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—— Abstract

The ¢2 min-sum k-clustering problem is to partition an input set into clusters C1, ..., C to minimize
Zle Zp,qecj lp — qll3. Although £3 min-sum k-clustering is NP-hard, it is not known whether it is
NP-hard to approximate £2 min-sum k-clustering beyond a certain factor.

In this paper, we give the first hardness-of-approximation result for the £3 min-sum k-clustering
problem. We show that it is NP-hard to approximate the objective to a factor better than 1.056
and moreover, assuming a balanced variant of the Johnson Coverage Hypothesis, it is NP-hard to
approximate the objective to a factor better than 1.327.

We then complement our hardness result by giving a fast PTAS for £2 min-sum k-clustering.
Specifically, our algorithm runs in time O(n'+t°®d . 2/ 9o ), which is the first nearly linear time
algorithm for this problem. We also consider a learning-augmented setting, where the algorithm
has access to an oracle that outputs a label ¢ € [k] for input point, thereby implicitly partitioning
the input dataset into k clusters that induce an approximately optimal solution, up to some

amount of adversarial error a € [0, %) We give a polynomial-time algorithm that outputs a
1+ya
(1-a)?

-approximation to ¢2 min-sum k-clustering, for a fixed constant v > 0.
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On Approximability of £2 Min-Sum Clustering

1 Introduction

Clustering is a fundamental technique that partitions an input dataset into distinct groups
called clusters, which facilitate the identification and subsequent utilization of latent structural
properties underlying the dataset. Consequently, various formulations of clustering are used
across a wide range of applications, such as computational biology, computer vision, data
mining, and machine learning [39, 70]. Ideally, the elements of each cluster are more similar to
each other than to elements in other clusters. To formally capture this notion, a dissimilarity
metric is often defined on the set of input elements, so that more closer objects in the metric
correspond to more similar objects. Perhaps the most natural goal would be to minimize
the intra-cluster dissimilarity in a partitioning of the input dataset. This objective is called
the min-sum k-clustering problem and has received significant attention due to its intuitive
clustering objective [33, 37, 58, 63, 11, 24, 22, 2, 12, 10, 18].

In this paper, we largely focus on the £3 min-sum k-clustering formulation. Formally,
the input is a set X of n points in R¢ and the goal is to partition X = C,U---UC} into k
clusters to minimize the quantity ming, . ¢, Ele > pacc, llp = all3; where || - [|2 denotes
the standard Euclidean ¢5 norm.

Whereas classical centroid-based clustering problems such as k-means and k-median
leverage distances between data points and cluster centroids to identify convex shapes that
partition the dataset, min-sum k-clustering is a density-based clustering that can handle
complex structures in data that may not be linearly separable. In particular, min-sum
k-clustering can be more effective than traditional centroid-based clustering in scenarios
where clusters have irregular, non-convex shapes or overlapping clusters. A simple example of
the ability of min-sum clustering to capture more natural structure is an input that consists of
two concentric dense rings of points in the plane. Whereas min-sum clustering can partition
the points into the separate rings, centroid-based clustering will instead create a separating
hyperplane between these points, thereby “incorrectly” grouping together points of different
rings. See Figure 1 for an example of the ability of min-sum clustering to capture natural
structure in cases where centroid-based clustering fails.

Moreover, min-sum clustering satisfies Kleinberg’s consistency axiom [47], which informally
demands that the optimal clustering for a particular objective should be preserved when
distances between points inside a cluster are shrunk and distances between points in different
clusters are expanded. By contrast, many centroid-based clustering objectives, including
k-means and k-median, do not satisfy Kleinberg’s consistency axiom [57].
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(a) Input dataset. (b) Centroid-based clustering. (c) Density-based clustering.

Figure 1 Clustering of input dataset in Figure la with k = 2. Figure 1b is an optimal centroid-
based clustering, e.g., k-median or k-means, while the more natural clustering in Figure 1c is an
optimal density-based clustering, e.g., £2 min-sum k-clustering.
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On the other hand, theoretical understanding of density-based clustering objectives such
as min-sum k-clustering is far less developed than that of their centroid-based counterparts.
It can be shown that min-sum k-clustering with the ¢3 cost function is NP-hard, using
arguments from [2]. The problem is NP-hard even for k = 2 [25] in the metric case, where the
only available information about the points is their pairwise dissimilarity. In fact, for general
k in the metric case, it is NP-hard to approximate the problem within a 1.415-multiplicative
factor [32, 18]. However, no such hardness of approximation is known for the Euclidean case,
i.e., /3 min-sum, where the selected cost function is based on the geometry of the underlying
space; the only known lower bound is the NP-hardness of the problem [2, 10, 3]. Thus a
fundamental open question is:

» Question 1. Is (2 min-sum k-clustering APX-hard? That is, does there exist a natural
hardness-of-approzimation barrier for polynomial time algorithms?

