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ABSTRACT

Large language models (LLMs) are being increasingly deployed as
part of pipelines that repeatedly process or generate data of some
sort. However, a common barrier to deployment are the frequent
and often unpredictable errors that plague LLMs. Acknowledging
the inevitability of these errors, we propose data quality assertions
to identify when LLMs may be making mistakes. We present SPADE,
a method for automatically synthesizing data quality assertions
that identify bad LLM outputs. We make the observation that de-
velopers often identify data quality issues during prototyping prior
to deployment, and attempt to address them by adding instructions
to the LLM prompt over time. sPADE therefore analyzes histories of
prompt versions over time to create candidate assertion functions
and then selects a minimal set that fulfills both coverage and accu-
racy requirements. In testing across nine different real-world LLM
pipelines, sPADE efficiently reduces the number of assertions by 14%
and decreases false failures by 21% when compared to simpler base-
lines. sPADE has been deployed as an offering within LangSmith,
LangChain’s LLM pipeline hub, and has been used to generate
data quality assertions for over 2000 pipelines across a spectrum of
industries.
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1 INTRODUCTION

There is a lot of excitement around the use of large language models
(LLMs) for processing, understanding, and generating data [16].
Without needing large labeled datasets, one can easily create an
LLM pipeline for any task on a collection of data items—simply by
crafting a natural language prompt that instructs the LLM on what to
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Figure 1: Before a developer deploys a prompt template to
production, SPADE analyzes the deltas (i.e., diffs) between
consecutive prompt templates to generate assertions. Then,
SPADE uses labeled pipeline inputs and outputs to filter out
redundant and inaccurate assertions, while maintaining cov-
erage of bad outputs.

do with each item. This could span traditional data processing tasks,
such as summarizing each document in a corpus, extracting entities
from each news article in a collection of articles, or even imputing
missing data for each tuple in a relation [34]. LLMs additionally
enable new and more complex data processing tasks that involve
generating data, e.g., an LLM could write an explanation for why
a product was recommended to a user, author emails to potential
sales leads, or draft blog posts for marketing and outreach. In all
of these data processing tasks, deploying these LLM pipelines at
scale—either offline, on each batch of data items, or online, as and
when new items arrive—presents significant challenges, due to data
quality errors made by LLMs seemingly at random [23]—with LLMs
often disregarding instructions, making mistakes with the output
format, or hallucinating facts [48, 63].

One approach to catch errors in deployed LLM pipelines is via
data quality assertions. Indeed, multiple recent papers [26, 41, 54]
and LLM pipeline authoring systems [21, 27, 31] provide mecha-
nisms to embed manually-provided or selected assertions as part of
LLM pipelines to catch errors during deployment. However, deter-
mining which assertions to add remains an open problem—and is a
big customer painpoint based on our experience at LangChain—a
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company that helps people build LLM pipelines. Developers often
find it difficult to determine the right set of assertions for their
custom tasks [38]. Challenges include predicting all possible LLM
failure modes, the time-consuming nature of writing assertions
with various specification methods (like Python functions or LLM
calls), the necessity for precision in assertions (especially those in-
volving LLM calls), and the fact that many LLM pipeline developers
lack software engineering expertise or coding experience [26, 63].
Moreover, if there are non-informative assertions or too many of
them, developers can get overwhelmed monitoring the results of
these assertions. While there is some work on automatically detect-
ing errors in traditional ML pipelines [4, 39, 46, 47], this line of work
operates on many structured records at a time, and doesn’t apply to
an unstructured setting. So, we target the following question: can
we identify data quality assertions for LLM pipelines with as little
effort from developers as possible?

Example LLM Pipeline. Consider an LLM pipeline for a movie
streaming platform, where the task is to generate a paragraph of
text explaining why a specific movie was recommended to a specific
user. A developer might write a prompt template like: “Given the fol-
lowing information about the user, {personal_info}, and information
about a movie, {movie_info}: write a personalized note for why the
user should watch this movie” to be executed for many user-movie
pairs. In theory, this prompt seems adequate, but the developer
might observe some data quality issues while testing it across dif-
ferent inputs: the LLM output might reference a movie the user
never watched, cite a sensitive attribute (e.g., race or ethnicity), or
even exhibit a basic issue by being too short. To fix these problems,
developers typically add instructions to the prompt to catch these
data quality issues, such as “Don’t reference race in your answer”.
However, the LLM may still violate these instructions in an unpre-
dictable manner for some data items, requiring assertions applied
to LLM outputs post-hoc, during deployment.

Analyzing Prompt Version Histories. To automatically syn-
thesize assertions for developers, our first insight is that we can
mine prompt version histories to identify assertion criteria for LLM
pipelines, since developers implicitly embed data quality require-
ments through changes to the prompt, or prompt deltas, over time.
In our example above, instructions such as “Make sure your re-
sponse is at least 3 sentences” or “Don’t reference race in your
answer” could each correspond to a candidate assertion. To under-
stand the types of prompt deltas in LLM pipelines and verify their
usefulness for data quality assertions, we present an analysis of
prompt version histories of 19 custom pipelines from LangChain
users. Using this analysis, we construct a taxonomy of prompt deltas
(Figure 2), which may be of independent interest for researchers
and practitioners studying how to best build LLM pipelines.

Redundancy in Data Quality Assertions. Our second insight
from analyzing these pipelines is that if we were to create candidate
assertions from prompt deltas, say, using an LLM, there may be
far too many assertions—often exceeding 50 for just a few prompt
deltas. Many of these assertions (or equivalently, prompt deltas)
are redundant, while some are too imprecise or ambiguous to be
useful (e.g., “return a concise response”). Reducing this redundancy
is nontrivial, even for engineers: assertions themselves can involve
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LLM calls with varying accuracies, motivating an automated com-
ponent that can filter out bad candidates. One approach is to use a
small handful of developer-labeled LLM outputs to estimate each
data quality assertion’s false positive and false negative rate—but
collectively determining the right set of assertions that can catch
most errors, while incorrectly flagging as few outputs as possible,
is not straightforward.

SPADE: Our Data Quality Assertion Generation Framework. In
this paper, we leverage these insights to develop sPADE (System for
Prompt Analysis and Delta-Based Evaluation, Figure 1)!. sPADE’s
goal is to select a set of boolean assertions with minimal over-
lap, while maximizing coverage of bad outputs and minimizing
false failures (correct outputs that are incorrectly flagged) for the
conjunction of selected assertions. We decompose SPADE into two
components: candidate assertion generation and filtering.
Component 1: Prompt Deltas for Candidate Assertion Generation. For
generating candidate assertions, instead of directly querying an
LLM to “write assertions for x prompt,” which causes the LLM to
miss certain portions of the prompt, we generate candidates from
each prompt delta, which typically indicate specific failure modes
of LLMs. sPADE leverages the aforementioned taxonomy of prompt
deltas we constructed by first automatically categorizing deltas
using the taxonomy, then synthesizing Python functions (that may
include LLM calls) as candidate assertions. With LangChain, we
publicly release this component of sPADE—which has been
subsequently used for over 2000 pipelines across more than
10 sectors like finance, medicine, and IT [51]. We present an
analysis of this usage in Section 2.4.

Component 2: Filtering Candidate Assertions with Limited Data. To
filter out incorrect and redundant candidate assertions, instead
of requiring cumbersome manual selection or even fine-tuning
of separate models [43, 57], we propose an automated approach
that only requires a small handful of labeled examples, which are
usually already present in most target applications. Using these
examples, we could estimate each assertion’s false failure rate (FFR),
i.e., how often an assertion incorrectly flags failures, and eliminate
individual assertions that exceed a given threshold. However, given
we are selecting a set of assertions, the set may still exceed the FFR
threshold and flag too many failures incorrectly, and redundancies
may persist. We show that selecting a small subset of assertions to
meet failure coverage and FFR criteria is NP-hard. That said, we
may express the problem as an integer linear program (ILP) and
use an ILP solver to identify a solution in a reasonable time given
the size of our problem (hundreds to thousands of variables).

