97 
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images of a stuck (a) and spiral formation (b) of a microtubule (orange) driven by bound kinesin 98 

motors (green dots). The white dots represent randomly distributed kinesin motors. Pinning was 99 

imposed on the microtubules’ leading ends (the right sides) at time of 0 s. The length of the microtubule 100 

is 10 μm; the surface motor density is 10 μm-2 for (a). See supplementary video 1. The length of the 101 

microtubule is 15 μm; the surface motor density is 40 μm-2 for (b). See supplementary video 2. Scale 102 

bars, 2 μm for both (a) and (b). (c) Phase diagram of modes of microtubule movements. The size of 103 

each circle represents the number of simulation runs for each condition: large and small circles 104 

represent 20 and 5 simulation runs, respectively. The colour of the marks indicates the fraction of spiral 105 

that occurred: yellow indicates that all the microtubules formed spirals; dark blue indicates that no 106 

microtubules formed spirals. 107 

 108 

The occurrence of the two types of movements depends on the length of MTs and the surface 109 

motor density as summarized in a phase diagram (Fig. 1c). Since outcomes were variable even for the 110 

same kinesin motor density and MT length due to the stochastic distribution of the motors on the 111 

surface, we performed multiple independent simulation runs for every point in the phase diagram and 112 

showed the fraction of spiralling that occurred. At low motor densities, short MTs occasionally 113 

detached from substrates. In such cases, we discarded the data and ran additional simulations to 114 

maintain the desired number of simulated MT movements remaining on surfaces for each condition. 115 

Spiralling tended to occur at high motor density and with long MTs while stuck behaviour tended to 116 

occur at low motor density and with short MTs. 117 

 118 

2.2. Spiral formation and localized buckling 119 
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To investigate the formation of active spirals, we made detailed observations of MT movements. 120 

Fig. 2a shows the time-evolution of a conformation of a pinned MT driven by kinesin motors. At the 121 

early stage of the time-evolution, localized buckling occurred near the MT pinned end. The amplitude 122 

of the localized buckling gradually increased while the horizontal length of the buckled regions stayed 123 

roughly the same, and the MT conformation eventually assumed a spiral shape. After reaching a steady 124 

state, the curvature of the MT along its contour was large near the pinned end and almost constant at 125 

the outer rim (Fig. 2b). The radius of the outer rim was measured (referred to as the spiral radius, 𝑅) by 126 

computing the radius of curvature of the plateau seen in the plot of the time averaged curvature as a 127 

function of the distance from its free end (𝑠) at steady state (Fig. 2b). The spiral radius was independent 128 

of the MT length and decreased with the increase in the surface motor density as 𝑅 ∝ 𝜎!%.'(±%.%" 129 

(Uncertainties of exponents in this study represent the standard deviations of the regressions) (Fig. 2c). 130 

This scaling relation differs from the theoretical prediction of 𝑅 ∝ 𝜎!" #⁄  obtained by Bourdieu et al. 131 

41 and simulation studies using effective tangential force models 38,42. 132 

Since the localized buckling of MTs initiated the spiral formation, we closely investigated the 133 

localized buckling and measured the length of the localized buckling, 𝑙. For this, we looked at the 134 

curvature of MT along its contour at the moment that localized buckling occurred (Fig. 2d). The 135 

curvature as a function of the contour possessed at least two peaks, where the first and second peaks 136 

from the pinned end correspond to the crest and trough of the buckled MT, respectively. The distance 137 

between the second peak from the right side of a spline-interpolated curve and the pinned end of MT 138 

was measured as the localized buckling length. Measurements revealed that the localized buckling 139 

length followed a similar scaling relation with the spiral radius (Fig. 2c). 140 
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 141 

