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ABSTRACT

String matching is at the core of data cleaning, record matching, and
information retrieval. String matching relies on a similarity mea-
sure that evaluates the similarity of two strings, regarding the two
as a match if their similarity is larger than a user-defined threshold.
In our collaboration with journalists and public defenders, we found
that real-world datasets, such as police rosters that journalists and
public defenders work with, often contain acronyms, abbreviations,
and typos, thanks to errors during manual entry, into, say, a spread-
sheet or a form. Unfortunately, traditional similarity measures lead
to low accuracy since they do not consider all three aspects to-
gether. Some recent work proposes leveraging synonym rules to
improve matching, but either requires these rules to be provided
upfront, or generated prior to matching, which leads to low accu-
racy in our setting and similar ones. To address these limitations,
we propose SMASH, a simple yet effective measure to assess the sim-
ilarity of two strings with acronyms, abbreviations, and typos, all
without relying on synonym rules. We design a dynamic program-
ming algorithm to efficiently compute this measure, along with two
optimizations that improve accuracy. We show that compared to
the best baselines, including one based on ChatGPT with GPT-4,
SmasH improves the max and mean F-score by 23.5% and 110.8%,
respectively. We implement SmasH in OpenRefine, a graphical data
cleaning tool, to facilitate its use by journalists, public defenders,
and other non-programmers for data cleaning.
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1 INTRODUCTION

String matching is a process of identifying and matching similar
strings underlying a variety of applications, such as data cleaning
and integration, record linkage, and information retrieval [9, 14,
16, 29, 38]. For example, for data cleaning, string matching can
match strings from different data sources that refer to the same
entity, improving data quality and reducing errors. String matching
typically evaluates the similarity of two strings using a similarity
function of some sort, e.g., Jaccard similarity [36], or distance metric,
e.g., Levenshtein distance [4]. Two strings are deemed to be a match
if their similarity score is higher than (or, equivalently, their distance
metric is smaller than) a given user-specified threshold.

While string matching has a rich history, one unaddressed chal-
lenge is that real-world datasets include strings with various forms of
acronyms and abbreviations to represent the same entities, as well
as typos due to human mistakes in data entry.

APPLICATION 1 (POLICE ROSTER CLEANING). As part of a consor-
tium titled CLEAN (Community Law Enforcement Accountability
Network), we work with journalists and public defenders to clean,
organize, and analyze police data across various states in the US,
including rosters, information about police officers, typically orga-
nized as a CSV or spreadsheet. In one instance, we worked with public
defenders from the National Association of Criminal Defense Lawyers
(NACDL) to clean a dataset from a midwestern public defender of-
fice that includes police officer titles as a column (referred to as the
PoLicE ROSTER dataset henceforth). This dataset includes a number
of acronyms (e.g., “school resource officer” as “sro”), abbreviations
(e.g., “deputy marshall” as “dpty mrsl”), and typos (e.g., “sergeant”
as “sargeant”), as well as combinations thereof, because these offi-
cer titles are manually entered by police department personnel. The
public defender we worked with, who doesn’t know programming,
required two weeks to “clean” the police titles from over 700 to less
than 100, and still wasn’t entirely sure if the task was finished. In-
tuitively, this process involved manually comparing all pairs of over
700 titles, explaining why it took them such a long time. They, and
other public defenders and data journalists, commonly use GUI-based
data cleaning tools, such as OpenRefine [5], but none of the built-in
similarity metrics in such tools sufficed for their purposes.

This work was done when Dixin Tang was affiliated with UC Berkeley, Tristan
Chambers and Julie Ciccolini were working on the Full Disclosure Project at the
National Association of Criminal Defense Lawyers (NACDL) and Lisa Pickoff-White
was affiliated with KQED and the California Reporting Project.
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Unfortunately, existing string similarity metrics, such as Lev-
enshtein distance [4], affine gap distance [11], and Jaccard simi-
larity [17, 36], fail to effectively perform string matching for such
datasets with acronyms, abbreviations, and typos—we discuss tra-
ditional string similarity metrics in Section 2 in detail. Some other
approaches [10, 25] tokenize the two input strings into two sets
of words, build a bipartite graph between the two sets, with the
similarity of two words computed using an existing metric (e.g.,
edit distance), and combine these similarities via bipartite match-
ing (referred to as Bipartite henceforth). Since bipartite matching
operates at the granularity of words, it cannot be directly applied
to the scenarios where one string includes acronyms (e.g., “sro”
for “school resource officer”) or is a single abbreviated word (e.g.,
“apmngr” for “assistant park manager”).

A recent line of research improves on the limitations of tradi-
tional measures by using domain-specific synonym rules for rewrit-
ing a short string to a long string (e.g., “sro” — “school resource
officer”) [9, 18, 24, 26, 28, 30, 33, 39]. To evaluate the similarity of
two strings, synonym rules are used to rewrite the two strings
followed by using (a variant of) traditional measure to compute
similarity. Unfortunately, some of these papers rely on predefined
synonym rules [9, 18, 24, 26, 33, 39], which may not exist for many
datasets (such as ours). In addition, predefined synonym rules limit
the scope of abbreviations they support. That is, they only support
predefined ones (e.g., “deputy” — “dpty”) but not arbitrary ones
(e.g., “deputy” — “dpt”). Other papers instead propose automati-
cally generating synonym rules [28, 30], but their performance is
highly sensitive to the quality of the generated rules and they can-
not consistently generate high-quality rules for different datasets;
additionally, typos (as in our context) lead to issues in generating
high-quality rules. Table 1 summarizes the limitations of existing
similarity measures.

To address the limitations of existing approaches, we propose
SmasH!, a simple yet effective metric that considers typos, acronyms,
and abbreviations together, while not relying on synonym rules.
The key idea of SmasH is that for every word in the long string,
some representation of it—the full word possibly with typos, its
abbreviation, or the first letter—should appear as a substring in the
short string in order, as visualized in Figure 1. One example is that
the three letters of “sro” appear as the first letters of the three words
of “school resource officer” in order, respectively, representing the
acronym case. Therefore, we partition the short string into m sub-
strings, where m equals the number of tokenized words in the long
string. The SMASH measure is defined as the minimal sum of the
distances between each word in the long string and its corresponding
substring in the short string. The distance between a word and a
substring can be computed based on traditional measures, such as
the affine gap [11] and subsequence [7], allowing the approach to
flexibly adapt to user needs.

Unfortunately, efficiently computing SmasH is challenging. Given
the short string with n characters that is partitioned into m sub-
strings, there is a high degree polynomial number of possible parti-
tions (i.e., (,':l__ll) because we choose m — 1 positions from the string
minus the first character). Therefore, we develop a simple novel

'With apologies to the Hulk, Smasu is named as such because it is able to “smash”
together strings, taking into account typos, acronyms, and abbreviations.
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m tokenized words

Long String [:] l:] [:]
Short String [:[ .................. l:]j

Y
m substrings, n characters

Figure 1: The intuition for capturing acronyms, abbrevia-
tions, and typos between two strings

dynamic programming algorithm to compute SmasH efficiently and
include optimizations to further improve the accuracy of Smasu
(e.g., selectively skipping stop words).

We perform extensive experiments on real-world datasets by
comparing SMAsH with all representative baselines that do not
require pre-defined synonym rules, including Levenshtein, affine
gap, two Jaccard similarity variants, Bipartite, and pkduck. Their
features and differences from SMAsH are summarized in Table 1.
Our results show that SMAsH significantly outperforms existing
approaches. Specifically, compared to the best baselines, SMASH im-
proves the max and mean F-score by 23.5% and 110.8%, respectively.
We additionally compare SMASH with a state-of-the-art LLM-based
approach, ChatGPT with GPT-4.0, and find that LLMs are unable to
achieve the high recall necessary for string matching, nor are they
able to adapt to unfamiliar datasets.

