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ABSTRACT 
Due to the cumbersome nature of human evaluation and limitations 
of code-based evaluation, Large Language Models (LLMs) are in-
creasingly being used to assist humans in evaluating LLM outputs. 
Yet LLM-generated evaluators simply inherit all the problems of 
the LLMs they evaluate, requiring further human validation. We 
present a mixed-initiative approach to “validate the validators”— 
aligning LLM-generated evaluation functions (be it prompts or 
code) with human requirements. Our interface, EvalGen, provides 
automated assistance to users in generating evaluation criteria and 
implementing assertions. While generating candidate implemen-
tations (Python functions, LLM grader prompts), EvalGen asks 
humans to grade a subset of LLM outputs; this feedback is used to 
select implementations that better align with user grades. A qual-
itative study fnds overall support for EvalGen but underscores 
the subjectivity and iterative nature of alignment. In particular, we 
identify a phenomenon we dub criteria drift: users need criteria to 
grade outputs, but grading outputs helps users defne criteria. What 
is more, some criteria appear dependent on the specifc LLM outputs 
observed (rather than independent and defnable a priori), raising 
serious questions for approaches that assume the independence of 
evaluation from observation of model outputs. We present our in-
terface and implementation details, a comparison of our algorithm 
with a baseline approach, and implications for the design of future 
LLM evaluation assistants. 

CCS CONCEPTS 
• Human-centered computing → Interactive systems and 
tools; • Computing methodologies → Natural language pro-
cessing. 
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1 INTRODUCTION 
Large Language Models (LLMs) make mistakes—they hallucinate, ig-
nore instructions, and generate invalid or uncalibrated outputs [26]. 
But validating the behavior of LLMs is challenging. In response, 
researchers and industry developers have created tools for prompt 
engineering and auditing that help people with testing outputs 
more systematically [1, 17, 24, 25, 28, 37, 44, 55]. Such approaches 
require metrics, i.e., functions that automatically score LLM outputs, 
each typically an assertion with true or false values. These metrics 
increasingly include calls to “evaluator” LLMs, e.g., [1, 28, 55, 61], 
that act as “judges,” grading outputs on qualities hard to articulate 
in code; for instance, the “conciseness” of an output. 

While LLM-based validators are commonly used in practice and 
can be efective, crafting these validators—both code-based and 
LLM-based—so that they align well with user preferences remains 
challenging. Finding the right prompt for LLM-based assertions 
is difcult, e.g., they are unintuitively sensitive to seemingly mi-
nor changes in wording or structure [46], as is crafting code-based 
assertions, such as choosing the appropriate regex. This process 
can be time-consuming and is not well-supported by current tools. 
How can users reap the efciency benefts of LLM-assisted evalua-
tion of LLM outputs, while ensuring alignment with their specifc 
preferences? How can we help users craft and validate efective 
validators? 

In this paper, we propose a mixed-initiative approach, EvalGen, 
to address this automated-evaluation alignment problem in the con-
text of prompt engineering. Our approach streamlines the selection 
of metrics under practical constraints of user efort and latency. 
Specifcally, an LLM suggests criteria in natural language, based on 
user context (e.g., the prompt under test), that the user can modify. 
An LLM then generates a pool of candidate assertions for each 
criterion—either code or LLM grader prompts that output “true” or 
“false.” While the user waits for the LLM to generate candidates, 
they are asked to grade outputs with a simple “good” (thumbs-up) 
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or “bad” (thumbs-down) voting scheme. These grades then guide 
the automatic selection of assertions that optimize for alignment 
with user preferences. After assertion selection, a fnal report card 
reveals the alignment between the chosen assertions and the user’s 
grades. Our approach generalizes beyond the particulars of our spe-
cifc design, and could be extended to, for instance, update metric 
implementations with feedback from human preferences, or query 
the user for fner-grained individual grades. 

EvalGen is embedded inside an existing open-source interface 
for prompt engineering and auditing, ChainForge [1]. Our align-
ment algorithm adapts SPADE [48], a fully-automated algorithm for 
generating Python assertions from the revision history of a prompt. 
We performed an ofine verifcation of our human-guided align-
ment algorithm versus SPADE, then ran a qualitative user study 
with nine (9) industry practitioners who use LLMs in production 
contexts. Since our participants were industry practitioners and 
thus possibly dealing with NDA-protected data, we ofered a task 
adapted from a real LLM pipeline prompt. Our study design did not 
impose restrictions on how participants used EvalGen, and users 
could choose whether to ask the tool to suggest criteria, enter cri-
teria manually, or grade a few LLM outputs frst before proceeding 
to the criteria specifcation screen. 

Our study fnds overall support for EvalGen, with one important 
caveat. We observed a “catch-22” situation: to grade outputs, people 
need to externalize and defne their evaluation criteria; however, the 
process of grading outputs helps them to defne those very criteria. 
We dub this phenomenon criteria drift, implying that it is impossible 
to completely determine evaluation criteria prior to human judging of 
LLM outputs. Even when participants graded frst, we observed that 
they still refned their criteria upon further grading, even going back 
to change previous grades. Thus, our fndings suggest that users 
need evaluation assistants to support rapid iteration over criteria 
and implementations simultaneously. Since criteria are dependent 
upon LLM outputs (and not independent from them), this raises 
questions about how to contend with criteria drift in the context 
of other “drifts”—e.g., model drift [5], prompt edits, or upstream 
changes in a chain. Our fndings also (i) underscore the necessity 
of mixed-initiative approaches to the alignment of LLM-assisted 
evaluations that also embrace messiness and iteration, and (ii) raise 
broader questions about what “alignment with user preferences” 
means for evaluation assistants. 

We frst position our work (Sec. 2) and present EvalGen’s design 
(Sec. 3) and implementation details (Sec. 4). We then present two 
evaluations: an of-line evaluation of our approach (Sec. 5), and a 
qualitative study with developers (Sec. 6 & 7). Finally, we suggest 
implications for future work (Sec. 8). 

2 MOTIVATION AND RELATED WORK 
In response to the popularity of black-boxed LLMs like ChatGPT, 
prompt engineering (PE) has emerged as a new practice and re-
search area. Alongside PE is the auditing of model behavior in 
practices such as “red-teaming,” used to identify harmful outputs in 
internal teams to tweak LLM behavior, usually prior to release [33, 
p.17]. These tasks have spurred the advent of new tools for “LLM 
operations” (hereafter called LLMOps) and new terminology such 
as “prompt template”, “chain of thought”, “agents”, and “chains.” 

Automating Evaluations of Prompts. When evaluating LLM 
behavior, users typically send of hundreds or thousands of queries 
to models. As users reach the limits of manual evaluation, users 
set up automated evaluation pipelines (Figure 1a) in code or with 
other LLMs. Here we use the term LLM-based evaluators; other 
work uses terms such as “LLM-as-a-judge” [61] or “co-audit” [19]1. 
Public PE tools like promptfoo [55] and ChainForge [1] allow users 
to write their own evaluation metrics to score LLM response qual-
ity, and support both code-based and LLM-based evaluators. For 
instance, in promptfoo, users can write a rubric in a confg fle to 
specify how an LLM should evaluate responses, and may use pre-
created grader prompt templates or customize them; an example is 
the assertion “the response is not apologetic.” Prototypes such as 
EvalLM [28] and PromptsRoyale [43] also support LLM evaluators, 
oftentimes exclusively, to help users compare between two prompts. 
Of PE tools, only EvalLM ofers a way to help users calculate the 
alignment of LLM evaluators with their expectations, but this fea-
ture is mentioned only in the design section of the paper and is 
absent from the user study. At best, users of PE tools inspect LLM-
generated evaluator outputs manually to double-check; at worst, 
the tool hides individual scores entirely. Regardless of aligning met-
ric implementations with user preferences, even identifying what 
metrics to evaluate for custom tasks remains challenging for LLM 
practitioners [40]. While many evaluation tools require users to 
declare metrics they care about, some prior work [48] and EvalGen 
employ LLMs to propose custom metrics based on prompts in the 
user’s LLM pipelines. 

