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Explainable prediction model for
punching shear strength of FRP-
RC slabs based on kernel density
estimation and XGBoost

Sheng Zheng?, Tianyu Hu?, Nima Khodadadi**“ & Antonio Nanni?

Reinforced concrete (RC) slabs are widely used in modern building structures due to their superior
properties and ease of construction. However, their mechanical properties are limited by their
punching shear strength in the connection region with the columns. Researchers have attempted

to add steel reinforcement in the form of studs and randomly distributed fibers to concrete slabs to
improve the punching strength. An additional strengthening method that consists of the application
is a Fiber-Reinforced Polymer (FRP). However, current codes poorly calculate the punching shear
strength of FRP-RC slabs. The aim of this study is to create a robust model that can accurately predict
its punching shear strength, thus improving the analysis and design of composite structures with
FRP-RC slabs. In this study, 189 sets of experimental data were collected and expanded using kernel
density estimation (KDE), considering the small amount of data. Secondly, a punching shear strength
prediction model for FRP-RC panels was constructed using XGBoost and compared with the model
modeled by codes and researchers. Finally, a model explainability study was conducted using SHapley
additive exPlanations (SHAP). The results show that kernel density estimation significantly improves
the robustness and accuracy of XGBoost. The R-squared, standard deviation, and root mean square
error of XGBoost on the training set are 0.99, 0.001, and 0.001, respectively. On the test set, the
R-squared, standard deviation, and root mean square error are 0.96, 62.687, and 67.484, respectively.
The effective depth of the FRP-RC slabs is the most important and proportional to the punching shear
strength. This study can provide guidance for the design of FRP-RC slabs.

Keywords Fiber-reinforced polymer, RC slabs, Kernel density estimation, XGBoost, SHapley additive
exPlanations

Currently, the use of RC (RC) in conjunction with composite structures has gained extensive popularity. Among
them, RC slabs, as a key component in modern building structures, not only carry the load of the building but
also reflect the perfect integration of material science and structural engineering?. In the composite material
system of RC, high-strength steel and durable concrete interact with each other to jointly resist external forces
and ensure the safety and stability of the structure®=°. RC slabs are widely used in the fields of flooring, roofing,
and even special structures such as staircases and bridge slabs due to their unique mechanical properties and
ease of construction®.

Numerous techniques, such as enclosed loops, bent steel reinforcements, and shear connectors, have been
extensively implemented to boost the punching shear resistance of RC slabs. Recently, there has been a surge in
scholarly attention towards employing FRP as a reinforcing medium in concrete slabs, intending to augment their
capacity to resist punching shear forces. This innovative approach addresses some of the limitations associated
with traditional steel reinforcement. The use of FRP in concrete slabs is seen as a significant advancement in
construction materials technology, offering improved durability and performance in structural applications'®!!.
Researchers have conducted numerous studies and experiments to understand the behavior and benefits of
FRP-RC slabs under various loading conditions, leading to a better understanding of effectively incorporating
FRP into concrete structures to optimize their strength and longevity!?-!°. Compared with traditional concrete
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slabs, they have the advantages of being lightweight, having good corrosion resistance, high strength, insulation,
and fatigue resistance. They are suitable for building structures that require special requirements such as high
load-bearing capacity, corrosion resistance, or electrical insulation and have a wider application prospect!”%.

Various models have been put forth by both codes and researchers to estimate the punching shear strength
of concrete slabs reinforced with FRP. Canadian Standards Association (CSA), Japan Society of Civil Engineers
(JSCE), and American Concrete Institute (ACI) have proposed punching shear strength prediction models
considering the effect of loading area dimensions, effective depth, and concrete strength!°-2!. Besides, Deifalla'”
has proposed a punching shear strength prediction model based on the critical shear crack theory. These models
have contributed significantly to the study of this combined structure. However, FRP-RC slabs have a complex
structure, and their punching shear strength is subject to the coupling of multiple parameters, which is difficult
to achieve by the existing mathematical models and the applicability of the above models still needs to be
strengthened as the coefficients of variation of the models are large compared with the experimental values. In
addition, Badra et al.!® constructed a predictive model for the punching strength of FRP-RC slabs using ANN
and SVM. Although the accuracy of this model is better than that of the codes’ and Deifalla’s model, its coefficient
of variation is large (0.25 for ANN and 0.2 for SVM), which makes it difficult to guarantee the reliability of the
application and lacks explainability. Based on this, a predictive model for punching shear strength of FRP-RC
slabs with higher accuracy and explainability is required to be proposed.

