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ABSTRACT

Due to the cumbersome nature of human evaluation and limitations
of code-based evaluation, Large Language Models (LLMs) are in-
creasingly being used to assist humans in evaluating LLM outputs.
Yet LLM-generated evaluators simply inherit all the problems of
the LLMs they evaluate, requiring further human validation. We
present a mixed-initiative approach to “validate the validators”—
aligning LLM-generated evaluation functions (be it prompts or
code) with human requirements. Our interface, EVALGEN, provides
automated assistance to users in generating evaluation criteria and
implementing assertions. While generating candidate implemen-
tations (Python functions, LLM grader prompts), EVALGEN asks
humans to grade a subset of LLM outputs; this feedback is used to
select implementations that better align with user grades. A qual-
itative study finds overall support for EVALGEN but underscores
the subjectivity and iterative nature of alignment. In particular, we
identify a phenomenon we dub criteria drift: users need criteria to
grade outputs, but grading outputs helps users define criteria. What
is more, some criteria appear dependent on the specific LLM outputs
observed (rather than independent and definable a priori), raising
serious questions for approaches that assume the independence of
evaluation from observation of model outputs. We present our in-
terface and implementation details, a comparison of our algorithm
with a baseline approach, and implications for the design of future
LLM evaluation assistants.
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1 INTRODUCTION

Large Language Models (LLMs) make mistakes—they hallucinate, ig-
nore instructions, and generate invalid or uncalibrated outputs [26].
But validating the behavior of LLMs is challenging. In response,
researchers and industry developers have created tools for prompt
engineering and auditing that help people with testing outputs
more systematically [1, 17, 24, 25, 28, 37, 44, 55]. Such approaches
require metrics, i.e., functions that automatically score LLM outputs,
each typically an assertion with true or false values. These metrics
increasingly include calls to “evaluator” LLMs, e.g., [1, 28, 55, 61],
that act as “judges,” grading outputs on qualities hard to articulate
in code; for instance, the “conciseness” of an output.

While LLM-based validators are commonly used in practice and
can be effective, crafting these validators—both code-based and
LLM-based—so that they align well with user preferences remains
challenging. Finding the right prompt for LLM-based assertions
is difficult, e.g., they are unintuitively sensitive to seemingly mi-
nor changes in wording or structure [46], as is crafting code-based
assertions, such as choosing the appropriate regex. This process
can be time-consuming and is not well-supported by current tools.
How can users reap the efficiency benefits of LLM-assisted evalua-
tion of LLM outputs, while ensuring alignment with their specific
preferences? How can we help users craft and validate effective
validators?

In this paper, we propose a mixed-initiative approach, EVALGEN,
to address this automated-evaluation alignment problem in the con-
text of prompt engineering. Our approach streamlines the selection
of metrics under practical constraints of user effort and latency.
Specifically, an LLM suggests criteria in natural language, based on
user context (e.g., the prompt under test), that the user can modify.
An LLM then generates a pool of candidate assertions for each
criterion—either code or LLM grader prompts that output “true” or
“false” While the user waits for the LLM to generate candidates,
they are asked to grade outputs with a simple “good” (thumbs-up)


https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3654777.3676450
https://doi.org/10.1145/3654777.3676450
mailto:ian.arawjo@umontreal.ca
mailto:adityagp@berkeley.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3654777.3676450&domain=pdf&date_stamp=2024-10-11

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

or “bad” (thumbs-down) voting scheme. These grades then guide
the automatic selection of assertions that optimize for alignment
with user preferences. After assertion selection, a final report card
reveals the alignment between the chosen assertions and the user’s
grades. Our approach generalizes beyond the particulars of our spe-
cific design, and could be extended to, for instance, update metric
implementations with feedback from human preferences, or query
the user for finer-grained individual grades.

EVALGEN is embedded inside an existing open-source interface
for prompt engineering and auditing, ChainForge [1]. Our align-
ment algorithm adapts SPADE [48], a fully-automated algorithm for
generating Python assertions from the revision history of a prompt.
We performed an offline verification of our human-guided align-
ment algorithm versus SPADE, then ran a qualitative user study
with nine (9) industry practitioners who use LLMs in production
contexts. Since our participants were industry practitioners and
thus possibly dealing with NDA-protected data, we offered a task
adapted from a real LLM pipeline prompt. Our study design did not
impose restrictions on how participants used EVALGEN, and users
could choose whether to ask the tool to suggest criteria, enter cri-
teria manually, or grade a few LLM outputs first before proceeding
to the criteria specification screen.

Our study finds overall support for EVALGEN, with one important
caveat. We observed a “catch-22” situation: to grade outputs, people
need to externalize and define their evaluation criteria; however, the
process of grading outputs helps them to define those very criteria.
We dub this phenomenon criteria drift, implying that it is impossible
to completely determine evaluation criteria prior to human judging of
LLM outputs. Even when participants graded first, we observed that
they still refined their criteria upon further grading, even going back
to change previous grades. Thus, our findings suggest that users
need evaluation assistants to support rapid iteration over criteria
and implementations simultaneously. Since criteria are dependent
upon LLM outputs (and not independent from them), this raises
questions about how to contend with criteria drift in the context
of other “drifts”—e.g., model drift [5], prompt edits, or upstream
changes in a chain. Our findings also (i) underscore the necessity
of mixed-initiative approaches to the alignment of LLM-assisted
evaluations that also embrace messiness and iteration, and (ii) raise
broader questions about what “alignment with user preferences”
means for evaluation assistants.

We first position our work (Sec. 2) and present EVALGEN’s design
(Sec. 3) and implementation details (Sec. 4). We then present two
evaluations: an off-line evaluation of our approach (Sec. 5), and a
qualitative study with developers (Sec. 6 & 7). Finally, we suggest
implications for future work (Sec. 8).

2 MOTIVATION AND RELATED WORK

In response to the popularity of black-boxed LLMs like ChatGPT,
prompt engineering (PE) has emerged as a new practice and re-
search area. Alongside PE is the auditing of model behavior in
practices such as “red-teaming,” used to identify harmful outputs in
internal teams to tweak LLM behavior, usually prior to release [33,
p-17]. These tasks have spurred the advent of new tools for “LLM
operations” (hereafter called LLMOps) and new terminology such
as “prompt template”, “chain of thought”, “agents”, and “chains”
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Automating Evaluations of Prompts. When evaluating LLM
behavior, users typically send off hundreds or thousands of queries
to models. As users reach the limits of manual evaluation, users
set up automated evaluation pipelines (Figure 1a) in code or with
other LLMs. Here we use the term LLM-based evaluators; other
work uses terms such as “LLM-as-a-judge” [61] or “co-audit” [19]'.
Public PE tools like promptfoo [55] and ChainForge [1] allow users
to write their own evaluation metrics to score LLM response qual-
ity, and support both code-based and LLM-based evaluators. For
instance, in promptfoo, users can write a rubric in a config file to
specify how an LLM should evaluate responses, and may use pre-
created grader prompt templates or customize them; an example is
the assertion “the response is not apologetic” Prototypes such as
EvalLM [28] and PromptsRoyale [43] also support LLM evaluators,
oftentimes exclusively, to help users compare between two prompts.
Of PE tools, only EvalLM offers a way to help users calculate the
alignment of LLM evaluators with their expectations, but this fea-
ture is mentioned only in the design section of the paper and is
absent from the user study. At best, users of PE tools inspect LLM-
generated evaluator outputs manually to double-check; at worst,
the tool hides individual scores entirely. Regardless of aligning met-
ric implementations with user preferences, even identifying what
metrics to evaluate for custom tasks remains challenging for LLM
practitioners [40]. While many evaluation tools require users to
declare metrics they care about, some prior work [48] and EVALGEN
employ LLMs to propose custom metrics based on prompts in the
user’s LLM pipelines.