Fig. 2: Spiral formation and localized buckling. (a) A superimposed sequential image of a microtubule 142 

forming a spiral. The arrow points the direction of microtubule movement, and the colour change 143 

indicates time increase from orange to red. The length of the microtubule is 15 μm. The surface motor 144 

density is 20 μm-2. (b) Curvature of a microtubule as a function of the distance from its free end (𝑠) 145 

after forming a rotating spiral at a steady state. Inset, the snapshot of the microtubule conformation 146 

when the curvature is measured. (c) The spiral radius (𝑅) and localized buckling length (𝑙) vs. the 147 

surface motor density (𝜎). Open squares indicate the spiral radius; solid squares indicate the localized 148 

buckling length, (mean ± S.D., n = 5). The solid lines are regressions of the data: 𝑅 ∝ 𝜎!%.'(±%.%"; 149 

𝑙 ∝ 𝜎!%.'(±%.%#. The dotted line represents the scaling relation of 𝑅 ∝ 𝜎!" #⁄  for comparison. (d) 150 

Curvature of a microtubule as a function of the distance from its free end (𝑠) at the onset of the 151 

localized buckling. The localized buckling length is the length from the pinned end to the point shown 152 
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by the arrow. Inset, the snapshot of the microtubule conformation when the curvature is measured. 153 

Scale bars, 2 μm. 154 

 155 

To investigate the cause of the localized buckling, we looked at bending energy of MTs and 156 

elastic energies of kinesin motors (Fig. 3a). Until the onset of the localized buckling, bound kinesin 157 

motors elongated as they moved towards the free end of the MT, which caused the elastic energies of 158 

kinesin motors to increase. Meanwhile, the elastic energy of kinesin motors dominated the total elastic 159 

energy of the system, which is the sum of the bending energy of the MT and the elastic energies of the 160 

kinesin motors, and the MT maintained an almost straight conformation. At the onset of the localized 161 

buckling, the bending energy of the MT started to increase. Simultaneously, the elastic energies of 162 

kinesin motors decreased. The total elastic energy or the rate of its increase was decreased by the 163 

decrease in elastic energies of kinesin motors even though the bending energy of the MT increased. In 164 

the case of stuck microtubules, the elastic energies of kinesin motors dominated the total energy 165 

throughout the process and the bending energy of the MT remains low (Fig. 3b). These observations 166 

revealed that the elasticity of kinesin motors played a key role in the localized buckling of MTs. 167 

  168 

Fig. 3: The bending energy of microtubule and the elastic energy of kinesins binding to microtubules as 169 

function of time after pinning. The bending energy of the microtubule is shown in green; the elastic 170 
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energy of kinesins binding to microtubules is shown in blue; the sum of the two is shown in red. (a) 171 

The time evolution of the three energies for a representative microtubule in the case of spiral formation. 172 

The broken black vertical line marks the time when localized buckling occurred. (b) The time evolution 173 

of the three energies for a representative stuck microtubule.  174 

 175 

Interestingly, the radius of the forming spiral is not determined by the buckling process. This is 176 

demonstrated by placing MTs into spiral conformations and observing their behaviour as they are 177 

propelled by the motors. If the spiral had a larger initial radius than that of a steady state spiral, the MT 178 

spiral contracted as the MT moved (Fig. 4a) and reached the steady state spiral radius for the given 179 

motor density after around 20 s (Fig. 4a). The radius of the MT spiral during contraction was calculated 180 

from the curvature profiles of each moment by taking an average of the segment curvature values at the 181 

outer rim. The outer rim region of the MT was determined by visual inspection. A closer look of the 182 

transition revealed that a part of the MT segment near the pinned end bulged out (Fig. 4b) and formed a 183 

new smaller spiral. Figure 4c shows how the radius of the spiral contracted and formed a new steady 184 

state spiral. The scaling relation of the new steady state spiral radius as a function of the surface motor 185 

density (Fig. 4d) was comparable to the scaling relation that was obtained when starting from a straight 186 