Due to existing APX-hardness results for centroid-based clustering such as k-means and
k-median [50, 17, 19], it is widely believed that 3 min-sum clustering is indeed APX-hard.
Thus, there has been a line of work preemptively seeking to overcome such limitations.
Indeed, on the positive side, [36] first showed that min-sum k-clustering in the d-dimensional
£3 case can be solved in polynomial time if both d and k are constants. For general graphs
and fixed constant k, [33] gave a 2-approximation algorithm using runtime n®® _ The
approximation guarantees were improved by a line of work [37, 58, 63], culminating in
polynomial-time approximation schemes by [24] for both the ¢4 case and the metric case.
Without any assumptions on d and k, [11] introduced a polynomial algorithm that achieves
an O (% log'** n)-multiplicative approximation. Therefore, a long-standing direction in the
study of /2 min-sum clustering is:

» Question 2. How can we algorithmically bridge the gap between the NP-hardness of solving
the €3 min-sum clustering and the large multiplicative guarantees of existing approzimation
algorithms?

A standard approach to circumvent poor dependencies on the size of the input dataset is
to sparsify the problem. Informally, we would like to reduce the search space by considering
fewer candidate solutions and reduce the dependency on the number of input points by
aggregating them. For min-sum clustering this is a particular challenge, as a candidate
solution is a partition and the cost of that partition depends on all pairwise distances between
all the points. While sparsification algorithms exist for graph clustering [40, 51] and k-means
clustering [21, 20], where the output is typically called a coreset, similar constructions are
not known to exist for min-sum clustering.

Another standard approach to overcome limitations inherent in worst-case impossibility
barriers is to consider beyond worst case analysis. To that end, recent works have observed
that in many applications, auxiliary information is often available and can potentially form
the foundation upon which machine learning models are built. For example, previous datasets
with potentially similar behavior can be used as training data for models to label future
datasets. However, these heuristics lack provable guarantees and can produce embarrassingly
inaccurate predictions when generalizing to unfamiliar inputs [65]. Nevertheless, learning-
augmented algorithms [60] have been shown to achieved both good algorithmic performance
when the oracle is accurate, i.e., consistency, and standard algorithmic performance when
the oracle is inaccurate, i.e., robustness for a wide range of settings, such as data structure
design [48, 59, 55], algorithms with faster runtime [26, 15, 23], online algorithms with better
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competitive ratio [62, 30, 49, 68, 69, 9, 35, 56, 1, 4, 8, 31, 45, 41, 5, 64], and streaming
algorithms that are more space-efficient [34, 38, 43, 14, 13, 54]. In particular, [28, 61]
introduce algorithms for k-means and k-median clustering that can achieve approximation
guarantees beyond the known APX-hardness limits.

1.1 OQur Contributions

In this paper, we perform a comprehensive study on the approximability of the £2 min-sum
k-clustering by answering Question 1 and Question 2.

Hardness-of-approximation of min-sum k-clustering. We first answer Question 1 in the
affirmative, by not only showing that the 3 min-sum k-clustering is APX-hard but further
giving an explicit constant NP-hardness of approximation result for the problem.

» Theorem 3 (Hardness of approximation of £3 min-sum k-clustering). It is NP-hard to
approzimate {3 min-sum k-clustering to a factor better than 1.056. Moreover, assuming the
Dense and Balanced Johnson Coverage Hypothesis (Balanced — JCH* ), we have that the (3
min-sum k-clustering is NP-hard to approzimate to a factor better than 1.327.

We remark that Balanced — JCH™ in the theorem statement above is simply a balanced
formulation of the recently introduced Johnson Coverage Hypothesis [19].

Fast polynomial-time approximation scheme. In light of Theorem 3, a natural question
would be to closely examine alternative conditions in which we can achieve a (1 + ¢)-
approximation to min-sum k-clustering, i.e., Question 2. To that end, there are a number of
existing polynomial-time approximation schemes (PTAS) [37, 58, 63, 24|, the best of which
uses runtime n®(/¢*) for the /3 case. However, as noted by [22], even algorithms with
runtime quadratic in the size n of the input dataset are generally not sufficiently scalable to
handle large datasets. In this paper, we present an algorithm with a running time that is
nearly nearly linear. Specifically, we show

» Theorem 4. There exists an algorithm running in time O (n”"(l)d - gn-k?-e™ " log? (k/(29)) ,

for some absolute constant 1), that computes a (1 + €)-approxvimate solution to (3 k-MinSum
Clustering with probability 1 — 6.

We again emphasize that the runtime of 4 is linear in the size n of the input dataset, though
it has exponential dependencies in both the number % of clusters and the approximation
parameter ¢ > 0. By contrast, the best previous PTAS uses runtime nO(k/ 52), which has
substantially worse dependency on the size n of the input dataset.