Over-trust and Over-generalization of LLM Behavior. That
tools provide little assistance to validate evaluator quality is alarm-
ing, considering that other research shows people tend to over-rely
and over-trust Al systems [4, 29, 32, 53]. For instance, in one high-
profile incident, researchers from MIT posted a pre-print on arXiv
claiming that GPT-4 could ace the MIT EECS exam. Within hours,
work by Chowdhuri et al. debunked the study [6], citing problems
arising from over-reliance on GPT-4 to grade itself. Other work
has found further reasons to be cautious: LLMs asked to choose
the best response from a set can be consistently biased by set or-
dering [31, 54]; and LLMs can be highly sensitive to seemingly
innocuous formatting changes [46].

A related problem to over-reliance is over-generalization. Zam-
firescu et al. [60] found that users unfamiliar with PE tend to over-
generalize from single failures (causing them to throw out poten-
tially good prompts), rather than having a holistic view of the
overall performance of a prompt or chain. This was despite the
fact that the interface had support for systematic testing. Similarly,
Arawjo et al. [1] found that even people familiar with LLMs (de-
velopers, academics in ML) struggled to scale up their evaluations,
appearing to over-generalize from a limited number of outputs
even after an automated evaluation pipeline was setup. The authors
identified three modes of PE on open-domain tasks, with the sec-
ond, “limited evaluation,” characterized as users “prototyping an
evaluation” [1], and suggested that future work focus on supported
users in prototyping evaluation pipelines. Over-generalization is
common in traditional ML, too—Kocielnik et al. [30] found that Al

! An analogous problem exists in software engineering as well: developing a set of
assertions, often in the form of a set of unit tests or regression tests, that give developers
confidence that their code is correct and that code changes do not (re)introduce bugs.
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Figure 1: EVALGEN’s approach to assisting users in aligning evaluations. Users iterate through the process of refining criteria
and grading. Note that LLM pipeline inputs and outputs are provided by our larger system, and outside the scope of this paper.

systems that showcase subsets of errors, like false positives or false
negatives, that have the same accuracy, can lead to vastly different
perceptions of accuracy.

Approaches to Aligning LLMs. The HCI community has ex-
tensively studied interactive machine learning (iML). In iML, users
iteratively develop models by selecting training examples, labeling
data, and evaluating model performance [11]. Interfaces that facili-
tate seamless transitions between these activities result in fewer
errors and outputs that better match users’ expectations [41, 49].
Some iML interfaces even use ML to assist users, for example, in
scaling up labeling, reducing overall user effort required [9]. When
using iML concepts for developing LLM pipelines, we must acknowl-
edge a key challenge with LLMs: they often work with little to no
specific training data [40]. Users may simply prototype with inputs
they imagine the LLM would see, hoping the prompt generalizes.

In the ML and NLP communities, researchers have explored
many ways to align LLMs—and their evaluations—to specific user
tasks. Many approaches rely on custom model training or fine-
tuning [7], but all strategies heavily rely on humans to identify
examples of desirable and undesirable outputs. For instance, Liu
et al. [35] demonstrated using annotated LLM outputs—judged on
criteria like consistency and relevance—as “few-shot examples” for
calibrating LLM-based evaluators. Beyond classical summarization

and NLP tasks, in response to the ad-hoc tedium of PE [59], aca-
demics and developers are building automated prompt optimization
tools, maximizing some user-defined metric on a labeled set of ex-
amples. For instance, given some metrics and prompts, Khattab
et al. [27] automatically run variations of inserted few-shot exam-
ples and LLM-generated rephrasings to optimize the prompt. Other
work urges users to write assertions to guide outputs with a mix of
code and natural language suggestions [45, 51], but writing these
assertions is left up to developers, which is often time-consuming
and error-prone. A broader point is that research in LLMOps opti-
mization tends to come from the domains of NLP and ML, where
authors generally validate tool performance against benchmark
datasets with pre-defined metrics, leaving open the question of
how well they perform in the wild on idiosyncratic user tasks, e.g.
EvoPrompt, PromptBreeder, and AutoCalibrate [13, 21, 35]. It thus
remains unclear how to support developers in their prototyping of
evaluations, with the problem becoming even more pressing as the
popularity of prompt optimization increases.

Overall, this work reveals that users need more support for (a)
prototyping evaluations and (b) validating evaluators of LLM out-
puts. It also reveals that auditing LLM outputs is far from easy, with
humans prone to the dual biases of over-generalization and over-
reliance. One recent LLM-assisted approach, SPADE [48], makes
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headway on these issues, helping developers generate Python as-
sertion functions for LLM outputs from prompt history. Here we
leverage a similar algorithmic approach to SPADE, but embed it
inside an LLM-assisted user interface for evaluator prototyping,
EVALGEN, that also assists with criteria generation, measuring align-
ment with human preferences, and visualizing results.

3 EVALGEN DESIGN

In designing EVALGEN, our goal was (1) to investigate how to assist
developers in creating evaluators to grade LLM outputs, and (2) to
help them “validate the validators” through both automated assis-
tance and transparency around how aligned each evaluator is with
their expectations. As we covered in Section 2, emerging practices
in prompt engineering, LLM auditing, and prompt optimization
involve the writing of evaluation functions (metrics) to automate
grading. These functions may be code- or LLM-based. Based on this
context, we set out to design an LLM-powered evaluation assistant
that provided developers control over metric criteria, evaluator type
(code or LLM), and implementation (i.e., function) generation and
selection processes, without asking them to come up with criteria
or write code or grader prompts themselves.?

3.1 EvaLGEN Workflow

We implemented EVALGEN in an existing open-source system for
prompt engineering, ChainForge [1], which handles querying multi-
ple LLMs with parametrized prompts, running code- and LLM-based
evaluators, plotting scores, and chaining. In ChainForge, users write
LLM pipelines by creating nodes of various types to represent their
dataflow, such as an “input” node feeding into a “prompt” node.
We discuss here only our extension, chiefly a pop-up screen that
helps the user define, implement, and validate evaluation functions.
We also implemented a new node, Multi-Eval, that allows users to
include multiple evaluators in a single node and run all evaluators
on the outputs of the pipeline’s previous node. Finally, we made
improvements to plotting per-criteria scores in the Table View of
the LLM output inspector, which can be accessed via the Multi-Eval
node. Fig. 1b provides a high-level overview of the EvALGEN archi-
tecture compared to the typical LLM output evaluation pipeline;
we discuss implementation details in Sec. 4.