MT conformation (Fig. 2c). Furthermore, starting from spiral conformations, MTs can remain in spiral 187 

conformations even in the “stuck” phase in Fig. 1c (Supplementary Information Fig. S5), indicating 188 

that the occurrence of localized buckling is the limiting process for the spiral formation. If the spiral 189 

had a smaller initial radius than that of a steady state spiral, the MT spirals expanded (Fig. 4e) and 190 

reached the steady state spiral radius on the motor densities after around 20 s (Fig. 4c). The radius of 191 

the MT spiral during expansion and at steady state was calculated using the same method as that of 192 
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contracting spiral. Expansion occurred only around the region of the semicircular arc associated with 193 

the pinned end (Fig. 4f). Figure 4g shows how the radius of the spiral expanded and formed a new 194 

steady state spiral as time changed. We then obtained the new steady state spiral radius as a function of 195 

the surface motor density (Fig. 4h). The scaling relation was again comparable to the scaling relation 196 

that was obtained by when starting from a straight MT conformation (Fig. 2c). The steady state spiral 197 

radius at low motor density showed deviations from that of MTs that started from straight conformation 198 

(Fig. 4h). Presumably, these deviations resulted from pronounced fluctuations of MT conformations at 199 

low motor density even in spiralling at their steady state (Supplementary Information, Fig. S6). Overall, 200 

these observations showed that the occurrence of localized buckling is the limiting process for the 201 

spiral formation and that the spiral radius has its stable steady state value regardless of the MT initial 202 

conformation once a spiral is initiated.  203 
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 204 

Fig. 4: (a) Sequential images of a contraction of a microtubule spiral with a larger initial radius than 205 

that at the steady state shown in Fig. 2c. The microtubule is represented in orange; kinesin motors are 206 

represented with white dots; bound kinesin motors are highlighted with green dots. The length of the 207 

microtubule is 15 μm. The motor density is 30 μm-2. See supplementary video 3. (b) Superimposed 208 

microtubule conformations within the first 1.0 s. The colour changes from yellow to red represents the 209 
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change in time. (c) The time evolution of the spiral radius during the contraction process. (d) The spiral 210 

radius (𝑅) vs. the surface motor density (𝜎), (mean ± S.D., n = 5). The solid line is a regression of the 211 

data: 𝑅 ∝ 𝜎!%.'*±%.%'. The initial spiral radius is indicated with the black broken line. The regression 212 

of the spiral radius at the steady state in Fig. 2c is shown with the red broken line for comparison. (e) 213 

Sequential images of the expansion of a microtubule spiral with a smaller initial radius than that at the 214 

steady state shown in Fig. 2c. The microtubule is represented in orange; kinesin motors are represented 215 

with white dots; bound kinesin motors are highlighted with green dots. The length of the microtubule is 216 

15 μm. The surface motor density is 30 μm-2. See supplementary video 4. (f) Superimposed 217 

microtubule conformations within the first 1.0 s. The colour changes from yellow to red represent the 218 

change in time. (g) The time evolution of the spiral radius during the expansion process. (h) The spiral 219 

radius (𝑅) vs. the surface motor density (𝜎), (mean ± S.D., n = 5). The solid line is a regression of the 220 

data: 𝑅 ∝ 𝜎!%.'%±%.%". The initial spiral radius is indicated with the black broken line. The regression 221 

of the spiral radius at the steady state in Fig. 2c is show with the red broken line for comparison. Scale 222 

bars, 2 μm. 223 

 224 

2.3. Mechanism of localized buckling and phase diagram 225 

The phase diagram of microtubule behaviour as function of motor density and microtubule 226 

length (Fig. 1c) can be explained with the theory of elasticity based on the observations that localized 227 

buckling initiated the spiral formation and that the elasticity of kinesin motors played a key role. The 228 

effect of linker elasticity on the deformation of a semiflexible polymer subjected to compressive force 229 

at both ends has been studied previously 46,47. A detailed account of the analytical theory is given in 230 

Supplementary Information “Effects of elastic links on microtubule conformation”. Semiflexible 231 
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polymers with bending modulus 𝜅 embedded in an elastic medium with effective elastic modulus 𝛼 232 

and subjected to a force 𝐹 at both ends remain straight up to 𝐹+ = √4𝛼𝜅, and undergo buckling at 233 