Learning-augmented algorithms. Unfortunately, exponential dependencies on the number
k of clusters can still be prohibitive for moderate values of k. To that end, we turn our
attention to learning-augmented papers. We consider the standard label oracle model for
clustering, where the algorithm has access to an oracle that provides a label for each input
point. Formally, for each point x of the n input points, the oracle outputs a label i € [k]
for z, so that the labels implicitly partition the input dataset into k& clusters that induce an
approximately optimal solution. However, the oracle also has some amount of adversarial
error that respects the precision and recall of each cluster; we defer the formal definition
to Definition 25. One of the reasons label oracles have been used for learning-augmented
algorithms for clustering is their relative ease of acquisition via machine learning models
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that are trained on a similar distribution of data. For example, a smaller separate dataset
can be observed and used as a “training” data, an input to some heuristic to cluster the
initial data, which we can then use to form a predictor for the actual input dataset. Indeed,
implementations of label oracles have been shown to perform well in practice [28, 61].
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Figure 2 Note that with arbitrarily small error rate, i.e., %, a single mislabeled point among the
n input points causes the resulting clustering to be arbitrarily bad for A > n? - R.

We also remark that perhaps counter-intuitively, a label oracle with arbitrarily high
accuracy does not trivialize the problem. In particular, the naive algorithm of outputting
the clustering induced by the labels does not work. As a simple example, consider an input

dataset where half of the n points are at = 0 and the other half of the points are at x = 1.

Then for k = 2, the clear optimal clustering is to cluster the points at the origin together,
and cluster the points at = 1 together, which induces the optimal cost of zero. However, if

even one of the n points is incorrect, then the clustering output by the labels has cost at least

1. Therefore, even with error rate as small as +, the multiplicative approximation of the

n’

naive algorithm can be arbitrarily bad. See Figure 2 for an illustration of this example. Of
course, this example does not rule out more complex algorithms that combines the labels with

structural properties of optimal clustering and indeed, our algorithm utilizes such properties.

We give a polynomial-time algorithm for the £3 min-sum k-clustering that can provide

guarantees beyond the computational limits of Theorem 3, given a sufficiently accurate oracle.

» Theorem 5. There exists a polynomial-time algorithm that uses a label predictor with error
rate o € [0, %) and outputs a &fggz -approzimation to the €3 min-sum k-clustering problem,

where v = 7.7 for a € [O,%) ory = (1_55‘;7)2(?{&) fora e [0,%).

We remark that Theorem 5 does not require the true error rate o as an input parameter.

Because we are in an offline setting, where can run Theorem 5 multiple times with guesses
for the true error rate «, in decreasing powers of % for any constant A > 1. We can then
compare the resulting clustering output by each guess for a and take the output the best
clustering.

1.2 Technical Overview

Hardness of approximation. Recently, the authors of [19] put forth the Johnson Coverage
Hypothesis (JCH) and introduced a framework to obtain (optimal) hardness of approximation
results for k-median and k-means in £,-metrics. The proof of Theorem 3 builds on this
framework. JCH roughly asserts that for large enough constant z, given as input an integer
k and a collection of z-sets (i.e., sets each of size z) over some universe, it is NP-hard to
distinguish the completeness case where there is a collection C' of k many (z — 1)-sets such
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that every input set is covered! by some set in C, from the soundness case where every
collection C of k many (z — 1)-sets does not cover much more than 1 — 1 fraction of the
input sets (see Hypothesis 7 for a formal statement).

In this paper, we consider a natural generalization of JCH, called Balanced — JCH*, where
we assume that the number of input sets is “dense”; i.e., w(k), and more importantly that in
the completeness case, the collection C' covers the input z-sets in a balanced manner, i.e., we
can partition the input to k equal parts such that each part is completely covered by a single
set in C (see Hypothesis 9 for a formal statement).

We now sketch the proof of Theorem 3 assuming Balanced — JCH*. Given a collection of m
many z-sets over a universe [n] as input, we create a point for each input set, which is simply
the characteristic vector of the set as a subset of [n], i.e., the points are all n-dimensional
Boolean vectors of Hamming weight z. In the completeness case, from the guarantees of
Balanced — JCH™, it is easy to see that the points created can be divided into k equal clusters
of size m/k such that all the z-sets of a cluster are completely covered by a single (z — 1)-set.
This implies that the squared Euclidean distance between a pair of points within a cluster is
exactly 2 and thus the ¢3 min-sum k-clustering cost is k- 2 - (m/k)(m/k — 1) ~ 2m?/k.