Over-trust and Over-generalization of LLM Behavior. That 
tools provide little assistance to validate evaluator quality is alarm-
ing, considering that other research shows people tend to over-rely 
and over-trust AI systems [4, 29, 32, 53]. For instance, in one high-
profle incident, researchers from MIT posted a pre-print on arXiv 
claiming that GPT-4 could ace the MIT EECS exam. Within hours, 
work by Chowdhuri et al. debunked the study [6], citing problems 
arising from over-reliance on GPT-4 to grade itself. Other work 
has found further reasons to be cautious: LLMs asked to choose 
the best response from a set can be consistently biased by set or-
dering [31, 54]; and LLMs can be highly sensitive to seemingly 
innocuous formatting changes [46]. 

A related problem to over-reliance is over-generalization. Zam-
frescu et al. [60] found that users unfamiliar with PE tend to over-
generalize from single failures (causing them to throw out poten-
tially good prompts), rather than having a holistic view of the 
overall performance of a prompt or chain. This was despite the 
fact that the interface had support for systematic testing. Similarly, 
Arawjo et al. [1] found that even people familiar with LLMs (de-
velopers, academics in ML) struggled to scale up their evaluations, 
appearing to over-generalize from a limited number of outputs 
even after an automated evaluation pipeline was setup. The authors 
identifed three modes of PE on open-domain tasks, with the sec-
ond, “limited evaluation,” characterized as users “prototyping an 
evaluation” [1], and suggested that future work focus on supported 
users in prototyping evaluation pipelines. Over-generalization is 
common in traditional ML, too–Kocielnik et al. [30] found that AI 
1An analogous problem exists in software engineering as well: developing a set of 
assertions, often in the form of a set of unit tests or regression tests, that give developers 
confdence that their code is correct and that code changes do not (re)introduce bugs. 
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Figure 1: EvalGen’s approach to assisting users in aligning evaluations. Users iterate through the process of refning criteria 
and grading. Note that LLM pipeline inputs and outputs are provided by our larger system, and outside the scope of this paper. 

systems that showcase subsets of errors, like false positives or false 
negatives, that have the same accuracy, can lead to vastly diferent 
perceptions of accuracy. 

Approaches to Aligning LLMs. The HCI community has ex-
tensively studied interactive machine learning (iML). In iML, users 
iteratively develop models by selecting training examples, labeling 
data, and evaluating model performance [11]. Interfaces that facili-
tate seamless transitions between these activities result in fewer 
errors and outputs that better match users’ expectations [41, 49]. 
Some iML interfaces even use ML to assist users, for example, in 
scaling up labeling, reducing overall user efort required [9]. When 
using iML concepts for developing LLM pipelines, we must acknowl-
edge a key challenge with LLMs: they often work with little to no 
specifc training data [40]. Users may simply prototype with inputs 
they imagine the LLM would see, hoping the prompt generalizes. 

In the ML and NLP communities, researchers have explored 
many ways to align LLMs—and their evaluations—to specifc user 
tasks. Many approaches rely on custom model training or fne-
tuning [7], but all strategies heavily rely on humans to identify 
examples of desirable and undesirable outputs. For instance, Liu 
et al. [35] demonstrated using annotated LLM outputs—judged on 
criteria like consistency and relevance—as “few-shot examples” for 
calibrating LLM-based evaluators. Beyond classical summarization 

and NLP tasks, in response to the ad-hoc tedium of PE [59], aca-
demics and developers are building automated prompt optimization 
tools, maximizing some user-defned metric on a labeled set of ex-
amples. For instance, given some metrics and prompts, Khattab 
et al. [27] automatically run variations of inserted few-shot exam-
ples and LLM-generated rephrasings to optimize the prompt. Other 
work urges users to write assertions to guide outputs with a mix of 
code and natural language suggestions [45, 51], but writing these 
assertions is left up to developers, which is often time-consuming 
and error-prone. A broader point is that research in LLMOps opti-
mization tends to come from the domains of NLP and ML, where 
authors generally validate tool performance against benchmark 
datasets with pre-defned metrics, leaving open the question of 
how well they perform in the wild on idiosyncratic user tasks, e.g. 
EvoPrompt, PromptBreeder, and AutoCalibrate [13, 21, 35]. It thus 
remains unclear how to support developers in their prototyping of 
evaluations, with the problem becoming even more pressing as the 
popularity of prompt optimization increases. 

Overall, this work reveals that users need more support for (a) 
prototyping evaluations and (b) validating evaluators of LLM out-
puts. It also reveals that auditing LLM outputs is far from easy, with 
humans prone to the dual biases of over-generalization and over-
reliance. One recent LLM-assisted approach, SPADE [48], makes 
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headway on these issues, helping developers generate Python as-
sertion functions for LLM outputs from prompt history. Here we 
leverage a similar algorithmic approach to SPADE, but embed it 
inside an LLM-assisted user interface for evaluator prototyping, 
EvalGen, that also assists with criteria generation, measuring align-
ment with human preferences, and visualizing results. 

3 EVALGEN DESIGN 
In designing EvalGen, our goal was (1) to investigate how to assist 
developers in creating evaluators to grade LLM outputs, and (2) to 
help them “validate the validators” through both automated assis-
tance and transparency around how aligned each evaluator is with 
their expectations. As we covered in Section 2, emerging practices 
in prompt engineering, LLM auditing, and prompt optimization 
involve the writing of evaluation functions (metrics) to automate 
grading. These functions may be code- or LLM-based. Based on this 
context, we set out to design an LLM-powered evaluation assistant 
that provided developers control over metric criteria, evaluator type 
(code or LLM), and implementation (i.e., function) generation and 
selection processes, without asking them to come up with criteria 
or write code or grader prompts themselves.2 

3.1 EvalGen Workfow 
We implemented EvalGen in an existing open-source system for 
prompt engineering, ChainForge [1], which handles querying multi-
ple LLMs with parametrized prompts, running code- and LLM-based 
evaluators, plotting scores, and chaining. In ChainForge, users write 
LLM pipelines by creating nodes of various types to represent their 
datafow, such as an “input” node feeding into a “prompt” node. 
We discuss here only our extension, chiefy a pop-up screen that 
helps the user defne, implement, and validate evaluation functions. 
We also implemented a new node, Multi-Eval, that allows users to 
include multiple evaluators in a single node and run all evaluators 
on the outputs of the pipeline’s previous node. Finally, we made 
improvements to plotting per-criteria scores in the Table View of 
the LLM output inspector, which can be accessed via the Multi-Eval 
node. Fig. 1b provides a high-level overview of the EvalGen archi-
tecture compared to the typical LLM output evaluation pipeline; 
we discuss implementation details in Sec. 4. 