Figure 2 depicts the workflow of in the context of the EvALGEN
interface, excluding returning to the main workflow with selected
implementations and using the Table View to inspect scores. EvAL-
GEN assists a developer in engineering an evaluation of LLM outputs
for a single prompt template. First, EVALGEN is accessed as a button
on a “Multi-Eval” node we added to ChainForge, which is attached
to a Prompt Node (Fig. 2a). A Wizard opens, depicting three options
(Fig. 2b): Infer, Manual, and Grade First. A description of EvalGen
(not shown) appears above the options. Clicking Infer or Manual
leads to the Pick Criteria screen (Fig. 2¢); clicking Grade First leads
to the Grading screen (Fig. 2d) and asks users to grade at least five
outputs, before continuing to the Pick Criteria screen.

The Pick Criteria interface is depicted in Fig. 2c. An LLM has
generated criteria suggestions in natural language (Sections 4.1 and

To clarify our terminology throughout the paper: an evaluator is, broadly, some entity
that assesses LLM output quality, while an assertion is the specific implementation
generated by EvalGen that performs the evaluator role.
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4.2), along with a toggle to prefer a Python code-based or LLM-
based evaluator. The user can edit all parts—including the titles or
descriptions and type of evaluator—or add new criteria not sug-
gested by the LLM. They can also delete criteria or deselect criteria
as needed. Our design choice to use binary criteria (true/false out-
puts) for validators reflects common industry practice, as seen in
tools such as LangChain [12], PromptFoo [55], and Guardrails [20].
Pressing “Implement It” passes the criteria to a second LLM that
generates candidate implementations.

While implementations are generated and executed on LLM
outputs, users are asked to grade outputs. EVALGEN uses these
grades to pick implementations that align best with their prefer-
ences. Fig. 2d depicts the Grading screen. A single LLM response is
presented to the user, centered in focus in the grader window. The
context of the prompt and any input variables (vars) is also present.
The user grades outputs via the Good and Bad buttons. Since it
may be time-consuming to ask the developer to grade on a per-
criterion basis, for the grader interface we decided on the simplicity
of thumbs-up/down scoring. Such scoring is a noisy yet informative
signal of output quality—if a response is given a thumbs-up, it is
assumed to pass all criteria, and so if a candidate assertion fails on
that response, the candidate is down-ranked in the pool (details in
Section 4.1). Importantly, to address the limitations of binary feed-
back, users can additionally provide natural language feedback on
outputs they grade as bad. Users may also click arrows to navigate
through outputs (e.g., if they want to revise a prior grade).®

Finally, after the user is done grading and all candidate imple-
mentations are generated, executed, and filtered for alignment with
grades, a Report Card screen appears with feedback on per-criteria
and aggregate measures of alignment with user grades (Fig. 2e).
Hovering over per-criteria metrics shows a confusion matrix of
how aligned that particular criterion is to the human grades, while
the aggregate metrics show the coverage and false failure rate (see
Section 5) of the selected subset of EVALGEN-generated assertions.
The user then returns to the main ChainForge interface (not shown),
where the selected implementations are available in a “Multi-Eval”
node, titled by criteria. The user can edit or add more criteria, in-
spect and visualize evaluation results (Fig. 3), etc.; however, this is
outside the scope of our design discussion.

Our design reflects trade-offs between developer effort and ro-
bust human verification of LLM-generated metrics. The human
cannot completely validate an LLM-based evaluator: the point of
LLM evaluators is to reduce the effort required by the developer,
who would otherwise have to grade outputs manually. The only
way to fully align an LLM evaluator would be to ask the user to
label all outputs; obviously, this defeats the purpose. Asking the
developer to grade some outputs using some time they would have
spent waiting anyway, is the key idea behind our design.

3We initially used a progress bar for grading a preset number of outputs. However,
calling LLMs and executing assertions take an indeterminate amount of time: sug-
gesting an “end point” to user grading may lose valuable information when the user
still has to wait for generations to return. The user may also find grading enjoyable
or important. As such, we did not seek to limit user grading. However, we kept this
progress bar in the Grade First screen (accessed via Fig.2b).
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Figure 2: The workflow of our EVALGEN prototype, from (a) a Prompt Node attached to an empty Multi-Eval Node, showing a
Generate Criteria button; (b) the pop-up EvalGen Wizard with three options, Infer, Manual, and Grade First; (c) the Pick Criteria
screen, allowing users to describe criteria in natural language and toggle Code or LLM implementations; (d) the Grade screen,
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Hovering over the alignment shows a confusion matrix. Note that some descriptions and elements have been clipped for space.

4 IMPLEMENTATION
4.1 System Architecture

Like prior work on evaluator assistants [28, 48], our solution decom-
poses evaluations into criteria and assertions (boolean functions that
implement the criteria by evaluating outputs). We employ LLMs in
generating criteria, based on the prompt [48], and in generating var-
ious candidate implementations of each criterion [28, 48]. As users
grade, we rank candidate assertions that implement each criterion
based on their alignment with user grades (see Section 4.2 for how
we define alignment). At a high level, alignment is a combination
of the assertion’s coverage, or ability to catch erroneous outputs

that the user also thinks are bad, and its false failure rate, i.e., how
often are failures flagged incorrectly, a measure of its ability to not
erroneously fail outputs that the user thinks are good.

EvALGEN’s architecture differs from prior work in two main com-
ponents: first, EVALGEN solicits grades from the user on a sample
of LLM outputs—requiring some policy to sample LLM outputs to
grade. Second, in contrast to SPADE [48], which operates offline
and solves an integer linear program to generate the optimal as-
sertion set, EVALGEN employs an online (i.e., streaming) system
architecture to progressively optimize for the most aligned asser-
tion set. Our system, as depicted in Figure 1b, is structured into
three components:
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Criteria Suggestion. We use GPT-4 to propose various binary
evaluation criteria in natural language. Developers can select from
these suggestions or add their own criteria, choosing whether each
should be evaluated with a purely code-based function or a function
that involves calls to another LLM.

Candidate Assertion Synthesis and Execution. Based on the
selected criteria, we use GPT-4 to asynchronously generate one or
more candidate assertions as code or a grader prompt. For each
criterion, we issue one call to GPT-4 to generate multiple candidate
assertions (within JSON markers) in a streaming fashion. Every
time we detect the end of a marker in any GPT-4 response, we parse
the candidate assertion and submit it to EVALGEN’s executor, which
will run it on LLM pipeline outputs.

Grading Sampler. This component samples LLM pipeline out-
puts for the user to give binary feedback on (thumbs up/down).
When the user grades an LLM output, we update internal estimates
of alignment for each candidate assertion, and we sample the next
output for the user to grade.

Once the user does not want to grade LLM outputs anymore,
or is finished grading all outputs, for each criterion, we select the
candidate assertion with the highest alignment with the user’s
grades. The user can provide a threshold for the false failure rate
(as defined in Section 5) such that EVALGEN only selects assertions
that do not exceed this threshold.

4.2 Selecting Assertions & Eliciting Grades
EvALGEN maintains dynamic estimates for the following:

Selectivity of Candidate Assertions and Confidence Scores
for Potentially Poor Outputs. The selectivity is the probability
that an assertion will classify an LLM output as passing and is
adjusted each time EVALGEN executes a candidate assertion on an
LLM output. We also maintain a confidence score for each output,
which estimates the likelihood that an LLM output is of low quality,
without having been explicitly evaluated by the user. The scores
are dependent on assertion selectivity and are revised whenever
EVALGEN evaluates a new assertion against an LLM output, or when
a user grades an LLM output directly.