In some cases, when there are limited developer-provided exam-
ples, we find that labeled LLM outputs may not cover all failure
modes, leading to omission of valuable data quality assertions. For
instance, in our movie recommendation scenario, an assertion that
correctly verifies if the output is under 200 words will get dis-
carded if all outputs in our developer-labeled sample respect this
limit. To expand coverage, active learning and weak supervision
approaches can be used to sample and label new LLM input-output
pairs for each candidate assertion [6, 40], but this may be expen-
sive or inaccessible for non-programmers. We introduce assertion
subsumption as a way of ensuring comprehensive coverage: if one

'We called our framework spADE since it helps users dig up or unearth useful assertions.
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assertion doesn’t encompass the failure modes of another, both may

be selected. As such, sPADE selects a minimal set of assertions that

respects failure coverage, accuracy, and subsumption constraints.
Overall, we make the following contributions:

e We identify prompt version history as a rich source for
LLM output correctness, creating a taxonomy of assertion
criteria from 19 diverse LLM pipelines (Section 2),

e We introduce SPADE, our system that automatically gener-
ates data quality assertions for LLM pipelines. In a public
release of SPADE’s candidate assertion generation compo-
nent?, we observe and analyze 2000+ deployments (Sec-
tion 2.4),

e We present a method to select a minimal set of assertions

while meeting coverage and accuracy requirements, used

by sPADE to reduce the number of assertions. For low-data
settings, we introduce assertion subsumption as a novel
proxy for coverage (Section 3), and

We demonstrate sPADE’s effectiveness on nine real-world

LLM pipelines (eight of which we open-source). In our

low-data setting (approximately 75 inputs and outputs per

pipeline), our subsumption-based solution outperforms sim-
pler baselines that do not consider interactions between
assertions by reducing the number of assertions by 14% and

lowering the false failure rate by 21% (Section 4).

2 IDENTIFYING CANDIDATE ASSERTIONS

Our first goal is to generate a set of candidate assertions. We de-
scribe how prompt deltas can inform candidate assertions and ex-
plain how to derive candidate assertions from them.

2.1 Prompt Deltas

A single-step LLM pipeline consists of a prompt template £, which
is formatted with a serialized input tuple t to derive a prompt
that is fed to an LLM, returning a response. There can be many
versions of #, depending on how a developer iterates on their
prompt template. Let Py be the empty string, the 0th version, and
let #; be the ith version of a template. In the movie recommendation
example from the introduction, suppose there are 7 versions, where
P is the following: “Given the following information about the user,
{personal_info}, and information about a movie, {movie_info}: write a
personalized note for why the user should watch this movie. Ensure
the recommendation note is concise, not exceeding 100 words. Mention
the movie’s genre and any shared cast members between the {movie_-
namej and other movies the user has watched. Mention any awards or

Zhitps://spade-beta.streamlit.app
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critical acclaim received by {movie_name/. Do not mention anything
related to the user’s race, ethnicity, or any other sensitive attributes.”

We define a prompt delta APy to be the diff (or difference)
between P; and Pj;1. Concretely, a prompt delta AP is a set of
sentences, where each sentence is tagged as an addition (i.e., “+”) or
deletion (i.e., “-”). Table 1 shows the APs for a number of versions
for our example. Each sentence in AP; is composed of additions
(i.e., new sentences in P; that didn’t exist in $;_1) and deletions
(i.e., sentences in P;_1 that don’t exist in ;). A modification to a
sentence is represented by a deletion and addition. Each addition in
AP; indicates possible assertion criteria, as shown in the right-most
column of Table 1.

2.2 Prompt Delta Analysis

To understand what assertions developers may care about, we turn
to real-world LLM pipelines. We analyzed 19 LLM pipelines col-
lected from LangChain users, each of which consists of between
three and 11 historical prompt template versions. These pipelines
span various tasks across more than five domains (e.g., finance,
marketing, coding, education, health), from generating workout
summaries to a chatbot acting as a statistics tutor. Details of the
pipelines can be found in our tech report [50]. For each pipeline,
we categorized prompt deltas, i.e., AP;, into different types—for
example, instructing the LLM to include a new phrase in each re-
sponse (i.e., inclusion), or instructing the LLM to respond with
a certain tone (i.e., qualitative criteria). Two authors iterated on
the categories 4 times through a process of open and axial coding,
ultimately producing the taxonomy in Figure 2. The taxonomy-
annotated dataset of prompt versions can be found online.

We divide deltas into two main high-level categories: Structural
and Content-Based. Around 35% categories identified across all
deltas in our dataset were Structural, and 65% were Content-Based.
Structural deltas indicate a minor restructuring of the prompt, with-
out changing any criteria of a good response (e.g., adding a newline
for readability), or specification of the intended output (e.g., JSON or
Markdown). Plausible assertion criteria based on structural deltas
would check if the LLM output adheres to the user-specified struc-
ture. On the other hand, content-based deltas indicate a change in
the meaning or definition of the task. Content-based deltas include
descriptions of the workflow steps that the LLM should perform
(e.g., “first, do X, then, come up with Y”), instructions of specific
phrases to include or exclude in responses, or qualitative indicators
of good responses (e.g., “maintain a professional tone”). The Data
Integration subcategory (under Content-Based deltas) concerns
adding new sources of context to the prompt—for example, adding
a new variable like “{movie_info}” to the prompt, indicating a new
type of information to be analyzed along with other content in
the prompt. For some illustrative examples of prompt deltas for
each category, we categorize the prompt deltas in Table 1, and in
Table 2, we show sample prompt deltas for each category in our
taxonomy. This taxonomy may be of independent interest to re-
searchers studying the process of prompt engineering, as well as
practitioners seeking to identify ways to improve their prompts for
production LLM pipelines.

*https://github.com/shreyashankar/spade-experiments/blob/main/taxonomy_labels.
csv
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Table 1: Comparison of 7 prompt versions for an LLM pipeline to write personalized movie recommendations. In each A?;, a
sentence starts with “+” if it is a newly added sentence; a sentence starts with “-” if it is removed from P;_;. For each AP;, we
list its category (using the taxonomy in Figure 2) and possible new assertion criteria.

Version i ‘ AP; ‘ AP; Category ‘ Possible New Assertion Criteria

1 + Given the following information about the user, {per- | Inclusion Response should be personalized and relevant to the
sonal_info}, and information about a movie, {movie_- given user information
info}: write a personalized note for why the user should
watch this movie.

2 + Include elements from the movie’s genre, cast, and | Inclusion Response includes specific references to the user’s in-
themes that align with the user’s interests. terests related to the movie’s genre, cast, and themes

3 + Ensure the recommendation note is concise. Qualitative Assessment | Response should be concise

4 - Ensure the recommendation note is concise. + Ensure | Count Response should be within the 100 word limit
the recommendation note is concise, not exceeding 100
words.

5 - Include elements from the movie’s genre, cast, and | Inclusion Response should mention genre and verify cast members
themes that align with the user’s interests. + Mention the are accurate
movie’s genre and any shared cast members between the
{movie_name} and other movies the user has watched.

6 + Mention any awards or critical acclaim received by | Inclusion Response should include references to awards or critical
movie_name. acclaim of the movie

7 + Do not mention anything related to the user’s race, | Exclusion Response should not include references to sensitive per-
ethnicity, or any other sensitive attributes. sonal attributes

Overall, our exercise in building this taxonomy reveals two key
findings. First, developers across diverse LLM pipelines iterate on
prompts in similar ways as encoded as nodes in the taxonomy,
many of which correspond to aspects that can be explicitly checked
via assertions. Second, we find that an automated approach to
synthesize data quality assertions may be promising, since our
taxonomy reveals several such instances where the prompt delta
could directly correspond to an assertion that captures the same
requirement. For example, many deltas correspond to instructions
to include or exclude specific phrases, indicating that developers
may benefit from assertions that explicitly verify the inclusion or
exclusion of such phrases in LLM outputs.