To help public defenders, data journalists, and other non-pro-
grammers with similar data cleaning requirements use SMASH, we
implement SMAsH in OpenRefine [5], an open-source data cleaning
tool, where end-users can choose SMASH as the similarity measure
when matching strings across one or multiple datasets.

The contributions of this paper are summarized as follows:

o A novel yet simple similarity measure, SMasH, that considers
acronyms, abbreviations, and typos at the same time while
not relying on brittle synonym rules (Section 3);

o A dynamic programming algorithm that efficiently computes
SMmasH and two optimizations that improve the accuracy
of SmasH, while also being parametrizable with respect to
various distance functions internally (Sections 4-5);

e An implementation in a popular GUI-based data cleaning
tool, OpenRefine, to empower non-programmers to more
efficiently perform string matching (Section 6); and

o A set of extensive experiments that compare SMAsH with six
baseline approaches on four datasets that demonstrate the
value of SmasH and the corresponding dynamic program-
ming approach in various real-world settings, including the
one described in Application 1 on police roster data cleaning
(Section 7).

2 RELATED WORK

We now discuss work related to SMasH, including similarity mea-
sures for string matching, ground truth-aided string matching, and
methods for reducing the execution time of string matching.

Similarity measures for string matching. Table 1 summarizes
the limitations of existing similarity measures for string matching.
Traditional similarity measures, such as Levenshtein distance [4]
and affine gap distance [11], only consider scenarios with typos



Table 1: Summary of the Differences of Existing String Similarity Metrics and SmasH

Supported Feat.ures Require Pre-Defined Adopt Synonym
Acronyms Pre-Defined Arbitrary Typos Mixed Synonym Rules Rules Online
Abbreviations  Abbreviations

Levenshtein [4] No No No Yes No No No
Affine Gap [11] Yes No No Yes No No No
Jaccard-Word [36] No No No No No No No
Jaccard-NG [17] No Yes Yes Yes No No No
Bipartite [10, 25] No Yes Yes Yes No No No
Smash (this paper) Yes Yes Yes Yes Yes No No
pkduck [30], Match-DP [28] Yes Yes Yes Yes Yes No Yes
Others [9, 18, 24, 26, 33, 39] Yes Yes No Yes Yes Yes No

or acronyms. Levenshtein distance, also known as edit distance, A Subset of Candidate Synonym Rules

measures the similarity of two strings by counting the minimal Useful rule:  sro => school resource officer

number of insertions, deletions, or substitutions required to edit one Useful rule:  dpty mrsl => deputy marshall

string to match the other. While this measure can identify typos, Useful rule:  cor off => corrections officer

it does not take into account acronyms or abbreviations. On the
other hand, affine gap [11] modifies edit distance by assigning a
smaller penalty to a continuous sequence of insertions or deletions
compared to the initial insertion or deletion. This property makes
it better suited for capturing acronyms since the characters that
follow the first letters of each word in the longer string are treated
as “gaps” in the shortened string and are penalized at a discount.
But affine gap does not address the case of abbreviations.

Another line of papers focuses on set similarity search, which
focuses on tokenizing the two strings into two sets of words and
then computing their similarity [10, 25, 26, 36]. For example, Jaccard
similarity score [36] calculates the ratio between the number of
common words and the total number of distinct words of the two
strings (denoted as Jaccard-Word). Bipartite [10, 25] approaches, as
discussed earlier, build a bipartite graph between the two sets to
compute their similarity. But these approaches compute similarity
at the granularity of words and do not consider character-level
features. One method for addressing the limitation of set similarity
search is creating n-grams for the two input strings and computing
the Jaccard score over the two sets of n-grams [17] (denoted as
Jaccard-NG). While Jaccard-NG considers abbreviations and typos,
it does not consider acronyms. In addition, none of these methods
consider the mixed cases of acronyms, abbreviations, and typos
together.

There are many papers on leveraging synonym rules to improve
traditional measures [9, 18, 24, 26, 28, 30, 33, 39]. As discussed
before, most of these papers assume that the synonym rules are
known upfront or provided by the user [9, 18, 24, 26, 33, 39], but
these rules often do not exist, in domains such as the police data
setting. SMAsH is different from these approaches since it does
not rely on synonyms. Some other papers propose automatically
generating synonym rules [28, 30], but our experiments in Section 7
show that the performance of these approaches is sensitive to the
quality of the generated rules and they cannot consistently generate
high-quality synonym rules for different datasets.

Consider pkduck [30], the state-of-the-art in this vein, as an
example. pkduck generates candidate synonym rules based on the
longest common sequence of each pair of strings, which produces
many incorrect rules. Therefore, pkduck adopts manually devel-
oped refinement rules to discard any synonym rules that may be
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Harmful rule: cor off => community resource officer

@Reﬁne

sro => school resource officer
dpty mrsl => deputy marshall

Useful rule:
Useful rule:

Figure 2: A subset of synonym rules generated by pkduck [30]
for the PoLiCE ROSTER dataset

potentially harmful. Figure 2 shows a subset of synonym rules be-
fore and after the refinement for the PoLiCE ROSTER dataset. Initially,
we have four rules. However, the rule (“cor off” — “community
resource officer”) is harmful because the ground truth shows that
“cor off” should only map to “corrections officer”. To improve the
quality of the synonym rules, one refinement rule used by pkduck
involves discarding the rewriting rules if the ratio between the
number of consonants of the short and the long strings is smaller
than a predefined threshold (0.6 by default) based on the assump-
tion that an abbreviated short string should include a large fraction
of consonants from the long string. This refinement rule, while
discarding many harmful rules, will also discard useful rules, such
as discarding “cor off” — “corrections officer” because the conso-
nant ratio is % = 0.37 and smaller than the threshold 0.6. In fact,
our experiments show that the refinement process can degrade the
performance of pkduck for some datasets.

Ground truth-aided string matching. Some papers propose ask-
ing end-users to provide examples and automatically learn from
these examples for more accurate string matching [12, 27]. A few pa-
pers adopt machine learning models for string matching [8, 14, 23].
One paper proposes a novel machine-learning model for match-
ing the strings of healthcare data, trained on predefined ground
truth [14]. Another paper fine-tunes pre-trained language models
for string matching [23]. Finally, the paper [8] leverages existing
similarity metrics to clean input data in order to improve the qual-
ity of transformer models. SMAsH is different from these papers
because it does not require ground truth knowledge.

Reducing the execution time of string matching. There has
been a number of papers on reducing the execution time of string
matching [10, 13, 15, 19, 21, 22, 31, 32, 34, 35, 37, 38]. To avoid
computing similarity for all pairs of strings, many papers exploit a



“filter-and-refine” framework [15, 21, 22, 31, 32, 37, 38]. In the “filter”
step, they generate signatures for each string and use the signatures
to generate candidate pairs of strings to evaluate. In the “refine”
step, they compute the similarity for the candidate pairs to generate
the final results. Some other papers implement string matching as
a primitive operator in databases and optimize the performance of
evaluating this operator [10, 13]. These papers are orthogonal to our
goal of designing a novel metric to capture acronyms, abbreviations,
and typos together, and our SMAsH distance can be used together
with their approaches to improve the accuracy of string matching.

3 OUR STRING SIMILARITY MEASURE

In this section, we introduce the intuition and examples that moti-
vate the design of SmasH, and the formal definition of SMASH.

