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Reinforced concrete (RC) slabs are widely used in modern building structures due to their superior 
properties and ease of construction. However, their mechanical properties are limited by their 
punching shear strength in the connection region with the columns. Researchers have attempted 
to add steel reinforcement in the form of studs and randomly distributed fibers to concrete slabs to 
improve the punching strength. An additional strengthening method that consists of the application 
is a Fiber-Reinforced Polymer (FRP). However, current codes poorly calculate the punching shear 
strength of FRP-RC slabs. The aim of this study is to create a robust model that can accurately predict 
its punching shear strength, thus improving the analysis and design of composite structures with 
FRP-RC slabs. In this study, 189 sets of experimental data were collected and expanded using kernel 
density estimation (KDE), considering the small amount of data. Secondly, a punching shear strength 
prediction model for FRP-RC panels was constructed using XGBoost and compared with the model 
modeled by codes and researchers. Finally, a model explainability study was conducted using SHapley 
additive exPlanations (SHAP). The results show that kernel density estimation significantly improves 
the robustness and accuracy of XGBoost. The R-squared, standard deviation, and root mean square 
error of XGBoost on the training set are 0.99, 0.001, and 0.001, respectively. On the test set, the 
R-squared, standard deviation, and root mean square error are 0.96, 62.687, and 67.484, respectively. 
The effective depth of the FRP-RC slabs is the most important and proportional to the punching shear 
strength. This study can provide guidance for the design of FRP-RC slabs.
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Currently, the use of RC (RC) in conjunction with composite structures has gained extensive popularity. Among 
them, RC slabs, as a key component in modern building structures, not only carry the load of the building but 
also reflect the perfect integration of material science and structural engineering1,2. In the composite material 
system of RC, high-strength steel and durable concrete interact with each other to jointly resist external forces 
and ensure the safety and stability of the structure3–5. RC slabs are widely used in the fields of flooring, roofing, 
and even special structures such as staircases and bridge slabs due to their unique mechanical properties and 
ease of construction6–9.

Numerous techniques, such as enclosed loops, bent steel reinforcements, and shear connectors, have been 
extensively implemented to boost the punching shear resistance of RC slabs. Recently, there has been a surge in 
scholarly attention towards employing FRP as a reinforcing medium in concrete slabs, intending to augment their 
capacity to resist punching shear forces. This innovative approach addresses some of the limitations associated 
with traditional steel reinforcement. The use of FRP in concrete slabs is seen as a significant advancement in 
construction materials technology, offering improved durability and performance in structural applications10,11. 
Researchers have conducted numerous studies and experiments to understand the behavior and benefits of 
FRP-RC slabs under various loading conditions, leading to a better understanding of effectively incorporating 
FRP into concrete structures to optimize their strength and longevity12–16. Compared with traditional concrete 
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slabs, they have the advantages of being lightweight, having good corrosion resistance, high strength, insulation, 
and fatigue resistance. They are suitable for building structures that require special requirements such as high 
load-bearing capacity, corrosion resistance, or electrical insulation and have a wider application prospect17,18.

Various models have been put forth by both codes and researchers to estimate the punching shear strength 
of concrete slabs reinforced with FRP. Canadian Standards Association (CSA), Japan Society of Civil Engineers 
(JSCE), and American Concrete Institute (ACI) have proposed punching shear strength prediction models 
considering the effect of loading area dimensions, effective depth, and concrete strength19–21. Besides, Deifalla17 
has proposed a punching shear strength prediction model based on the critical shear crack theory. These models 
have contributed significantly to the study of this combined structure. However, FRP-RC slabs have a complex 
structure, and their punching shear strength is subject to the coupling of multiple parameters, which is difficult 
to achieve by the existing mathematical models and the applicability of the above models still needs to be 
strengthened as the coefficients of variation of the models are large compared with the experimental values. In 
addition, Badra et al.18 constructed a predictive model for the punching strength of FRP-RC slabs using ANN 
and SVM. Although the accuracy of this model is better than that of the codes’ and Deifalla’s model, its coefficient 
of variation is large (0.25 for ANN and 0.2 for SVM), which makes it difficult to guarantee the reliability of the 
application and lacks explainability. Based on this, a predictive model for punching shear strength of FRP-RC 
slabs with higher accuracy and explainability is required to be proposed.