Assertion Alignment. For each criterion, we select the candi-
date assertion with the highest alignment score. We adopt notation
from Shankar et al. [48] in defining alignment. Formally, let E be a
set of LLM pipeline input-output pairs and f : E — 0, 1 represent
an assertion. Let y be a binary vector, where y; € {0, 1} represents
whether the user thinks an LLM output e; is bad (0 is bad, 1 is good).
Suppose F = fi, f2,..., fj is a set of j assertions. The coverage
and false failure rate (FFR) of F are represented by the following
equations:

2illyi=0A(3f €F f(e) =0)]

Coverage (F) = S Tly = 0]
_2illyi=1AGf eF f(e)) =0)]
PR = Sillyi=1]

In both definitions, I is the indicator function. Intuitively, cover-
age represents the set’s true negative rate, while false failure rate
represents the set’s false negative rate. An aligned set of assertions
would have a high coverage and low false failure rate. We define the
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alignment of F as the harmonic mean of coverage and the inverse
of FFR:

Coverage (F) x (1 — FFR (F))
Coverage (F) + (1 — FFR (F))

Alignment (F) = 2 X

Note that alignment is the F1 score; however, we are concerned
with the precision and recall of failures (i.e., when f = 0, not when
f =1), and we are concerned with a set (i.e., when any assertion
returns 0). See Appendix A for a complete description of assertion
selectivity and how it impacts confidence scores; how EVALGEN
uses confidence scores to sample grades from the user; and how
EvALGEN determines the resulting assertion set based on alignment.

5 ALGORITHM EVALUATION

Before proceeding to our user study, we conducted an offline eval-
uation of EVALGEN’s selection algorithm. This evaluation served
as a sanity check to ensure the quality of our technical implemen-
tation, verifying that any findings in the subsequent user study
would not be the result of significant implementation flaws. Our
experiment aimed to understand how soliciting human input at the
criteria suggestion stage impacts the size (number of assertions) and
alignment of the resulting assertion set. We compared to a baseline,
SPADE [48], a fully automated system that generates criteria and
candidate assertions and chooses the minimal assertion set that
meet coverage and false failure rate constraints.

5.1 Evaluation Setup

We developed two LLM pipelines based on real-world datasets.
The medical pipeline operates on a dataset of 84 unstructured text
transcripts from doctor-patient calls [57], aiming to extract spe-
cific information (e.g., symptoms, medication) without revealing
any personally identifiable information (PII). This task requires
assertions to ensure compliance with privacy laws. The product
pipeline involved crafting SEO-friendly descriptions for 100 Ama-
zon products and their reviews [22]. We selected this task because
it mirrors actual LLM applications (there are a number of startups
using Al to write SEO-optimized product descriptions), and it bene-
fits from assertions: for example, even if there are negative reviews,
the descriptions should not say negative things about the prod-
ucts, which would adversely affect the products’ sales potential.
Our prompts are presented in Appendix B. For both prompts, the
placeholder variables (i.e., transcript and document) represent
the input context to inject at pipeline runtime.

We used OpenAI’s GPT-3.5-Turbo to generate outputs. Two of
the paper authors manually graded all LLM outputs to establish
ground-truth labels. The medical and product pipelines had 68%
and 51% good outputs, respectively. Common issues included the
presence of personal information in the medical pipeline outputs
and bad reviews or lengthy content in the product pipeline outputs.

5.2 Impact of Human Input in the Criteria
Generation Step

There are two differences between SPADE and EVALGEN in how
they generate assertion sets. The first difference is that EVALGEN
asks the user to add, edit, or remove criteria before generating
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different candidate assertions, whereas SPADE does not solicit any
input from the user about the criteria. The second difference is in the
selection of the assertions themselves: given user-confirmed criteria
and a sample of grades provided in a Ul, EVALGEN picks the most
aligned assertion per criterion that meets some false failure rate
threshold. Meanwhile, SPADE solves an optimization problem to
select a minimal assertion set that meet a false failure rate threshold
and cover all SPADE-generated criteria.

5.2.1  Evaluation Procedure. We ran SPADE on both pipelines with
all labeled outputs, initially setting a 10% false failure rate (FFR)
threshold. The product pipeline required adjusting to 40% FFR to
find a viable assertion set. This illustrates the challenge of balancing
coverage with false failures, underscoring the need for evaluator
systems to effectively make these trade-offs.

Subsequently, we ran EvALGEN for both pipelines with the same
thresholds. For the medical pipeline, we defined three evaluation
criteria: word count, presence of the six targeted keys, and absence
of PII, with the first two implemented via code-based assertions
and the last via an LLM evaluator. The product pipeline criteria
included absence of negative reviews, absence of links, adherence
to markdown format, and word count limitation, with only the first
criterion requiring LLM implementation. To create the aligned asser-
tion sets, we provided EVALGEN with 16 graded outputs per pipeline
instead of all graded outputs (which would have been between 80
and 100 per pipeline)—given the impracticality of expecting users
to extensively grade in a single session.

5.2.2  Results. Our results in Table 1 show that EVALGEN, by in-
corporating human judgment during criteria selection, achieved
equal or better alignment than SPADE with fewer assertions for
both pipelines. In the medical pipeline, SPADE added unnecessary
assertions (e.g., one for a neutral tone), while EVALGEN maintained
a more focused set. In the product pipeline, EVALGEN’s assertion
set was less than half the size of SPADE’s, with increased coverage
(73% vs. 49%). For the product pipeline, some of SPADE’s assertions
were unrealistic, like a Python function designed to flag specific
negative phrases such as “never order” and “disappointed” in the
output. In contrast, EVALGEN returned a more pragmatic assertion
for this criterion—an LLM-based validator to ensure the product
descriptions remained entirely positive.

Medical Pipeline  Product Pipeline
Metric EvaLGEN SPADE EvaLGEN SPADE
Dataset Size 84 84 100 100
# Bad Outputs 27 27 49 49
# Assertions 3 5 4 9
Coverage 0.33 0.33 0.73 0.49
FFR 0.10 0.10 0.39 0.39
Alignment (%) 48.29 48.29 66.46 54.35

Table 1: Comparison of EvALGEN and SPADE Across
Pipelines. With user input at the criteria stage, EVALGEN
achieves the same or greater alignment with fewer functions.
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6 USER STUDY DESIGN

To understand how developers might use EVALGEN to build evalua-
tors for LLM pipelines, we conducted a qualitative study with nine
industry practitioners experienced in LLMs. This approach allowed
for detailed feedback on our validator alignment workflow.

Recruitment and Participants. We recruited nine industry
practitioners via a Twitter post, calling for anyone interested in
solving the problem of “who validates the validators,” selecting
the first nine respondents with experience in coding and building
LLM pipelines for companies or products. Participants included
software engineers, ML scientists, startup executives, and indepen-
dent consultants. While nine might seem small, studies suggest
that as few as five participants can provide significant usability
insights [2, 38]. We focused on LLM-experienced developers for
their ability to compare EVALGEN to existing workflows.