Figure 2 depicts the workfow of in the context of the EvalGen 
interface, excluding returning to the main workfow with selected 
implementations and using the Table View to inspect scores. Eval-
Gen assists a developer in engineering an evaluation of LLM outputs 
for a single prompt template. First, EvalGen is accessed as a button 
on a “Multi-Eval” node we added to ChainForge, which is attached 
to a Prompt Node (Fig. 2a). A Wizard opens, depicting three options 
(Fig. 2b): Infer, Manual, and Grade First. A description of EvalGen 
(not shown) appears above the options. Clicking Infer or Manual 
leads to the Pick Criteria screen (Fig. 2c); clicking Grade First leads 
to the Grading screen (Fig. 2d) and asks users to grade at least fve 
outputs, before continuing to the Pick Criteria screen. 

The Pick Criteria interface is depicted in Fig. 2c. An LLM has 
generated criteria suggestions in natural language (Sections 4.1 and 

2To clarify our terminology throughout the paper: an evaluator is, broadly, some entity 
that assesses LLM output quality, while an assertion is the specifc implementation 
generated by EvalGen that performs the evaluator role. 

4.2), along with a toggle to prefer a Python code-based or LLM-
based evaluator. The user can edit all parts—including the titles or 
descriptions and type of evaluator—or add new criteria not sug-
gested by the LLM. They can also delete criteria or deselect criteria 
as needed. Our design choice to use binary criteria (true/false out-
puts) for validators refects common industry practice, as seen in 
tools such as LangChain [12], PromptFoo [55], and Guardrails [20]. 
Pressing “Implement It” passes the criteria to a second LLM that 
generates candidate implementations. 

While implementations are generated and executed on LLM 
outputs, users are asked to grade outputs. EvalGen uses these 
grades to pick implementations that align best with their prefer-
ences. Fig. 2d depicts the Grading screen. A single LLM response is 
presented to the user, centered in focus in the grader window. The 
context of the prompt and any input variables (vars) is also present. 
The user grades outputs via the Good and Bad buttons. Since it 
may be time-consuming to ask the developer to grade on a per-
criterion basis, for the grader interface we decided on the simplicity 
of thumbs-up/down scoring. Such scoring is a noisy yet informative 
signal of output quality—if a response is given a thumbs-up, it is 
assumed to pass all criteria, and so if a candidate assertion fails on 
that response, the candidate is down-ranked in the pool (details in 
Section 4.1). Importantly, to address the limitations of binary feed-
back, users can additionally provide natural language feedback on 
outputs they grade as bad. Users may also click arrows to navigate 
through outputs (e.g., if they want to revise a prior grade).3 

Finally, after the user is done grading and all candidate imple-
mentations are generated, executed, and fltered for alignment with 
grades, a Report Card screen appears with feedback on per-criteria 
and aggregate measures of alignment with user grades (Fig. 2e). 
Hovering over per-criteria metrics shows a confusion matrix of 
how aligned that particular criterion is to the human grades, while 
the aggregate metrics show the coverage and false failure rate (see 
Section 5) of the selected subset of EvalGen-generated assertions. 
The user then returns to the main ChainForge interface (not shown), 
where the selected implementations are available in a “Multi-Eval” 
node, titled by criteria. The user can edit or add more criteria, in-
spect and visualize evaluation results (Fig. 3), etc.; however, this is 
outside the scope of our design discussion. 

Our design refects trade-ofs between developer efort and ro-
bust human verifcation of LLM-generated metrics. The human 
cannot completely validate an LLM-based evaluator: the point of 
LLM evaluators is to reduce the efort required by the developer, 
who would otherwise have to grade outputs manually. The only 
way to fully align an LLM evaluator would be to ask the user to 
label all outputs; obviously, this defeats the purpose. Asking the 
developer to grade some outputs using some time they would have 
spent waiting anyway, is the key idea behind our design. 

3We initially used a progress bar for grading a preset number of outputs. However, 
calling LLMs and executing assertions take an indeterminate amount of time: sug-
gesting an “end point” to user grading may lose valuable information when the user 
still has to wait for generations to return. The user may also fnd grading enjoyable 
or important. As such, we did not seek to limit user grading. However, we kept this 
progress bar in the Grade First screen (accessed via Fig.2b). 
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Figure 2: The workfow of our EvalGen prototype, from (a) a Prompt Node attached to an empty Multi-Eval Node, showing a 
Generate Criteria button; (b) the pop-up EvalGen Wizard with three options, Infer, Manual, and Grade First; (c) the Pick Criteria 
screen, allowing users to describe criteria in natural language and toggle Code or LLM implementations; (d) the Grade screen, 
with the LLM output (top), input variables (left), and prompt (right), Good and Bad grade buttons, and an “I’m Tired” button 
(bottom-right) to fnish; and fnally (e) the Report Card screen, showing the alignment of each criteria and across criteria. 
Hovering over the alignment shows a confusion matrix. Note that some descriptions and elements have been clipped for space. 

4 IMPLEMENTATION 
4.1 System Architecture 
Like prior work on evaluator assistants [28, 48], our solution decom-
poses evaluations into criteria and assertions (boolean functions that 
implement the criteria by evaluating outputs). We employ LLMs in 
generating criteria, based on the prompt [48], and in generating var-
ious candidate implementations of each criterion [28, 48]. As users 
grade, we rank candidate assertions that implement each criterion 
based on their alignment with user grades (see Section 4.2 for how 
we defne alignment). At a high level, alignment is a combination 
of the assertion’s coverage, or ability to catch erroneous outputs 

that the user also thinks are bad, and its false failure rate, i.e., how 
often are failures fagged incorrectly, a measure of its ability to not 
erroneously fail outputs that the user thinks are good. 

EvalGen’s architecture difers from prior work in two main com-
ponents: frst, EvalGen solicits grades from the user on a sample 
of LLM outputs—requiring some policy to sample LLM outputs to 
grade. Second, in contrast to SPADE [48], which operates ofine 
and solves an integer linear program to generate the optimal as-
sertion set, EvalGen employs an online (i.e., streaming) system 
architecture to progressively optimize for the most aligned asser-
tion set. Our system, as depicted in Figure 1b, is structured into 
three components: 
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Criteria Suggestion. We use GPT-4 to propose various binary 
evaluation criteria in natural language. Developers can select from 
these suggestions or add their own criteria, choosing whether each 
should be evaluated with a purely code-based function or a function 
that involves calls to another LLM. 

Candidate Assertion Synthesis and Execution. Based on the 
selected criteria, we use GPT-4 to asynchronously generate one or 
more candidate assertions as code or a grader prompt. For each 
criterion, we issue one call to GPT-4 to generate multiple candidate 
assertions (within JSON markers) in a streaming fashion. Every 
time we detect the end of a marker in any GPT-4 response, we parse 
the candidate assertion and submit it to EvalGen’s executor, which 
will run it on LLM pipeline outputs. 

Grading Sampler. This component samples LLM pipeline out-
puts for the user to give binary feedback on (thumbs up/down). 
When the user grades an LLM output, we update internal estimates 
of alignment for each candidate assertion, and we sample the next 
output for the user to grade. 

Once the user does not want to grade LLM outputs anymore, 
or is fnished grading all outputs, for each criterion, we select the 
candidate assertion with the highest alignment with the user’s 
grades. The user can provide a threshold for the false failure rate 
(as defned in Section 5) such that EvalGen only selects assertions 
that do not exceed this threshold. 