In recent years, ensemble learning has been increasingly used in structural engineering due to its much better 
performance than single learning and its explainability22,23. 

For instance,  Khodadadi et al.24 introduced a pioneering machine-learning approach for predicting the 
compressive strength of Carbon fiber-reinforced polymer Confined-Concrete (CFRP-CC) specimens. Utilizing 
a Particle Swarm Optimization-Categorical Boosting (PSO-CatBoost) algorithm, their model, based on an 
extensive database of 916 experimental outcomes from 105 scholarly articles, demonstrated superior predictive 
performance compared to six contemporary machine learning models and six empirical models. Their approach 
uniquely incorporated SHapley Additive exPlanations (SHAP) and Permutation Feature Importance (PFI) 
methodologies to elucidate feature importance, establishing a new benchmark in CFRP-CC predictive modeling. 
Taffese et al.25 collected 170 sets of data, used CatBoost to predict the ultimate moment of UHPC-strengthened 
beams, and conducted a feature importance study based on SHAP. Sapkota et al.26 collected 226 data sets, used 
five ensemble learning models to predict the effective stiffness of rectangular RC columns, and used SHAP to 
study the sensitivity between input and output parameters. Pal et al.27 predicted a slump of FRP-RC containing 
waste rubber and recycled aggregates based on 464 data sets using 12 models, including single and ensemble 
learning. The results show that XGBoost performs best among all the models. Alyami et al.28 predicted the 
compressive strength of concrete containing rice husk based on 348 data sets using three ensemble models 
and one single model. They carried out an interpretable study of the model using SHAP. The results showed 
that the ensemble model outperformed the single model, and SHAP explained the key indicators affecting the 
compressive strength.

This research delves into the application of artificial intelligence algorithms in forecasting the punching shear 
strength of concrete slabs reinforced with FRP materials. Advanced machine learning techniques are employed, 
building upon previous research, with a particular emphasis on model interpretability. Methodologies such as 
SHAP and importance and sensitivity analyses are utilized to clarify the machine learning (ML) results. The most 
extensive collection of experimental data to date is aggregated, incorporating the highest number of variables 
into the model-building process compared to previous studies. This comprehensive approach is intended to 
enhance the understanding of the factors influencing punching shear strength. Specifically, a database of 189 sets 
of valid data from 36 research papers, including key input variables: loading area shape, loading area dimensions, 
effective depth, concrete strength, FRP Young’s modulus, FRP reinforcement ratio, and output punching shear 
strength, is compiled. Since the amount of data is crucial to model performance in ML, this study first uses kernel 
density estimation (KDE) to expand the experimental data. Subsequently, it develops an explainable predictive 
model for the punching shear strength of FRP-strengthened concrete slabs, grounded on the integration of 
the XGBoost algorithm with SHAP analysis. The developed ML model is compared against existing formulas. 
Ultimately, the study identifies the paramount variables influencing punching shear capacity and formulates 
enhanced predictive equations with improved accuracy.

The follow-up study consists of the following sections: Section  “Methodology” introduces the data 
enhancement model - kernel density estimation - and the integrated learning model - XGBoost - used in this 
study. Section “Database construction” is the database construction, including experimental data collection and 
KDE-based data augmentation. Section  “Model construction and evaluation” is the model construction and 
evaluation, including selecting hyperparameters for XGBoost, validating data enhancement effects, evaluating 
existing codes’ and researchers’ models, and the explainability study of XGBoost. The last section is the 
conclusion, which includes a summary of the results obtained in this study and an outlook for future research.

Methodology
Kernel density estimation
Kernel density estimation (KDE) is a non-parametric probability density estimation method determined by 
the data distribution29. For the problem that the distribution of the observed data is unknown, without making 
any distributional assumptions about it, the probability density function is modeled based on the observed data 
itself. The formula for KDE is shown in Eq. (1):
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where, n is the number of the sample points, denotes the kernel function, denotes the bandwidth, which affects 
how smooth the probability density estimate is.

Extreme gradient boosting
Extreme Gradient Boosting (XGBoost)30 is a general-purpose Gradient Boosting algorithm that is capable of 
carrying out multi-threaded parallel computation with high resistance to overfitting and accuracy (See Fig. 1). 
XGBoost makes predictions by iteratively building a series of decision trees. The predictions from each tree are 
combined to form the final prediction. The prediction formula of XGBoost can be expressed as:

	

ȳ (x) =
T∑

t=1

ft (x)

ft (x) = wq(x)

� (2)

Where y(x) is the sum of the predicted values of all the decision trees, ft denotes the predicted value of each 
decision tree, wq(x) is the function that maps the sample x to the index of the leaf node of the tree.