However, if we are to use an LLM to automatically generate asser-
tion criteria based on our taxonomy of deltas, we also need to test
whether LLMs can accurately identify the categories corresponding
to a delta. Therefore, we confirmed GPT-4’s correct categorization
of prompt deltas (as of October 2023): we assigned ground truth
categories to all prompt deltas from the 19 pipelines, and GPT-
4 achieved an F1 score of 0.8135. The prompt used for category
extraction from prompt deltas is detailed in our tech report [50].

2.3 From Taxonomy to Assertions

As we saw previously, prompt delta as categorized into nodes in
our taxonomy often correspond to meaningful assertion criteria.
Next, we need a method to automatically synthesize the data quality
assertions from the prompt deltas. A natural idea is to prompt an
LLM to generate assertion functions corresponding to relevant
categories in our taxonomy given the prompt deltas. We tried this
approach with GPT-4 in January 2024 and observed several omitted
assertions that clearly corresponded to categories in our taxonomy.
Therefore, we adopt a two-step prompting process in our approach,
as it has been demonstrated that breaking tasks into steps can
enhance LLM accuracy [20, 59, 61]. In the first step, we prompt
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Table 2: Categories of prompt deltas.

Category

Explanation | Example Prompt Delta

Response Format In- | Structure guidelines. “+ Start response with “You

struction might like..””
Example Demonstra- | Illustrative example. “+ For example, here is a re-
tion sponse for sci-fi fans..”

Prompt Clarification Refines  prompt/re- | “- Discuss/+ Explain movie
moves ambiguity. fit..”

Workflow Description | Describe “thinking” | “+ First, analyze viewing his-
process. tory..”

Data Integration Adds placeholders. “+ Include user’s {genre} re-

. »
VIEWS.

Quantity Instruction Adds numerical con- | “+Keep note under 100 words.”

tent.

Inclusion Instruction | Directs specific con- | “+ Mention movie awards/ac-
tent. claim”

Exclusion Instruction | Advises on omissions. | “+ Avoid movie plot spoilers.”

Qualitative Criteria Sets  stylistic  at- | “+ Maintain friendly, positive
tributes. tone.”

GPT-4 for natural language descriptions of assertion criteria, and
in the second step, we prompt GPT-4 to generate Python functions
that implement such criteria.

More specifically, for each prompt delta AP;, we first prompt an
LLM to suggest as many criteria as possible for assertions—each
aligning with a taxonomy category from Figure 3. A criterion is
loosely defined as some natural language expression that operates
on a given output or example and evaluates to True or False (e.g.,
“check for conciseness”). Our method analyzes every AP; instead
of just the last prompt version for several reasons: developers often
remove instructions from prompts to reduce costs while expect-
ing the same behavior [38], prompts contain inherent ambiguities
and imply multiple ways of evaluating some criteria, and complex
prompts may lead to missed assertions if only one version is ana-
lyzed. Consequently, analyzing each AP; increases the likelihood
of generating relevant assertions.



Construct APs
“- Include elements from the movie’s genre, cast, and
themes that align with the user’s interests. + Men-
tion the movie’s genre and any shared cast members..”

'

Prompt LLM with APs to identify the delta type(s)
and assertion criteria based on our taxonomy

{"criterion" "The response should mention the movie's genre.", "category":
©—> "Inclusion", "source": "Mention the movie's genre"},

{"concept": "The response should include shared cast members between the
< specified movie and other movies the user has watched.", "category": "
> Inclusion", "source": "any shared cast members between the {movie_name}
> and other movies the user has watched"}

.

Synthesize Function(s)

w

assert_mention_of_movie_genre(ex: dict, prompt: str, str):
expected_genre = ex.get('movie_genre', '').lower()

return expected_genre in response.lower ()

response:

def assert_accurate_inclusion_of_shared_cast_members(prompt:
str):

# Formulate questions for the
<= and accuracy
presence_question "Does the response include shared cast members
“— between the specified movie and other movies?"

accuracy_question "Are the shared cast members mentioned in the
“— response accurate and correctly representing those shared between
“— the specified movie and other movies?"

str, response:

‘ask_llm' function to check for presence

return ask_llm(prompt, response,
“— response, accuracy_question)

presence_question) and ask_llm(prompt,

Figure 3: Generating candidate assertions from a AP.

For each delta, our method collects the criteria identified and
prompts an LLM again to create Python assertion functions. The
synthesized functions can use external Python libraries or pose
binary queries to an LLM for complex criteria. For function synthe-
sis, the LLM is instructed that if the criterion is vaguely specified
or open to interpretation, such as “check for conciseness,” it can
generate multiple functions that each evaluate the criterion. In this
conciseness example, the LLM could return multiple functions—a
function that splits the response into sentences and ensures that
there are no more than, say, 3 sentences, a function that splits the
response into words and ensures that there are no more than, say,
25 words, or a function that sends the response to an LLM and asks
whether the response is concise. The overall outcome of this is a
multiset of candidate functions F = {fi, ..., fin}. The two prompts
for generating assertion criteria and functions can be found in our
tech report [50].

2.4 Initial Deployment

To assess the potential of our auto-generated assertions, in No-
vember 2023, we released an early prototype of sPADE’s candidate
assertion generation framework via a Streamlit application®. In the
Streamlit app, a developer can either paste their prompt template
that they want to generate assertions for, or they can point to their
LangChain Hub prompt template (which contains prompt version

“https://spade-beta.streamlit.app/
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histories via commits). The app then visualizes the identified tax-
onomy categories in the user’s prompt and displays the candidate
assertions, as shown in the screenshot in Figure 4.

Tool Usage Insights and Feedback. From the reception to our
Streamlit application, we found significant interest in auto-generated
data quality assertions for LLM pipelines: there have been over 2000
runs of the app for custom prompt templates (i.e., not the sample de-
fault prompt template in app). These runs span many fields, includ-
ing medicine, education, cooking, and finance—providing insights
from a diversity of use cases for LLM pipelines. Figure 5 shows
a rough breakdown of the use cases people wanted to generate
assertions for; however, it’s important to note that some runs may
not cleanly fit into a single category (e.g., a chatbot for telehealth-
related questions for a medical provider could be in “customer
support” and “health”). Interestingly, 8% of tasks related to con-
versational assistants, and we observed instances of at least four
different companies generating assertions for their chatbots, given
that the company name was in the prompt. Users for 48 of these
runs clicked the “download assertions” button, which downloads
the candidate assertions as a Python file. We note that users can
also directly copy the assertions code displayed, instead of down-
loading the assertions as a Python file, and we did not measure the
copy events. No users clicked the “thumbs down” button—which
is not to say that the generated assertions were perfect. After our
Streamlit app was released, we found an unprompted review of
SPADE-generated assertions from a LangChain user who built a
“chat-with-your-pdf” tool®: in their words, “When I saw it I didnt
beleive it could work that well, but it really did and made the evalua-
tion process fun and ez.” We also found an independently-written
open-source re-implementation of sPADE®.

Observations about Assertion Criteria. Across the 2000+ runs,
with regards to our taxonomy, assertion criteria were most com-
monly derived from inclusion and exclusion instructions. For ex-
ample, for a shopping assistant, where the objective was to find
the most relevant product related to a customer’s query, responses
were required to include “all the features [the customer] asked
for” In another customer support agent example, responses were
required to include “exact quotes in the [context] relevant to the
[customer’s] question...word for word” One common exclusion
instruction across chat-related tasks was to avoid any discussion
unrelated to the end-user’s question; however, we noticed that GPT-
4 struggled to generate assertion criteria around such a generic
exclusion instruction. We found Python functions generated to
implement criteria such as “avoid unrelated ideas”, did not use an
LLM to check the criteria. Instead, they checked for the presence of
specific phrases like “unrelated” and “I'm sorry, I did not find any-
thing related” in the response. Such errors indicate the limitations
of current state-of-the-art LLMs and may suggest the need for spe-
cialized, fine-tuned LLMs for generating assertions in future work;
here, we work with the limitations of present-day state-of-the-art
LLMs. We discuss this further in our tech report [50].