4.2 Selecting Assertions & Eliciting Grades 
EvalGen maintains dynamic estimates for the following: 

Selectivity of Candidate Assertions and Confdence Scores 
for Potentially Poor Outputs. The selectivity is the probability 
that an assertion will classify an LLM output as passing and is 
adjusted each time EvalGen executes a candidate assertion on an 
LLM output. We also maintain a confdence score for each output, 
which estimates the likelihood that an LLM output is of low quality, 
without having been explicitly evaluated by the user. The scores 
are dependent on assertion selectivity and are revised whenever 
EvalGen evaluates a new assertion against an LLM output, or when 
a user grades an LLM output directly. 

Assertion Alignment. For each criterion, we select the candi-
date assertion with the highest alignment score. We adopt notation 
from Shankar et al. [48] in defning alignment. Formally, let � be a 
set of LLM pipeline input-output pairs and � : � → 0, 1 represent 
an assertion. Let � be a binary vector, where �� ∈ {0, 1} represents 
whether the user thinks an LLM output �� is bad (0 is bad, 1 is good). 
Suppose � = �1, �2, . . . , �� is a set of � assertions. The coverage 
and false failure rate (FFR) of � are represented by the following 
equations: Í 

� I [�� = 0 ∧ (∃� ∈ �, � (�� ) = 0)] 
Coverage (� ) = Í 

� I [�� = 0]Í 
� I [�� = 1 ∧ (∃� ∈ �, � (�� ) = 0)] 

FFR (� ) = Í 
� I [�� = 1]

In both defnitions, I is the indicator function. Intuitively, cover-
age represents the set’s true negative rate, while false failure rate 
represents the set’s false negative rate. An aligned set of assertions 
would have a high coverage and low false failure rate. We defne the 

alignment of � as the harmonic mean of coverage and the inverse 
of FFR: 

Coverage (� ) × (1 − FFR (� )) 
Alignment (� ) = 2 × 

Coverage (� ) + (1 − FFR (� )) 

Note that alignment is the F1 score; however, we are concerned 
with the precision and recall of failures (i.e., when � = 0, not when 
� = 1), and we are concerned with a set (i.e., when any assertion 
returns 0). See Appendix A for a complete description of assertion 
selectivity and how it impacts confdence scores; how EvalGen 
uses confdence scores to sample grades from the user; and how 
EvalGen determines the resulting assertion set based on alignment. 

5 ALGORITHM EVALUATION 
Before proceeding to our user study, we conducted an ofine eval-
uation of EvalGen’s selection algorithm. This evaluation served 
as a sanity check to ensure the quality of our technical implemen-
tation, verifying that any fndings in the subsequent user study 
would not be the result of signifcant implementation faws. Our 
experiment aimed to understand how soliciting human input at the 
criteria suggestion stage impacts the size (number of assertions) and 
alignment of the resulting assertion set. We compared to a baseline, 
SPADE [48], a fully automated system that generates criteria and 
candidate assertions and chooses the minimal assertion set that 
meet coverage and false failure rate constraints. 

5.1 Evaluation Setup 
We developed two LLM pipelines based on real-world datasets. 
The medical pipeline operates on a dataset of 84 unstructured text 
transcripts from doctor-patient calls [57], aiming to extract spe-
cifc information (e.g., symptoms, medication) without revealing 
any personally identifable information (PII). This task requires 
assertions to ensure compliance with privacy laws. The product 
pipeline involved crafting SEO-friendly descriptions for 100 Ama-
zon products and their reviews [22]. We selected this task because 
it mirrors actual LLM applications (there are a number of startups 
using AI to write SEO-optimized product descriptions), and it bene-
fts from assertions: for example, even if there are negative reviews, 
the descriptions should not say negative things about the prod-
ucts, which would adversely afect the products’ sales potential. 
Our prompts are presented in Appendix B. For both prompts, the 
placeholder variables (i.e., transcript and document) represent 
the input context to inject at pipeline runtime. 

We used OpenAI’s GPT-3.5-Turbo to generate outputs. Two of 
the paper authors manually graded all LLM outputs to establish 
ground-truth labels. The medical and product pipelines had 68% 
and 51% good outputs, respectively. Common issues included the 
presence of personal information in the medical pipeline outputs 
and bad reviews or lengthy content in the product pipeline outputs. 

5.2 Impact of Human Input in the Criteria 
Generation Step 

There are two diferences between SPADE and EvalGen in how 
they generate assertion sets. The frst diference is that EvalGen 
asks the user to add, edit, or remove criteria before generating 



Who Validates the Validators? Aligning LLM-Assisted Evaluation of LLM Outputs with Human Preferences UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA 

diferent candidate assertions, whereas SPADE does not solicit any 
input from the user about the criteria. The second diference is in the 
selection of the assertions themselves: given user-confrmed criteria 
and a sample of grades provided in a UI, EvalGen picks the most 
aligned assertion per criterion that meets some false failure rate 
threshold. Meanwhile, SPADE solves an optimization problem to 
select a minimal assertion set that meet a false failure rate threshold 
and cover all SPADE-generated criteria. 

5.2.1 Evaluation Procedure. We ran SPADE on both pipelines with 
all labeled outputs, initially setting a 10% false failure rate (FFR) 
threshold. The product pipeline required adjusting to 40% FFR to 
fnd a viable assertion set. This illustrates the challenge of balancing 
coverage with false failures, underscoring the need for evaluator 
systems to efectively make these trade-ofs. 

Subsequently, we ran EvalGen for both pipelines with the same 
thresholds. For the medical pipeline, we defned three evaluation 
criteria: word count, presence of the six targeted keys, and absence 
of PII, with the frst two implemented via code-based assertions 
and the last via an LLM evaluator. The product pipeline criteria 
included absence of negative reviews, absence of links, adherence 
to markdown format, and word count limitation, with only the frst 
criterion requiring LLM implementation. To create the aligned asser-
tion sets, we provided EvalGen with 16 graded outputs per pipeline 
instead of all graded outputs (which would have been between 80 
and 100 per pipeline)—given the impracticality of expecting users 
to extensively grade in a single session. 

5.2.2 Results. Our results in Table 1 show that EvalGen, by in-
corporating human judgment during criteria selection, achieved 
equal or better alignment than SPADE with fewer assertions for 
both pipelines. In the medical pipeline, SPADE added unnecessary 
assertions (e.g., one for a neutral tone), while EvalGen maintained 
a more focused set. In the product pipeline, EvalGen’s assertion 
set was less than half the size of SPADE’s, with increased coverage 
(73% vs. 49%). For the product pipeline, some of SPADE’s assertions 
were unrealistic, like a Python function designed to fag specifc 
negative phrases such as “never order” and “disappointed” in the 
output. In contrast, EvalGen returned a more pragmatic assertion 
for this criterion—an LLM-based validator to ensure the product 
descriptions remained entirely positive. 

Medical Pipeline Product Pipeline 

Metric EvalGen SPADE EvalGen SPADE 

Dataset Size 
# Bad Outputs 
# Assertions 
Coverage 
FFR 
Alignment (%) 

84 
27 
3 

0.33 
0.10 
48.29 

84 
27 
5 

0.33 
0.10 
48.29 

100 
49 
4 

0.73 
0.39 
66.46 

100 
49 
9 

0.49 
0.39 
54.35 

Table 1: Comparison of EvalGen and SPADE Across 
Pipelines. With user input at the criteria stage, EvalGen 
achieves the same or greater alignment with fewer functions. 