Preliminaries. We define a string to be a sequence of characters. A
subsequence of a string is a string that can be derived from the given
one by deleting zero or more characters without changing the order
of the remaining characters. We say a string is tokenized into an
array of words if this string is divided into its component words in
order based on predefined delimiters (e.g., a space character). The
string matching process takes two strings, computes their similarity,
and determines them to be a match if the similarity score is larger
than a threshold. We call the string whose length is no smaller than
the other string the long string, and the other string the short string.
If two strings have the same lengths, we arbitrarily choose one
string as the long one and the other string as the short one.

Intuition. Our key idea for capturing acronyms, abbreviations,
and typos is that for the long and the short string representing the
same entity, some form of representation of each tokenized word
for the long string will appear as a substring of the short string in
order, because we expect the long string as the canonical expanded
representation for an entity while the short string is the potentially
human-inputted, and therefore, error-prone version. We consider
each scenario in turn. First, for the pure acronym scenario (e.g.,
“school resource officer” vs. “sro” in Figure 3), the first character of
each word of the long string corresponds to each character in the
short string in order. For the abbreviation scenario, each word of the
long string will be a subsequence of the corresponding substring of
the short string or vice versa, with the first character of the word and
the substring being the same, which is based on our observation that
the first character of a word commonly appears as the first character
of its abbreviated version. One example is the Abbreviation-1 case in
Figure 3, where the substrings “dpty ” and “mrsl” of the short string
are subsequences of the words “deputy” and “marshall”, respectively.
Another example is the Abbreviation-2 case in Figure 3, where the
word “dpty” in the long string is a subsequence of “deputy ” and
the substring “mrsl” is a subsequence of “marshall” in the long
string. For the typo scenario, a tokenized word in the long string
can be modified due to typos and correspond to a substring in
the short string, where the distance between the word and the
corresponding substring can be measured using a traditional metric
(e.g., Levenshtein distance). Finally, this intuition also covers the
case when two strings have abbreviations, acronyms, and typos at
the same time. For example, the Mixed-1 case in Figure 3 shows that
the short string (i.e., “ims”) is an abbreviation of the long string (i.e.,
“inspector”) with a typo (“m” — “n”). The Mixed-2 case covers both
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Long String Short String
Acronym school resouce officer sro
Abbreviation-1 deputy marshall dpty mrsl
Abbreviation-2 dpty marshall deputy mrsl
Typo inspector imspector
Mixed-1 inspector ims
Mixed-2 assistant park manager apmngr

Figure 3: Examples that motivate SMASH

w l deputy l [marshalll l deputy l lmarshalll l deputy l [marshalll

d ‘ ‘ptymrsl‘i I‘ dp ‘ ‘ tymrsl
Partition A E E Partition B !

Choose a partition that minimizes the distance between "deputy marshall" and "'dpty mrsl'

Figure 4: The example for computing ds(W, S)

the acronym and abbreviation scenarios, where the short string
“smashes” the long string into a single word. SMAsH is designed to
cover all of the aforementioned cases.

SmasH Definition. Motivated by this intuition, the distance be-
tween two strings is conceptually defined as the minimal sum of
distances between each word in the long string and its corresponding
substring in the short string. We now formalize the problem and
formally define SmAsH.

Given two strings for which we need to compute the distance,
we first tokenize the long string into an array of words based on
predefined delimiters. We denote the array of words W. Consider
the example Abbreviation-1 in Figure 3. For “deputy marshall”, if
the delimiter is the space character, then W is [“deputy”, “marshall”].
In addition, we represent the short string as an array of characters,
denoted S. Note that we remove the delimiters from the short string
as a preprocessing step. For example, “dpty mrsl” is represented
as an array of eight characters § = [“d”, “p”, “t”, “y”, “m”, “1”, “s”,
“1], where spaces are removed. The length of W and S are m and
n, respectively. We define a partition of the character array of the
short string S as P = {[iop, i1], [i1,i2], ..., [im-1, im]}, where the
number of partitions is the number of words m such that each
partition of the character array S[ig : iryq] corresponds to the
word W |[k]. Note ig is 0, the first character of S, and i, is n, the
length of S, such that both the first and last partitions are non-
empty. Continuing our example, if the partition of [“d”, “p”, “t”, “y”,
“‘m”, ‘1", “s”, ‘"] is P = {[0, 4], [4, 8]}, the substring S[0, 4] is “dpty”,
which corresponds to W[0] = “deputy” and the substring S[4, 8]
is “mrs]”, which corresponds to W[1] = “marshall”. We use ds to
represent the SMAsH distance between W and S, defined as:

ds(W, S) = 1y ZAS WKL ST gl ()

min

P={lio,i1],..[im-1,im
Here, d\(W[k],S[ix : ixs1]) computes the distance between a
word and a substring (e.g., “dpty” v.s. “deputy” in the Abbreviation-
1 example). So, computing ds is equivalent to finding the partition
P of the string S such that the sum of d\,(W[k],S[ir : igxy1]) is
minimized, which is visualized in Figure 4 using the Abbreviation-1
example. We see that there are seven different ways to partition
the character array of “dptymsrl”, so to compute ds, we will find
the partition that minimizes the sum of d,, (W [k], S[ig : ix41])-



Acronym | school | |resource

| | officer |
\

d, =0

S

e

Abbreviation-1
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Figure 5: Applications of SMasH to the motivating examples

Long String ins pector

imsg-----

A Gap with length 6
Delete 6 characters

Short String
Substitute n with m

Figure 6: An example that shows the affine gap distance

d., is computed using traditional string distance measures and
is defined as:
if W[k][0] = S[ir]
and W[k] is a subsequence
of S[if : igy41] or vice versa (2)
if WIk][0] # S[ix]
otherwise

dvw(WIk], S[ik = igat]) =

o,

dr(Wk], Slige : ieaa])s

We consider three cases. First, if the first characters of the word and
the substring are the same and the word is a subsequence of the
substring or vice versa, then we return 0, representing the case that
the word and the substring are in the abbreviation or the acronym
scenario.

The next two cases consider the typo scenario. If the typo hap-
pens in the first character we return oo, representing that they do
not match. Our observation on real datasets is that a typo is un-
likely to happen in the first character and a mismatch in the first
character typically represents a mismatch between the word and
the substring.

Finally, we use function d; (W [k], S[ix : ixs1]) to compute a
distance in the presence of typos. By default, we use the affine
gap distance [11], but we can swap in other distance metrics. This
distance metric extends Levenshtein distance by assigning different
weights to different operations (e.g., substitution vs. deletion) and
for consecutive insertions or deletions (called a gap), assigning a
smaller weight to insertions or deletions that are after the initial
one. We choose affine gap over Levenshtein because it more accu-
rately measures the case when an abbreviation has typos. Consider
the Mixed-1 example in Figure 3, where the abbreviation of “in-
spector” is “ins” but misspelled as “ims”. To measure the distance
between the two strings, affine gap considers one substitution and
six consecutive deletions as Levenshtein does, as shown in Figure 6.
However, affine gap assigns a smaller weight to deleting the gap
“pector” compared to Levenshtein, allowing it to more accurately
capture an abbreviation with typos.