A new pattern we noticed after deployment, which wasn’t seen
in our initial analysis, is that developers often wish to hide certain

Shtps://twitter.com/th_calafatidis/status/1728144652119769394
®https://github.com/uptrain-ai/uptrain/blob/main/examples/integrations/spade/
evaluating_guidelines_generated_by_spade.ipynb
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WX & Get Suggested Evalution Functions

SPADE @ (System for Prompt Analysis and Delta-based Evaluation) will suggest binary eval functions for
your prompt that you can run on all future LLM responses on. It works best when given the version history
of your prompt (i.e., through a LangSmith Hub repo), but you can also use it with a single prompt

template.

This is an experimental version of SPADE, built in collaboration with UC Berkeley and used for
research purposes. Here's a link to our blog post. If you'd like to provide feedback on the quality of
evals or participate in an interactive prompt engineering study so we can improve the tool, please fill

out this form.

[ How it works
Choose Input Type
Prompt Template
Prompt Template
Aclient ({client_genders}) wants to be styled for {event}. Suggest 5 apparel items for
{client_pronoun} to wear. For wedding-related events, don’t suggest any white items unless the
client explicitly states that they want to be styled for their wedding. Return your answer as a python
list of strines

Prompt Versions

Eval function generation in progress.

See In-Progress Analysis

Annotated first prompt template Prompt refinement legend

A client ({client_genders}) wants to be styled for Formatinstruction &
{event}. Suggest 5 apparel items for
{client_pronoun} to wear. For wedding-related
events, don’t suggest any white items unless the
client explicitly states that they want to be styled

for their wedding. Return your answer as a python

ExampleDemonstration &)
WorkflowDescription

Quantitylnstruction &)

list of stri
R Inclusion &

Exclusion @

QualitativeAssessment &

& Suggested evaluation functions

# Needs LLM: False

def evaluate_python_list_format(prompt: str str) -> bool:

response:

Figure 4: Screenshot of an early version of sPADE.

parts of the LLM workflow in the outputs. This could be viewed

as a special instance of the exclusion category in our taxonomy.

For instance, in a prompt related to enterprise automation, the
first instruction was to write a query targeting a specific database
(e.g., “Write a SQL query to fetch the most relevant table from the
MySQL database”). However, another instruction in the prompt
specified that the name of the database should not appear in the
final summary returned to the end-user (e.g., “Do not mention that
you queried the MySQL table X”). We were pleasantly surprised to
find that our process for generating criteria successfully identified
and implemented such exclusion instructions accurately.

Observations about Assertions. In LLM pipelines with numerous
prompt versions, we observed two main patterns. First, prompt
engineering often leads to many similar assertions, and redundancy
can be a headache at deployment when a developer has to keep track
of so many assertions. For instance, a pipeline to summarize lecture
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Others | ]4.2
Marketing | 4.2
Finance 4.2
Cooking |83
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tertainment

Education | 8.3

Customer Support -| ] 12.5 -
Project Management | | 12.5 [
IT and Programming | | 16.7 =
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Figure 5: Prompts submitted to the sPADE Streamlit applica-
tion span a variety of fields.

transcripts’ had 14 prompt versions, with many edits localized to
the paragraph providing instructions on titles, speakers, and dates,
creating multiple overlapping assertions. 10 assertions assessed the
lecture’s central thesis; two are as follows:

async def assert_response_articulates_central_thesis(
example: dict, prompt: str, response: str
DE
return "Central Thesis:" in response
async def assert_response_completeness(example:
< str):
required_elements = [
"Context:",
"Central Thesis:",
"Key Points:",
"Conclusions and Takeaways:",
"Glossary of Important Terms:",

dict, prompt: str, response:

]

return all(element in response for element in required_elements)

J

Second, many assertions may be incorrect, causing runtime er-
rors or false failures. Assessing the accuracy of these assertions
is challenging, particularly for those that are complex or invoke
LLMs themselves, where even experienced developers might not
be able to gauge their effectiveness without viewing the results
of the functions on many examples. Even if the assertions are not
incorrect, they still may have undesirable failure rates or coverage,
which is often hard for a developer to reason about in conjunction
with other assertions. Since there can be 50+ assertions generated
for just a handful of prompt versions (as demonstrated in Section 4),
manually filtering them by eyeballing failure rates for each sub-
set of assertions is impractical. Therefore, we adopt an automated
approach for filtering, as discussed in the following section.

3 FILTERING CANDIDATE ASSERTIONS

As we saw in the previous section, we often have redundant and in-
correct assertions, particularly in pipelines with numerous prompt
versions. Here, we focus on filtering this candidate set to a smaller
number, which not only improves efficiency and reduces cost when
deploying the assertions to run in production, but it also reduces
cognitive overhead for the developer.

"https://smith.langchain.com/hub/kirby/simple-lecture- summary
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3.1 Definitions

Consider e; as an example end-to-end execution (i.e., run) of an LLM
pipeline on some input. For the purposes of this section, we assume
the prompt template # is fixed to be the final prompt version that
the developer eventually decided on. We denote y; € {0,1} to
represent whether the developer considers e; to be a success (1) or
failure (0).

Let E be the set of all such example runs (this set is not pro-
vided upfront, as we will deal with shortly). We define an asser-
tion function f : E — {0,1}, where 1 indicates that the exam-
ple was processed successfully by the LLM and 0 otherwise. Let
F' ={fi, fa. ..., fi} be aset of k data quality assertions. An example
e; is deemed successful by F’ if and only if it satisfies all assertions
in F’. Specifically:

1if f(e;) = 1

B VfeF,
"7 10 otherwise.

// Deemed successful by all of F’
// Deemed a failure by > 1 of F’

Given all m candidate assertions F = {fi, f2,.. ., fin}, the objective
is to select F’ C F such that §; = y; for most examples in E, with
F’ being as small as possible. This goal involves maximizing failure
coverage and minimizing the false failure rate and selected function
count, expressed as follows:

Definition 3.1. Coverage for a set F is the proportion of actual
failures that are correctly identified by F’, defined as:

_Zillgi=0Ayi=0]
2il[yi =0]

Definition 3.2. False Failure Rate (FFR) for a set F’ is the fraction
of examples that F’ incorrectly evaluates as failures (ij; = 0) when
they are actually successful (y; = 1), defined as:

_Zillgi=0Ayi=1]
Zillyi=1]

In both definitions above, #); represents set F’’s prediction for
the i-th example, y; is the actual outcome, while I is the indicator
function. In practice, coverage and FFR are impossible to compute
since the universe of examples E is unknown. So, for now, we
assume access to a subset E' C E of labeled LLM responses, where
E’ is a manually provided set of example runs and may not contain
all the types of failures the LLM pipeline could observe—an issue
we will deal with in Section 3.3. Thus, we replace Definition 3.1
and Definition 3.2 with Coveragey, (F’) and FFRg: (F’), omitting
the subscript E” for brevity.