Procedure. Studies were conducted over Zoom, beginning with
a brief background discussion. We introduced participants to our
ChainForge LLM pipeline for named entity recognition (NER) on
tweets, using GPT-3.5-Turbo. The prompt was: You will be doing
named entity recognition (NER). Extract up to 3 well-known entities
from the following tweet: {tweet_full_text} For each entity, write one
sentence describing the person or entity. All the entities you extract
should be found in a knowledge base like Wikipedia, so don’t make up
entities. Return your answer as a bulleted Markdown list, where each
bullet is formatted as "- entity: description’. Do not extract hashtags as
entities. We chose this task for its real-world relevance, concise input
format, and existing popularity within the research community [16,
34, 52]. Participants could modify the task or prompt if they wanted.

After explaining EVALGEN’s functionality, participants were
given remote control access and up to 40 minutes to explore the
tool while thinking aloud. We communicated that we were mainly
interested in observing their process of creating assertions, not
interacting with other features of ChainForge such as comparing
different LLM APIs. If the participant had any questions about the
interface, we answered them. Post-exploration, we conducted a 10-
minute open-ended interview, asking about EVALGEN’s assertion
generation approach and perceived alignment with their grades.
Participants rated alignment on a 7-point Likert scale. The entire
study lasted 45-75 minutes. Our study was approved by our institu-
tional review board (IRB), and participants generously volunteered
their time.

Analysis. We asked participants to think aloud while using the
tool, while we took notes on their thoughts and any visible emotions
(e.g., delight when EVALGEN suggested a criterion they struggled to
externalize, or frustration when they could not find a good assertion
for a criterion). We employed open and axial coding [14] to identify
common themes across the video call transcripts and notes for each
participant. Initially, we coded individual sentences of interest for
each participant, then grouped these into broader themes on a per-
participant basis in a second pass of coding. Finally, we consolidated
these themes across all participants, reorganizing them as needed.

7 USER STUDY FINDINGS

Our user study revealed several insights into participants’ experi-
ences with EVALGEN and their evaluation processes:
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e Participants felt that EVALGEN was a great starting point for
assertions, and wanted to—and could—exercise control over
EvALGEN’s assistance.

e Participants encountered difficulties in aligning assertions
with their preferences, primarily due to two challenges in
grading: (i) some criteria proved difficult for human evalu-
ation (e.g., adherence to a target word count), and (ii) we
observed a “criteria drift” phenomenon, wherein criteria
evolved as participants graded more LLM outputs, affecting
both the definitions of existing criteria and the overall set of
criteria.

e Participants’ perceptions of alignment and their needs varied
based on the evaluator type (i.e., code-based vs. LLM-based).

We elaborate on these findings below, first describing the typical
participant workflow and highlighting areas where participants
sought to exercise control, then discussing the challenges they faced
in aligning assertions with their preferences.

7.1 Typical Participant Workflow

All participants (n = 9) engaged with the provided task, which
involved a prompt template for Named Entity Recognition (NER) on
a dataset of 100 tweets, as described in Section 6. Three participants
modified the prompt, with one opting to change the task from
NER to sentiment analysis. After finalizing their prompt choice,
participants generally followed this sequence of activities:

(1) Eyeballing LLM outputs: Participants reviewed the table
of 100 LLM outputs to assess their overall quality and rea-
sonableness.

Starting EvALGEN: Participants started EVALGEN, which

presented three options (Figure 2b): auto-generate criteria,

write criteria manually, or grade outputs before generating
criteria. Six participants chose auto-generation, one wrote

a criterion before auto-generating, and two opted to grade

first (P4, P9).

(3) Grading outputs: Those who graded first evaluated be-
tween 5 and 10 outputs, assigning 2 to 4 “thumbs-down”
grades, before proceeding to auto-generate criteria.

(4) Refining criteria: Upon receiving EVALGEN’s suggestions,
participants removed some and added one or two of their
own criteria. They typically maintained EVALGEN’s sug-
gested evaluation type (code-based or LLM-based), even in
rare instances where the suggestion seemed suboptimal (e.g.,
checking word count with an LLM API call, rather than
code).

(5) Grading more outputs: Participants graded outputs while
EvALGEN generated and evaluated candidate assertions.
Grading duration varied, with some continuing for up to
10 minutes and others stopping after 10 grades.

(6) Understanding alignment on graded outputs: Partici-
pants examined the “Report Card” screen, inspecting the
resulting assertion set. All but one participant (P9) readily
understood the concepts of coverage and false failure rate.
They reviewed various assertion implementations, including
those misaligned with their grades.

(7) Eyeballing alignment on ungraded outputs: Returning
to the main interface, participants executed all assertions

@

~

Shreya Shankar, J.D. Zamfirescu-Pereira, Bjérn Hartmann, Aditya G. Parameswaran, and lan Arawjo

Select main column variable:

Eval results

tweet_full_text

Done is better than perfect. —
Sheryl Sandberg #quote
#motivation #justdoit
https://t.co/J9lLdszdW6

Shout out to the Great Fire
Department and the tour! & &
Much love to NYC! “&H®

#hero #fdny #likesforlikes
#promo #music #instagood
#instadaily #postoftheday
#bestoftheday #justdoit #nike
#picoftheday...
https:/Jt.co/sFobQ2ukpo

There are some AMAZINGLY
hilarious Nike Ad memes

Find

Response

% & ©  Azure OpenAl

- sheryl Sandberg: Sheryl Sandberg is an
American technology executive, author, and
billionaire philanthropist. She is the Chief
Operating Officer (C00) of Facebook and the
founder of LeanIn.Org.

& @ & Azure Openal

- Great Fire Department: This refers to the New
York City Fire Department (FONY), which is
responsible for protecting the citizens and
property of New York City from fires and other
emergencies.

~ NYC: This refers to New York City, a major
metropolitan city located in the state of New
York, USA. Tt is known for its rich cultural
diversity and being a global hub for finance,
media, art, and entertainment.

- FONY: This stands for the New York City Fire
Department, mentioned previously, which is
responsible for providing fire suppression and
rescue services in the five boroughs of New York
City.

& ® & Azure Openal

~ Nike: A global sportswear and footwear brand

Bulleted
List

true

true

true

No
Made
up
Entities
true

true

true

only
A show

scores

No single
Hashtags ~ Sentence

true false

true false

true true

Figure 3: The Table View, showing inputs, LLM outputs, and
evaluation results per criteria for the NER task (Sec. 6).

7.2

=

on the full set of 100 LLM outputs and examined the results
table (Figure 3).

Iterating on criteria: Three participants revisited the EvAL-
GEN wizard to further refine their criteria and assertions.
Over half expressed interest in additional iteration, given
more time.

EvaLGEN Provides a Refinable Starting
Point for Assertions

Participants appreciated EVALGEN’s assistance in generating an
initial set of assertions, valuing the ability to exert control when
necessary. P8 summarized this sentiment: “This is how I would
want a workflow to assist me in evals—basically I want the Al to do
80% of it, and there can be escape hatches if the Al fails” Eight out
of nine found grading while waiting for EVALGEN to generate and
execute assertions to be a good use of time, though P7 suggested
showing what EVALGEN was doing with the grades.