Applications of SmasH to the Motivating Examples. We now
show how SMASH captures acronym, abbreviation, and typos in real
examples from Figure 3. Figure 5 shows the optimal partition for
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each example. We see that for the Acronym example, the short string
“sro” is partitioned to substrings “s”, “r”, and “o0”, which correspond
to the words “school”, “resource”, “officer”, respectively. Since the
first characters of each pair of substring and word are the same
and the substring is a subsequence of the corresponding word,
the distance for each pair of substring and word is 0 based on the
definition of d,, in Equation 2. Therefore, the SMASH metric d; is
also 0. Similarly, for the Abbreviation-1, Abbreviation-2, and Mixed-
2 examples, their distances are also 0. One thing to note is that the
distance for Abbreviation-2 is 0 because for each pair of substring
and word we check the subsequence condition in both directions as
shown in Equation 2. Finally, for the Typo and Mixed-1 examples,
we compute their distance using d;, which adopts affine gap to
compute their distances.

4 COMPUTING SMASH

In this section, we discuss how to efficiently compute the SMasu
distance between two strings. We demonstrate optimal substructure
for computing SmasH, present a dynamic programming algorithm
based on the optimal substructure and an algorithm that constructs
the string matches for SmasH, and analyze their complexity.

4.1 Optimal Substructure

Here, we show optimal substructure, which implies that the optimal
solution of a problem can be constructed from the optimal solu-
tions of its subproblems. Recall that the SmasH distance dg(W, S)
determines the partition P of the string S such that the sum of
the distance between each word and each substring is minimized.
The intuition for optimal substructure of SmAsH is that the min-
imal distance between the word array W[0 : m] and the string
S[0 : n] should be the minimal distance between a smaller word
array W[0 : m — 1] and a substring S[0 : p], where p < n (i.e., the
subproblem dg (W [0 : m — 1], S[0 : p])), plus the distance between
the last word W [m — 1] and the remaining substring S[p : n] (i.e.,
computed by d,,(W[m — 1],S[p : n]) in Equation 2). Therefore,
we enumerate the possible values of p to find the minimal sum
of the two distances. Figure 7 shows an example for computing
the minimal distance between [“assistant”, “park”, “manager”] and
the string “apmngr” given that the subproblems are solved. Specifi-
cally, we enumerate p € [2,6), where p splits the string into two
substrings. The first substring corresponds the word array minus
the last word (e.g., “ap” for [“assistant”, “park”] when p = 2) and
the second substring corresponds to the last word (e.g., “mngr” for
[“manager”] when p = 2). We compute the minimal distance for



| assistant | | park

managerl |assistam|| park ||manager| |assistant|| park
;

”managerl |assistant|| park ||mar1ager|
;

v

n

|
|

L p=2 L p=3 i DL p—4 L p=5 5
’ ap ‘ mngr ‘ ’ apm ‘ ’ ngr ‘ ’ apmn ‘ ’ gar ‘ ’ apmng ‘ ’ r ‘
ds(WT: 2], S[: 2)) + dw(W[2],S[2: 6])  ds(W]: 2], S[: 3]) + dw(W[2],S[3:6])  ds(W]: 2],S[: 4]) + du(WT[2],S[4:6])  ds(W[: 2], S[: 5]) + dw(W[2], S5 : 6])

L

J

‘f
Take the minimal value across of above four summations

Figure 7: The example for demonstrating the optimal substructure

Algorithm 1: Computing the SMasH distance between a
word array W and a string S

/* We use D[i1[j] to store the minimal distance between
W[0:i+1] and S[0:j+1] and E to construct the partition

of S that yields the minimal distance */
1 D < am X n 2D array with initial values as co
2 E«amxXxn2D array
/* The base case %/

3 fori=0ton—1do
D[0][i] « dw(W]O0],S[:i+1])
E[0][i] <O
nd
fori=1tom—-1do
forj=1ton—1do
if j < ithen
continue // skip if the length of the string is

[

10
smaller than the number of words

D[i][j] « min D[i-1][p] +dw(WI[il,S[p:
pelij+1)

11

j+1]
12 Eli][j] « argmin D[i — 1][p] + dw(W[i],S[p :
pEli,j+1)
j+1D
13 end
14 end

15 return D[m - 1][n—-1],E

each pair of substring and word array and return the minimal sum-
mation of the two distances. Note that index p starts at 2 (i.e, m—1)
because we need to ensure the word array W[0 : m — 1] has at least
m — 1 characters to match. Formally, we have:

dw(W[0],S), ifm=1
ds(W, ) = pe[‘fln{rﬁj,,)(ds(w[o:’”‘1]’5[0’1’])’“ 3)
dvw(W([m—1],S[p:n])), otherwise

First, if we only have one word, we directly compute the distance
between the word and the full string, i.e., d,,(W[0], S). Otherwise,
we compute dg (W, S) from its subproblems ds(W [0 : m — 1], S[0 :
pl), where p varies from m — 1 until n.

4.2 Dynamic Programming Algorithm

Intuition. Based on Equation 3, we develop a dynamic program-
ming algorithm. We discuss the iterative version of this algorithm
to avoid recursion. The high-level idea is to compute a 2D array
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D from bottom up, where D[i][j] stores the minimal distance be-
tween the word array W0 : i + 1] and a string S[0 : j + 1], such
that D[m — 1][n — 1] is the minimal distance between W and S.
We store the auxiliary information in a 2D array E to construct the
optimal partition of S that yields the minimal distance. Specifically,
for the case where W [0 : i + 1] and S[0 : j + 1] have the optimal
string matching with respect to the SmasH distance, E[i][j] stores
the position of the first letter of the last substring of S[0 : j + 1]
that matches the last word of W[0 : i + 1], i.e., W[i]. For example,
consider the case where W[0 : 3]=[“assistant”, “park”, “manager”]
and S[0 : 6] =“apmngr” have the optimal string matching when
the last word “manager” matches the substring “mngr”. So E[2][5]
stores 2, which is the index of “m” in “apmngr” such that it can be
used to locate the substring “mngr”, which matches the last word
“manager”.

Algorithm. The algorithm is listed in Algorithm 1. We first initial-
ize the 2D arrays, D and E. Then, we set the values of the first row
of D to the distances between the first word in W and each prefix
of S. The first row of E is set to all zeros since the first letter of the
first word’s matched substring is always the first letter of S.

Next, we fill in the remaining cells of D and E. For each i €
[1,m —1] and j € [0, n — 1], the algorithm computes the minimum
distance between W0 : i + 1] and S[0 : j + 1] by considering all
possible partitions of S[0 : j+1] at the position p € [i, j+1) based on
Equation 3. The value of p that yields the minimal distance is stored
in E[i][j]. Figure 8 shows a running example for computing SMASH
between [“assistant”, “park”, “manager”] and “apmngr”. Specifically,
it shows the steps of computing the rows D[2] and E[2] given
their previous two rows are computed. For example, to compute
D[2][5], it enumerates the partition of “apmngr” and finds the one
that yields the minimal distance based on Equation 3. Specifically,
it finds that splitting “apmngr” into “ap” and “mngr” yields the
minimal distance. Here, “ap” corresponds to “assistant park”, their
minimal distance is D[1][1] = 0 and the distance between “mngr”
and “manager” is 0 based on the Equation 2. So D[2][5] = 0 and
E[2][5] = 2, which is the index for the first letter of “mngr” in
“apmngr”.