Coverage (F') // Failures caught by F’

FFR (F’) // Non-failures flagged by F’

3.2 Coverage Problem Formulation

Our goal is therefore to select a minimal set of assertions F’ C F
based on a sample E’ = {ey, ..., ey} C E. Formally:

|F'|

Coverage(F') > a,

minimize

subject to: FFR(F') <t

The above problem may be infeasible with certain values of «, for
multiple reasons. To see this, consider the case where no assertion
catches a specific failure, while « is set to 1. We ignore this (and
similar cases) for now and defer their discussion to Section 4. To
expand out the above, we introduce a matrix M (size n X m) to
track each assertion’s result on each example e;, where M;; = 1
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if fj(e;) = 1 (i.e., Fj deems e; a success) and M;; = 0 otherwise.
We also define binary variables x; and w;; to represent whether
an assertion is chosen and if it marks an example as a failure:
wij = (1= M;j) - xj, which is based on whether fj denotes e; as
a failure and fj is included in F’. We additionally introduce the
binary variable u; to represent whether a failed example is covered
by any selected assertion:

m
u; < Z wij, Vi€ [1,n]:y; =0.// Coverage of failure e;
=

Then, the coverage constraint can be written as:
Zi;yi:O Ui 2
2Zillyi=0]
FFR is decomposed similarly: we introduce a new binary variable z;,

which defines whether F” denotes e; as a failure while e; is actually
a successful example (i.e., false failure):

zi > yi-wij, Vi€ [lLn];Vje[1,m].// e is afalse failure

Then, the FFR constraint is:
iy Zi
2 Iy = 1]
We can then state the problem of minimizing the number of

assertions while meeting E’ coverage and FFR constraints as an
Integer Linear Program (ILP):

<.

m
minimize Z Xj
Jj=1

subject to:  w;; = (1 - M;;) -xj, Vie[lLn], Vje[1,m];
m S o Ui

cy;=0 Ui

u; < wij, Vi€ [1,n] wherey; =0; il L a;

l le Y E S Tlyi=ol
n

. . i=1 %i
zi > yi-wij, Vi€ [Ln], Vje[l,m];

< o <71
Zis Hyi =1]

xj,ui, zi»wij € {0,1}, Vie[Ln], Vje[l,m].

We refer to a solution for this ILP as SPADE oy . Trivially, the problem
is NP-hard for 7 = 0 and @ = 1, via a simple reduction from set
cover, and is in NP, since it can be stated in ILP form. In our case,
given tens of candidate assertions and fewer than 100 examples e;,
the ILPs tend to be of reasonable size (i.e., thousands of variables).
Most ILP solvers can efficiently and quickly such programs.

3.3 Subsumption Problem Formulation

So far, we’ve assumed that the developer is willing to provide a
comprehensive set of labeled example runs E’. In settings where
the developer is unwilling to do so, and where E” does not include
all failure types in E, SPADE.oy may overlook useful assertions in F
that only catch failures in E \ E’—as shown empirically in Section 4.
We initially considered using active learning [6] to sample more
LLM responses for each assertion and weak supervision to label
the responses [40]. However, this approach can be costly with
state-of-the-art LLMs, and it demands significant manual effort to
balance failing and successful examples for each assertion, ensuring
meaningful FFRs, and avoiding the exclusion of assertions due to
underrepresented failure types.



For this setting, we additionally introduce the notion of sub-
sumption. To illustrate this concept, consider the following real
example of assertions from a pipeline which uses an LLM to review
pull requests to Github codebases: gratitude_v1 checks for the
presence of “thank you” in the response; gratitude_v2 verifies if
the response contains “thank you” or “thanks”; and gratitude_v3
checks for “thank you”, “thanks”, or “grateful” in the response. In
this hierarchy, gratitude_v3 subsumes the other two assertions,
as it covers all their cases and more.

Assuming that all candidate assertion functions cover as many
failure modes as possible, our goal is to pick F/ C F such that
assertions in F \ F” are subsumed by F’. Formally, a set of functions
S subsumes some function f if the conjunction of functions in S
logically implies the conjunction of functions in S and f. That is,

Definition 3.3. A set of functions S = f if and only if Ve €
E,3s € Ssuchthats(e) = f(e). In other words, if S = f,
then f catches no new failures that S does not already catch.

A simple example of subsumption is as follows: suppose our set
of functions S contains only one function f, which parses an LLM
output into a JSON list to check that the list has at least 2 elements.
f may be generated as a result of a count-related instruction from
our taxonomy of prompt deltas. Now, let g be some other function
that only checks if the output can be turned into a JSON list. g might
have been generated due to a “Response Format Instruction”-type
delta. If g fails for some LLM output, f—and therefore S—must also
fail that output; thus S = g¢.

3.3.1 ILP with Subsumption Constraints. We reformulate the prob-
lem with subsumption constraints. Let G be the set of functions in
F\ F’ not subsumed by F’:

IF'l +1Gl

Coverage(F’) > a,

minimize

subject to: FFR(F') <t

To represent G, we introduce binary variables and a matrix K to
denote subsumption relationships. K;; = 1if and only if f; = f;.
We discuss how we construct K in more detail in Section 3.3.2.
Recall that x; represents whether f; is selected in F’. For each
function fj, a binary variable r; indicates if it is subsumed by F ‘.

m
xi-Kjj <rj < Z(xi ~Kij), Vje[l,m],i#].

-

=
Now, s; will denote if f; is neither in F” nor subsumed by F’. We
break this into three parts. First,

sj<1-xj, Vje[l,m],

indicates that fj ¢ F’ if s; is allowed to be 1 (i.e., fj ¢ F’ when
xj = 0). The second constraint,
sj<1-rj, Vje[l,m],

captures the condition where f; is not subsumed by F’. Here, if
rj = 0, suggesting no subsumption, then s; may be 1. Lastly, to

combine these conditions, we employ the constraint,
sji>21-xj—rj, Vje[lm],

which ensures that s; can only be 1 if both prior conditions are
satisfied: f; is neither in F” nor subsumed by F’.
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Finally, our objective is to minimize the sum of the number of
functions in F” and non-subsumed functions G. The ILP formulation
then becomes (with changes highlighted in blue):

m m
minimize Z xj+ Z sj
Jj=1 Jj=1

subject to:  w;j; = (1 - M;j) - xj, Vi € [1,n], Vj € [1,m];

i Vie [1n] wh Liryi=o U
uj < Wij, i€ |l,n] wherey; =0, =————= 2a;
= ' %illyi =0]
r.l Zi

zi 2 y;i-wij, Vie[lLn],Vje[l,m]; LST;
i i 1 Z?=1H[yi=1]

m
xi'KierjSZ(xi'Kij)) Vje[l,m],i#j;

—

i%]
sj<1-xj, s;<1-rj, Vjel[l,m];
sji>21-xj—rj, Vje[l,m];

Xj, ui, zi, wij, rj,sj € {0,1}, Vi€ [Ln], Vje[l,m].

We call a solution to this ILP sPADEy,},. We maintain the coverage
constraint because the subsumption approach alone does not in-
herently account for the distribution or the significance of different
types of failures. For instance, if a particular type of failure makes
up a critical portion of E’, a subsumption-based approach might
overlook it. To see this in the simplest case, consider & = 1: simply
optimizing for the sum |F’| + |G| does not guarantee all failures
in E’ are covered. In practice, SPADEgy, is less sensitive to a than
SPADEcqy, as we will discuss further in Section 4.

3.3.2 Assessing Subsumption. Here, we detail how to construct K,
our matrix representing subsumption relationships between pairs
of functions f;, fj. For pure Python functions, one could use static
analysis to determine subsumption. However, it becomes complex
when dealing with assertions that include LLM calls or a mix of pure
Python and LLM-invoking assertions. For these, SPADE employs
GPT-4 to identify potential subsumptions {a} = b for pairs
of functions a, b. For any pipeline, there are only two LLM calls
to determine all subsumptions: first, all assertion functions are
combined into a single prompt for GPT-4, instructing it to list as
many subsumption relationships as possible, then prompting again
to transform its response into a parse-able list of pairs a = b.

To maximize precision of = relationships identified, we
employ some heuristics. First, E’ can filter subsumptions: for f; and
fj» observe that:

Fe, B (fi(e)=D)A(fje)=0)= ({...fo...} == f).

In other words, any set containing f; definitely does not subsume
fj if fj flags a failure that {f;} does not. Next, we use the FFR
threshold to skip evaluating subsumption. Observe that, for any set
of assertions S and f ¢ S,

max (FFR (), FFR ({f})) < FFR(SU {f}),
FFR (S U {f}) < FFR(S) + FFR ({f}) . 1)

As such, we need not evaluate {f;} = fj if either FFR ({f;}) > 7
or FFR ({fj}) > r. Lastly, we use transitivity of implication to



a (gratitude_v3)

!

b

¥\
d c

e (irrelevant_llm)

'

f (irrelevant_keyword)

Figure 6: Example depicting subsumption relationships.
Node a represents the most comprehensive assertion to check
for presence of gratitude, e.g., “thank you”, in the LLM re-
sponse (gratitude_v3 in the beginning of Section 3.3), sub-
suming nodes b, ¢, and d, which are less comprehensive
checks (e.g., checking fewer keywords). Node e represents an
LLM-based check for irrelevant content in the LLM response,
subsuming node f, a simpler keyword-based check that is
less comprehensive.

further prune checks:if x = yandy = z,thenx = zis
also true.