7.2.1

LLM-generated criteria alleviates writer’s block. Eight out

of nine participants were pleasantly surprised by the suggested
criteria. P4 said, “I get writer’s block when thinking about what
assertions to write, so this is great” Participants who graded before
selecting criteria (P4 and P9) found this useful, with P9 realizing
it was “the correct thing to do” despite initially choosing it as the

“option that required the least thinking.”

7.2.2  Users want to continue refining assertions after reviewing align-
ment on graded results. In the Report Card screen, participants ap-
preciated seeing multiple assertion implementations and alignment
scores. Some wanted to grade more responses to improve alignment
(P1, P7). Participants liked seeing coverage and false failure rates
but desired per-criterion alignment information (P5, P6, P7, P8).
Participants really liked viewing the table of assertion results
on all LLM outputs, with all participants expressing interest upon
first viewing it (Figure 3). In this table, rows represent LLM outputs,
and columns represent assertions. P2 said that this table “earns
trust”; P5 said that it was “cool to see all the results on examples
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P1 P2 P3 P4 P5 P6 P7 P8 P9

6 5 3 4 5 3 1 2 5

Table 2: Ratings (1-7, 7 best) for the statement, “I felt like the
assertions aligned with my grades.” Responses were mixed.

[they] didn’t grade” Some participants, like P6, wanted automatic
recomputation and visualization of changes:

One thing I would find cool is if there is a way to easily
see how changes to my prompt impact the overall [cov-
erage and false failure rate] scores. Just very quickly
being able to visualize how [my prompt edit] changes
the classifications on a bunch of [LLM outputs.]

This suggests a desire for visualizations that compare orig-
inal and revised prompts, akin to LLM Comparator [25] and
EvalLM [28].

7.3 Alignment is Iterative, Criteria- and
Implementation-specific

Perceptions of the tools’ support of alignment were polarized across
participants, as shown in Table 2. Participants would say utterances
with a questioning tone, like “T guess” and “sure,” when grading, in-
dicating their uncertainty (P2, P5, P7, P8, P9). Looking more closely
at their interactions, we observed a catch-22 situation: participants
needed to externalize criteria in order to grade outputs, but they
also needed to grade outputs—providing feedback on why bad out-
puts were bad—in order to externalize criteria. Here, we explore
their challenges.

7.3.1 Criteria drift. Grading outputs spurred changes or refine-
ments in participants’ criteria, which we refer to as criteria drift.
We observed two types of drift. First, participants wanted to add
new criteria when they observed new “types” of bad LLM outputs
(P2, P5, P6, P8, P9). In the EVALGEN interface, they could not go
back and add new criteria; they had to wait for all candidate as-
sertions to finish executing, move past the report card screen, and
start a new EVALGEN process. Second, as participants graded more
outputs, we found that they reinterpret existing criteria to better fit
the LLM’s behavior (P2, P5, P6, P8, P9). For example, P2 and P8 had
a “proper noun” criterion, which was supposed to assess that “the
entities extracted were proper nouns.” At first, they rated as bad
any LLM outputs that contained any entity that was not a proper
noun. But, after observing that responses had varying numbers of
proper nouns, both wanted to change their criteria such that most
of the entities were proper nouns, rather than all. P9 appreciated
the ability to provide feedback on unsatisfactory outputs before fi-
nalizing the initial criteria set, as this process helped them articulate
their criteria. Twice, P8 mentioned that they gave a bad grade not
because they believed the output was bad, but because they wanted
to be consistent with previous grades—good labeling practice, per-
haps, but not good for alignment. P7 noticed that some outputs
included hashtags from the original tweet inputs (e.g., #justdoit),
while in other cases, the outputs did not use the hashtag symbol
but still mentioned the entities referred to by the hashtags (e.g.,
“Nike” instead of #Nike). This inconsistency led P7 to rethink the
criteria definition for including hashtags; specifically, whether it
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was acceptable for the LLM to replicate entities from hashtags, pro-
vided the hash (#) was removed. P5 expressed the same uncertainty.
“I think it’s hard to know until you see it,” P7 said.

7.3.2  Users prefer to adjust their grading approach based on the
difficulty of evaluating a criterion. Overall, participants generally
liked the process of grading LLM responses and feeling like the
grades were useful, but they wanted to prioritize grading criteria
they felt needed their alignment—especially for LLM-based asser-
tions (P3, P5, P7, P8). For example, P3 expressed that they would
trust the assertions more if the EVALGEN process allowed them to
set different false failure rates per criteria (since LLMs might be
worse at evaluating some criteria), instead of one global false failure
rate constraint for the entire assertion set:

There are criteria where you can be okay with failing,
and then there are other criteria where you are like, ‘this
must absolutely pass’... [T]here’s a [spectrum] of failure
as opposed to: it just passes or fails.

Relatedly, some participants expressed that they didn’t trust their
grades because they themselves couldn’t evaluate some criteria as
well as an automated solution (P2, P5, P6, P7, P8; we discuss further
in Section 7.4). A criterion like word count is hard for humans to
assess but easy for a good Python function to evaluate. P8 desired
to grade for only one criteria, reasoning that it might improve
efficiency (“I generally want to be in the loop for these tests...but I
want to put myself in the loop in a way that is efficient.”).

7.3.3  What constitutes “alignment” is subjective, especially when
converting natural language criteria to code-based assertions. For
code-based assertions, EVALGEN’s interpretation of the criterion
(i.e., GPT-4’s interpretation) did not match what the participants
expected. As such, no matter how many grades the participant gave,
all candidate assertions were similarly misaligned. Participants
who observed this were confused why their grades seemingly had
little impact on some of the chosen assertions (P3, P5, P7, P9). For
example, while all participants had a criterion to enforce that there
were no entities with hashtags in the output, some participants
interpreted this as any hashtags representing entities should not be
extracted as entities: e.g., if the output included the hashtag #Nike,
P5 did not want Nike to be extracted at all. On the other hand, P9
wanted Nike to be extracted as an entity, but they did not want the
LLM output to include the hash (#). Both P5 and P9 got the same
code-based assertion for the criterion, which simply checked for
the presence of the hash character in the output—this assertion
did not align with P5’s grades, but did with P9’s. This particular
misalignment can also be viewed as an instance of criteria drift,
as described in Section 7.3.1, since P5 was only able to refine the
criterion after grading several LLM outputs. For another criterion,
P5 felt that EVALGEN could not find a good assertion that aligned
with their grades, but also said that they were “lost at what would
be a good implementation”

Overall, alignment is not merely a matter of performance, i.e., the
idea that “a better LLM would do better”. Misalignment sometimes
occurred due to tacit criteria that participants held which was
not explicitly explained in natural language, e.g., one participant
preferred the entity “Nike” over “Nike Shoes” being extracted by the
LLM pipeline, while another participant was satisfied with “Nike
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Shoes” as the extracted entity. Like prior work has found for cross-
LLM comparison [1], this tacit understanding of criteria could be
highly subjective and contradictory across participants.

7.4 Alignment Needs and Preferences Differ for
Code vs. LLM Evaluators

All participants appreciated EVALGEN’s ability to generate both
code-based and LLM-based assertions, expressing the need for both
types. P4 and P6 liked the ability to correct EVALGEN’s suggested
type. However, participants wanted different approaches for con-
struction and iteration.