Finally, the algorithm returns D[m — 1] [n — 1], which represents
the minimal distance between the entire W and S, as well as E,
which is used to construct the optimal partition of S.
Complexity. We use two for loops to fill in the cells of D and E.
Computing the value for each cell of D and E requires executing
the function d,, for O(n) times. In total, we need to execute d,, for
O(m x n?) times. Recall that d,, computes the distance between a
word and a substring and is defined in Equation 2. Its complexity is
dominated by d;, which computes the distance that accounts for
typos. Assuming we choose affine gap, its complexity is O(l; X I2),



| Compute D122, B2Jl2] || Compute D2IBL B3 | | Compute DI2][5], E2][5] __
a pmmn g 1 a pmmn g r a pmn g r
D:3x60 1 2 3 4 5 D:3x60 1 2 3 4 5 D:3x6¢0 1 2 3 4 5
assistantO | 0 [0.8{0.8]0.7[0.7]0.7 assistantO | 0 {0.8]0.8]0.7(0.7]0.7 assistantO | 0 |0.8]0.8/0.7(0.7{0.7
park 1 N/AJ O [L.1]1.1{1.1]1.2 park 1 [N/A[O0 [1.1{1.1]1.1]1.2 park 1 [N/Al O [1.1]1.1]1.1{1.2
imanager2 [N/AN/A| 0 imanager2 [N/AN/A| 0 | 0 imanager2 N/AN/A| 0 [0 |0 |0
a pmn g r IZ> a pmn g 1 I:{) a pmn g r
E:3x60 1 2 3 45 E:3x60 1 2 3 45 E:3x60 1 2 3 4 5
assistant0 | 0 |0 [0 [0 0 |0 assistant0 |0 | 0 |0 [0 [0 |0 assistant0 | 0 [0 |0 [0 ] 0|0
park TINAT |1 [T1([1]1 parck 1NA[T |1 [1]1]1 park 1TNAIT [T [1]1]1
manager2 [N/AN/A] 2 imanager2 [N/AN/A| 2 | 2 manager2 [NAN/A| 2 [2 ]2 |2
|assistant| | park | |mandgver| |assistant| | park | |managver| |assistant| | park | |manager|
’ ap ‘ ’ ‘ ’ ap ‘ ’ mn ‘ ’ ap ‘ ’ mngr ‘

Figure 8: A running example that shows how our DP algorithm works

where l; and I, represent the number of characters of the word and
the substring, respectively. We further assume the max number of
characters of a word in the word array W is [, so the complexity for
dyy is O(Ixn). Finally, the complexity of Algorithm 1is O(mxn>x1).
We believe this is an acceptable complexity for two reasons. First, as
our experiments in Section 7.3 show, SMAsH has a similar execution
time compared to pkduck, is slower than Levenshtein, and is faster
than all other baselines while SMasH performs string matching
more accurately compared to all baselines in most cases. Second,
SMasH can be easily used together with blocking techniques to
further reduce the execution time if needed.

4.3 Constructing the Optimal Partition

Intuition. Recall that for the case where W [0 : i+1] and S[0 : j+1]
have the minimal distance with respect to SMAsH, E[i][j] stores
the position of the first letter of the last substring of S[0 : j + 1]
that matches the last word of W[0 : i + 1], i.e., W[i]. Therefore,
we find the optimal partition for S[0 : n] by i) storing the position
of the first letter of the substring that matches the last word of
W[0 : m] and ii) repeatedly storing this position for the optimal
solution for its subproblem, which is the minimal distance between
the word array that removes the last word (i.e., W[0 : m—1]) and the
string that removes the last substring that matches W{m — 1] (i.e,
S[0 : E[m—1][n—1]]). For our running example in Figure 8, E[2][5]
stores 2, which points to “m” in “apmngr” and represents that
“mngr” corresponds to the last word “manager”. Recursively, for the
subproblem “ap” and [“assistant”, “park”] we take the value stored
in E[1][1], which is 1 and splits “ap” into “a” and “p”. Therefore,
the optimal partition is [“a

]

Algorithm. Algorithm 2 shows how we construct the optimal
partition. We use a list L to store the positions for the optimal
partition. Initially, L only includes n, which is the length of the

« » o« o«

,“p”, “mngr

short string S and also the end position for the optimal partition.

Then, we repeatedly store the position of the first character of the
substring of S[0 : p] that matches the last word of the word array
W0 : i+ 1] (ie., E[i][p — 1]). Finally, we use L to construct the
optimal partition.
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Algorithm 2: Use E to compute the optimal partition for S
that minimizes the distance between W and S

1 Initialize L as a list that stores n
pe—n
fori=m
p < Elillp-
Prepend pto L
end

return {[p[0], p[1]], -

2
—1to0do
1]

3
4
5

s[plm —1], p[m]]}

Complexity. We use one for loop to find the positions for the
optimal partition of S, which takes O(m) operations.

5 OPTIMIZATIONS AND APPLICABILITY

Optimizations. Our previous discussion assumes that some form
of representation of one word of the long string should appear in
the short string. But in a real dataset, this may not always be the
case for two reasons. First, some words in the long string have little
or no semantic value to distinguish one string from another and are
often referred to as stop words (e.g., “at”, “is”, and “n”). Therefore,
such words may be skipped in the short string. Second, we observe
that when creating a short form of the long string, people tend to
drop short words. For example, one short form of the long string
“Motor carrier inspector 3” is “mci”, where “3” is not included in the
short string.

However, we cannot simply preprocess a dataset by removing
these stop words or short words (e.g., a word that has 3 characters
or less) because these words may still have semantic values for
string matching. For example, the letter “n” in “state hwy n” is
useful when matching the string “state highway north”.

Therefore, we improve our dynamic programming algorithm by
considering whether to skip a given word if this word is in the stop
word list or is a short word and taking the minimal distance be-
tween the two cases. Specifically, Equation 3, which defines optimal



substructure, is modified as:

4 (W.8) = dw(W][0],S), ifm= 1 @)
dnew(W,S), otherwise
where dpew (W, S) is defined as:
d(W[0:m—1],5)
dnew(W, S) = min peﬁi_nl n)(ds(W[O :m—1],5[0: p])+ (5)

dw(W[m—1],5[p : n]))

Here, dye+ considers whether skipping the last word (i.e., W [m—1])
and takes the minimal distance between the two cases. Therefore,
LINE 11 in Algorithm 1 is modified accordingly to consider the two
cases when computing D[i][j]. Finally, we also modify LINE 12
in Algorithm 1 for computing E[i][j]: if we choose to skip the
word W{i], E[i][j] is set to E[i — 1][j]. Note that adding these
optimizations does not add additional complexity to our algorithm.
This is because we only need to compute each cell of D and the
complexity for computing D[i][j] does not change given that the
optimizations only add an operation that takes the minimum value
of two cases, which takes O(1).

Applicability. SmasH is applied to the cases where a string repre-
sentation is converted into another string in the form of acronyms,
abbreviations, and typos, which are common when manually in-
putting text, as is true for our public defender and journalism col-
laborators. SMAsH can therefore be adopted to match two strings
that are modified from the same string but have different abbrevia-
tions, acronyms, or typos. For example, Figure 3 shows that “deputy
marshall” has three different forms of abbreviations: “dpty mrsl”,
“dpty marshall”, and “deputy mrsl”, all of which will be regarded as
matches to the entity “deputy marshall” based on SMASH. SMASH
can also deal with the cases when a word includes special charac-
ters or is misplaced if this word has the same first character as the
original word (e.g., “deputy” vs. “de-uty”). These cases fall into the
typo scenario, so their distance will be evaluated using the third
case of Equation 2 (i.e., d; (W[k], S[ix : ir41])). In our implementa-
tion, dy adopts affine gap. In addition, SMAsH can handle the case
when typos happen in multiple places in a string, which will also be
handled by d; for each pair of word and substring. However, SMASH
cannot be applied to the cases where two strings are syntactically
and structurally different but have the same semantic meanings,
such as “The Big Apple” and “New York City”, or those that rely on
external domain knowledge. Our focus is more on syntactic cases,
which are rather common in practice with manual data entry.