In recent years, ensemble learning has been increasingly used in structural engineering due to its much better
performance than single learning and its explainability?>?>.

For instance, Khodadadi et al?* introduced a pioneering machine-learning approach for predicting the
compressive strength of Carbon fiber-reinforced polymer Confined-Concrete (CFRP-CC) specimens. Utilizing
a Particle Swarm Optimization-Categorical Boosting (PSO-CatBoost) algorithm, their model, based on an
extensive database of 916 experimental outcomes from 105 scholarly articles, demonstrated superior predictive
performance compared to six contemporary machine learning models and six empirical models. Their approach
uniquely incorporated SHapley Additive exPlanations (SHAP) and Permutation Feature Importance (PFI)
methodologies to elucidate feature importance, establishing a new benchmark in CFRP-CC predictive modeling.
Taffese et al.2° collected 170 sets of data, used CatBoost to predict the ultimate moment of UHPC-strengthened
beams, and conducted a feature importance study based on SHAP. Sapkota et al.2® collected 226 data sets, used
five ensemble learning models to predict the effective stiffness of rectangular RC columns, and used SHAP to
study the sensitivity between input and output parameters. Pal et al.?” predicted a slump of FRP-RC containing
waste rubber and recycled aggregates based on 464 data sets using 12 models, including single and ensemble
learning. The results show that XGBoost performs best among all the models. Alyami et al.?® predicted the
compressive strength of concrete containing rice husk based on 348 data sets using three ensemble models
and one single model. They carried out an interpretable study of the model using SHAP. The results showed
that the ensemble model outperformed the single model, and SHAP explained the key indicators affecting the
compressive strength.

This research delves into the application of artificial intelligence algorithms in forecasting the punching shear
strength of concrete slabs reinforced with FRP materials. Advanced machine learning techniques are employed,
building upon previous research, with a particular emphasis on model interpretability. Methodologies such as
SHAP and importance and sensitivity analyses are utilized to clarify the machine learning (ML) results. The most
extensive collection of experimental data to date is aggregated, incorporating the highest number of variables
into the model-building process compared to previous studies. This comprehensive approach is intended to
enhance the understanding of the factors influencing punching shear strength. Specifically, a database of 189 sets
of valid data from 36 research papers, including key input variables: loading area shape, loading area dimensions,
effective depth, concrete strength, FRP Young’s modulus, FRP reinforcement ratio, and output punching shear
strength, is compiled. Since the amount of data is crucial to model performance in ML, this study first uses kernel
density estimation (KDE) to expand the experimental data. Subsequently, it develops an explainable predictive
model for the punching shear strength of FRP-strengthened concrete slabs, grounded on the integration of
the XGBoost algorithm with SHAP analysis. The developed ML model is compared against existing formulas.
Ultimately, the study identifies the paramount variables influencing punching shear capacity and formulates
enhanced predictive equations with improved accuracy.

The follow-up study consists of the following sections: Section “Methodology” introduces the data
enhancement model - kernel density estimation - and the integrated learning model - XGBoost - used in this
study. Section “Database construction” is the database construction, including experimental data collection and
KDE-based data augmentation. Section “Model construction and evaluation” is the model construction and
evaluation, including selecting hyperparameters for XGBoost, validating data enhancement effects, evaluating
existing codes’ and researchers’ models, and the explainability study of XGBoost. The last section is the
conclusion, which includes a summary of the results obtained in this study and an outlook for future research.

Methodology

Kernel density estimation

Kernel density estimation (KDE) is a non-parametric probability density estimation method determined by
the data distribution®. For the problem that the distribution of the observed data is unknown, without making
any distributional assumptions about it, the probability density function is modeled based on the observed data
itself. The formula for KDE is shown in Eq. (1):
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where, 7 is the number of the sample points, denotes the kernel function, denotes the bandwidth, which affects
how smooth the probability density estimate is.