The objective function of XGBoost mainly consists of loss function and regularisation term, as shown below:
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∑T

j=1
w2

j

� (3)

where T is the number of leaves, wj is the value associated with the jth leaf, γ is a parameter that penalizes the 
number of leaves, and λ is the L2 regularization term on the leaf weights. The regularization term of XGBoost 
penalizes the complexity of the model through the parameters γ and λ to prevent overfitting, thus maintaining 
the model’s generalization ability. For additional information on XGBoost, see reference30.

Shapley additive explanation
Shapley Additive Explanations (SHAP), rooted in the principles of cooperative game theory, stands out as a 
prominent model-agnostic technique designed to improve the interpretability of ML models. It quantifies the 
significance of features through the application of Shapley values, thereby offering a robust framework for 
understanding model predictions. The SHAP value for a feature is calculated as follows:

Fig. 1.  Architecture of XGBoost.
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ϕj(val) =

∑
S⊆{1,...,P}\{j}

|S|!(P − |S| − 1)!
P ! (val(S ∪ {j})− val(S))� (4)

where S is a feature subset, x is the feature vector, and p is the number of features.

Modelling
The data from Section “Database construction” was used to construct the model based on two methods. These 
two methods are denoted as N1 and N2, respectively. N1: The dataset was partitioned such that 80% of the 
experimental instances served as the training subset, while the remaining 20% constituted the testing subset. N2: 
In an alternative approach, the synthesized data was utilized for training purposes, with the actual experimental 
data reserved exclusively for testing, thereby validating the model’s predictive capabilities. The modeling uses 
XGBoost, as mentioned in Section “Extreme gradient boosting”, and its optimal hyperparameters are obtained 
using grid search and five-fold cross-validation. Grid search is a method to find the best model hyperparameters 
by traversing different parameter combinations. Five-fold cross-validation is a commonly used method for 
model evaluation, and its principle is shown in Fig. 2. Step 1 divides the training dataset into five equal parts; 
Step 2 uses four parts to train the model and the remaining one to validate the model; Step 2 is repeated until 
each part is used as a training and validation set; finally, the performance of the model is calculated as the average 
of the results of the five evaluations.

Database construction
Data details
An aggregation of 189 experimental datasets was compiled from a thorough examination of 36 distinct research 
endeavors11–16,31–60, including key input variables: loading area shape ( A, B), loading area dimensions ( b, c
), effective depth ( d), cubic concrete strength (f ’c), FRP young modulus ( E), FRP reinforcement ratio (ρ), and 
output: punching shear strength ( V ). The statistical analysis of the data is shown in Table 1. The distribution of 
the data is shown in Fig. 3.

As can be seen in Fig. 3, the distribution of the features is wide but uneven across the intervals.

Data expansion
As described in Section “Data details”, 189 sets of experimental data were collected. Considering the impact of 
smaller data sizes on the model generalization performance, this section expands the data based on the kernel 
density estimation algorithm mentioned in Section  “Kernel density estimation”. The expanded data contains 
689 data sets (500 generated data and 189 experimental data). The distribution of the data before and after the 
expansion is shown in Fig. 4.

Fig. 2.  5-fold cross-validation.
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In Fig. 4, the first five are geometric features, and the last four are material features. The kernel density function 
is the same for the enhanced data and the original data, which indicates that the kernel density estimation model 
learns the feature distribution of the original data well.

Model construction and evaluation
Data enhancement validation
A comparison of training and test set prediction results and experimental values of XGBoost model before and 
after data enhancement is shown in Fig. 5.

As can be seen from Fig.  5, the XGBoost model outperforms N1 on the training set under N2, but the 
difference on the test set is not significant. To further validate the effectiveness of data enhancement, the 
distribution of deviations on the training and test sets of the model under N1 and N2 are given in Fig. 6.