3.3.3  Subsumption without Examples. For completeness, we also
consider the case where we have no developer-provided examples
E’.In this case, we are only reliant on our subsumption relationships
to pick our set F’. Our problem can then be restated as follows:

m
Xj+ Zs]'
7=

m
subject to:  x; - Kjj <rj < Z(x,— -Kij), Vjel[1,m];

i=1

m

minimize Z

J=1

itj
sj<l-xj, s;j<1-rj, Vje[1l,m];
sji21-xj—rj, Vje[lm];
Xj,Tj,Sj € {0,1}, Vje[1,m].

However, it turns out this problem is no longer NP-Hard. Consider

the example in Figure 6, where an edge indicates subsumption. For
example a — b means that b catches a subset of the failures of a,
and is therefore subsumed by a. Concretely, a may be a function
that checks for the presence of gratitude-related keywords in the
LLM response, and b may check for a subset of keywords that a
checks. Here, if we were to minimize X (x; + sj), we would simply
pick a and e to be part of F’, since the rest of the functions would be
subsumed (therefore their s; = 0—recall that s; = 1 for assertions
that are neither subsumed nor selected), and our overall metric
would evaluate to 2. One intuitive way to view this problem is to
start by keeping all of the nodes as unselected, i.e.,, x; = 0,s; = 1,
and then by adding them one at a time in a predefined order to
F’, we set xj = 1,sj = 0, and at the same time, we also impact s;
(moving them from 1 to 0) for all other functions that then become
subsumed as a result.

More generally, subsumption relationships can be represented
in the form of a Directed Acyclic Graph (DAG), as in our example
above. (We omit the trivial case where two or more functions are
equivalent, that is the only case where there can be cycles; in all
other cases we have a DAG.) Within this DAG, we simply select
all nodes that have no incoming edges and add them to F’. We
can see that the rest of the nodes are subsumed, since they have at
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least one incoming edge. We could certainly exclude a node that
doesn’t have any incoming edge from F’, but adding it to F’ does
not worsen the objective because there is no way that that node will
be subsumed by another. So, overall, we need to do a topological
sort of the subsumption graph and pick the nodes “at the top”. Thus,
the problem is in PTIME when there are no examples provided.

4 EVALUATION

We first discuss the LLM pipelines and datasets (i.e., E’); then, we
discuss methods and metrics and present our results. The experi-
ment code, datasets, and LLM responses are hosted on GitHub.

4.1 Pipeline and Dataset Descriptions

We evaluated sPADE on nine LLM pipelines—eight from LangChain
Hub®, an open-source collection of LLM pipelines, and 1 propri-
etary pipeline. Each pipeline consists of a prompt template for the
LLM and collection of approximately 75 examples (i.e., inputs and
ouptuts in E’) with labels for whether the outputs were good or
bad. All nine pipelines come from LangChain users. Six pipelines
were used in developing our prompt delta taxonomy (Section 2.2),
each representing a different domain (e.g., programming, finance,
marketing). Two pipelines came from sPADE’s Streamlit deployment
(Section 2.4). We include one final proprietary pipeline (the fashion
pipeline) in our experiments because it had the largest number of
prompt template versions and SPADE’s assertions have already been
deployed in production for tens of thousands of daily runs.

Table 3 provides details on each LLM pipeline and correspond-
ing set of good and bad examples. For the fashion pipeline, good
and bad examples were provided by a developer at the correspond-
ing startup. While we used real user-provided prompt templates
and histories (between 3 and 16 prompt versions) for the other
8 pipelines, we constructed and annotated our own input-output
examples so we could release them publicly. For two pipelines,
we sourced examples from Kaggle. For the other six pipelines, we
synthetically generated the other datasets using Chat GPT Pro
(based on GPT-4) and manually reviewed them. For instance, for
the codereviews pipeline that uses an LLM to review pull requests,
we asked Chat GPT to generate example pull requests covering
a variety of programming languages, application types, and diff
sizes. On average, we collected 75 examples per pipeline. We then
executed the LLM pipelines on these inputs and manually labeled
the responses to assess whether they met the prompt instructions.

4.2 Method Comparison and Metrics

As before, let E” be a dataset of example prompt-response pairs, as
well as the corresponding labels of whether the response was good
(i.e., 1) or bad (i.e., 0). Let = be the FFR threshold and F be the set of
candidate assertions produced by the first step of sPADE (Section 2).
If a candidate function f results in a runtime error for some example
e, we denote f (e) = 0 (i.e., failure). All code was written in Python,
using PuLP to find solutions for the ILPs. We used the default PuLP
configuration, which uses the CBC solver [17].

The simplest baseline involves generating candidate assertions
and choosing all of them, but it proved ineffective, yielding 100%
coverage and 100% FFR due to at least one assertion failing all tests.

8https://smith.langchain.com/hub
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Table 3: Description of data-generating LLM pipelines in our experiments. The fashion examples (and ground-truth indicators
of whether the example response is good or bad) are provided by a startup that uses LangChain. All other examples are
synthetically generated except examples for the finance and lecturesummaries pipelines, which are taken from Kaggle.

Full Prompt Link

Writing reviews of GitHub repo pull requests
Creating Saa$S user onboarding emails
Suggesting outfit ideas for specific events
Summarizing financial earnings call transcripts

Summarizing lectures or talks, focusing on main points and kirby/simple-lecture-summary

homanp/github-code-reviews
gitmaxd/onboard-email

N/A

casazza/map_template

Writing tailored negotiation strategies based on provided antoniogonc/strategy-report

contracts and target prices

Pipeline # Good Ex. # Bad Ex. # Prompt Ver. Data Generation Task
codereviews 60 16 8
emails 43 55 3
fashion 48 34 16
finance® 48 52 5
lecturesummaries® 27 22 14
critical insights
negotiation 27 19 8
sportroutine 19 31 3
ercise routines
statsbot 39 31 3
threads 50 56 4

Writing interactive discussions for any topic in statistics
Crafting concise, engaging Twitter threads for specific audi- flflo/summarization

ences and topics

Transforming workout video transcripts into structured ex- aaalexlit/sport-routine-to-program

anthonynolan/statistics-teacher

# https://www.kaggle.com/datasets/ashwinm500/earnings- call- transcripts

Table 4: Results of different versions of sPADE with @ = 0.6
and 7 = 0.25. “4¢ CA” is short for the number of candidate
assertions. The v/and X marks denote whether « and 7 con-
straints are met. Each entry is a fraction of the total number
of candidate assertions for that pipeline (with the absolute
number in parentheses). SPADEcoy selects the fewest asser-
tions overall. SPADE,, selects the fewest assertions while
optimizing for subsumption.