7.4.1  Users like having control over the evaluation type. Participants
had clear preferences for when to use code-based versus LLM-based
assertions. They generally preferred code for formatting checks,
count-based checks, and specific phrase inclusion/exclusion. LLM-
based assertions were favored for “fuzzy” criteria (P6, P8) or when
external knowledge was required. P2 opted for LLM-based asser-
tions when they couldn’t immediately think of a Python function
for the criteria. Interestingly, P8 sometimes preferred LLM-based
assertions due to their relative forgiveness with unexpected output
qualities or formats.

7.4.2  Users want to directly verify code-based implementations. For
code-based assertions, many participants (P2, P5, P7) wanted to see
and select the best Python function themselves, rather than relying
on EVALGEN’s selection process. P5 stated, “When something can be
solved using Python code, I do have an envisioned [implementation]
in mind that I can easily verify. Just showing [me] the [code] will
be quicker” P7 suggested iterating on code-based assertions by
providing feedback to make them more or less “fancy,” though they
acknowledged that this depends on code complexity.

7.4.3 LLM-based assertions are harder to trust. While participants
found EVALGEN’s suggested code-based assertions to be more ob-
viously misaligned than the LLM-based assertions (Section 7.3.3),
they also found LLM-based assertions harder to trust. This was pri-
marily because they could edit code-based assertions more easily
(P2, P5, P6, P8, P9). Some participants (P3, P6, P8) were skeptical
about using LLM-based assertions in production pipelines. P8 ex-
pressed, “I cannot begin to think about how LLMs as validators
[in production] can work, I'm very skeptical” P9 raised concerns
about maintaining evaluations over time, asking, “How do I main-
tain my evals over time; do I have to rerun this entire process?”
One suggestion was an interface that continually realigns LLM-
based assertions, possibly involving end-users of the LLM pipeline.
Several participants (P3, P4, P5, P7) wanted EVALGEN to use their
grades and feedback in prompting LLMs for candidate assertions.
Some (P3, P5) even suggested including labeled LLM outputs in the
prompts for LLM-based assertions. This suggests an optimization
loop akin to ConstitutionMaker and DSPy [27, 42], but for assertion
generation and validation, rather than prompt optimization.

8 DISCUSSION

8.1 Implications of Criteria Drift

The practice of benchmarks in ML and NLP presume a world of
well-defined criteria (and well-labeled data) on which to judge
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LLM outputs. For instance, AUTOCALIBRATE is a method to cali-
brate LLM evaluators with human preferences that requires large
expert-labelled datasets with settled (i.e., established upfront) cri-
teria [35]. However, in practice, we found that developers rapidly
iterate over criteria, and furthermore that cognitively engaging with
LLM outputs helps them to refine their criteria. This suggests crite-
ria refinement and grading should happen in tandem in interactive
settings, and poses challenges to alignment methods that presume
settled, expert labels. Future system designs should support these
requirements. A system might adjust criteria dynamically as the
user grades and gives feedback. Per-criteria grading and including
examples of both good and bad LLM outputs within LLM-based
evaluator prompts could be beneficial. However, whenever outputs
change, we may need to ask users to re-grade or re-think their cri-
teria. The dependence of criteria on LLM outputs implies that users
cannot build evaluations independently from prompting LLMs—and
assessing the outputs.

Our criteria drift finding echoes prior work in educational set-
tings, where instructors often update grading rubrics to reflect
common errors [50]. Evaluation assistants might pursue crowd-
sourcing methods to determine accurate grades for LLM outputs
(e.g., majority voting, self assessments) [8, 10, 39]. Another chal-
lenge is extending adapted criteria to grade both ungraded and
future unseen LLM outputs. How do evaluation assistants consis-
tently sample grades for outputs that reflect the overall distribution
of LLM pipeline successes and failures?

The reader might wonder when criteria “settle” Perhaps there
was simply not enough time in our study, and had participants
graded for an hour or two, they might have solidified their criteria,
and criteria drift goes away. There is reason to believe that this
situation does not change with more time—as we saw, the criteria
participants refined changed to adapt to the behavior of the LLM
outputs being evaluated—a dependent, rather than independent as-
sessment of quality. In the real world, similar situations exist where
criteria are never “fully settled” as more inputs come in—consider
the court of law. One of our participants remarked that people
“know a bad output when they see it” Their adage reflects a U.S.
Supreme Court Justice’s famous opinion in a 1964 court case about
obscene content [18]. As in that remark, the decisions of human
validators seem at first glance “to be based on a non-rational, in-
tuitive gut reaction, instead of reasoned analysis; it seems to be
utterly subjective and personal” [18, p.1025]. However, as the law
scholar Gewirtz argues, perhaps subjectivity is not necessarily a
sign of irrationality (contrasting with some imagined future Al that
is entirely objective and rational, entirely “aligned” or “better” than
humans). On the contrary: “There are good reasons to accept the
imperfect in a judge. We should encourage judges to believe and
say: This is the best I can do now; it doesn’t solve all the problems,
but it’s a start, and T'll keep thinking” [18, p.1027]. This raises a
deeper epistemic question for evaluation assistants—is “alignment”
an actualizable goal? To what extent does our common terminology
and assumptions—e.g., that there is a “ground truth” set of labels
we merely need to elicit—fail us? Is validating the validators only
ever a work-in-progress?
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8.2 Operationalizing Assertions

Participants expressed the desire to deploy their assertions in pro-
duction, either in the critical path of the LLM pipeline or in a more
passive deployment. Assertions have different operational require-
ments, and as criteria change over time, evaluation assistants should
adapt assertion sets.

Our study confirmed the necessity for both code-based and
LLM-based assertions, with participants feeling each type required
distinct treatment. Code-based assertions, often useful for sanity
checks, can be used in the critical path of the LLM pipeline. In
fact, a number of LLMOps tools exist for users to implement such
code-based guardrails [20, 23, 45]. However, our participants high-
lighted the challenge of finding the right implementation for a given
assertion—which can depend on the characteristics of LLM outputs.
For example, determining the acceptable length of a response might
vary significantly based on the observed output distribution.

Some participants wanted their collaborators to grade outputs
in EVALGEN. When allowing multiple users to collaborate on grad-
ing, evaluation assistants must consider inter-rater reliability and
handle disagreements. Interfaces similar to creating a “pull request”
for a new assertion and workflows akin to continuous integra-
tion/continuous deployment (CI/CD) could be beneficial for team
collaboration.

8.3 Future Work and Limitations

The potential of evaluation assistants extends beyond EVALGEN’s
supported binary judgments. For instance, rather than setting rigid
thresholds for criteria like word count, it might be more useful to
monitor variations across different LLM outputs. Like in traditional
ML monitoring [47], there is still imprecision in what counts as
"bad,’ given the distribution of outputs. Tracking finer-grained in-
formation in evaluations, beyond simple true/false conditions, can
aid in debugging issues within LLM pipelines once a user knows
the output is bad. Additionally, evaluation assistants can facilitate
end-to-end alignment in chains of multiple LLM calls[1, 12, 15, 56]
or compound Al systems [58], addressing the challenges that arise
in these more complex setups. Moreover, users increasingly want
their prompts to automatically improve based on assertion results.
Some frameworks already experiment with using feedback from as-
sertions or user grades to refine prompts [36, 42, 51]. Incorporating
this into an evaluation assistant could foster a co-evolutionary en-
vironment where prompts, assertions, and evaluative mechanisms
are continuously refined in a unified interface.