As can be seen in Fig. 6, the model has better robustness (normal deviation distribution) under both N1 and 
N2. However, it is evident that the deviation distributions of the model training and test sets under N2 are closer 
to 0, indicating that it is more robust than N1. Figures 5 and 6. confirm the robustness of the data-augmented 
model, and further, the table gives the R-squared (R2), standard deviation (SD), and root-mean-square error 
(RMSE) of the model training and test sets before and after augmentation.

As can be seen from Table 2, the data-augmented model has a smaller improvement in R2 on the training set, 
but there is a significant reduction in SD and RMSE. In addition, the performance of the data-enhanced model 
in terms of R2, SD, and RMSE on the test set substantially improved. To further highlight the superiority of 
XGBoost, it is compared with Logistic Regression (LR), Backpropagation (BP), Support Vector Machine (SVM), 

Fig. 3.  Distribution of parameters.

 

A B b c d f ’c ρ E

Unit mm mm mm mm mm MPa % GPa

skew -0.43 -0.28 0.69 -0.97 0.94 3.43 1.74 1.31

max 3000 4000 635 300 284 179 3.76 230

min 300 300 25 25 45 22.2 0.18 28.4

mean 1960.90 1735.77 300.95 212.20 131.43 45.78 0.94 79.91

Table 1.  Statistical characterization of features.
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Decision Tree (DT), and Random Forest (RF) under N2. The hyperparameters of the ML model are shown in 
Table 3, and the RMSE and R2 are shown in Table 4. As can be seen from Table 3, the performance of XGBoost 
is significantly better than that of the other models.

Model evaluation
The existing models for calculating the punching shear strength of FRP-RC slabs are shown in Table 5.

Figure 7 illustrates the comparative performance of the model developed within this research against existing 
models.

Figure 7 shows that the models suggested by codes and researchers have low R-squared and coefficients of 
variation of more than 60%, which makes them unsuitable for guiding engineering practice. The XGBoost model 
constructed in this study has very high R-squared and coefficients of variation within 20%, which is much better 
than existing models.

Model explainability
From Sections  “Model evaluation” and “Model explainability”, it can be seen that XGBoost performs better 
with data augmentation, and therefore, an explainable study of the model is performed using XGBoost under 
N2. The explainability of the model is performed through SHAP. SHAP is an ML model explanation tool based 
on Shapley values, which helps to understand and explain the decision-making process of complex models by 
decomposing model predictions into the contribution of individual features, providing both local and global 
explanations26,28. The global explainability of XGBoost is shown in Figs. 8 and 9, and the local explainability 
is shown in Fig. 10 using the SHAP force plot. It is important to note that in these figures, yellow indicates a 
positive impact, and green indicates a negative impact.

Figure 8 analyses the importance of the parameters in terms of the entire data set. As can be seen in Fig. 8, 
overall, d and B have the most significant impact on punching shear strength, while ρ and E have a lesser impact 

Fig. 4.  Distribution of features before and after data augmentation.
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on punching shear strength. On the other hand, Fig. 9 provides a sensitivity analysis of the parameters from the 
perspective of the entire dataset. Taking the first four parameters with higher importance as an example, it can 
be seen from Fig. 9 that all the four parameters with higher importance have a positive effect on the punching 
shear strength, i.e., the punching shear strength will be improved as d, B, A, and b increases.

Figures 8 and 9 analyze the importance and sensitivity of the parameters from a global point of view. However, 
the parameters’ importance and sensitivity tend to differ for different samples. Figure 10 gives the predicted 

N1-Training N2-Training N1-Test N2-Test

R2 0.987 0.999 0.878 0.976

SD 37.336 0.806 103.661 20.309

RMSE (kN) 37.336 0.806 103.777 20.312

Table 2.  Performance of the model under N1 and N2.

 

Fig. 6.  Distribution of deviations under A and B.

 

Fig. 5.  Model predictions vs. real values under N1 and N2.
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overlay for two different samples. The former sample is from Hassan et al.48, and the latter is from Fareed et 
al.52. In Fig. 10, the arrows and directions indicate the effect of parameters on punching shear strength. Yellow 
indicates a positive influence, and green indicates a negative influence.