𝐹+	with a wavelength of 2𝜋 0
,
-
1
" *⁄
, provided the polymer is longer than the half wavelength 46,56. The 234 

predicted conformations agreed with sinusoidal MT conformations in living cells and in reconstituted 235 

systems 46–49. These theoretical results do not apply in a straightforward manner to the localized 236 

buckling of MTs, because the force exerted on MT segments by the kinesin motors is not constant 237 

along MTs. 238 

For the localized buckling of MTs, the forces of the kinesin motors combine to increase the 239 

force acting on the MT segments towards the pinned end (Fig. 5a). The force profile can be 240 

approximated as 2𝑓(𝑡)𝜎𝑤𝑠, where 𝑓(𝑡) is the magnitude of force generated by a single kinesin 241 

motor; 𝜎 is the motor density; 𝑤 is the effective reach of kinesin motors; and 𝑠 is the distance 242 

from the MT free end. 𝑓(𝑡) is an increasing function of time and becomes levelled-off with the 243 

magnitude of the stall force of kinesin motors (𝑓./011) because, as the kinesin head moves along the MT 244 

towards the free end, the force exerted by the kinesin increases until it stalls (Fig. 5a). As the maximal 245 

force at the tip increases, the compressive force will reach the critical force 𝐹+ = √4𝛼𝜅	at time 𝑡'	and 246 

then exceed it, but the length of the region where 𝐹 > 𝐹+	is shorter than the half wavelength of 247 

𝜋 0,
-
1
" *⁄
, so that localized buckling does not occur. Only at a later time 𝑡#	will the length of the region 248 

where 𝐹 > 𝐹+ exceed the half wavelength, and the MT will undergo buckling near the pinned end with 249 

the localized buckling length of 𝜋 0,
-
1
" *⁄
. The maximum value of 𝑓(𝑡) is limited by the stall force of 250 

the kinesin motors. When the increase of the slope of the force profile is terminated before the length of 251 

the region where 𝐹 > 𝐹+ exceeds the half wavelength, the MT remains in a straight conformation, that 252 

is, the MT is stuck. 253 
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The predicted length of localized buckling is an approximation, because the boundary 254 

conditions in the theory are different from those in the simulation. In the theory, both ends of a 255 

localized buckling region are fixed in their locations and free to rotate. In contrast, in the simulation, 256 

the pinned end is fixed in location and free to rotate; the other end of a localized buckling region is 257 

neither fixed in location nor free to rotate.  258 

 259 

Fig. 5: (a) A schematic of the mechanism of localized buckling. The left side shows the compressive 260 

force profile at four times (t0 to t3). The right side shows the corresponding schematic drawings of the 261 

microtubule and kinesins at time from t0 to t3. (b) The comparison between localized buckling length 262 

obtained from the simulations (red solid squares; the red solid line represents the regression line: 263 

𝑙 ∝ 𝜎!%.'(±%.%#) and the half wavelength calculated from the elastic theory (black solid line), (mean ± 264 

S.D., n = 5). (c) Compression force as a function of the distance from the free end for a 20 μm long 265 

buckling MT (left), and 10 μm long stuck MT (right), with equal surface motor density of 20 μm-2 at 266 

different times after pinning. The localized buckling occurred at 0.2 s. The red broken lines show the 267 
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calculated critical buckling force. (d) Phase diagram of modes of microtubule movements with the 268 

theoretical boundary curve (black curve). 269 

 270 

The above scenario, (Fig. 5a), of the occurrence of localized buckling based on the elastic 271 

foundation theory predicts that the length of the localized buckling is comparable with 𝜋 0,
-
1
" *⁄
. Since 272 

𝛼 = 2𝑘𝜎𝑤 47,57 where 𝑘 is the spring constant of kinesin motors, the length of localized buckling 273 

scales with 𝜎!" *⁄ , which is in agreement with our simulation result (Fig. 5b). The prediction is also 274 

consistent with our observation that the localized buckling length is independent of the length of the 275 