6 USER STUDY DESIGN 
To understand how developers might use EvalGen to build evalua-
tors for LLM pipelines, we conducted a qualitative study with nine 
industry practitioners experienced in LLMs. This approach allowed 
for detailed feedback on our validator alignment workfow. 

Recruitment and Participants. We recruited nine industry 
practitioners via a Twitter post, calling for anyone interested in 
solving the problem of “who validates the validators,” selecting 
the frst nine respondents with experience in coding and building 
LLM pipelines for companies or products. Participants included 
software engineers, ML scientists, startup executives, and indepen-
dent consultants. While nine might seem small, studies suggest 
that as few as fve participants can provide signifcant usability 
insights [2, 38]. We focused on LLM-experienced developers for 
their ability to compare EvalGen to existing workfows. 

Procedure. Studies were conducted over Zoom, beginning with 
a brief background discussion. We introduced participants to our 
ChainForge LLM pipeline for named entity recognition (NER) on 
tweets, using GPT-3.5-Turbo. The prompt was: You will be doing 
named entity recognition (NER). Extract up to 3 well-known entities 
from the following tweet: {tweet_full_text} For each entity, write one 
sentence describing the person or entity. All the entities you extract 
should be found in a knowledge base like Wikipedia, so don’t make up 
entities. Return your answer as a bulleted Markdown list, where each 
bullet is formatted as ̀ - entity: description`. Do not extract hashtags as 
entities. We chose this task for its real-world relevance, concise input 
format, and existing popularity within the research community [16, 
34, 52]. Participants could modify the task or prompt if they wanted. 

After explaining EvalGen’s functionality, participants were 
given remote control access and up to 40 minutes to explore the 
tool while thinking aloud. We communicated that we were mainly 
interested in observing their process of creating assertions, not 
interacting with other features of ChainForge such as comparing 
diferent LLM APIs. If the participant had any questions about the 
interface, we answered them. Post-exploration, we conducted a 10-
minute open-ended interview, asking about EvalGen’s assertion 
generation approach and perceived alignment with their grades. 
Participants rated alignment on a 7-point Likert scale. The entire 
study lasted 45-75 minutes. Our study was approved by our institu-
tional review board (IRB), and participants generously volunteered 
their time. 

Analysis. We asked participants to think aloud while using the 
tool, while we took notes on their thoughts and any visible emotions 
(e.g., delight when EvalGen suggested a criterion they struggled to 
externalize, or frustration when they could not fnd a good assertion 
for a criterion). We employed open and axial coding [14] to identify 
common themes across the video call transcripts and notes for each 
participant. Initially, we coded individual sentences of interest for 
each participant, then grouped these into broader themes on a per-
participant basis in a second pass of coding. Finally, we consolidated 
these themes across all participants, reorganizing them as needed. 

7 USER STUDY FINDINGS 
Our user study revealed several insights into participants’ experi-
ences with EvalGen and their evaluation processes: 
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• Participants felt that EvalGen was a great starting point for 
assertions, and wanted to—and could—exercise control over 
EvalGen’s assistance. 

• Participants encountered difculties in aligning assertions 
with their preferences, primarily due to two challenges in 
grading: (i) some criteria proved difcult for human evalu-
ation (e.g., adherence to a target word count), and (ii) we 
observed a “criteria drift” phenomenon, wherein criteria 
evolved as participants graded more LLM outputs, afecting 
both the defnitions of existing criteria and the overall set of 
criteria. 

• Participants’ perceptions of alignment and their needs varied 
based on the evaluator type (i.e., code-based vs. LLM-based). 

We elaborate on these fndings below, frst describing the typical 
participant workfow and highlighting areas where participants 
sought to exercise control, then discussing the challenges they faced 
in aligning assertions with their preferences. 

7.1 Typical Participant Workfow 
All participants (� = 9) engaged with the provided task, which 
involved a prompt template for Named Entity Recognition (NER) on 
a dataset of 100 tweets, as described in Section 6. Three participants 
modifed the prompt, with one opting to change the task from 
NER to sentiment analysis. After fnalizing their prompt choice, 
participants generally followed this sequence of activities: 

(1) Eyeballing LLM outputs: Participants reviewed the table 
of 100 LLM outputs to assess their overall quality and rea-
sonableness. 

(2) Starting EvalGen: Participants started EvalGen, which 
presented three options (Figure 2b): auto-generate criteria, 
write criteria manually, or grade outputs before generating 
criteria. Six participants chose auto-generation, one wrote 
a criterion before auto-generating, and two opted to grade 
frst (P4, P9). 

(3) Grading outputs: Those who graded frst evaluated be-
tween 5 and 10 outputs, assigning 2 to 4 “thumbs-down” 
grades, before proceeding to auto-generate criteria. 

(4) Refning criteria: Upon receiving EvalGen’s suggestions, 
participants removed some and added one or two of their 
own criteria. They typically maintained EvalGen’s sug-
gested evaluation type (code-based or LLM-based), even in 
rare instances where the suggestion seemed suboptimal (e.g., 
checking word count with an LLM API call, rather than 
code). 

(5) Grading more outputs: Participants graded outputs while 
EvalGen generated and evaluated candidate assertions. 
Grading duration varied, with some continuing for up to 
10 minutes and others stopping after 10 grades. 

(6) Understanding alignment on graded outputs: Partici-
pants examined the “Report Card” screen, inspecting the 
resulting assertion set. All but one participant (P9) readily 
understood the concepts of coverage and false failure rate. 
They reviewed various assertion implementations, including 
those misaligned with their grades. 

(7) Eyeballing alignment on ungraded outputs: Returning 
to the main interface, participants executed all assertions 

Figure 3: The Table View, showing inputs, LLM outputs, and 
evaluation results per criteria for the NER task (Sec. 6). 

on the full set of 100 LLM outputs and examined the results 
table (Figure 3). 

(8) Iterating on criteria: Three participants revisited the Eval-
Gen wizard to further refne their criteria and assertions. 
Over half expressed interest in additional iteration, given 
more time. 

7.2 EvalGen Provides a Refnable Starting 
Point for Assertions 

Participants appreciated EvalGen’s assistance in generating an 
initial set of assertions, valuing the ability to exert control when 
necessary. P8 summarized this sentiment: “This is how I would 
want a workfow to assist me in evals—basically I want the AI to do 
80% of it, and there can be escape hatches if the AI fails.” Eight out 
of nine found grading while waiting for EvalGen to generate and 
execute assertions to be a good use of time, though P7 suggested 
showing what EvalGen was doing with the grades. 

7.2.1 LLM-generated criteria alleviates writer’s block. Eight out 
of nine participants were pleasantly surprised by the suggested 
criteria. P4 said, “I get writer’s block when thinking about what 
assertions to write, so this is great.” Participants who graded before 
selecting criteria (P4 and P9) found this useful, with P9 realizing 
it was “the correct thing to do” despite initially choosing it as the 
“option that required the least thinking.” 

7.2.2 Users want to continue refining assertions afer reviewing align-
ment on graded results. In the Report Card screen, participants ap-
preciated seeing multiple assertion implementations and alignment 
scores. Some wanted to grade more responses to improve alignment 
(P1, P7). Participants liked seeing coverage and false failure rates 
but desired per-criterion alignment information (P5, P6, P7, P8). 