Figure  10 demonstrates that the importance and sensitivity of features to punching shear strength are 
different in different samples. For example, for the two samples mentioned above, the top four ranked features 
have exactly the same effect on punching shear strength, but ρ is inversely related to punching shear strength 
in the first sample and the opposite in the second sample. Similarly, E has a negative effect on punching shear 
strength in the first sample but a positive effect in the second sample. It is important to note that even though 
the effects of the features are not exactly the same in both samples, XGBoost predicts them both better. The 
experimental value of the first sample is 329KN, and the model predicts 338.15KN with an error of 2.7%. The 
second sample had an experimental value of 548KN, and the model predicted 555.58KN with an error of 1.3%.

GUI
To make the XGBoost models practical for users, a user-friendly graphical user interface (GUI) was developed. 
This GUI incorporates the key input features identified in the study, enabling users to generate two types of 
outputs. Figure  11 shows a screenshot of the GUI designed to predict the punching shear strength of FRP-
RC slabs, utilizing kernel density estimation and XGBoost. The interface is streamlined and intuitive, making 
complex predictions easy with just a few clicks—users input the required data and receive the output. Accessible 
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Table 5.  Existing models.

 

Training Testing

RMSE (kN) R2 RMSE (kN) R2

LR 142.41 0.82 142.71 0.80

SVM 169.19 0.73 172.18 0.71

BP 95.33 0.91 116.57 0.87

DT 24.24 0.99 76.81 0.94

RF 15.65 0.99 71.15 0.95

XGBoost 0.11 0.99 67.18 0.96

Table 4.  Performance of different models under N2.

 

hyperparameters

LR -

SVM kernel=’linear’, C = 0.3 (0.001,1000), epsilon = 0.1 (0.001,1)

BP hidden_layer_sizes = 14 (2,20), activation=’relu’, solver=’adam’

DT max_depth = 15 (2,100), min_samples_split = 2 (2,10), min_samples_leaf = 2 (2,10)

RF n_estimators = 513 (10,1000), max_depth = 18 (2,100), min_samples_split = 8 (2,10), min_samples_leaf = 3 (2,10)

XGB max_depth = 2 (2,100), learning_rate = 0.6 (0.01,1), n_estimators = 100 (10,1000), alpha = 4.7 (1,10), lambda = 4.9 (1,10)

Table 3.  Hyperparameters of the ML models.
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at “https://nimakhodadadi.com/softwares,” this tool is particularly useful for educational purposes, offering a 
hands-on learning experience in material properties without requiring deep technical knowledge. The input 
ranges displayed alongside each feature guide users to provide realistic values, improving the tool’s reliability. 
In summary, this GUI is a practical, accessible, and educational resource for both professionals and students in 
construction and materials science.

Fig. 7.  Model evaluation.
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Conclusion
This study aimed to develop an accurate and robust prediction model for the punching shear strength of FRP-
reinforced concrete slabs using the XGBoost ensemble learning model. Kernel Density Estimation (KDE) was 
used for data augmentation, and model interpretability was enhanced through SHapley Additive exPlanations 
(SHAP). Additionally, a graphical user interface (GUI) was designed to facilitate engineers’ use. The study led to 
the following conclusions:

Fig. 8.  Importance study of parameters.
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•	 Kernel density estimation can generate feature data for FRP-RC slabs. It significantly enhances the robustness 
and precision of ML predictive models. The augmented model’s R-squared on the training and test sets is 
higher than before augmentation, and the standard deviation and root mean square error are much lower.

•	 The existing codes and the models suggested by researchers for calculating the punching shear strength of 
FRP-RC slabs have low R-squared (below 0.8) and coefficients of variation exceeding 60%, which are not 
conducive to practical engineering applications.

•	 Of all the ML models used in this paper, XGBoost performed the best. On the training and test sets, it had the 
smallest RMSE and the largest R2.

•	 The effective depth (d) of the FRP-RC slabs is the most important and proportional to the punching shear 
strength. ρ and E have a lesser influence on the punching shear strength and have a more complex relationship 
with the punching shear strength.

This study extends the application of KDE in structural engineering and demonstrates the performance of the 
XGBoost model in predicting the punching shear strength of FRP-RC slabs. In addition, the conclusions on the 
significance and sensitivity of the features obtained in this study can be used as a reference for code revision and 
engineering design of FRP-RC slabs. However, this study is data-driven and does not incorporate knowledge of 
the mechanics of FRP-RC slabs, and further refinement of the model with professional knowledge is required 
in the future.

Fig. 9.  Sensitivity study of parameters.
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Fig. 10.  SHAP waterfall plot.
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Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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