MTs.  276 

The scenario illustrated in Fig. 5a can be directly compared with the results of our computer 277 

simulations. For the case of buckling MTs, when the compression force exerted by kinesin motors on 278 

MT segments reaches the critical value near the pinned ends, the compression force would decrease 279 

due to the localized buckling of MTs causing a release of tension within individual kinesin motors. The 280 

simulation results qualitatively agree with the scenario (Fig. 5c left). In many cases, the force profiles 281 

appeared to start to decrease before the length of the region where 𝐹 > 𝐹+	exceeds the half wavelength. 282 

This is presumably caused by undulated conformations of MTs which promote buckling. For the cases 283 

of stuck MTs, the force increased toward MT’s pinned ends. The slope of the force profile initially 284 

increased with time and then saturated (Fig. 5c right).  285 

Another prediction from the scenario shown in Fig. 5a relates to the boundary of the two phases 286 

in the phase diagram. For the localized buckling and hence spiralling to occur, the force profile must 287 

have regions of 𝐹 > 𝐹+	longer than the half wavelength. This means that the force profile 𝐹(𝑠, 𝑡) in 288 

Figure 5a reaches 𝐹+ = √4𝛼𝜅 at 𝑠 = 𝐿 − 𝜋 0,
-
1
" *⁄
. Because the maximum of 𝑓(𝑡) is 𝑓./011, the 289 
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boundary curve relating motor density and MT length is thus defined by the condition:  290 

√4𝛼𝜅 = 2𝑓./011𝜎𝑤 <𝐿 − 𝜋 0
,
-
1
" *⁄
=.         (1) 291 

The value of 𝑤 was determined to be 24 nm by analysing simulation results (Supplementary 292 

Information, Estimation of effective reach, 𝑤). The boundary curve qualitatively reproduced the phase 293 

boundary in Figure 5d, but spiralling already can occur in the simulations at lower lengths and motor 294 

densities. We attribute this to not fully straight MT conformations at the moment of pinning, which 295 

promote buckling. This is supported by simulations including thermal fluctuations. The addition of 296 

thermal fluctuations to the simulation of the motion of the MT segments further promotes buckling by 297 

pre-bending the MTs (Fig. 6). However, while the boundary between buckling and getting stuck shifts, 298 

the shape of the boundary curve remains similar. 299 

 300 

Fig. 6: Phase diagram of microtubule movements with thermal fluctuations. The size of each circle 301 

represents the number of simulation runs for each condition: large and small circles represent 20 and 5 302 



 

 18 

simulation runs, respectively. The colour of the marks indicates the occurrence of outcome. The curve 303 

indicates the theoretical boundary curve. 304 

 305 

2.4. Scaling argument of the spiral radius  306 

A mechanistic explanation is required why the spiral radius is proportional to (𝜅 𝛼⁄ )! "⁄  and 307 

how the steady state spiral radius is achieved when MTs movements started from either expanded or 308 

compacted spirals (Fig. 4). To account for the contraction or expansion of spirals shown in Figure 4, the 309 

scenario (Fig. 5a) cannot be used because it considers infinitesimal deformations from initial straight 310 

conformations. Therefore, we make a scaling argument as follows (Fig. 7). The scaling argument is 311 

based on our observations that the changes in MT conformations were initiated in regions of MTs near 312 

their pinned ends (Fig 4b and f) and that the length of these regions of the MTs, denoted by 𝑟, evolved 313 

into the steady-state spiral radius after expansion or contraction. Because the other part of MT 314 

conformations remained almost the same, we assumed that the dominant changes in MT bending and 315 

kinesin elastic energy occurred in the regions near the pinned ends. When the region of a MT makes a 316 

lateral displacement of ∆𝑢 from an initial curved conformation described with 𝑢 (Fig. 7), this causes 317 

the changes in the bending of the MT and elongations of kinesin motors binding on the region of the 318 