Participants really liked viewing the table of assertion results 
on all LLM outputs, with all participants expressing interest upon 
frst viewing it (Figure 3). In this table, rows represent LLM outputs, 
and columns represent assertions. P2 said that this table “earns 
trust”; P5 said that it was “cool to see all the results on examples 
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P1 P2 P3 P4 P5 P6 P7 P8 P9 

6 5 3 4 5 3 1 2 5 
Table 2: Ratings (1-7, 7 best) for the statement, “I felt like the 
assertions aligned with my grades.” Responses were mixed. 

[they] didn’t grade.” Some participants, like P6, wanted automatic 
recomputation and visualization of changes: 

One thing I would fnd cool is if there is a way to easily 
see how changes to my prompt impact the overall [cov-
erage and false failure rate] scores. Just very quickly 
being able to visualize how [my prompt edit] changes 
the classifcations on a bunch of [LLM outputs.] 

This suggests a desire for visualizations that compare orig-
inal and revised prompts, akin to LLM Comparator [25] and 
EvalLM [28]. 

7.3 Alignment is Iterative, Criteria- and 
Implementation-specifc 

Perceptions of the tools’ support of alignment were polarized across 
participants, as shown in Table 2. Participants would say utterances 
with a questioning tone, like “I guess” and “sure,” when grading, in-
dicating their uncertainty (P2, P5, P7, P8, P9). Looking more closely 
at their interactions, we observed a catch-22 situation: participants 
needed to externalize criteria in order to grade outputs, but they 
also needed to grade outputs—providing feedback on why bad out-
puts were bad—in order to externalize criteria. Here, we explore 
their challenges. 

7.3.1 Criteria drif. Grading outputs spurred changes or refne-
ments in participants’ criteria, which we refer to as criteria drift. 
We observed two types of drift. First, participants wanted to add 
new criteria when they observed new “types” of bad LLM outputs 
(P2, P5, P6, P8, P9). In the EvalGen interface, they could not go 
back and add new criteria; they had to wait for all candidate as-
sertions to fnish executing, move past the report card screen, and 
start a new EvalGen process. Second, as participants graded more 
outputs, we found that they reinterpret existing criteria to better ft 
the LLM’s behavior (P2, P5, P6, P8, P9). For example, P2 and P8 had 
a “proper noun” criterion, which was supposed to assess that “the 
entities extracted were proper nouns.” At frst, they rated as bad 
any LLM outputs that contained any entity that was not a proper 
noun. But, after observing that responses had varying numbers of 
proper nouns, both wanted to change their criteria such that most 
of the entities were proper nouns, rather than all. P9 appreciated 
the ability to provide feedback on unsatisfactory outputs before f-
nalizing the initial criteria set, as this process helped them articulate 
their criteria. Twice, P8 mentioned that they gave a bad grade not 
because they believed the output was bad, but because they wanted 
to be consistent with previous grades—good labeling practice, per-
haps, but not good for alignment. P7 noticed that some outputs 
included hashtags from the original tweet inputs (e.g., #justdoit), 
while in other cases, the outputs did not use the hashtag symbol 
but still mentioned the entities referred to by the hashtags (e.g., 
“Nike” instead of #Nike). This inconsistency led P7 to rethink the 
criteria defnition for including hashtags; specifcally, whether it 

was acceptable for the LLM to replicate entities from hashtags, pro-
vided the hash (#) was removed. P5 expressed the same uncertainty. 
“I think it’s hard to know until you see it,” P7 said. 

7.3.2 Users prefer to adjust their grading approach based on the 
dificulty of evaluating a criterion. Overall, participants generally 
liked the process of grading LLM responses and feeling like the 
grades were useful, but they wanted to prioritize grading criteria 
they felt needed their alignment—especially for LLM-based asser-
tions (P3, P5, P7, P8). For example, P3 expressed that they would 
trust the assertions more if the EvalGen process allowed them to 
set diferent false failure rates per criteria (since LLMs might be 
worse at evaluating some criteria), instead of one global false failure 
rate constraint for the entire assertion set: 

There are criteria where you can be okay with failing, 
and then there are other criteria where you are like, ‘this 
must absolutely pass’... [T]here’s a [spectrum] of failure 
as opposed to: it just passes or fails. 

Relatedly, some participants expressed that they didn’t trust their 
grades because they themselves couldn’t evaluate some criteria as 
well as an automated solution (P2, P5, P6, P7, P8; we discuss further 
in Section 7.4). A criterion like word count is hard for humans to 
assess but easy for a good Python function to evaluate. P8 desired 
to grade for only one criteria, reasoning that it might improve 
efciency (“I generally want to be in the loop for these tests...but I 
want to put myself in the loop in a way that is efcient.”). 

7.3.3 What constitutes “alignment” is subjective, especially when 
converting natural language criteria to code-based assertions. For 
code-based assertions, EvalGen’s interpretation of the criterion 
(i.e., GPT-4’s interpretation) did not match what the participants 
expected. As such, no matter how many grades the participant gave, 
all candidate assertions were similarly misaligned. Participants 
who observed this were confused why their grades seemingly had 
little impact on some of the chosen assertions (P3, P5, P7, P9). For 
example, while all participants had a criterion to enforce that there 
were no entities with hashtags in the output, some participants 
interpreted this as any hashtags representing entities should not be 
extracted as entities: e.g., if the output included the hashtag #Nike, 
P5 did not want Nike to be extracted at all. On the other hand, P9 
wanted Nike to be extracted as an entity, but they did not want the 
LLM output to include the hash (#). Both P5 and P9 got the same 
code-based assertion for the criterion, which simply checked for 
the presence of the hash character in the output—this assertion 
did not align with P5’s grades, but did with P9’s. This particular 
misalignment can also be viewed as an instance of criteria drift, 
as described in Section 7.3.1, since P5 was only able to refne the 
criterion after grading several LLM outputs. For another criterion, 
P5 felt that EvalGen could not fnd a good assertion that aligned 
with their grades, but also said that they were “lost at what would 
be a good implementation.” 

Overall, alignment is not merely a matter of performance, i.e., the 
idea that “a better LLM would do better”. Misalignment sometimes 
occurred due to tacit criteria that participants held which was 
not explicitly explained in natural language, e.g., one participant 
preferred the entity “Nike” over “Nike Shoes” being extracted by the 
LLM pipeline, while another participant was satisfed with “Nike 
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Shoes” as the extracted entity. Like prior work has found for cross-
LLM comparison [1], this tacit understanding of criteria could be 
highly subjective and contradictory across participants. 

7.4 Alignment Needs and Preferences Difer for 
Code vs. LLM Evaluators 

All participants appreciated EvalGen’s ability to generate both 
code-based and LLM-based assertions, expressing the need for both 
types. P4 and P6 liked the ability to correct EvalGen’s suggested 
type. However, participants wanted diferent approaches for con-
struction and iteration. 

7.4.1 Users like having control over the evaluation type. Participants 
had clear preferences for when to use code-based versus LLM-based 
assertions. They generally preferred code for formatting checks, 
count-based checks, and specifc phrase inclusion/exclusion. LLM-
based assertions were favored for “fuzzy” criteria (P6, P8) or when 
external knowledge was required. P2 opted for LLM-based asser-
tions when they couldn’t immediately think of a Python function 
for the criteria. Interestingly, P8 sometimes preferred LLM-based 
assertions due to their relative forgiveness with unexpected output 
qualities or formats. 