Extreme gradient boosting

Extreme Gradient Boosting (XGBoost)* is a general-purpose Gradient Boosting algorithm that is capable of
carrying out multi-threaded parallel computation with high resistance to overfitting and accuracy (See Fig. 1).
XGBoost makes predictions by iteratively building a series of decision trees. The predictions from each tree are
combined to form the final prediction. The prediction formula of XGBoost can be expressed as:

)

Where %(x) is the sum of the predicted values of all the decision trees, f, denotes the predicted value of each
decision tree, Wiy 18 the function that maps the sample x to the index of the leaf node of the tree.
The objective function of XGBoost mainly consists of loss function and regularisation term, as shown below:

Obj (0) => 1,70+ »_2(f)

t
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where T is the number of leaves, w, is the value associated with the jth leaf, y is a parameter that penalizes the
number of leaves, and A is the L2 regularization term on the leaf weights. The regularization term of XGBoost
penalizes the complexity of the model through the parameters y and A to prevent overfitting, thus maintaining
the model’s generalization ability. For additional information on XGBoost, see reference®.

€)

Shapley additive explanation

Shapley Additive Explanations (SHAP), rooted in the principles of cooperative game theory, stands out as a
prominent model-agnostic technique designed to improve the interpretability of ML models. It quantifies the
significance of features through the application of Shapley values, thereby offering a robust framework for
understanding model predictions. The SHAP value for a feature is calculated as follows:
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Fig. 1. Architecture of XGBoost.
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where S is a feature subset, x is the feature vector, and p is the number of features.

Modelling

The data from Section “Database construction” was used to construct the model based on two methods. These
two methods are denoted as N1 and N2, respectively. N1: The dataset was partitioned such that 80% of the
experimental instances served as the training subset, while the remaining 20% constituted the testing subset. N2:
In an alternative approach, the synthesized data was utilized for training purposes, with the actual experimental
data reserved exclusively for testing, thereby validating the model’s predictive capabilities. The modeling uses
XGBoost, as mentioned in Section “Extreme gradient boosting”, and its optimal hyperparameters are obtained
using grid search and five-fold cross-validation. Grid search is a method to find the best model hyperparameters
by traversing different parameter combinations. Five-fold cross-validation is a commonly used method for
model evaluation, and its principle is shown in Fig. 2. Step 1 divides the training dataset into five equal parts;
Step 2 uses four parts to train the model and the remaining one to validate the model; Step 2 is repeated until
each part is used as a training and validation set; finally, the performance of the model is calculated as the average
of the results of the five evaluations.

Database construction
Data details
An aggregation of 189 experimental datasets was compiled from a thorough examination of 36 distinct research
endeavors!'!-1631-60including key input variables: loading area shape ( A, B), loading area dimensions (b, ¢
), effective depth (d), cubic concrete strength (f”), FRP young modulus ( £), FRP reinforcement ratio (p), and
output: punching shear strength ( V). The statistical analysis of the data is shown in Table 1. The distribution of
the data is shown in Fig. 3.

As can be seen in Fig. 3, the distribution of the features is wide but uneven across the intervals.

Data expansion

As described in Section “Data details”, 189 sets of experimental data were collected. Considering the impact of
smaller data sizes on the model generalization performance, this section expands the data based on the kernel
density estimation algorithm mentioned in Section “Kernel density estimation”. The expanded data contains
689 data sets (500 generated data and 189 experimental data). The distribution of the data before and after the
expansion is shown in Fig. 4.
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Fig. 2. 5-fold cross-validation.
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Unit | mm mm mm mm mm MPa | % GPa

skew | -0.43 -0.28 0.69 -0.97 | 0.94 343 | 1.74 | 1.31

max | 3000 4000 635 300 284 179 3.76 | 230

min | 300 300 25 25 45 222 0.8 | 284

mean | 1960.90 | 1735.77 | 300.95 | 212.20 | 131.43 | 45.78 | 0.94 | 79.91

Table 1. Statistical characterization of features.
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Fig. 3. Distribution of parameters.

In Fig. 4, the first five are geometric features, and the last four are material features. The kernel density function
is the same for the enhanced data and the original data, which indicates that the kernel density estimation model
learns the feature distribution of the original data well.