MT. The MT curvature changes from 𝑢 𝑟'⁄   to (𝑢 + ∆𝑢) 𝑟'⁄ , so that the change in the bending 319 

energy of the MT scales as ~𝜅∆𝑢 ∙ 𝑟!#. In addition, as the change in the elongations of kinesin motors 320 

is ~∆𝑢 and the number of stretched kinesin motors is proportional to 𝑟, the change in the summation 321 

of the elastic energy of binding kinesin motors scale as (1 2⁄ )𝛼(∆𝑢)'𝑟. Thus, the increase of the 322 

energy of the system consisting of the MT and the kinesin motors, Δ𝐸, is ~𝜅∆𝑢 ∙ 𝑟!# +323 

(1 2⁄ )𝛼(∆𝑢)'𝑟. Since we assumed an overdamped system, the change in the MT curvature must occur 324 
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at the value of 𝑟 that gives the minimum Δ𝐸. This leads to 𝑟 ∝ (𝜅 𝛼⁄ )" *⁄ . This scaling relation agrees 325 

with the simulation result in Fig. 2c, Fig. 4d and h. 326 

 327 

 328 

Fig. 7: A schematic representation of the scaling argument. The orange curve shows an initial 329 

microtubule conformation. The red one shows a microtubule conformation after a displacement of ∆𝑢. 330 

The length of the bulging regions is denoted by 𝑟. 331 

 332 

Freely jointed chain models, which are nonlinear spring models, have been used in modelling 333 

kinesin motors 58,59. While the freely jointed chain models can be more accurate than the linear spring 334 
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model for highly stretched motors, we used the linear spring model for simplicity. However, since our 335 

scaling arguments rely on infinitesimal displacements of MTs, corresponding to infinitesimal 336 

elongations of kinesin motors, the arguments remain valid even when nonlinear spring models of 337 

kinesin motors are considered. This is because localized buckling and bulging occur before kinesin 338 

motors are significantly stretched where nonlinear elastic effects become pronounced. Hence, any 339 

potential influence of nonlinearity of motor mechanics on the formation and size of the spirals would 340 

be marginal. In addition, the stretch of simulated kinesin motors bound to the outer rims of the MT 341 

spirals at steady state was approximately 24 nm (Supplementary Information, Fig. S7), which is about 342 

one-third of the contour length of a full-length kinesin-1 molecule. Hence, modelling kinesin motors as 343 

linear springs is reasonable for the purposes of this study. 344 

A scaling relation between the spiral radius and motor density has been derived by Bourdieu et 345 

al.41: 𝑅 ∝ 𝜎!" #⁄ . Their scaling argument was based on the balance between the torque generated by 346 

binding motors and the bending moment of the filament and did not take into account the elasticity of 347 

motor proteins. The scaling exponent of -1/3 by Bourdieu et al. showed agreement with the 348 

experimental data for an actomyosin motility assay 41. We surmise that the agreement between their 349 

theoretical and experimental scaling exponents stems from the low duty ratio of the motor proteins 350 

used in the experiment. Bourdieu et al. used non-processive myosin II motors, which bind actin 351 

filaments for only about 5% of their chemomechanical cycle. The low processivity of myosin II motors 352 

can lead to unbinding of stretched binding motors and to bindings of unstretched or less stretched ones 353 

during formation of spirals, providing another pathway to release the elastic energy of motors. As a 354 

result, the elastic energy of myosin II motors cannot build up over time, thus having little contribution 355 

compared with the bending energy of actin filaments. This would be the reason why the scaling relation 356 
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ignoring the elastic contributions of motor proteins agreed with the experimental data for the 357 

actomyosin motility assay. Our study is complementary with the study by Bourdieu et al.41 in that we 358 

investigated an active polymer system driven by motors with high duty ratio. While we are not aware 359 

of an experiment obtaining a scaling exponent between the spiral radius and motor density other than 360 