7.4.2 Users want to directly verify code-based implementations. For 
code-based assertions, many participants (P2, P5, P7) wanted to see 
and select the best Python function themselves, rather than relying 
on EvalGen’s selection process. P5 stated, “When something can be 
solved using Python code, I do have an envisioned [implementation] 
in mind that I can easily verify. Just showing [me] the [code] will 
be quicker.” P7 suggested iterating on code-based assertions by 
providing feedback to make them more or less “fancy,” though they 
acknowledged that this depends on code complexity. 

7.4.3 LLM-based assertions are harder to trust. While participants 
found EvalGen’s suggested code-based assertions to be more ob-
viously misaligned than the LLM-based assertions (Section 7.3.3), 
they also found LLM-based assertions harder to trust. This was pri-
marily because they could edit code-based assertions more easily 
(P2, P5, P6, P8, P9). Some participants (P3, P6, P8) were skeptical 
about using LLM-based assertions in production pipelines. P8 ex-
pressed, “I cannot begin to think about how LLMs as validators 
[in production] can work, I’m very skeptical.” P9 raised concerns 
about maintaining evaluations over time, asking, “How do I main-
tain my evals over time; do I have to rerun this entire process?” 
One suggestion was an interface that continually realigns LLM-
based assertions, possibly involving end-users of the LLM pipeline. 
Several participants (P3, P4, P5, P7) wanted EvalGen to use their 
grades and feedback in prompting LLMs for candidate assertions. 
Some (P3, P5) even suggested including labeled LLM outputs in the 
prompts for LLM-based assertions. This suggests an optimization 
loop akin to ConstitutionMaker and DSPy [27, 42], but for assertion 
generation and validation, rather than prompt optimization. 

8 DISCUSSION 
8.1 Implications of Criteria Drift 
The practice of benchmarks in ML and NLP presume a world of 
well-defned criteria (and well-labeled data) on which to judge 

LLM outputs. For instance, AutoCalibrate is a method to cali-
brate LLM evaluators with human preferences that requires large 
expert-labelled datasets with settled (i.e., established upfront) cri-
teria [35]. However, in practice, we found that developers rapidly 
iterate over criteria, and furthermore that cognitively engaging with 
LLM outputs helps them to refne their criteria. This suggests crite-
ria refnement and grading should happen in tandem in interactive 
settings, and poses challenges to alignment methods that presume 
settled, expert labels. Future system designs should support these 
requirements. A system might adjust criteria dynamically as the 
user grades and gives feedback. Per-criteria grading and including 
examples of both good and bad LLM outputs within LLM-based 
evaluator prompts could be benefcial. However, whenever outputs 
change, we may need to ask users to re-grade or re-think their cri-
teria. The dependence of criteria on LLM outputs implies that users 
cannot build evaluations independently from prompting LLMs—and 
assessing the outputs. 

Our criteria drift fnding echoes prior work in educational set-
tings, where instructors often update grading rubrics to refect 
common errors [50]. Evaluation assistants might pursue crowd-
sourcing methods to determine accurate grades for LLM outputs 
(e.g., majority voting, self assessments) [8, 10, 39]. Another chal-
lenge is extending adapted criteria to grade both ungraded and 
future unseen LLM outputs. How do evaluation assistants consis-
tently sample grades for outputs that refect the overall distribution 
of LLM pipeline successes and failures? 

The reader might wonder when criteria “settle.” Perhaps there 
was simply not enough time in our study, and had participants 
graded for an hour or two, they might have solidifed their criteria, 
and criteria drift goes away. There is reason to believe that this 
situation does not change with more time—as we saw, the criteria 
participants refned changed to adapt to the behavior of the LLM 
outputs being evaluated—a dependent, rather than independent as-
sessment of quality. In the real world, similar situations exist where 
criteria are never “fully settled” as more inputs come in—consider 
the court of law. One of our participants remarked that people 
“know a bad output when they see it.” Their adage refects a U.S. 
Supreme Court Justice’s famous opinion in a 1964 court case about 
obscene content [18]. As in that remark, the decisions of human 
validators seem at frst glance “to be based on a non-rational, in-
tuitive gut reaction, instead of reasoned analysis; it seems to be 
utterly subjective and personal” [18, p.1025]. However, as the law 
scholar Gewirtz argues, perhaps subjectivity is not necessarily a 
sign of irrationality (contrasting with some imagined future AI that 
is entirely objective and rational, entirely “aligned” or “better” than 
humans). On the contrary: “There are good reasons to accept the 
imperfect in a judge. We should encourage judges to believe and 
say: This is the best I can do now; it doesn’t solve all the problems, 
but it’s a start, and I’ll keep thinking” [18, p.1027]. This raises a 
deeper epistemic question for evaluation assistants—is “alignment” 
an actualizable goal? To what extent does our common terminology 
and assumptions—e.g., that there is a “ground truth” set of labels 
we merely need to elicit—fail us? Is validating the validators only 
ever a work-in-progress? 
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8.2 Operationalizing Assertions 
Participants expressed the desire to deploy their assertions in pro-
duction, either in the critical path of the LLM pipeline or in a more 
passive deployment. Assertions have diferent operational require-
ments, and as criteria change over time, evaluation assistants should 
adapt assertion sets. 

Our study confrmed the necessity for both code-based and 
LLM-based assertions, with participants feeling each type required 
distinct treatment. Code-based assertions, often useful for sanity 
checks, can be used in the critical path of the LLM pipeline. In 
fact, a number of LLMOps tools exist for users to implement such 
code-based guardrails [20, 23, 45]. However, our participants high-
lighted the challenge of fnding the right implementation for a given 
assertion—which can depend on the characteristics of LLM outputs. 
For example, determining the acceptable length of a response might 
vary signifcantly based on the observed output distribution. 

Some participants wanted their collaborators to grade outputs 
in EvalGen. When allowing multiple users to collaborate on grad-
ing, evaluation assistants must consider inter-rater reliability and 
handle disagreements. Interfaces similar to creating a “pull request” 
for a new assertion and workfows akin to continuous integra-
tion/continuous deployment (CI/CD) could be benefcial for team 
collaboration. 

8.3 Future Work and Limitations 
The potential of evaluation assistants extends beyond EvalGen’s 
supported binary judgments. For instance, rather than setting rigid 
thresholds for criteria like word count, it might be more useful to 
monitor variations across diferent LLM outputs. Like in traditional 
ML monitoring [47], there is still imprecision in what counts as 
"bad," given the distribution of outputs. Tracking fner-grained in-
formation in evaluations, beyond simple true/false conditions, can 
aid in debugging issues within LLM pipelines once a user knows 
the output is bad. Additionally, evaluation assistants can facilitate 
end-to-end alignment in chains of multiple LLM calls[1, 12, 15, 56] 
or compound AI systems [58], addressing the challenges that arise 
in these more complex setups. Moreover, users increasingly want 
their prompts to automatically improve based on assertion results. 
Some frameworks already experiment with using feedback from as-
sertions or user grades to refne prompts [36, 42, 51]. Incorporating 
this into an evaluation assistant could foster a co-evolutionary en-
vironment where prompts, assertions, and evaluative mechanisms 
are continuously refned in a unifed interface. 