6 IMPLEMENTATION

We implement SMASH as a function in Python, which takes two
strings and returns the distance. Therefore, SMAsH can be adopted as
a drop-in replacement of a metric in many data-cleaning scenarios.
For example, it can be adopted to match strings for a full dataset
in a pair-wise fashion or a partition of a dataset after blocking. It
can also be adopted in various data cleaning algorithms, such as
clustering algorithms based on string similarity.

To help public defenders, data journalists, and other non-prog-
rammers with similar data cleaning requirements use SMAsH, we
integrate it in OpenRefine [5], a GUI-based open-source tool for
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Figure 9: Integrating SmasH in OpenRefine: a GUI-based data
cleaning tool for use by non-programmers

data cleaning. OpenRefine allows users to select a metric for mea-
suring the similarity between two strings and cluster the strings of
a dataset based on that metric. Figure 9 shows an example of using
SmasH to clean the PoLicE ROSTER dataset, discussed in Section 7.1.
At the top, the user selects Nearest Neighbor Search along with
SmasH to cluster the data. The Radius in Figure 9 represents the dis-
tance threshold that determines whether two strings are regarded
as a match. It is set as 3.0 in this example. Block Chars refers to
the minimum number of contiguous characters two strings must
share to be considered for a match in OpenRefine. For the example
in Figure 9, it is set to 0 because the user does not want to rule
out any possible matches before they are presented to SmasH. The
clustering algorithm will generate many clusters, where each one
represents a set of strings that refer to the same entity. For example,
Figure 9 shows four clusters, presented as four rows. The first three
fields represent the number of distinct strings (e.g., 4 for the first
row), the number of strings, and distinct strings for this cluster.
The user can decide whether to accept this cluster using the check
box and if so, they will replace the strings for that cluster with a
string in the input text box (e.g., “Corporal” for the first row). This
process is repeated until the user is satisfied with the results. For
our PoLiCE ROSTER dataset, the number of user iterations was 5,
which is a substantial reduction from the two weeks it took for our
public defenders to do the same task.

7 EXPERIMENTS
Our experiments address the following research questions:

e How much does SMasH improve precision, recall, and F-
score for string matching, compared to existing approaches?
(Section 7.2)

e What is the execution time for string matching when using
SMasH, as compared to existing approaches? (Section 7.3)

o How much do the optimizations of considering the short and
skip words in our dynamic programming algorithm improve
precision, recall, and F-score? (Section 7.4)

While we compare SMAsH with six baselines, as discussed next, we
further dig deeper into one state-of-the-art synonym rules-based
approach, pkduck. In addition, we compare SmasH with a large
language model (LLM)-based approach. Specifically, we further
address the two questions:
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Figure 10: F-score under varied thresholds

How do the refinement rules for pkduck impact its perfor-
mance? (Section 7.5)

How does ChatGPT with GPT-4.0 perform for string match-
ing? (Section 7.6)

7.1 Datasets, Baselines, and Configurations

Datasets. Our experiments include four datasets. POLICE ROSTER
contains 31,516 rows of police officer data. We test the “Title” col-
umn, which includes 154 distinct values. After manual inspection,
we find 99 of these distinct values are standard titles, and 55 of
them are modified forms of standard titles; each standard title has
zero, one, or multiple modified forms.

LARGE Di1SEASE [3] contains 405,543 rows of medical data relat-
ing to disease. Each row stores information about a medical term,
including a standard and a modified form of this medical term and
additional metadata. This dataset includes many acronyms and
abbreviations, but not misspellings. We evaluate a sample of this
dataset since evaluating the full dataset is too time-consuming. The
sampled dataset includes 30,000 rows (approx. 7.5%). We compare
the pairs of standard and modified forms for the medical terms.

SMALL DISEASE contains a subset of LARGE DISEASE and includes
634 disease names. Like the LARGE DISEASE dataset, we evaluate
the pairs of standard and modified disease names.

LocaATION is a dataset that includes location names (e.g., street
names, city names, etc.) [30]. This dataset includes a ground truth
dataset that contains 116 pairs of standard and modified location
names referring to the same location.
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For all datasets, we conduct pair-wise comparisons without
blocking for SMasH and all baselines when evaluating their perfor-
mance because our contribution is on the novel metric, SMAsH, and
SMmaAsH can be used together with existing blocking techniques [20].

Baselines. We compare SmasH with the following baselines: Lev-
enshtein distance [4], affine gap distance [11], Jaccard-Word [36],
Jaccard-NG [17], pkduck [30], and Bipartite, a set similarity ap-
proach using a bipartite graph [10, 25]. Recall that Jaccard-Word
tokenizes two strings into two sets of words and computes the
Jaccard score across them, while Jaccard-NG creates n-grams for
the two input strings and computes the Jaccard score over the two
sets of n-grams. We use 3-grams in the experiments. For Bipartite,
we tokenize two strings into two sets of words and compute the
similarity by building a bipartite graph on the two sets. Specifically,
each edge of the bipartite graph is assigned a value, representing
the similarity of a pair of words of the two sets, and is evaluated
using Jaccard-NG. The goal of Bipartite is to find the bipartite graph
matching with a minimal sum across edges. Finally, the similarity of
Bipartite is the minimal sum divided by the number of edges, which
is between 0 and 1. We use the SciPy library to find the bipartite
graph matching that yields the minimal sum [1].

C_g» &%

Configurations. We use a list of generic stop words (e.g., “at”, “in”,
and “is”) [6] and regard words with no more than 4 characters as
short words. We convert a distance (i.e., for SMAsH, Levenshtein,
and affine gap) into a similarity score such that we can compare
them with similarity-based approaches (e.g., Jaccard-Word). Recall
that a similarity score sits between 0 and 1, and a larger distance
leads to a smaller similarity score. Our observation is that if the

distance between two strings is larger than 10, they are unlikely to



Table 2: The maximum and mean F-scores

LARGE DISEASE | SMALL DISEASE | LocATION PoLICE ROSTER

Max Mean |Max Mean |Max Mean | Max Mean
SMASH 0.55 0.40 0.89 0.75 0.86 0.78 | 0.84 0.64
Bipartite N/A N/A 0.08 0.03 0.72 032 | 0.60 0.58
Levenshtein | 0.13 0.04 0.02 0.01 0.13 0.04 | 0.68 0.50
Affine Gap | 0.48 0.08 0.14 0.03 0.48 0.08 | 0.61 0.19
Jaccard-Word | 0.42 0.12 0.06 0.01 0.78 0.37 | 0.57 0.36
Jaccard-NG | 0.50 0.25 0.51 0.11 0.50 0.25 | 0.63 0.43
pkduck 0.12 0.11 0.83 0.55 0.64 0.24 | 0.56 0.36