On the other hand, in the soundness case, we first use the density guarantees of
Balanced — JCH* to argue that most clusters are not small. Then suppose that we had
a low cost £3 min-sum k-clustering, we look at a typical cluster and observe that the squared
distance of any two points in the cluster must be a positive even integer, and it is exactly 2
only when the two input sets corresponding to the points intersect on a (z — 1)-set. Thus,
if the cost of the clustering is close to « - 2m?/k (for some a > 1), then we argue (using
convexity) that for a typical cluster that there must be a (z — 1)-set that covers (1 —a')m/k
many z-sets in that cluster, where o/ depends on a. Thus, from this we decode k-many
(z — 1)-sets which cover a large fraction of the input z-sets. In order to obtain the uncondi-
tional NP-hardness result, much like in [19], we need to extend the above reduction to a more
general problem. This is indeed established in Theorem 12, and after this we prove a special
case of a generalization of Balanced — JCH* (when z = 3) which is done in Theorem 11 and
this involved proving additional properties of the reduction of [19] from the multilayered
PCPs of [27, 46] to 3-Hypergraph Vertex Coverage.

Nearly Linear Time PTAS. An important feature of /3 Min-Sum Clustering is that we can
use assignments of clusters to their mean to obtain the cost of the points in the cluster, an
idea previously used in [37, 58, 63, 24]. We show how to reduce the number of candidate
means to a constant (depending only on k and e. The idea here is to use D? sampling
methods akin to k-means++ [6]. Unfortunately, by itself, it is not sufficient as there may
exist clusters that have significant Min-Sum clustering cost, but are not detectable by D?
sampling. To this end, we augment D? sampling via a careful pruning strategy that removes
high costing points, increasing the relative cost of clusters of high density. Thereafter, we
show that given sufficiently many samples, we can find a small set of suitable candidate
means that are induced by a nearly optimal clustering.

What remains to be shown is how to find an assignment of points to these centers with
similar cost. For this, we could use a flow-based approach, but this results in a n?
time. Instead, we employ a discretization and bucketing strategy that allows us to sparsify
the point set while preserving the Min-Sum clustering cost, akin to coresets.

running

LA (2 — 1)-set covers a z-set if the former is a subset of the latter.
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Learning-augmented algorithm. Our starting point for our learning-augmented algorithm
for min-sum k-clustering is the learning-augmented algorithms for k-means clustering by
[28, 61]. We can rewrite the Min-Sum clustering cost in terms of weighted squared distances
to the means or centroids. Our goal is therefore to quickly identify suitable centroids ¢;. The
algorithms note that the clustering objective can be decomposed across the points that are
given each label i € [k]. Thus we consider the subset P; of points of the input dataset X
that are given label ¢ by the oracle.

The cluster P; can have an « fraction of incorrect points. The main observation is that
there can be two cases. Either P; includes a number of ”bad” points that are far from the
true mean and thus easy to identify, or P; includes a number of “bad” points that are difficult
to identify but also are close to the true mean and thus do not largely affect the overall
clustering cost. Thus the algorithm simply needs to prune away the points that are far
away, which can be achieved by selecting the interval of (1 — O («)) points that has the best
clustering cost. Therefore, we have a set of centers for which there exists an assignment that
obtains a good approximation of the cost of the optimal min-sum k-clustering; it remains to
identify the actual clusters.

To find an assignment of points to candidate means, we use min-cost flow approach,
similar to [24]. The constrained min-cost flow problem can be written as a linear program.
Therefore to identify the overall clusters, we run any standard polynomial-time algorithm
for solving linear programs [44, 66, 67, 52, 53, 16, 42]. It then follows by that well-known
integrality theorems for min-cost flow, the resulting solution is integral and thus provides a
valid clustering with approximately optimal ¢3 min-sum k-clustering objective.

2  Hardness of Approximation of £2 Min-Sum k-Clustering

In this section, we show the hardness of approximation of £2 min-sum k-clustering, i.e.,
Theorem 3. We first define the relevant formulations of Johnson Coverage Hypothesis in
Section 2.1. Next, in Section 2.2 we provide the main reduction from the Johnson coverage
problem to the ¢3 min-sum k-clustering problem. Finally, we prove a special case of a
generalization of Balanced — JCH™ which yields the unconditional NP-hardness factor claimed
in Theorem 3.

2.1 Johnson Coverage Hypothesis

In this section, we recall the Johnson Coverage problem, followed by the Johnson Coverage
hypothesis [19]. Let n, 2,y € N such that n > 2 > y. Let £ C (")) and S € ([Z]). We define
the coverage of S w.r.t. E, denoted by cov(S, E) as follows: cov(S,E)={T € E|S CT}.

» Definition 6 (Johnson Coverage Problem). In the («, z,y)-Johnson Coverage problem with
z >y > 1, we are given a universe U := [n], a collection of subsets of U, denoted by
EC ([’ZL]), and a parameter k as input. We would like to distinguish between the following
two cases:

Completeness: There exists C := {S1,...,S:} C ([Z]) such that

cov(C) := ieL[Jk]COV(Si7 E)=FE.