Model construction and evaluation

Data enhancement validation

A comparison of training and test set prediction results and experimental values of XGBoost model before and
after data enhancement is shown in Fig. 5.

As can be seen from Fig. 5, the XGBoost model outperforms N1 on the training set under N2, but the
difference on the test set is not significant. To further validate the effectiveness of data enhancement, the
distribution of deviations on the training and test sets of the model under N1 and N2 are given in Fig. 6.

As can be seen in Fig. 6, the model has better robustness (normal deviation distribution) under both N1 and
N2. However, it is evident that the deviation distributions of the model training and test sets under N2 are closer
to 0, indicating that it is more robust than N1. Figures 5 and 6. confirm the robustness of the data-augmented
model, and further, the table gives the R-squared (R?), standard deviation (SD), and root-mean-square error

(RMSE) of the model training and test sets before and after augmentation.

As can be seen from Table 2, the data-augmented model has a smaller improvement in R? on the training set,
but there is a significant reduction in SD and RMSE. In addition, the performance of the data-enhanced model
in terms of R?, SD, and RMSE on the test set substantially improved. To further highlight the superiority of
XGBoost, it is compared with Logistic Regression (LR), Backpropagation (BP), Support Vector Machine (SVM),
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Fig. 4. Distribution of features before and after data augmentation.

Decision Tree (DT), and Random Forest (RF) under N2. The hyperparameters of the ML model are shown in
Table 3, and the RMSE and R? are shown in Table 4. As can be seen from Table 3, the performance of XGBoost
is significantly better than that of the other models.

Model evaluation
The existing models for calculating the punching shear strength of FRP-RC slabs are shown in Table 5.

Figure 7 illustrates the comparative performance of the model developed within this research against existing
models.

Figure 7 shows that the models suggested by codes and researchers have low R-squared and coefficients of
variation of more than 60%, which makes them unsuitable for guiding engineering practice. The XGBoost model
constructed in this study has very high R-squared and coefficients of variation within 20%, which is much better
than existing models.

Model explainability
From Sections “Model evaluation” and “Model explainability”, it can be seen that XGBoost performs better
with data augmentation, and therefore, an explainable study of the model is performed using XGBoost under
N2. The explainability of the model is performed through SHAP. SHAP is an ML model explanation tool based
on Shapley values, which helps to understand and explain the decision-making process of complex models by
decomposing model predictions into the contribution of individual features, providing both local and global
explanations?®?8, The global explainability of XGBoost is shown in Figs. 8 and 9, and the local explainability
is shown in Fig. 10 using the SHAP force plot. It is important to note that in these figures, yellow indicates a
positive impact, and green indicates a negative impact.

Figure 8 analyses the importance of the parameters in terms of the entire data set. As can be seen in Fig. 8,
overall, d and B have the most significant impact on punching shear strength, while p and E have a lesser impact
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Fig. 5. Model predictions vs. real values under N1 and N2.
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N1-Training | N2-Training | N1-Test | N2-Test
R? 0.987 0.999 0.878 | 0.976
D 37.336 0.806 103.661 | 20.309
RMSE (kN) | 37.336 0.806 103.777 |20.312
Table 2. Performance of the model under N1 and N2.
on punching shear strength. On the other hand, Fig. 9 provides a sensitivity analysis of the parameters from the
perspective of the entire dataset. Taking the first four parameters with higher importance as an example, it can
be seen from Fig. 9 that all the four parameters with higher importance have a positive effect on the punching
shear strength, i.e., the punching shear strength will be improved as d, B, A, and b increases.
Figures 8 and 9 analyze the importance and sensitivity of the parameters from a global point of view. However,
the parameters’ importance and sensitivity tend to differ for different samples. Figure 10 gives the predicted
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hyperparameters
LR |-
SVM | kernel="linear, C=0.3 (0.001,1000), epsilon=0.1 (0.001,1)

BP hidden_layer_sizes =14 (2,20), activation="relu, solver="adam’

DT max_depth=15 (2,100), min_samples_split=2 (2,10), min_samples_leaf=2 (2,10)

RF n_estimators =513 (10,1000), max_depth =18 (2,100), min_samples_split=38 (2,10), min_samples_leaf=3 (2,10)
XGB | max_depth=2 (2,100), learning_rate=0.6 (0.01,1), n_estimators =100 (10,1000), alpha=4.7 (1,10), lambda=4.9 (1,10)

Table 3. Hyperparameters of the ML models.