Table 3: The precision, recall, and F-score for the four datasets

0=0.7 6=0.8 0=0.9 0=0.7 0=0.8 6=0.9
P R F P R F P R F P R F P R F P R F
SMASH 0.27 074 0.4 | 035 0.7 047|047 0.66 0.55 SMASH 0.64 089 0.74 |0.74 0.89 0.81 | 0.89 0.88 0.89
Bipartite N/A N/A N/A|N/A N/A N/A|N/A N/A N/A Bipartite 1 0 0 1 0 0 1 0 0
Levenshtein 1 0.01 001 1 0 0 1 0 0 Levenshtein 1 0 001 1 0 001 1 0
Affine Gap 0.11 089 0.2 [0.61 04 0.48(0.99 0.01 0.03 Affine Gap |0.01 0.99 0.03 |0.07 0.94 0.14 1 0.01 0.02
Jaccard-Word | 1 0 0 1 0 0 1 0 0 Jaccard-Word | 1 0 0 1 0 0 1 0
Jaccard-NG | 0.96 0.05 0.1 |0.99 0.02 0.04 1 0.01 0.01 Jaccard-NG | 0.99 0.02 0.04 1 0 0 1 0
pkduck 0.12 0.15 0.13|0.16 0.12 0.14 [ 0.19 0.1 0.13 pkduck 0.88 0.74 0.81]0.97 0.72 0.83 |0.99 0.72 0.83
(a) LARGE DISEASE (b) SMALL DISEASE
6=0.7 6=0.8 0=0.9 6=0.7 6=0.8 0=0.9
P R F P R F P R F P R F P R F P R F
SMASH 0.84 083 0.83]092 08 0.86|0.95 0.79 0.86 SMASH 0.69 085 0.76 | 0.86 0.83 0.84|094 0.8 0.86
Bipartite 1 0.04 0.08 1 0 0 1 0 0 Bipartite 09 045 06 [091 043 0.59 093 042 0.57
Levenshtein 1 038 055| 1 0.06 0.11 1 0 0 Levenshtein | 0.99 0.44 0.61 1 007 013] 1 0 0
Affine Gap |0.21 097 0.35|0.82 0.81 0.81 1 0.22 037 Affine Gap |0.11 097 0.19 | 0.63 0.61 0.62 | 0.95 0.42 0.59
Jaccard-Word | 0.99 0.22 0.35 [ 0.99 0.22 0.35 1 0.01 0.02 Jaccard-Word | 0.98 0.12 0.21 [ 0.98 0.03 0.06 | 0.98 0.03 0.06
Jaccard-NG | 0.7 0.86 0.77 |0.92 0.72 0.8 |0.99 0.41 0.58 Jaccard-NG | 0.86 0.4 0.55 |0.89 0.28 0.43 [0.98 0.23 0.38
pkduck 0.76 0.55 0.64 {094 0.28 0.44 | 097 0.26 041 pkduck 0.83 033 048 [ 0.83 0.25 0.38 1 0.25 04
(c) LocaTion (d) PoLICE ROSTER

Table 4: Effectiveness of our optimizations that consider skipping stop words and short words

0=0.7 0=0.8 0=0.9 0=0.7 0=0.8 0=0.9
P R F P R F P R F P R F P R F P R F
NoOpt |0.32 0.7 0.44|0.39 0.66 0.49|0.51 0.63 0.56 NoOpt |0.66 0.86 0.75|0.75 086 0.8 | 0.9 0.85 0.88
StopOpt | 0.31 0.7 0.43 [0.39 0.66 0.49 | 0.51 0.63 0.56 StopOpt | 0.66 0.86 0.75|0.75 0.86 0.8 | 0.9 0.85 0.88
ShortOpt | 0.27 0.74 0.4 |0.35 0.7 0.47 |047 0.66 055 ShortOpt|0.64 0.89 0.74|0.74 0.89 0.81|0.839 0.83 0.89
BothOpt | 0.27 0.74 0.4 [0.35 0.7 047|047 0.66 0.55 BothOpt | 0.64 0.89 0.74 [0.74 0.89 0.81|0.89 0.88 0.89

(a) LARGE DISEASE (b) SMALL DISEASE
0=0.7 0=0.8 0=0.9 0=0.7 0=0.8 0=0.9
P R F P R F P R F P R F P R F P R F

NoOpt |0.96 0.62 0.75|0.97 0.6 0.74 |0.97 0.59 0.74 NoOpt |0.74 0.71 0.73|0.89 0.58 0.7 [0.95 0.51 0.66

StopOpt | 0.95 0.65 0.77 [ 0.97 0.63 0.76 | 0.97 0.62 0.76 StopOpt | 0.74 0.75 0.74 | 0.88 0.61 0.72 | 0.95 0.54 0.69

ShortOpt | 0.84 0.83 0.83|0.92 0.8 0.86[0.95 0.79 0.86 ShortOpt |0.69 0.85 0.76|0.86 0.83 0.84[0.94 0.8 0.86

BothOpt | 0.84 0.83 0.83|0.92 0.8 0.86|0.95 0.79 0.86 BothOpt | 0.69 0.85 0.76 | 0.86 0.83 0.84|0.94 0.8 0.86
(c) LocaTioNn (d) PoLICE ROSTER

be a match, so we set their similarity to 0 in this case. Otherwise, 7.2 Precision, Recall, and F-Score
we normalize the distance d by dividing it by 10 and subtracting

In this subsection, we compare precision, recall, and F-score (PRF
this value from one to give the similarity.

scores for short) of SMAsH and the baselines on the four datasets.
Recall that these datasets include standard and modified forms
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Table 5: Performance impact of refinement rules for pkduck

0=0.7 0=0.8 0=0.9 0=0.7 0=0.8 0=0.9
P R F ‘ P R F P R F P R F P R F P R F
Refiner on | 0.12 0.15 0.13 0.16 0.12 0.14 |0.19 0.1 0.13 Refineron [0.88 0.74 0.81|0.97 0.72 0.83|0.99 0.72 0.83
Refiner off | 0.08 0.24 0.12]0.09 0.19 0.12 |0.09 0.15 0.11 Refiner off | 0.71 0.88 0.78 | 0.77 0.86 0.81 [ 0.79 0.85 0.82
SmasH 0.27 0.74 0.4 ‘ 035 0.7 0.47 ‘ 0.47 0.66 0.55 SmasH 0.64 089 0.74|0.74 0.89 0.81 092 0.8 0.86
(a) LARGE DISEASE (b) SMALL DISEASE
0=0.7 0=0.8 0=0.9 0=0.7 0=0.8 0=0.9
P R F P R F P R F P R F P R F P R F
Refiner on | 0.76 0.55 0.64 | 0.94 0.28 0.44 | 0.97 0.26 0.41 Refineron |0.83 0.33 048 |0.83 025 038| 1 025 04
Refiner off | 0.44 0.63 0.52 [0.72 0.34 0.46 | 0.80 0.28 0.42 Refineroff | 0.73 0.49 0.59 | 0.72 0.43 0.54 | 0.79 0.43 0.55
SmasH 0.84 083 0.83|092 0.8 0.86|0.95 0.79 0.86 SmasH 0.69 0.85 0.76|0.86 0.83 0.84|0.94 0.8 0.86
(c) LocaTiOoN (d) PoLicE ROSTER
350 Smash —8— Jaccard-NG in most tests. For the SMALL DISEASE dataset, SMAsH has a smaller
—_ Levenshtein ~ —#*—Jaccard-Word F-score than pkduck when 6 is 0.7 or 0.8. However, SMASH sig-
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E compared to pkduck, SMAsH improves the F-score by 58% on aver-
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Figure 11: The execution time of string matching for a varied
number of sampled rows from the LARGE DI1sEASE dataset

of strings. To compute the PRF scores, we compute the similarity
scores between each standard form and each modified form (i.e., the
cross-product of the two lists of strings). If the metric is higher than
a threshold 0, we regard the two strings as a match. Otherwise, they
do not match. Finally, we compare these results with the ground
truth to compute the PRF scores. We first report F-scores using a
wide range of thresholds (i.e., from 0.1 to 0.9) and then dig into
the PRF scores for three thresholds, 0.7, 0.8, and 0.9, as in prior
work [30].