Soundness: For every C := {S1,...,S5:} C ([Z]) we have |cov(C)| < a - |E|.
We call (e, 2, z — 1)-Johnson Coverage as («, z)-Johnson Coverage.

62:7
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Notice that (a,2)-Johnson Coverage Problem is simply the well-studied vertex coverage
problem (with gap «). Also, notice that if instead of picking the collection C from ([Z]), we

replace it with picking the collection C from ([’f}) with a similar notion of coverage, then we
simply obtain the Hypergraph Vertex Coverage problem (which is equivalent to the Max
k-Coverage problem for unbounded z). In Figure 3 we provide a few examples of instances

of the Johnson coverage problem.
Y VN
\ o 4
(a) (b) (c)

Figure 3 Examples of input instances of the Johnson Coverage Hypothesis for k = 2. Figure 3a
shows an example of a completeness instance of (0.7,2,1), since all subsets of size 2, i.e., all edges,
can be covered by k = 2 choices of subset of size 1, i.e., two vertices. Figure 3b shows an example
of a completeness instance of (0.7,3,1), since all subsets of size 3 can be covered by k = 2 vertices.
Figure 3c shows an example of a soundness instance of (0.7, 3,2), since at most 2 < 0.7 - 4 subsets of
size 3 can be covered by any choice of k = 2 edges.

» Hypothesis 7 (Johnson Coverage Hypothesis (JCH) [19]). For every constant € > 0, there
exists a constant z := z(e) € N such that deciding the (1 — % +€,z) -Johnson Coverage
Problem is NP-Hard.

Note that since Vertex Coverage problem is a special case of the Johnson Coverage
problem, we have that the NP-Hardness of («, z)-Johnson Coverage problem is already known
for a = 0.944 [7] (under unique games conjecture).

On the other hand, if we replace picking the collection C from (z[f]l) by picking from ([T]),
then for the Hypergraph Vertex Coverage problem, we do know that for every € > 0 there is
some constant z such that the Hypergraph Vertex Coverage problem is NP-Hard to decide
for a factor of (1 — é + E) [29]. For continuous clustering objectives, a dense version of JCH
is sometimes needed to prove inapproximability results (see [19] for a discussion on this).
Thus, we state:

» Hypothesis 8 (Dense Johnson Coverage Hypothesis (JCH*) [19]). JCH holds for instances
(U,E k) of Johnson Coverage problem where |E| = w(k).

More generally, let (a, z,y)-Johnson Coverage* problem be the special case of the («, z,y)-
Johnson Coverage problem where the instances satisfy |E| = w(k - [U]*7¥~!). Then JCH*
states that for any € > 0, there exists z = z(¢) such that (1 — 1/e + €, 2,z — 1)-Johnson
Coverage* is NP-Hard. This additional property has always been obtained in literature by
looking at the hard instances that were constructed. In [17], where the authors proved the
previous best inapproximability results for continuous case k-means and k-median, it was
observed that hard instances of (0.94,2,1)-Johnson Coverage constructed in [7] can be made
to satisfy the above property. Now we are ready to define the variant of JCH needed for
proving inapproximability of /3 min-sum k-clustering. For any two non-empty finite sets
A, B, and a constant § € [0, 1], we say a function f : A — B is d-balanced if for all b € B we

have [{a € A: f(a) =0} < (1+9)- %. We then put forth the following hypothesis.
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» Hypothesis 9 (Dense and Balanced Johnson Coverage Hypothesis (Balanced — JCH™)).
JCH holds for instances (U, E, k) of Johnson Coverage problem where |E| = w(k) and in
the completeness case there exists C := {S1,..., Sk} C (Z[f]l) and a 0-balanced function
Y E — [k] such that for all T € E we have Syy C T.

More generally, let (a, z,y, §)-Balanced Johnson Coverage® problem be the special case
of the (a, z,y)-Johnson Coverage® problem where the instances admit a d-balanced function
1 : E — [k] in the completeness case which partitions E to k parts, say E1U---UFE}y such
that for all ¢ € [k] we have cov(S;, E;) = E; and |E;| < % - (14 4). Then Balanced — JCH*
states that for any € > 0, there exists z = z(e) such that (1 —1/e+¢, 2,z — 1,0)-Balanced
Johnson Coverage* is NP-Hard. As with the case of JCH*, the balanced addition to JCH*
is also quite natural and candidate constructions typically give this property for free. To
support this point, we will prove some special case of this. In [19] the authors had proved
the following special case of JCH".

» Theorem 10 ([19]). For any € > 0, given a simple 3-hypergraph H = (V, H) with n = |V,

it is NP-hard to distinguish between the following two cases:
Completeness: There exists S CV with |S| = n/2 that intersects every hyperedge.
Soundness: Any subset S C V with |S| < n/2 intersects at most a (7/8 +¢€) fraction of
hyperedges.