Our study has two main limitations: our offline evaluation fo-
cused on only two pipelines, and our qualitative study involved
a small sample of experienced LLM developers. Moreover, partici-
pants did not have enough time to iterate many times in EVALGEN,
and our setup did not cover the deployment phase of LLM work-
flows. Future work might explore best practices and pitfalls of
evaluations in the broader LLMOps lifecycle.

9 CONCLUSION

This work presented EVALGEN, a mixed-initative approach to align-
ing LLM-generated evaluation functions with human preferences.
EVALGEN assists users in developing both criteria for acceptable
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LLM outputs and functions to check these standards, ensuring eval-
uations reflect the users’ own grading standards. In a qualitative
study with 9 expert users, we observed a pattern we call criteria
drift, where users refine their evaluation standards as they grade
more LLM outputs. Recognizing the mutual dependency of criteria
on LLM outputs highlights new directions for designing future
evaluation assistants.
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Figure 4: Alignments for assertion sets that result from dif-
ferent policies to sample grades from the user. Each policy
was tested across 10 trials, with each involving a sample of 16
LLM outputs. Randomly sampling LLM outputs for grading
introduces significant variance in alignment across the entire
dataset.

A ALGORITHMS FOR SELECTING
ASSERTIONS & ELICITING GRADES

A.1 Assertion Selectivity and Impact on LLM
Output Quality Confidence

One way to establish confidence in whether an LLM output is
problematic is to assess the selectivity, or pass rate, of assertions
that fail it. Intuitively, assertions that frequently fail outputs (low
selectivity) provide limited insight into output quality. For example,
an assertion that trivially fails every output offers no discernment
and has a selectivity of 0.

EVALGEN leverages selectivity estimates of assertions to assign
a confidence score to each LLM output, indicating the likelihood
it is of poor quality. The rationale is straightforward: an output is
more likely to be problematic if failed by assertions known for their
high selectivity. Concretely, for a set of assertions F where each
assertion f € F returns 1 for a pass and 0 for a fail, we calculate the
confidence score for an LLM output e as follows:

o(e) = Z selectivity (f) x f (e)
feF
The score o is always non-negative. A score of 0 means no
assertions have failed the output, indicating a higher likelihood of
quality, while lower scores, resulting from failures by non-selective
assertions, point to uncertainty or potential issues with the output.

A.2 Sampling Grades

Given that users may not want to grade so many outputs in the
EvALGEN interface, choosing which outputs for users to grade is
crucial for aligning the system’s evaluations with user expectations.
Randomly selecting outputs without considering their predicted
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quality can lead to misalignment, especially if the selected samples
aren’t representative of the entire dataset. Prior work also under-
scores the importance of soliciting a representative graded sample
of LLM outputs [3, 48].

Given o scores as previously defined, we consider a number of
strategies to sample outputs for grading:

e Random: Sample outputs at random (uniformly)

e Highest: Sample the outputs with the highest o. This ap-
proach focuses on potentially problematic content.

e Lowest: Sample the outputs with the lowest o, prioritizing
outputs that don’t fail any assertions or fail low-selectivity
assertions.

o Alternating: Alternate between high and low o, aiming for
a diverse sample with both bad and good outputs.

In Section 5, we test these strategies against a random baseline
on two different LLM pipelines. We employ an alternating sampling
policy for the EVALGEN user studies. We do not claim to have the
best sampling policy; we chose an alternating policy with the hope
that it would solicit a balanced sample of good and bad grades.

One may wonder why we do not list a policy that ranks the
outputs by score and samples the middle for grading. While this
might seem akin to seeking out uncertain cases—as is common
in active learning—our scores represent the likelihood of outputs

being poor. They do not differentiate between good and bad per se.
Therefore, outputs with low scores may still vary widely in quality,

reflecting our system’s uncertainty.

A.3 Evaluation of Sampling Policy

We described in Appendix A.2 four options we considered to sample
LLM outputs: random, highest, lowest, and alternating. Here, we
compare EVALGEN’s sampling policy, alternating, to these other
three baselines. For this experiment, we sampled 16 outputs to
grade, but in practice the user can grade more or fewer. Using the
same LLM pipelines as described in Section 5.1, to assess sampling
variance, we conducted 10 trials for each of the four sampling
policies—where, for each trial, we kept the same set of candidate
assertion functions.

The findings, shown in Figure 4, reveal that the random sampling
policy exhibits a large variance in alignment. This inconsistency
could lead to user frustration, particularly if the effort spent in
grading outputs results in assertion sets with unpredictable rele-
vance to their specified criteria. The alternative sampling strategies,
which weight the probability for an LLM output to be graded by
the selectivity (i.e., pass rate) of assertions that fail it, consistently
yielded higher alignment scores across the entire datasets than the
random policy. Notably, while the alternating policy didn’t consis-
tently outperform, our results suggest that any non-random policy
implemented in EVALGEN may achieve satisfactory outcomes.

In this offline study, as shown in Figure 4, there’s no variation in
the outcomes of the non-random policies because they are determin-
istic. However, in real-world use, EVALGEN updates its predictions
as it receives new information, so there could be some differences
in results over time. Initially, when users start grading outputs in
EvALGEN, they might effectively be grading random outputs for
the first one or two outputs, as the o scores update and stabilize.
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B TASK PROMPTS

We prepared two prompts and corresponding datasets for tasks to
present users (5.1). Both pipelines were adapted from prior work [22,
57] and correspond to medical record processing and a product
description writing, respectively. The medical pipeline prompt is
as follows:

You are extracting insights from some medical records. The records
contain a medical note and a dialogue between a doctor and a patient.
You need to extract values for the following: Chief complaint,
History of present illness, Physical examination, Symptoms
experienced by the patient, New medications prescribed or changed,
including dosages (N/A if not provided), and Follow-up instructions
(N/A if not provided). Your answer should not include any personal
identifiable information (PII) such as name, age, gender, or ID. Use
"the patient" instead of their name, for example. Return your answer
as a bullet list, where each bullet is formatted like ‘chief
complaint: xx.¢ If there is no value for the key, the value should be
‘N/A‘. Keep your response around 150 words (you may have to summarize

some extracted values to stay within the word limit).

{transcript}
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And the product pipeline prompt is as follows:

You are an expert copywriter. You need to write an e-commerce product
description based on the product details and customer reviews. Your
description should be SEO-optimized. It should use an active voice
and include the product’s features, benefits, unique selling points
without overpromising, and a call to action for the buyer. Benefits
describe how product features will work for the buyer, addressing
exactly how the product will improve their lives. Clearly distinguish
between features (e.g., lightweight, USB-chargeable) and benefits
(e.g., convenience, nutritious drinks on-the-go). Don’t mention
weaknesses of the product or use generic or repetitive language.
Don’t make up review text or quotes. Don’t include any links. Don’t
cite the reviews too heavily. Divide your description into readable
chunks divided by relevant subheadings. Keep your description around

200 words, no more than 300, in Markdown format.

{document}
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