Coverage Frac Func Frac Excl.
Pipeline #CA Method FFR ,g * Funcs. not
onE Selected
Subsumed
BASELINE 0.117 v/ 1 v 0.456 (20) 0 (0)
codereviews 44 SPADEcoy 0 v 0625V 0.045 (2) 0.409 (18)
SPADEggy 0.117 v 0.875v  0.341 (15) 0 (0)
BASELINE 0 v 1 v 0.5 (12) 0 (0)
emails 24 SPADEcoy 0o v 1 v 0.0417 (1) 0.458 (11)
SPADEgyp 0 v 1 v 0.458 (11) 0 (0)
BASELINE 0.878 X 0971V 0.632 (67) 0 (0)
fashion 106  SPADEco, 0245+ 0.6 ¢ 0.028(3) 0.321 (34)
SPADEggy 0.224v 062 v 0.377 (40) 0 (0)
BASELINE  0.667 X 1 v 0.787 (37) 0 (0)
finance 47 SPADEcoy 0.229v  0.673 vV 0.085 (4) 0.553 (26)
SPADEg, 0.208 v/ 0.981 v 0.553 (26) 0 (0)
BASELINE  0.528 X 1 v 0.457 (32) 0 (0)
lecturesum. 70  SPADEcoy 0.194/ 0.643v  0.014 (1) 0.414 (29)
SPADEgp, 0.194v 1 /  0.343(24) 0 (0)
BASELINE  0.444 X 1 v 0.4 (20) 0 (0)
negotiation 50  SPADEcoy 0.222¢ 0.632/ 0.04 (2) 0.32 (16)
SPADEgyy 0.185¢ 1 v 0.34 (17) 0 (0)
BASELINE  0.211 v/ 1 v 0.538 (14) 0 (0)
sportroutine 26 SPADEcoy 0.211v  0.774 V/ 0.077 (2) 0.462 (12)
SPADEgyh 0 v 0871V 0.308 (8) 0 (0)
BASELINE 0o v 1 v 0.467 (7) 0 (0)
statsbot 15  SPADEcey 0 v 0935/  0.133(2) 0.333 (5)
SPADEgqy, 0 ¢ 1 /0467 (7) 0 (0)
BASELINE 0o v 1 v 0.765 (26) 0 (0)
threads 34 SPADEcoy 0 v 0875V 0.029 (1) 0.735 (25)
SPADEgyp 0o v 1 v 0.589 (20) 0 (0)

Failures were due to errors or overly specific conditions that, in
theory, could pass some outputs (for example, requiring a precise
phrase in a certain case) but, in reality, never matched any actual
LLM outputs. As such, we evaluated two versions of SPADE against
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b https://www.kaggle.com/datasets/miguelcorraljr/ted-ultimate-dataset

a baseline that simply filters candidate assertions that individually
exceed the FFR threshold. The BASELINE selects all functions f in F
where FFR ({f}) < 7. SPADE oy is a solution to the ILP defined in
Section 3.2 SPADE}, is a solution to the ILP defined in Section 3.3.1.

Let F’ represent the set of selected assertions by any version of
SPADE. We measure four metrics:

(1) Fraction of Assertions Selected (i.e., |F’|/|F|)

(2) Fraction of Excluded Non-Subsumed Functions (i.e., |G|/|F|,
where G = {g|ge F\F and F' =5 g})

(3) False Failure Rate (Definition 3.2)

(4) Coverage on E’ (Definition 3.1)

An important aspect of SPADEg,},’s success is the effectiveness
of subsumption assessment. Since we do not have ground truth for
subsumption, we focus on precision, calculated as the proportion of
correctly identified subsumed pairs of assertions out of all subsumed
pairs identified by the LLM. We do not assess recall—whether GPT-4
identified every possible subsumption—due to the impracticality of
labeling possibly tens of thousands of assertion pairs per pipeline.
Moreover, precision is more critical than recall, as identifying even
some subsumptions allows SPADEg;, to achieve a solution with
fewer selected assertions.

4.3 Results and Discussion

Table 5: Precision of
assessing subsump-
tion with GPT-4 (ver-
ified by two authors).

Table 6: Average ILP runtimes (in sec-
onds) over 10 trials for SPADE oy and
SPADEg,,- The BASELINE method
has no ILP component.

Pipeline Precision Pipeline SPADEcoy SPADEgp
codereviews 0.90 codereviews 0.267 0.362
emails 0.79 emails 0.196 0.225
fashion 0.74 fashion 0.628 1.197
finance 0.79 finance 0.352 0.441
lecturesummaries 0.89 lecturesummaries 0.265 0.538
negotiation 0.68 negotiation 0.220 0.332
sportroutine 0.89 sportroutine 0.120 0.158
statsbot 0.86 statsbot 0.104 0.122
threads 0.80 threads 0.272 0.332
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https://smith.langchain.com/hub/casazza/map_template
https://smith.langchain.com/hub/kirby/simple-lecture-summary
https://smith.langchain.com/hub/antoniogonc/strategy-report
https://smith.langchain.com/hub/aaalexlit/sport-routine-to-program
https://smith.langchain.com/hub/anthonynolan/statistics-teacher
https://smith.langchain.com/hub/flflo/summarization
https://www.kaggle.com/datasets/ashwinm500/earnings-call-transcripts
https://www.kaggle.com/datasets/miguelcorraljr/ted-ultimate-dataset

First, we briefly discuss whether individual components of sPADE
are practical (e.g., determining subsumption, solving the ILPs). Us-
ing GPT-4 to assess subsumption results in an average precision of
0.82 across all pipelines, as seen in Table 5, confirming its effective-
ness. The ILP runtimes in Table 6 are all under one second, except
for 1.197 seconds for sPADEgyy, for the fashion pipeline. This rela-
tively small runtime demonstrates the feasibility of our approach.
In the remainder of this section, we will focus on the assertions
chosen by different methods.

For simplicity, we set the coverage and FFR thresholds to be
the same across all pipelines (¢ = 0.6, 7 = 0.25). We report re-
sults for the three methods in Table 4. Consider the codereviews
pipeline, for example, which uses an LLM to review a pull request for
any code repository. Here, BASELINE selects 20 assertions, SPADEcy
selects two assertions, and SPADE,}, selects 15 assertions. By se-
lecting more functions, SPADEgy}, ensures that all non-subsumed
functions are included. All three approaches respect the E’ coverage
constraint, but BASELINE violates the FFR constraint in 4 out of 9
pipelines. For our workloads, SPADEg,}, opts for approximately 14%
fewer assertions compared to BASELINE and shows a significantly
lower FFR, reducing it by about 21% relative to BASELINE. SPADEcoy
excludes, on average, about 44% of functions that are not subsumed
by F’. Choosing a sPADE implementation primarily depends on how
much labeled data is available. We subsequently discuss trade-offs
between different spADE implementations.

Subsumption vs. E’ Coverage. SPADEy and SPADEy, are comple-
mentary, the former being more useful if E” is more comprehensive.
For our datasets, E’ is not comprehensive: Table 4 reveals that, on
average, 44% of functions excluded by SPADE(qy are not subsumed
by the selected functions, despite being accurate within the FFR
threshold. This is unsurprising given that each task has only 34
bad (i.e., failure) examples on average. While larger or more mature
organizations may have extensive datasets and could get a mean-
ingful result from SPADEoy, SPADEg’s ability to select assertions
that cover unrepresented potential failures can be beneficial in data-
scarce settings. For example, here is a sample of 3 assertions for the
codereviews pipeline ignored by SPADEoy but included in SPADEgy},
(with comments excluded for brevity):

async def assert_includes_code_improvement_v2(
example: dict, prompt: str, response: str
e
question = "Does the response include suggestions for code improvements?
return await ask_llm(prompt, response, question)
async def assert_contains_brief_answers_v1(example:
<= response: str):
question = "Is the response brief and to the point without unnecessary
< elaboration?"
return await ask_llm(prompt, response, question)

dict, prompt: str,

async def assert_responds_to_correct_pull_request(
example: dict, prompt: str, response: str
)8
pr_title = example["title"]
question = (
f"Is the response a review focused on the Pull Request titled '{
“— pr_title}'?"
)

return await ask_llm(prompt, response, question)

Subsumption as a Means for Reducing Redundancy. Several
pipelines exhibit a large discrepancy between functions selected in
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BASELINE and SPADEg},, which occurs when there are many redun-
dant candidates. For example, in the codereviews pipeline’s 8 prompt
versions, the developer iterated several times on the instruction
to give a clear and concise review, resulting in five assertions that
check the same thing (three of which are shown below):

async def assert_response_is_concise_v1(

example: dict, prompt: str, response: str
) -> bool:
question = "Is the LLM response concise and to the point?"

return await ask_llm(prompt, response, question)

async def assert_response_is_concise_and_clear(
example: dict, prompt: str, response: str