Furthermore, under randomized reductions, the above hardness holds when |H| = w(n?).

» Theorem 11. Theorem 10 holds even with the following additional completeness guarantee
for all 6 > 0: there exists S := {v1,...,vx} CV and a §-balanced function ¢ : H — [k]| such
that for all e € H we have vy € e.

This result will be used to prove the unconditional NP-hardness of approximating ¢3
min-sum k-clustering problem.

2.2 Inapproximability of £2 min-sum k-clustering

» Theorem 12. Assume («,z,y,06)-Balanced Johnson Coverage* is NP-Hard. For every
constant € > 0, given a point-set P C R? of size n (and d = O (logn)) and a parameter k as
input, it is NP-Hard to distinguish between the following two cases:

Completeness: There exists partition PyU---UP} := P such that

Do lp—al <1 +30)- (= —y) - pn’/k,

i€[k] p,qeP}

Soundness: For every partition PiU---UP, := P we have

S Y ez o) (av g+ -a)VEyT1) -’k

i€[k] p,gEP;
for some constant p > 0.

Putting together the above theorem with Theorem 11 (i.e., NP-hardness of (7/8+¢, 3,1, §)-
Balanced Johnson Coverage* problem for all €,§ > 0), we obtain the NP-hardness of
approximating ¢3 min-sum k-clustering. The above theorem also immediately yields the
hardness of approximating 3 min-sum k-clustering under Balanced — JCH* (i.e., conditional
NP-hardness of (1 —1/e + ¢, 2,2z — 1,0)-Balanced Johnson Coverage* problem for all ¢ > 0
and some z = z(¢) € N). This completes the proof of Theorem 3.
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3 PTAS based on D? Sampling

For a set A C RY, let p(A) := ﬁzpeAp denote its mean. Let C = {C1,...C)} be an

optimal k-MinSum clustering of a point set A. We use p; = u(C;) to denote the mean of

12
Zpeci lp—pes |
|Ci]

i We further use C’iﬁ to denote the subset of C; with ||p — p;||? < 8- A;. Finally, let OPT
denote the cost of an optimal solution. So, OPT = Zle |Cil? - A

C; and we use A; = to denote the average mean squared distance of C; to

» Definition 13. We say that m is an e-approximate mean of C; if |m — wil|> < - A;.
We say that a set S C A is an (g, 8)-mean seeding set for C; € C, if there exists a subset

S"U{s} C S with ||s — wil|* < B-A; and a weight assignment w : S' — R>q such that
2

§€A1

p
We will use the following well-known identities for Euclidean means.

» Lemma 14 ([36]). Let A C R be a set of points. Then for any c € R%:
Ypeallp =l =3 e allp — p(A)I? + [A] - [ 1(A) — 2.
Yopaeallp—all? =2-1A1- 3 4 lp — p(A)]>.

We also show that we only have to consider seeding sets with 3 € ©(e72).

» Lemma 15. For any cluster C;, ¢ € (0,1) and B > 12672, we have that pZ(C’f) =
ICilvﬁl ZPGC@ p is a e-approzimate mean of C;.

Finally, we also show how to efficiently extract a mean from a mean seeding set, while
being oblivious to A;.

» Lemma 16. Let S be an (£/4, B)-mean seeding set of a cluster C; with mean p;. Then we

S|
can compute (%IS‘ + 1) choices of weights in time linear in the size of choices such that
2

L SEAJ

at least one of the computed choices satisfies m ZpGS w(p) - p— py
pre

Computing a Mean-Seeding Set via Uniform Sampling

» Lemma 17. Let € € (0,1) and B > 48¢%. With probability at least 1 — §, a set of
32ke Llog 0~ points S sampled uniformly at random with replacement from A contains is a
(e, B)-mean seeding set of any C; with |C;| > T.

D? Subsampling

We now define an algorithm for sampling points that induce means from the target clusters.
The high level idea is as follows. We construct a rooted tree in which every node is labeled
by a set of candidate cluster means. For a parent and child pair of nodes, the parent’s set is
a subset of the child’s set. The construction is iterative. Given an interior node, we construct
its children by adding a candidate mean to the parent’s set. The candidantes are generated
using points sampled at random from a distribution that will be defined later. The goal is to
have, eventually, an e-approximate mean for every optimal cluster. This will be achieved
with high probability at one of the leaves of the tree. The root of the tree is labeled with the
empty set, and its children are constructed via uniform sampling. Subsequently, we refine
the sampling distribution to account for various costs and densities of the clusters.
We now go into more detail for the various sampling stages of the algorithm.
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Preprocessing: We ensure that all points are not too far from each other.