Training Testing

RMSE (kN) | R? | RMSE (kN) | R?
LR 142.41 0.82 | 142.71 0.80
SVM 169.19 0.73 | 172.18 0.71
BP 95.33 091 | 116.57 0.87
DT 24.24 0.99 | 76.81 0.94
RF 15.65 0.99 | 71.15 0.95
XGBoost | 0.11 0.99 | 67.18 0.96

Table 4. Performance of different models under N2.
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Table 5. Existing models.

overlay for two different samples. The former sample is from Hassan et al.®%, and the latter is from Fareed et

al.>2 In Fig. 10, the arrows and directions indicate the effect of parameters on punching shear strength. Yellow
indicates a positive influence, and green indicates a negative influence.

Figure 10 demonstrates that the importance and sensitivity of features to punching shear strength are
different in different samples. For example, for the two samples mentioned above, the top four ranked features
have exactly the same effect on punching shear strength, but p is inversely related to punching shear strength
in the first sample and the opposite in the second sample. Similarly, E has a negative effect on punching shear
strength in the first sample but a positive effect in the second sample. It is important to note that even though
the effects of the features are not exactly the same in both samples, XGBoost predicts them both better. The
experimental value of the first sample is 329KN, and the model predicts 338.15KN with an error of 2.7%. The
second sample had an experimental value of 548KN, and the model predicted 555.58KN with an error of 1.3%.

GUI

To make the XGBoost models practical for users, a user-friendly graphical user interface (GUI) was developed.
This GUI incorporates the key input features identified in the study, enabling users to generate two types of
outputs. Figure 11 shows a screenshot of the GUI designed to predict the punching shear strength of FRP-
RC slabs, utilizing kernel density estimation and XGBoost. The interface is streamlined and intuitive, making
complex predictions easy with just a few clicks—users input the required data and receive the output. Accessible
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at “https://nimakhodadadi.com/softwares,” this tool is particularly useful for educational purposes, offering a
hands-on learning experience in material properties without requiring deep technical knowledge. The input
ranges displayed alongside each feature guide users to provide realistic values, improving the tool’s reliability.
In summary, this GUI is a practical, accessible, and educational resource for both professionals and students in

construction and materials science.
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Conclusion

This study aimed to develop an accurate and robust prediction model for the punching shear strength of FRP-
reinforced concrete slabs using the XGBoost ensemble learning model. Kernel Density Estimation (KDE) was
used for data augmentation, and model interpretability was enhanced through SHapley Additive exPlanations
(SHAP). Additionally, a graphical user interface (GUI) was designed to facilitate engineers” use. The study led to

the following conclusions:
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Fig. 9. Sensitivity study of parameters.

«+ Kernel density estimation can generate feature data for FRP-RC slabs. It significantly enhances the robustness
and precision of ML predictive models. The augmented model’s R-squared on the training and test sets is
higher than before augmentation, and the standard deviation and root mean square error are much lower.

« The existing codes and the models suggested by researchers for calculating the punching shear strength of
FRP-RC slabs have low R-squared (below 0.8) and coeflicients of variation exceeding 60%, which are not
conducive to practical engineering applications.

o Ofall the ML models used in this paper, XGBoost performed the best. On the training and test sets, it had the
smallest RMSE and the largest R2

o The effective depth (d) of the FRP-RC slabs is the most important and proportional to the punching shear
strength. p and E have a lesser influence on the punching shear strength and have a more complex relationship
with the punching shear strength.

This study extends the application of KDE in structural engineering and demonstrates the performance of the
XGBoost model in predicting the punching shear strength of FRP-RC slabs. In addition, the conclusions on the
significance and sensitivity of the features obtained in this study can be used as a reference for code revision and
engineering design of FRP-RC slabs. However, this study is data-driven and does not incorporate knowledge of
the mechanics of FRP-RC slabs, and further refinement of the model with professional knowledge is required
in the future.
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oftwares).
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