First, we vary the thresholds from 0.1 to 0.9 with an interval
of 0.1 and report the F-scores in Figure 10. Note that the results
for the LARGE DiSEASE dataset (i.e., Figure 10(a)) do not include
Bipartite because it does not finish within 1 hour for this dataset.
The reason is that building bipartite graphs is expensive and this
dataset has many rows (i.e., 30,000). We see that SMASH outperforms
the baselines in most cases and has the highest F-score across all
thresholds for each dataset. In addition, SmAsH has the highest
mean F-scores over all thresholds compared to the baselines, as
summarized in Table 2. Specifically, SMAsH improves the max and
mean F-score compared to the best baselines by up to 23.5% (i.e.,
Levenshtein on PoLicE ROSTER) and 110.8% (i.e., Jaccard-Word on
LocATION), respectively. These results show that SMAsH can achieve
the best performance across varied thresholds and is robust to
the threshold parameter compared to the baseline approaches for
different datasets.

Next, we report the PRF scores for thresholds 0.7, 0.8, and 0.9
in Table 3. We see that SMasH has a higher F-score than baselines

metric does not find any matching pairs. If no matches are returned,
the precision is trivially 1 because there are no false positives. There
are also some cases when P = 1 and R = 0, but F > 0. This discrep-
ancy is solely due to rounding imprecision when displaying the
results. Overall, this experiment demonstrates that SMAsH signifi-
cantly improves the F-score for string matching over many existing
approaches under a wide range of datasets.

7.3 Execution Time of String Matching

Our next experiment evaluates the execution time of string match-
ing using different similarity metrics. We sample a varied number
of rows from the LARGE DiseAsE, which has 30K rows and is our
largest dataset, and report the time for string matching for the sam-
pled data in Figure 11. We see that SMAsH has a similar execution
time to pkduck although SmasH has higher F-scores than pkduck in
most test cases. While SmasH has a higher execution time compared
to the Levenshtein metric, it has much higher F-scores in most test
cases. Finally, SMAsH has a smaller execution time than the other
baselines. Note that the results for Bipartite are not reported be-
cause Bipartite only finishes within one hour when the number of
sampled rows is no larger than 1,000.

7.4 Effectiveness of Considering Skipping Stop
Words and Short Words

We now evaluate the optimizations that consider skipping stop
words and short words. We test four variants of SMasH: i) NoOpt: no
optimizations, ii) StopOpt: only considering skipping stop words, iii)
ShortOpt: only considering skipping short words, and iv) BothOpt:
applying both optimizations.

Table 4 shows the results for each dataset. Each row represents
the PRF scores of each variant of SmasH for the three thresholds,
0.7, 0.8, and 0.9. Table 4 includes the results for all four datasets.
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Table 6: Comparing SmasH with ChatGPT (GPT-4.0)

P R F
SmasH (0 = 0.7) | 0.84 083 0.83
SmasH (6 = 0.8) 0.92 0.8 0.86
SmasH (0 =0.9) |0.95 0.79 0.86
ChatGPT (Prompt 1) | 1.0 0.27 0.43
ChatGPT (Prompt 2) | 0.99 0.36 0.52
ChatGPT (Prompt 3) | 0.96 0.39 0.56

We see that BothOpt significantly improves the F-score compared
to NoOpt in all cases for the LocaTion and PoLICE ROSTER datasets.
The improvement is up to 30% (i.e., POLICE ROSTER, 8 = 0.9). For the
LARGE DI1sEASE and SMALL DISEASE datasets, there are four cases
where BothOpt slightly degrades performance. The reason is that
these two datasets contain many stop words and short words that
have semantic meanings, and skipping those words may lead to false
matches. For example, the LARGE D1sEASE dataset has a standard
form “BCG vaccine”, where “BCG” are the initials of the people
who invented this vaccine. If we apply the optimization of skipping
the short words, we may skip “BCG” and then we will match the
remaining string “vaccine” with "vax", which is an abbreviation for
the general term "vaccine". However, “BCG vaccine” and “vax” refer
to different entities in this dataset. For StopOpt, it improves the
performance over NoOpt for the LocaTioN dataset. ShortOpt has
higher F-scores compared to StopOpt for the LocaTioN and PoLICE
RosTER datasets because most stop words are short (i.e., no larger
than 4 characters) and are also considered by ShortOpt.

7.5 Performance Impact of Refinement Rules
for pkduck

Recall that pkduck automatically generates synonym rules for per-
forming string matching. It initially generates a set of candidate
synonym rules based on the longest common sequence of each pair
of strings and refines these rules by applying manually-developed
refinement rules. We now evaluate the effectiveness of pkduck’s
refinement rules by testing two variants of pkduck that turn on and
off the refinement, respectively.

Table 5 shows the PRF scores for the thresholds 0.7, 0.8, and 0.9
under the four datasets. We see that the refinement rules do not
always improve F-scores. Specifically, the refinement rules improve
the performance for the LARGE D1sEASE and SMALL DISEASE datasets
while they degrade the performance of pkduck for the other two
datasets in most cases. The only exception is for the LocaTrion
dataset when 0 is 0.7. SMAsH, on the other hand, does not rely on
synonym rules and has much higher F-scores than the two variants
of pkduck in most cases.

7.6 Performance of ChatGPT

LLMs have demonstrated promise in understanding and generating
text. Here, we test if a state-of-the-art LLM can provide performance
comparable to SMasH out of the box. Specifically, we asked the state-
of-the-art LLM, ChatGPT Pro with GPT-4.0 [2] to perform string
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matching and evaluate the quality of the results. Our experiments
are on the PoLICE ROSTER.

We used three prompts. The first one is “Here are the police
titles. They include acronyms, abbreviations, and typos. I want to

find the pair of strings that represent the same entity. Please do the
pair-wise comparison and give me the answer. Give me the pairs

without using Python code using the format of "String A, String
B": [PoLIcE ROSTER dataset]”. The second one is similar, with the
only difference being that we stress the importance of returning all
pairs: “... Ensure the completeness of all pairs and give me the
pairs..”. Since we find the second prompt has a low recall (i.e., only
returning 36 pairs), we tried the third and final prompt, explicitly
asking ChatGPT to return 100 pairs: “... Give me at least 100 pairs
without using Python code..”. However, ChatGPT only returns 48
pairs, saying that it cannot find more pairs that represent the same
police title.

The first prompt returns 26 pairs, whose precision is 1.0 as shown
in Table 6. However, it has a low recall because it only returns a
limited number of pairs. The second prompt, instead, returns 36
pairs, which has a higher recall compared to the first one, but a
slightly lower precision. The third prompt returns 48 pairs but still
has a low recall. The F-score for the three prompts is much smaller
than the one SmasH achieves. Specifically, the max F-score for
ChatGPT is 0.56 while the max F-score for SMAsH is 0.86. Overall, we
believe today’s LLMs are not quite able to perform string matching
tasks effectively, especially for datasets that include domain-specific
acronyms, abbreviations, and typos (e.g., the PoLICE ROSTER dataset).
Despite our best attempts at prompt engineering, LLMs only return
results they are truly confident about, thereby resulting in very
low recall—something we were unable to fix even by explicitly
requesting a certain number of results.

8 CONCLUSION

In this paper, we presented SMASH, a string similarity measure
that captures acronyms, abbreviations, and typos as is typical in
real-world settings, without relying on brittle synonym rules. We
identified an optimal substructure for SmasH, developed a dynamic
programming algorithm to efficiently compute SmasH, and pro-
posed two optimizations to further improve the accuracy of SmasH.
We implemented SMasH in OpenRefine to help non-programmers,
such as journalists and public defenders, more accurately perform
string matching. Finally, we performed extensive experiments that
demonstrate SMAsH significantly improves F-score over six existing
approaches. Compared to the best baselines, SMAsH improves the
max and mean F-score by 23.5% and 110.8%, respectively.
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