Our study has two main limitations: our ofine evaluation fo-
cused on only two pipelines, and our qualitative study involved 
a small sample of experienced LLM developers. Moreover, partici-
pants did not have enough time to iterate many times in EvalGen, 
and our setup did not cover the deployment phase of LLM work-
fows. Future work might explore best practices and pitfalls of 
evaluations in the broader LLMOps lifecycle. 

9 CONCLUSION 
This work presented EvalGen, a mixed-initative approach to align-
ing LLM-generated evaluation functions with human preferences. 
EvalGen assists users in developing both criteria for acceptable 

LLM outputs and functions to check these standards, ensuring eval-
uations refect the users’ own grading standards. In a qualitative 
study with 9 expert users, we observed a pattern we call criteria 
drift, where users refne their evaluation standards as they grade 
more LLM outputs. Recognizing the mutual dependency of criteria 
on LLM outputs highlights new directions for designing future 
evaluation assistants. 
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Figure 4: Alignments for assertion sets that result from dif-
ferent policies to sample grades from the user. Each policy 
was tested across 10 trials, with each involving a sample of 16 
LLM outputs. Randomly sampling LLM outputs for grading 
introduces signifcant variance in alignment across the entire 
dataset. 

A ALGORITHMS FOR SELECTING 
ASSERTIONS & ELICITING GRADES 

A.1 Assertion Selectivity and Impact on LLM 
Output Quality Confdence 

One way to establish confdence in whether an LLM output is 
problematic is to assess the selectivity, or pass rate, of assertions 
that fail it. Intuitively, assertions that frequently fail outputs (low 
selectivity) provide limited insight into output quality. For example, 
an assertion that trivially fails every output ofers no discernment 
and has a selectivity of 0. 

EvalGen leverages selectivity estimates of assertions to assign 
a confdence score to each LLM output, indicating the likelihood 
it is of poor quality. The rationale is straightforward: an output is 
more likely to be problematic if failed by assertions known for their 
high selectivity. Concretely, for a set of assertions � where each 
assertion � ∈ � returns 1 for a pass and 0 for a fail, we calculate the 
confdence score for an LLM output � as follows: ∑ 

� (�) = selectivity (� ) × � (�)
� ∈� 

The score � is always non-negative. A score of 0 means no 
assertions have failed the output, indicating a higher likelihood of 
quality, while lower scores, resulting from failures by non-selective 
assertions, point to uncertainty or potential issues with the output. 

A.2 Sampling Grades 
Given that users may not want to grade so many outputs in the 
EvalGen interface, choosing which outputs for users to grade is 
crucial for aligning the system’s evaluations with user expectations. 
Randomly selecting outputs without considering their predicted 

quality can lead to misalignment, especially if the selected samples 
aren’t representative of the entire dataset. Prior work also under-
scores the importance of soliciting a representative graded sample 
of LLM outputs [3, 48]. 

Given � scores as previously defned, we consider a number of 
strategies to sample outputs for grading: 

• Random: Sample outputs at random (uniformly) 
• Highest: Sample the outputs with the highest � . This ap-
proach focuses on potentially problematic content. 

• Lowest: Sample the outputs with the lowest � , prioritizing 
outputs that don’t fail any assertions or fail low-selectivity 
assertions. 

• Alternating: Alternate between high and low � , aiming for 
a diverse sample with both bad and good outputs. 

In Section 5, we test these strategies against a random baseline 
on two diferent LLM pipelines. We employ an alternating sampling 
policy for the EvalGen user studies. We do not claim to have the 
best sampling policy; we chose an alternating policy with the hope 
that it would solicit a balanced sample of good and bad grades. 

One may wonder why we do not list a policy that ranks the 
outputs by score and samples the middle for grading. While this 
might seem akin to seeking out uncertain cases—as is common 
in active learning—our scores represent the likelihood of outputs 
being poor. They do not diferentiate between good and bad per se.
Therefore, outputs with low scores may still vary widely in quality, 
refecting our system’s uncertainty. 

A.3 Evaluation of Sampling Policy 
We described in Appendix A.2 four options we considered to sample 
LLM outputs: random, highest, lowest, and alternating. Here, we 
compare EvalGen’s sampling policy, alternating, to these other 
three baselines. For this experiment, we sampled 16 outputs to 
grade, but in practice the user can grade more or fewer. Using the 
same LLM pipelines as described in Section 5.1, to assess sampling 
variance, we conducted 10 trials for each of the four sampling 
policies—where, for each trial, we kept the same set of candidate 
assertion functions. 

The fndings, shown in Figure 4, reveal that the random sampling 
policy exhibits a large variance in alignment. This inconsistency 
could lead to user frustration, particularly if the efort spent in 
grading outputs results in assertion sets with unpredictable rele-
vance to their specifed criteria. The alternative sampling strategies, 
which weight the probability for an LLM output to be graded by 
the selectivity (i.e., pass rate) of assertions that fail it, consistently 
yielded higher alignment scores across the entire datasets than the 
random policy. Notably, while the alternating policy didn’t consis-
tently outperform, our results suggest that any non-random policy 
implemented in EvalGen may achieve satisfactory outcomes. 

In this ofine study, as shown in Figure 4, there’s no variation in 
the outcomes of the non-random policies because they are determin-
istic. However, in real-world use, EvalGen updates its predictions 
as it receives new information, so there could be some diferences 
in results over time. Initially, when users start grading outputs in 
EvalGen, they might efectively be grading random outputs for 
the frst one or two outputs, as the � scores update and stabilize. 



UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA Shreya Shankar, J.D. Zamfirescu-Pereira, Björn Hartmann, Aditya G. Parameswaran, and Ian Arawjo 

B TASK PROMPTS 
We prepared two prompts and corresponding datasets for tasks to 
present users (5.1). Both pipelines were adapted from prior work [22, 
57] and correspond to medical record processing and a product 
description writing, respectively. The medical pipeline prompt is 
as follows: 

You are extracting insights from some medical records. The records 
contain a medical note and a dialogue between a doctor and a patient. 
You need to extract values for the following: Chief complaint, 
History of present illness, Physical examination, Symptoms 
experienced by the patient, New medications prescribed or changed, 
including dosages (N/A if not provided), and Follow-up instructions 
(N/A if not provided). Your answer should not include any personal 
identifiable information (PII) such as name, age, gender, or ID. Use 
"the patient" instead of their name, for example. Return your answer 
as a bullet list, where each bullet is formatted like ‘chief 
complaint: xx.‘ If there is no value for the key, the value should be 
‘N/A‘. Keep your response around 150 words (you may have to summarize 
some extracted values to stay within the word limit). 

{transcript} 

And the product pipeline prompt is as follows: 

You are an expert copywriter. You need to write an e-commerce product 
description based on the product details and customer reviews. Your 
description should be SEO-optimized. It should use an active voice 
and include the product’s features, benefits, unique selling points 
without overpromising, and a call to action for the buyer. Benefits 
describe how product features will work for the buyer, addressing 
exactly how the product will improve their lives. Clearly distinguish 
between features (e.g., lightweight, USB-chargeable) and benefits 
(e.g., convenience, nutritious drinks on-the-go). Don’t mention 
weaknesses of the product or use generic or repetitive language. 
Don’t make up review text or quotes. Don’t include any links. Don’t 
cite the reviews too heavily. Divide your description into readable 
chunks divided by relevant subheadings. Keep your description around 
200 words, no more than 300, in Markdown format. 

{document} 
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