the actin/myosin systems, our simulation study predict that the exponent of -1/4 can be experimentally 361 

observed in kinesin/MT systems. In experiments, due to the finite run length of kinesin motors, an 362 

intermediate value between -1/3 and -1/4 may be observed. 363 

 364 

 365 

3. CONCLUSIONS 366 

Using computer simulations of MTs propelled by kinesin motors, which explicitly include the 367 

mechanical properties of kinesin motors, we investigated active spiralling of pinned MTs. We found 368 

either stuck MTs or spiralling MTs, depending on the MT length and surface motor density, and 369 

summarized the findings in a phase diagram. In addition, we found that the spiral radius followed a 370 

scaling relation against the motor density distinct from that of previous studies. These findings were 371 

elucidated by taking into account the mechanical property of kinesin motors, highlighting the 372 

importance of explicitly including the mechanics of motor proteins in computer simulations. 373 

Our results also show that, while semiflexible polymers driven by surface bound motors and 374 

active polymers consisting of active particles, such as Janus particles, qualitatively behave in similar 375 

manners, their behaviours could be different in the details. The difference may affect the overall 376 

performance of applications integrated with active polymers. 377 

Another insight obtained from this study is that as spirals with small radius can cause breakage of 378 
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MTs 44, the use of a low motor density would be beneficial to prevent breakages of molecular shuttles. 379 

Finally, this study may provide an insight into elementary processes of active interactions between 380 

cytoskeletal filaments and motor proteins in living cells. 381 

 382 

4. SIMULATION METHODS 383 

    The simulation method was based on our previous work 50,51. In the following, we briefly 384 

summarize the simulation method. We assumed the MTs to be infinitely thin and inextensible 385 

semiflexible bead-rod polymers with a flexural rigidity of 22.0 pN µm-2 52. The length of MTs was set 386 

to be from 5 to 30 µm and each MT consisted of 10 to 60 rigid segments depending on the length of 387 

MTs. MT movement was simulated by solving overdamped equations of motion under the constraint of 388 

fixed segment length. Thermal fluctuations were not included unless otherwise mentioned. 389 

In this method, a single time step consisted of the following two steps. 390 

In the first step, the beads representing an MT were moved without considering any constraint, 391 

using the following expression: 392 

𝑟23(𝑡 + ∆𝑡) = 𝑟2(𝑡) +
∆/
5
𝐹678928:,2 +	

∆/
5
𝐹<287.28,2 ,            (2) 393 

where 𝑟2 	is the position vector of the i-th bead consisting of a MT, 𝜁 is the viscous drag coefficient, 394 

𝐹678928:,2 is the restoring force of MT bending, 𝐹<287.28,2 is a force exerted by bound kinesin. ∆𝑡 was 395 

set at 0.5×10-6 s to ensure numerical stability. The viscous drag coefficient used was the average of the 396 

parallel and perpendicular drag coefficients 60: 397 

𝜁 = #=>9

?@A !"#B
           (3) 398 

where 𝜂 is the viscosity of water (0.001 Pa∙s), 𝑑 is the length of the MT segment (0.25-0.50 µm), and 399 

𝑟 was the radius of MT (12.5 nm). We chose this length of the MT segmentation such that taking 400 
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shorter MT segmentation leads to negligible change of results (Fig. S4). 401 

In case of simulating movements of MTs subjected to thermal fluctuations (Fig. 6), the equation 402 

(3) was replaced by: 403 

𝑟23(𝑡 + ∆𝑡) = 𝑟2(𝑡) +
∆/
5
𝐹678928:,2 +	

∆/
5
𝐹<287.28,2 +√2𝐷 ∙ Δ𝑡𝝃2 ,   (4)  404 

where D is the diffusion coefficient of the bead calculated as 𝐷 = 𝑘C𝑇 𝜁⁄ . 405 

The restoring force of MT bending was calculated from the following bending potential 60: 406 

𝑈 = "
'
	 ,
9$
	∑ (𝑟2D" − 2𝑟2 +	𝑟2!")'8!"