DE
question = "Is this pull request review response concise and clear?"
return await ask_llm(prompt, response, question)

async def assert_clear_professional_language_v1(

example: dict, prompt: str, response: str

bE
question = "Is the response professional, clear, and without unnecessary
©— jargon or overly complex vocabulary?"

return await ask_llm(prompt, response, question)

Since all the five assertions meet the FFR constraint, individu-
ally, BASELINE would select them all, which is undesirable because
they all do the same thing, but SPADEg}, would select the one most
compatible with the FFR constraint, as long as subsumption is as-
sessed correctly. On the flip side, while assessing subsumption,
the LLM may not recall all subsumptions, so SPADEg,}, may have
duplicate assertions. For example, the codereviews pipeline con-
tains assertions titled assert_includes_code_improvement_v1
and assert_includes_code_improvement_v2.

o and 7 Threshold Sensitivity. The feasibility of solutions from
the ILP solver in SPADE is dependent on the chosen « and 7 thresh-
olds. If a feasible solution is not found, developers may need to
adjust these values in a binary search fashion. In our case, all 9 LLM
pipelines yielded feasible solutions with a = 0.6 and 7 = 0.25. How-
ever, the small size of E’ makes SPADE.oy particularly sensitive to a.
In the pipelines, we observed that between one and five assertions
covered 60% of E”’s failures. For example, SPADEoy selected only
one assertion for the emails pipeline:

async def assert_encouragement_to_contact_company (

example: dict, prompt: str, response: str
) -> bool:
contact_phrases = [
"reach out",

"don't hesitate to contact",
"looking forward to hearing from you",
"if you have any questions",
"need help getting started",

]

return any(phrase in response for phrase in contact_phrases)

If E’ is exhaustive of failure modes and representative of the dis-
tribution of failures (e.g., for the emails pipeline, most failures are
actually due to the response lacking an encouragement to contact
the company), SPADE,y might be a satisfactory solution. How-
ever, our E’ datasets clearly were not exhaustive, considering that
SPADEgy}, always chose additional assertions. SPADEgy}, is less sensi-
tive to a, as it explicitly selects assertions based on their potential
to cover new failures (i.e., subsumption) without exceeding the FFR,
even if the constraint on coverage is no longer tight.

FFR Tradeoffs. Considering that the difference between the frac-
tion of functions selected for BASELINE and SPADE,}, is less than



10% for three LLM pipelines, one may wonder if the complexity
of SPADEgyy, is worth it. SPADEgyy, is generally preferable because
BASELINE fails to consistently meet the FFR threshold 7. We ob-
served that as prompt versions increase, so do the number of asser-
tions, impacting BASELINE adversely. The worst-case FFR of a set is
the sum of individual FFRs, as shown in Equation (1). Hence, with
a large number of independent assertions, the total FFR is likely
to surpass the threshold. This issue is evident in the fashion and
lecturesummaries pipelines, where despite each of the 67 and 32
assertions meeting FFR constraints individually, the total FFR for
BASELINE reaches 88% and 53%, respectively. In practice, if SPADE
were to be deployed in an interactive system, where sPADE could
observe each LLM call in real-time (e.g., as a wrapper around the
OpenAl API), the multitude of prompt versions further necessitates
filtering assertions based on overall FFR. This underscores the need
for the more complex SPADE oy Or SPADEg}, approaches.

5 RELATED WORK

We survey work from prompt engineering, evaluating ML and
LLMs, LLMs for software testing, and testing ML pipelines.

Prompt Engineering. For both nontechnical [63] and technical
users [37, 52], prompt engineering is hard for several reasons: small
changes in prompt phrasing [3, 30] or the order of instructions or
contexts [32] can significantly affect outputs. Moreover, as LLMs
change under the hood of the API (i.e., prompt drift), outputs can
change without developer awareness [9]. Tools and papers are
emerging to aid in prompt management and experimentation, and
are even using LLMs to write prompts [2, 11, 60, 61, 65]. Moreover,
deployed prompts introduce new challenges, like “balancing more
context with fewer tokens” and “wrangling prompt output” to meet
user-defined criteria [38]. Our work doesn’t focus explicitly on
helping developers create better prompts, but it could indirectly
support developers by helping identify mistakes.

ML and LLM Evaluation. Evaluating and monitoring deployed
ML models is known to be challenging [36, 49]. Evaluating LLMs
in a deployed setting is even more challenging because LLMs are
typically used for generative tasks, where the outputs are free-
form [12]. Some LLM pipeline types, like question-answering with
retrieval-augmented generation pipelines [29], can use standard-
ized, automated metrics [13, 43], but others face challenges due to
unknown metrics and lack of labeled datasets [8, 38, 62]. Typically,
organizations rely on human evaluators for LLM outputs [18, 38, 58],
but recent studies suggest LLMs can self-evaluate effectively with
detailed “scorecards” [7, 26, 64]. However, writing these scorecards
can be challenging [38], motivating auto-generated evaluators. Re-
cent work [26, 41, 54] and industry tools [21, 27, 31] proposes the
use of assertions to catch mistakes in LLM pipelines, while requiring
the user to select these assertions.

LLMs for Software Testing. LLMs are increasingly being used in
software testing, mainly for generating unit tests and test cases [28,
44,53, 55, 56]. Research explores how LLMs’ prompting strategies,
hallucinations, and nondeterminism affect code or test accuracy [10,
14, 15, 35]. Our work is complementary and leverages LLMs to
generate code-based assertions for LLM pipelines.

Testing and Validation in ML Pipelines. ML pipelines are hard
to manage in production. Much of the literature on ML testing
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is geared towards validating structured data, through analyzing
data quality [5, 22, 46, 47] or provenance [33, 45]. Platforms for ML
testing typically offer automated experiment tracking and preven-
tion against overfitting [1, 42], as well as tools for data distribution
debugging [19]. Model-specific assertions typically require human
specification [25], or at least large amounts of data to train learned
assertions [24]. LLM chains or pipelines are a new class of ML
pipelines, and LLMs themselves can generate assertions with lit-
tle data. A recent study highlights the difficulty of testing LLM
pipelines for “copilot”like products: developers want to ensure
accuracy while avoiding excessive resource use, such as running
hundreds of assertions [38]—motivating assertion filtering.

6 CONCLUSION AND FUTURE WORK

We introduce a new problem of auto-generating assertions to catch
failures in LLM pipelines, as well as SPADE, our framework for doing
$0. SPADE comprises two components: first, it synthesizes candidate
assertions, and then it filters them down into a more manageable
subset. To synthesize candidate assertions, we analyzed prompt ver-
sion histories and learned that prompt deltas are often a rich source
of requirements and therefore candidate assertions. We developed a
taxonomy of prompt deltas for assertion synthesis, demonstrating
its value via integration and deployment with LangChain, with
over 2000 runs across domains. For the latter problem of candidate
assertion filtering, we expressed the selection of an optimal set of
assertions, covering most failures while introducing as few false
failures as possible as an Integer Linear Program (ILP). We proposed
assertion subsumption to cover failures in data-scarce scenarios
and incorporated this into our ILP. We also studied the setting
where there are no examples and demonstrated that it reduces to a
topological sort on the subsumption graph. Our auto-generating
assertion system, SPADE, was evaluated on nine real-world data-
generating LLM pipelines. We have made our code and datasets
public for further research and analysis.

There are a number of open questions in our effort to make
production LLM pipelines more robust. For instance, while meeting
developer-provided criteria (e, 7) is helpful, sometimes developers
would like to examine the generated and selected assertions in a
way that helps them make the tradeoffs themselves, motivating a
human-in-the-loop interface to assist developers in defining data
quality for LLM pipelines. Such an interface could also be a vehicle
for getting developers to label examples on the fly. Determining
which labeled examples would help best select from the set of
assertions is an open question that is reminiscent of active learning.
Finally, we could also envision automatically updating assertion
sets in deployed pipelines, as new failure modes inevitably arise in
production.
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