Initialization: We initialize the set of means via uniform sampling. Due to Lemma 17, we
can enumerate over potential sets of e-approximate means for all clusters of size 7. Each
candidate mean defines a child of the root.

Sampling Stage: Consider a node of the tree labeled with a non-empty set of candidate means
M. We put Ty = 27°- 3y mingenr [lg—m|? for i € {0,1,...,13log(nk/e)}, where 7 is
an absolute constant to be defined later. Let A; p = {q € A: minpenm [|l¢ — m|? < T}
(Note that Ay as includes all the points.) Let P; denote the probability distribution on

A; v induced by setting, for each p € A; ar, Pilp] = ming e Jp—m We'll use P

pea; yy Minmen [lp—ml|?
to denote Py. For each i, we sample a sufficient (polynomial in k& and e, but independent
of n) number of points independently from the distribution P;. Let S denote the set of
sampled points.
Mean Extraction Stage: We enumerate over combinations of points in M U S, using some

non-uniform weighing to fix a mean to add to M, see Lemma 16. Each choice of mean is
added to M to create a child of the node labeled M.

Throughout this section we will use the following definition. Given a set of centers M, we

say that a cluster C; is e-covered by M if |C;|? - minpens [|pts —m||* < §- (3 - OPT + |C2A;).

Our goal will be to prove the following lemma.

» Lemma 18. Let C = {C1,...Cy} be the clusters of an optimal Min-Sum k-clustering and
let m be an absolute constant. For every d,e > 0, there is a randomized algorithm that outputs
a collection of at most n°™W) . gnek?e7 1 log? (k/(29)) getg of at most k centers M, such that with

probability 1 — § at least one of them that e-covers every C; € C. The algorithm runs in time
nlto(l) . g.onk*e ' log?(k/(d))

Note that if all clusters of C are e-covered, then there exists an assignment of points to

centers, such that Min-Sum clustering cost of the resulting clustering is at most (1+¢) - OPT.

Preprocessing

The first lemma allows us to assume that all points are in some sense close to each other.

» Lemma 19. Suppose n > 20. Given an set of n points A C R%, we can partition a point
set into subsets Ay, ... Ay, such that ||p — q||> < n'®- OPT for any two points p,q € A; and
such that any cluster C; is fully contained in one of the A;. The partitioning takes time
O(nd + k?).

Computing a Mean-Seeding Set via D? Sampling

We now consider a slight modification of Lemma 17 to account for sampling points from
a cluster non-uniformly. We introduce the notion of a distorted core as follows. Given a
cluster C, a set of centers M, and parameters o, 3, we say that a subset of Cf UM is
a (Cj, B, o, M)-distorted core (denoted core(Cj, 3, a, M)) iff it is the image of a mapping
T, M * Cf — Cjﬁ U M such that for any point p € Cf, we have

P if mingenm |[p—m|? > a-A;

Mo (P) = argmin|[p — m||* if mingenr |[p—m|* <a-A;°
meM

We use D(C}, 8, o, M) to denote the set of points in C’f such that ming,en [[p—m||* < a-A;.

62:11

SoCG 2025



62:12

On Approximability of £2 Min-Sum Clustering

The following lemmas relate the goodness of a mean computed on an a-distorted core to
the mean on the entire set of points when sampling points proportionate to squared distances.
We start by proving an analogue of Lemma 15.

» Lemma 20. Let a < 5 and let 3 > 1;#. Given a set of centers M and a cluster Cj, let
1 = 1277 Zpecs Tanm(p). Then, [lii; — | <& 4.
J

We now characterize when M either covers a cluster C';, or when M is a suitable seeding
set for C;. The following lemma says that if M is not a seeding set of C};, then there exist
many points in the core Cf of C; that are far from M.

2
be a cluster for which |D(C;, B, a, M)| > (1 —7) - |C]’B| Then M is an (g, 5)-mean seeding
set of Cj.

» Lemma 21. Given a < {5, > 2490 " gnd v <, /m, and a set of centers M, let C;

Next, we show that the marginal probability of picking a point from an uncovered cluster
C; cannot be significantly smaller than the marginal probability of picking a point from the
union of covered clusters with larger cardinality than Cj.

» Lemma 22. Let M be a set of centers, and let C denote a set of clusters that are e-covered
by M. Let H denote the set of points in all the clusters in C. Let > %. Consider
a cluster C; & C. Let i be the largest index such that C; € C. Suppose that M is not an

(e, B)-mean seeding set of C;, and that i < j. Then P[p € Cf lpe HUC;] > %,

We now consider a cluster C; that is small compared to the union of the clusters C’j’- with
4’ > j. In this case, we show that one of the distance-proportional distributions that we use
guarantees that the probability of sampling points from the core of C; is large.