2E'            (5) 407 

where 𝜅 is the flexural rigidity. 408 

Kinesin motors were randomly distributed over the allowed surface by specifying the positions 409 

of the kinesin tails (Fig. 1b). If an MT segment came close to a kinesin motor tail within a capture 410 

radius (20 nm) 57, the kinesin motor was assumed to be bound to the MT segment, and the position of 411 

the motor head was specified on the MT segment. Once bound, the head of the bound kinesin motor 412 

moved toward the MT plus end with a force-dependent velocity expressed as                                                                                                                                                                                                                                                                                                                                                                           413 

𝑣Q𝐹‖R = 𝑣% 01 −
G‖

G&'())
1	     (6) 414 

where 𝑣% is the translational velocity without applied force, 𝐹‖ is the component of the pulling force 415 

along the MT, and 𝐹./011 is the stall force of the kinesin motors. 𝑣% was set at 0.8 µm/s, and 𝐹./011 416 

was set at 5 pN. The bound kinesin acted as a linear spring between the motor head and tail with the 417 

spring constant of 100 pN/µm 53 and with an equilibrium length of zero and exerted a pulling force on 418 

the MT segment. The pulling force was divided into two forces which acted on the two beads located at 419 

either end of the MT segment where the kinesin motor was bound, under the condition that the total 420 

force and torque on the segment remained the same. A kinesin motor bound to an MT detached when 421 

tension reached 7 pN 55. The choice of the spring constant and the detachment force leads to the 422 

maximum stretch of 70 nm, which is close to the contour length of kinesin motors 61. By following the 423 
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approach taken by Gibbons et al., 62 we neglected the spontaneous dissociation of the bound kinesin 424 

from the MT. 425 

In dealing with equation (2), we used an implicit-explicit method, where the restoring force of 426 

MT bending was implicitly calculated while other terms were explicitly calculated.  427 

In the second step, the unconstrained movements were corrected by considering the constraints 428 

due to the segment length and the guiding tracks. To keep the segment length constant, the coordinates 429 

of the beads representing the MT {𝑟2}  as shown were subject to the following holonomic constraints: 430 

𝑔.7:H78/,< = (𝑟<D" − 𝑟<)' − 𝑑' = 0		    (𝑘 = 1,… , 𝑛 − 1)     (8) 431 

In addition, to keep the MT movement above the substrate, the position of the beads representing the 432 

MT were subjected to the following holonomic constrains:  433 

𝑔/I0+<,2 =	𝑧2 = 0, 𝑖𝑓	𝑧2 < 0         (9) 434 

The correction was carried out with the following expression: 435 

𝑟2(𝑡 + ∆𝑡) = 𝑟23(𝑡 + ∆𝑡) +	∆𝑟2(𝑡 + ∆𝑡)   (10) 436 

where ∆𝑟2(𝑡 + ∆𝑡)is the correction term 437 

∆𝑟2(𝑡 + ∆𝑡) =
∆𝑡
𝜁 \𝜆.7:H78/,<

8!"

<E"

𝜕𝑔.7:H78/,<
𝜕𝑟2

+
∆𝑡
𝜁 𝜆/I0+<,2

𝜕𝑔/I0+<,2
𝜕𝑟2

 438 

                                 (11) 439 

and 𝜆.7:H78/,< and 𝜆/I0+<,2 	are Lagrangian multipliers, which were determined in order                                                                          440 

for the coordinate at 𝑡 + ∆𝑡 to satisfy the constraints given by equations (8) and (9), respectively. For 441 

this, we went through the calculations for the constraints one by one, cyclically, adjusting the 442 

coordinates until the constraints were satisfied with a tolerance of 10-6 µm. 443 

To impose the pinning at MT leading end, the position of the bead located at the MT leading end 444 

was fixed allowing free rotations around it. 445 

Simulation results were visualized with ParaView (https://www. paraview.org/). 446 
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