» Lemma 23. Let M be a set of centers. Let 3> 2299 Let j be the smallest index such that

82
C; is not e-covered by M. If M is not an (g, 5)-mean seeding set for C;, then there exists

4
i€{0,1,...,nlog(nk/e)} such that Cjﬂ € A, m and Pip € CJB] > T (ﬁ)

Finally, we show how to account for the sampling bias when estimating the means.

» Lemma 24. Let M be a set of centers. Let j be the smallest index such that C; is not
e-covered by M. Suppose that M is not an (e/4,5)-mean seeding set for C;. Consider
a set of points S’ sampled iid from P;, and let S = S’ N CjB. If B > 2400¢72 and S >

6
17825792 - k (%/12) log(2/0), then with probability at least 1 — &, we have that S" U M is an
(e/4, B)-mean seeding set of C;.

The proof of Lemma 18 now argues that, given a set of points M, that we can find a
seeding set for the largest uncovered cluster via D? sampling with respect to a suitable
distribution P;. The existence of such a distribution, as well as the number of samples is
given via Lemma 24 and extracting a suitable mean can be done via Lemma 16. The overall
number of candidate solutions is now exponential in the number of points sampled over the
course of the procedure, which is bounded by poly(k,e~ !, logd~1).

Obtaining the Parameterized PTAS

We complete this section by explaining how to funnel the mean-seeding procedure into a
PTAS. This yields Theorem 4. For every candidate solution given by Lemma 18, we bucket
points by squared distance to the respective centers. This number of buckets depends on a
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guess of the optimum, which is inexpensive to obtain, as well as a discretization over possible
different distances to centers, of which we show there cannot exist too many. Since the
number of buckets are very small, we can efficiently find an assignment. Then we show that
we can extract a clustering from the bucketed assignment in linear time.

4  Learning-Augmented £2 Min-Sum k-Clustering

In this section, we describe and analyze our learning-augmented algorithm, corresponding to
Theorem 5. We first formally define the precision and recall guarantees of a label predictor.

» Definition 25 (Label predictor). Suppose that there is an oracle that produces a label i € [k]
for each x € X, so that the labeling partitions X = PiU...UPy into k clusters Pi,. .., Py,
where all points in P; have the same label i € [k]. We say the oracle is a label predictor
with error rate « if there exists some fized optimal min-sum clustering Py, ..., P} such that
for alli € [k], |P; 0P| > (1 — o) max(| P, |P|). We say that P* = {Py,..., P}} is the
clustering consistent with the label oracle.

We also recall the following guarantees of previous work on learning-augmented k-means
clustering for a label predictor with error rate a € [0, %)

» Theorem 26 ([61]). Given a label predictor with error rate oo < 3 consistent with some

clustering P* = {Py,..., P} with centers {c],...,c}}, there exists a polynomial-time al-
gorithm LEARNEDCENTERS that oulputs a set of centers {ci,...,cr}, so that for each
i € [k], ZreP; r—c3 < (14 7,0) ZzeP; x — ||}, where yo = 7.7 for a € [0,1)

or Yo = % fora e [0,%).

Unfortunately, although the centers {ci, ..., ¢} returned by LEARNEDCENTERS are good
centers for the clustering induced by a near-optimal ¢2 min-cost k-clustering, it is not clear
what the resulting assignment should be. In fact, we emphasize that unlike k-means clustering,
the optimal /2 min-cost k-clustering may not assign each point to its closest center.

Constrained min-cost flow. To that end, we now create a constrained min-cost flow problem
as follows. We first create a source node s and a sink node ¢ and require that n = | X| flow
must be pushed from s to t. We create a node u,, for each point x € X and create a directed
edge from s to each node u, with capacity 1 and cost 0. There are no more outgoing edges
from s or incoming edges to each u,. This ensures that to achieve n flow from s to ¢, a unit
of flow must be pushed across each node u,.

Algorithm 1 Learning-augmented min-sum k-clustering.

Input: Dataset X with partition Py, ..., P, induced by label predictor with error rate «
Output: Labels for all points consistent with a (1 4+ O («))-optimal min-sum k-clustering
1: Let c1,...,cx be the output centers of LEARNEDCENTERS on Py, ..., Py
2: Create a min-cost flow problem F with required flow n
3: Solve the flow problem F
4: For each x € X, let the flow from u, be sent to the node v, , so that £, € [k]
5: Label x with £,

We then adjust an integrality theorem to handle capacitated edges, thereby showing that
the resulting solution for the min-cost flow problem is integral, and show that since the
constraint matrix is totally unimodular, i.e., all submatrices have determinant —1, 0, or 1,
then a valid clustering can be recovered by using the output of a linear program solver. Thus,
we have the following guarantees for our learning-augmented algorithm.
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» Theorem 27. There exists a polynomial-time algorithm that uses a label predictor with

1+ya

error rate o and outputs a T—a)? -approximation to min-sum k-clustering, where v, s the
fixed constant from Theorem 26.
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